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Abstract: Economic model predictive control in microgrids combined with dynamic pricing of grid
electricity is a promising technique to make the power system more flexible. However, to date, each
individual microgrid requires major efforts for the mathematical modelling, the implementation on
embedded devices, and the qualification of the control. In this work, a field-suitable generalised linear
microgrid model is presented. This scalable model is instantiated on field-typical hardware and in a
modular way, so that a class of various microgrids can be easily controlled. This significantly reduces
the modelling effort during commissioning, decreases the necessary qualification of commissioning
staff, and allows for the easy integration of additional microgrid devices during operation. An
exemplary model, derived from an existing production facility microgrid, is instantiated, and the
characteristics of the results are analysed.

Keywords: economic model predictive control; microgrid modelling; power system flexibilisation

1. Introduction

Economic model predictive control (MPC) in smart grids and microgrids is a topical
field of research, and many successful applications have already been demonstrated, even
if often only in simulation studies. One of these applications is unit commitment, dispatch,
and demand-side optimisation in microgrids, based on dynamic pricing at the electricity
exchange [1]. In this application, the optimal energy or power scheduling of microgrid
components is computed based on predictions of weather, electrical, or thermal load,
electricity prices, etc. The optimal schedule is used as the setpoint for the microgrid
components. This optimisation of the schedule is repeated periodically with a receding
horizon. The implementation of such optimisation methods on embedded hardware for
industrial control is a still developing but expanding research field [2–4].

A critical requirement of MPC implementations is the availability of accurate and
detailed mathematical models of the controlled systems. The high modelling effort can
pose a significant hurdle to a widespread application of MPC in microgrids due to the
time and qualification needed for the generation and identification of suitable control-
oriented models [5]. A large number of models for a variety of systems are described in the
literature, but they are usually designed for one specific system to be controlled, major effort
is spent on the implementation of these unique models, and often, they are implemented
in desktop software such as Simulink or Modelica [6]. Depending on the grid regulatory
framework, the cost of the modeling effort and control implementation may exceed the
potential benefits from implementing MPC in microgrids. As stated by Forbes et al. [7],
“many industries do not necessarily need better [MPC] algorithms, but rather improved
usability of existing technologies to allow a limited workforce of varying expertise to easily
commission, use, and maintain these valued applications”.

The goal of this work is to reduce the modelling effort that is required to implement
MPC in a class of microgrids with various configurations and to enable rapid commis-

Appl. Sci. 2021, 11, 10602. https://doi.org/10.3390/app112210602 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5973-2594
https://orcid.org/0000-0003-2000-4730
https://doi.org/10.3390/app112210602
https://doi.org/10.3390/app112210602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210602
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210602?type=check_update&version=1


Appl. Sci. 2021, 11, 10602 2 of 17

sioning of MPC on field-typical hardware. The focus is on commercial microgrids in
small and medium enterprises (SMEs), using industrial information and communication
technology (ICT).

One approach to rapidly implement MPC on embedded hardware is to develop the
control solution in desktop software such as Matlab or Modelica and then use automatic
code generation for the real-time implementation on the target embedded hardware,
as presented by Krupa et al. [3]. While providing comfortable high-level engineering tools,
this approach also has disadvantages. The engineering process still requires personnel who
have in-depth knowledge of MPC and microgrid modelling. The automatically generated
code can cause a major effort for long-term maintenance or even the need for redesign when
the system architecture changes, e.g., when new components such as photovoltaic power
plants or electric vehicles are put into operation. The difficulties of rapid development of
MPC solutions were also addressed by Lucia et al. [8], who reduced the effort of going
from simulation to an online application by providing a modular software system with
standardised interfaces for simulator, model, estimator, and optimiser. An experimental
validation was conducted on a laboratory reactor, where optimal control was computed
on a desktop computer, and hardware was interfaced with laboratory communication
equipment. Verschueren et al. [9] presented a software package for model predictive control,
avoiding a separate code generation phase for prototyping and embedded applications and
trying to reduce the high price to pay in flexibility, maintainability, and extensibility of code
generation. Validation was conducted numerically with an inverted pendulum model on a
notebook computer. Another approach to reduce modelling and system identification effort
is to replace traditional physics-based models with black box models, obtained by learning
techniques. However, these data-driven approaches often use highly nonlinear models
resulting in high computational complexity of the MPC problem. It is not yet clear, if such
data-driven methods provide significant advantages, as most studies lack benchmarking,
model validation, and the proof of scalability or generalisation when applied to other
buildings or systems [10].

The main aim of this work is to reduce the modelling effort needed to implement eco-
nomic MPC on field devices for a wide range of microgrids and to reduce the qualification
needed by the commissioning staff. We achieve this by developing a generalised model that
can be easily assembled in a modular fashion when concrete microgrids are commissioned.
Commissioning is carried out in IEC 61131 programming languages, which are commonly
known in the automation industry [11,12]. The presented solution provides a major com-
plexity reduction for the commissioners, who need to be trained but do not need to be
MPC experts. Moreover, we investigate the effects of the generalisation and its scalability.
This paper presents a generalisation of our research on field-ready implementations of
economic MPC in small and medium enterprises (SMEs) [13].

2. Materials and Methods

This section describes a generic linear microgrid model, its modular composition,
the implementation specifics on field-typical hardware, and its commissioning process.
Finally, the conditions and scenarios of system tests are specified. The tests are performed in
a hardware-in-the-loop test environment, which is a digital twin of an exemplary microgrid
of a production facility in Germany, that is to be controlled.

2.1. Generalised Dynamic System Model

For the configurable and modular model composition, a generalised microgrid model
was developed. The microgrid can consist of photovoltaic power plants (PV), electric
vehicles (EV), battery electric storage systems (BESS), a single immutable load representing
the total aggregated power demand of a generic production facility (LOAD), and the utility
grid connection (GRID). The device types PV, BESS, and EV are not limited to single devices,
as usually more than one of these can be found in SMEs and commercial microgrids. These
devices are organised in sets A, B, and Γ. The utility grid connection is modelled as single
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instance, as multiple-grid connections are uncommon. The aggregated power demand
of the production facility is also modelled as a single instance, as considering the power
demand of all electrical loads separately brings no benefit in this modelling approach.
The typical system architecture, in which all devices are connected to a common bus, is
depicted in Figure 1.

Figure 1. Block diagram of the controller system model containing multiple devices. The device
types PV, EV, and BESS are modelled individually and occur in sets A, B, and Γ. The grid connection
(GRID) and the aggregated power demand (LOAD) are each modelled as a single instance.

The utility grid can be used as an energy source with the supply power Pg,s or as an
energy sink for surplus renewable generation with the feed-in power Pg,f. The aggregated
power demand of the production facility is modelled as load power Pl. Each PV power
plant α ∈ A feeds into the common bus (main node) with a power Pα, resulting in the
summarised PV power

PA = ∑
α∈A

Pα. (1)

Each BESS β ∈ B has a charging power Pβ,ch and a discharging power Pβ,dc, resulting
in summarised charging and discharging powers

PB,ch = ∑
β∈B

Pβ,ch and PB,dc = ∑
β∈B

Pβ,dc. (2)

The energy content of each BESS is Eβ, and the summarised energy content of all
BESSs is

EB = ∑
β∈B

Eβ. (3)

Each EV γ ∈ Γ has a charging power Pγ,ch and a discharging power Pγ,dc with
summarised powers

PΓ,ch = ∑
γ∈Γ

Pγ,ch and PΓ,dc = ∑
γ∈Γ

Pγ,dc. (4)

Each EV is discharged by driving during its absence with Pγ,a. The summarised EV
energy content is

EΓ = ∑
γ∈Γ

Eγ. (5)
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The equality constraints of the MPC controller model, given in explicit discrete state
space representation, are

Pk
A + Pk

B,dc + Pk
Γ,dc + Pk

g,s = Pk
l + Pk

B,ch, + Pk
Γ,ch + Pk

g,f ∀ k ∈ N, (6)

Ek+1
β − Ek

β = ∆t(ηβ,ch × Pk
β,ch − 1/ηβ,dc × Pk

β,dc) ∀ k ∈ N, β ∈ B, (7)

Ek+1
γ − Ek

γ = ∆t(ηγ,ch × Pk
γ,ch − 1/ηγ,dc × Pk

γ,dc − Pk
γ,a) ∀ k ∈ N, γ ∈ Γ, (8)

Pk
α = Pk

α,f ∀ k ∈ N, α ∈ A, (9)

Pk
1 = Pk

l,f ∀ k ∈ N, (10)

where
Pk

i = Pi(t = tk) with tk = k∆t (11)

denotes the active power of component i ∈ I = {A, B, Γ, l, g} at timestep k, and

Ek
i = Ei(t = tk) (12)

are the energy contents of the component i at timestep k. The time interval ∆t is the time
difference between discretisation steps (sampling interval). This was chosen to be 15 min,
which is a common billing period in energy economics, and the MPC prediction horizon
was chosen to be 48 h, resulting in N = 192 timesteps, allowing a reasonably foresighted
microgrid scheduling. The equality constraints in Equations (6)–(10) express the following
system interrelationships: Energy conservation is required at the bus (main node) at all
timesteps and includes all summarised incoming and outgoing powers. Moreover, there
is energy conservation in all BESSs β ∈ B and EVs γ ∈ Γ, where ηβ,ch and ηγ,ch are
the charging efficiencies and ηβ,dc and ηγ,dc are the discharging efficiencies, which are
simplified to be constant and independent of cell temperature, power, etc. The generated
power Pk

α of every PV plant α ∈ A is assumed to equal a plant-specific PV power forecast
Pk

α,f. The power demand of the aggregated loads in the production facility Pk
l is assumed to

equal a load power forecast Pk
l,f.

In this generalised model, devices of the category BESS, EV, or PV can be modularly
added to the system of equations. By adding devices to the microgrid, corresponding terms
are added to the summary powers in Equation (6) and sets of N equations of type (7)–(9) are
added to the equality constraints. The same principle applies to the following inequalities
and bounds.

Feed-in from BESSs or EVs into the utility grid is typically regulated by region-specific
rules. In Germany, grid regulation allows compensated feed-in from storage units into
the utility grid only if these components are exclusively charged from on-site renewable
generation [14]. However, this makes the exploitation of dynamic grid electricity pricing
with these storage units impossible. To exploit time-variable energy tariffs by predictively
charging BESSs and EVs and to satisfy the abovementioned grid regulation, feed-in from
BESS or EV into the utility grid must therefore be prohibited by the inequality constraint.

Pk
B,dc + Pk

Γ,dc ≤ Pl + Pk
B,ch, + Pk

Γ,ch ∀ k ∈ N. (13)

The EU Network Code Requirements for Generators (RfG) [15], which is the under-
lying European regulation, is not specific on this topic and leaves room for individual
regulatory design in the member states, such that the inequality of Equation (13) is not
directly applicable to other European member states. However, similar national regulations
have been passed in other states.

In order not to charge the EVs from the BESSs, the inequality constraint applies.
Further constraints result from the limited rated power of the components and cabling.

Pk
Γ,ch ≤ Pk

g,s + Pk
A ∀ k ∈ N (14)
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0 ≤ Pk
i ≤ Pi,max ∀ k ∈ N, i ∈ I. (15)

The energy contents of the BESSs with the capacities Cβ and the EVs with the ca-
pacities Cγ are limited with their respective minimum and maximum permitted state of
charge (SOC).

SOCβ,minCβ ≤ Ek
β ≤ SOCβ,maxCβ ∀ k ∈ N, β ∈ B, (16)

SOCγ,minCγ ≤ Ek
γ ≤ SOCγ,maxCγ ∀ k ∈ N, γ ∈ Γ. (17)

The SOC operating window can be a subset of [0, 1], in order to increase battery
life [16] or to guarantee minimum battery uptime for uninterruptible power supply during
grid faults. The vehicle’s feed into the local grid can be (temporarily or constantly) limited
by the inequality constraint.

Pk
γ,dc ≤ Pk

γ,dc,max ∀ k ∈ N, γ ∈ Γ. (18)

To guarantee a desired range within the EV’s planned operation, their minimum
SOC thresholds to be achieved at one or multiple scheduled timesteps, deviating from
Equation (17), are

SOCk
γ,thCγ ≤ Ek

γ ∀ k ∈ N, γ ∈ Γ. (19)

The predicted SOCs of arriving EVs at timestep k are

Ek
γ ≤ SOCk

γ,arrCγ ∀ γ ∈ Γ. (20)

Transmission losses due to cabling, etc., are omitted for simplicity because it would
require unreasonable efforts to determine them in practical commissioning situations.

The linear cost function

J = ∆t
N−1

∑
k=0

(−cfPk
g, f + ck

s Pk
g,s) (21)

represents the sum of grid supply cost and feed-in revenue for all timesteps in the prediction
horizon. This function is to be minimised. The feed-in revenue at timestep k equals the
product of a fixed feed-in tariff cf and surplus feed-in of renewable energy into the utility
grid Pk

g,f. The grid supply cost at timestep k equals the product of the dynamic grid

electricity price ck
s and grid electricity supply Pk

g,s. In many European countries, different
PV power plants are subject to different feed-in tariffs, depending on their size and their
year of commissioning. In this case, the overall feed-in tariff cf is the sum of the individual
feed-in tariffs cf,β, weighted with the share of the individual installed power Pβ,inst in the
total installed PV power PB,inst:

cf =
1

PB,inst
∑
β∈B

(
cf,βPβ,inst

)
. (22)

Depending on the device type, we define one to three power vectors of type

Pi := (P0
i , . . . , PN−1

i ) (23)

and, if applicable, one energy vector of type

Ei := (E0
i , . . . , EN

i ) (24)
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for each device i ∈ {A, B, Γ, l, g}. A state vector x is defined, containing all power and
energy content vectors Pi and Ei of all devices, arranged by device type

x := (EBESS, EEV, PGRID, PLOAD, PPV, PBESS, PEV), (25)

where these device class vectors are concatenations of the respective power and energy vectors

EBESS = (E1, . . . , E|B|), (26)

EEV = (E1, . . . , E|Γ|), (27)

PBESS = ((P1,ch, . . . , P|B|,ch), (P1,dc, . . . , P|B|,dc), (28)

PEV = ((P1,ch, . . . , P|Γ|,ch), (P1,dc, . . . , P|Γ|,dc), (P1,a, . . . , P|Γ|,a)), (29)

PPV = (P1, . . . , P|A|), (30)

PGRID = (Pg,f, Pg,s), (31)

PLOAD = Pl, (32)

and their size depends on the number of devices in each class (the cardinality of the sets).
The linear optimisation problem can then be written in general form as

min
x

cTx (33)

s.t. Aeqx = beq, (34)

Aubx ≤ bub, and (35)

l ≤ x ≤ u. (36)

where c is a cost vector, which contains the cost of grid energy supply and revenue
from feed-in at the corresponding indices of Pg,s and Pg,f and otherwise equals the zero
vector. Aeq and Aub are the equality and upper-bound inequality constraint matrices
and beq and bub are the corresponding constraint vectors. Equation (34) represents the
equality constraints in Equations (6)–(10), and the inequality in Equation (35) represents
the constraints in Equations (13) and (14). The state vector x is constrained by the lower
and upper bounds l and u. The inequality in Equation (36) represents the power and
energy bounds of Equations (15)–(20). Thus, the problem is formulated in general form,
and standard linear optimisation procedures such as simplex or interior-point algorithms
can be used [17].

The number of rows and columns of the constraint matrices each scale linearly with
additional components:

Aeq ∈ Rmeq×neq , (37)

Aub ∈ Rmub×nub , (38)

where

meq = N(|A|+ 2) + (N + 1)(|B|+ |Γ|), (39)

neq = N(|A|+ 2|B|+ 3|Γ|+ 3) + (N + 1)(|B|+ |Γ|), (40)

mub = 2N, and (41)

nub = neq. (42)

The presented modular modelling approach aims at deployment in several different
plants with a simplified commissioning routine. Since BESS degradation and cycle life
are quite device specific, these are not included in the optimisation model. To consider
degradation, it is sufficient to (automatically) adjust the BESS parameters that change over
time (e.g., capacity or efficiency) in the field hardware implementation (see Section 2.2).
These parameters are usually given by the battery management system of industrial
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BESSs via field-bus and can be retrieved automatically. If the BESS manufacturer does not
perform condition monitoring, a general model from the literature can be used. The chosen
degradation model should generalise well across operating conditions and should be
computationally efficient and simple enough to be used in model-based system design [18].
The cost function in Equation (21) does not consider the cost of battery degradation.
However, the degradation cost could be easily included by adding a specific charging or
discharging cost to the cost function

J = ∆t
N−1

∑
k=0

(−cfPk
g, f + ck

s Pk
g,s + cdegPk

B,ch) (43)

where cdeg is calculated from the levelised cost of storage of the specific BESS device. This
preserves linearity and does not obstruct modular assembly. Due to the now high cycle sta-
bility of typical stationary BESS and the low expected number of cycles in this application,
degradation costs are not considered further, and the cost function in Equation (21) is used
in the presented evaluation.

2.2. Control Hardware Structure and Commissioning Process

The generalised controller model was used to implement MPC on industrial-level
control hardware, which is a programmable logic controller (PLC) and an edge computer
(EC). Both embedded components are mounted on DIN-rails and are suitable for switch-
board cabinets. The PLC is responsible for the system sampling (measurements of the
devices, e.g., PV power generation) and for the application of optimal setpoints to under-
lying control circuits (e.g., battery charge controller). Moreover, the specifications of the
concrete controller model (the individual device parameters and the number of devices,
i.e., the cardinality of the sets) are defined by a commissioning staff in the PLC in IEC
61131 languages. These specifications are communicated via field bus to the EC, where the
modular model composition and the embedded optimisation take place. The hardware
structure is depicted schematically in Figure 2. The device separation is conducted for
reasons of commissioning, reliability, maintainability, and IT-security as explained in [13].
After the system is specified in the PLC, the optimisation, which is performed every 15 min,
works as follows:

1. A measurement of all configured devices is conducted by the PLC and its connected
input and output modules.

2. The system configuration, the component parameters, and the component measure-
ments are communicated to the EC via field bus (PLC to EC).

3. The dynamic system model, depending on the transmitted configuration, is automati-
cally composed in the EC.

4. An economic optimisation is conducted based on PV and power demand predictions
and the recently sampled system state (EC).

5. The optimal device setpoints are communicated via field bus (PLC to EC).
6. The device setpoints are applied in the energy system (simulation) by the PLC.

Figure 2. Block diagram of the control system structure: measurements of the energy system (or a
digital twin energy system simulation) are taken by the PLC (Wago PFC200 [19]) and are forwarded to
the edge computer (Wago Edge Computer [20]) together with configuration data from commissioning.
In the edge computer, the system model is composed, and optimal setpoints are calculated, which
are then applied to the energy system by the PLC.
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2.3. Programming Implementation of the Configuration and Measurements (PLC)

For a widespread application of economic MPC in power systems, it is crucial to not
only reduce the modelling effort but as well to reduce the commissioning time and the
training needs of commissioning staff. In the presented implementation, the commissioners
do not need to be trained MPC experts, because the system configuration is conducted
entirely on the PLC within the widely used IEC 61131 programming style using the Codesys
V3 runtime system [11]. Since 2013, the third and current edition of the standard (IEC
61131-3) allows for object-oriented programming. A PLC program contains function blocks
(FBs) that can be linked together in graphical programming languages such as the function
block diagram language (FBD). These FBs correspond to classes in the object-oriented
programming paradigm.

The developed program contains preconfigured FBs for all component types. Figure 3
shows the FBs (classes) of the PLC program. For every device in the power system, one
instance of a corresponding FB has to be instantiated by the commissioner. All device pa-
rameters, that describe the corresponding device (e.g., maximum charge power, minimum
and maximum SOC/energy content of a BESS, etc.), must be passed to the FB instance.
Furthermore, the measurements from the power system are passed from I/O components
of the PLC to the FB instances. All FBs contain methods for the publication of parameters
and measurements on the communication bus, which can then be accessed by the edge
computer in order to assemble the equation system, depending on the system configuration
and parametrisation. The IEC standard allows extensions of function blocks, a concept that
is similar to inheritance. This allows commissioning engineers to extend function blocks in
order to incorporate functionalities, that are additional to the presented core properties and
methods and add to the flexibility that is required to adapt the general model in concrete
microgrids. This includes device-specific battery degradation models.

2.4. Programming Implementation of the Modular Model Composition (Edge Computer)

After receiving the configuration, parametrisation, and measurements on the commu-
nication bus from the PLC, the concrete model is automatically composed in the EC, and the
economic optimisation is computed as follows: The model composition and economic opti-
misation is implemented in Python [21] using the coin-or/pulp modelling language [22]
and the coin-or/clp solver [23]. The parametrisation in the PLC is communicated via
Modbus to the EC. The bus address of each device is composed of class-specific address-
offsets together with sequential numbers instance_no for every additional component.
The parametrisation is read by the EC. The system equations are then instantiated de-
pending on the configured system architecture (number of devices) and the parameters
of the corresponding devices. The system equations are composed by using classes for
the device types. Figure 4 shows an UML class diagram for the five device types that
are used in the modular model composition. The classes for the device types that can
occur multiple times (BESS, PV, and EV) contain the class variable instances of type list.
The constructor-method of each class registers all invoked instances in the instances
variable. Using Pythons’ list comprehension, iterating over instances (derived from the
parametrisation) is used to modularly compose the equation system. The assembly of
the system of equations is conducted before every computation of the LP-solution (every
15 min), such that the model can be reconfigured on the fly when parameters change or
additional devices are commissioned. Again, read-and-write methods for parameters,
measurements and optimal setpoints are implemented for each class. The predictors for
load and PV are also configured by parametrisation. These prediction methods and their
accuracy have already been described in a previous publication, on which this modular
model is based [13].
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Figure 3. UML class diagram of the system configuration in the PLC. Exemplary system configuration
(fbCFG) and parametrisation: one component each for the load (fbAggregatedDemand) and the
utility grid (fbUtilityGrid), two PV Plants (fbpvCarport, fbpvWorkshop), two EVs (fbID4, fbID4),
and two battery storages (fbBYD, fbCommeo).

2.5. Extension on Mixed Integer and Nonlinear Problem Formulation

The basic idea of the linear model assembly is that any additional linear constraint
preserves the inherent convexity. This is not the case for mixed-integer linear programs
(MILP), since integer problems are inherently nonconvex. On the other hand, solution
methods for MILP are typically based on LP relaxation; therefore, the modular method-
ology is in principle transferable. The used modelling language Pulp [22] allows integer
modelling and the integration of the MILP solver CBC [24].

However, complexity is the enemy of dependability [25]. This is especially true
in unsupervised embedded implementations such as the presented one, in contrast to
supervised MILP implementations on workstation PCs and control rooms that are common
in the recent literature [26,27]. MILP formulation of the energy system model can be
avoided, as explained in [13]. As a consequence, the linear formulation avoids the necessity
of solving NP-hard MILP problems and avoids the necessity of computationally and
eventually economically expensive solvers such as CPLEX or Gurobi that can endanger the
overall economic feasibility of an MPC implementation in the field.

The approach is in principle transferable to nonlinear modelling, as long as convexity
is preserved. However, the convexity of all possible model assemblies should be rigorously
assessed. The necessity of expensive solvers can again endanger the economic feasibility of
an MPC implementation in the field.
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BESS

instances : list
parameters : dict
measurement : dict
instance_no
opt_power_charge
opt_power_discharge
opt_energy

read_parameters
read_measurement
write_setpoints

EV

instances : list
parameters : dict
measurement : dict
instance_no
opt_power_charge
opt_power_discharge
opt_power_drive
opt_energy
availability_forecast

read_parameters
read_measurement
write_setpoints

PV

instances : list
parameters : dict
measurement : dict
instance_no
opt_power

read_parameters
read_measurement
write_setpoints

LOAD

parameters : dict
measurement : dict
opt_power
power_forecast

read_parameters
read_measurement
write_setpoints

GRID

parameters : dict
opt_power_feed_in
opt_power_supply

read_parameters
read_measurement
write_setpoints

Figure 4. UML class diagram for the modular model composition in the EC.

2.6. System Test Conditions of the MPC Controller

Together, the PLC and EC form the MPC controller. A flow chart of the two compo-
nents and their tasks is shown in Figure 5. The PLC tasks are executed cyclically with
cycle times of 10–100 milliseconds, i.e., virtually continuously compared to the discrete
optimisation intervals of the EC every 15 min. Optimisation in the EC is triggered by Linux’
systemd daemon in order to maintain precise MPC cycles.

The implementation was tested with a system model in which the number of modular
components (PVs, BESSs, and EVs) is two per category. For the tests, the measurement data
and predictions from an existing production facility were used as scenarios. The configured
device parameters for BESSs and EVs, used for the system tests, are shown in Table 1.
The static feed-in tariff of c f = 0.14 €/kWh is taken from German grid regulation and
corresponds to the installed PV power plants at the facility. The dynamic electricity tariffs
were taken from a German utility, which provides tariffs based on European electricity
exchange prices. The price and scenario data were taken from 18 September 2020 and
19 September 2020.

Table 1. Device parameters of EVs and BESSs in an exemplary production facility, which were used
for the model composition in the system tests.

Device Parameter Unit EV1 EV2 BESS1 BESS2

Pch,max kW 11 13 2 2
Pdc,max kW 0 0 2 2
C kWh 77 77 16 11.04
ηch = ηdc % 99 99 98 95

SOC24
γ,arr = SOC24+192

γ,arr % 10 30 n/a n/a

SOC68
γ,tar = SOC68+192

γ,tar % 90 70 n/a n/a
SOCβ,min % n/a n/a 10 90
SOCβ,max % n/a n/a 10 90
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Figure 5. Flow chart of the scalable MPC implementation on PLC and EC. Initial configuration steps
by the commissioning staff are highlighted green. Cyclic behaviour of the control components is
highlighted blue. Dashed lines mark field-bus communication.

3. Results

Results of an exemplary optimisation are shown in Figure 6, where PV, load, and grid
supply price scenarios are plotted, as well as planned BESS and EV power, the resulting
SOCs, and the resulting grid residual power. This exemplary optimisation was carried out
in a system that had been assembled as described above.

The summary power of the storage units (EVs and BESSs) is plausible and scheduled
as expected. Charging is scheduled when prices are low (e.g., EV-charging from the grid
in the hours 37–40) or when excess PV energy is available (e.g., EV-charging from PV in
the hours 11–17). Discharging is scheduled when prices are high (e.g., in the hours 6–9
and 19–25). However, the allocation of the total power to the individual storage units
seems erratic as it shows randomly appearing on–off behaviour. This is especially visible
during the discharging of the BESSs in the hours 19–26 and 43–48. The summarised BESS
power during these hours is equal to the power demand of the load, while the two units
are alternately operated at their maximum discharge power. The erratic behaviour is also
visible during charging of the EVs. The summary power follows the PV scenario power
after hour 11, while the allocation to the units is random. This solution of the optimal
control problem is indeed erratic since multiple optimal solutions exist, which is a common
characteristic of LPs. Multiple optimal solutions can occur when a hyperplane of the
constraint polytope is perpendicular to the cost vector. Translated to the application, two
sources for the occurrence of multiple optimal solutions were identified.

First, for the economic optimisation under the given cost function, it does not matter
which storage unit is charged or discharged, as long as the summary power is scheduled
optimally, SOC limits of the EVs and BESSs are considered, and the threshold SOCs of the
EVs are reached. There is no mechanism in the cost function that governs the allocation of
charging or discharging among the units.
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Figure 6. Results of an exemplary optimisation. The number of modular components (PVs, BESSs, and EVs) is two per
category. The predicted PV power of the two plants is depicted in (a,b). Subplot (c) shows the predicted power demand Pl .
The charging power (blue) and discharging power (orange) of the two BESSs are shown in subplot (d,e). Subplot (f) shows
the summary charging power (blue) and discharging power (orange) of both BESSs. The resulting SOC is shown in (g,h).
The grid supply price is plotted in (i). The background of all subplots is color-coded with the grid supply price (i), green
meaning low prices, and red meaning high prices. The charging power (solid line) and availability (dashed line) of the EVs
are plotted in (j,k). Subplot (l) shows the summary charging power of the EVs. The resulting SOCs are shown in (m,n).
Finally, the grid residual power (supply: blue, feed-in: orange) is shown in subplot (o).
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Secondly, when excess renewable power is available during a longer time period, it
does not matter when the storage units are charged, because no grid power supply is used
during these times, and dynamic supply prices, therefore, have no influence (the feed-in
tariff is static). This becomes especially clear, when surplus renewable energy is fed into
the grid in the hours 9–13, but the EVs are not charged yet.

The computation time for the two main software modules in the EC (i.e., assembler and
solver) was measured for energy systems containing one device per class up to six devices
per class (a total number of 3–18 modular devices). The computation time of both software
modules scales linearly with additional energy system components. This contributes
to the practical applicability of the solution for larger systems, especially in the light of
the fact that solution algorithms for LPs in general are polynomially or exponentially
bounded algorithms.

4. Discussion

The demonstrated simplification of microgrid modelling on embedded devices is a
novel and major contribution to the accelerated deployment of economic MPC application
in the power system. It has the potential to increase the penetration of this advanced
control technique in the power system, as the effort for the implementation in existing and
new systems is significantly reduced. Unique modelling for every concrete microgrid is no
longer a main hurdle, and expert knowledge is no longer required for each commissioning
process. In addition, extending the control model with new components does not require
a complete redesign, as the system assembly is conducted in every optimisation step.
New components can easily be configured and included in the control system. This is
especially important, as commercial microgrids tend to change over time, when companies
grow. In light of small intraday price spreads of real-world dynamic electricity tariffs [13],
the proposed simplification of the commissioning process is a necessity in order to make
the application of economic MPC in a variety of SME microgrids economically feasible.

It has been shown that the solutions to the optimal control problem can also be
ambiguous. With the described cost function, which represents the actual cost of supplying
energy from the power grid, several optimal solutions may exist. While the behaviour
shown in Section 3 is perfectly acceptable with respect to the objective function, it may
not be perceived as intuitive by the user. In this context, three possible improvements are
conceivable:

1. Giving privilege to early charging when excess renewable power is available by
adding a cost term to the objective function that penalises the charging power of
storage devices and that increases over time. The cost per Watt must be small enough
not to significantly alter the objective function value. This privilege can be given under
the assumption that the forecast quality decreases over time. Thus, it is intuitive to
use surplus renewable generation earlier rather than later, as later surplus generation
may not be available anymore if the forecast is wrong. Privileging earlier charging
does not have negative influences in case the forecast is right; therefore, there is no
trade-off to be taken, as long as the original objective is not substantially changed by
the added costs.

2. Giving privilege to selected storage devices by adding a device-specific charging cost
to the objective function that penalises the charging of storage devices more/less
than others. Again, the cost per Watt must be small enough to not significantly alter
the objective function value. A privilege sequence can be established by gradually
offsetting the cost terms of the storage units.

3. The commissioner has the possibility to ignore the device specific charging and
discharging of the BESSs. He can use the summary charging and discharging power
and share it among the two units. This can be conducted either equally or weighted
with the SOCs, capacities, etc. of the storage units. Of course, the equality and
inequality constraints have to be met. Nevertheless, this is the case anyway, as the
PLC must continuously meet the constraints, because the economic optimisation
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is conducted only every 15 min and the real PV or load power can differ from the
assumed prediction scenarios. This approach, however, is not suitable for the EVs,
as their presence and SOC thresholds are device specific, and a summarised power
approach is not possible.

The presented modular model composition avoids data-driven modelling approaches,
which might not be feasible in a practical context. If a company decides to implement
advanced control techniques such as MPC, a long-lasting period of data acquisition and
model training might not be practicable. This is even more the case for changes in the
system architecture. It is not viable to retrain models with every additional device (one
might think about the dynamic development of a commercial vehicle fleet).

However, the presented solution is limited to linear modelling and the five device
types power grid, loads, PVs, BESSs, and EVs. This linear approach was chosen as the result
of a trade-off between performance and dependability. The integration of other devices
might make nonlinear modelling or mixed logical dynamic system modelling necessary,
in order to represent nonlinear or discrete behaviour of these components. The presented
approach is in principle transferable to MILP or NLP formulations, but in the context
of reliable unsupervised operation, this requires an ex ante study and rigorous proof of
convexity and feasibility of the problem formulation and of reachability of the global
optimum, which is comparatively straightforward in linear optimisation.

5. Conclusions

In this article, a way to decrease modelling and commissioning effort for the appli-
cation of economic MPC in microgrids on field-typical hardware is presented. This was
achieved by the concept of a generalised model, which can be composed for a class of
microgrids in a modular fashion on embedded devices. The modular composition is limited
to a linear model and the components grid, aggregated power demand, photovoltaic power
plants, electric vehicles, and battery electric storage systems. No expert knowledge of eco-
nomic MPC is required during commissioning, as the model assembly is fully automated
and the necessary configuration is performed on a PLC in the IEC 61131 languages, which
are widely used in the automation industry. This can help to significantly increase the use
of this advanced control method in microgrids, which is undoubtedly necessary to make
the power grid more flexible. Future research should aim to replicate these results in field
studies. In addition, the extension to mixed integer, mixed logical dynamic systems or
nonlinear systems might prove an important subject for future research to include other
device types that show nonlinear or discrete behaviour.
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Abbreviations
The following symbols and abbreviations are used in this manuscript:

A Set of PV power plants
B Set of BESSs
Γ Set of EVs
α PV index
β BESS index
γ EV index
Pg,s Grid supply power
Pg,f Grid feed-in power
Pα Supply power of PV power plant α

PA Summarised supply power of all PV plants
Pβ,ch Charge power of BESS β

Pβ,dc Discharge power of BESS β

Eβ Energy content of BESS β

EB Summarised energy content of all BESSs
Pγ,ch Charge power of EV γ

Pγ,dc Discharge power of EV γ

Pγ,a Discharge power of EV γ by driving
PΓ,ch Summarised charge power of all EVs
PΓ,dc Summarised discharge power of all EVs
Eγ Energy content of EV γ

EΓ Summarised energy content of all EVs
k Discretisation timestep
tk Time at step k
i Generalised index of the components
∆t Sampling interval
N Number of timesteps
ηβ,ch Charging efficiency of BESS β

ηγ,ch Charging efficiency of EV γ

ηβ,dc Discharging efficiency of BESS β

ηγ,dc Discharging efficiency of EV γ

Pα,f Power forecast of PV plant α

Pl,f Power forecast of load
Pi,max Maximum power of general component i
Pk

i = Pi(t = tk) Power of general component i at timestep k
Ek

i = Ei(t = tk) Energy content of general component i at timestep k
SOCβ State of charge of BESS β

SOCγ State of charge of EV γ

Cβ Capacity of BESS β

Cγ Capacity of EV γ

cf Feed-in tariff
ck

s Dynamic electricity tariff at timestep k
cf,β Feed-in tariff of PV plant β

Pβ,inst Installed power of PV plant β

PB,inst Installed power of all PV plants
Pi Power vector of general component i
Ei Energy vector of general component i
x State vector
c Cost vector
Aeq Equality constraint matrix
Aub Upper bound inequality constraint matrix
beq Equality constraint vector
bub Upper bound inequality constraint vector
l Lower bounds
u Upper bounds
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BESS Battery electric storage system
EC Edge computer
EV Electric vehicle
FB Functional block
FBD Functional block diagram language
ICT Information and communication technology
MPC Model predictive control
PLC Programmable logic controller
PV Photovoltaic
SME Small and medium enterprise
SOC State of charge
UML Unified modeling language
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