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Abstract: Most recently in 2018 and 2019, large parts of Europe were affected by periods of massive
drought. Resulting losses in cereal yield pose a major risk to the global supply of barley, as more
than 60% of global production is based in Europe. Despite the arising price fluctuations on the
cereal market, authenticity of the crop must be ensured, which includes correct declaration of harvest
years. Here, we show a novel approach that allows such differentiation for spring barley samples,
which takes advantage of the chemical changes caused by the extreme drought. Samples from 2018
were successfully differentiated from those of 2017 by analysis of changes in near-infrared spectra,
enrichment in the isotope 13C, and strong accumulation of the plant-physiological marker betaine.
We demonstrate that through consideration of multiple modern analysis techniques, not only can
fraudulent labelling be prevented, but indispensable knowledge on the drought tolerance of crops
can be obtained.

Keywords: barley; stable isotopes; proton nuclear magnetic resonance; Fourier transform near-
infrared spectroscopy; drought; climate change; Europe; Germany; multi-method approach; beer

1. Introduction

Recent climate changes in Europe are characterized by frequent and severe weather
extremes, which pose a major threat to agricultural production and are predicted to increase
in the near future [1,2]. Particularly during the last two decades, most parts of Europe
were impacted by record-breaking droughts leading to losses in both crop yield and quality.
Global warming poses a serious challenge to the global barley (Hordeum vulgare L.) supply,
as more than 60% of the world’s barley production is provided by Europe, most of it grown
under rainfed conditions [3]. This crop is mainly used as malting barley for the production
of alcoholic beverages and for feeding animals. European beverage producers typically use
spring barley for malting due to its low protein content and thus more fermentable portion
of sugar. However, spring barley has its most sensitive periods during flowering and grain
filling around the summer months, hence there is a high risk of yield loss and crop failure in
extremely dry years [4]. In 2018, Germany, the largest producer of spring barley in Europe,
experienced its warmest year ever recorded in the 138 years of modern temperature records,
ultimately resulting in the lowest cereal yield since 1994 and creating existence-threatening
conditions for many farmers across the country [5]. Subsequently, farmers were forced to
mix low-grade spring barley batches and marketable grains from previous harvest years
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to meet the quality requirements of the customers. However, malthouses often refuse to
accept deliveries of blends from two harvest years, consequently the product can only be
offered as significantly less profitable feed barley [6]. Such stages of emergency increase
the risk of economically motivated food fraud. The likelihood of these scenarios gains in
importance when considering a recently published model by Xie et al., who found that the
effects of concurrent drought extremes will cause a large decrease in global barley supply
under forecasted climate conditions [7]. To preserve transparency in such difficult periods,
the development of a method that is capable of classifying spring barley by harvest year is
indispensable. Here, we assess the potential of distinguishing spring barley grain samples
according to the very different harvest years 2017 and 2018. We looked at two varieties,
namely the modern and high-yielding cultivar ‘Quench’ (H. vulgare L. cv. Quench, year of
approval: 2006) and the comparatively old cultivar ‘Steffi’ (H. vulgare L. cv. Steffi, year of
approval: 1989). As results produced by a single analytical method often do not provide
enough information for an adequate evaluation, we have developed a novel methodology
using fused data from stable isotope analysis (IRMS) and chemical fingerprints provided
by Fourier-transform infrared spectroscopy (FT-NIR). Furthermore, metabolite profiles
produced by proton nuclear magnetic resonance (1H-NMR) were applied to substantiate
the findings through identification of stress-related plant physiological parameters. For the
present work, we hypothesize that the severe drought events of 2018 created systematic
variability in the chemical makeup of barley grains that, when evaluated by our multi-
methodological approach, should allow effective separation from samples of 2017. Based
on previous works found in literature, we further hypothesize that the older barley cultivar
‘Steffi’, though less yielding, should be more drought-tolerant than the modern cultivar
‘Quench’.

2. Materials and Methods
2.1. Origin and Storage of the Spring Barley Samples

Eighty-six spring barley samples of two different varieties (H. vulgare L. cv. Quench;
H. vulgare L. cv. Steffi) and from two consecutive harvest years (Quench, n2017 = 19, n2018
= 20 and Steffi, n2017 = 22, n2018 = 25) have been provided by IREKS GmbH (Kulmbach,
Germany). As the focus of this study was put on describing the effects of years with
extreme drought, we were provided with barley grains grown under real conventional
farming conditions rather than controlled field experiments. All plants were cultivated
in the same region by an agricultural cooperative of the district Soemmerda (Thuringia,
Germany) on loamy soil at 140 m elevation to eliminate geographic effects. Samples were
received as whole grains and stored in vacuum-sealed bags at room temperature until
further processing.

2.2. Weather at the Sampling Site

Weather data were retrieved from the Climate Data Center of the German Meteorolog-
ical Service [8]. The De Martonne aridity index (IDM) was used as an indicator of drought,
which is calculated according to the following equation:

IDM = RR/(TM + 10) (1)

where RR is the mean annual precipitation in mm and TM is the mean air temperature in
◦C [9]. IDM values below 30 correspond to a humid to Mediterranean habitat, while regions
with IDM values below 20 are characterized by semi-dry to dry conditions.

2.3. Isotope-Ratio Mass Spectrometry (IRMS)

For measurement of natural isotope abundances of the elements C, N, and O, around
4 g of grains were ground to wholemeal flour in a ball mill (MM400, Retsch GmbH, Haan,
Germany) at 30 Hz for 2 min. The sample material was dried in a drying oven at 105 ◦C
to constant weight and stored in a desiccator until analysis. For carbon and nitrogen
measurements, 2.8–3.5 mg of the powder was weighed into tin capsules, while for oxygen
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measurements 0.5–1 mg was weighed into silver capsules using a microbalance (CPA2P,
Sartorius, Göttingen, Germany).

Carbon and nitrogen stable isotope ratios were measured using an elemental analyzer
(NA 1108, Carlo Erba Instruments, Milan, Italy) coupled to a continuous flow isotope-ratio
mass spectrometer (delta S, Finnigan MAT, Bremen, Germany) via a ConFlo III open-
split interface (Thermo Fisher Scientific, Bremen, Germany) as described by Bidartondo,
Burghardt, Gebauer, Bruns, & Read [10]. Oxygen stable isotope ratios were analyzed with
thermal conversion through pyrolysis (HTO, HEKAtech, Wegberg, Germany) coupled
to a continuous flow isotope-ratio mass spectrometer (delta V advantage, Thermo Fisher
Scientific) via a ConFlo IV open-split interface (Thermo Fisher Scientific) as described by
Gebauer, Preiss, & Gebauer [11]. Isotope abundances are given in δ values, calculated
according to the following equation:

δ13C, δ15N, or δ18O =
(

Rsample/Rstandard − 1
)
× 1000 (‰) (2)

where Rsample and Rstandard are the ratios of heavy to light isotope of the samples and
the respective standard. This so called “delta notation” is used to express the difference
between the isotope-number ratio of an unknown sample and an internationally agreed
zero-point with known isotopic composition. Nowadays, it is commonly used in many
fields of isotope research, as it enables a more convenient and accurate expression of
small differences in isotope-number ratios that are usually in the order of 10−3 or smaller.
The standard gases (Riessner-Gase, Lichtenfels, Germany) were calibrated with respect
to international standards (CO2 vs. V-PDB, N2 vs. N2 in air, CO vs. V-SMOW) with the
reference substances IAEA-CH-6, IAEA-CO-8 and NBS 18 for the C isotopes, N1 and N2
for the N isotopes and IAEA601 and IAEA602 for the O isotopes, all provided by the IAEA
(International Atomic Energy Agency, Vienna, Austria). Measurements of the laboratory
standard acetanilide were routinely performed to control the reproducibility of C and N
isotope abundance analysis [12]. Acetanilide was monitored with variable sample weight
at least six times per batch of 50 samples. For oxygen isotope abundance measurements,
benzoic acid was analyzed with variable sample weight at least six times within each run
of 40 samples. The uncertainty of measurements was always below 0.2‰ for δ13C, δ15N
and 0.6‰ for δ18O. Data evaluation was performed in the software ISODAT (Version 2.0,
Thermo Fisher Scientific).

2.4. Fourier-Transform Near-Infrared Spectroscopy (FT-NIR)

FT-NIR measurements were performed on a Bruker MPA spectrometer (Bruker Optik
GmbH, Ettlingen, Germany) equipped with an interferometer, an integrating sphere for
diffused reflection and a lead sulfide (PbS) detector. The sample cup was filled to the brim
with whole grains and placed on a sample rotator. Spectra were recorded in triplicates
using 64 scans in the range of 12,500 to 3600 cm−1 at a resolution of 16 cm−1. Data were
collected and preprocessed applying baseline correction using the concave rubber-band
method with 10 iterations on 64 baseline points in OPUS (Bruker Optik GmbH). Analysis
of FT-NIR spectra was limited to the range between 11,000 to 4000 cm−1, and therefore
excluded the flanking regions that display a strongly reduced signal-to-noise ratio.

2.5. Proton Nuclear Magnetic Resonance (1H-NMR)

For 1H-NMR measurements, grains were ground to wholemeal flour in a ball mill
(MM400, Retsch GmbH) at 30 Hz for 2 min. 50 mg of wholemeal flour were weighed in
a 2 mL reaction tube (Carl Roth GmbH, Karlsruhe, Germany) and 2 mL of HPLC-grade
water was added. The sample was extracted for 2 h in an overhead shaker (Tube Revolver
D-6050, neoLab Migge GmbH, Heidelberg, Germany) at 40 rpm before centrifugation for
45 min at 13,300 rpm (MIKRO 185, Andreas Hettich GmbH, Tuttlingen, Germany). 900 µL
of the supernatant was transferred in a 2 mL reaction tube (Carl Roth GmbH) and 100 µL of
buffer was added [13]. The pH was adjusted to 3.10 (± 0.02) using an automated titration
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system (BTpH Unit, Bruker BioSpin, Rheinstetten, Germany). The sample was centrifuged
again for 45 min at 13,300 rpm (Andreas Hettich GmbH) and 600 µL of the supernatant was
transferred in a 5 mm NMR tube. A 400 MHz FoodScreenerTM spectrometer equipped with
a BBI probe head with z gradients was used to acquire the spectra (Bruker Biospin) with a
spectral width of 20.458 ppm. All samples were handled with the IconNMR and TopSpin
3.5 software. A 1D-NOESY-experiment (noesyggpr1d) was performed with an acquisition
time of 4 s and 32 scans. The excitation pulse was determined before each measurement
and the temperature was set to 300 K. The receiver gain was set to a constant value of
32. An exponential window function with an LB of 0.3 was applied during automatic
processing. Spectra were referenced to the signal of the internal standard 3-(trimethylsilyl)-
propanoic acid-d4 sodium salt (TSP, δ = 0 ppm). To ensure the qualitative comparability
of the barley flour extracts, the recovery rate of at least 95% was determined using the
signal of the compound betaine, which was found to be a promising marker for drought
response of barley in the course of this study, after double extraction and measurement of
a representative sample.

2.6. Data Preprocessing and Statistical Analysis

Plots for temperature and precipitation data were done in R version 3.5.3 using ad-
ditional packages (ggplot2, ggridges, RColorBrewer). Maps displaying the aridity index
grids with a spatial resolution of 1 km × 1 km were reproduced graphically in the open-
source software QGIS version 3.1 (Quantum Geographic Information System). Univariate
statistical analysis of isotope data was also conducted in the computing environment R. As
the assumptions for the use of a parametric test were not met, differences between groups
were evaluated by a non-parametric two-sided Mann–Whitney–Wilcoxon test (α = 0.05).
Chemometric analysis (Kruskal–Wallis test, PCA) of FT-NIR spectra and combined data
were performed in MATLAB (Version R2019a, TheMathWorks, Natick, MA, USA). Dimen-
sionality reduction was achieved by splitting the FT-NIR-spectra into bins. Binning (also
called bucketing) is a very common pre-processing step for spectral data, that often contain
thousands of data points/variables. To ease statistical analysis, the number of variables
is reduced by dividing each spectrum into for example equidistant (uniform) so-called
bins/buckets and calculating the integral (total area within each bucket) of each bin. In
our particular case, each FT-NIR spectrum was divided into 300 equidistant regions in
the range between 11,000 and 4000 cm−1. Afterwards, the IRMS variables (δ13C, δ15N,
δ18O) were attached to the data set. Feature selection was performed for combined data,
extracting the 50 most relevant variables based on ranked class-related variance using a
Kruskal–Wallis test. Specifically, the test statistic (H statistic) of the Kruskal–Wallis test was
calculated and used as a filter score, where higher values of the test statistic indicate that
the values of the corresponding variable differ more between the classes. Subsequently,
the test statistic values were sorted from the highest value to the lowest value to reveal the
most relevant variables. Even if statistical approaches are sophisticated, they should not
be blindly relied upon. For this reason, we looked at the extracted variables manually to
verify that they indeed belong to meaningful spectral regions rather than, e.g., noise. Here,
all of the 50 extracted variables were found to be relevant, hence they were used for further
statistical analysis. Selected features were then autoscaled (mean-centering followed by
division of each column/variable by the standard deviation of that column) and processed
using principal component analysis (PCA), to obtain an impression of the differences
between spectra among harvest years. As PCA is an exploratory technique rather than a
classification technique, we defined a criterium based on which a sample is assigned to
a class. Here, we have classified the observations according to their position in the PCA
score subspace by defining a threshold based on Euclidean distance to the calculated center
of each group at a 95% confidence level (α = 5%). Using this classification technique, model
validation using Monte Carlo cross-validation was performed. Specifically, 100 random
models were generated with 90% of the data set as training data and the remaining 10% as
test set.
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3. Results and Discussion
3.1. Weather at the Sampling Site Differed between 2017 and 2018

Total precipitation at the sampling site in 2017 was 573.9 L/m2, which corresponds
to 106% of the mean of the 30-year reference period (1981–2010). In comparison, total
precipitation in 2018 was 70% of the mean of the reference period with a total of 377.1 L/m2.
During the three summer months (June–August), the sum of rainfall was 285.1 L/m2

(155%) in 2017, while in 2018, only 77 L/m2 were recorded, meeting 42% of the reference
period mean (Figure 1a). In addition, the 2018 summer months had 48 days with maximum
temperatures above 25 ◦C (2017: 28 days), which very likely led to co-occurring heat and
drought stress (Figure 1b).
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Figure 1. Precipitation and temperature at the sampling site. (a) The graph displays the daily precipitation totals (in mm) at
the sampling site for the crop years 2017 (blue) and 2018 (red). (b) Density plots show the distribution of daily average
air temperatures (in ◦C) for the crop years 2017 (left) and 2018 (right). Raw data were retrieved from the weather station
(Erfurt-Weimar, German Meteorological Service) with the closest proximity to the sample origin.

Recent findings showed that most barley varieties are particularly sensitive to a
combination of these stresses in comparison to heat or drought individually [14,15]. Both
precipitation and temperature are included in the calculation of the De Martonne’s aridity
index (IDM), which was plotted on a map of Germany. Based on the classes of this frequently
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used index, the barley experienced humid to Mediterranean (IDM ≤ 30) conditions in 2017.
In contrast, the year 2018 in the region the samples were sourced was characterized by
semi-dry to dry conditions (IDM ≤ 20) [9] (Figure 2).
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3.2. Stable Isotope Abundances Indicate Severe Drought Stress

Carbon isotope abundances of all analyzed barley samples ranged from −24.5‰
to −27.6‰ with a mean of −26.3‰, which perfectly fits the typical average ratio for
the C3 crop barley of −25.9 ± 0.7‰ [16]. Samples from the harvest year 2018 showed
significantly less negative δ13C values for both Quench (Mdn, N2017 = −27.1‰, n = 19;
Mdn, N2018 = −25.2‰, n = 20; U = 0, p < 0.0001) and Steffi (Mdn, N2017 = −26.7‰, n =
22; Mdn, N2018 = −26.0‰, n = 25; U = 52.5, p < 0.0001) compared to samples from 2017
with a more pronounced difference for the Quench variety. The results match the values
of studies from Ferrio et al., who found less negative δ13C values for bread wheat kernels
grown under increased drought stress [17]. Between the two trials that varied the most in
water availability, they observed a difference in carbon isotope composition of 2.2‰. The
less negative values in kernels grown under heavy drought stress match our expectations
as the relationship between water status and the carbon isotopic composition of plants
and the underlying mechanism are well researched [18]. During assimilation of CO2,
plants utilizing the C3 photosynthetic pathway (e.g., barley) discriminate against the heavy
isotope of carbon (13C). Under normal conditions, the CO2-fixing enzyme ribulose 1,5-
bisphosphate carboxylase/oxygenase (RubisCO) favors the light 12CO2. Stomatal closure
in response to drought stress reduces water loss caused by transpiration but also leads
to CO2 being ‘trapped’ inside the leaf’s internal air spaces. The closed stomata force the
enzyme to process more of the heavy 13CO2, as the trapped CO2 is recycled [19,20]. The
resulting change in isotopic composition of the biomass can be detected in various parts
of crops but appears to be most pronounced in mature grains, as they might serve as
a sink for different photosynthetic plant organs [21]. Compared to Quench, which is a
high-yielding barley cultivar, Steffi is a rather old and less cultivated variety for malting.
Therefore, differences in genotype and reaction to drought might have attributed to the
more pronounced difference in 13C abundance for Quench (Figure 3a,d) [22].
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highlighted with four stars (****), while non-significant differences are marked with ‘ns’. Outliers are denoted as filled
circles.

In fact, there is growing evidence that some barley genotypes, which carry more
desirable wild-type traits, have a higher abiotic stress tolerance to environmental factors
such as drought and heat, thus raising interest in targeted breeding of cultivated barley,
especially in view of the challenges posed by climate change [23,24]. The reported N
isotopic compositions showed significant interannual differences for the Quench variety
(Mdn, N2017 = 3.0‰, n = 19; Mdn, N2018 = 5.0‰, n = 20; U = 1, p < 0.0001) with a higher δ15N
in the dry year 2018, while no difference was found for Steffi (Mdn, N2017 = 4.5‰, n = 22;
Mdn, N2018 = 4.7‰, n = 25; U = 229.5, p > 0.05) (Figure 3). The connection between plant
δ15N values and aridity are not straightforward, as multiple factors such as microorganism
activity, N source, and plant metabolism influence the signature. The observed increase
in δ15N for Quench might be attributed to differences in agricultural practice, response
of nitrate reductase activity to drought or due to limited uptake and transfer of N to the
upper plant parts [25]. Apart from the information that the barley comes from conventional
cultivation, details on fertilization are missing, which makes interpretation of the δ15N
values rather challenging. At the same time, such obstacles reflect the intention of the study,
namely to create real conditions that can be transferred to the market. In our approach,
these uncertainties can, to some extent, be compensated by using several measurement
techniques for a more holistic point of view. As for nitrogen isotope composition, δ18O
was significantly different between the two harvest years for the variety Quench (Mdn,
N2017 = 29.6‰, n = 19; Mdn, N2018 = 28.2‰, n = 20; U = 376, p < 0.0001) with lower δ18O
values in 2018, while no significant difference was found for the Steffi variety (Mdn, N2017
= 26.9‰, n = 22; Mdn, N2018 = 26.8‰, n = 25; U = 270, p > 0.05) (Figure 3). A missing
interannual difference in δ18O values is rather unexpected as similar to δ13C values, oxygen
isotopic signatures are expected to increase with higher evaporative demand and lower
stomatal conductance [17]. However, several studies suggest that there is a lack of a clear
relationship in grains compared to, e.g., leaf material or whole plant material. For spring
wheat, Barbour, Fischer, Sayre, & Farquhar reported a significant positive correlation of
δ13C and δ18O in flag leaves, but the relationship was less clear in grains [26]. We conclude,
while grain δ13C seems to be a good marker for water status during grain filling, other
factors seem to specifically affect δ18O. The signal could be dominated by variations in
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δ18O signature of the source water, or it could be influenced by biochemical fractionation
during synthesis of grain organic matter from remobilized assimilates [17]. Considering
the heavy drought in 2018, a higher contribution of pre-anthesis reserves to grain filling is
very likely, which would lead to lower δ18O values [27,28].

3.3. FT-NIR Spectra Show Additional Drought-Related Differences

For visual presentation of the differences in the FT-NIR spectra between the samples
from the two harvest years, average spectra were calculated, and signal assignments of
fundamental regions were included (Figure 4).
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Figure 4. Comparison of spring barley kernel FT-NIR spectra. Figures display baseline-corrected average FT-NIR spectra
(4000 to 12,000 cm−1) for whole kernels of the spring barley varieties (a) Quench and (b) Steffi. Samples are grouped
based on the crop years 2017 (blue) and 2018 (red). Assignments of relevant spectral bands are indicated at the respective
absorbance peak.

It is noteworthy that the spectra of both cultivars show the same changes for the
year 2018, indicating similar metabolite responses to drought stress. The absorbance peak
at around 8264 cm−1 (1200 nm) was related to the second overtone of C-H stretching,
whereas the absorbance peak at 5665 cm−1 (1765 nm) was related to the first harmonic of
C-H stretching. Both peaks are attributed with lipids and showed noteworthy differences
between the harvest years, which is consistent with results from a study using GC/MS-
based metabolite profiling [29–31]. Further, we observed two absorbance bands with
outstanding separation between harvest years that were linked to moisture at around 6800
cm−1 (1470 nm, first overtone of O-H stretching) [29,32,33] and 5170 cm−1 (1934 nm, O-H
stretching) [29,30,32,34,35]. Based on a nationwide report by the Federal Ministry of Food
and Agriculture, in 2018 all cereals, including barley, showed significant reduction in aver-
age moisture content in comparison to the previous year, which fits our observations [36].
The absorbance band around 6300 cm−1 (1587 nm, first overtone of O-H stretching) is
a bit lower for the grain samples from 2018 and was associated with starch, whose syn-
thesis is known to be hindered by drought stress [29,30,34,37]. Finally, we could observe
differences between harvest years at the absorbance peak around 4854 cm−1 (2060 nm).
The band is associated with a combination of C-H stretching, N-H stretching, and O-H
stretching and is related to variation in protein characteristics potentially attributed to
osmotic adjustments [29,31,32,34].
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3.4. Data Fusion Enables Differentiation of Barley Harvest Years

In a next step, we statistically evaluated the FT-NIR spectra and data produced by
IRMS, using Kruskal–Wallis tests and principal component analysis (PCA). The created
models achieved 100% correct classification of harvest years for both barley varieties
(Figure 5).
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principal component, the respective percentage of variance explained is given in the axis label.

To gain insight into which of the included variables contributed most to the separation,
we ranked them by importance using a Kruskal–Wallis test. We found that the abundance
peak at around 8264 cm−1 (1200 nm) was the most important, followed by the absorbance
bands around 4854 cm−1 (2060 nm), 5170 cm−1 (1934 nm), 5665 cm−1 (1765 nm), and
6800 cm−1 (1470 nm). This is consistent with findings from the literature, which state
that the composition and content of lipids and proteins in barley change significantly
under stress conditions such as heat and drought [24,38]. Interestingly, in the statistical
analysis of the Quench variety, the carbon isotopic composition appeared among the most
important variables for the separation of crop years, but not for the Steffi variety. Given
that the difference in the natural 13C abundance is a marker for water-use efficiency, there
is growing evidence that the old Steffi variety is better adapted to drought [20].

3.5. 1H-NMR Confirms Observations by Means of the Marker Betaine

Finally, we used 1H-NMR spectra of sample extracts that serve as quantitative metabo-
lite fingerprints. These can not only be analyzed in a non-targeted approach, but also
in high-resolution identification of molecular markers. In our case, we focused on plant
physiological markers such as osmolytes, which might indicate a plant’s response to stress
conditions. A direct comparison of the 1H-NMR spectra from the two investigated harvest
years revealed a significantly increased signal intensity at 3.255 ppm chemical shift in all
samples from the year 2018. Importantly, this is regardless of which of the two barley
varieties was considered (Figure 6).
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A comparison with common databases and subsequent spiking experiments for confir-
mation with the pure substance revealed that the signal refers to betaine (trimethylglycine).
Accumulation of this methyl donor is a well-known and critical response of barley to
environmental stress such as drought [39]. We would like to mention here that for the
purposes of this paper, we consider only this section of the spectrum, as it provides the
marker for drought stress and thus the biological background. However, it can be assumed
that an elaborate statistical analysis of the complete NMR spectra could reveal other ex-
citing relationships. On a molecular level, the connection between drought stress and
betaine accumulation can be explained by the function of the plant hormone abscisic acid
(ABA), which not only induces stomatal closure to prevent water loss but was also found
to increase expression of betaine aldehyde dehydrogenase (BADH), catalyzing the last
step in the synthesis of betaine [40]. The relationship is underpinned by the fractionation
we observed for the carbon isotopic composition, which is caused by stomata regulation.
Although this important plant physiological process has often been demonstrated by ex-
periments with whole plants or leaves, elevated concentrations of betaine resulting from
high temperatures and drought have also been observed in studies with grains of wheat
and barley [31,41]. In respective results, there were clear differences between individual
genotypes, on the one hand in the basic content of betaine, but also in the degree of accu-
mulation in response to stress. This might explain the difference observed between the two
investigated varieties, with the old cultivar once more showing a milder response, possibly
due to a higher tolerance to environmental stress.

4. Conclusions

Global warming creates circumstances for the agricultural sector that require rapid
action and unprecedented scientific approaches. A central component is the transfer of
knowledge from controlled field experiments to real market samples. Our results show that
spring barley undergoes noticeable changes in its chemical composition in an extremely
dry and hot year like 2018, enabling a solid discriminability from samples of 2017. The
significantly less negative δ13C values for both analyzed varieties proved to be a suitable
marker for water status during grain filling. Furthermore, FT-NIR and 1H-NMR spectra
showed significant differences between the two harvest years, especially in the absorbance
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bands related to lipids and proteins and the stress marker betaine. All observed chemical
changes could be explained and linked by means of plant physiology, which is an integral
part of authenticity testing of plant-based foods. Furthermore, the weaker stress response
of the old cultivar “Steffi” has shown that the data obtained can also be transferred to
targeted breeding of varieties that tolerate future climate conditions. We are convinced that
additional research on our initial findings will show the broad applicability to unknown
systems and will be the go-to practice in agricultural science.
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