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Abstract

Focal adhesions (FAs) and associated actin stress fibers (SFs) form a complex mechanical

system that mediates bidirectional interactions between cells and their environment. This

linked network is essential for mechanosensing, force production and force transduction,

thus directly governing cellular processes like polarization, migration and extracellular matrix

remodeling. We introduce a tool for fast and robust coupled analysis of both FAs and SFs

named the Focal Adhesion Filament Cross-correlation Kit (FAFCK). Our software can

detect and record location, axes lengths, area, orientation, and aspect ratio of focal adhe-

sion structures as well as the location, length, width and orientation of actin stress fibers.

This enables users to automate analysis of the correlation of FAs and SFs and study the

stress fiber system in a higher degree, pivotal to accurately evaluate transmission of

mechanocellular forces between a cell and its surroundings. The FAFCK is particularly

suited for unbiased and systematic quantitative analysis of FAs and SFs necessary for

novel approaches of traction force microscopy that uses the additional data from the cellular

side to calculate the stress distribution in the substrate. For validation and comparison with

other tools, we provide datasets of cells of varying quality that are labelled by a human

expert. Datasets and FAFCK are freely available as open source under the GNU General

Public License.

Introduction

The shape and mechanics of biological cells depends largely on the cytoskeleton, a dynamic

network that functions as the cellular cytoskeleton and produces contractile forces acting on

their environment, such as the extracellular matrix (ECM) or neighboring cells. A predomi-

nant and essential part of this network is made up of actin filaments that act as structural
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elements and, importantly, are capable of producing contractile forces when co-assembled

with myosin II mini-filaments into contractile stress fibers [1].

Geometry and rearrangement of stress fibers is a critical factor during mechanical interac-

tions between the cell and the ECM in many processes (e.g. adhesion, migration, etc.) and

must be quantitatively assessed to elucidate the complex mechanical interplay of cells with

their surroundings. Interestingly, the pattern of stress fiber formation in human mesenchymal

stem cells reveals an optimal matrix elasticity E yielding an anisotropic and polarized acto-

myosin fiber structure, which functions as an early morphological marker of mechano-guided

differentiation [2, 3]. This requires a quantitative analysis of the filament structure (e.g. by a

simplified order parameter S known from liquid crystal theory as introduced earlier [2], that

builds on the unbiased and automated segmentation of stress fibers. Various approaches exist

to address this task, among which our recently developed FilamentSensor analysis tool allows

for automated detection and quantification of stress fiber structures [4]. However, for a com-

plete functional analysis of cell and matrix mechanics, quantification of both stress fibers and

their associated focal adhesions is needed.

Cells adhere to the ECM or surrounding cells via cell-matrix and cell-cell contacts, respec-

tively. These structures function as biochemical anchors and are key to the signaling and

mechanical interactions of cells with their surroundings. Focal Adhesions (FAs) are cell-matrix

anchors based on trans-membrane proteins integrins, with a multitude of associated proteins

on the cytosolic side. Serving as the interface between the SFs and the ECM, FAs have several

functions, such as providing cellular attachment to the substrate, transducing contractile forces

to the ECM and facilitating bi-directional transmembrane signaling [5]. At the cytosolic side,

FAs are structurally and dynamically linked to the ends of SFs (see Fig 1A–1C). The formation

and maturation of FAs is dependent on actomyosin-generated tensile forces applied on them

through associated SFs [5]. In turn, signaling pathways that are mechanically triggered at adhe-

sions lead to actin polymerization and elongation of the fibers at their FA-associated termini

[6]. Thus, there is an intricate, dynamic association between FAs and SFs that needs to be

quantified to fully elucidate their cellular functionality.

Cellular SFs are broadly classified as transverse arcs, dorsal SFs and ventral SFs based on

their FA association, which underlies their varied roles (Fig 1D) [1]. Actin transverse arcs,

which are not associated with FA but rather embedded into the cortical actin meshwork at

their termini, are contractile structures that contribute to cell shape but not do not directly

exert force onto the environment. Dorsal SFs are associated with FAs at one end and with

transverse arcs on the other end. Although they are non-contractile due to their negligible

myosin II content, they can exert forces on their terminal adhesion through their association

with transverse arcs. Ventral SFs, which are connected to FAs at both ends, are contractile

structures that generate majority of cellular traction forces on the substrate [7, 8]. Due to this

natural linkage of SFs and FAs, cytoskeletal studies often result in cells with an observed actin

SF phenotype having an associated FA phenotype [9–13]. Therefore, incorporating detection

of SF-FA coupling in studies would greatly facilitate the complete analysis of their structure

and function in cells.

Manual evaluation and analysis of FAs and SFs is a laborious, time-intensive process and is

always at risk due to the observer’s bias. Recently, this process has been aided by several auto-

mated analysis tools and algorithms that are optimized either for focal adhesion analysis (such

as the Focal Adhesion Analysis Server [14], PAASTA [15], or Buskermolen’s segmentation

algorithm [16]), or stress fiber analysis (such as previous version of FilamentSensor [4], Cyto-

Seg [17], SFEX [18], and MatLab scripts like Rogge’s FSegment [19]).

However, a tool for speedy, unbiased quantification of SFs, FAs, and their mutual coupling

is yet missing. Here, we present an integrated FA-SF analysis module called the Focal
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Adhesion Filament Cross-correlation Kit (FAFCK). This tool is based on our previously pub-

lished FilamentSensor analysis tool, with added capacities for adhesion detection and charac-

terization, filament analysis and coupled FA-SF correlation for stacks or pseudo-stacks of

images with similar properties to streamline analysis of huge datasets. FAFCK detects and

quantifies FAs and SFs by means of location, area, length, width, aspect ratio and orientation,

with capacity for exporting this information enumerated for each frame, allowing for compre-

hensive further data analysis (e.g. Python, Matlab, etc.) to elucidate cell and matrix mechanics.

Our software package will be particularly helpful for sophisticated mechanical measurements

and analysis such as model based traction force microscopy (MBTFM) experiments [7] that

takes advantage of the a priori determined positions of focal adhesions and stress fibers in

addition to the displacement field in the substrate.

Results

The Focal Adhesion Filament Cross-correlation Kit (FAFCK) is a comprehensive FA-SF

analysis software consisting of two modules: the FASensor, for adhesion detection and the

Fig 1. Stress fibers and focal adhesions. Confocal fluorescence microscopy images of an MRC5 cell stained for A)

actin filaments (phalloidin) and B) focal adhesions (paxillin). C) Merged color image of the cell with actin filaments in

magenta and adhesions in green. All images are of the ventral plane of the cell, scale bar—10 μm. D) Schematic

illustration of different stress fiber subtypes and their association with focal adhesions.

https://doi.org/10.1371/journal.pone.0250749.g001
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FilamentSensor, for actin filament detection, both of which connect through a correlation

function for paired characterization of these structures. To correlate an adhesion with the asso-

ciated actin filament in the cell, the software relates each adhesion object detected by the FAS-

ensor module with corresponding filaments that are detected by the FilamentSensor module.

As stand-alone programs with a shared GUI, both routines can be used independently as well.

Segmentation of focal adhesions by FASensor

The FASensor is the adhesion detection module in the software. It is a robust tool for detection

of point-like structures partly based on the FilamentSensor [4]. Based on adapted ImageJ rou-

tines (Fig 2), it analyzes the adhesions in an image as objects which can be exported with char-

acteristics and IDs, with multiple customization options to improve accuracy as desired by the

user.

Adhesion detection analyzes and segments the input image (usually a grayscale immunoflu-

orescence (IF) micrograph) of focal adhesions. The module is split into Main, Pre-processing

and Focal Adhesion output sections. All images are shown in panels on the right- including

the original image of adhesions, the pre-processed image, the thresholded image, and the

image with overlay of filaments detected from the filament input (Stress Fiber Overlay). The

windows can be split from the interface and zoomed in for user ease. The pre-processing tab

allows the user to add optional filters to the image in order to improve the signal to noise ratio

and normalize the image. Filters included are the Gauss filter, Laplace filter, Line Gauss filter,

Cross-correlation filter, and Enhance contrast filter. Filter queues can be saved for reuse. The

main tab has thresholding controls with automated protocols. The levels can also be altered

manually to produce the desired binarized image. Additional filters are provided for defining

the minimum or maximum pixel number per adhesion and the maximum amount of clusters

allowed in one image. Fig 3 shows an examplary view of the main window of the software with

focal adhesions and stress fibers detected but correlation not yet run. Detailed explanation of

the submenus and functions can be found in the tutorial provided with the software.

On clicking ‘Process Focal Adhesions’, the adhesion objects are detected. For each adhesion

detected, the outline is derived, and a convex hull is calculated. The main axis is set for the

points farthest away on the convex hull and for the points farthest away from the main axis,

the side axis is set. The aspect ratio, orientation, and center for each focal adhesion is also cal-

culated. The module also allows for further close customization of the detected objects by the

user to obtain the most accurate result. In cases where nearby adhesions have been detected as

a single one due to poor signal-to-noise ratio, overlap, artifacts, etc. the user has the option to

draw a line on the thresholded image and separate the adhesions at their discretion (see Fig

4A). Once the lines have been drawn to separate all adhesions as desired, the adhesions can be

re-processed to get the split objects in a new map.

The detected FAs are displayed in the table in the Focal Adhesion tab. The ID, XY center

position, Length of main axis, Length of side axis, Angle, Area, and Area ellipse of each adhe-

sion are listed in the table. The user can choose to discard a detected adhesion object by select-

ing the object in the Focal Adhesion original window, on which the boundary turns red, and

clicking the remove button under the table. This allows the user to closely edit the adhesion

map obtained from the software to remove any inconsistencies based on their expertise. The

output focal adhesion map can be exported as a binary mask with outlines and optional num-

bering with IDs. The output table can be exported as a ‘CSV’ file and the adhesion detection

can be exported as a project ‘XML’ file.

We illustrate the usage of FASensor with the input image of an MRC5 human fibroblast cell

showing adhesions (paxillin) (see Fig 4B). This input file was preprocessed using Laplace and
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Gauss filters and thesholded using Intermodes algorithm. With a minimum limit of 10 pixels

per adhesion, which corresponds to 0.144 μm2, adhesion objects were detected by the software

(Fig 4C).

In the post-thresholding section, there is the option to add or opt-out of the closing and fill-

ing holes algorithms, by which seemingly disparate objects can be detected as one, especially in

cases of large, single adhesion plaques whose signal is not uniform (Fig 4D). A large, boundary

adhesion plaque that is detected as split pieces without the closing and fill holes algorithm can

be reprocessed with this algorithm in order to assign it as a single object. After the reprocessing

step, the user is able to confirm that the newly joined adhesion matches with expectations.

Fig 2. Workflow of adhesion detection by FASensor module.

https://doi.org/10.1371/journal.pone.0250749.g002
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Evaluation of the FAFCK output with user generated output

For those using this module to analyze cellular adhesions or stress fibers, it is important to

understand how the results compare to their expert opinion and any pre-established routines

they already use. To accurately assess the differences between the user’s usual routine and the

FAFCK output in adhesion detection, our module offers an evaluation option.

In the evaluation panel, a binary adhesion or fiber map generated by the user can be com-

pared with the respective object output generated by FAFCK software (S1 Fig). Before compar-

ison, additional preprocessing can be applied, for example thickening of outlines. The

comparison is done in two ways—an objectwise fashion, where from both the user mask and

software output, objects are generated and overlap is checked, and in a pixelwise fashion,

where each pixel of user mask and software output is taken into account. The minimal

required overlap for object matching between the user mask and output can be manually set

by the user. The ‘export results’ option provides images of the comparisons and comparison

results in a csv file. The results table lists objects that are found in output when compared with

the user’s mask, objects that are false positives (present only in the software output image,

labelled ‘eval not matched’) and the missed objects that are present only in the user’s image

(labelled ‘truth not matched’). The pixel sizes of all objects are given along with the number of

pixels that overlap in the common objects. The output table also gives the cases where the sen-

sor detects multiple objects in output for one object in the mask marked by the expert (multi-

MatchesOneToN) and cases where the sensor detects one object in the output for multiple

objects marked in the mask by the expert (multiMatchesNToOne).

In the example, shown for FAs, the FASensor output is evaluated against the user generated

binary adhesion mask (S1B Fig) from the IF image using Fiji software [20]. On the landing

page of the graphical user interface, the user can also import two binary masks of various ori-

gins to execute the evaluation without running the software to get an output first. As with all

Fig 3. Main window of the FAFCK software. Main window of the GUI consisting of several sub-menus at the left to

set threshold, FA size restrictions, validation preferences as well as routine for evaluation against external binary masks

and data output options. On the right, processing output is shown and can be customized by the user or detached from

the main GUI for a larger view.

https://doi.org/10.1371/journal.pone.0250749.g003
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parts of the software, the evaluation tool can work on OME-TIFF files to provide fast evalua-

tion of large datasets. S1C Fig shows the result maps of objectwise and pixelwise evaluation

between FASensor output and the user’s mask. The evaluation maps assume the user generated

mask as true, highlighting the found and missing categories on it and superimposing false pos-

itives from software output on the mask as well. The tables S1D and S1E Fig show the tabulated

results for the different categories in objectwise and pixelwise evaluation respectively.

Fig 4. Segmentation of FAs by FASensor and subsequent optimization. A) Montage of adhesion splitting capacity of

the FASensor module. (Top) Thresholded image of adhesions (white) have objects detected by module (circled by

yellow). Red line is drawn by user to split objects where desired. (Bottom) Before and after images of objects detected

in the IF adhesion input, that are split. Green arrow indicates splitting objects in Top and Bottom.B) Input image of

focal adhesions (paxillin) in the ventral plane of an MRC5 cell. C) Corresponding segmented adhesion objects

(outlined in green) from FASensor. D) Montage showing the closing and filling holes function of the module. (Top

series) Objects circled by green detected by FASensor from IF adhesion input. (Bottom series) Objects circled by

yellow on thresholded image. (Left) Pre-detection by module (Center) Objects detected when closing and filling holes

algorithms are not applied. (Right) Objects detected when closing and filling holes algorithms are applied. Green arrow

in the Top and Bottom series indicates the adhesion which is detected as multiple objects without the algorithm and

detected as a single object with the algorithm.

https://doi.org/10.1371/journal.pone.0250749.g004
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The input routine, in terms of filters and thresholding method used, affects similarity of the

FASensor output to user drawn mask. S2 Fig shows how objects detected by FASensor are

more similar to the user mask when an appropriate input routine is used instead of default set-

tings. From input of S2A Fig), FASensor output is derived in two ways: unoptimized (filter set-

tings and thresholding that is default coded in the software and not necessarily appropriate for

the cell) and optimized (appropriate filter settings and thresholding adjusted by the user).

These settings can consist of filters applied to the whole image, manually set thresholding algo-

rithm parameters, applying or not applying the closing and fill holes options, setting boundary

conditions for focal adhesion size, and finally separating focal adhesions via user input. Object-

wise evaluation of the outputs with user mask (S2B Fig) is shown in S2C Fig for unoptimized

output and S2D Fig for optimized output, where found and missing categories as compared to

output on the left are highlighted on the user mask and false positives from output are super-

imposed on the mask as well. In the unoptimized output, the pronounced background signal

at the input cell border is fused as large plaques, detected objects deviate from the user mask

and many false positives are present. By using an appropriate, optimized input routine, the

focal adhesion signal is separated well from the background and adhesions are detected. More

detected adhesions match with the user mask and false positives are largely diminished as well.

The results are summarized in S2E Fig. There is an increase in the multiMatchesOneToN

parameter for the optimized routine, because the optimized input routine finely detects adhe-

sions in the boundary areas of high background, where some of them have been marked as

large single adhesions by the user when the signal couldn’t be distinguished finely by eye.

Thus, several objects detected by the output in these areas are matched to one object marked

by the user.

Conversely, if the output had detected a large object from signal that was distinguished

as several objects by the user, that would result in an increase in the multiMatchesNToOne

parameter.

FASensor output performance with varying imaging conditions and levels

of optimization

To test FASensor’s robust detection of focal adhesions on a variety of image qualities, we com-

piled comparison datasets with varying degrees of blur, in which structures were manually

labelled by a human expert for comparison. MRC5 cells immunostained for actin filaments

and focal adhesions were imaged on a confocal laser-scanning microscope (S3 Fig) in three

conditions with blur introduced in images by altering the size of pinhole to include out-of-

focus light. For the Confocal in-focus dataset (Fig 5A), the pinhole size was 1.2 Airy Units

(AU), for the Confocal mild blur dataset (Fig 5B), the pinhole size was 3 AU and for the Confo-

cal severe blur dataset (Fig 5C), the pinhole size was 4.7 AU.

Since the FilamentSensor module has been analyzed and published before, we have focused

on the FASensor module for manual annotation comparison. We analyzed a set of adhesion

images from each imaging condition (in-focus, mild blur and severe blur) in the FASensor

software and compared the software results with adhesions manually annotated for the respec-

tive images. For manual annotation by the user expert, selected images from the sets were

marked for adhesions using the freehand selection tool in Fiji with the aim of being natively

user-detected. Images were traced with minimal signal manipulation to compare the base-level

manual annotation by eye with the objects traced by FASensor module after processing by

software.

To further understand whether and how user involvement such as pre-processing each

image in a set differently or splitting ROIs and excluding adhesions makes a significant
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Fig 5. Datasets’ imaging conditions and similarity coefficients (SC) for the datasets by level of optimization. A-C)

Representative images of MRC5 cells fluorescently stained for actin filaments (phalloidin) and adhesions (paxillin) is

shown. Scale bar—10 μm. All images were taken with a confocal microscope and are of the ventral plane of the cell.

(Left) Grayscale image of the adhesions (Center) Grayscale image of actin filaments (Right) Merged image of the cell

with actin filaments in magenta and adhesions in green. A) In-focus setting. B) Mild-blur setting. C) Severe-blur

setting. D) SC on the y-axis (logarithmic scale) for unoptimized ‘UN’ (purple squares), optimized ‘OP’ (blue triangles)

and for customized ‘CM’ (green hexagons) output of analyzed images of the in-focus set (n = 17, UN SC ¼ 4:53, OP

SC ¼ 12:73 and CM SC ¼ 14:83), E) Mild-blur set (n = 17, UN SC ¼ 4:47, OP SC ¼ 7:98 and CM SC ¼ 10:13) and

F) Severe-blur set (n = 19, UN SC ¼ 3:47, OP SC ¼ 5:94 and CM SC ¼ 11:74). ��� p<0.001; �� p<0.01; � p<0.05

and ns stands for not significant (p>0.05).

https://doi.org/10.1371/journal.pone.0250749.g005
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improvement in software results, we used three different optimization levels. In the unopti-

mized (UN) level, the user sets a single desired input routine with thresholding and pre-pro-

cessing parameters for all images in the dataset and derives results from the software. There is

no optimization for each cell in the dataset and user involvement is low. In the optimized (OP)

level, the user sets a custom input routine for each cell with the optimal thresholding and pre-

processing parameters and derives results from the software. This optimization uses the soft-

ware’s capability for pre-processing and thresholding to enhance adhesion recognition for

every cell according to user’s discretion. The user involvement is greater than unoptimized in

that every cell has a different optimal setting. In the customized (CM) level, the user sets a cus-

tom input routine for each cell and further edits the result by splitting ROIs and deleting adhe-

sions detected so that the result is highly customized and similar to the user manually marking

the adhesions. Customization is useful for conditions where the user does not have the time to

mark adhesions manually but still desires the detected adhesions to exactly fit to their discre-

tion of the adhesion pattern in an image. The user involvement is thus higher than unopti-

mized and optimized levels.

Comparison of the software output with the manually marked adhesions gives result cate-

gories of adhesions that are found, missed or false positives. To compare these three results in

the three optimization conditions, we created a similarity coefficient (SC) for adhesion detec-

tion that is as follows:

SC ¼
P

Found FA area
P

Missed FAareaþ
P

False positive FA area

The higher the coefficient, the more similar the detected adhesions are to the human

expert’s mask.

For the cells in the In-Focus dataset (Fig 5D), the similarity coefficients show that adhesions

detected in OP (SC ¼ 12:73) and CM (SC ¼ 14:83) sets are significantly more user-similar

compared to the UN set (SC ¼ 4:53). The similarity coefficient of the OP and CM sets are not

significantly different. Just setting optimal pre-processing settings vastly improves similarity of

detected adhesions between cells in the in-focus set, even without further time-intensive cus-

tomization of splitting and deleting detected objects.

For the cells in the mild-blur dataset (Fig 5E), the similarity coefficients show that OP set

(SC ¼ 7:98) is not significantly more similar than UN (SC ¼ 4:47) or CM (SC ¼ 10:13),

whereas CM is significantly more similar than UN. Thus, in conditions where images have

some blur, doing both optimal pre-processing and user customization by splitting and deleting

adhesions makes it significantly more accurate.

For cells in the severe-blur dataset (Fig 5F), the similarity coefficients show that OP

set (SC ¼ 5:94) is not significantly more similar than UN (SC ¼ 3:47), but again CM

(SC ¼ 11:74) is significantly more similar than both other sets. Thus, in conditions where

images are blurred, intensive user customization by splitting and deleting adhesions gives the

best result.

Aggregate analysis (S3 Fig) of all the adhesions in the sets reveal that false positive adhesions

are consistently significantly smaller than found and missed adhesions across optimization lev-

els and missed adhesions are significantly smaller than found adhesions as well. (Fig 6) shows

graphs comparing the adhesion objects by area in a set across optimization levels.

Aggregate analysis of the in-focus set (Fig 6A) shows that there is no significant difference

between area of the found objects across optimization levels, but both OP (1843) and CM

(1802) find more adhesions compared to UN (1451). OP (268) and CM (309) miss less

adhesions than UN (660) and CM missed adhesions are significantly smaller than UN.
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Fig 6. Comparison of adhesion objects between optimization levels in a set. Graphs show pooled adhesion objects

for un-optimized ‘UN’, optimized ‘OP’ and customized ‘CM’ analysis. Y axis has adhesion area in μm2 on a

logarithmic scale. Left column shows graphs comparing adhesion objects found in common between user mask and

software output. Middle column shows adhesion objects that were missed in output and present only in user mask.

Right column shows adhesion objects that are false positive, present only in the software output. A) Graphs for in-

focus set B) Graphs for mild-blur set C) Graphs for severe-blur set. ���� p<0.0001; ��� p<0.001; �� p<0.01; � p<0.05

and ns stands for not significant (p>0.05).

https://doi.org/10.1371/journal.pone.0250749.g006
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Optimization decreases false positive adhesion area significantly- with CM (A ¼ 0:33 mm2)

and OP (A ¼ 0:25 mm2) adhesions being significantly smaller than UN (A ¼ 0:43 mm2) false

positive adhesions. OP shows the largest decrease in false positive adhesion size, but CM (296)

has the largest decrease in number over UN (497) and OP (465). Thus, optimization of in-

focus images primarily increases the accuracy by finding more objects and decreasing false

positives by number and area.

Aggregate analysis of the mild blur set (Fig 6B) shows that there is no significant difference

between the area of found objects across optimization levels, but both OP (1740) and CM (1700)

find more objects compared to UN (1522). In missed objects both OP (A ¼ 0:66 mm2) and CM

(A ¼ 0:64 mm2) have smaller missed adhesion area compared to UN (A ¼ 0:83 mm2), and less

missed adhesions (OP (361), CM (401)) than UN (579) as well. Comparing the false positive

objects, OP has lower AðA ¼ 0:31 mm2) compared to UN (A ¼ 0:42 mm2) and CM

(A ¼ 0:43 mm2), the number of false positives (560) is lower than UN (791) but higher than

CM (188). Thus, in mild blur images, optimization method shows improvement over unopti-

mized by finding more adhesions and having fewer false positives. Customization shows much

fewer false positives compared to other levels.

Aggregate analysis of the severe blur set (Fig 6C) shows that there is no significant differ-

ence between area of found objects across optimization levels, but both OP (1520) and CM

(1577) find more adhesions than UN (1504). In missed objects, both OP (A ¼ 0:61 mm2) and

CM (A ¼ 0:60 mm2) are significantly smaller than UN (A ¼ 0:85 mm2). More adhesions are

missed in UN (355) compared to OP (339) and CM (282) as well. Comparing the false posi-

tives, UN (A ¼ 0:43 mm2) has the highest mean area A compared to OP (A ¼ 0:36 mm2) and

CM (A ¼ 0:36 mm2). OP (745) and CM (231) have lower number of false positives compared

to UN (1811) as well. Thus, for severely blurred images, optimization method shows improve-

ment over unoptimized by finding more adhesions and having fewer false positives. Customi-

zation shows a greater improvement by having much fewer missed adhesions and false

positives compared to other levels.

Thus FASensor offers several levels of desired user optimization in a variety of imaging con-

ditions to derive and evaluate an accurate adhesion map from the input.

Detection of stress fibers with FilamentSensor

The FilamentSensor, as integrated here in the FAFCK, is based on the version published by

Eltzner et al in 2015 [4], adjusted to feature stack handling of image sequences and drastically

reduced runtime as well as some additions for area calculation. The plugin featured in the

FAFCK includes all components included in the stand-alone software, being a preprocessing,

line sensor, and filament submenu. The workflow of the software as published before is

included in S4 Fig.

During preprocessing, contrast and brightness can be adjusted for either individual pictures

or a whole stack, if needed. These routines are based on ImageJ [21], which is included as an

internal library and used wherever possible, as the ImageJ routines are fast and well tested. The

main preprocessing step consists of a filter queue which the user can customize to their needs.

This is necessary to prepare the original IF filament image for binarization, tackling the issue

of crossing filaments that would otherwise be recognized as a network of interconnected, not

crossing, filaments. On this image, the binarization is applied and filament objects extracted

according to the flowchart shown in S4 Fig. This is done in parallel threads to improve runtime

and subjected to several boundaries the user can determine including minimal and maximal

length, maximal curvature, width, restriction to cell area mask, and more. This flexibility
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allows for the program to be utilized for a wide variety of filament types. Lastly, the filament

subsection allows to filter data for export. The FilamentSensor module offers a set of descrip-

tors of the whole cell such as IDs, area, aspect ratio, length of axes, number of filaments, orien-

tation, brightness, and for each individual filament such as xy position, length, curvature,

width, and orientation. For each image file, the filament objects are assigned an individual

identifier as done for the focal adhesion objects and a variety of export types are available with

the option of superimposing filaments as required.

Correlation of detected focal adhesions and actin filaments in FAFCK

As focal adhesions and actin filaments are linked structures, the FAFCK module offers correla-

tion of detected focal adhesions from FASensor and filaments from FilamentSensor. The soft-

ware’s workflow is illustrated in Fig 7.

Using the file name of the original images or image stacks loaded, it is first checked whether

input data for both adhesions and filaments exist and single sets are ignored. The focal adhe-

sion objects detected from the input image showing paxillin are paired with the filaments

derived from the input image depicting actin (see Fig 8A and 8B).

Both list of found objects are sorted by size and usually tasks start with the larges object. For

correlation, one fiber object is taken and all focal adhesion objects are tried for correlation. To

reduce computational efforts, only focal adhesions with long axis smaller than fiber total length

are tried, assuming a focal adhesion can never be larger than the corresponding fiber. For the

focal adhesion objects, the user decides whether the convex hull, fitted ellipse, or true pixels is

used for verification purposes. This ellipse is calculated by setting the line between the two

points with the greatest distance on the convex hull as long axis and the axis orthogonal to that

and with the greatest length as short axis. Furthermore, the area can be artificially increased by

increasing the neighborhood in which verification is done. Now, starting from the ends, for

each point on the filament, a neighborhood rectangle is created and in the list of focal adhe-

sions with main axis length below filament length, intersecting objects are searched.

The correlation can be done with condition of either validating all filaments that are

attached to at least a single adhesion or only validating those with multiple adhesion structures

along the filament. Thus, we can clearly categorize filaments by the number of adhesions asso-

ciated. The data of adhesions by number of filaments associated can also be derived.

The output of the correlation routine consists of the identifier numbers of the respective

objects and can consecutively be matched to the data output of the previous routines. Also,

verified filaments will be highlighted in the fiber overlay and after verification the fiber data

export will be expanded by a ‘verification’ column with booleans. As with the individual mod-

ules themselves, batch analysis of correlation for pairs of FA and SF images are possible as well.

The output is displayed in the Stress Fiber Overlay window in the main tab in FAFCK. The

resulting paired filament and focal adhesion IDs are displayed in a table in the Focal Adhesion

tab. The results can be exported as a simple overlay or a comprehensive color-coded map (Fig

8C), verifier tables, and grouped CSV files with details of adhesions and filaments by associa-

tion with each other.

We used the FAFCK to correlate detected adhesions with filaments in the in-focus dataset

(n = 17). We named filaments by adhesion association as MAAF- Multiple adhesion associated

filament, SAAF—Single adhesion associated filament and NAAF—Not adhesion associated fil-

ament. There were 490 MAAFs, 588 SAAFs and 555 NAAFs, with MAAFs having significantly

higher mean fiber length of 13.14 μm compared to SAAFs at 9.29 μm and NAAFs at 7.15 μm

(Fig 8D). Thus, filaments attached to multiple adhesions are longer than those attached to only

one adhesion or none. We also analyzed adhesions by number of fibers associated with them
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Fig 7. Workflow for correlation in FAFCK.

https://doi.org/10.1371/journal.pone.0250749.g007
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Fig 8. Correlation of focal adhesions and actin filaments by FAFCK. A) Input images of the ventral plane of a MRC5 cell (left) adhesions (paxillin)

and (right) actin filaments (phalloidin). B) Map of numbered adhesion objects detected by FASensor (left), map of filaments detected by

FilamentSensor (right). C) Color coded map of correlated adhesions and filaments categorized by association (legend in image). D) Aggregate graph of

lengths of filaments categorized by adhesion association in all cells of the in-focus dataset. Y axis is in logarithmic scale. MAAF- Multiple adhesion

associated filament, SAAF—Single adhesion associated filament and NAAF—Not adhesion associated filament. E) Aggregate graph of areas of

adhesions categorized by filament association in all cells of in-focus dataset. Y axis is in logarithmic scale. AAMF—Adhesion associated with multiple

fibers, AASF—Adhesion associated with single fiber and AANF—Adhesion associated with no fibers.

https://doi.org/10.1371/journal.pone.0250749.g008
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and grouped them as AAMF—Adhesion associated with multiple fibers, AASF—Adhesion

associated with single fiber and AANF—Adhesion associated with no fibers. AAMFs were

much fewer (291) than AASFs (1191) and AANFs (1227) and had significantly larger

mean adhesion area (A ¼ 1:21 mm2) compared to AASFs (A ¼ 0:64 mm2) and AANFs

(A ¼ 0:34 mm2) (Fig 8E).

The correlation analysis provides a comprehensive picture of adhesion and filament associ-

ation in cells, and can be used to streamline quantitative evaluation of the effective mechanical

forces in the stress fiber / focal adhesion system.

Discussion

Here we present the FAFCK that allows for fast, reliable, unbiased, and systematic detection of

fibers and point-like structures and their cross-correlation in cells. While detection and analy-

sis of both types of structures individually is useful, the cross-correlation module will be espe-

cially valuable and help to answer open questions on the coupled function of these force-

transmitting features in cellular mechanosensing.

There are several notable advantages to our new tool. Importantly, it allows to identify

groups of stress fibers associated with zero, one, or more than one focal adhesion. Such classifi-

cation can be applied to functional differences of stress fibers in cells of specific morphologies.

For example, in migrating cells, this allows for a quantification of the relative number and

characteristics of transverse arcs (0 FA per filament), dorsal SFs (1 FA per filament), and ven-

tral SFs (�2 FAs per filament) in large data sets. This analysis can also be applied to other

types of actin organization in specialized cell types. The software package can also be used to

quantify maximum intensity projections from 3D image sets, making it possible to quickly

quantify such structures that would be otherwise difficult and time-consuming to analyze. Fur-

thermore, individual application of filters and optimization allows for an optimal analysis of

wide-field images and images with high blur and/or background noise.

There is always a certain degree of error or deviation in computational recognition methods

(as false positives and false negatives) as well as bias in the user’s native detection of cellular

features. Our software package allows for the systematic, streamlined, and unbiased compari-

son of large data sets to achieve statistical relevance. Since we provide an option to customize

output in each image, this also allows for more precise detection of SF types in smaller data

subsets. We are currently developing the functionality of the FAFCK such that it would be use-

ful for analysis of time lapse movies, where many frames need to be analyzed consecutively

with same settings to quantify the dynamics of stress fibers and adhesions in cells to under-

stand their dynamic organization and how they influence the mechanical coupling of cells and

the matrix. While our original motivation for this project was the quantitative analysis of focal

adhesion structures and their correlation with stress fibers, this tool can be also used for image

analysis of other cellular structures from fluorescence microscopy images. This includes but is

not limited to membrane organelles such as lysosomes or mitochondria, that can be detected

and also tracked to quantify their cellular dynamics.

For optimal flexibility and potential comparative studies, we provide an import option of

external data sets of filaments and FAs (source may be manual detection or from other soft-

ware). This feature allows for comparison of the computational recognition with individual

user perception of the biological reality and also allows for importing data from other image

analysis platforms to be used for the correlation analysis. In the light of the continuous

improvement of image recognition software in the field we specifically refrained from employ-

ing machine learning and big data algorithms to establish a solid classical analysis tool. That
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said, the future development of FAFCK can surely benefit from big data and deep learning

additions.

Materials and methods

Software availability

The FAFCK is available under the GNU Public License and can be used, modified and restrib-

uted freely without warranty given by the developers. A version of the software, sources, tuto-

rial, installation notes, and example data can be either obtained by the data package associated

with this paper (https://doi.org/10.5281/zenodo.5082933) or via our website (http://www.

filament-sensor.de). The FAFCK has been tested on Windows and Linux. For Java 8 and

below, the.jar file runs on click on windows. Running the FAFCK on Java 9 is not advised. For

Java 10 and above, Java does not contain the JavaFX package, which has to be installed sepa-

rately and the Path added. Also, we advise to use OpenJDK and OpenJFX which both have to

be installed and the Path added on Windows and Linux. Detailed instructions how to do this

can be found in the Readme in the data folder or on our website.

Cell culture

MRC5 cells (human lung fibroblasts, ATCC1 Cat# CCL-171™, RRID:CVCL_0440) were main-

tained in MEM media (Cat# 11095080, Thermo Fisher Scientific) supplemented with 10% fetal

bovine serum, 100 μM penicillin and 0.1 mg/ml streptomycin in 5% CO2 at 37˚C. Media was

supplemented with 5 μg/ml Plasmocin (Cat# ant-mpp, InvivoGen) as a prophylactic against

mycoplasma contamination.

Fixation and immunostaining

MRC5 cells were seeded on glass coverslips (Cat# NC1129240, Fisher Scientific) that had been

coated with 10 μg/ml fibronectin (Cat# FC010, EMD Millipore) for 1 hour. After 24 hours,

cells were fixed with 4% paraformaldehyde prepared in CB (cytoskeletal buffer—150mM

NaCl, 5mM MgCl2, 5mM EGTA, 5mM glucose, 10mM MES), for 10 minutes at room temper-

ature. They were washed with CB after fixation, permeabilized with 0.25% Triton in CB. Anti-

bodies used are as follows: anti-paxillin mouse primary antibody (1:200, BD Biosciences Cat #

610051, RRID:AB_397463), Alexa Fluor 568 Phalloidin (1:300, Invitrogen, Cat# A12380) and

Alexa Fluor 488 conjugated goat anti-mouse IgG secondary antibody (1:300, Thermo Fisher

Scientific Cat# A-11001, RRID:AB_2534069). Coverslips were post-fixed for 10 min with 4%

PFA in CB at room temperature. They were mounted with Vectashield Mounting Medium

(Cat # H-1000–10, Vector Labs) on glass slides (Cat # 12–550-343, Fisher Scientific).

Confocal microscopy

Immunostained samples were imaged using a laser scanning confocal microscope- Nikon

A1R HD25 configured with a Ti2-E inverted microscope, with a 100× oil immersion objective

(MRD01991, N.A. = 1.49). Three different pinhole settings were used to adjust the amount of

out-of-focus light in the images- 1.2 AU (small, in-focus), 3 AU (intermediate, mild blur) and

4.7 AU (large, severe blur). Alexa Fluor 488 was excitated with a laser of wavelength 488 nm

and Alexa Fluor 568 with 561 nm, respectively.

Input files from microscopy images

To ensure accurate analysis of the desired cell, we edited the IF images with multiple cells in

the field of view by outlining the cell of interest, noting the background value and filling the
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area outside the cell with the background. This edited image was taken as the input for the

FASensor and FilamentSensor modules. In cases where simply cropping the image could iso-

late the cell of interest, we did so.

Manual annotation by human expert

Images were manually marked for FAs by a human expert (17 images for in-focus set, 17

images for mild blur set, 19 images for severe blur set) and in addition the in-focus set was

marked by a second independent human expert. FAs were marked using the freehand selec-

tion tool in Fiji [20]. The binary mask of marked adhesions were used as input in evaluation

against the software’s output.

Bulk dataset evaluation analysis

To avoid detecting noise and artifacts, we set the lower limit of adhesion detection in the soft-

ware to 10 pixels which corresponds to 0.144 μm2 and upper limit at 1000 px which corre-

sponds to 14.4 μm2. The unoptimized routine across the imaging sets is as follows- For In-

Focus dataset, Gauss filter (Sigma-1) and Laplace filter (1, 4 neighbor) with Intermodes thresh-

olding at 55 was used. For Mild-Blur dataset, Gauss filter (Sigma-1) and Laplace filter (1.5, 8

neighbor) with Intermodes thresholding at 80 was used. For Severe-Blur dataset, Gauss filter

(Sigma-1) and Laplace filter (3, 8 neighbor) with Intermodes thresholding at 80 was used. Fur-

ther optimization and customization was done according to user discretion. Closing and Fill

holes function was not used for bulk analysis adhesion detection. We used 1 percent minimum

matching pixels for object matching in evaluation. Thicken lines function was not used in eval-

uation. Areas of found and missed adhesions were derived from the pixels column for the

user’s mask in the result table. Areas of false positive adhesions were derived from the pixels

column of the software output in the result table. Pixel values from software results were con-

verted to corresponding micron values using the scale of input image and plotted on graphs.

Ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test or Tukey’s mul-

tiple comparisons test was performed using GraphPad Prism (Ver 9.0.0 for Windows, Graph-

Pad Software, San Diego, California USA, www.graphpad.com). For the in-focus set FA-

filament correlation analysis, we used the optimization method where each cell had a custom

optimal pre-processing filter setting in FASensor. For FilamentSensor, the default settings

were used for all cells. For verification, we chose ellipse and a neighborhood of 1.

Batch threshold determination with ThresholdFinder

The ThresholdFinder application is an additional software tool that we provide alongside the

FAFCK. From a small amount of user-annotated masks, it determines best applicable thresh-

olding algorithm and setting in the FAFCK software. From the input of original images and

binary annotations, the software uses the mask to determine desired regions of the image and

feeds this into all thresholding algorithms. To determine found, false positive and false nega-

tive rates, the images are processed whole with the selected algorithm. The value that the

respective algorithm would chose without mask input is given, too.

Supporting information

S1 Fig. Evaluation of adhesions marked by user expert in Fiji vs those detected by the soft-

ware module. A) FASensor input of IF adhesion image showing the ventral plane of a MRC5

cell immunostained with paxillin. B) Binary mask of adhesion ROIs marked by user expert C)

(Left-Right) Output adhesion objects detected by FASensor from input of A, Objectwise
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evaluation map of mask vs output, Pixelwise evaluation map of mask vs output. (in all evalua-

tion images, found- blue, missed-yellow, false positive-red). D) Objectwise evaluation results

tabulated. E) Pixelwise evaluation results tabulated.

(PNG)

S2 Fig. Using an optimal input routine increases the similarity of output with user mask.

A) Grayscale image of adhesions, ventral plane of MRC5 cell immunostained for paxillin. B)

Binary mask of adhesion ROIs manually marked by user expert from A through Fiji software.

C) Un-optimized output vs user mask comparison (Left) FASensor output (Right) Objectwise

evaluation map (found- blue, missed-yellow, false positive-red) D) Optimized output vs user

mask comparison (Left) FASensor output (Right) Objectwise evaluation map (found- blue,

missed-yellow, false positive-red) E) Table comparing results between un-optimized and opti-

mized evaluations.

(PNG)

S3 Fig. False positives and missed adhesions are much smaller than found adhesions.

Graphs show pooled adhesion objects for found, missed and false positive (FP) categories in a

set. Y axis is adhesion area in μm2 on a logarithmic scale. Left column shows un-optimized set-

ting graphs, middle column shows optimized setting graphs and right column shows custom-

ized setting graphs. A) In focus set (Left) Found n = 1451 A ¼ 1:73 mm2, Missed n = 660

A ¼ 0:86 mm2 and FP n = 497 A ¼ 0:43 mm2; (Middle) Found n = 1843 A ¼ 1:57 mm2,

Missed n = 268 A ¼ 0:71 mm2 and FP n = 465 A ¼ 0:25 mm2; (Right) Found n = 1802

A ¼ 1:59 mm2, Missed n = 309 A ¼ 0:68 mm2 and FP n = 296 A ¼ 0:33 mm2; B) Mild-blur

set (Left) Found n = 1522 A ¼ 1:64 mm2, Missed n = 579 A ¼ 0:83 mm2 and FP n = 791

A ¼ 0:42 mm2; (Middle) Found n = 1740 A ¼ 1:57 mm2, Missed n = 361 A ¼ 0:66 mm2 and

FP n = 560 A ¼ 0:31 mm2; (Found n = 1700 A ¼ 1:60 mm2, Missed n = 401 A ¼ 0:64 mm2

and FP n = 188 A ¼ 0:43 mm2; C) Severe-blur set (Left) Found n = 1504 A ¼ 1:61 mm2,

Missed n = 355 A ¼ 0:85 mm2 and FP n = 1811 A ¼ 0:43 mm2; (Middle) Found n = 1520

A ¼ 1:66 mm2, Missed n = 339 A ¼ 0:61 mm2 and FP n = 745 A ¼ 0:36 mm2; (Right) Found

n = 1577 A ¼ 1:62 mm2, Missed n = 282 A ¼ 0:60 mm2 and FP n = 231 A ¼ 0:36 mm2.

(PNG)

S4 Fig. Comparison with annotations from two human experts. A) FASensor input of IF

adhesion image showing the ventral plane of a MRC5 cell immunostained with paxillin. B)

Binary mask of adhesion ROIs marked by user expert 1. C) Binary mask of adhesion ROIs

marked by user expert 2. D) Evaluation output for pixel-wise and object-wise comparison of

human expert annotations compared to FASensor output. E) Similarity coefficient of human

expert annotated masks, human expert 1 (SC ¼ 4:53), human expert 2 (SC ¼ 4:63).

(PNG)

S5 Fig. Workflow for FilamentSensor.

(PNG)
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