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Abstract: (1) Background: The search for talented young athletes is an important element of top-
class sport. While performance profiles and suitable test tasks for talent identification have already
been extensively investigated, there are few studies on statistical prediction methods for talent
identification. Therefore, this long-term study examined the prognostic validity of four talent
prediction methods. (2) Methods: Tennis players (N = 174; n♀ = 62 and n♂ = 112) at the age of eight
years (U9) were examined using five physical fitness tests and four motor competence tests. Based
on the test results, four predictions regarding the individual future performance were made for each
participant using a linear recommendation score, a logistic regression, a discriminant analysis, and
a neural network. These forecasts were then compared with the athletes’ achieved performance
success at least four years later (U13-U18). (3) Results: All four prediction methods showed a medium-
to-high prognostic validity with respect to their forecasts. Their values of relative improvement over
chance ranged from 0.447 (logistic regression) to 0.654 (tennis recommendation score). (4) Conclusions:
However, the best results are only obtained by combining the non-linear method (neural network)
with one of the linear methods. Nevertheless, 18.75% of later high-performance tennis players could
not be predicted using any of the methods.

Keywords: prognostic validity; RIOC; talent; talent identification; sport; neural network

1. Introduction

In professional sport, talent identification in the junior sector is of great importance [1].
After all, nations and clubs that manage to identify and train talented young athletes
early on have an advantage in later sporting competition [2–4]. The search for future
competitive athletes, therefore, begins with young athletes. In order to find suitable
players, in recent years, more and more attention has been paid to tests that are designed
to map the performance of children before they begin participating in a certain sport (i.e.,
talent detection), and when they begin training and competition (i.e., talent identification),
these are believed to reflect the potential of a child for a certain sport [5]. Compared with
scouting, testing has an advantage in that it can be carried out on children who have not yet
achieved any success in playing. In addition, such a method can support decision-making
for selection procedures in talent development programs, which are construed to help
those young athletes who aim for and have the potential for elite sports.

Tennis, like other racquet sports, is considered an early-starting sport [6,7] because
players require proper perceptuo-motor skills and a sound sports-specific technique on the
elite level, which often must be developed at an early age [8]. Here, the great importance of
early talent identification campaigns is evident. The common feature of most campaigns is
that they begin at primary school age and, based on physical fitness and motor competence

Appl. Sci. 2021, 11, 7051. https://doi.org/10.3390/app11157051 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6478-0753
https://orcid.org/0000-0002-3003-336X
https://doi.org/10.3390/app11157051
https://doi.org/10.3390/app11157051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11157051
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11157051?type=check_update&version=2


Appl. Sci. 2021, 11, 7051 2 of 22

tests, predict future success based on a child’s performance prerequisites profile [9–12].
This early testing and desired early start in tennis ensures that, in addition to a large
number of training hours—athletes complete 20-30 h of technical training per week, even
at a young age [13]—the athletes can gain competitive experience early and over a longer
period of time [14]. Moreover, this offers a good opportunity for the acquisition of technical
skills because there are sensitive learning phases that promote motor learning, particu-
larly before puberty [15–18]. Perhaps, for this reason too, national sports organizations
are investing more and more effort into the systematic identification of talented young
players. In this professionalized, competitive environment, a “relaxed approach” is no
longer sustainable [19], and talent identification is becoming the key to national elite sport
performance [20,21]. In this context, statistical analysis has advantages as compared with
the usual expert ratings of trainers and scientists, and they can be used to identify talented
athletes and reduce the costs of talent development [22].

However, while the previous focus of scientific talent research has been very much
on the prerequisite profile of later professional tennis players [23–25] or the improvement
of prognostic test batteries [8], there have been very few studies on actual prediction
calculations in sport [26]. The resulting common practice is characterized by assessing
children with specific tests and comparing their performance profile with that of profes-
sional players (top down). However, performance profiles at such a young age may still
differ considerably from the later performance profile in adulthood [27]. Additionally,
some factors initially considered unimportant for the sport, such as balance in soccer,
may be crucial for later development and success. Baker et al. [27] describe the typical
procedure as a kind of “performance identification”, as compared with the required “talent
identification” (future potential). For this reason, it is necessary to follow young athletes
who are tested over the long term over their careers [28,29] and objectively determine the
prognosis of future performance based on all test parameters (bottom up). In addition
to classical linear methods [30], non-linear methods [31,32] have become established as
common forecasting methods. However, these prediction methods have not yet been tested
to determine their prognostic validity.

The aim of this study was, therefore, to compare the prognostic validity of common
statistical prediction methods regarding the future performance success of young tennis
players based on their juvenile performance profiles. Thus, based on physical fitness and
motor competence tests, the performance levels of young tennis players were examined
using various statistical prediction methods, and forecasts of future success were made.
The prognostic validity of these common methods can be assessed on the basis of these
predictions and the later tennis performance achieved by the participants, and the analytical
methods can be evaluated with regard to their practical relevance (i.e., sensitivity and
specificity). In this context, it is not only about how well the respective forecasts turn out to
be but also about which method can most identify talented young tennis players.

2. Materials and Methods
2.1. General Study Design

For this purpose, in a long-term study, club tennis players, at the age of 8 years
(U9), were tested using two anthropometric, five physical fitness, and four motor com-
petence tests. Using a tennis-specific recommendation score composed of weighted test
performances, a discriminant analysis, a binary logistic regression, and a neural network
(multilayer perceptron), four separate forecasts were made for each participant as either
a future ranking player in the German tennis rankings (top performer) or as a weaker club
player without a ranking (low performer). The predictions were then compared with the
tennis performance achieved about 5 years later (U13-U18). For each of the four methods,
the achieved sensitivity and specificity of the prognostic classification were evaluated,
and the prognostic validity levels of the methods were compared based on their values of
relative improvement over chance (RIOC values; [33,34]).
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2.2. Participants

The participants in this study included N = 174 junior tennis players (U13-U18),
with n♀ = 62 female and n♂ = 112 male athletes. The mean age of the participants was
156 ± 16 months (min = 132, max = 206). All tennis players were club players who actively
participated in club matches and tournaments.

2.3. Tennis Success

In terms of performance success, junior tennis players (U13-U18) were classified into
two categories: top performers (TPs) and low performers (LPs). Players who achieved
enough wins and points in ranked tournaments and were therefore listed in the current
national tennis ranking lists [35,36] were classified as top performers (N = 16; n♂ = 11, n♀

= 5). In the group of low performers, 158 tennis players with only average performance
were identified. These players were unable to perform beyond local and regional successes
and at no time fulfilled the necessary requirements to obtain a national ranking. Finally,
this group of low performers comprised n = 57 female tennis players and n = 101 male
tennis players.

2.4. Anthropometric Characteristics and Motor Abilities at U9

All junior tennis players were already tested at U9. The U9 testing included two
anthropometric, five physical fitness, and four motor competence tests. The standardization
of the test items is captured in protocols, which include a detailed description of the
materials, set-up, assignment, demonstration, training phase, testing phase, and test scores
registrations [37]. The test tasks aimed at the diagnosis of sprint, coordination, balance,
flexibility, arm and upper body strength, leg power, ball throw, and endurance performance.

2.4.1. 20 m Sprint (SP)

The time for a 20 m linear running sprint was measured by means of light gates
(Brower Timing Systems; Draper, USA). The starting position was 0.3 m behind the start
line. Between the two potential attempts, a break of at least 2 min was allowed. The
objectivity of this test is 0.86, and its reliability is 0.96 [38].

2.4.2. Sideward Jumping (SJ)

The test involves 15 s of sideward jumping within two adjacent 50 cm× 50 cm squares.
The number of two-legged jumps from one square to the other without touching a boundary
line was measured. Five trial jumps were allowed before the testing began. Between the
two potential attempts, a break of at least 2 min was allowed. The objectivity of this test is
0.99, and its reliability is 0.89 [37].

2.4.3. Balancing Backwards (BB)

Players were asked to balance backwards on 6 cm, 4.5 cm, and 3 cm wide beams. For
each beam, the number of steps backwards taken while balanced (feet fully raised) before
leaving the bar was counted. The maximum number of steps per attempt was limited to
eight. For each of the three beams, two attempts were made. Thus, the result was the sum
of all steps taken (maximum: 48 steps). There was a short practice period before the test
was carried out. The objectivity of this test is 0.99, and the reliability is 0.73 [38].

2.4.4. Standing Bend Forward (SBF)

A standing bend forward test was performed as a flexibility test. Here, the participants
attempted to reach as far as possible with their fingertips beyond their feet and hold this
position for at least three seconds. The distance between the fingers and ground level was
recorded in cm, and a range of very low values measured from just above ground level
were recorded as negative distances. Two attempts were allowed. The objectivity of this
test is 0.99, and its reliability is 0.94 [37].
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2.4.5. Push-Ups (PU)

The push-up test was carried out after a short trial period. Within 40 s, the number of
fully completed repetitions was counted. A complete repetition was only evaluated when
the upper body was laid down. Only one attempt was allowed. The objectivity of this test
is 0.98, and its reliability is 0.69 [37].

2.4.6. Sit-Ups (SU)

Similar to the push-up test, the time available for the sit-up test was limited to 40 s.
After a short practice phase, only one test was granted, and the number of correctly
executed sit-ups was counted. The objectivity of this test is 0.92, and its reliability is
0.74 [39].

2.4.7. Standing Long Jump (SLJ)

The standing long jump was carried out without a previous practice session. The
distance of the standing jump was measured in cm (measured from the heel). A break of at
least 2 min was observed between two attempts. The objectivity of this test is 0.99, and its
reliability is 0.89 [37].

2.4.8. Ball Throw (BT)

The ball throw was performed from a standing position with an 80 gr ball. The distance
to the impact point of the ball was measured along a line orthogonal to the point of release.
The result was rounded to the nearest 10 cm. After an initial trial, three scoring attempts
were made, of which only the farthest test value was used for subsequent calculations. The
reliability of the ball throw test has been demonstrated in a series of our own studies, and
r = 0.77 (n = 1800).

2.4.9. Six min Endurance Run (ER)

A 6 min endurance run around a volleyball pitch (9× 18 m) was carried out. There, the
number of meters covered was measured. The test was conducted in groups of 15 persons
at the same time. The objectivity of this test is 0.87, and the reliability is 0.92 [37].

All players were assessed under similar conditions. The tests were carried out during
regular school hours (8-12 a.m.) by qualified test personnel. The testing always began
after a uniform warm-up phase with the 20 m sprint and ended with the 6 min endurance
run. In all tests, except for sideward jumping (where the average of the two attempts was
taken as test result), the better of the attempts counted. Table 1 shows a typical dataset
for two participants tested in U9 (each row represents one participant). In addition to the
nine general motor test items and the anthropometric parameters, gender and test age (in
months) were also recorded. Additionally, the ranking success (TP) achieved at junior age
was recorded later.

Table 1. An example of test data acquisition.

Sex Age TP Height Weight SP SJ BB SBF PU SU SLJ BT ER

1 97 1 132 27.3 4.21 33 38 4 17 23 153 19 1078
0 94 0 129 27.3 4.45 27 30 –2 14 19 135 14 959

Legend: Sex (1 = female, 0 = male); Age (months); TP = top performer (1 = yes, 0 = no); Height (cm); Weight (kg);
SP = sprint (seconds); SJ = sideward jumping (repeats); BB = balancing backwards (steps); SBF = standing bend
forward (cm); PU = push-ups (repeats); SU = sit-ups (repeats); SLJ = standing long jump (cm); BT = ball throw
(m); ER = endurance run (m).

All tests (with the exception of the ball throw) have been examined in a series of
studies by various authors [37–39] with regard to the test standards. The results show high
objectivity and reliability coefficients, even if these vary considerably between tests. The
average total retest reliability of the eight test items (without the ball throw) is rgeneral = 0.85.
The objectivity of the test battery is robj = 0.95 (range: 0.87–0.99). However, the validity
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of the test procedures has not yet been sufficiently verified. While Bös et al. [37] have
focused primarily on content-logical validity and mainly used expert ratings (expert rat-
ing: M = 1.83; with grades from 1 to 5), other authors have used correlations to check
the criterion-related validity or confirmatory factor analyses to determine construct valid-
ity [40]. For most of the individual tests, sufficient to very good test validity can be attested
to for the latter two validity categories (rvalidity = 0.69). Thus far, there are no major studies
on prognostic validity.

2.5. Statistical Analyses

All evaluations and analyses were performed using SPSS (Version 26.0; SPSS Inc.,
Chicago, IL, USA), and the (bilateral) significance level was set to p < 0.05. Unless otherwise
indicated, significant findings in figures and tables are marked with *. Significance values
of p < 0.01 are marked with **.

Some studies [29,41,42] show that age can have a direct influence on test results. To
eliminate such an age bias, a univariate analysis of variance (ANOVA) was used for all test
variables to examine these data for significant differences in the U9 age groups of boys and
girls. It was found that performance increases with age. In order to avoid these relative age
effects, all data were first separated according to gender and then further calculated for
both datasets independently. In each of the two datasets, bivariate linear regressions were
then calculated for each test item separately, and the resulting residuals were saved. In
these regressions, age (in months) served as the independent variable, and the respective
single test served as the dependent variable. The respective residuals were finally z-
standardized, and these z-standardized residual values for both gender groups were
merged once again [43–45]. This resulted in an age-independent and gender-independent
overall dataset, which was used for all further calculations. For the sake of simplicity, these
z-standardized residuals are now called z-values for subsequent analyses. In addition, the
prefix of the z-values for the 20 m sprint was inverted to allow for an easier comparison
with the other test values. The z-values were approximately normally distributed, as shown
by the Shapiro–Wilk test (p > 0.05) and a visual inspection of the histograms.

2.5.1. Prediction Methods

Because talent-detection campaigns differ in their prediction processes, four methods
of recommendation calculation were analyzed and compared. In addition to a classical
linear method using a tennis-specific recommendation score (weighting), a (binary) logistic
regression, a linear discriminant analysis, and a neural network (multilayer perceptron)
were used. All calculations were performed using the selection rate of the forecasts
provided by SPSS. In each of the three classification analyses, that is, (binary) logistic
regression, discriminant analysis, and neural network, junior tennis players’ performance
(top performer or low performer) was used as the outcome variable (dependent variable),
and the z-standardized test scores (z-values) of the U9 tests were used as input variables
(independent variables). The linearly calculated tennis recommendation score was used as
an external classification criterion [26].

For the three analysis methods, linear regression, discriminant analysis, and neural
network (multilayer perceptron), the data were divided into five equally sized random
subsets prior to the calculations. Four subsets (80% of the data) were used to create or
train the respective analysis method. Using the remaining 20% (test set or hold-out), the
classification method was finally tested. This calculation method was performed a total of
five times, so that each of the five subsets was used once as a test set (hold-out). The test set
(hold-out) results were then averaged. This procedure is known as k-fold cross-validation
(CV; with k = 5). It is intended to prevent an analysis method from having already seen
a case to be classified in training. The results correspond therefore rather to a situation
from practice, in which usually an unknown person is to be classified. However, since the
random selection of the five subsets can also have an influence on the classification results,
according to Kolias et al. [46], the 5-fold cross-validation was performed five times using
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different random subsets, and the resulting test set classifications were averaged over all
25 predictions (5-fold 5-sample CV). To ensure a comparison of the methods, the same
random partitions were used for all three methods.

2.5.2. Tennis-Specific Recommendation Score

The Tennis-Specific Recommendation Score (TRS) is based on a tennis-specific weighting
of individual tests for talent identification. The TRS was established on the basis of expert
ratings and derived from empirical tests of professional, adult ranked tennis players [26].
It can therefore be considered an external talent criterion. It was calculated separately for
each participant and indicates the suitability of the child’s talent make-up for the particular
demands of tennis. The test values of body height, body mass index (BMI), standing
long jump, 20 m sprint, ball throw, sideward jumping, 6 min endurance run, balancing
backward, and bend forward were included according to Formula (1).

zTRS = [2.0× zstanding long jump + 1.8× zsideward jumping + 1.7× zheight

+ 1.3×
(

zsprint + zbalancing − zbmi

)
+ 1.2×

(
zball throw + zbend f orward

)
+ 1.1× zendurance run]

÷ 12.9

(1)

Due to the specific calculation involved, zTRS is comparable to a normal z-value. Thus,
also here, a value of zTRS = 0 indicates average suitability. In order not only to give a general
tennis recommendation (zTRS > 0) but also to predict future top performers, it is necessary
to define a suitable threshold value, above which a participant is assigned to the group
of potential top performers. Sensitivity and specificity can thus be determined using the
selected threshold value, e.g., zTRS = 1.3. In this example, the chosen z-value of zTRS = 1.3
corresponds to a selection rate of 10%, which is close to the observed percentage of top
performers in this sample (16/174 = 10.875%). Thus, using this method, participants
with zTRS ≥ 1.3 were automatically predicted to be top performers, and participants with
zTRS < 1.3 were predicted to be low performers.

2.5.3. Binary Logistic Regression Analysis

A binary logistic regression examines the influence of independent variables on
a binary-coded dependent variable. Thus, the influence of the test values on later tennis
performance was determined in this way. The group of youth top performers was marked
with a “1”, and the group of low performers was marked with a “0”. Because the “Enter”
method was chosen, all variables of a block were recorded in common in one step, and their
influence on the regression was evaluated simultaneously. In trial calculations, it was found
that the results of the “backward” and “forward” method in the classification correspond to
those of the “Enter” method. Based on the multiple regression, the output is also presented
as a categorical variable, and therefore, it is possible to predict affiliation with a performance
group. Sensitivity and specificity can be easily calculated. The separation value of this
categorical output variable was ucut = 0.5 by default for these analyses. This means that,
with an individual output value of ucut ≥ 0.5, the participant was recommended as a top
performer. In order to represent a valid and also practical result, the logistic regression was
performed as a k-fold cross-validation (k = 5), and this procedure was repeated five times.
The results of the 25 individual analyses were ultimately averaged.

2.5.4. Discriminant Analysis

Discriminant analysis can be used to investigate differences in feature profiles of
different groups and then to assign an unknown profile to a suitable group. Similar to
binary logistic regression, group memberships are calculated, and thus the sensitivity and
specificity can be analyzed. Since the grouping variable “tennis performance” had only two
values (top performer/low performer), only one discriminant function was determined.
Using the discriminant coefficients of this function, a performance prediction could be
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calculated for each single hold-out case. Since the group variable was dichotomous, the
recommendation calculation was performed using a linear method similar to binary logistic
regression. The a priori probability of the groups was assumed to be 50:50 (settings: groups
equal). For a practical investigation, a 5-fold cross-validated procedure was also considered
This procedure was repeated five times with different partition groups, and the results
were averaged (see Binary Logistic Regression Analysis and Neural Network Analysis).
The individual talent characteristics profile (hold-out) of the required athlete was therefore
not already in the training group, making the identification of the case more difficult. This
form of analysis therefore offers lesser sensitivity and specificity but corresponds more
closely to the “natural” application of talent prognosis in sports practice.

2.5.5. Neural Network Analysis

In contrast to the three more traditional linear or multilinear prediction methods,
a neural network (multilayer perceptron) was applied as the fourth type of analysis.
Thus, with the multilayer perceptron (MLP) tool from SPSS 26 (IBM), a non-linear “feed-
forward” classification procedure was used to analyze the prognostic validity of the group
assignment [47,48].

The classification calculation of the neural network (SPSS 26) is composed of three basic
parts training, validation, and test (hold-out). The network weights are mainly determined
via training, with validation measuring the model errors. Only the test set is independent of
the creation of the network, which provides an honest estimate of the predictive power of
the model. The distribution of the training, validation, and test (hold-out) components was
carried out for smaller groups, as in the present case, according to a 60-20-20 scheme [49,50].
Each part (training, validation, and test) is randomly selected from the total sample. The
calculations for the neural network therefore corresponded to the 5-fold CV already used
in the logistic regression and discriminant analysis. Again, the 5-fold CV was repeated
using five different partition divisions [46] and the corresponding 25 test classifications
were averaged (5-fold 5-sample CV). Additionally, this method is intended to compensate
for the small dataset and avoid misinterpretation due to volatile parameter estimates [51].

The architecture of the network contained the eleven test variables (z-values) as input
neurons (covariates without additional scaling or normalization) and the two performance
classes (top performer/low performer) as output neurons (dependent variable). The
neurons of one hidden layer in-between were generated by the program independently
and depended on a randomly chosen training start vector. Due to the small amount of data,
the architecture was limited to a maximum of one hidden layer with one to ten neurons [45].
However, in various test calculations with the data set used here, it was shown that even
with different start vectors, the calculated neural network solutions never exceeded more
than five neurons (plus one bias neuron) in the hidden layer. Figure 1 shows a typical
example of the (fully connected) neural network with nine input neurons (+1 bias neuron),
four neurons (+1 bias neuron) in the hidden layer, and the two output neurons of the binary
target variable (Figure 1). Experimental calculations with several hidden layers showed no
significant improvements in the network. The learning of the network is iteration-based
and terminated when no further reduction of the error quotient is apparent. The type of
training used was “batch training” [52], which is the recommended method for smaller
datasets. All other settings were selected according to the default settings of SPSS.
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2.5.6. Prognostic Validity of the Analyses

Prognostic validity can be determined by the theoretical accuracy (sensitivity and
specificity) of the performance forecasts of the various prediction methods. For all cal-
culations of the parameters of the analysis methods, only the classification results of the
corresponding hold-outs were used. Table 2 represents a typical example of a 2 × 2 clas-
sification table. Variable A corresponds to true-positive predictions, B to false-positive
predictions, C to false-negative predictions, and D to true-negative predictions.

Table 2. Example for sensitivity and specificity calculation.

Predicted/Recommended

Low
Performer

Top
Performer ∑

Observed/Existing Top Performer C A A + C
Low Performer D B B + D

∑ C + D A + B A + B + C + D

Sensitivity (recall; Formula (2)) indicates how many top performers (A = true positives)
from the observed group (A + C = 16) were correctly predicted. For example, if twelve
top performers were correctly identified/classified as top performers, the sensitivity is
75%. The specificity (Formula (3)) represents the percentage of correctly predicted low
performers (D = true negatives) in the group of low performers (B + D).

Sensitivity =
A

A + C
(2)
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Specificity =
D

B + D
(3)

Furthermore, the positive and negative predictive values (Formulas (4) and (5)) of the
predictions were determined (positive predictive value = precision). These two parame-
ters indicate the probability of actually living out a corresponding forecast. It therefore
corresponds to the percentage of predictions that actually occurred.

Positive Predictive Value =
A

A + B
(4)

Negativ Predictive Value =
D

C + D
(5)

In general, the hit rate is the percentage of correctly predicted recommendations.
Accordingly, the true-positive predictions (A) and the true-negative predictions (B) are
added together and divided by the total sample size (Formula (6)). To calculate the
random hit rate (Formula (8)), the selection rate (S) is needed. The selection rate is the
percentage of top performer recommendations among all recommendations (Formula (7)).
It is determined in advance or via the analysis types. Using the selection rate, the random
hit rate (Formula (8)) can now be determined. For this purpose, the selection rate (S) is
multiplied by the number of existing top performers (A + C). This calculates the number
of correct top performer recommendations in a random draw from the group of top
performers. In addition, the number of correct low performer recommendations in a
random draw from the group of low performers (B + D) is also determined. This is done
using the counter-probability of the selection probability (1 − S). Both values are then
summed and divided by the total sample size to obtain the random hit rate. The maximum
hit rate can also be easily calculated using the counter-probability (Formula (9)). To do so,
the over-recommendation of a group caused by the selection rate is subtracted from the
total probability (=1). For example, if 20 top-performer recommendations (A + B) have
been made by an analysis (selection rate = 11.5%) and only 16 top performers (A + C)
exist (~9.2%), then four recommendations ([A + B] − [A + C]) are automatically wrong
(~2.3%). Therefore, these false over-recommendations are eliminated, and the maximum hit
rate would be 97.7%. The number of over-recommended cases is obtained by subtracting
false-positive (B) cases from false-negative (C) cases ([A + B] − [A + C] = B − C). If there is
an under-recommendation and fewer than 16 top performer recommendations are made,
the subtraction is reversed (C − B). Both can be expressed in a simplified way via |B - C|
(see Formula (9)).

Hit Rate =
A + D

A + B + C + D
(6)

Selection Rate = S =
A + B

A + B + C + D
(7)

Random Hit Rate =
S× (A + C) + (1− S)× (B + D)

A + B + C + D
(8)

Maximum Hit Rate = 1− |B−C|
A + B + C + D

(9)

Because the numbers of top performer forecasts (selection rate) can vary between
methods, an RIOC value (Relative Improvement Over Chance; [33,34]) was ultimately
calculated for each method (xRIOC). This value determines the relative hit accuracy. In most
analyses, a maximum hit rate of 100% cannot be achieved. This can lead to a misinterpre-
tation of the validity parameters (e.g., phi or kappa; [34]). The RIOC index avoids this
problem by calculating the actual hit rate in relation to the potential maximum hit rate (see
Formula (10)).

xRIOC =
hit rate− random hit rate

max. hit rate− random hit rate
(10)
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The calculated value varies, usually in the range 0 < xRIOC ≤ 1, but it can also have
negative values. With a value of xRIOC = 0.33, the classification is considered good. Above
0.66 is considered very good [53]. Using this calculation scheme, the four methods can
be directly compared and evaluated independent of their actual selection rates. The real
selection rate for talent diagnostics and, thus, also the maximum hit rate, always depends
on the talent campaigns and support programs of the participating countries, and therefore,
this selection rate can vary considerably in practice.

The Youden Index J (also Youden’s J) was determined as a further comparative value
(Formula (11)). It is calculated by summing sensitivity and specificity, and therefore, it
shows prognostic validity independent of the sizes of the two performance groups [54].
Usually, J reaches values between 0 (random result) and 1 (optimum result).

J = Sensitivity + Specificity− 1 (11)

In addition to Youden’s J, the Area Under ROC Curve [55] and F1 score were also ways
to evaluate the predictive power of an analytical method (Formula (12)). The F1 score is
based on the harmonic mean, and its calculation is equally divided between sensitivity
(recall) and positive predictive value (precision). It can take values between 0 and 1, where
1 stands for the maximum predictive strength. In contrast to Youden’s J, which includes
sensitivity and specificity in equal measure, the focus here is on the predictive power of
true-positive cases.

F1 = 2× Sensitivity× Positive Predictive Value
Sensitivity + Positive Predictive Value

(12)

2.5.7. Classification of Individual Tennis Players

In order to gain a more precise insight into the calculated prognosis, the participants
predicted to be future top performers were also recorded for each type of analysis. Thus,
we could determine which individual top performers were correctly identified via which
method and which low performers were erroneously judged to be top performers. Using
a classification map, it was therefore easy to determine how the predictions of the various
analysis methods were distributed. In addition, the probability that an athlete would later
become a top performer, as calculated via the various methods, was recorded.

3. Results
3.1. Test Performance

In considering the test results of the five physical fitness, four motor competence, and
two anthropometric test items (U9), significant differences between later top performers
and low performers (U13-U18) can be observed. The mean values of the later top tennis
players were significantly higher than those of the later low performers for nearly all
test variables. While no differences could be found for body weight (p = 0.94) and bend
forward (p = 0.16), all other test items showed significant differences (p ≤ 0.05). The mean
values of the test items sideward jumping, balancing backwards, standing long jump,
6 min endurance run, and ball throw showed highly significant differences (p ≤ 0.01). The
minimum of the sideward jumping test was MIN = 27.0 repetitions (rps) for top performers,
which was only slightly below the average value of M = 27.3 rps for low performers.
Additionally, for the balancing backwards, standing long jump, sit-ups, and 6 min run tests,
84% of the top performers were better than the average low performer. A maximum of 16%
of low performers managed to reach the average of the top performers on the standing long
jump and ball throw. All descriptive statistics for the test items can be found in Table 3.
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Table 3. Descriptive statistics for the two anthropometric, five physical fitness, and four motor
competence diagnostics of the U9 participants.

Variables Groups N M SD SE 95% CL Min Max
LL UL

Calendar age * (month)
(Time of testing; U9)

LP 158 93.8 5.0 0.39 93.0 94.6 83 110
TP 16 97.5 6.4 1.60 94.1 100.9 88 112

Test results

Body height * (cm) LP 158 129.1 5.7 0.45 128.2 130.0 117 145
TP 16 132.3 4.5 1.13 129.8 134.7 127 143

Body weight (kg) LP 158 27.2 4.1 0.33 26.6 27.9 20.0 39.3
TP 16 27.3 1.9 0.48 26.3 28.3 23.4 30.6

Sideward jumping **
(repeats)

LP 157 27.3 6.1 0.49 26.3 28.2 6.5 40.5
TP 16 33.0 5.1 1.27 30.3 35.7 27.0 45.0

Balance backward **
(steps)

LP 158 30.3 8.5 0.67 28.9 31.6 8 48
TP 16 38.3 5.7 1.42 35.2 41.3 28 48

Standing long jump **
(cm)

LP 157 135.1 16.2 1.30 132.5 137.6 82 190
TP 16 153.0 17.2 4.30 143.8 162.2 125 178

20 m sprint *
(s)

LP 158 4.45 0.36 0.03 4.39 4.51 3.10 5.32
TP 16 4.21 0.34 0.08 4.03 4.39 3.50 4.72

Push-ups * (repeats) LP 158 14.6 3.6 0.28 14.0 15.1 4 24
TP 16 17.1 5.2 1.30 14.3 19.9 9 25

Sit-ups * (repeats) LP 158 19.2 5.1 0.40 18.4 20.0 2 30
TP 16 23.4 4.1 1.02 21.3 25.6 15 29

Bend forward (cm) LP 158 1.98 5.94 0.47 1.05 2.92 −11 18
TP 16 4.16 4.90 1.22 1.55 6.77 −10 12

6 min run **
(m)

LP 154 959 130.8 10.5 938 979 545 1259
TP 16 1078 80.7 20.2 1035 1121 891 1200

Ball throw ** (m) LP 155 13.5 4.03 0.32 12.9 14.2 3.8 27.6
TP 16 18.8 5.35 1.34 15.9 21.6 9.2 28.3

M = mean; SD = standard deviation; SE = standard error; CL = confidence limit; LL = lower limit; UL = upper
limit; Min = minimum; Max = maximum; LP = low performer; TP = top performer; * p ≤ 0.05; ** p ≤ 0.01.

3.2. Test Quality Parameters of the Prediction Methods
3.2.1. Tennis Recommendation Score

Using the TRS (see Table 4), a total of 39 of the 174 test participants (22.4%) were pre-
dicted to become talented tennis athletes (selection rate). Overall, 135 participants (77.6%)
did not receive a top-level assignment because it was assumed that they could not reach
the top level due to their low individual recommendation values. With a selected threshold
value of zTRS = 1.3, 12 of the 16 later top performers (75%) were true-positives (sensitivity).
One hundred and thirty-one participants (82.9%) who did not reach the top level were also
correctly classified as low performers, that is, true negatives (specificity). In total, 143 of
174 (82.2%) children could be correctly identified as later top or low performers via this
linear method. If the talent forecasts with the same prediction rate (22.4%) were expressed
at random, only 4, as compared with 12, of the top performers and 122, as compared
with 131, of the low performers would be correctly predicted, and the overall prediction
quality would only be 72.4%, as compared with the value of 82.2% described above. If
the percentage values for sensitivity and specificity were considered in combination, the
benefit is more obvious. With a cutoff limit value of zTRS = 1.3, the Youden Index amounts
to a total of 157.9% (75% + 82.9%), thus representing a 57.9% improvement as compared
with a random drawing. The Area Under ROC Curve was 0.852 (standard error = 0.048;
95% confidence interval: min = 0.759, max = 0.946).
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Table 4. Sensitivity and specificity of the tennis recommendation score at zTRS = 1.3.

Tennis Recommendation Score
(zTRS = 1.3)

Predicted/Recommended

Low Performer Top
Performer

Percentage
Correct

Top Performer 4 12 75%
Observed/Existing Low Performer 131 27 82.9%

Percentage (total) 77.6% 22.4% 82.2%

3.2.2. Logistic Regression

In addition to the TRS, a (binary) logistic regression also offers a chance to create
a talent prognosis for the test participants. The 5-fold cross-validation was performed
five times, and the results were averaged. The omnibus test of the model’s averaged
coefficients showed a significant result (chi-square(11) = 33.67, p < 0.001). The model
quality was determined based on Nagelkerke’s R-square, which had a value of 0.476.
The Area Under ROC Curve was 0.810 (standard error = 0.054; 95% confidence interval:
min = 0.705, max = 0.915). Overall, however, in most analyses, none of the regression
coefficients showed a significant result, so this form of analysis should be interpreted
with caution.

Approximately 6 of the 16 athletes who were ultimately competitively ranked were
correctly identified by their test values (Table 5). The sensitivity was therefore 37.5%. It
should be noted, however, that only about twelve children in total received a top-level
prognosis in this form of analysis. The specificity was 96%. With the exception of six
participants, all low performers could be correctly classified. The overall accuracy of
the analysis method was 90.4%. The summed percentage result for the sensitivity and
specificity of the logistic regression was 133.5%, which is 33.5% better than that of a random
sample. If a random prediction were considered with the same selection rate, the sensitivity
would be 7.2%. Thus, it would be 26.3% less than the sensitivity value of 33.5% achieved
via the logistic regression analysis. The same applies to a random specificity. This would
amount to 92.6%, as compared with the 96% achieved here, and the overall result in terms
of correctly identified test participants would only be 84.4%. Among participants predicted
to be future top performers via the logistic regression, 50% of such prognoses were correct
(positive predictive value). This means that every second child classified as a top performer
actually made it into the top group.

Table 5. Sensitivity and specificity of the (binary) logistic regression analysis.

(Binary) Logistic Regression 1
Predicted/Recommended

Low Performer Top
Performer

Percentage
Correct

Top Performer 10 6 37.5%
Observed/Existing Low Performer 2 144 6 96%

Percentage (total) 92.8% 7.2% 90.4%
1 A 5-fold cross-validation was performed a total of five times, and the results were averaged. For a better
evaluation of the results, the average values were multiplied by five. 2 Eight children could not perform at least
one test, so they were excluded from this analysis.

3.2.3. Discriminant Analysis

A 5-fold cross-validated discriminant analysis was calculated and repeated five times
with various partitions. The corresponding results were averaged and provided another
way to make talent predictions. Because there were only two service groups (binary), only
one discriminant function was required here. The ability to separate the two groups can
be seen in the averaged eigenvalue (this was EV = 0.286, canonical correlation: r = 0.471).
Thus, the groups could be separated satisfactorily based on their group centroids. In
addition, the discriminant function should now show the best possible separation. In this
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analysis, Wilk’s lambda was 0.775 (chi-square(11) = 31.81, p < 0.01). The Area Under ROC
Curve was 0.800 (standard error = 0.069; 95% confidence interval: min = 0.663, max = 0.936).
Consequently, significant differences between the two groups could be detected via the
discriminant function, but the model had only a limited selectivity due to the high Wilks
lambda. Nevertheless, the cross-validation classification showed good results (Figure 2).
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Using this method, 11 of the 16 later top performers could be correctly identified
(Figure 2). This corresponds to a sensitivity of 68.8%. Additionally, 121 of the later 150 low
performers could be correctly classified (specificity of 80.7%). The overall prediction quality
was thus 79.5% (132/166), and the sum of the two parameters was 149.5%. A random
prediction with the same classification rate (24.1%) would result in a sensitivity of 24.1% and
a specificity of 75.9%, with an overall prognostic quality of 70.9%. While the discriminant
analysis differed only slightly from the random sample in specificity and total result, in
sensitivity it showed a clear advantage, with 40% more true-positive hits. This means
that, as compared with a random prediction, seven additional top performers could be
identified via the discriminant analysis.

3.2.4. Neural Network Analysis

On average, the MLP achieved a sensitivity of 75% and a specificity of 84% (Table 6).
It could thus correctly identify approximately 12 of the 16 top performers and 126 of the
150 low performers. Taken together, these two parameters add up to 159%. The overall
prognostic quality was thus 91%. If a test participant received a judgement as a later
top performer, 33% of the predictions were correct. This means that, out of nine high-
potential test participants, three were expected to reach the top level. Among the predicted
low performers, only 3.1% of the predicted performance outcomes failed to apply. Thus,
3 out of 100 test participants reached the top level despite a negative individual forecast.
Comparing the results with a random draw, the benefits of the MLP become apparent. The
random sensitivity and specificity were 21.7% and 78.3%, and thus, the overall classification
quality was 72.9%. Both the sensitivity and the specificity of the MLP clearly exceeded
these random predictions. The Area Under ROC Curve was 0.831 (standard error = 0.056;
95% confidence interval: min = 0.721, max = 0.941).
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Table 6. Sensitivity and specificity of the Neural Network (Multilayer Perceptron).

Multilayer Perceptron 1
Predicted/Recommended

Low Performer Top
Performer

Percentage
Correct

Top Performer 4 12 75%
Observed/Existing Low Performer 2 126 24 84%

Percentage (total) 78.3% 21.7% 91%
1 A 5-fold cross-validation was performed a total of five times, and the respective test results were averaged.
2 Eight children could not perform at least one test, so they were excluded from this analysis.

3.3. Prognostic Validity of the Prediction Methods

In the linear discriminant analysis (see Figure 2; N = 166; eight children could not
perform at least one test, so they were excluded from this analysis), the sensitivity could
assume values of 24.1% (random result) to 100%, with a constant selection rate of 24.1%. The
specificity reached values ranging from 75.9% (random result) to 84%. Thus, accordingly
to Formula (8), the random (total) hit rate was 70.9% (see Formula (13)).

Random Hit Rate =
0.241× 16 + (1− 0.241)× 150

166
≈ 0.709 (13)

Following Formula (9), the maximum hit rate was 0.855 (Formula (14)):

Maximum Hit Rate = 1− |29− 5|
166

≈ 0.855 (14)

For this calculation, therefore, the counter-probability is used to consider what the
actual probability is if only the over-recommendations lead to an incorrect prediction.
With 40 top performer predictions, 24 over-recommendations occurred, which corresponds
to 14.5%—accordingly, this percentage is deducted from 100%. Finally, accordingly to
Formula (11), it remains to calculate the RIOC value (Formula (15)):

RIOC Value =
0.795− 0.709
0.855− 0.709

≈ 0.588 (15)

The calculations of the predictors of the other analysis methods are done analogously.
All four methods revealed RIOC values in the range of 0.33–0.67 and thus illustrate a good
classification result. However, the differences in the results of at least three out of four
analyses were small.

The results for sensitivity and specificity are very different (Table 7). The logistic
regression shows a sensitivity of only 37.5% but reaches the highest specificity, with 96%.
The TRS and MLP prediction methods reach 75% or more in both parameters. Considering
the positive predictive values, more than every second prediction of a top performer is
correct for the logistic regression (50%). The top performer predictions for the TRS and
MLP analysis methods only apply to every third (TRS = 30.8% and MLP = 33.3%). However,
their negative predictive values are higher than those of the other two methods. Youden’s
J turns out to be the highest, with J = 0.59 for the MLP. This is closely followed by the
TRS, with J = 0.579. Logistic regression performs worst among the four methods. Despite
its high Youden’s J, the TRS only achieves a value of F1 = 0.437 in terms of the F1 score,
which is probably related to its low positive predictive value (30.8%). Among the four
methods, the MLP performs best here, with F1 = 0.462. This is not surprising because it has
the highest sensitivity and also a high positive predictive value (33.3%). The RIOC values
show values above 44% for all methods, with the MLP reaching the highest value of 68.1%.
If, for example, a method would correctly predict the performance of another person, the
RIOC value can increase between 1% and 8% depending on the performance group and
method. Thus, another correct top performer prediction would increase the RIOC value of
discriminant analysis from 58.8% to almost 67%.
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Table 7. Comparison of the prognostic validity of the four analyses.

Recommendation
Score

(Binary)
Logistic

Regression

Linear
Discriminant

Analysis

Multilayer
Perceptron

Sensitivity 0.750 0.375 0.688 0.750
Specificity 0.829 0.960 0.807 0.840

Selection Rate 0.224 0.072 0.241 0.217
Positive Predictive Value 0.308 0.500 0.275 0.333
Negative Predictive Value 0.970 0.935 0.960 0.969

Random Hit Rate 0.725 0.845 0.709 0.729
Hit Rate 0.822 0.904 0.795 0.831

Maximum Hit Rat 0.868 0.976 0.855 0.880
Youden’s J 0.579 0.320 0.495 0.590
F1 score 0.437 0.429 0.393 0.462

RIOC Value 0.678 0.447 0.588 0.681

Combining the predictions (union set) of the TRS with those of the MLP yields the
highest sensitivity of all analyses (81.3%). Of 16 top performers, 13 are recognized as such.
The selection rate is 27.7%. However, with a value of 78%, the specificity is below the values
of the individual analysis methods. The lower specificity also causes the overall hit rate
to drop to only 78.3%. The positive predictive value is 28.3%, and the negative predictive
value is 97.5%. However, in comparison with the four individual forms of analysis, this
combination of methods performs above average in Youden’s J (0.593) and also in RIOC
(0.741). Only the F1 score is very low at 42%, which is due to the low positive predictive
value. Looking at the intersection of the predictions of the three classification methods, TRS,
MLP, and DA (see also Figure 3), the sensitivity reaches a value of 68.8% and the specificity
a value of 88.7%. Due to the higher positive predictive value (0.393), the F1 score (0.5) is
the highest among all analysis methods and combinations. Youden’s J reaches a value of
57.5%, and the RIOC value is 62.4%. A combination of the other analysis methods showed
no significant improvements of the results.
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3.4. Classification of Individual Tennis Players

Through the various prognostic procedures, 13 out of the total of 16 later top perform-
ers were correctly identified, whereas 3 athletes could not be detected correctly by any
of the methods (Figure 3). The highest number of correct assignments was produced by
the artificial neural network and the TRS. With both instruments, twelve of the later top
performers were correctly predicted. However, the TRS also led to the highest number
of incorrect classifications (n = 27). Its positive predictive value is correspondingly low
(30.8%). The artificial neural network, on the other hand, produced 24 incorrect predictions.
Its positive predictive value was 33.3%. Moreover, both methods could correctly predict at
least one player who could not be predicted by the other analyses. By combining the two
types of analyses, 13 top performers could be classified correctly as true positives.

Six top performers and six low performers were included in the talent prognosis by
all four methods. Five other top performers were additionally recognized by all methods
except logistic regression. Logistic regression predicted the smallest number of top per-
formers overall, and only those who were also recognized by other methods. However,
with only twelve predictions, it has the lowest selection rate, but at the same time, with six
out of twelve, it has a high rate of hits in terms of its correct identification of top performers.
A combination of the methods could also provide a high positive predictive value. If only
those test participants who were jointly identified in the tennis recommendation score,
discriminant analysis, and neural network were judged as top performers, 11 future top
performers would be correctly classified out of only 28 predictions in total (39.2%).

The probabilities at which the analysis methods made correct top-performer recom-
mendation are plotted in Table 8. The average values of the cross-validation procedures
were converted into a percentage ranking system to facilitate comparison. The cutoff value
for a top performer recommendation was uniformly set to 50%. Accordingly, given a per-
centage value above 50%, an athlete was classified as a top performer. Six top performers
were recognized by all methods. Their recommendation probabilities ranged from 64%
to 99%. Three top performers could not be classified as such. Their recommendation
probabilities were in the range of 1% to 40%. If we look more closely at the probabilities
with which the respective analysis methods correctly predicted 1 of the 16 top performers,
it is noticeable that the logistic regression only provides a very low percentage value for
many of the athletes.

Table 8. Probability outputs of the analysis methods.

Probability of Being a Top Performer (%)

Recommendation
Score

Logistic
Regression

Discriminant
Analysis

Multilayer
Perceptron

Top Performer 1 99 90 99 99
Top Performer 2 97 86 98 97
Top Performer 3 93 68 97 96
Top Performer 4 96 71 96 90
Top Performer 5 83 64 95 90
Top Performer 6 89 68 90 95
Top Performer 7 91 15 68 71
Top Performer 8 79 33 85 88
Top Performer 9 55 7 65 70
Top Performer 10 66 18 63 68
Top Performer 11 57 9 58 68
Top Performer 12 67 16 41 32
Top Performer 13 44 3 23 52
Top Performer 14 40 5 24 37
Top Performer 15 20 2 9 29
Top Performer 16 33 1 1 15

Legend: The averaged test values of the cross-validation test sets (hold-out) were converted into a percentage
ranking in order to compare them. Above a percentage value of 50%, a top performer recommendation was made.
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4. Discussion

The aim of this study was to compare four statistical prediction methods used for the
calculation of individual talent prognosis as part of talent identification. To investigate the
prognostic validity of the talent-detection procedure, the match between the talent forecasts
and actual later tennis performance was analyzed by means of various individual variables.
In addition to the attempt to achieve as many correct positive talent predictions (sensitivity,
recall) as possible, it is equally important to secure as many correct negative forecasts
(specificity) as possible [26]. The quality of any prognostic attempt can then be determined
based on the combination of both criteria. Given a random talent prediction rate of every
second child judged as a future top performer, the sensitivity (8/16) and specificity (79/158)
would be 50%. In this case, in total 87 children would receive correct predictions of their
future performance, resulting in 50% (87/174) correct prognosis. In another example, with
a random prediction of every fourth child to be a future top performer, the sensitivity
would be 25% (4/16), and the specificity would be 75% (118/158). However, the total
number of correct recommendations would be 70.1% (122/174). Although both examples
are purely random ratings, the overall results are different. The larger group of low
performers therefore distorts the overall talent prediction quality. Thus, the prognostic
validity of talent identification cannot be determined only by the sensitivity and specificity
of the chosen analysis. Both parameters are also highly dependent on the number of
predictions made (selection rate). For example, if we consider (binary) logistic regression,
the sensitivity (37.5%) is lowest. In this method, however, only twelve predictions of future
top performers were made. This means that, even if all the predictions were correct, the
sensitivity would still only reach a maximum of 75%, and this would still be as high as
the sensitivities of the TRS and MLP (Table 7). The same applies to specificity. As soon as
an analysis produces 17 or more predictions of future top performers, 1 of the cases must
necessarily be wrong (there were only 16 observed top performers). With every overly
“optimistic” false forecast made in this way, the highest possible specificity decreases by
about 0.6% (1/158). Consequently, the comparison of the four analytical methods purely
on the basis of sensitivity, specificity, and thus, the total hit rate is not sufficiently valid. To
overcome this problem, it makes sense to consider the Youden Index [56], F1 score, and
RIOC value [57]. All three variables provide a prediction of the validity of prognostic
methods. However, the RIOC value has an advantage in that it measures the accuracy of
the method used on the basis of the maximum possible accuracy. Thus, the selection rate
has almost no influence on the calculation, and therefore, different methods with different
selection rates can be better compared. It makes sense to not always consider a method only
in relation to a random result (J = 0) but to also include the maximum possible result. In the
example of logistic regression, the Youden Index reaches a theoretical maximum of J = 0.75.
However, the TRS could reach a value of up to 85.4% with the existing selection rate. This
is 10% above the maximum potential J for logistic regression. A direct comparison of the
two values is therefore sometimes difficult.

In practice, the positive predictive value is important because it indicates how many
of the forecasts made actually predict a later top performer. Here, the logistic regression,
with the calculation method and selection rate specified by SPSS, shows the largest positive
predictive value. This method, therefore, may appeal to financially weak institutions
because only a few particularly promising tennis players are recommended, and the
available budget can thus be better calculated and channeled. For financially strong
companies or clubs, the TRS may be appealing. Although an excessive number of athletes
are predicted as future talent, the percentage of correctly predicted low performers is also
the highest (97%). This means that this method has detected the most top performers
(12 out of 16). Considering the results of the neural network in the classification map
(Figure 3), similar results can be seen. In terms of both predictive values (positive predictive
value 0.334 and negative predictive value 0.969), the neural network represents a good
intermediate solution for talent identification. Therefore, this method seems to be well-
suited to campaigns with average funding opportunities or average capital.
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The four analysis methods used to calculate the performance prognosis served as
examples of the currently predominant strategies in general talent identification campaigns.
All four methods showed a high accuracy in their classification results (Table 7). The
four calculated RIOC values were in the range between 0.447 and 0.681. Comparable
studies on the prognostic validity by Marx and Lenhard [53] showed RIOC values in the
range of 0.55. This value was exceeded by three of the four methods. Additionally, in
studies by Hohmann t al. [26] and Siener and Hohmann [45] on the prognostic validity
of talent predictions in soccer and table tennis, only RIOC values of 0.52 could be proven.
The Youden Index of both studies reached values of J = 0.336 and J = 0.204, respectively.
In studies by Pion et al. (2016) on the classification of drop-out rates among young
gymnasts, RIOC values of 0.278 (MLP) to 0.537 (weighting) could be achieved via similar
calculations (with MLP, discriminant analysis, and weighting). With these analysis methods,
untalented athletes could be identified at an early stage, and thus funding costs could
be reduced by about 33%. In a prognostic validity study of 117 soccer players (U14),
significantly higher RIOC values were obtained by means of a logistic regression. A study
by Sieghartsleitner et al. [56] showed RIOC values of 0.866 (Holistic Pattern Model) and
0.910 (Coach Assessment/Coaches’ eye model). Youden’s J was in the range of 61% to 77%.
However, in addition to motor abilities, a number of psychological components, in-game
performance, and familial support were also included in the calculation. When only motor
abilities are considered in their study, the logistic regression has values of xRIOC = 0.544
and J = 0.432, which are comparable with the results achieved here. Nevertheless, with
the addition of the in-game performance (odds ratio = 12.5*) and familial support (odds
ratio = 5.2*) survey parameters, a significantly higher prognostic validity is revealed for the
predictions. Thus, in the study described [56], RIOC values could be significantly increased
by about 20–35%, and Youden’s J could be increased by about 20-30%.

Comparing the four prediction methods, differences can be found despite similar
RIOC values. A specific recommendation for sports practice can therefore not be derived.
All values (sensitivity, specificity, and positive and negative predictive value) of the dis-
criminant analysis method turned out to be weaker than those of the TRS. From a statistical
point of view, therefore, discriminant analysis was rather negligible in terms of its worth in
this study. However, the other three methods have particular advantages, which may be
more or less important depending on the situation. None of the four analysis methods were
able to identify all future top performers. Even when all four methods were combined,
three high-performance junior tennis players could not be identified. This shows that there
are limits to any talent prognosis method [56] and that the future of an athlete cannot
always be predicted perfectly. Nevertheless, a combination of prediction methods still
seems to be the best solution. For this purpose, the combination of a linear (e.g., TRS) and
a non-linear method (neural network) seems to be suitable. Depending on the combination
method (union set or intersection set), a combination of methods gives the highest F1 score
(0.5 for intersection of TRS, MLP, and DA) or the highest RIOC value (0.741 for the union
set of TRS and MLP) among all analysis options.

The example of the TRS also shows that the limit value chosen (e.g., zTRS = 1.0 versus
zTRS = 1.3) to separate top and low performers makes a large difference in sensitivity
and specificity. The summation of both values (overall benefit) varies between 100%
(Youden’s J = 0) and 157.9% (Youden’s J = 0.579). The same applies to the separation param-
eters of the other three methods. Further studies are required to be able to make a more
precise statement about this. Additionally, in the analyses, the selection rate fluctuates
between 7.2% and 36.1%. Although this difference has no mathematical relevance for
prognostic validity due to the use of the RIOC value, an approximation of the selection rate
could provide more information about prediction calculations, and differences could then
be shown on a classification map (Figure 3).

This study has certain limitations. In order to improve the learning phase and test
phase of the calculation methods in a meaningful way (e.g., artificial neural network), more
data collection is needed. However, such large samples are difficult to obtain, especially
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in the talent area. On the one hand, there are not many athletes at the highest level of
performance, and on the other hand, physical fitness and laboratory tests are sometimes
very time consuming. Thus, there is usually a lack of time and participants for large sample
numbers. Nevertheless, studies by Silva et al. [48] and Musa et al. [51] show that, even with
smaller sample sizes (N < 150), valid results can be obtained even with neural networks.
However, the size of the dataset must always be considered when interpreting analyses.
Studies using neural networks with only a comparatively small number of participants,
such as the study presented here, cannot be generalized and could turn out differently with
a different sample. This problem can be reduced by averaging multiple computational runs
with different hold-out partitions, but it can never be eliminated. The results of the MLP
shown here must therefore be interpreted with caution. Additionally, with small datasets,
overfitting can often occur with neural networks. This can be seen, for example, in the fact
that the recommendation accuracy of the hold-out drops sharply as compared with the
accuracy of the training and test datasets. In the analyses here, this was not the case, which
may argue against overfitting.

For future analyses, it also seems useful to look beyond the classical classification
methods to other promising analysis approaches. Giles et al. [58], for example, have already
had good experiences with random forests. In their studies, F1 values of up to 0.729 were
found. A comparison between random forests and classical methods or other neural
network solutions (e.g., radial basis functions) would be interesting for future studies.

Although the test batteries used thus far generally allow for a comprehensive per-
formance survey, there is still room for improvement in the sport-specific case of tennis.
For example, missing test items on agility in combination with decision-making as well
as maximum (isometric) arm strength could be added to improve the prognostics [59,60].
In the future, this may lead to a better explanation of the variance between performance
groups. In addition to motor test extensions, psychological test items could also provide
further indications of potential future top performers [31,56,61–63]. Zuber et al. [31] have
made the first promising attempts to integrate psychological tests into a talent identification
campaign in the Swiss Soccer Federation. Nevertheless, despite optimized test tasks and
the latest analysis methods, all talented athletes cannot always be found. Contrary to all
predictions, some players develop into professional athletes, and very few career paths
seem straightforward [64]. Thus, there are very individual pathways to the top of the
athletic world, which are determined by many dynamic parameters, and each athlete reacts
to these parameters in a unique way [65]. Holistic talent identification is therefore essential.

5. Conclusions

It has been shown that even in a very complex sport such as tennis, which requires
motor competence as well as physical fitness [8,23,59,66], statistical analysis methods can
be used to make reliable predictions of future success [67] based on the performance
profiles of young tennis players. The performance profiles of 8-year-old tennis players
can be determined in the context of talent identification by means of sport motor tests.
Considering the prognostic validity of the prediction methods, all the results of an analysis
must be taken into account, and the focus should not only be on high sensitivity [45].
A low sensitivity and specificity can also represent a good result for the talent identification
procedure or selection rate used. To obtain insights into the actual quality of the method,
it is worth considering the results obtained with random recommendations. Only here
does the true value of the analysis become apparent. The RIOC value includes the random
result and the maximum possible result in its calculation and is therefore a good predictor
of prognostic validity [34,53]. Considering this value, all four methods show good overall
results and stand out clearly from a random method. The prognostic validity of the general
talent detection campaign in tennis investigated in this study was therefore of a medium to
high quality. However, each calculation method had its particular advantages, which must
be considered in practice. A combination of the methods provides the best results. Because
methods are only as good as the available training data, it is important to continue to collect
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further data and observe test participants over longer follow-up periods. Furthermore,
it could be helpful to add more supplemental tests to the existing test batteries and to
use new statistical methods in order to better analyze the differences between the later
performance groups, as well as between the sexes, and thus increase the validity of early
talent-detection campaigns.
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