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Abstract: Forest fires are drivers of spatial patterns and temporal dynamics of vegetation and
biodiversity. On the Canary Islands, large areas of pine forest exist, dominated by the endemic
Canary Island pine, Pinus canariensis C. Sm. These mostly natural forests experience wildfires
frequently. P. canariensis is well-adapted to such impacts and has the ability to re-sprout from both
stems and branches. In recent decades, however, anthropogenically caused fires have increased,
and climate change further enhances the likelihood of large forest fires. Through its dense, long
needles, P. canariensis promotes cloud precipitation, which is an important ecosystem service for the
freshwater supply of islands such as La Palma. Thus, it is important to understand the regeneration
and vegetation dynamics of these ecosystems after fire. Here, we investigated species diversity
patterns in the understory vegetation of P. canariensis forests after the large 2016 fire on the southern
slopes of La Palma. We analyzed the effect of fire intensity, derived from Sentinel-2 NDVI differences,
and of environmental variables, on species richness (alpha diversity) and compositional dissimilarity
(beta diversity). We used redundancy analysis (dbRDA), Bray–Curtis dissimilarity, and variance
partitioning for this analysis. Fire intensity accounted for a relatively small proportion of variation in
alpha and beta diversity, while elevation was the most important predictor. Our results also reveal
the important role of the endemic Lotus campylocladus ssp. hillebrandii (Christ) Sandral & D.D.Sokoloff
for understory diversity after fire. Its dominance likely reduces the ability of other species to establish
by taking up nutrients and water and by shading the ground. The mid- to long-term effects are
unclear since Lotus is an important nitrogen fixer in P. canariensis forests and can reduce post-fire soil
erosion on steep slopes.

Keywords: beta diversity; disturbance; ecosystem functioning; fire; island ecology; Lotus campylo-
cladus ssp. hillebrandii; pine forest; Pinus canariensis; Sentinel-2; succession; understory
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1. Introduction

Fires influence the environment on several levels. On a global scale, they influence
the carbon cycle and the climate [1] and shift the distribution of several biomes [2–4].
On a landscape level, they lead to a mosaic of unburned and burned patches [5,6], with
different levels of recovery ability and resilience to fire [7]. On a local level, the burn
severity has a long-lasting influence on understory recovery due to soil heating effects [8],
soil properties and organisms [9], and nutrient availability [10]. Forests are often well
adapted to fire and are able to recover from fire through different mechanisms, e.g., seedling
establishment [11–14], resprouting [15], or a mix of several fire adaptations [16]. On oceanic
islands with pronounced topography due to volcanic activity, wildfires that are caused by
lightning storms or volcanic eruptions are frequent events in terms of evolutionary time
scales. Particularly, in forests that accumulate biomass in layers of litter (fuel) and naturally
undergo dry periods, ignitions can translate into wildfires. Considering the spatial and
ecological isolation of oceanic islands, adaptations to these impacts are to be expected, and
non-adapted species establishing in such systems may be regularly eradicated. Although
seemingly paradoxical from a human perspective, the casual occurrence of wildfires is
known to preserve the functioning and diversity of fire-adapted ecosystems in the long
term [17,18].

Fires have important long-term effects beyond the selection of specific plant functional
traits. Nutrient cycles are controlled by fires through the mineralization of elements
stored in the litter and biomass, often resulting in the mid-term increase of biomass in the
understory compared to the pre-fire period [19]. Consequently, fire-prone forest ecosystems
can be seen as complex and adaptive systems [20], wherein biotic and abiotic processes
interact, and where ecosystem dynamics vary across different spatial and temporal scales.
In the natural pine forests of the Canary Islands, fires have always affected the structure
and dynamics of the vegetation, with fire affecting the same area rarely more than once per
20 years [21].

Today, anthropogenic causes of wildfires, whether deliberate or accidental, add to the
natural drivers; only a small proportion of the fires on the Canary Islands is now attributed
to ignition by natural causes [19,22]. Fire frequency may have been even higher in the last
few centuries, when agriculture was the main economic activity. Around the 1960s, fire
events changed from more frequent, small-scale fires towards less frequent larger-extent
fires [23]. The ambition to suppress fires and avoid economic damage can promote even
more severe fires [24,25]. In 2009, a large fire burned about 2000 hectares in the southern
part of La Palma. Following a smaller fire in 2012, a large human-induced fire affected
4800 hectares (about 7% of the island’s area) in 2016. This last big fire is the subject of this
study.

High fire frequency and short time intervals between fires may decrease fire intensity
due to the shorter time available for biomass and fuel accumulation. On the downside,
lack of vegetation cover due to repeated fires may increase soil erosion on steep slopes [26],
reduce water holding and cation exchange capacities, and promote the leaching of nutri-
ents [10,27,28]. The availability of nitrogen peaks shortly after the fire, then decreases [29].
Both nitrogen concentration and mineralization have been shown to decrease for more
than 17 years after a fire in forest soils compared to unburned sites [30,31]. Phosphorus
levels in the soil initially decrease but recover over time [29]. Due to their strong impact
on the pine ecosystems of La Palma, wildfires can homogenize spatial variability of soil
parameters and, consequently, also homogenize vegetation patterns [32].

In most ecosystems, the severity and size of fires depend on both the availability
of fuel and its state (humidity). In Mediterranean areas, the fuel state, as measured by
indices such as SPI or SPEI, controls the burned area [33]. As climate changes, an additional
increase in the fire frequency and intensity is expected, especially during periods of drought,
but also in consequence of increased biomass accumulation after humid periods [33–37].
The combination of climate warming and drought might even exceed the capacity of
forest ecosystems to regenerate after a fire event. The Canary Islands, in their matrix of a
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subtropical ocean, are expected to experience decreasing amounts of precipitation in the
face of climate change [38], possibly leading to an increased fire risk.

The Canary pine forest ecosystem differs from many other fire-prone forest types. P.
canariensis is well adapted to frequent and intense wildfires [22]. It has thick, protective
bark, serotinous cones and readily re-sprouts from all above-ground organs and roots after
fire. Fallen needles accumulate on branches to form thick cushions and on the forest floor
to form thick layers, promoting the likelihood of fire outbreaks [19]. P. canariensis indirectly
benefits from forest fires, as these can eliminate many encroaching shrubs in the understory,
while P. canariensis likely survives the fire. Otto et al. [11] found that high-intensity fires
also halt the seedling establishment of P. canariensis shortly after the fire, probably due to a
mix of seed bank destruction and unfavorable soil conditions. However, this does not stop
the long-term recovery of P. canariensis forests. Even severely damaged trees can survive
and re-sprout almost immediately. Additionally, seed dispersal from less affected areas
supports recovery after a short-term decline in nutrient availability [12]. The species is also
well adapted to the overall decrease in precipitation expected for the Canary Islands in the
coming decades [39–41].

Island ecosystems are often relatively species-poor due to effective filters for dispersal
and immigration [42]. This applies to the Canary Islands, despite their high levels of
endemism [43]. The pine forest is characterized by monodominant stands of P. canariensis,
whose global distribution is limited to the archipelago. P. canariensis forests play a key role
in maintaining the water balance of several of the Canary Islands. In the canopies of these
pine trees, the moisture from clouds condenses on their long pine needles, significantly
increasing the total precipitation inside the forest on the windward eastern slopes [22]. Due
to the constant trade winds being blocked by the island’s topography, this cloud contact is
very frequent.

These forests tend to have low herbaceous species richness, at least in forbs and
perennial herbs in the understory. As a general phenomenon, crown fires are known to
diversify the patch mosaic of forests in response to site conditions of the terrain [6]. Fire
has been found to promote local species richness in burned areas on La Palma [44], while
possibly working as a filter for species invasion. The post-fire species assemblage largely
reflects the local pre-fire species pool [45]. Some perennial native species are well adapted
to fire [46]. Annuals, whose seeds survive fire impact in low intensity crown fires, often
emerge after fire.

Vegetation responses after fire depend on fire severity. While severe fires in Canary
Island pine forests may result in a complete loss of understory regeneration due to a
destroyed seedbank, intermediate fire intensity typically leads to re-emerging plant com-
munities and can even favor pine regeneration [11]. Overall, fires in pine forests may
therefore lead to a complex mosaic of species diversity in the understory, depending on fire
intensity. However, our understanding of fire-induced ecosystem dynamics, and related
nutrient cycles, is limited for these forests.

One species obviously benefiting from fire is Lotus campylocladus Webb & Berthel. Its
subspecies hillebrandii (Christ) Sandral & D.D.Sokoloff. is endemic to La Palma, and the
species is endemic to the Canaries, with Lotus campylocladus in Tenerife and Lotus spartioides
Webb & Berthel. in Gran Canaria performing a similar ecological role in the pine forests of
those islands. Its seeds can remain dormant for years in layers of non-absorptive pine litter
until these are removed through fire, and a topsoil with mineralized nutrients emerges.
Then, the rapid growth and flowering of L. campylocladus ssp. hillebrandii can be triggered by
precipitation and increased light availability. Due to its rhizobia’s nitrogen fixing capacity,
this dynamic is likely to contribute positively to the nutrient cycling of Canarian pine
ecosystems, as fires can also cause losses of soil nitrogen [30]. Thus, after fires, herbaceous
species (with readily decomposable biomass) typically emerge for short periods, often
at high abundance; the interaction of fire with P. canariensis and L. campylocladus ssp.
hillebrandii may be a major factor controlling biodiversity patterns in these forests.



Forests 2021, 12, 1638 4 of 22

Here, we combine remote sensing with field research to investigate the effects of the
large 2016 fire on plant species richness (alpha diversity) and compositional dissimilarity
(beta diversity) of pine forest understory on La Palma. A better understanding of the spatio-
temporal processes associated with wildfires in Canarian pine ecosystems is important for
managing biodiversity, ecosystem functioning, and the important services provided by
these forests.

This study is based on the following hypotheses and expectations that are derived
from the strong link between fire intensity and understory species diversity outlined above,
given that our field sampling was done 1.5 years after the fire event:

(A) We hypothesized that the highest levels of species alpha and beta diversity would be
at intermediate fire intensity;

(B) Lowest abundance of L. campylocladus ssp. hillebrandii is expected at intermediate fire
intensities because of the persisting dominance of P. canariensis at low fire intensities
and the damage to the seedbank, unfavorable soil conditions, and erosion at high
intensities;

(C) As this legume (Lotus) contributes to N-fixing and nutrient availability, we expect an
interaction between fire intensity and legume biomass in the effect on biodiversity
patterns.

2. Materials and Methods
2.1. Study Area

The Canary Islands are situated offshore of the northwestern African coast in the
Atlantic Ocean and are entirely of volcanic origin. La Palma is at the extreme northwest
of the archipelago. It is the second-youngest island with an area of 706 km2 [47] and a
maximum elevation of 2426 m a.s.l.—the second-highest island. The climate of the island
is characterized by dry summers and high solar radiation in the areas not influenced by
the trade-wind clouds [48]. Trade winds from the northeast dominate the precipitation
pattern, resulting in large differences in precipitation within islands. This also affects the
occurrence of P. canariensis, which can be found across most of the elevational range of the
island, excluding the coastal area [49]. Due to its ability to filter water from moist air, it can
survive in areas with as little as 250 mm of rainfall per year, and up to subtropical cloud
forests receiving more than 600 mm of rainfall annually [22], with more than 1000 mm at
the upper northeastern slopes of the island [48].

Our study area is located on the western slope of the Cumbre Vieja, the youngest part
of La Palma (Figure 1), and still volcanically active. Indeed, part of the area has since been
subject to the 2021 volcanic eruptions, which started on 19th September after more than
22,000 earthquakes within a week. The investigated region is dissected by a nonpublic dirt
road running from north to south, used by the forestry management authorities.

2.2. Remote Sensing

The Sentinel-2 constellation is extremely useful for fire mapping, with a spatial res-
olution of approx. 10 m and a revisit time of 5 days [50,51]. These sensors have already
been used to efficiently map burn severity based on vegetation indices [52–54]. Chen
et al. [55] showed high agreement between the normalized difference vegetation index
(NDVI) calculated for Landsat scenes and burn severity sampled on the ground. MODIS
fire products are also widely used to map fire occurrences, as they offer the advantage
of two decades of times series [56–58]. However, they suffer from low spatial resolution
(250 m to 1 km).

To assess the fire intensity of the August 2016 fire, two Sentinel-2 scenes before (18 July
2016) and after (17 August 2016) the fire were selected. Due to the resilience of P. canariensis
to fire damage, tree mortality observed in the field was very low. Therefore, we opted
to use remotely sensed fire intensity as a statistically more robust measure. Both scenes
were preprocessed to Level-2 analysis-ready data (ARD) using FORCE version 3.5.2 [59]. A
monthly composite Landsat 8 near infra-red (NIR) base image was created using images
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from 2015 to 2020 and used for co-registering the Sentinel-2 scenes to correct for shifts
between images and better align pixels. A LiDAR-based digital elevation model from
the Cabildo Insular de La Palma with 2 m spatial resolution was used for topographic
correction.

Figure 1. Changes in the Normalized Difference Vegetation Index (NDVI) on the western slopes of the
Cumbre Vieja due to a fire in August 2016. The NDVI difference was calculated from two Sentinel-2
images from 18 July to 17 August 2016. The sampling sites of this study are marked with blue dots. The
NDVI change in the upper right corner was caused by clouds and therefore masked out.

The NDVI was calculated for both scenes using the following Equation (1):

NDVI =
(NIR − red)
(NIR + red)

=
(Band 8 − Band 4)
(Band 8 + Band 4)

(1)

A NDVI difference map (from now denoted “∆NDVI”) was created by subtracting
the NDVI before the fire from the NDVI after the fire. Changes due to the presence of
clouds were cropped with a cloud mask. We used the ∆NDVI as a proxy (an inverse one)
for fire intensity (Figure 1). For each sampling point, ∆NDVI was extracted using the
package “rgdal” 1.5–23 [60] and “raster” version 3.4–5 [61], in R version 3.6.3 [62]. While
both Sentinel-2 images were well aligned after co-registration, possible GPS inaccuracies
could cause shifts between field measurements and remotely sensed data. Therefore, the
mean ∆NDVI was extracted for three buffers with 30, 50 and 100 m radius. Buffers can
reveal different landscape patterns, depending on size [63]. The 30 m and 100 m buffer
correlated strongly with the NDVI difference value extracted directly at the nearest pixel of
the sampling site. The 50 m buffer values only had a Pearson correlation coefficient of 0.65
with the pixel values. Due to the overall good accuracy of the used GPS device of roughly
3 m, it was decided to use the 30 m buffer.

Other spectral indices were also evaluated. The Burned area index (BAI) [64], was
overly sensitive to the dark volcanic soils of La Palma and severely overestimated burned
area. The Normalized burn ratio (NBR) and its difference, ∆NBR [65], performed reason-



Forests 2021, 12, 1638 6 of 22

ably well but decreased the spatial resolution of the output to 20 m due to the use of band
12. ∆NBR had a Pearson correlation of 0.84 with ∆NDVI. Therefore, ∆NDVI was preferred
due to its finer spatial resolution.

The Copernicus Tree cover density product for the year 2015 [66] was included as
an explanatory variable for canopy cover before the fire. To avoid confusion with the
field-measured canopy cover, we refer to the remotely sensed product from before the fire
as “Tree cover (RS)” and to the field-measured canopy cover as “Tree cover (field)”.

The Topographic complexity index (TCI) [67] and the Terrain ruggedness index
(TRI) [68] were calculated from a 2 m × 2 m resolution DEM provided by the Cabildo Insu-
lar de La Palma and was included as measures for local heterogeneity of the topography.
The Topographic complexity index represents the ratio between the 3D and 2D surface area
(Equation (2))

TCI =
∑100×100m

(
Area2m×2m

cos(Slope2m×2m)

)
Area100m×100m

(2)

Area2m×2m and Slope2m×2m were calculated per grid cell for a 2 m × 2 m digital
elevation model (DEM). Area100m×100m represents a grid cell from a 100 m × 100 m DEM
and contains all 2500 2 m × 2 m grid cells.

The Terrain ruggedness index quantifies the heterogeneity of terrain with the following
Equation (3):

TRI =
√

∑
(
Elevationij − Elevation00

)2 (3)

where Elevation00 is the center cell the TRI is calculated for and Elevationij represents the
elevation of the eight neighboring cells.

2.3. Field Sampling and Other Explanatory Variables

Plots were positioned in the burned area of the Canary pine forest on the western
slope of Cumbre Vieja. Sampling was done between elevations of 1028 and 1682 m a.s.l.
The sampling was focused on the northern part of the burned area (see Figure 1), which
was the largest continuous area affected by fire.

Although very steep, inaccessible terrain with barrancos (ravines), and many small-
scale forest gaps ruled out a fully random distribution of sampling sites; care was taken
to sample evenly over the whole gradient of ∆NDVI. Sampling was conducted in March
2018, in a total of 79 plots. Plot size was 10 m × 10 m because this size matches the spatial
resolution of Sentinel-2 and is a standard size applied in forest understory vegetation
studies.

All vascular plant species within these plots were recorded, including their estimated
cover. Cover values were recorded in percent, with values of 0.0001%, 0.001%, 0.01%, 0.1%,
0.5%, 1%, 2%, 3%, and 5% corresponding to 1 cm2, 10 cm2, 100 cm2, and so on. Values above
5% were estimated and rounded to the nearest 5%. In total, 80 plant species were recorded,
with species names following the FloCan checklist [43] (see Figure S1 from Supplementary
Materials for an overview of recorded species numbers per site). Additional variables (see
Table 1) were recorded for later analysis. Positioning was done with a Garmin Montana
650 GPS device with an accuracy of 3 m.
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Table 1. Measured environmental variables. Cover values were estimated for all species within each
plot. Additionally, Canopy cover, Shrub cover, Herb cover, and Rock cover were estimated. Basal area
was measured using angle count sampling [69]. Diameter at breast height (DBH) was measured for
ten trees within the plot. Aspect and Inclination were recorded using a compass with an inclinometer.
Aspect was also converted from degrees to both ‘Northness’ and ‘Eastness’ which were calculated
by applying the cosine and the sine function respectively to the measured aspect. Litter depth was
calculated by pushing a thin metal rod into the litter until soil or bedrock was hit. Litter depth was
measured at four random points within the plot. For both DBH and Litter depth, a mean value and
the standard deviation of all measurements were calculated for use in the statistical analysis.

Category Variable Unit Source

Vegetation Species cover % Field measurement
Herb/shrub cover estimates % Field measurement

Canopy cover % Field measurement
Litter depth cm Field measurement
Basal area m2/ha Field measurement

Diameter at breast height (DBH) cm Field measurement
Topography Rock cover % Field measurement

Inclination % Field measurement

Elevation m Cabildo Insular DEM (2m
resolution)

Aspect Northness
and Eastness

Field measurement,
converted with the cosine

and sine function

2.4. Statistical Analyses

All statistical analyses were conducted using R version 3.6.3 [62]. Inter-variable corre-
lation was calculated and visualized using package “corrplot” version 0.84 [70] (Figure S2
in Supplementary Materials). This was then used to identify variables with high collinearity
(Pearson correlation coefficient above 0.7 or below −0.7) to select the most appropriate one.

To find the best-fitting transformation for all variables, exploratory linear models of
the formula species richness ~ x were built, with x representing each variable. Additionally,
the transformations x2, x + x2, sqrt (x) and log (x) were tested. The best transformation
was selected based on the AIC of the models. Then, GLMs using family “poisson”, and
therefore a logarithmic link function, were used to investigate the relationship between
species richness and the explanatory variables. The GLM fit was tested using the Chi-
square test on residual deviance and degrees of freedom. In addition to two simple
GLMs, modelling species richness as functions of elevation and ∆NDVI, respectively, a
multivariate model with the selected variable transformations was built. Stepwise variable
selection was performed using the “step” function in R to pick the best-fitting GLM.
Nagelkerke’s pseudo-R2 was calculated for all models, using the “pseudoR2” function
from package “DescTools” version 0.99.40 [71].

To test for spatial autocorrelation, Moran’s I was calculated for the residuals of each
GLM using function “moran.test” from the “spdep” package, version 1.1–5 [72]. For
this, a weighted neighborhood matrix was used, which was calculated with the functions
“dnearneigh” and “nb2listw”, again from the package “sdped”. Since significant spatial
autocorrelation was found for all GLM residuals, the same analysis was repeated using
Spatial linear models (SLM), namely simultaneous autoregressive models (SAR) using the
package “spatialreg” version 1.1–5 [73]. SARs are able to account for spatial autocorrela-
tion [74] and are frequently used in Ecology (e.g., [75–77]). The SAR models confirmed the
general findings of the GLMs, while accounting for less of the variation in species richness
due to the removal of spatial autocorrelation. The results of the SAR models can be found
in Table S1 in the Supplementary Materials.

To analyze the influence of both fire intensity and environmental variables on species
composition, a distance-based redundancy analysis (dbRDA) [78], using Bray–Curtis
dissimilarity, was chosen [79]. Bray–Curtis dissimilarity [80] makes use of the estimated



Forests 2021, 12, 1638 8 of 22

species abundances instead of only using presence–absence data. A dbRDA allows use
of other dissimilarity indices apart from Euclidean distance, which is not appropriate for
beta diversity analysis without data transformation [81]. Before fitting them to the dbRDA,
environmental variables were standardized using the function “decostand” and the method
“standardize”. After the dbRDA, an ANOVA-like permutation test was performed using
the function “anova.cca” from the “vegan” package [82] to assess the significance of
environmental variables.

To disentangle the importance of different variables on beta diversity, Mantel tests
were performed on four different distance matrices. The environmental distance between
each plot and all other plots was calculated using the same variables as the multivariate
GLM, with the function “envdist”. In the same way, Bray–Curtis dissimilarity, topographic
distance (following the surface of the DEM, calculated with the function “topodist” from
package “topoDistance” version 1.01 [83]), and ∆∆NDVI were each calculated between
every site and all other sites. While the simple difference (∆NDVI) is used as a proxy for
fire intensity per plot, ∆∆NDVI represents the difference between fire intensities between
plots. ∆∆NDVI between a sampling site with high ∆NDVI and one with low ∆NDVI
would therefore be bigger than between two sites of similar ∆NDVI levels.

Variance partitioning was performed using the function “varpart” to investigate the
contribution of fire intensity and topography to the variance in the Bray–Curtis dissimilarity
between plots. The following variables were used for topography: Elevation + Elevation2 +
Inclination + Northness + Eastness + TCI + TRI.

To further investigate the explanatory power of environmental variables, a permuta-
tional MANOVA [84] was calculated using the function “adonis” from package “vegan”
with 1000 permutations.

L. campylocladus ssp. hillebrandii poses a challenge for variance partitioning and
statistical analyses. On the one hand, Lotus is part of the species pool and therefore
influenced by fire intensity and environmental variables in the same way as all other
species. On the other hand, the cover of the species in many of our plots is so thick that
it influences the occurrence of other species by shading and water uptake. P. canariensis
has a similar role; while it is a part of the species pool, it is the only species forming the
tree layer of our sampling sites. Some predictor variables such as Tree cover (RS) and
Basal area are entirely due to P. canariensis occurrence. To investigate the influence of using
two species both as part of the species pool and the environmental variables, variance
partitioning and permutational MANOVA were conducted on four different datasets.
The whole dataset, the dataset without P. canariensis, the dataset without L. campylocladus
ssp. hillebrandii, and the dataset without both. The dataset without both species only
contained 77 observations instead of 79, since two plots contained only P. canariensis and L.
campylocladus ssp. hillebrandii without any other species present. Additionally, the dbRDA
was repeated with L. campylocladus ssp. hillebrandii cover removed from the environmental
variables.

To assess the role of L. campylocladus ssp. hillebrandii on beta diversity, local contri-
butions to beta diversity (LCBD) [81] were calculated for all plots using the “adespatial”
package version 0.3–8. LCBD values represent “the degree of uniqueness of the sampling
units in terms of community composition” [85]. Plots were split into two subsets, above
and below 10% L. campylocladus ssp. hillebrandii cover (38 and 41 plots, respectively) to
investigate the effect of L. campylocladus ssp. hillebrandii. A threshold of 10% was chosen
owing to the distribution of L. campylocladus ssp. hillebrandii in the study area. With one
data point with 5%, the other 40 points had 2% or less cover, with 28 points at 0%. Apart
from seven points in the 15–30% range, at least a third of the remaining 32 data points had
more cover, with 24 points above 50%. Even at 15%, we expect the dense growth (Figure 2)
and considerable biomass accumulation of L. campylocladus ssp. hillebrandii to have an
influence on nutrient, water, and light availability in large parts of the plot. Therefore,
10% was chosen as a threshold value. A Wilcoxon test was used to check for significant
differences in the LCBD and elevation of both subgroups of plots. Additionally, the species
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contribution to beta diversity (SCBD) was calculated for all recorded species, based on
the Hellinger distance. The Hellinger distance downweighs the occurrence of rare species
and thus controls for overestimation due to rare species. To differentiate contributions by
life strategy and growth form, SCBD values were also separated into contributions from
nitrogen fixing species as well as non-nitrogen fixing species, and herbaceous plants were
compared to woody plants.

Figure 2. Thick patchy layers of herbaceous Lotus campylocladus ssp. hillebrandii one year after forest
fire on steep slopes in the southern part of La Palma. Burned Pinus canariensis trees are re-sprouting
from branches and trunks. It will take several years until canopy closure can be reached again (Photo
Carl Beierkuhnlein).

3. Results

The species richness of our plots was best explained by elevation. A GLM with
the formula Species Richness ~ Elevation + Elevation2 (Figure 3a) had a Nagelkerke’s
pseudo-R2 of 0.81 (p < 0.001; Table 2), indicating higher species richness in lower elevations.

The influence of fire intensity, as measured by ∆NDVI, was significant but had a lower
pseudo-R2 of 0.33 (Figure 3b, Table 2); the intermediate fire intensities tended to have
the lowest species richness. Species richness was also highest in areas with highest forest
density before the fire (Figure 3c, Table 2).

Stepwise variable selection of a multi-predictor GLM produce the following model:
Species richness ~ Elevation + Elevation2 + Tree cover (field) + Tree cover (field)2 + North-
ness + Eastness + DBH mean + Litter depth mean + ∆NDVI + ∆NDVI2 + Tree cover (RS).
Its pseudo-R2 was 0.94 (Table 2).

Significant spatial autocorrelation was detected for the residuals of all GLMs. Using
SARs instead of GLMs resulted in differences in the pseudo-R2 values, but otherwise
revealed the same patterns as the GLMs (Table S2 in Supplementary Materials).

Results of the Mantel test revealed similar correlations for the Bray–Curtis dissimilarity
and the environmental distance and the topographic distance with Mantel’s R of 0.352 and
0.312, respectively (Table 3), while ∆∆NDVI only showed a significant relationship with
the environmental distance.
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Figure 3. Species richness against (a) Elevation (m), (b) ∆NDVI, and (c) Tree cover (RS) for 79 plots
of size 10 m × 10 m. Crosses represent sampling plots with less than 10% Lotus campylocladus ssp.
hillebrandii cover; circles more than 10% cover. The lines represent the fitted GLMs: (a) Species
richness ~ Elevation + Elevation2 (Nagelkerke’s pseudo-R2 = 0.81); (b) Species richness ~ ∆NDVI +
∆NDVI2 (pseudo-R2 = 0.33); (c) Species richness ~ Tree cover (RS) (pseudo-R2 = 0.70). Tree cover
(RS) represents the canopy cover before the fire and was extracted from the Copernicus “Tree cover
density” product. See Table 2 for more detailed model coefficients.
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Table 2. Model coefficients of the different GLMs: species richness modelled first by Elevation + Elevation2, then by ∆NDVI
+ ∆NDVI2, then by Tree cover from remote sensing, and finally by the multi-predictor GLM Elevation + Elevation2 + Tree
cover (field) + Tree cover (field)2 + Northness + Eastness + DBH mean + Litter depth mean + ∆NDVI + ∆NDVI2 + Tree
cover (RS). DBH mean is the mean diameter at breast height of ten trees in the plot.

Species Richness~ Estimate Std. Error z value Pr (>|z|) Significance

(Intercept) 11.7 2.37 4.92 <0.001 ***
Elevation −0.012 0.00363 −3.3 <0.001 ***
Elevation2 3.57 × 10−6 1.37 × 10−6 2.61 0.009 **

R2 Nagelkerke 0.81 AIC 464.68

Species richness~ Estimate Std. Error z value Pr (>|z|)

(Intercept) 2.72 0.485 5.62 <0.001 ***
∆NDVI 5.05 2.55 1.98 0.0476 *

∆NDVI 2 8.9 3.23 2.75 0.0059 **

R2 Nagelkerke 0.33 AIC 565.9

Species richness~ Estimate Std. Error z value Pr (>|z|)

(Intercept)
Tree cover (RS)

1.27
0.018

0.107
0.00179

11.9
10.1

<0.001
<0.001

***
***

R2 Nagelkerke 0.70 AIC 565.9

Species richness~ Estimate Std. Error z value Pr (>|z|)

(Intercept) 7.63 2.99 2.55 0.0108 *
Elevation −0.0102 0.00457 −2.23 0.0255 *
Elevation2 3.02 × 10−6 1.71 × 10−6 1.77 0.0763

Tree cover (field) 0.0101 0.0135 0.746 0.456
Tree cover (field)2 −0.000382 0.000201 −1.9 0.0578

Northness 0.22 0.0844 2.61 0.00898 **
Eastness −0.166 0.108 −1.54 0.123

DBH mean 0.0209 0.00677 3.09 0.00202 **
Litter depth mean 0.126 0.047 2.66 0.00774 **

∆NDVI −6.2 2.77 −2.24 0.0252 *
∆NDVI2 −6.07 3.65 −1.66 0.0963

Tree cover (RS) 0.00619 0.00226 2.74 0.0062 **

R2 Nagelkerke 0.935 AIC 400

The last column marks the level of significance of variables, with *** representing a p-value < 0.001, ** below 0.01 and * below 0.05.

Table 3. Mantel test statistic between Bray–Curtis dissimilarity, difference in ∆NDVI between plots
(∆∆NDVI), the Topographic distance, and the Euclidian distance between sampling points in terms
of their environmental variables. Topographic distance means the “real” distance between datapoints
following the surface of a digital elevation model. ∆∆NDVI represents the difference between the
∆NDVI values of sampling points and therefore the difference in fire severity between different
plots. Numerical values represent the Mantel R. The Mantel test revealed significant correlations
(marked by asterisks) between the Bray–Curtis dissimilarity and both the topographic distance and
the environmental distance.

Bray–Curtis
Dissimilarity ∆∆NDVI Topographic

Distance
Environmental

Distance

Bray–Curtis
Dissimilarity - 0.02 0.31 * 0.35 *

∆∆NDVI 0.02 - −0.12 0.17 *

Topographic
Distance 0.31 * −0.01 - 0.18 *

Environmental
Distance 0.35 * 0.17 * 0.18 * -

* p-value below 0.05.

The dbRDA revealed tree cover (both before and after the fire), elevation and L.
campylocladus ssp. hillebrandii cover percentage as the most influential variables for species
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composition in our dataset. Plots were separated into two groups based on how abundant
L. campylocladus ssp. hillebrandii was within them. Species were grouped around the center
of Axis 1 and Axis 2 with only three species further away from the center: L. campylocladus,
Vicia pubescens (DC.) Link. and P. canariensis. With Lotus-cover removed as an explanatory
variable, the dbRDA shows a similar pattern, with a higher influence of other species, such
as Bituminaria bituminosa (L.) C.H.Stirt. and Chamaecytisus prolifer (L.f.) Link, both also
nitrogen fixers (Figure 4).

A permutational MANOVA revealed that elevation was the most important variable,
with Elevation +Elevation2 explaining between 19.3% (in the subset with Lotus only) and
23.4% (in the subset with Pinus only) of the variance in the Bray–Curtis dissimilarity
(Table S2). Depending on which data subset was used, Tree cover + Tree cover2 explained
up to 24.7% of variance (in the subset with Pinus included) and Legume cover + Legume
cover2 explained up to 35.3% (in the subset with both species present).

The influence of topography and fire on the Bray–Curtis dissimilarity was tested via
variation partitioning. It revealed that topography-related variables account for much
more of the variance than ∆NDVI. Topography accounts for between 24.7% of the variance
in the subset with only P. canariensis included and 20% with both P. canariensis and L.
campylocladus ssp. hillebrandii but only 18.4% of the subset without both, and 18.1% in
the L. campylocladus ssp. hillebrandii only subset. ∆NDVI accounts for between 1.7% and
4.3% of the variance are also the most influential in the subset including only P. canariensis
(Figure 5).

Figure 4. Cont.
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Figure 4. Results of the dbRDA with and without Lotus campylocladus ssp. hillebrandii: (a) includes
Lotus campylocladus ssp. hillebrandii cover both as a species and as an environmental variable. (b) ex-
cludes Lotus campylocladus ssp. hillebrandii cover as an environmental variable. Black squares mark
distribution of species, which are mostly grouped around the center. Sites are shown as black
crosses and circles, with the crosses signifying sites with a Lotus campylocladus ssp. hillebrandii cover
below 10% and circles above 10%. Red arrows represent significant (p < 0.05) environmental vari-
ables. Variable names were partially abbreviated for clarity: LC= Lotus cover, SC = Shrub cover,
Incl = Inclination, TCI = Topographic complexity index, TRI = Terrain ruggedness index, E = Eastness,
N = Northness, LD mean = mean Litter depth, LD sd = standard deviation of Litter depth, DBH
mean = mean Diameter at breast height, DBH sd = standard deviation of DBH, CAP1 and CAP2 are
the first two constrained axes of the dbRDA. Tree cover (field) is the canopy cover estimated after
the fire, Tree cover (RS) is the canopy cover before the fire as derived from the “Tree cover density”
product from Copernicus. Non-significant variables were not plotted, to improve clarity. For (a),
these were ∆NDVI, DBH sd, LD sd, TRI, TCI, Inclination, SC, Northness, and Eastness. For (b), these
were DBH sd, LD sd, Northness, Eastness, and TRI.

Plots dominated by L. campylocladus ssp. hillebrandii contribute significantly less
to local beta diversity. Plots above 10% cover of this species (“Lotus-dominated plots”)
had a mean LCBD value of 0.01, while plots below a 10% cover had a mean value of
0.015 (Figure 6b). Additionally, Lotus-dominated plots had significantly lower species
richness: a mean of 5.5 compared with 12.5 in the non-Lotus-dominated sites (Figure 6a).
The distribution of L. campylocladus ssp. hillebrandii depends on elevation, with Lotus-
dominated plots being on average 137 m higher than the other sites. All three differences
were significant (tested using Wilcoxon tests).
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Figure 5. Variance in Canary Island pine forest beta diversity explained by fire impact and topography,
tested by variance partitioning. Fire intensity (modelled using ∆NDVI+∆NDVI2) and topography
(Elevation + Elevation2 + Inclination + Northness + Eastness + TCI + TRI) are crucial drivers of the
Bray–Curtis dissimilarity of plant species across the 79 plots. The community data were split into
four subsets: all plant species recorded in the plots, all plant species without Pinus canariensis, all
plant species without Lotus campylocladus ssp. hillebrandii, all plant species without P. canariensis
and Lotus campylocladus ssp. hillebrandii, because these two species gained dominance in the canopy
or in the field layer, respectively. Overall, fire impact accounted for between 1.7% and 4.3% of the
variance in Bray–Curtis dissimilarity, and topography from 18.1% to 24.7%. The biggest percentages
of explained variance were attained in the data subset including only P. canariensis.

Figure 6. Plots with more than 10% cover of Lotus campylocladus ssp. hillebrandii (left) and below
10% (right) and their (a) Species richness, (b) Local contributions to beta diversity (LCBD), and
(c) Elevation. All the differences between Lotus-cover groups were significant (Wilcoxon test).
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Species contributions to beta diversity were tested using the Hellinger distance be-
tween plots. L. campylocladus ssp. hillebrandii was by far the most influential species,
SCBD = 0.445, followed by Vicia pubescens (0.166), P. canariensis (0.115), Bituminaria bi-
tuminosa (0.063), Chamaecytisus proliferus (0.042), and Cistus symphytifolius Lam. (0.028)
(Figure 6c). Legume species were responsible for 75% of SCBDs, non-legumes for 25%.
Herbaceous plants contributed 78% to SCBDs, and woody plants 22% (Figure 7).

Figure 7. Species contributions to beta diversity (SCBD) based on Bray–Curtis dissimilarity, grouped
by legume species vs. non-legume species (“Nitrogen Fixer”), and herbaceous vs. woody species.
Nitrogen-fixing legume species contributed more to local beta diversity than other herbs did. The
same is true for herbaceous species compared to woody species. Nitrogen fixing species, while
making up only 25% of species, contribute 59.5% of species cover and were responsible for 75% of
SCBDs, and non-legumes for 25% of SCBDs. Herbaceous plants (81% of species) contributed 78% to
SCBDs while contributing only 61% of cover. Woody plants are responsible for 22% of SCBDs, while
making up 19% of species and 39% of species cover.

4. Discussion

This study on forest ecosystem dynamics after fire in the endemic pine forest of La
Palma, Canary Islands, identified major drivers of the alpha and beta diversity of vascular
plant species. In particular, we found that elevation is not only the most important predictor
for species richness, it also strongly affects the beta diversity between plots.

4.1. Alpha Diversity (Species Richness)

The most important predictor for plot-level species richness was elevation, with higher
species numbers in lower elevations. Even though the sampling of this study covered a
limited altitudinal gradient (654 m), elevation could account for a large proportion of the
variation in species richness (pseudo-R2 of 0.81), as well as temperature and precipitation
gradients with elevation, in which rainfall seasonality increases at higher elevations [77].

The lower elevation of the investigated gradient was close to roads and villages,
explaining the emergence of ruderal and garden plants. Burned areas are known to be
more prone to invasion processes [86]. A study by Steinbauer et al. [87] found a decrease
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in species richness with increasing altitude due to decreasing area and increasing climatic
isolation—which is in line with our findings. Irl et al. [77] found elevation to be the
most important predictor for species richness on La Palma; the explanatory power of
elevation in our study is even higher. The opening of the forest canopy leads to a more
direct influence of climatic factors compared to dense forests. The relatively uniform
topography throughout our study area may reduce influences of specific site conditions.
Finally, the importance of elevation is inflated by spatial autocorrelation, which is shown
by the difference in explained variance between the GLM and the SAR model.

∆NDVI, which serves as a proxy for fire intensity, also explained part of the variation
in species richness (Nagelkerke’s pseudo-R2 = 0.33). Our sampled sites showed strong
NDVI declines after the fire. In contrast to our hypothesis, more species were encountered
in areas with a large difference in NDVI (high relative fire intensity). This is surprising,
as seeds from several endemic plants of the Canary pine forest are known to show low
germination rates after fire [88]. However, improved nutrient availability may have led
to the highest species richness in areas with the largest ∆NDVI; Durán et al. [29] found a
steep increase in the availability of soil nitrogen one year after a fire.

As our study shows, due to their relatively high spectral, spatial, and temporal
resolution, Sentinel-2 data are very useful for fire-related applications. They can also be
used for wildfire ignition probability modelling [89], fire damage mapping [90,91], with an
accuracy comparable to unmanned aerial vehicles (UAVs) [53], and are also efficient for
fire recovery mapping [92].

While NDVI and other spectral indices are good proxies for fire intensity on the
ground [52,53,55], the stand density of P. canariensis could negatively affect the usefulness
of vegetation indices as a direct proxy for fire intensity. Large gaps in the forest canopy
might influence how well fire intensity is recorded in the satellite image. The mean tree
cover before the fire, as derived from Copernicus, was 49%. On the other hand, the tree
cover before the fire was quite a good predictor of species richness after the fire. As tree
density in undisturbed forests is an indicator of resource availability, this could translate
into the successional trajectories after fire.

Studies from pine forests in other biomes have shown different response patterns to
those we found [93,94], indicating that the impact of fire intensity and the responses of
pine forests to wildfire are context-dependent.

4.2. Beta Diversity

Beta diversity measures differences in community composition and adds another
category of information to the assessment of biodiversity responses to disturbances. Multi-
temporal Sentinel-2 and LiDAR data have been linked successfully to species diversity on
slopes in northwestern La Palma, with up to 85% of beta diversity reflected in patterns of
remotely sensed data [95].

However, there is a multitude of beta diversity indices, highlighting quite different
aspects of community responses [79,81,96–98]. In order to cover these different facets of
beta diversity, we selected complementary metrics of beta diversity: the classic Bray–Curtis
dissimilarity index, the modern LCBD, and the modern SCBD based on the Hellinger
distance.

We found correlations between the species dissimilarity and both topographic distance
and environmental distance. Increasing dissimilarity with distance is not surprising, but
environmental variables show a correlation of similar strength. Elevation and L. campylo-
cladus cover were the most important predictors influencing the compositional dissimilarity
between plots, with elevation explaining 19.2–23.4% of the variation, depending on the
subset under consideration.

Variance partitioning revealed topography to be of higher importance than fire in-
tensity when explaining beta diversity. The highest explained variance was reached in
the dataset that included Pinus but excluded Lotus. This is most likely due to the more
direct effect burn damage has on P. canariensis compared to understory vegetation, which
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only germinates after the fire. Therefore, fire intensity has a higher explanatory power
for the P. canariensis dataset. Since the severity of fire damage is linked to topographic
variables, especially elevation and slope, topography and the shared variance explained
by both topography and fire intensity are higher as well. In the future, this link between
topographic variables and damage to P. canariensis could also be used for fire modelling.

The higher abundance of L. campylocladus at higher elevations may cause more ho-
mogenous patterns there, with a more heterogenous landscape mosaic at lower elevations.
Other significant variables were Tree cover and Legume cover. Both variables explained
significant yet minor parts of the variation in the subsets without Lotus and Pinus. ∆NDVI
had a significant influence as well, explaining around 4.1–5.5% of the variation in beta
diversity, with the highest values reached in the subset including Pinus and excluding
Lotus. Again, this is not surprising, since P. canariensis is directly affected by burn damage,
while nearly all the other recorded species germinated after the fire. Fire intensity’s effects
on beta diversity must be interpreted carefully, due to mechanisms in which species were
grouped before the fire due to habitat filtering or dispersal limitations and subsequently
“unclumped” due to the niche selection of fire tolerant species and differences in sample
sizes [99].

Conducting the PERMANOVA on the data subsets without Lotus and without Pinus
revealed minor shifts in the importance of variables. In the presence of Lotus, the importance
of elevation as a predictor variable decreased. Variance partitioning also revealed the lower
importance of both fire intensity and topography compared to the subsets with Pinus
included. The subsets with Pinus included exhibited more variance explained by fire
intensity in both the PERMANOVA and the variance partitioning approach. Again, it can
be assumed that this is caused by the much more direct effect fire has on Pinus compared to
understory vegetation. Elevation also had a larger effect on the subsets with Pinus included.
With differences in the moisture regime in higher elevations close to the Cumbre Vieja
compared to lower regions, the recovery and therefore the cover of Pinus after the fire seem
to be linked to precipitation.

4.3. Role of Lotus campylocladus ssp. hillebrandii

Overall, L. campylocladus was found to be an important factor for both alpha and beta
diversity. This species was encountered in 52 plots, 39 of which had 15% or more cover and
21 had 70% or more cover. The thick layer of this endemic plant appears to limit overall
species richness and homogenize beta diversity. Nonetheless, L. campylocladus had the
strongest influence on the species’ contributions to beta diversity (SCBD).

Lotus campylocladus ssp. hillebrandii thrives if a combination of fire and precipitation
is provided. The data presented in this study were sampled towards the end of the moist
season. Studies during and after the drier summer months could shed more light on species
composition during forest recovery.

L. campylocladus can be classified as both a perennial herb and a dwarf shrub [100].
Since Lotus is usually a temporal occurrence in our study area and mostly lacked wooden
stems, we classified it as herbaceous. With its ability to quickly cover open ground after
fire, it hinders erosion and nutrient loss [30]. L. campylocladus and other nitrogen fixers
are important factors for beta diversity. Four out of five of the highest SCBD values were
nitrogen fixers. Generally, herbaceous plants contributed more to SCBD than woody plants.

On undisturbed sites, both nitrogen fixers and annual species reach higher abundances
in the pine forests on the western slope of Cumbre Vieja compared to the eastern slope [101].
The low abundances of perennial plants indicate that these are less well adapted to fire
impact. However, considering the vegetation structures in unburned Canary pine forests,
it seems likely that Lotus will be replaced by shrub species in the future. While we found a
link between fire intensity and both alpha and beta diversity, this was weaker than expected.
Site conditions such as elevation were more important explanatory variables. Moreover,
the distribution of L. campylocladus ssp. hillebrandii was driven mostly by elevation. The
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expected interaction between the L. campylocladus and biodiversity patterns could be
confirmed, with the cover of Lotus as an important driver for beta diversity patterns.

5. Conclusions

We found a complex mix of drivers to be influencing alpha and beta diversity 1.5 years
after a major fire. The most important explanatory environmental variables were related to
elevation and to the presence of the key herb L. campylocladus, a nitrogen fixing endemic
plant species. Elevation was overall the most important driver for both alpha and beta
diversity patterns. This importance is most likely caused by a multitude of drivers, for
example precipitation patterns changing with elevation. Sampling was conducted after
the moist winter season. In this situation, L. campylocladus benefits from past fire-related
nutrient mineralization and favorable soil water conditions. This combination yields high
abundances. The ability of Lotus to fix nitrogen might additionally facilitate subsequent
successional trajectories.

On a longer time-scale, climate change is very likely to further influence the forest
vegetation of islands such as La Palma. With the expected increase in both fire frequency
and size, and with lessons from past fire recoveries not necessarily holding true for future
fires anymore, it is crucial to better understand drivers of forest recovery, both for their
importance for local species richness in the rather species poor pine forest, and in terms of
the role of understory vegetation in erosion prevention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12121638/s1, Figure S1: Detail map indicating the species richness per site, Figure S2: Corre-
lation table of all variables, Table S1: Model coefficients of the different SAR models taking spatial
autocorrelation into account, Table S2: Results of the PERMANOVA with 1000 permutations for the
4 data subsets with and without Lotus and Pinus.
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