
Elastic Geometric Shape Matching

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Luise Sommer
aus Sonneberg

1. Gutachter: Prof. Dr. Christian Knauer
2. Gutachter: Prof. Dr. Hee-Kap Ahn
3. Gutachterin: Prof. Dr. Maike Buchin

Tag der Einreichung: 15. September 2021
Tag des Kolloquiums: 02. Juni 2022

To my boys

iv

Acknowledgements

This research was carried out during my employment at the Universität Bay-
reuth and supported by the Deutsche Forschungsgemeinschaft (DFG), grants
Kn 591/9-1 and Kn 591/9-2.

First of all, I would like to express my sincere gratitude to my supervisors
Christian Knauer and Fabian Stehn for giving me the opportunity to work
on this thesis and the wonderful research meetings, for their guidance, their
support and their patience.
I also want to thank all members of the work group Algorithmen und Daten-
strukturen at the Universität Bayreuth for creating such an inspiring and
pleasant environment. They made this place more than just an ordinary work
place and I really enjoyed being part of it. My special thanks goes to my office
mate Otfried Cheong for his advice, the many books and the delicious cakes.
I want to express my gratitude to my dear friend Eleni Milona for her support,
her friendship, and the help on one specific sentence.
I owe to Melanie Göpel, Cornelia Bogensperger and Benjamin Schlosser for
investing their time to proofread this thesis.
Furthermore, I would like to thank my husband Andreas Sommer for his
unconditional support in the last years.
Last but not least, I want to thank Gisela Roth. She always gave so much and
expected nothing in return.

vi Acknowledgements

Abstract

In computational geometry, geometric shape matching (GSM) problems are
among the classical and well-studied geometric optimization problems. In a
conventional GSM problem, the pattern P and the model Q, both from a
class S of geometric shapes, are given, along with a suitable distance measure
d : S × S → R+

0 . The task is to compute a single transformation t from an
admissible transformation class T acting on S that minimizes the distance
between the transformed pattern and the model according to the distance
measure d.

Problems of this flavor have many applications such as traffic sign recognition,
character recognition, human-computer-interaction, etc., in different scientific
fields such as robotics, computer aided medicine and drug design. Yet in cases
where local distortions or complex deformations occur, a single transformation
from a simple transformation class is not enough to match the pattern well to
the model. A more flexible approach is needed.

Elastic geometric shape matching (EGSM) is a generalization of the conventional
GSM and was designed with the intention of ensuring a both globally consistent
and locally precise mapping in cases where the classical GSM approach is too
restrictive.

In an EGSM problem, one is given a pattern P and a model Q along with
a graph G. The pattern P is partitioned into subshapes and instead of a
single transformation, a so-called transformation ensemble is computed. A
transformation ensemble consists of a set of transformations, one for each
subshape of P , that are individually applied to the subshapes of P with the
goal to minimize the distance of the transformed pattern to the model according
to a suitable distance measure. Additionally, some of the transformations are
enforced to be similar with respect to a suitable similarity measure defined for
the transformation class at hand. In doing so, the consistency and “continuity”
of the ensemble, and consequently, also of the transformed pattern, is ensured.
The graph G is called neighborhood graph, and encodes which transformations
need to be similar.

There is a vast number of variations of EGSM problems, depending on how

viii Abstract

the different options for, eg., S, T , the distance measures, and structure of
G, are chosen to match the application at hand. In particular, just slight
changes in the problem setup may result in the need of completely different
strategies to compute a solution. In this thesis, we analyze the computational
complexity of several EGSM problem variants under translations under the
L1-, the L2- and under polygonal norms for different distance measures and
graph classes. Additionally, we present exact and approximative algorithms to
solve the considered problem variants.

Zusammenfassung

Geometrische Musteranpassungsprobleme (GSM Probleme) gehören zu den
klassischen und gut untersuchten geometrischen Optimierungsproblemen in
der algorithmischen Geometrie. In einem konventionellen GSM Problem sind
das Muster P und das Modell Q, beide aus einer Klasse S von geometrischen
Objekten, zusammen mit einem geeigeneten Abstandsmaß d : S × S → R+

0

gegeben. Das Ziel besteht darin, eine einzelne Transformation t aus einer
zulässigen, auf S wirkenden, Transformationsklasse T zu berechnen, die den
Abstand zwischen dem transformierten Muster und dem Modell bezüglich des
Abstandsmaßes d minimiert.

Probleme dieser Art haben viele Anwendungen, wie zum Beispiel Verkehrszeich-
enerkennung, Texterkennung und Mensch-Computer-Interaktion, in verschiede-
nen wissenschaftlichen Bereichen wie der Robotik, der computergestützten
Medizin und der Wirkstoffentwicklung. Allerdings ist in den Fällen, in denen
lokale Verzerrungen oder komplexe Deformierungen auftreten, eine einzelne
Transformation aus einer einfachen Transformationsklasse nicht genug, um das
Muster gut auf das Modell abzubilden. Ein flexiblerer Ansatz wird benötigt.

Elastische Musteranpassung (EGSM) ist einer Verallgemeinerung der konven-
tionellen GSM und wurde mit der Absicht entwickelt, eine sowohl global
konsistente als auch lokal präzise Abbildung in den Fällen sicherzustellen, in
denen der klassiche GSM Ansatz zu sehr einschränkt.

In einem EGSM Problem sind ein Muster P und ein Modell Q zusammen mit
einem Graphen G gegeben. Das Muster P ist in Teilmuster unterteilt und
anstatt einer einzelnen Transformation wird ein sogenanntes Transformation-
sensemble berechnet. Ein Transformationsensemble besteht aus einer Menge
von Transformationen, eine für jedes Teilmuster von P , die individuell auf die
Teilmuster von P mit dem Ziel angewendet werden, den Abstand zwischen
dem transformierten Muster und dem Modell bezüglich eines geeigneten Ab-
standsmaßes zu minimieren. Zusätzlich sollen einige der Transformationen
ähnlich bezüglich eines geeigneten Ähnlichkeitsmaßes sein, das für die gegebene
Transformationsklasse definiert wurde. So werden die Kontinuität und die
“Stetigkeit” des Ensembles, und damit auch die des transformierten Musters,

x Zusammenfassung

sichergestellt. Der Graph G wird Nachbarschaftsgraph genannt, weil er kodiert,
welche Transformationen sich ähnlich sein sollen.
Es gibt eine erhebliche Anzahl an Variationen von EGSM Problemen, abhängig
davon wie beispielsweise S, T , die Abstandsmaße und die Struktur von G
gewählt werden, um das Problem auf die konkrete Anwendung anzupassen.
Genauer gesagt können schon kleine Veränderungen der Problemstellung dazu
führen, dass gänzlich unterschiedliche Strategien zur Lösungsfindung benötigt
werden. In dieser Arbeit analysieren wir die algorithmische Komplexität
einiger EGSM Probleme unter Translationen unter der L1-, der L2- und unter
Polygonalnormen für verschiedene Abstandsmaße und Graphklassen. Darüber
hinaus präsentieren wir exakte und approximative Algorithmen zur Lösung der
betrachteten Problemvarianten.

Contents

Acknowledgements v

Abstract vii

Zusammenfassung ix

Contents xi

1 Introduction 1

1.1 Geometric Shape Matching . 1

1.2 Registration . 3

1.3 Elastic Geometric Shape Matching 5

1.4 The Problem in Close Up . 6

1.5 State of the Art . 8

1.6 The Contribution of this Thesis 9

2 Elastic Geometric Shape Matching for Translations under the
Manhattan Norm 13

2.1 Problem Statement . 14

2.2 Deciding Problem Instances for Trees for the directed Manhattan
Hausdorff distance . 14

2.3 Elastic Geometric Shape Matching under Polygonal Norms . . . 28

2.4 On Possible Modifications . 35

3 An FPTAS for an Elastic Shape Matching Problem with Cyclic
Neighborhoods 37

3.1 Problem Statement . 37

3.2 The Algorithm . 39

3.3 A Detailed Description of the Algorithm 41

3.4 The Strategy for Paths Does not Work for Cycles 64

xii Contents

4 Elastic Geometric Shape Matching on Neighborhoods that
Contain Cycles 69
4.1 Problem Statement . 70
4.2 Solving Instances with Given Feedback Vertex Sets 72
4.3 Solving Instances with Bounded Pathwidth or Treewidth 84
4.4 Combining both Approaches . 92
4.5 Discussion . 92

5 The Combinatorial Complexity of Admissible Regions under
the Euclidean Distance 95
5.1 Problem Statement . 95
5.2 The Algorithm . 97
5.3 Minkowski Sums of Admissible Regions and their Combinatorial

Complexity . 98

6 Variants of the Problem 119
6.1 Weights within the Objective Function 119
6.2 Thoughts on Rigid Motions . 122
6.3 On Imprecise Point Sets . 130
6.4 Line Segments, Triangles and Triangulated Surfaces 131
6.5 Extension to Higher Dimensions 150

7 Discussion and Outlook 155
7.1 Contribution . 155
7.2 Future Work . 157

A An Algorithm on Samples 161
A.1 The Algorithm . 162
A.2 Correctness and Complexity. 164

List of Figures 167

Bibliography 171

Own Publications 175

Eidesstattliche Versicherung 177

Chapter 1

Introduction

Computational geometry is a field of computer science devoted to research on
algorithmic solutions for geometric problems. Due to the beauty of the studied
problems as well as the many applications, in which geometric algorithms play
a fundamental role, computational geometry has attracted the interest of a
vast number of researchers since it was originated in the early 1970s [1, 2].

1.1 Geometric Shape Matching

In computational geometry, geometric shape matching (GSM) problems are
among the well-studied geometric optimization problems. In a conventional
geometric shape matching problem, the pattern and the model, both from
a class of geometric shapes, e.g., point sets, line segments or polygons, are
given, along with a suitable distance measure. The pattern and the model
can be seen as two geometric shapes that somehow resemble each other. The
task is to compute a single transformation from an admissible transformation
class, e.g., translations, rigid motions or affine transformations that minimizes
the distance between the transformed pattern and the model according to the
distance measure at hand.

Prominent examples of suitable distance measures are the directed Hausdorff
distance and the injective bottleneck distance.

One way to state the problem is as follows:

2 Chapter 1. Introduction

P

t(P)

Q

d(t(P), Q)

t

object space

Figure 1.1: The sets P (points), Q (boxes) and t(P) (filled boxes) are point
sets in the plane. If only translations are allowed and the distance measure at
hand is the directed L2-Hausdorff distance, the transformation t is optimal. If
the class of admissible transformations is rigid motions, there is a rigid motion
that maps P exactly to Q.

Problem 1 (Geometric Shape Matching) Given:

S a class of geometric shapes,

T a class of transformations,

P ∈ S the pattern,

Q ∈ S the model and

d : S × S → R+
0 a distance measure.

Find: A transformation t ∈ T , so that

d(t(P), Q)

is minimized.

See Figure 1.1 for an example.
Problems of this flavor have many applications such as traffic sign recognition
as part of advanced driver assistance systems (ADAS) and in the course of
autonomous driving: One of the basic uses of traffic sign recognition is the
recognition of speed limit signs as part of ADAS in order to add the information
to the GPS data at hand whilst driving. The information can then be displayed

1.2. Registration 3

in the dashboard of the car to notify the driver in case of speeding or, in the
case of autonomous driving, adjust the speed of the car, see [3].
Other important applications are character recognition [4], logo detection [5],
human-computer-interaction, etc., in different scientific fields such as robotics [6],
computer aided medicine [7] and drug design [8]. Consequently, geometric
shape matching problems have received a great amount of attention. The
survey papers by Alt et al. [1] and Veltkamp et al. [9] provide an extensive
overview.
In [1], some exact algorithms as well as several approximation algorithms for
GSM problems are discussed. In many applications, heuristic methods, such as
the iterative closest point (ICP) method, are used to “solve” GSM problems,
where the point set A is to be matched to the point set B. In every step of the
algorithm, for every point of the set A, the nearest neighbor in B, according
to the L2-distance measure, is computed. Then, the transformation that if
applied to A, minimizes the maximum mean square root distance between the
points in A and their nearest neighbors in B is computed and applied to point
set A. The process is iterated until some stop criterion, e.g., a certain amount
of iterations or the discovery of a local minimum, is met. This heuristic can
be generalized to match, e.g., curves and surfaces in 3D and works in some
applications. Although it computes only local minima, there is no guaranteed
upper bound on the runtime. For more details, see [10].

1.2 Registration

GSM problems are closely related to registration problems. In registration
problems the task is to align two geometric spaces, the pattern space and
the model space by computing a mapping from one space into the other one.
This mapping is called registration. Registrations are used to align, e.g., two
images of the same model, taken at different times, from different angles or
with different equipment. Formally stated, a registration

r : P → Q
is a mapping from the pattern space P to the model space Q so that every point
of the pattern space is mapped to the corresponding point of the model space.
There are two major issues that can make registrations more complicated [11]:

• The pattern and the model are misaligned, e.g., due to differences in
acquisitions such as different perspectives.

• The pattern is a complexly distorted version of the model, e.g., due to
object movements, growth, or the influence of magnetic fields on the
measuring equipment.

4 Chapter 1. Introduction

Usually, the cause of these deformations is not known in detail and there is not
even an exact description of the model. Thus, there is no way of computing the
exact registration that describes the actual deformation, but there are different
approaches to find registrations that align the spaces at hand well to a certain
degree.

Registration problems are often solved by reduction to a GSM problem: The
same geometric object is measured in two different spaces and a matching is
computed that aligns these two shapes well. This transformation minimizes the
distance of the two shapes according to the distance measure at hand and is
then used as the mapping from the pattern space into the model space. In doing
so, a simple misalignment of the geometric shapes at hand can be adjusted
by picking the right transformation. However, if the distortion of the pattern
is more complex, the assumption that a single transformation from a simple
transformation class is enough to align the two shapes well, is not justified.

One important example in this context are soft-tissue registrations that are
needed during a computer assisted (oncological) liver surgery [12, 13], where
the goal is to remove tumor tissue while preserving as much functional tissue as
possible to ensure organ regeneration. Here the model space Q is the coordinate
system of a high quality geometric 3D computer model of the liver tissue and
the corresponding vascular system, constructed before the operation on the
basis of CT and MRI scan data of the patient. The pattern space P is the
coordinate system of the operation theater, where geometric references are
attached to, e.g., the surgical instruments and probes, to allow for optical
tracking by a surgical navigation device.

It is easy to imagine, how crucial computing a most accurate transformation
is in this setting. However, if the registration is computed by reduction
to a conventional GSM problem, the registration is modelled by a single
transformation of a simple transformation class. If only a single transformation
is allowed to align both spaces, either the average registration error or the worst
registration error may be minimized. However, in most cases it is not possible
to minimize both, since the deformation of the organ due to the operation
process itself as well as the thorax movement due to breathing, the influence
of magnetic fields on the tracking device etc., deform the pattern in a very
complex way. During the operation process, several registrations are computed
over time, to ensure the proper alignment of the 3D model and the patient at
all times. Although, even if the registration is adjusted consistently, choosing
single transformations as registrations is not enough to ensure a both globally
consistent and locally precise registration. A more flexible way of dealing with
complex distortions is needed.

1.3. Elastic Geometric Shape Matching 5

1.3 Elastic Geometric Shape Matching

Elastic geometric shape matching (EGSM) is a generalized and more flexible
variant of the conventional GSM and was first introduced in 2011 in the
dissertation of Stehn [14] and a paper by Knauer, Kriegel and Stehn [15] with
the intention of ensuring a both globally consistent and locally precise mapping
in cases, where, e.g., local deformations may occur.
In an EGSM problem, one is given a pattern P and a model Q along with
a graph G. The pattern P is partitioned into subshapes and instead of a
single transformation, a so-called transformation ensemble is computed. A
transformation ensemble consists of a set of transformations, one for each
subshape of P , that are individually applied to the subshapes of P with
the goal to minimize the distance of the transformed pattern to the model.
However, the isolated conventional geometric shape matching problems for each
subshape are not solved independently, but some of the transformations, e.g.,
transformations that act on subshapes that are geometrically close to each
other, are forced to be similar with respect to a suitable similarity measure
defined for the transformation class at hand. In doing so, the consistency and
“continuity” of the ensemble, and consequently, also of the transformed pattern,
is ensured. The graph G is called neighborhood graph, or neighborhood in short,
and encodes, which transformations need to be similar.
In Figures 1.1 and 1.2, the same pattern and model are matched. In Figure 1.1,
the conventional GSM approach is used while in Figure 1.2, the problem at
hand is modelled as an EGSM instance.
Formally, the EGSM problem can be stated as follows:

Problem 2 (EGSM) Given:

S a class of geometric shapes,

T a class of transformations,

P ∈ S the pattern with

{P1, . . . , Pk} a partition of P,

Q ∈ S the model and

G = (V,E) an undirected graph with V = {i | 1 ≤ i ≤ k} and

E ⊆ {{i, j}| i, j ∈ V }.
Find: A transformation-ensemble T = (t1, . . . , tk) ∈ T k, so that

d(T (P), Q)

with d : S × S → R+
0 is minimized and

simG(T)

6 Chapter 1. Introduction

P

Q

t1
T (P)

p1

t1(p1)

p2 p3
p4

p5
p6p7

p8

d(T (P), Q) 1
2

3

4
5

6

7

8 G

simG(T)

object space translation space

Figure 1.2: Left (object space): The sets P (points), Q (boxes) and T (P) (filled
boxes) are point sets in the plane. The transformation ensemble T (dash-dotted)
is optimal with respect to the neighborhood graph G if only translations are
allowed and the distance measure at hand is the directed L2-Hausdorff distance.
Right (translation space): The translation ensemble T . The distance measure
in translation space is the L2-distance.

with simG : T k → R+
0 is maximized.

We refer to a transformation ensemble that solves Problem 2 as witness.
There is a vast number of variants of this problem, depending on how the
different options are chosen to match the application at hand. In particular, just
slight changes in the problem setup result in the need of completely different
strategies to compute a solution and the computational complexity thereof.

1.4 The Problem in Close Up

To get a better understanding of EGSM and its many variants, Problem 2 is
now discussed in detail:

The class of geometric shapes S. In EGSM problems, two geometric
objects have to be matched. These objects are represented by the pattern
P and the model Q and are usually elements of the same class of geometric
shapes S. Depending on the application, the class S can vary a lot. In many
cases, choosing S to be point sets is a good option, which is why all variants of
EGSM that have been considered so far, deal with this choice of S. However,

1.4. The Problem in Close Up 7

thinking of 3D-modelling, for instance, triangulated surfaces would be suitable.
Line segments or polygons could also be of interest, e.g., to describe silhouettes
or characters that have to be matched.

The model space. In this thesis, everything is stated in R2. However, most
results can also be adapted to R3. Considering instances in R3 or even higher
dimensional spaces could also be fitting in a lot of applications, such as computer
aided surgery and 3D-modelling.

The partitions of P . The pattern is divided into subshapes and the design
of the subshapes depends on the application. In some cases, choosing every
element of P to be a separate subshape may be useful while in other cases,
subshapes of different sizes match the problem instance at hand better. In
the course of computer assisted surgery, for instance, the parts of P encoding
different organs or organ parts with different tissue structure may be separated
into different subshapes, because their deformation during the operation process
are likely to differ to a certain degree.

The transformation class T . T encodes the class of transformations that
match the partitions of P to the model Q. In [16], the authors introduced the
first algorithms that solve some EGSM variants, along with an NP -hardness
proof for others. In their paper, they mostly considered translations in one
direction. In this thesis, T is the class of translations in R2. Considering T to
be rigid motions or affine transformations is one of the goals of future work.

The graph G and the graph class it belongs to. The neighborhood graph
encodes, which transformations should be similar and as a consequence, which
subshapes of P should be transformed similarly. In many applications such as
computer aided surgery it is useful to design the graph, so that the vertices
corresponding to transformations for geometrically neighbored subshapes are
connected by an edge. Recent research has indicated that the complexity
of EGSM instances strongly depends on the graph class at hand. If G is
a path, computing a solution for the given instance seems much easier in
many EGSM settings. Additionally, aside from using quadratic programming
techniques without provable bounds on the runtime, there are no approximation-
or exact algorithms at all for graphs that contain cycles under the condition
that translations in more than one direction are allowed. The computational
complexity of the problem also seems to increase with the number of cycles in
the neighborhood graph. The problem is be NP -complete for EGSM instances
with complete neighborhood graphs.

8 Chapter 1. Introduction

The weight on the edges and vertices of G. In this thesis, all edges of
G have the same weight, although putting weights on certain edges to encode
different degrees of similarity between adjacent transformations could be useful
in some applications. A prominent example are soft tissue registrations, where
geometric shapes that encode the same organ should be matched in a very
similar way, while shapes that encode different, neighbored organs should still
be matched similarly, but to a lesser extent. By putting weights on the vertices,
it is possible to encode how well the respective subshape of the pattern has to
match the model. This allows different maximum distances to the model for
different subshapes.

The distance measure d. Prominent examples of suitable distance measures
are the injective bottleneck distance and the directed Hausdorff distance. In
the simplest setting, the correspondence between the pattern and the model is
fixed. Thus k = |P | = |Q| and d measures the distance between the elements
of P and the corresponding elements of Q.

The similarity measure simG. If T is the class of translations, measuring
their similarity in translation space according to a suitable norm, e.g., the
L1-norm, the L2-norm, the L∞-norm or some polygonal norm is a promising
approach because the geometric interpretation is clear. However, choosing T to
be, e.g., rigid motions, makes the choice of a suitable similarity measure more
complicated, as the geometric interpretation of the well-established matrix
norms, such as the spectral norm in this context, is not trivial.

The tradeoff between minimizing d and maximizing simG. A central
topic in discussing EGSM problems is the tradeoff between minimizing the
distance between the transformed pattern and the model and maximizing the
similarity of neighbored transformations. In this thesis, both goals are seen
as equally important and are thus integrated in a common objective function
with the same threshold. However, depending on the application, it may be
advisable to weigh them differently instead. Regardless of the tradeoff itself,
both goals should be somehow comparable, which implies using the same norm
in both the distance measure d and the similarity measure simG if possible.

1.5 State of the Art

Several approaches that deal with non-linear geometric transformations can
be found in the literature [17, 18, 19, 20, 21]. All of these strategies are

1.6. The Contribution of this Thesis 9

heuristics that are based on techniques such as relaxed ILP formulations
[17, 18], probabilistic methods [19], or ICP formulations [20, 21]. None of these
methods compute solutions that are provably optimal or optimal up to an
approximation factor.
EGSM was first introduced as part of the dissertation of Stehn [14] in 2011 under
the term non-uniform geometric matching. In his thesis, the author developed a
polynomial time constant factor approximation algorithm for EGSM problems
under the directed Hausdorff distance for complete neighborhood graphs.
Further results where discussed by Knauer, Kriegel and Stehn in [15] also in
2011: Several variants of EGSM problems were considered, where the pattern
and the model are point sequences with a fixed correspondence between them.
For these cases, efficient, i.e., polynomial time, exact algorithms based on a
convex programming formulation, and approximate combinatorial algorithms
were designed for different types of neighborhood graphs.
In a paper by Knauer and Stehn [16], the authors showed that EGSM is NP -
hard for complete graphs under translations when considering the directed
Hausdorff distance or the injective bottleneck distance under the L2-norm. In
the same paper, they give efficient exact algorithms that solve a variant of the
problem for trees where only translations in a fixed direction are allowed.

1.6 The Contribution of this Thesis

In Chapters 2 to 5, everything is stated in R2 and translations are represented
by translation vectors. A translation vector t = (tx, ty) translates any point
p = (px, py) as follows:

t(p) := p+ t = (px + tx, py + ty)

and translates a sequence of n points P = (p1, . . . , pn) as follows:

t(P) := {t(p) | p ∈ P}.

Further, a sequence of n translation vectors T = (t1, . . . , tn) translates a
sequence of n points P = (p1, . . . , pn) as follows:

T (P) := {ti(pi) | 1 ≤ i ≤ n}.

All discussed EGSM variants consider P and Q to be point sets in the plane
and each point of P forms an individual subshape of the pattern. In most cases,
the distance between the transformed pattern and the model is measured with
the directed Hausdorff distance or the injective bottleneck distance:

10 Chapter 1. Introduction

Definition 1.1 For two point sets A,B ⊆ Rd, the directed Hausdorff distance
is defined as

~h(A,B) := max
f :A→B

min
a∈A
‖a− f(a)‖,

and the injective bottleneck distance is defined as

b(A,B) := max
f :A→B
f injective

min
a∈A
‖a− f(a)‖.

If the correspondence between the points of the pattern and the points of the
model is fixed, i.e., every point pi ∈ P is matched to a specific point qi ∈ Q,
we choose P and Q to be point sequences rather than point sets.

Definition 1.2 For two point sequences P = (p1, . . . , pn) and Q = (q1, . . . , qn)
in R2, the 1-to-1-distance is defined as

max
1≤i≤n

‖pi − qi‖.

The transformation class T is the class of translations and the (dis)similarity
of two translation vectors is measured by the length of their difference, ac-
cording to the norm at hand. The objective function considers the distance
of the transformed pattern to the model in model space, and the similarity of
neighboring translations in translation space equally important. The resulting
variant of Problem 2 can be formally stated as:

Problem 3 Given:

P = (p1, . . . , pn) a sequence of points (the pattern) in R2

Q = (q1, . . . , qm) a sequence of points (the model) in R2 and

G = (V,E) an undirected graph with V = {i | 1 ≤ i ≤ n} and

E ⊆ {{i, j}| i, j ∈ V }.

Find: A sequence of n translation vectors T = (t1, . . . , tn) so that

max

(
~h(T (P), Q), max

{i,j}∈E
‖ti − tj‖

)
is minimized.

Note that P and Q can either be given as point sets or point sequences,
depending und the context and the specific advantages of this choice in the
setting at hand.
Depending on the strategy to solve the problem, it is also promising to consider
the decision variant of Problem 3. Here, we are given an additional parameter

1.6. The Contribution of this Thesis 11

δ > 0 and the goal is decide if there is a sequence of n translation vectors
T = (t1, . . . , tn) so that

max

(
~h(T (P), Q), max

{i,j}∈E
‖ti − tj‖

)
≤ δ.

Chapter 2. We address the decision variant of Problem 3 for neighborhood
graphs that are trees. We consider the L1-norm (which we also refer to as
Manhattan norm), the L2-norm, or the L∞-norm. We present a polynomial time
exact algorithm for this problem for neighborhood graphs that are trees under
the L1-norm. Also, we discuss the same problem under polygonal norms and
give for any integer k ≥ 2 a polynomial time

(
1 + 1

k

)
-approximation algorithm

for Problem 3 under the directed L2-Hausdorff distance.
This research has been published in [A38, A40].

Chapter 3. We focus on Problem 3 for neighborhood graphs that are simple
cycles under the Euclidean 1-to-1-distance and provide an FPTAS for this
problem. It is also possible to return a witness without increasing the runtime.
This research has been published in [A39].

Chapter 4. In this chapter, we discuss Problem 3 under the directed Eu-
clidean Hausdorff distance and consider neighborhood graphs that possibly
contain several cycles. We present an algorithm which, for an ε > 0, gives a
(1 + ε)-approximation to the optimum of the objective function for this variant
of the Problem 3 with a given feedback vertex set of size kf . Also, we provide an
algorithm which gives a (1 + ε)-approximation to the optimum of the objective
function for the problem with a given path or tree decomposition of width kw.

Chapter 5. In [16], the author gives an algorithm that solves Problem 3 for
tree neighborhoods in polynomial time if only translations in a fixed direction
are allowed. We adapt the algorithm to the decision variant of Problem 3
for tree neighborhoods under the Euclidean 1-to-1-distance and give a non-
polynomial upper bound on the runtime. We also prove that this algorithm
runs in polynomial time and space if G is a complete tree or a path. We give
an example illustrating the fact that solving the problem with our approach
requires quadratic space at least. However, if G is a tree, the problem is
more complicated. We give non-polynomial upper bounds on the time and the
space required by the algorithm to solve the problem if G is a tree, which can
be improved to be polynomial if the tree is also complete and give a rough
description on how the difficulties in estimating the combinatorial complexity

12 Chapter 1. Introduction

change if the correspondence between the points of the pattern and the points
of the model is not fixed.

Chapter 6. We discuss different EGSM variants other than Problem 3, the
EGSM variant that is considered in the previous chapters. We give insights
about EGSM under rigid motions and discuss the difficulties in designing
an appropriate distance measure for rigid motions. Further, we discuss how
existing strategies for EGSM problems for point sets can be modified to solve
EGSM problems for line segments, triangles and triangulated surfaces. We also
consider EGSM in higher dimensions, with differently weighted objectives and
discuss the effect of imprecise input sets framework.

Acknowledgements. Some of the following results were developed jointly
with Christian Knauer, Fabian Stehn and Otfried Cheong.

Chapter 2

Elastic Geometric Shape
Matching for Translations under
the Manhattan Norm

In the first part of [16] the authors showed that EGSM is NP -hard for complete
graphs under translations when considering the directed Hausdorff distance
or the injective bottleneck distance under the L2-norm. However, in many
applications, it may be useful to consider other graph classes, because, e.g.,
translations that are applied on geometrically distant subpatterns may not be
required to be as similar as geometrically close ones. The hope is to find efficient
algorithms for some variants of EGSM. The second part of [16] also contains
efficient exact algorithms that solve variants of the problem for trees where
only translations in a fixed direction are allowed. Thus considering EGSM
instances for tree neighborhoods seems promising, although recent research
indicates that the complexity of the EGSM instances at hand also strongly
depends on the underlying norm.

In this chapter, we address the decision variant of Problem 3 for neighborhood
graphs that are trees where the norm at hand is the L1-norm, the L2-norm, the
L∞-norm, or a polygonal norm. We present a polynomial time exact algorithm
for this problem under the L1-norm. Also, we discuss the same problem
under polygonal norms and give for any integer k ≥ 2 a polynomial time(
1 + 1

k

)
-approximation algorithm for the problem under the directed L2-norm.

This research has been published in [A38, A40].

14 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

2.1 Problem Statement

For p ∈ {1, 2,∞} we denote the Lp-norm of a vector x by ‖x‖p. Since we focus
on different norms in this chapter, we slightly adapt the notation of the directed
Hausdorff distance:

Notation 2.1 We write the directed Lp-Hausdorff distance of a point set
A ⊆ R2 to a point set B ⊆ R2 as

~hp(A,B) := max
a∈A

min
b∈B
‖a− b‖p.

The EGSM decision problem at hand can be formally stated as:

Problem 4 (EGSM for point sets in R2 under translations) Given:

P = {p1, . . . , pn} ⊂ R2 a point set (the pattern),

Q = {q1, . . . , qm} ⊂ R2 a point set (the model),

G = (V,E) an undirected graph with V = {i | 1 ≤ i ≤ n} and

E ⊆ {{i, j}| i, j ∈ V } and

δ ≥ 0 a parameter.

Find: A sequence of n translation vectors T = (t1, . . . , tn) so that

max

(
~hp(T (P), Q), max

{i,j}∈E
‖ti − tj‖p

)
≤ δ.

In the following, we

1. present an algorithm for Problem 4 under the directed L1- or L∞-
Hausdorff distance for neighborhood graphs that are trees; the runtime
of the algorithm is O(n2m(logm+ log n)), see Theorem 2.9.

2. give for any integer k ≥ 2 a
(
1 + 1

k

)
-approximation algorithm for the

smallest value of δ that admits a yes-instance for Problem 4 under the
directed L2-Hausdorff distance for neighborhood graphs that are trees;
the runtime of the algorithm is O(bn3m2(logm + log n + log b)), where

b =
⌈
π
4

√
2(k + 1)

⌉
, see Theorem 2.13 and Corollary 2.14.

2.2 Deciding Problem Instances for Trees for

the directed Manhattan Hausdorff dis-

tance

In this section we present an algorithm for Problem 4 for neighborhood graphs
that are trees. We measure the similarity of the shapes by the directed L1-

15

Hausdorff distance. The similarity of two translations is measured by the L1-
norm of the difference of their translation vectors. Consequently, the objective
for this variant is to decide if there are n translation vectors T = (t1, . . . , tn) so
that

max

(
~h1(T (P), Q), max

{i,j}∈E
‖ti − tj‖1

)
≤ δ. (2.1)

Definition 2.2 We call a sequence of translations T admissible for the graph
G = (V,E), if Inequality (2.1) holds.

Strictly speaking, the concept of admissibility depends on δ, P and Q as well,
but since they are part of the input, we refrain from including them in the
notation. However, the graph at hand may vary throughout the algorithm that
is introduced in the following.
The set Ip of translations that move a point p ∈ P δ-close to some point of Q
with respect to the directed L1-Hausdorff distance is given by

Ip :=
⋃
q∈Q

{t ∈ T | ‖p+ t− q‖1 ≤ δ}.

Ip is the union of m squares of side length

a :=
√

2δ

of the same orientation. Recall that the vertices of G = (V,E) represent the
translations for the individual subshapes that are to be computed, and that
the edges of G encode which translations are required to be similar. A variant
of the following, which we refer to as Algorithm B, where only translations in
a fixed direction are allowed, was first introduced in [16] to decide the problem
under translations in a fixed direction for tree neighborhoods. The strategy
exploits the structure of G to decide the EGSM instance at hand. To simplify
the presentation, we associate the points of P with the vertex set V of G. If
v ∈ V is the vertex of G that represents the translation that is to be computed
for point p ∈ P we store the set Ip in v and refer to it also as Iv. In other
words, Iv contains all admissible translations for the graph ({v}, ∅).

Definition 2.3 Let Tv be a tree rooted in v and let p ∈ P be the point that
corresponds to the vertex v. We call a translation t admissible (for the vertex
v), if t is part of an admissible sequence of translations for Tv (where it is
assigned to p).

We will denote the L1-circle with radius δ centered in the origin by �.
We start by picking an arbitrary vertex r ∈ V and henceforth consider Tr, the
tree rooted in r. For an internal vertex v ∈ V let c(v)1, . . . , c(v)nv be the nv
children of v. For any vertex v ∈ V let Tv be the subtree of Tr with root v.

16 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

v, Iv

c(v)1
c(v)2

c(v)nv. . .

r r

v′, Iv′ = Iv
⋂nv
i=1 I

δ
c(v)i

Figure 2.1: Subtree Tv before and after updating v.

The algorithm that decides whether there is a set T of translations that satisfies
Equation (2.1) will be stated in detail below and has an iterative structure.
The basic idea is to propagate admissible translations bottom-to-top through Tr
by contracting a set of leaves with their common parent, while appropriately
merging the sets of admissible translations of all the vertices involved. Starting
with Tr, the algorithm chooses a vertex v, whose children are all leaves and
conceptually replaces Tv by a single vertex v′ that stores an adjusted set Iv′
of admissible translations, see Figure 2.1. The admissible regions of v and its
children are merged into Iv′ in such a way that Iv′ is not empty iff there exists
a set of translations that is admissible for Tv.

Moreover, if Iv′ 6= ∅, these translations can be computed from Iv′ and the sets
of admissible translations stored in the vertices of Tv. More concrete:

Algorithm 1 We are given the point sets P = {p1, . . . , pn} and Q =
{q1, . . . , qm}, a tree G = (V,E) and a parameter δ ≥ 0.

We pick an arbitrary vertex r ∈ V and henceforth consider Tr, the tree rooted
in r.

For an internal vertex v ∈ V let c(v)1, . . . , c(v)nv be the nv children of v. For
any vertex v ∈ V let Tv be the subtree of Tr with root v. In each iteration of
the algorithm, we call the tree from which a vertex is selected the current tree.

Every vertex v corresponds to a point p ∈ P . At start, the set

Iv = Ip =
⋃
q∈Q

{t ∈ T | ‖p+ t− q‖1 ≤ δ}

is stored in every node v of the tree.

17

In each iteration of the algorithm, a vertex v of the current tree is selected with
the property that all children of v are leaves or vertices which already have been
updated. Then, the admissible translations of v and those of the children of v
are merged into a new set of admissible translations that is stored in the new
vertex v′, the updated version of v. To compute the set Iv′ of admissible regions
for v′ we proceed as follows:

1. We inflate all regions Ic(v)i by δ for 1 ≤ i ≤ nv which results in a set

Iδc(v)i
:= Ic(v)i ⊕ �,

where ⊕ denotes the Minkowski sum operation. Note that inflating (a
shifted copy of) � by δ leads to a square with side length 2a, where a is
the side length of �.

2. We compute the admissible region Iv′ for the new vertex v′ as follows (see
Figure 2.2):

Iv′ =

(
nv⋂
i=1

Iδc(v)i

)
∩ Iv.

This process is repeated until one of the following cases occurs:

1. There is a vertex v with Iv = ∅ (after a contraction):
The process stops and no is returned as the answer to Problem 4.

2. The root r is updated and Ir′ 6= ∅:
The algorithm terminates and returns yes as the answer to Problem 4.

Theorem 2.4 Algorithm 1 is correct.

Proof. Algorithm 1 resembles Algorithm B for x-translations discussed in [16].
Hence we keep this proof short.
It is obvious that the algorithm terminates, hence it remains to prove the
correctness of the answer it returns. To this end we will show the following:
After every iteration of the algorithm the following holds: Let v be a vertex of
the tree that has been updated during the most recent iteration. If any t ∈ Iv
is chosen as the translation for v, then there are translations for all points of
Tv so that the answer to Problem 4 is yes with respect to the points in Tv. If
Iv = ∅, there is no admissible sequence of translations for Tv and the answer to
Problem 4 is no with respect to Tv.
We show this by induction on the number of updates #C of the algorithm.
The statement holds for #C = 0: Before any update is performed, for any leaf
v, the tree Tv only consists of one point v. Since no neighborhood constraints

18 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

Iv

Ic(v)1Iδc(v)1

Ic(v)2

Iδc(v)2

Iδc(v)3Ic(v)3

Iv′

v

c(v)1 c(v)2
c(v)3

Figure 2.2: Illustration of a contraction step of a vertex v with its children.
Vertex v is contracted with its three children c(v)1, c(v)2, and c(v)3.
Left: The resulting set Iv′ of admissible translations is the common intersection
of the inflated child-regions and Iv.
Right: The subtree Tv that is contracted to a single vertex v′.

have to be met, every point of Iv is admissible for the tree {{v}, ∅}, hence every
point of Iv is a witness for the fact that the answer to Problem 4 is yes subject
to the tree {{v}, ∅} and Iv 6= ∅.
Induction step: Let v be a vertex of the current tree which can be updated. By
induction, any translation t ∈ Ic(v)i 6= ∅ for a child c(v)i of v can be chosen, so
that there are translations for all vertices in the subtree of Tc(v)i in a way that
the similarity constraints in translation space as well as the distance constraints
in model space are met. Also, if Ic(v)i = ∅ for a child c(v)i of v, there is no
admissible sequence of translations for Tc(v)i . It immediately follows that there
is no admissible sequence of translations for Tv and the answer to Problem 4 is
no. Now we consider the case that Ic(v)i 6= ∅ for all children c(v)i of v. Then
for the vertex v′, the result of the contraction of vertex v, one of the following
holds:

1. Iv′ = ∅. This implies that there is at least one child c(v)i of v so that
for every t ∈ Iv, {t+ �} ∩ Ic(v)i = ∅, i.e., every translation that belongs

19

to an admissible sequence for Tc(v)i is more than δ-away from any t ∈ Iv.
Thus, the constraints on the translations induced by Tv cannot be met
and the answer to Problem 4 is no.

2. Iv′ 6= ∅. Then, for every t′ ∈ Iv′ , the following holds:

(a) By construction, we have t′ ∈ Iv, hence t′ will bring the point
corresponding to v δ-close to some point of Q.

(b) For all i ∈ {1, . . . , nv} : t′ ∈ Iδc(v)i
, implying that {t′+�}∩Ic(v)i 6= ∅.

This means that every admissible region Ic(v)i contains a translation
that is at most δ-away from t′ for any t′ ∈ Iv′ and i ∈ {1, . . . , nv}.

Note that this strategy also works if some of the translations are predefined,
i.e., for at least one node v, a translation t ∈ Iv is given as part of the input and
thus is a fixed part of any admissible sequence of translations for the EGSM
instance at hand. Then, some of the sets Iv do not contain a union of m objects,
but just a single translation.

The runtime of Algorithm 1 depends on the description complexity of the sets
of translations that are stored in each vertex before and after updating all
vertices in G. To analyze these sets, we need to introduce some notation and
basic lemmata.

Definition 2.5 Let B ⊂ R2 be a closed connected set. A closed set A ⊂ R2 is
called B-fat if every point a ∈ A can be covered by a translational copy of B
that is contained in A.

Lemma 2.6 The union of m regular k-gons of the same orientation has a
description complexity of O(km).

Proof. A set of regular k-gons of the same orientation is a collection of pseudo-
discs. According to [22], Theorem 2.2, the union of such m pseudo-discs has
description complexity O(km).

Definition 2.7 Let A be the union of a finite number of polygons. We call the
number of vertices on the boundary of A the description complexity of A.

Lemma 2.8 Let at some point of Algorithm 1 c(v)i with i ∈ {1, . . . , nv} be
the children of a vertex v that are all leafs of the current tree. Let every Ic(v)i

consist of mi vertices and edges for i ∈ {1, . . . , nv}. Then, the following holds:

1. The set Iv′ has description complexity

O(nv(nvm+
nv∑
i=1

mi)).

20 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

I
c (v)
δ

I
v

I
c (v)
δ ∩ I

v

2 a

2 a+ϵ

e
v

2 a−ϵ

I
v '

δ

I
v '
= I

c (v)
δ ∩ I

v4a

ϵ

e
v

8a−ϵ

Figure 2.3: Left: Edge ev is cut into pieces with different pairwise distances.
Right: Edges originating from edge ev in Iδv′ .

2. The set Iδv′ has description complexity O(nvm+
∑nv

i=1mi).

Proof. For now we assume that all vertices have pairwise different x- and
y-coordinates and that no edges overlap each other. Thus all connected compo-
nents of the sets that are computed during the algorithm consist of more than
one vertex and the number of vertices of these sets equals the number of their
edges, unless the set is empty. Hence it suffices to count the edges of these sets
in order to estimate their description complexity. We first consider the regions
that constitute Iv′ :

1. The set Iv is a union of m squares of the same size and orientation. Since
the pairwise union of two such squares has at most eight vertices, the
set Iv has at most 4m vertices and edges in total. Each square has edge
length a and so Iv has an area of at most a2m. The set Iδv consists of m
squares with edge length 2a and thus has an area of at most 4a2m.

2. Every Ic(v)i can be described by unions and intersections of shifted and
inflated versions of �. If c(v)i is a leaf of Tv, Ic(v)i has an area of at most
a2m. If it is an internal vertex of Tv, it is contained in the union of m
squares of area a2 and therefore also has an area of at most a2m. The set
Iδc(v)i

is the inflated version of Ic(v)i and so has an area of at most 4a2m.

Each set can be described by the sequence of its boundary edges along its
boundary where every edge is of one of four types: It can have a slope of ±1
and the interior of the set can either lie above or below the edge. Every edge in

21

I c(v)i
δ

I v

I c(v)i
δ

∩I v

a

a

ev

ec(v)i
s

*

Figure 2.4: Sets Iδc(v)1
(blue) and Iv with focus on edges ev and ec(v)1 .

Iv′ either originates from an edge of Iv or from an edge of Iδc(v)i
for a certain i.

Since the description complexity of Iv′ is bounded from above by the maximum
number of its boundary edges, we can count in how many parts the edges of
Iδc(v)i

and Iv can be split in order to determine its complexity.

The sets Iv and all Iδc(v)i
are obviously �-fat. Since Iv is a collection of m

pseudo-discs it has linear description complexity, see Lemma 2.6.
Part 1 of Lemma 2.8: Consider an arbitrary edge ev of Iv: ev can only be
intersected by edges of Iδc(v)i

that are orthogonal to ev, see Figure 2.3. Let ec(v)i

be such an edge intersecting ev in s. Since Iδc(v)i
is �-fat we can place a square

�∗ of side length a so that it has s on its boundary and is completely contained
in Iδc(v)i

. As ev has length a and �∗ has side length a, one endpoint of ev has
to be in �∗, see Figure 2.4. As a consequence, ev can be cut into at most two
pieces by edges of Iδc(v)i

. Since(
nv⋂
i=1

Iδc(v)i

)
∩ ev =

nv⋂
i=1

(ev ∩ Iδc(v)i
)

and the parts of ev that remain after intersection with Iδc(v)i
are pairwise disjoint

line segments, the maximum number of pieces of(
nv⋂
i=1

Iδc(v)i

)
∩ ev

22 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

is the sum of the number of pieces of all ev ∩ Iδc(v)i
, which is 2nv. Hence there

are at most 8nvm edges in Iv′ that originate from an edge of Iv.

Since Iv is �-fat, an edge of Iδc(v)i
of length l can be cut by Iv into at most 1+d l

a
e

disjoint pieces that remain as edges in Iv′ , see Figure 2.5. As every Iδc(v)j
with

i 6= j is �-fat as well, the same holds for intersecting Iδc(v)i
with some other Iδc(v)j

.

As Iδc(v)i
is �-fat and has an area of at most 4a2m, the sum of the lengths of all

I c(v)i
δ

I v

I v '=I c(v)i
δ

∩I v

a

a /4

5a /4

ec(v)i ev

Figure 2.5: The edge ec(v)1 during the intersection of Iδc(v)1
and Iv.

edges of Iδc(v)i
which are of the same type is less than 4a2m

a
= 4am. In order to

derive an upper bound on the number of edges in Iv′ that originate from edges
of Iδc(v)i

, we look at the worst case: We assume that Iδc(v)i
has mi− 4 very short

edges each of which causes at most two edges in Iv′ (since they generate many
edges without decreasing the total edge length of Iδc(v)i

so much) and four long
edges with length at most 4am, each of which causes at most 1 + 4m edges in
Iv′ . Therefore the maximum number of edges in Iv′ that originate from edges
of a certain Iδc(v)i

is nv(2mi + 16m − 4), which gives an upper bound on the

23

I
v '

I
v '

δ

a /4

a

e
c (v)

i

Figure 2.6: Illustration of inflating Iv′ .

number of edges in Iv′ of

8nvm+
nv∑
i=1

nv(2mi + 16m− 4)

= 8nvm+ n2
v(16m− 4) + nv

nv∑
i=1

mi

= 4n2
v(4m− 1) + nv(8m+

nv∑
i=1

mi). (2.2)

Part 2 of Lemma 2.8: Let e′c(v)i
and e′′c(v)i

be two edges in Iv′ which originate

from the same edge ec(v)i of Iδc(v)i
. Inflating Iv′ by δ under the L1-norm amounts

to adding a shifted version of � centered at all points of its boundary since
Iδv′ = Iv′ ⊕ �. Let ev be a certain boundary edge of Iv′ . The boundary edge e′v
of Iδv′ that originates from ev will be shifted parallel by an amount of a

2
and

will be extended by a
2

at both ends. Therefore in Iδv′ e
′
c(v)i

and e′′c(v)i
will merge

into one edge if they are no more than a apart in Iv′ (the same arguments

24 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

hold for edges of Iv), see Figure 2.6. This fact implies that every edge of Iδc(v)i

with length l can cause at most d l
a
e edges in Iδv′ and every edge of Iv can cause

at most one edge in Iδv′ , no matter into how many pieces it has been divided
during the last intersection step.

We again use the fact that Iδc(v)i
is �-fat and covers an area of at most 4a2m:

The largest number of edges in Iδv′ that originate from edges of Iδc(v)i
is achieved

when Iδc(v)i
has mi − 4 short edges (since they generate many edges without

decreasing the total edge length of Iδc(v)i
so much), each causing at most one

edge in Iδv′ and four long edges of length at most 4am, each causing up to 4m
new edges.

Summing up over all these edges results in at most mi − 4 + 16m edges that
arise from edges of Iδc(v)i

for every 1 ≤ i ≤ nv and 4m edges from Iv in Iδv′ .

Hence the maximum number of edges in Iδv′ is

4nv(4m− 1) + 4m+
nv∑
i=1

mi. (2.3)

Dropping the general position assumption for the vertices of Ic(v)i and Iv has
the effect that close by or overlapping edges of the same type may merge during
the process, which only decreases the largest possible length of edges in the
above arguments. Also, there may be some connected components that consist
of one vertex. However, they can be seen as rectangles with very small edge
length in general position, hence this also does not increase the description
complexity. Overall, the description complexity of all sets involved is bounded
from above by the description complexity of the corresponding sets in general
position.

We can now state the runtime of Algorithm 1 for EGSM instances under the
directed L1-Hausdorff distance:

Theorem 2.9 Problem 4 can be decided in O(n2m(logm+ log n)) time under
the directed L1-Hausdorff distance for neighborhood graphs that are trees (also
when reporting a witness for a yes-instance).

Proof. The first step of Algorithm 1 is to compute the regions Ip for all p ∈ P ,
the initial admissible translations stored in the vertices of G. These sets are
represented by the boundary edges of squares centered in q − p for each q ∈ Q.
It takes O(m) time to determine Ip for a fixed p. Since the squares form a
collection of pseudo-discs their union has description complexity O(m) and can
be computed in O(m logm) time [16, Lemma 2].

25

Let Tv be a subtree of Tr (v 6= r) consisting of kv vertices. We let Algorithm 1
run on this subtree until it stops or vertex v has been contracted to a new vertex
v′ and the resulting set Iv′ has been inflated to Iδv′ . According to Equation (2.3)
of Lemma 2.8, the maximum number of edges describing set Iδv′ is given by

4nv(4m− 1) + 4m+
nv∑
i=1

mi

= 4m+
nv∑
i=1

(4(4m− 1) +mi)

where nv is the number of children of v and mi is the maximum number of
edges describing Ic(v)i . We can repeatedly apply Equation (2.3) until we get
to the sets stored in the leaves of Tv which consists of 4m edges at most. By
doing so, we see that every vertex of Tv adds 4m+ 4(4m− 1) to the maximum
number of edges describing set Iδv′ . Hence the term above can be simplified to

4m+
kv−1∑

1

(4(4m− 1) +mi)

≤ 4(kv − 1)(4m− 1) + 4mkv

= 4kv(5m− 1)− 4(4m− 1),

Hence the set Iδv′ has description complexity O(kvm).

Each of the nr children of the root r is the root of a subtree Tc(r)i containing
kc(v)i vertices for 1 ≤ i ≤ nr. Running Algorithm 1 on Tc(r)i and inflating the
admissible regions of its root c(r)i results in a set Iδc(r)′i

of translations. The

set Iδc(r)′i
is �-fat and has description complexity O(kc(v)im) due to Lemma 2.8,

part 2.

After the last step of the algorithm, according to Equation (2.2), the maximum
number of edges describing the set of admissible translations stored in r is

4n2
r(4m− 1) + 2nr(4m+

nr∑
i=1

mi)

(2.3)
= 4n2

r(4m− 1) + 2nr

(
4m+

nr∑
i=1

(
4kc(v)i(5m− 1)− 4(4m− 1)

))
= 4n2

r(4m− 1) + 8nrm+ 2nr

nr∑
i=1

4kc(v)i(5m− 1)− 2n2
r4(4m− 1).

26 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

Since
∑nr

i=1 kc(v)i = n− 1 this can be simplified to

4n2
r(4m− 1) + 8nrm+ 8nr(n− 1)(5m− 1)− 2n2

r4(4m− 1)

= 4nr((nr + 2)(1− 4m) + 2n(5m− 1)).

So the description complexity of the set of translations stored in r after the
last step of the algorithm is O(n2

rm+ nrnm) = O(n2m).

Adding up the time that is required to carry out the union/intersection opera-
tions to compute the intermediate admissible translations Iv′ for all vertices v
of Tr gives the total runtime of the algorithm.

Iv′ has complexity O(n2
vm+ nvnm) (where nv is the number of children of v),

as each Iδc(v)i
has description complexity O(nm).

Adding up the sizes of these sets over all vertices v of Tr for which these
admissible translations are computed during the algorithm results in a total
complexity of O(n2m). The overall runtime that has to be spent in each vertex
to perform the union/intersection operations on sets of size O(n2

vm+ nvnm)
can be bounded from above by considering the respective runtime for a set of
total size O(n2m). By using a simple sweep line argument we can carry out
these operations in O(n2m(logm+log n)) time. Since in case of a yes-instance,
the actual set Ir′ is computed by using a bottom-to-top strategy and thus
computing Iv′ and Iδv′ for all vertices v of Tr along the way, we can conclude
that the total runtime of the algorithm is O(n2m(logm+ log n)).

Note that a witness for a yes-instance can easily be computed without changing
the runtime of the algorithm by picking a translation from Ir′ and computing a
sequence of admissible translations top-to-bottom from there using the already
computed sets of admissible translations for the respective subtrees of Tr.

It is easy to see that all results and arguments stated in this section also
hold when considering the L∞-norm instead of the L1-norm. The squares that
constitute the admissible regions stored in the vertices of Tr at the start of
Algorithm 1 differ slightly from the ones in the L1-case (they are rotated by
2−1π and their size differs by a constant factor). However, the algorithm and
the runtime analysis also hold for instances under the L∞-norm.

On Lower Bounds

Although we do not know if the upper bounds given in Lemma 2.8 on the
complexity of each Iv′ and Iδv′ are tight, the following example shows that the
bound given in Theorem 2.9 on the sum of the complexities of the sets Iδv′ and
Ir′ actually is.

27

Example 2.10 Let G be a path and let the points of Q be placed as indicated
in Figure 2.7, so that Iv is of the shape indicated in Figure 2.8: (m− 2) squares
form a “staircase” with steps (which consist of two vertices) of length and height

a
n(m−2)

framed by one more square on each side.

p1

p2

p3

p4

q1 q6

q2, . . . , q5

v3

v2

v1

v4(root)

G

Figure 2.7: Example of the sets P (red), Q (black) and neighborhood graph G
(blue) for n = 4 and m = 6.

As a result, the boundary of Iv consists of more than 2(m−2) vertices. Inflating
Iv by δ does not change the size of the staircase and all Iv have the same
geometric structure since they are translational copies of each other.

Let the points of P be placed so that the staircases of Iv and Iδc(v) for each

vertex v of G are connected (and form one continuous staircase). As Figure 2.9
illustrates, the squares framing the staircase ensure that the staircases of Iv
as well as Iδc(v) are part of their intersection. As a result (m − 2) steps are
added to the staircase in each step of Algorithm 1 and the boundary of the set
of admissible translations stored in the i-th vertex of the path consists of more
than 2i(m− 2) vertices after updating. Finally in last step of the algorithm a
staircase that consists of n(m− 2) stairs is generated and therefore the total
complexity of all these boundaries is Ω(n2m).

28 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

staircase

staircase

Iv

Iδv

Figure 2.8: The sets Iv (black) and Iδv (green) for the point sequences given in
Figure 2.7.

2.3 Elastic Geometric Shape Matching under

Polygonal Norms

In many elastic shape matching applications, the L2-Hausdorff distance seems
to be a more natural measure than the L1-Hausdorff distance. A very similar
strategy, i.e., computing, inflating and propagating admissible regions from
bottom-to-top, can be applied to decide Problem 4 in this setting. However,
inflating regions with an L2-disk by computing the Minkowski sum instead of
an L1-disk may increase the complexity of the respective regions. In this setting,
admissible regions form an alternating sequence of circular arcs and vertices
in which two arcs meet. When inflating an admissible region by computing
its Minkowski sum with an L2-disk the radii of the original arcs increase and
vertices become arcs. Hence, the complexity of a region might double, see
Figure 2.10. Although we have not been able to prove this, we expect that
the complexity of the root, i.e., one end vertex of a path, becomes exponential
when regions are propagated and doubled in each step along a path. For a
more detailed discussion of the matter, see Section 5.3.

2.3. EGSM under Polygonal Norms 29

Iv

Iδc(v)

Iv′ = Iv ∩ Iδc(v)

Figure 2.9: The sets Iδc(v) (green) and Iv (black) with m− 2 stairs each and Iv′

(grey area).

Approximating the L2-case

Since an L1-disk of radius δ is contained in an L2-disk of that radius, we can
use Algorithm 1 to approximate the Euclidean setting:

Corollary 2.11 Algorithm 1 gives a
√

2-approximation for Problem 4 with the
same settings under the L2-norm.

Approximating here means that if δoptL1
is the optimal (smallest, i.e., the value

that permits a yes-instance in Problem 4) value of δ in the L1 setting, the
optimal value δoptL2

in the Euclidean setting is bounded by

δoptL2
≤ δoptL1

≤
√

2 δoptL2
.

It is easy to see that, when the unit disk of the underlying metric is a regular
polygon, the complexity of the admissible regions stored in the vertices of
the graph at hand does not differ by more than a constant factor from the
complexity of the admissible regions in for the same EGSM instance under the
L1-norm. This allows us to improve upon the approximation factor: Let P2b

(b ∈ N, b ≥ 2) be a regular polygon with 2b vertices, centered at the origin with
radius 1 (where radius means the distance between the center and a vertex

30 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

Iv

Iδv

δ

δ

Figure 2.10: Illustration of an initial (Iv) and inflated set (Iδv) of admissible
translations under the L2-norm. Iv consists of three arcs, as it is the intersection
of three discs of radius δ. Iδv consists of six arcs: The arcs in blue correspond
to arcs of Iv, arcs in red are centered in vertices of the boundary of Iv.

of the polygon), see Figure 2.11. P2b is centrally-symmetric as it has an even
number of vertices and induces a norm and hence a metric to which we refer as
the LP2b

-metric (see [23]).

For a point c ∈ R2 and r ∈ R+, let P2b(c, r) be the P2b disk centered in c with
radius r.

We can state a version of Algorithm 1 under the LP2b
-metric:

Algorithm 2 We are given the point sets P = {p1, . . . , pn} and Q =
{q1, . . . , qm}, a tree G = (V,E), a parameter δ ≥ 0 and an integer b > 0.

We pick an arbitrary vertex r ∈ V and henceforth consider Tr, the tree rooted
in r.

For an internal vertex v ∈ V let c(v)1, . . . , c(v)nv be the nv children of v. For
any vertex v ∈ V let Tv be the subtree of Tr with root v. In each iteration of
the algorithm, we call the tree from which a vertex is selected the current tree.

2.3. EGSM under Polygonal Norms 31

Figure 2.11: P16 with radius r.

Every vertex v corresponds to a point p ∈ P . At start, the set

Iv = Ip =
⋃
q∈Q

{t ∈ T | ‖p+ t− q‖P2b
≤ δ},

where ‖ · ‖P2b
denotes the LP2b

-norm, is stored in every node v of the tree.
In each iteration of the algorithm, a vertex v of the current tree is selected with
the property that all children of v are leaves or vertices which already have been
updated. Then, the admissible translations of v and those of the children of v
are merged into a new set of admissible translations that is stored in the new
vertex v′, the updated version of v. To compute the set Iv′ of admissible regions
for v′ we proceed as follows:

1. We inflate all regions Ic(v)i by δ for 1 ≤ i ≤ nv which results in a set

Iδc(v)i
:= Ic(v)i ⊕ P2b.

2. We compute the admissible region Iv′ for the new vertex v′ as follows (see
Figure 2.2):

Iv′ =

(
nv⋂
i=1

Iδc(v)i

)
∩ Iv.

32 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

This process is repeated until one of the following cases occurs:

1. There is a vertex v with Iv = ∅ (after a contraction):
The process stops and no is returned as the answer to Problem 4 under
the directed LP2b

-Hausdorff distance.
2. The root r is updated and Ir′ 6= ∅:

The algorithm terminates and returns yes as the answer to Problem 4
under the directed LP2b

-Hausdorff distance.

Lemma 2.12 Given c1, . . . , cn ∈ R2, r1, . . . , rn ∈ R+, 2 ≤ b ∈ N, let

F :=
n⋂
i=1

P2b(ci, ri).

The following holds:

1. The region F has description complexity O(b).
2. The Minkowski sum F ⊕ P2b has description complexity O(b).

Proof. The boundary of each P2b(ci, ri) consists of 2b edges. Each edge has a
different oriented slope and the order in which they occur along the boundary
is fixed. Since all polygons are translated copies of each other, F consists of
edges with at most 2b differently oriented slopes. Since F is constructed by
intersecting different convex P2b polygons, it is convex and its boundary consists
of a subset of the initial boundary edges (or parts of edges) of the involved
polygons P2b. As each slope can be present at most once in the boundary of F ,
the description complexity of F is O(b).
Since the Minkowski sum of two convex figures is convex and both, the boundary
of F and P2b, consist of edges with 2b different oriented slopes in total, the
description complexity of F ⊕ P2b is at most 2b.

Theorem 2.13 Problem 4 can be decided in O(bn3m2(logm + log n + log b))
time under the directed LP2b

-Hausdorff distance for neighborhood graphs that
are trees (also when reporting a witness for a yes-instance).

Proof. We use Algorithm 2. First one has to compute the sets Ip = {P2b(q −
p, δ) | q ∈ Q} for all p ∈ P in O(bm) time each. Since the polygons form a
collection of pseudo-discs, their union has description complexity O(bm) and
can be computed in O(bm(logm+ log b)) time. Each set Ip is represented by
the sequences of line segments that define its boundaries, which can be stored
in, e.g., a doubly connected edge list.
Intersecting nm convex objects gives at most n2m2 new objects. At the
beginning there are O(nm) polygons with description complexity O(b) each,

2.3. EGSM under Polygonal Norms 33

since each set Ip consists of m polygons. According to Lemma 2.12, inflating
one of these polygons or a fragment (i.e., a set formend by their intersection)
does not change its description complexity. Hence the complexity of the
resulting region after intersecting and joining the initial regions one-by-one
is bounded by O(bn2m2). In particular this means that each of the sets Ip in
any iteration of the algorithm can be described by O(bn2m2) vertices or line
segments. Intersecting or joining two sets of polygons of size O(bn2m2) can be
done with a sweep line algorithm in O(bn2m2(logm+ log n+ log b)) time.
There are n union operations (once for each initial Ip). Since there are n
vertices in the neighborhood graph, there are at most n intersection operations.
Hence the algorithm takes O(bn3m2(logm+ log n+ log b)) time in total.

Approximating the Optimization Version

Problem 4 can easily be changed into an optimization problem. Then, one
seeks the smallest δopt such the corresponding EGSM instance is a yes-instance
for all δ ≥ δopt and a no-instance for all δ < δopt. By substituting L2-discs by
a regular polygon, the optimization version of Problem 4 for the L2-norm can
be approximated, since∣∣∣‖x‖2 − ‖x‖P√k

∣∣∣
‖x‖2

=

(
1 +

1

O(k)

)
A careful analysis gives the following:

Lemma 2.14 Given an integer k ≥ 2, the result of the optimization version

of Problem 4 under the P2b-norm for b =
⌈
π
4

√
2(k + 1)

⌉
gives a

(
1 + 1

k

)
-

approximation for the optimization version of Problem 4 with the same settings
under the L2-norm.

Proof. Let δoptP2b
be the optimal (smallest) value in the P2b setting and δoptL2

be the
optimal value in the Euclidean setting. As the values are as small as possible,
some of the valid translations t ∈ T are forced to be on the boundary of the
L2 respectively P2b disks or arcs, thus it is sufficient to analyze this extreme
setting.
Since the L2-disk with radius δoptL2

is the circumcircle of the P2b-disk with radius

δoptL2
, the inequality

δoptL2
≤ δoptP2b

holds.
Moreover, the smallest L2-disk that still touches the boundary of a P2b-disk
with radius δoptP2b

is obviously its in-circle. So the radius of the in-circle of a

34 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

P2b-disk with radius δoptP2b
is also a lower bound for δoptL2

. The value δoptL2
can be

expressed as a function of δoptP2b
using the cosine rule: A segment of the polygon

formed by its center and two adjacent vertices is also an isosceles triangle with
angle α = π

b
opposite to its base, see Figure 2.12. Its bisecting line has length

π
b

Figure 2.12: A segment of a polygon formed by its center and two adjacent
vertices with angle π

b
opposite to its base.

δoptL2
, thus

δoptL2
≥ δoptP2b

· cos
(π

2b

)
.

Writing the cosine as power series leads to

δoptL2
≥ δoptP2b

·
∞∑
n=0

(−1)n
π2n

(2b)2n · (2n)!

= δoptP2b
·
∞∑
n=0

(
(−1)2n π4n

(2b)4n · (4n)!
+ (−1)2n+1 π4n+2

(2b)4n+2 · (4n+ 2)!

)
= δoptP2b

·
∞∑
n=0

(
π4n

(2b)4n · (4n)!
− π4n+2

(2b)4n+2 · (4n+ 2)!

)
= δoptP2b

·
∞∑
n=0

π4n((4n+ 2)(4n+ 1)4b2 − π2)

(2b)4n+2 · (4n+ 2)!

Since b ≥ 1,

π4n((4n+ 2)(4n+ 1)4b2 − π2) > 0,

2.4. On Possible Modifications 35

and thus

δoptL2
≥ δoptP2b

·
∞∑
n=0

π4n((4n+ 2)(4n+ 1)4b2 − π2)

(2b)4n+2 · (4n+ 2)!

≥ δoptP2b
·

0∑
n=0

π4n((4n+ 2)(4n+ 1)4b2 − π2)

(2b)4n+2 · (4n+ 2)!

= δoptP2b
·
(

1− π2

8b2

)
⇔ δoptP2b

≤
(

1− π2

8b2

)−1

· δoptL2
.

Choosing b =
⌈
π
4

√
2(k + 1)

⌉
finally results in

δoptP2b
≤
(

1 +
1

k

)
· δoptL2

,

which proofs the statement.

In other words, Algorithm 2, or A2 in short, gives a
(
1 + 1

k

)
-approximation

for the optimization version of Problem 4 with the same settings under the
L2-norm by approximating every L2-disk with a regular polygon with O(

√
k)

vertices. This algorithm will be also used in Chapter 4.

2.4 On Possible Modifications

Problem 4 is a restricted instance of the general EGSM framework, where, e.g.,
different translation classes and objectives are also discussed, see Section 1.4.
We want to briefly mention two aspects of the general formulation that are not
present in Problem 4 but that can easily be incorporated into the algorithms
that are discussed so far.

1. The objective. Minimizing the maximum of two distances, one between
pattern and model and one in translation space, results in an equilibrium
of the two, i.e., for the smallest value of δ that permits a yes-instance we
have that both distances will be equal to δ. Depending on the application
at hand, it might be reasonable to weigh these two aspects differently.
Algorithm 1 can incorporate this by using different radii for the initial
admissible translation discs and for the discs of the inflation step.

36 Chapter 2. Deciding EGSM for Trees for the directed L1-Hausdorff dist.

2. The neighborhood graph. In Problem 4 the graph G that encodes
the similarity constraints on the translations is a tree without weights.
By putting weights on the edges, it is possible to specify how similar two
translations have to be. By putting weights on the vertices, it is possible
to encode how well the respective subshape of the pattern has to match
the model (this allows different directed Hausdorff distances for different
subshapes). Both variants can be incorporated into the algorithm, again
by simply using discs of different radii for each individual vertex and edge
of the neighborhood graph.

In all these cases, the proof of correctness in Theorem 2.4 can easily be adapted
for the modified algorithm. However, the runtime analysis of Algorithm 1
relies on upper bounds on the combinatorial complexity of certain geometric
structures that are constructed by the algorithm. These bounds, amongst other
things, depend on the fact that central building blocks used by the algorithm
have the same size. This is crucial for Lemma 2.8, where upper bounds on
description complexity of admissible regions that appear during Algorithm 1
are given. Since this is no longer true in the modified algorithm(s), we do not
have (non-trivial) bounds for the runtime of these variants.

Chapter 3

An FPTAS for an Elastic Shape
Matching Problem with Cyclic
Neighborhoods

In Chapter 2 we considered a variant of the problem for trees under the L1-,
the L∞-norm and under polygonal norms, and presented a polynomial time
algorithm that gives a (1 + ε)-approximation to the optimization variant of the
same problem under the L2-norm. However, if the neighborhood graph contains
at least one cycle, the strategy of the algorithms introduced in Chapter 2 does
not work and at this point there are no results regarding problem instances
where the neighborhood graph contains cycles. In particular, there is no
literature that deals with efficient exact or approximation algorithms for EGSM
instances where G contains a cycle. Moreover, we do not know if the problem
is NP-hard.
In the following we focus on Problem 3 for neighborhood graphs that are simple
cycles under the Euclidean 1-to-1-distance and provide an FPTAS for this
problem. It is also possible to return a valid sequence of translations without
increasing the runtime. The results of this chapter are stated in R2 can also be
extended to Rd for any d ∈ N with d > 2.
This research has been published in [A39].

3.1 Problem Statement

In the following ‖ · ‖ denotes the L2-norm in R2. Also, all index arithmetic is
modulo n.
We consider the following variant of the EGSM problem:

38 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

Problem 5 Given:

P = (p0, . . . , pn−1) a sequence of points (the pattern) and

Q = (q0, . . . , qn−1) a sequence of points (the model).

Find: A sequence of translations T = (t0, . . . , tn−1), so that the function

γ(T, P,Q) := max

(
max
0≤i<n

‖qi − (pi + ti)‖, max
0≤i<n

‖ti − ti+1‖
)

is minimized.

The neighborhood graph is given implicitly through the constraints on the
translations, which form a simple cycle. Note that in this chapter we name the
points of pattern and model starting with index 0 instead of 1 since this allows
us to simplify the presentation using all index artihmetic modulo n.

Measuring the distance of the points (ti + pi) and qi in model space is the same
as measuring the distance of the points ti and qi− pi in translation space. This
is why Problem 5 can be studied in translation space entirely:
Let

ci := qi − pi for 0 ≤ i < n and

C := (c0, . . . , cn−1).

The function γ(T, P,Q) can be rewritten as

γ(T,C) := max

(
max
0≤i<n

‖ci − ti‖, max
0≤i<n

‖ti − ti+1‖
)
.

We refer to translations in translation space, i.e., translations, simply as points.
First, we introduce some notation:

Notation 3.1 Let c, u, v ∈ R2 and r > 0.

1. Dr(c) denotes the disk with radius r centered in c and ∂Dr(c) denotes its
boundary.

2. We define

Ir(c, u, v) := Dr(c) ∩Dr(u) ∩Dr(v).

Notation 3.2 For a given sequence C = (c0, . . . , cn−1), we define

δ∗ := min
T
γ(T,C).

3.2. The Algorithm 39

Definition 3.3 We call a sequence of translations T = (t0, . . . , tn−1) δ-admissi-
ble (for C), iff γ(T,C) ≤ δ. A sequence that is δ∗-admissible is called an
optimal sequence. We will use the symbol T ∗ to denote an optimal sequence.
A translation t is called (δ, i)-admissible (for C), iff there is a δ-admissible
sequence T = (t0, . . . , ti = t, . . . , tn−1).

Strictly speaking, δ∗ and the concept of δ-admissibility depend on C, but since
C is part of the input and does not vary throughout the subproblems, we
refrain from including C in the notation.

3.2 The Algorithm

Observe that there is a simple 3-approximation to δ∗:

Notation 3.4 We define
δ(3) := γ(C,C).

Lemma 3.5 C gives a 3-approximation to δ∗, i.e.,

δ(3) ≤ 3δ∗.

Proof. The sequence C is δ(3)-admissible by construction. Consider an optimal
sequence T ∗ = (t∗0, . . . , t

∗
n−1). Since ‖ci − t∗i ‖ ≤ δ∗, ‖t∗i − t∗i+1‖ ≤ δ∗ and

‖ci+1 − t∗i+1‖ ≤ δ∗, it follows that ‖ci − ci+1‖ ≤ 3δ∗ for all 0 ≤ i < n, and as a
consequence

δ∗ = γ(T ∗, C) ≥ 1

3
max
0≤i<n

‖ci − ci+1‖ =
1

3
γ(C,C) =

1

3
δ(3).

Lemma 3.5 is the basis for the construction of our FPTAS, since it implies that
every (δ∗, 0)-admissible point lies within the disk Dδ(3)(c0). A simple way to
get a (1 + ε)-approximation to δ∗ for some ε > 0 is to sample t0 from a dense
enough εgrid-grid, e.g., a grid where the distance between samples is at most
εgrid that covers Dδ(3)(c0). We call the points of this grid translation-samples.
Here, εgrid = Θ

(
εδ(3)

)
, so the grid consists of Θ(ε−2) points. We also sample

the value δ of the objective function on the interval [1
3
δ(3), δ(3)] with sample-

distance εobj = Θ
(
εδ(3)

)
. We call the samples on [1

3
δ(3), δ(3)] radius-samples,

see Figure 3.1. We then test for every radius-sample δ, whether there exists a
solution T ′ so that γ(T ′, C) ≤ δ and a translation-sample is the 0th component
of T ′. This test is a variant of a problem that has already been studied in [16],
where the authors give an algorithm, which we refer to as Algorithm B, that

40 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

c0

c1

c2

c4 c3

δ(3)

Figure 3.1: For a given set C = (c0, . . . , c4) and radius-sample δ(3), t0 is sampled
from a grid that covers the disk Cδ(3)(c0).

solves this problem for paths and the case that only translations in a fixed
direction are allowed in O(n2 log n) time. We use a slightly modified version
of Algorithm B, see Section 3.3. Consequently, this simple FPTAS runs in
O (ε−3n2 log n) time.

This result can be improved in several ways. The first obvious improvement
is to perform a binary search on [1

3
δ(3), δ(3)], which improves the run-time to

O ((log ε−1) ε−2n2 log n).

The second idea is based on Lemma 3.8 below, which says that for every δ ≥ δ∗,
there is a δ-admissible sequence T containing a point ti that lies on ∂Dδ(ci) for
some i. Consequently, we do not have to sample the whole disk Dδ(3)(ci) for
the current radius-sample δ, but to only sample ∂Dδ(ci). Unfortunately, there
is no way to identify the disks (the ci) with this property, hence it is no longer
possible to pick an arbitrary disk and sample it, but we have to sample the
boundary of all disks. This changes the run-time to O ((log ε−1) ε−1n3 log n).
Of course, this is only an improvement if ε−1 � n. On the other hand, this
strategy enables us to apply another modification: We can approximate each
∂Dδ(ci) by a regular polygon with O

(
ε−1/2

)
vertices, see Figure 3.2. Due to the

convexity of the problem, we can then perform a binary search on the edges of

this polygon and get an FPTAS that runs in O
(
ε−1/2 (log ε−1)

2
n3 log n

)
time.

This gives us the following tradeoff between precision and input size:

3.3. A Detailed Description of the Algorithm 41

c0

c1

c2

c4 c3

δ(3)

Figure 3.2: For a given set C = (c0, . . . , c4) and different radius-samples
δ ∈ [3−1δ(3), δ(3)], t0 is sampled from the boundary of inscibing polygons of
Cδ(c0).

Theorem 3.6 We can compute a (1 + ε)-approximation to δ∗ in

O
((

log ε−1
)
ε−2n2 log n

)
time and in

O
(
ε−1/2

(
log ε−1

)2
n3 log n

)
time.

Since it is clear how to implement the approximation when sampling the interior
of Dδ(3)(c0), we elaborate on the improvements of the second strategy.

3.3 A Detailed Description of the Algorithm

First, we state the actual algorithm:

Algorithm 3 We are given a sequence of points C = (c0, . . . , cn−1) and an
ε > 0.
For every index 0 ≤ i < n, we repeat the following strategy:
We sample the value δ of the objective function by performing a binary search
on the interval [1

3
δ(3), δ(3)] up to accuracy εobj = Θ

(
εδ(3)

)
.

For every radius-sample δ, we approximate ∂Dδ(ci) by an inscribing regular
polygon with O

(
ε−1/2

)
vertices and sample the translation ti from the boundary

of the polygon by performing a binary search on every of its edges up to accuracy
εedge = Θ

(
εδ(3)

)
.

42 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

ti−1

ti+1

ci
t∗i

∂Dδ∗(ci)

δ∗

δ∗

δ∗

Figure 3.3: Illustration of the key-point t∗i , a (δ∗, i)-admissible point of T ∗ =
(t∗0, . . . , t

∗
n−1) with Iδ∗(ci, t

∗
i−1, t

∗
i+1) = {t∗i } and t∗i ∈ ∂Dδ∗(ci).

We test for every pair of radius-sample δ and translation-sample ti, whether
there exists a solution T ′ so that γ(T ′, C) ≤ δ and the translation-sample ti is
the ith component of T ′. This test, called Algorithm 4, is a variant of Algorithm
B, and is elaborately described in Section 3.3.

On (δ, i)-Admissible Points

The reason why it suffices to sample the boundaries of all disks rather than
sampling the interior of one disk with a grid is that any optimal solution T ∗

contains a key-point :

Definition 3.7 A (δ∗, i)-admissible point t∗i of T ∗ = (t∗0, . . . , t
∗
n−1) is called a

key-point, iff Iδ∗(ci, t
∗
i−1, t

∗
i+1) = {t∗i } and t∗i ∈ ∂Dδ∗(ci), see Figure 3.3.

Lemma 3.8 For every optimal sequence T ∗ = (t∗0, . . . , t
∗
n−1), there is an index

0 ≤ i < n so that t∗i is a key-point.

Before we can prove Lemma 3.8, we need to consider certain characteristics of
δ-admissible sequences T = (t0, . . . , tn−1). Each of the points ti of T appears
in exactly three of the constraints induced by γ(T,C):

‖ti − ci‖ ≤ δ,

‖ti − ti−1‖ ≤ δ and

‖ti − ti+1‖ ≤ δ.

(3.1)

3.3. A Detailed Description of the Algorithm 43

for all 0 ≤ i < n. These constraints on ti can be interpreted as disks of radius
δ centered in ti−1, ti+1 and ci. Consequently ti needs to lie in the common
intersection Iδ(ci, ti−1, ti+1) of these three disks, see Figure 3.4.

ti−1

ti+1

δ

δ

δ

ci
ti

Figure 3.4: The set Iδ(ci, ti−1, ti+1) is the intersection of Dδ(ci), Dδ(ti−1) and
Dδ(ti+1). The three constraints of (3.1) in which ti appears, are visualised by
fat line segments. They are not tight, which is indicated with dashed lines.

Proposition 3.9 Let T = (t0, . . . , tn−1) be a δ-admissible sequence. The set
Iδ(ci, ti−1, ti+1) consists of exactly one point ti iff one of the following cases
holds:

1. The intersection of two of the three disks Dδ(ci), Dδ(ti−1) and Dδ(ti+1)
consists of one point, i.e., ti, that in turn lies inside the third disk.
Therefore ti lies on the midpoint of the line segment between the centers of
the first two disks, see Figure 3.5. In this case we call ti a segment-type
point.

2. The intersection between any two of the three disks Dδ(ci), Dδ(ti−1) and
Dδ(ti+1) consists of more than one point, but the intersection of all three
is one point, i.e., ti, and ti lies in the interior of the triangle with vertices
ci, ti−1 and ti+1. In this case, we call ti a point-type point.

Proof of Proposition 3.9. “⇐”: trivial.
“⇒”: The set Iδ(ci, ti−1, ti+1) is the intersection of three disks. Since
Iδ(ci, ti−1, ti+1) = {ti}, either the intersection of two of the three disks consists
of only one point, which equals Part 1, or none of the intersections of two
of three disks consists of one point, but the intersection of all three does. In

44 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

ti−1

ti+1

δ

ci ti

δ

δ

Figure 3.5: The set Iδ(ci, ti−1, ti+1) consists of one point. The solid fat lines
indicate tight constraints.

the latter case, ti is equally far from ci, ti−1 and ti+1, which implies that ti is
the circumcenter of the triangle with vertices ci, ti−1 and ti+1. Suppose ti lies
outside this triangle; this means that the triangle is obtuse. Let w.l.o.g. the
obtuse angle be at ci, so ti and ci are on opposing sides of the line segment
ti−1ti+1, see Figure 3.6. Let t′i be the midpoint of ti−1ti+1, so ti 6= t′i. Then t′i is
closer to ci, ti−1 and ti+1 than ti, which implies that t′i is (δ, i)-admissible, so
t′i ∈ Iδ(ci, ti−1, ti+1), which is a contradiction.

With this, we can now prove Lemma 3.8:

Proof of Lemma 3.8. Observe that for every sequence T = (t0, . . . , tn−1) and
for all 0 ≤ i < n, the set Iδ(ci, ti−1, ti+1) is the intersection of three disks and
thus (the boundary of) Iδ(ci, ti−1, ti+1) has a characteristic structure that either
resembles a triangle, a lens, or a point. For easier referencing, we associate the
different kinds of structures Iδ(ci, ti−1, ti+1) may have with its appearance. We
differentiate between three different kinds of structures:

1. The boundary of Iδ(ci, ti−1, ti+1) consists of three circular arcs that are
connected by vertices. We call this shape triangle-shape.

3.3. A Detailed Description of the Algorithm 45

ti−1

ti+1

ci
ti

t′i

δ

δ

δ

Figure 3.6: Illustration the obtuse triangle between ci, ti−1 and ti+1 (solid lines)
constructed during the proof of Proposition 3.9.

2. The boundary of Iδ(ci, ti−1, ti+1) consists of two circular arcs that are
connected by vertices. We call this shape lens-shape.

3. The set Iδ(ci, ti−1, ti+1) consists of one point. We call this shape point-
shape.

Let T ∗ = (t∗0, . . . , t
∗
n−1) be an optimal sequence.

For the sake of contradiction, we assume that none of the constraints of (3.1)
are tight for T ∗. As a consequence, δ∗ can be reduced by

min

(
min

0≤i<n
(δ∗ − ‖ci − t∗i ‖) , min

0≤i<n

(
δ∗ − ‖t∗i − t∗i+1‖

))
,

which is a contradiction to the optimality of δ∗. Consequently, every T ∗

contains at least one (δ∗, i)-admissible point that is involved in at least one
tight constraint in (3.1).
Suppose that every point of T ∗ occurs in at most two tight constraints in (3.1)
and that Iδ∗(ci, t

∗
i−1, t

∗
i+1) has either triangle- or lens-shape for every index

0 ≤ i < n. Then for every 0 ≤ i ≤ n − 1, the point t∗i lies either in the
interior of Iδ∗(ci, t

∗
i−1, t

∗
i+1) or on a circular arc (if it occurs in one tight con-

straint) or on a vertex (if it occurs in two tight constraints) of the boundary
of Iδ∗(ci, t

∗
i−1, t

∗
i+1). Let t∗i be a point of T ∗ that lies on the boundary of

Iδ∗(ci, t
∗
i−1, t

∗
i+1), and let t′i be a point in the interior of Iδ∗(ci, t

∗
i−1, t

∗
i+1). Then

the sequence (t∗0, . . . , t
∗
i−1, t

′
i, t
∗
i+1, . . . , t

∗
n−1) is optimal and Iδ∗(ci, t

∗
i−1, t

∗
i+1) has

either triangle- or lens-shape for all 0 ≤ i < n. Since this strategy can be

46 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

applied to every point of T ∗ that occurs in up to two tight constraints, there
is an optimal sequence so that none of its points occurs in a tight constraint,
which is a contradiction.
Hence, T ∗ contains at least one point t∗i so that Iδ∗(ci, t

∗
i−1, t

∗
i+1) = {t∗i }, e.g., t∗i

has point-shape. According to Proposition 3.9, t∗i then is either a segment-type
point (if it occurs in two tight constraints) or a point-type point (if it occurs in
three tight constraints). One of the following two cases holds:

1. The point t∗i is a segment-type point and ‖ci − t∗i ‖ = δ∗ is one of the two
tight constraints, or t∗i is a point-type point. Then, t∗i lies on ∂Dδ∗(ci)
and hence is a key-point.

2. For every t∗i with {t∗i } = Iδ∗(ci, t
∗
i−1, t

∗
i+1) the following holds: t∗i is a

segment-type point and it lies on midpoint of the line segment t∗i−1t
∗
i+1. If

t∗i+1 or t∗i−1 occur in only one tight constraint (the constraint in which t∗i
occurs), both points can be shifted towards t∗i so that ‖t∗i − t∗i−1‖ < δ∗ and
‖t∗i − t∗i+1‖ < δ∗. As a consequence, δ∗ is not minimal, which is a contra-
diction. Hence {t∗i−1} = Iδ∗(ci−1, t

∗
i−2, t

∗
i) and {t∗i+1} = Iδ∗(ci+1, t

∗
i , t
∗
i+2).

If either of them is a segment-type point and satisfies ‖t∗j − cj‖ = δ∗ for
one j ∈ {i− 1, i+ 1}, or one of them is a point-type point, a point that
lies on ∂Dδ∗(cj) is found. If both points are segment-type points and
‖t∗j − cj‖ < δ∗ for j ∈ {i− 1, i+ 1}, t∗i−2 and t∗i+2 have to be analysed in
the same manner, i.e., their type has to be identified the same way we
did for t∗i . This strategy can be carried forward from point to point along
C until one point-type point is found, or all points have been proven to
be segment-type points. This implies that all t∗i ∈ T ∗ lie on a straight
line and successive points have distance δ∗, which is a contradiction to
the fact, that the neighborhood graph is a cycle: Of all points we placed
on the straight line, the both furthest away from each other also need to
have distance at most δ∗, which is not possible if n > 2.

Lemma 3.8 contains more information than we need in order to prove that we
can sample the boundaries of all disks instead of completely sampling one of
the disks. The information that Iδ∗(ci, t

∗
i−1, t

∗
i+1) consists of one point for at

least one index i is required later in the arguments for Lemma 3.19.

Approximating δ∗

There is at least one index 0 ≤ i < n for every T ∗ = (t∗0, . . . , t
∗
n−1), so that

t∗i is a key-point, which implies that t∗i ∈ ∂Dδ∗(ci). Since we have no way of
determining the index i, so that t∗i is a key-point, the boundaries of all disks

3.3. A Detailed Description of the Algorithm 47

have to be sampled in order to find a suitable approximation to t∗i . Since we
do not know the optimal radius δ∗ either, we have to sample the boundary
of all disks for dense enough radius-samples in [1

3
δ(3), δ(3)]. In order to verify

that the binary search on [1
3
δ(3), δ(3)] is successful, we have to prove that there

actually is a sample-radius δ ∈ [1
3
δ(3), δ(3)] for all 0 ≤ i < n, so that there is a

(δ, i)-admissible point on ∂Dδ(ci).

Lemma 3.10 There is a δ(3)-admissible sequence T = (t0, . . . , tn−1) so that
every (δ(3), i)-admissible point of T lies on ∂Dδ(3)(ci).

Proof. Consider the δ(3)-admissible sequence C. If the sequence is shifted δ(3)-
far in an arbitrary direction, e.g., T := (t0, . . . , tn−1) with ti := ci + (0,−δ(3))
for all 0 ≤ i < n, the sequence remains δ(3)-admissible and ti ∈ ∂Dδ(3)(ci) for
all 0 ≤ i < n, see Figure 3.7.

It is easy to see that Lemma 3.10 does not hold for every δ ≥ δ∗, see Figure 3.8.

c1
c2

c3c4

c0

t1
t2

t3

t0

t4

Figure 3.7: Set T as constructed in the proof of Lemma 3.10 with tight
constraints (solid fat lines) and constraints that are met with inequality (dashed
fat lines).

Notation 3.11 For every index i, let δ∗i be the smallest value, so that there is
a (δ∗i , i)-admissible point ti ∈ ∂Dδ∗i

(ci).

Note that δ∗i is not necessarily a radius-sample.
It follows from Lemma 3.10 that δ∗i ≤ δ(3) for all 0 ≤ i < n. In order to
compute δ∗ from the values δ∗0, . . . , δ

∗
n−1, we need the following observation:

48 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

c1
c2

c3c4

c0
t1 t2

t3t4

t0

Figure 3.8: The same sequence C as in Figure 3.7 and the sequence T , where
t1 cannot lie on ∂Dδ∗(c1), since all points on ∂Dδ∗(c1) are more than δ∗ apart
from t0 or t2. The tight constraints (solid fat lines) are δ∗ long.

Lemma 3.12 The following equation holds:

δ∗ = min
0≤i<n

δ∗i .

Also, δ∗i ∈ [1
3
δ(3), δ(3)] for all 0 ≤ i < n.

Proof. Every δ∗i meets the inequality δ∗i ≥ δ∗ and δ∗ can not be smaller than
the smallest of all δ∗i : According to Lemma 3.8, there is an index 0 ≤ j < n
so that t∗j is a key-point for every optimal sequence T ∗ = (t∗0, . . . , t

∗
n−1). In

particular, t∗j ∈ ∂Dδ∗(cj), which is a contradiction to the definition of δ∗j . Hence,
δ∗ = min0≤i<n δ

∗
i .

The second part of Lemma 3.12 follows from Lemma 3.10.

Consequently, in order to find δ∗, it suffices to compute δ∗i for all 0 ≤ i < n.

Notation 3.13 For an ε > 0, let T (ε) be a solution so that

δ(ε) := γ(T (ε), C) ≤ (1 + ε)δ∗.

Let t
(ε)
i denote a (1 + ε)-approximation to a (δ∗i , i)-admissible point ti with

ti ∈ ∂Dδ∗i
(ci). Let δ

(ε)
i be the radius-sample of t

(ε)
i .

We already know that δ∗i ∈ [1
3
δ(3), δ(3)] for all i. In order to prove that a

binary search for δ∗i on [1
3
δ(3), δ(3)] works for every index i, we need one more

characteristic of (δ, i)-admissible points.

3.3. A Detailed Description of the Algorithm 49

ci

δ̄

δ ti
δ − δ̄

Figure 3.9: The sets ∂Dδ(ci) and ∂Dδ−δ̄(ti) share exactly one point.

Lemma 3.14 Let δ̄ ≥ 0 be so that there is a (δ̄, i)-admissible point ti ∈ ∂Dδ̄(ci).
Then there is at least one (δ, i)-admissible point on ∂Dδ(ci) for all δ ≥ δ̄.

Proof. Let δ > δ̄. Then the point ti is (δ, i)-admissible, but does not lie on
∂Dδ(ci). Also, there is a disk Dδ−δ̄(ti) so that every point t ∈ Dδ−δ̄(ti) is still
(δ, i)-admissible, and by construction ∂Dδ(ci) and ∂Dδ−δ̄(ti) share exactly one
point, see Figure 3.9.

Consequently, for every index 0 ≤ i < n a binary search for δ∗i on [1
3
δ(3), δ(3)]

can be carried out and it remains to determine a suitable sample-distance
εobj: Since we aim for a (1 + ε)-approximation, we have to guarantee that

δ(ε) ≤ (1 + ε)δ∗. Hence, it suffices to find some δ
(ε)
i ∈ [δ∗i , δ

∗
i + εδ∗i] for each

0 ≤ i < n and we have to choose εobj (the density of the radius-samples) subject
to ε and δ(3). The analysis on how εobj has to be chosen exactly will be carried
out in Lemma 3.19, since it also depends on our final improvement, in particular
on the polygons that will be used to approximate the boundaries of all disks.
In order to describe the final improvement in more detail, we need to briefly
explain Algorithm B, the ‘propagation along the path’ decision algorithm of [16]
that, given a radius-sample δ, a translation-sample ti and an index i, decides,
whether ti is (δ, i)-admissible.

An Algorithm for Paths

In Section 3.2, we mentioned that due to the convexity of Problem 5, the
run-time of the simple PTAS introduced in Section 3.2 can be improved by
approximating the boundary of each disk by the boundary of a regular convex

50 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

polygon and performing a binary search on the edges of that polygon. Then, for
every sample-point t and sample-radius δ it is tested if t is (δ, i)-admissible. For
a given sequence C and index i there already exists an algorithm to test if a given
point ti ∈ Dδ(ci) is (δ, i)-admissible: The point ti is (δ, i)-admissible iff there
are points ti+1, . . . , tn−1, t0, . . . , ti−1 so that γ(T,C) ≤ δ for T = (t0, . . . , tn−1).
Deciding this is the same as solving the following problem:

Problem 6 Given:

C ′ = (c′1, . . . , c
′
n−1) a sequence of points

t a point, and

δ a parameter.

Find: A sequence T ′ = (t′1, . . . , t
′
n−1) with

‖c′j − t′j‖ ≤ δ for every 1 ≤ j < n,

‖t′j − t′j+1‖ ≤ δ for every 1 ≤ j < n− 1,

‖t− t′1‖ ≤ δ and

‖t′n−1 − t‖ ≤ δ.

(3.2)

In the following, c′j := ci+j and t′j = ti+j for all 1 ≤ j < n, and t = ti.
In [16] the authors introduced Algorithm B that solves Problem 6 in O(n2 log n)
time and space under translations along a fixed direction. In Chapter 2, we
already used a variant of this algorithm for translations in R2. In this chapter,
we again use the same strategy, although in a different setting and we need some
insights about how this algorithm works and what the geometric properties of
Problem 6 are in order to motivate and prove the correctness of the approach
to approximate the boundaries of all disks mentioned above. Hence, we will
now explain this algorithm in short with our notation and refer to Chapter 2
for more details along with a proof of correctness.
We already defined c′1, . . . , c

′
n−1 above. Additionally, let

c′0 := t,

c′n := t and

Ij(t) := Dδ(c
′
j),

the set of points t′j so that ‖t′j − c′j‖ ≤ δ for 1 ≤ j < n. Let

I0(t) := {t} and

In(t) := {t}.

3.3. A Detailed Description of the Algorithm 51

We call the set Ij(t), or Ij in short, the jth admissible region and every t′ ∈ Ij
an admissible point. Note that every admissible region is convex. We define
the sequences

S := (t = c′0, c
′
1, . . . , c

′
n−1, t = c′n) and

Sj := (c′0, . . . , c
′
j)

for 0 ≤ j ≤ n.
The algorithm that decides whether there is a sequence T that satisfies (3.2)
has an iterative structure. The basic idea is to propagate admissible points
starting with I0 = {t} along S until c′n is reached by appropriately merging the
admissible regions of the successive points of S.
Starting with I1, the algorithm updates Ij to I ′j by replacing Ij with an adjusted
set I ′j of admissible points until in the last step In is updated to I ′n. The jth
and (j − 1)th admissible region are merged into I ′j in such a way that I ′j is not
empty iff there is a sequence of points that is δ-admissible for Sj.
Also, if I ′j 6= ∅, a δ-admissible sequence for Sj can be computed from I ′0, . . . , I

′
j .

More concrete:

Algorithm 4 We are given the point sequence C = (c0, . . . , cn−1), a translation
t, a parameter δ ≥ 0 and an index 0 ≤ i < n.
First, we set c′0 = t, c′n = t, I0(t) = {t}, In(t) = {t}, c′j = ci+j and Ij = Dδ(c

′
j)

for 1 ≤ j < n.
Starting with I ′1, we proceed as follows to compute the sets I ′j for all 1 ≤ j ≤ n
in ascending order: We inflate the region I ′j−1 by δ which results in a set

I ′δj−1 := I ′j−1 ⊕Dδ,

where ⊕ denotes the Minkowski sum and Dδ is the disk with radius δ centered
in the origin. The admissible region I ′j is given by

I ′j = I ′δj−1 ∩ Ij.

This process is repeated until one of the following cases occurs:

1. There is an index j with I ′j = ∅ after an intersection operation:
The process stops and no is returned along with the tuple (k(t), µ(t)),
where k(t) is the index of the first vertex of S that was not reached, and
µ(t) is the L2-distance between the inflated version of the last non-empty
admissible region and its succeeding admissible region.

2. In is updated and I ′n 6= ∅:
The algorithm terminates and returns yes.

52 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

Approximating the Boundary of a Disk with a Polygon

The simplest approach that tests if there is a (1+ε)-approximation to a key-point
on ∂Dδ(ci) is to pick k = Θ

(
ε−1δ(3)

)
suitably distributed translation-samples

on the circle ∂Dδ(ci) and propagate all of them with Algorithm 4. In that
way, k propagations, i.e., calls of Algorithm 4, have to be carried out. This
number can be reduced to O(k1/2 log k) by exploiting the convex structure of
the admissible regions that occur during the propagation process: The main
idea is to approximate, i.e., inscribe, ∂Dδ(ci) by a regular polygon with O(k1/2)
vertices and to perform a binary search on each of its edges with a sample-
distance that depends on ε and δ(3). Note that we could also use circumscribing
polygons. However, using inscribing polygons turns out to be more convenient
during the analysis of Algorithm 3 we carry out later in the current section.

At first, we will discuss how many vertices the polygon needs to have and what
the minimum sample-distance for sample-points on each of the edges is in order
to guarantee that for every point t on ∂Dδ(ci) there is a sample point on the
edges of the polygon that serves as a (1 + ε)-approximation to t, i.e., is at most
3−1δ(3)ε-far from t.

Notation 3.15 Let Pδ,p(ci), or Pδ(ci) in short, denote the inscribing regular
polygon of ∂Dδ(ci) with p vertices, where one of the vertices is the point
(ci − (0, δ)) (a point on ∂Dδ(ci)). By a slight abuse of notation, we identify
Pδ(ci) with its boundary, since we solely operate on the boundary of the polygons
at hand.

Note that since all such polygons contain the lowermost point of the circle they
inscribe, they are all concentric.

Lemma 3.16 Let

p :=
⌈
31/2πε−1/2

⌉
and let the edges of Pδ(ci) be sampled with sample-distance εedge so that εedge ≤
1
3
δ(3)ε. Then, there is a translation-sample t ∈ Pδ(ci) for every point u ∈ ∂Dδ(ci)

so that

‖t− u‖ ≤ 1

3
δ(3)ε.

Proof. An illustration of the following is given in Figure 3.10.

Let v and v′ be two successive vertices of Pδ(ci) and let e be the edge with
endpoints v and v′. The points v, v′ and ci define an isosceles triangle with
base e and apex angle

α := 2πp−1.

3.3. A Detailed Description of the Algorithm 53

α
ci

v

v′

a

δ

δ − a

xεedge

Figure 3.10: The disk Dδ(ci) with an edge of the inscribed polygon Pδ(ci)
with endpoints v and v′. The line segments of length x (dotted line) and εedge

(solid fat line) indicate an isosceles triangle, where the line segment of length a
(dashed fat line) is the bisector.

The length of e can be estimated by using the Taylor series expansion of
sin (α/2) as

|e| = 2δ sin
(α

2

)
= 2δ sin

(
π

p

)
≤ 2δπ

p
.

The maximum distance between a point on ∂Dδ(ci) and Pδ(ci) is δ− |a|, where
a is the apothem of Pδ(ci):

δ − |a| = δ − δ cos
(α

2

)
≤ δ

(
1−

(
1− π2

2p2

))
= δ

(
π2

2p2

)
,

because (using the Taylor series expansion) cos
(
α
2

)
can be estimated as

cos (α/2) ≤ (1− π2(2p2)−1). Let the maximum distance between a point
on ∂Dδ(ci) and the closest translation-sample on Pδ(ci) be named x. Since the
maximum distance of a point on ∂Dδ(ci) and Pδ(ci) is δ − |a| and the samples
that describe the edges of Pδ(ci) have distance εedge, the application of Thales’
theorem leads to

x2 = (δ − |a|)2 +
(εedge

2

)2

.

54 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

Since εedge ≤ 1
3
δ(3)ε, it follows that

x2 ≤
(
δπ2

2p2

)2

+
(εedge

2

)2

=

(
δπ2

2(d31/2πε−1/2e)2

)2

+
(εedge

2

)2

≤
(

δπ2

2(31/2πε−1/2)2

)2

+
(εedge

2

)2

≤
(
εδ

6

)2

+
εedge

2

4

≤ (εδ(3))2

36
+

(εδ(3))2

36
≤
(

1

3
εδ(3)

)2

⇔ x = ε
1

3
δ(3).

Striktly speaking, p depends on ε, but we refrain from including ε in the
notation.
In the remainder, we will show that the binary search among the samples
on one edge of Pδ(ci) can be carried out in O (log ε−1n2 log n) time. Here
O (n2 log n) is the time that is needed to carry out the propagation process for
a single translation-sample t by Algorithm 4. Since this approach builds on
several properties of the tuple (k(t), µ(t)) returned by Algorithm 4, we have to
introduce some of them first: The following lemma describes the dependency
of the tuple on the translation-samples of one edge of Pδ(ci).

Lemma 3.17 Let s and s′ be two no-instances of Algorithm 4, A4 in short,
for a given radius-sample δ, point sequence C and index i, i.e.,

A4(s, δ, i) = (no, (k(s), µ(s))) and

A4(s′, δ, i) = (no, (k(s′), µ(s′))),

and let t ∈ ss′. Then, one of the following holds:

A4(t, δ, i) = yes,

A4(t, δ, i) = (no, (k(t), µ(t))).

In the latter case the tuple (k(t), µ(t)) has the following properties:

1.
k(t) ≥ min(k(s), k(s′)),

3.3. A Detailed Description of the Algorithm 55

u′

s′

s

u
tu

ts

d′d dt

Figure 3.11: Example of the quadrilateral considered in Proposition 3.18.

2. if k(t) = k(s) = k(s′), then

µ(t) ≤ max(µ(s), µ(s′)).

Moreover, if k(p) = k(s) = k(s′) for all points p ∈ ss′, the function

f → [0, 1] with

x 7→ µ((1− x)s+ xs′)

is strictly convex.

Note that the points s and s′ in Lemma 3.17 are not necessarily translation-
samples on an edge of a polygon at hand. However, we apply Lemma 3.17 to
translation samples only in the following.
In order to prove Lemma 3.17, we need one more observation:

Proposition 3.18 Given two line segments ss′ and uu′ in the plane. If ‖s−
u‖ ≤ d and ‖s′ − u′‖ ≤ d′ for d, d′ ∈ R+, then for every point ts ∈ ss′ there is
a point tu ∈ uu′ so that

dt := ‖ts − tu‖ ≤ max(d, d′)

and vice versa.

Proof. Every point ts ∈ ss′ can be expressed as ts = (1−x)s+xs′ for x ∈ [0, 1],

56 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

see Figure 3.11. With tu := (1− x)u+ xu′, the following holds:

dt = ‖ts − tu‖ = ‖(1− x)s+ xs′ − ((1− x)u+ xu′)‖
= ‖(1− x)(s− u) + x(s′ − u′)‖
≤ (1− x)‖s− u‖+ x‖s′ − u′‖
= (1− x)d+ xd′ ≤ max(d, d′).

With this, we can now prove Lemma 3.17:

Proof of Lemma 3.17. Let C ′ = (c′1, . . . , c
′
n−1) with c′j := ci+j for all 1 ≤ j < n.

Part 1: Let w.l.o.g. k(s) ≤ k(s′). As mentioned in the description of Algo-
rithm 4, k(s) is the index of the first vertex that was not reached while propagat-
ing s. Obviously, all vertices with smaller indices were reached. Suppose sk(s)−1

is the point on Dδ(c
′
k(s)−1) that establishes µ(s), i.e., the point in Ik(s)−1(s)

that is closest to Dδ(c
′
k(s)). Then there is a sequence (s = s0, s1, . . . , sk−1) with

si ∈ Dδ(c
′
i) for 1 ≤ i ≤ k(s) − 1 and ‖si − si+1‖ ≤ δ for all 0 ≤ i ≤ k(s) − 2.

The point s′k(s′)−1 and the sequence (s′0, . . . , s
′
k(s′)−1) are defined in a similar

way. We introduce the following notation for certain line segments:

Si := sis′i for all 0 ≤ i ≤ k(s)− 1,

Ri := sisi+1 for all 0 ≤ i ≤ k(s)− 2 and

R′i := s′is
′
i+1 for all 0 ≤ i ≤ k(s)− 2.

For all 0 ≤ i ≤ k(s) − 2, the four line segments Si, Si+1, Ri and R′i form a
quadrilateral, where the two opposing sides Ri and R′i have a length of at
most δ. As illustrated in Figure 3.12, the quadrilaterals are connected and
form a kind of sequence where the line segments Si are the connection between
two successive quadrilaterals. According to Proposition 3.18, there is a point
on Si+1 for every point on Si so that the distance of both points is at most
δ and vice versa. Given point t ∈ S0, it follows that there is a sequence
(t = t′0, t

′
1, . . . , t

′
k(s)−1) with t′i ∈ Dδ(c

′
i) for 1 ≤ i ≤ k(s)− 1 and ‖t′i − t′i+1‖ ≤ δ

for 0 ≤ i ≤ k(s)− 2. Hence

k(t) ≥ min(k(s), k(s′)).

Part 2: Suppose k(t) = k(s) = k(s′) and w.l.o.g. µ(s) ≥ µ(s′); also, let
(t = t′0, t

′
2, . . . , t

′
k(s)−1) be the sequence defined above. Note that t′k(s)−1 lies on

Sk(s)−1 and is not necessarily the point defining µ(t). We add one quadrilateral

3.3. A Detailed Description of the Algorithm 57

c′1

c′2

c′3

c′4
s

s′

s1

s2

s3

s′1 s′2

s′3

σ′4
σ4

Figure 3.12: The sequences (s0, . . . , s3, σ4) and (s′0, . . . , s
′
3, σ

′
4) form a sequence

of quadrilaterals.

to the sequence: Let σk(s) be the point on Dδ(c
′
k(s)) with distance µ(s) + δ to

sk(s)−1 and let σ′k(s) be defined in a similar way. Then:

Sk(s) := σk(s)σ′k(s),

Rk(s)−1 := sk(s)−1σk(s) and

R′k(s)−1 := s′k(s)−1σ
′
k(s),

Again, Sk(s)−1, Sk(s), Rk(s)−1 and R′k(s)−1 form a quadrilateral, but this time, the

two opposing sides have lengths µ(s) + δ and µ(s′) + δ. Due to Proposition 3.18,
there is a point τ ′k(s) on Sk(s) with

‖t′k(s)−1 − τ ′k(s)‖ ≤ max (µ(s) + δ, µ(s′) + δ) .

Now let k(t) = k(s) = k(s′) for all points t ∈ ss′ and let t be expressed
as t = (1 − x)s + xs′. The sequence (t = t′0, . . . , t

′
k(s)−1, t

′
k(s) = τ ′k(s)) with

t′i = ((1− x)si + xs′i) satisfies t′i ∈ Dδ(c
′
i), since every point t′i is located on Si

and due to Proposition 3.18 two successive points have a distance of at most δ
exept for t′k(s)−1 and τ ′k(s). As a consequence, we have:

µ(t) ≤ ‖t′k(s)−1 − τ ′k(s)‖ − δ
≤ (1− x)(δ + µ(s)) + x(δ + µ(s′))− δ
= (1− x)µ(s) + xµ(s′).

58 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

Since this holds for every choice of s and s′ as well as every choice of t ∈ ss′,
function f is convex.
Strictly speaking

µ(t) < (1− x)µ(s) + xµ(s′),

i.e., f is strictly convex, because Sk(s) is the chord of a disk and therefore the
distance between t′k(s)−1 and τ ′k(s) is greater than the distance between t′k(s)−1

and the disk that contains τ ′k(s).

Note that Lemma 3.17 holds for any line segment contained in Dδ(ci).
As a consequence of the convexity of the function f , in order to test if there is
a (δ, i)-admissible point on the line segment ss′ (which means that there is a
point on t ∈ ss′ so that the propagation of t with radius-sample δ is successful)
a binary search can be carried out among the samples along the line segment
ss′.
The runtime depends on the number of sample-points that have to be propa-
gated, which is O (log εedge

−1) for sample-distance εedge. Since every propagation
takes O(n2 log n) time, the procedure runs in O (log εedge

−1n2 log n).
We already know from Lemma 3.16 that the length of an edge of Pδ(ci) is
at most 2δπp−1. Up to here, we gave an upper bound for εedge, i.e., εedge ≤
3−1δ(3)ε. Now we also establish a lower bound by chosing εedge from the interval
[12−131/2δ(3)ε, 3−1δ(3)ε]. With that and and p =

⌈
31/2πε−1/2

⌉
, the number of

translation-samples that have to be propagated, is

log

(
2δπ

εedgep
+ 1

)
≤ log

(
12 · 2δπ

31/2δ(3)εp
+ 1

)
≤ log

(
24π

31/2εp
+ 1

)
= log

(
24π

31/2ε d31/2πε−1/2e
+ 1

)
≤ log

(
24π

31/2ε(31/2πε−1/2)
+ 1

)
= log

(
24ε1/2

3ε
+ 1

)
= log

(
8

ε1/2
+ 1

)
∈ O

(
log

1

ε1/2

)
,

which leads to a runtime of O
(
ε−1/2 log ε−1n2 log n

)
in total for propagating all

sample-points of one polygon and a fixed radius-sample.
For technical reasons, we also need the following insight:

3.3. A Detailed Description of the Algorithm 59

Lemma 3.19 Let Dδ∗(ci) be a disk so that ∂Dδ∗(ci) contains the key-point t∗i .
Also, let

δ̄ := δ∗ + εobj

and let the sample-distance of the points on the edges of Pδ̄(ci) be

εedge :=

√
3

12
εδ(3) and

εobj :=

√
3

12
εδ(3).

The following holds:

1. The area of (δ̄, i)-admissible points on ∂Dδ̄(ci) is a circular arc with
endpoints s and s′ and

‖s− s′‖ ≥ εobj.

2. There is a translation-sample on Pδ̄(ci) that is a (1 + ε)-approximation to
t∗i .

Proof. Since Dδ∗(ci) is a disk so that ∂Dδ∗(ci) contains the key-point t∗i , this
point is also the only (δ∗, i)-admissible point in Dδ∗(ci). Also, t∗i lies inside
the triangle defined by ci, ti−1 and ti+1, see Proposition 3.9. This implies that
either ci and ti−1 or ci and ti+1 lie on opposing sides of the tangent of Dδ∗(ci) at
t∗i . If we increase δ∗ by εobj, the intersection of Dδ̄(ti−1) and Dδ̄(ti+1) changes
from just one point to a convex set in the shape of a lens. The circular arc of
(δ̄, i)-admissible points on ∂Dδ̄(ci) is the intersection of this lens with ∂Dδ̄(ci)
and a short geometric inspection shows that this circular arc with endpoints s
and s′ is shortest if the distance between ti−1 and ti+1 is 2δ∗ and both points
lie on the tangent of Dδ̄(ci) at t∗i :

Let

d := ss′,

h :=
1

2
(ci − ti+1), t∗i ,

z := t∗i s
′ and

k := t∗i ,
1

2
(s− s′),

see Figure 3.13. The application of Thales’ theorem provides the following

60 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

ci
t∗i

ti−1

ti+1

s

s′

h

k d

z

ci

ti−1

ti+1

s

s′

d

u′

u

t∗i

Figure 3.13: Left: The circular arc of (δ̄, i)-admissible points on ∂Dδ̄(ci) (fat)
with line segments of length δ∗ (solid fat lines) and δ̄ (dotted fat lines).
Right: Pδ̄(ci) (dashed fat lines), Dδ̄(ci) with edge uu′ that intersects k.

equations:

|h| =
1√
2
δ∗, (3.3)

|z| =
√

(δ∗ + εobj)2 − |h|2 − |h|, (3.4)

|k| =

√
|z|2 − 1

4
|d|2, and (3.5)

|k| =

√
(δ∗ + εobj)2 − 1

4
|d|2 − δ∗. (3.6)

Squaring the equation (3.5)=(3.6) results in

|z|2 − 1

4
|d|2 = (δ∗ + εobj)

2 − 1

4
|d|2 + (δ∗)2 − 2δ∗

√
(δ∗ + εobj)2 − 1

4
|d|2.

Now Equation (3.4) can be applied and both sides of the equation can be

3.3. A Detailed Description of the Algorithm 61

simplified:

⇔
(√

(δ∗ + εobj)2 − |h|2 − |h|2
)2

= (δ∗ + εobj)
2 + (δ∗)2 − 2δ∗

√
(δ∗ + εobj)2 − 1

4
|d|2

(3.3)⇔
√

2

√
(δ∗ + εobj)2 − 1

2
(δ∗)2 + δ∗

= 2

√
(δ∗ + εobj)2 − 1

4
|d|2.

Again, we square both sides of the equation and simplify the resulting terms:

⇔ |d|2 = 2(δ∗ + εobj)
2 − 2

√
2δ∗
√

(δ∗ + εobj)2 − 1

2
(δ∗)2.

Suppose |d|2 < εobj
2. Then

2(δ∗ + εobj)
2 − εobj

2 < 2
√

2δ∗
√

(δ∗ + εobj)2 − 1

2
(δ∗)2

⇔ 4(δ∗ + εobj)
4 − 4εobj

2(δ∗ + εobj)
2 + εobj

4 < 8(δ∗)2(δ∗ + εobj)
2 − 4(δ∗)4

⇔ 12(δ∗)2εobj
2 + 8δ∗εobj

3 + εobj
4 < 0,

which is a contradiction to the fact that δ∗ ≥ 0 and εobj > 0. Thus, |d|2 ≥ εobj
2

and with that d ≥ εobj, which proves part 1.
Since the maximum distance between a point on Pδ̄(ci) and the boundary
∂Dδ̄(ci) is smaller than εobj, one of the following two cases holds:

1. There is a vertex of Pδ̄(ci) that is located on the circular arc of (δ̄, i)-
admissible points for t∗i ∈ ∂Dδ̄(ci).

2. There is an edge of Pδ̄(ci) that intersects with k. Let the vertices of this
edge be called u and u′.

If case 1 holds, then the vertex of Pδ̄(ci) on the circular arc gives a (1 + ε)-
approximation to t∗i . If case 2 holds, then uu′ and Iδ̄(ci, ti−1, ti+1) intersect.
The resulting line segment is shortest if uu′ is parallel to ti−1ti+1; also, the
line segments ti−1ti+1 and d are parallel by construction. The intersection of
Dδ̄(ti−1) and Dδ̄(ti+1) (the lens) is an axisymmetric convex object and ti−1ti+1,
which has length 2εobj, lies on its axis of symmetry. Hence,

|ti−1ti+1| ≥ |ab| ≥ |d|

62 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

for every line segment ab that is parallel to ti−1ti+1 and ab lies inside the vertical
stripe within the lens that is bounded by ti−1ti+1 and d, which is why the length
of the line segment of (δ∗, i)-admissible points that lies inside uu′ is at least
εobj long. The sample-distance we use on the edges of Pδ̄(ci) is

√
3

12
εδ(3) <

1

3
δ(3)ε,

which proves part 2.

Analysis of Algorithm 3

We first discuss the runtime of Algorithm 3: At the start, the value of a
3-approximation to δ∗ is computed in O(n) time. Except for basic arithmetic
operations, Algorithm 3 consists of four nested loops: The first loop iterates
over all of the n input points of the sequence C. For each of these points
a binary search for δ ∈ [3−1δ(3), δ(3)] up to accuracy εobj = 12−1

√
3δ(3)ε is

carried out; this takes O(log ε−1) steps. In each step of this binary search all
p = d31/2πε−1/2e ∈ O(ε−1/2) edges of Pδ(ci) are inspected, and on each of them
a binary search among 2δπεedge

−1 ∈ O(ε−1) translation-samples is performed.
Each translation-sample is propagated with Algorithm 4, which takesO(n2 log n)
time per call. This gives a total runtime of O(ε−1/2(log ε−1)2n3 log n).

Algorithm 3 is correct: If δ(ε) < δ(3) is returned, it permits a yes-instance
of Problem 5 since there was a translation-sample that has been propagated
successfully and therefore is part of a δ(ε)-admissible sequence T . This also
means that the very translation-sample that establishes δ(ε) is propagated and
together with the intermediate steps of the propagation gives a T , which then
serves as a witness, i.e., is δ(ε)-admissible. If there was no successful propagation,
δ(ε) = δ(3) is returned and we know from Lemma 3.5 that there is always a
δ(3)-admissible sequence.

Now we analyse the precision of the approximation Algorithm 3 computes: The
precision of the binary search on δ is εobj < 3−1δ(3)ε.
We know from Lemma 3.8 that for every optimal sequence T ∗ = (t∗0, . . . , t

∗
n−1),

there is an index 0 ≤ i < n so that t∗i is a key-point, i.e., t∗i ∈ Dδ∗i
(ci).

Recall, that for every index i, δ∗i denotes the smallest value, so that there is a
(δ∗i , i)-admissible point ti ∈ ∂Dδ∗i

(ci). We know from Lemma 3.12, that

δ∗ = min
0≤i<n

δ∗i .

Algorithm 3 computes for every 0 ≤ i < n the smallest radius-sample δ so
that there is a translation-sample on the boundary of the inscribed polygon of

3.3. A Detailed Description of the Algorithm 63

∂Dd(ci) that is propagated successfully. Hence it is enough in terms of analyzing
the precision of the approximation of the algorithm to analyze the precision of
the approximation subject to one of the disks that contain a key-point. Hence
in the following we consider the fixed index 0 ≤ i < n with property that
Dδ∗(ci) is a disk so that ∂Dδ∗(ci) contains the key-point t∗i and δ∗i = δ∗.
Also, all polygons are concentric by construction. If Pδ(ci) and Pδ+εobj(ci) are
two polygons with circumradii that differ by εobj, the distance between any point
on Pδ(ci) and Pδ+εobj(ci) is at most εobj and vice versa. Every edge of these two
polygons is sampled with points of distance εedge, and with Thales’ theorem it
follows that for every translation-sample on Pδ(ci) there is a translation-sample
on Pδ+εobj(ci) with distance 3−1δ(3)ε or less and vice versa. Combined with
Lemma 3.16, we have that for every δ there is a translation-sample in Dε(ti)
for every (δ, i)-admissible point ti ∈ ∂Dδ(ci). According to Lemma 3.19, one of
the following two cases holds:

• For every δ ≥ δ∗+3−1δ(3)ε there is at least one (δ, i)-admissible translation-
sample on Pδ(ci) so that the line segment of all (δ, i)-admissible points
on one of the edges of this polygon is at least 3−1δ(3)ε long.

• One vertex of the polygon is a (δ, i)-admissible point and since all polygons
are concentric, this vertex is (δ, i)-admissible for every ∂Dδ(ci) with δ ≥ δ∗.

We consider the radius-samples δ̄, δ̄+ εobj and δ̄+ 2εobj, where δ̄ := δ∗+ ζ− εobj

for some 0 < ζ < εobj. Since δ̄ < δ∗, none of the propagations for this δ are
successful. The following holds:

δ̄ + εobj < δ∗ + εobj

= δ̄ − ζ + εobj + εobj

< δ̄ + 2εobj

< δ∗ +

√
3

6
δ(3)ε

< δ∗ +
1

3
δ(3)ε.

Due to Lemma 3.19, this means that for radius-sample δ̄+2εobj the two endpoints
of the circular arc of (δ̄+2εobj, i)-admissible points in Dδ̄+2εobj(ci) have a distance
of at least εobj, which is why there is at least one translation-sample on the
inscribed polygon of the disk at hand that is propagated successfully and the
algorithm returns

δ(ε) = δ̄ + 2εobj < δ∗ +
1

3
δ(3)ε < (1 + ε)δ∗

64 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

as the approximation to δ∗. Hence the algorithm computes a (1 + ε)-
approximation to δ∗ for Problem 5.
It also returns a (δ(ε), i)-admissible point t(ε) from which a δ(ε)-admissible se-
quence T (ε) can be computed in O(n2 log n) time: Since t(ε) is (δ(ε), i)-admissible,
it has been propagated successfully by Algorithm 4. During a run of Algo-
rithm 4, a sequence of admissible regions was computed. A δ(ε)-admissible
sequence T (ε) can easily be computed by starting with t(ε), inflating it with δ(ε)

and intersecting the resulting disk with the given admissible region Ii+1 and
picking a translation from this set. This translation is inflated again and the
resulting disk intersected with the next admissible region. This strategy is then
repeated until the last admissible region is processed.

3.4 The Strategy for Paths Does not Work for

Cycles

In the beginning of this chapter, we mentioned that the strategies of Algorithm 1
and Algorithm 2 introduced in Chapter 2 do not work if the neighborhood graph
at hand contains at least one cycle. Suppose, we use a variant of Algorithm 4,
which is customized for paths, for the case of G being a simple cycle and a fixed
radius-sample δ. In this variant, the first and last translation are not fixed but
I0 = In = Dδ(c0). Starting with I0 = Dδ(c0), admissible regions are propagated
along the cycle until the algorithm returns no or I ′0 = (I ′δn−1 ∩Dδ(c0)) 6= ∅. If
the algorithm returns no, there is no admissible set of translations for δ.
If I ′0 6= ∅, we know that for every point t′0 ∈ I ′0 ⊆ Dδ(c0) there is a sequence of
translations T = (t0, . . . , tn−1, t

′
0) with

‖ti − ci‖ ≤ δ for 0 ≤ i ≤ n− 1,

‖t′0 − c0‖ ≤ δ,

‖ti − ti+1‖ ≤ δ for 0 ≤ i ≤ n− 2 and

‖tn−1 − t′0‖ ≤ δ.

However, generally t0 6= t′0. The last intersection operation reduces Dδ(c0) to
I ′0, but we do not know if there is a sequence of translations T with t0 ∈ I ′0 for
any t′0 ∈ I ′0, since the algorithm started with I0 = Dδ(c0) and as a result, it
may be that t0 ∈ (Dδ(c0) \ I ′0), see Figure 3.14.
By applying the above mentioned variant of Algorithm 4 on this new setting,
i.e., the propagation process starts with I ′0, the invalid choices for t0 could be
filtered out. However, after one more round of propagation, I ′n may be reduced
to In

′′ ⊆ I ′n. Then, the procedure may have to be repeated again and it is not
known if this strategy terminates, see the following illustrating series of figures:

3.4. The Strategy for Paths Does not Work for Cycles 65

c0 c1

cn−1

t′0

tn−1

t1

I ′0

t0

Figure 3.14: Applying the variant of Algorithm 4 on the set C results in the
set I ′0 (blue) and for t′0, all possible choices of t0 with ‖t0 − t1‖ ≤ δ are in
Dδ(c0) \ I ′0 (red).

Figures 3.15 to 3.19 illustrate how the above mentioned variant of Algorithm 4
works on the point sequence C = (c0, . . . , c4) for a given δ. The edges of the
neighborhood graph G are indicated as line segments. Admissible regions are
depicted step by step as intermediate results of the algorithm.

66 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

Figure 3.15: The set C = {c0, . . . , c4}
(red). The edges of the corresponding
neighborhood graph are indicated as
line segments (purple).

Figure 3.16: The admissible region
I ′1 = D2δ(c0) ∩ Dδ(c1) is computed
(shades of blue and turquoise).

Figure 3.17: After one round of prop-
agation, I ′0 (Dδ(c0) is computed.

Figure 3.18: After two rounds of prop-
agation, I ′′0 (I ′0 is computed.

3.4. The Strategy for Paths Does not Work for Cycles 67

Figure 3.19: The same scene after 10 rounds of propagation (the labels have
been omitted in order to provide a better view).

68 Chapter 3. FPTAS for an EGSM Problem with Cyclic Neighborhoods

Chapter 4

Elastic Geometric Shape
Matching on Neighborhoods
that Contain Cycles

In the previous chapter we constructed Algorithm 3, an FPTAS for an EGSM
instance where the neighborhood graph is a simple cycle. This strategy can
also be used to design algorithms that apply to EGSM instances under neigh-
borhood graphs that contain more than one cycle, even though no efficient
exact algorithms are known for this EGSM problem variant. However, the
approach and the runtime of this algorithm strongly depends on the number of
cycles as well as other structural features of G.

Two ways to classify the structure of a cycle-containing graph G = (V,E) is
considering its feedback vertex set (FVS), i.e., a subset X of V so that the
subgraph of G induced by V \X is cycle-free, or its path- or tree decomposition.
A path- or tree decomposition of G is a mapping of G into a path or a tree
T , respectively, so that every vertex, also called bag of T is associated with a
subset of V so that the vertices of G are represented as subtrees in T and the
vertices of G are adjacent in T if the corresponding subtrees intersect. The
path- or treewidth of a path- or tree decomposition is the size of the largest bag
minus 1. Both checking for a given graph G if there is a FVS of size k and if
there is a path- or tree decomposition of width k is NP -complete.

In the following, we consider EGSM instances under the directed L2-Hausdorff
distance under translations, where either a FVS or a path- or tree-decomposition
of the neighborhood graph is given for which we present (1 + ε)-approximation
algorithms for any ε > 0.

70 Chapter 4. EGSM on Neighborhoods that Contain Cycles

4.1 Problem Statement

For the most part, we use the same notation as in Chapter 3:

Recall that for a point c ∈ R2 and some r > 0, Dr(c) denotes the disk with
radius r centered in c. For any closed set A ∈ R2, ∂A denotes the boundary of
A. Also, ‖ · ‖ denotes the Euclidean norm.

We consider the following variant of the EGSM problem:

Problem 7 Given:

P = {p1, . . . , pn} a point set (the pattern),

Q = {q1, . . . , qm} a point set (the model), and

G = (V,E) an undirected graph with V = {i | 1 ≤ i ≤ n} and

E ⊆ {{i, j}| i, j ∈ V }.

Find: A sequence of translations T = (t1, . . . , tn), so that the function

γ(P,Q, T,G) := max

(
~h(T (P), Q), max

{i,j}∈E
‖ti − tj‖

)
is minimized.

Note that Problem 7 is similar to Problem 5 discussed in Chapter 3, apart from
the fact that in Problem 7 the distance measure in object space is chosen to be
the directed L2-Hausdorff distance, i.e., the correspondence between the points
of the pattern and the points of the model is not known.

First, we introduce some notation and definitions. Let

Ci := {qj − pi | 1 ≤ j ≤ m} and

C := (C1, . . . , Cn)

for 1 ≤ i ≤ n. Problem 7 can be considered entirely in transformation space.
The objective function can be written as

γ(C, T,G) := max

(
max
1≤i≤n

~h(ti, Ci), max
{i,j}∈E

‖ti − tj‖
)
.

Notation 4.1 For a given sequence C = (C1, . . . , Cn), we define

δ∗ := min
T
γ(C, T,G).

4.1. Problem Statement 71

Definition 4.2 Let δ ≥ 0. A sequence of translations T = (t1, . . . , tn) is called
δ-admissible (for sequence C and neighborhood graph G), iff γ(C, T,G) ≤ δ. A
sequence that is δ∗-admissible is called an optimal sequence. We use the symbol
T ∗ to denote an optimal sequence.
A translation t is called (δ, i)-admissible (for sequence C and graph G), iff there
is a δ-admissible sequence T = (t1, . . . , ti = t, . . . , tn).

Recall that δ∗ and the concept of δ-admissibility depend on C and G, but
since C and G are both part of the input and do not vary throughout the
subproblems, we refrain from including them in the notation.

Notation 4.3 Let C ∈ C and δ ≥ 0. We define

Dδ(C) :=
⋃
c∈C

Dδ(c).

Note that every (δ, i)-admissible translation is forced to lie in Dδ(Ci). Note that
every Ci for 1 ≤ i ≤ n is a translate of Q. Therefore, every Dδ(Ci) is the union
of m L2-disks with radius δ. Solving Problem 7 is then equivalent to finding
the smallest radius δ, so that there is a sequence of translations T = (t1, . . . , tn)
so that ti ∈ Dδ(Ci) for all 1 ≤ i ≤ n and T meets all restrictions induced by G.

In this chapter, we focus on Problem 7 under the directed Hausdorff distance
and consider two graph classes that (potentially) contain several cycles. For
now, suppose that the correspondence between the points of the pattern and
the points of the model is known, i.e., n = m and pi is matched to qi for all
1 ≤ i ≤ n.
In Section 4.2, we present an algorithm which, for an ε > 0, gives a (1 + ε)-
approximation to δ∗ for Problem 7 with a given feedback vertex set of size kf
in O(ε−2kf−1/2 log ε−1kfn) time and O(ε−1/2kfn+ ε−2kf) space. In Section 4.3,
we give an algorithm that gives a (1 + ε)-approximation to δ∗ for Problem 7
with a given path or tree decomposition of width kw in O(ε−2(kw+1) log ε−1kw

2n)
time and O(ε−2(kw+1)n) space.
The algorithms described in this chapter still work under unknown corre-
spondence. However, the runtime and required space change. The algorithm
introduced in Section 4.2 then takes

O

((
1

ε2
n2m

)kf (
log n+ log

1

ε

)
TA2

(ε
n
, kfn,m

))

time and

O

((
1

ε2
n2m

)
kfTA2

(ε
n
, kfn,m

))

72 Chapter 4. EGSM on Neighborhoods that Contain Cycles

space, where

TA2(εA2, n,m) =
1
√
εA2

n3m2

(
log n+ logm+ log

1

εA2

)
.

The algorithm introduced in Section 4.3 takes

O

((
1

ε2
n2m

)(kw+1)(
log

1

ε
+ log n

)
kw

2n

)
time and

O

((
1

ε2
n2m

)(kw+1)
)

space for instances under unknown correspondence.

Note that none of the algorithms presented in this chapter are FPT algorithms
except for the special case that the feedback vertex sets or path- or tree
decompositions at hand have constant size.

4.2 Solving Instances with Given Feedback

Vertex Sets

First, we need the following definition:

Definition 4.4 For a given undirected graph G = (V,E), a feedback vertex set
(FVS) X of G is a subset of V so that the subgraph of G induced by V \X is
cycle-free. A minimum feedback vertex set (MFVS) of G is one with minimal
cardinality.

Checking for a given graph G if there is a FVS of size k, is NP -complete. An
algorithm that determines in O(kkn) time, whether there is a FVS of cardinality
k for a given graph with n vertices, is given in [24]. The algorithm is also
able to return a FVS of size k in case of a YES-instance. In this chapter we
presume that a suitable FVS is given.
In the following, we introduce basic tools that are required for designing the
main algorithm of this section, i.e., Algorithm 5.

A Basic FPTAS for Cycle-Free Neighborhoods

Suppose G is cycle-free. Algorithm 2, or A2 in short, described in Section 2.3
computes a (1 + εA2)-approximation to the decision variant of Problem 7 in

4.2. Solving Instances with Given Feedback Vertex Sets 73

time and space O(TA2(εA2, n,m)) with

TA2(εA2, n,m) =
1
√
εA2

n3m2

(
log n+ logm+ log

1

εA2

)
for any εA2 > 0. Here, all L2-disks that describe sets of admissible translations
in the Euclidean setting are approximated by regular inscribed polygons with
O(εA2

−1/2) vertices. Given a parameter δ > 0, the sequence C and the graph
G, Algorithm 2 decides if there is a δ-admissible sequence T by computing,
inflating and propagating sets of admissible translations along the given graph.
Additionally, a witness, i.e., a sequence of translations that solves the problem
at hand, can be returned in case of a YES-instance. Also, the proof of
correctness of Algorithm 2 still holds, if we alter it slightly by predefining some
of the translations, i.e., at start, initialize some of the admissible regions as
one single translation instead of a polygon. Then, the algorithm decides if
there is a δ-admissible sequence T containing all predefined translations. Note
that predefining some of the translations does not degrade the runtime of the
algorithm.
In this chapter, referring to Algorithm 2 means referring to the variant of
Algorithm 2 mentioned above, where some translations can be predefined.

Cutting Cycles

The underlying idea of Algorithm 5, the (1 + ε)-approximation algorithm
for Problem 7 for a given FVS, is based on the fact that there is a 3(n− 1)-
approximation to δ∗, regardless of the structure ofG: w.l.o.g., letG be connected
(if G is not connected, the following strategy is applied on all connected
components of G separately). For now, suppose that the correspondence
between the points of the pattern and the points of the model is fixed that is,
pi is matched to qi and n = m. According to the results in Chapter 3, there is
a 3-approximation to δ∗:

Notation 4.5 Let

ci = qi − pi for all 1 ≤ i ≤ n and

C = {c1, . . . , cn}.

We define

T (3) = C, and

δ(3) = γ(C, T (3), G).

74 Chapter 4. EGSM on Neighborhoods that Contain Cycles

C1

C2

C3

C4

Figure 4.1: Point sets C1, . . . , C4 and the smallest multi-color-ball.

Then, T (3) is a 3-approximation to δ∗, see Lemma 3.5 for details.
This idea can be extended to Problem 7 under the directed Hausdorff distance
where the translations ti are restricted to be chosen from Ci for all 1 ≤ i ≤ n:
Finding a sequence of translations T minimizing γ(C, T,G) is equivalent to
picking a point ti from every set Ci so that the maximum distances between
translations corresponding to neighboring vertices in G are minimized.
A closely related problem, as described in the following, is the Multi-Color-
Ball-Problem:
Given n sets of m points each, the task is to find the disk with the smallest
radius that contains at least one point of every set. An illustration of the multi-
color-ball of 4 sets is given in Figure 4.1. There are two differences between the
Multi-Color-Ball-Problem and the problem of finding a sequence of translations
minimizing γ(C, T,G): The first is that in the Multi-Color-Ball-Problem n
sets of m points instead of m L2-disks are considered and the second is that
in the Multi-Color-Ball-Problem, not just the distance between the chosen
points that are adjacent according to the neighborhood graph but the pairwise
distance of all chosen points is considered, which equals an EGSM setting
where G is complete. Given an arbitrary graph G, the radius of the smallest
multi-color-ball is an approximation to the optimum of γ(C, T,G) and the
quality of the approximation depends on the graph diameter (i.e., the length of
the longest shortest path in G).
Although the Multi-Color-Ball-Problem is NP -hard under the L2-metric,
see [25], a 2-approximation to the problem is given in [26], where the au-
thors present an algorithm that computes a disk with at most twice the optimal
radius in O(nm logm + m log n) time. By using this result, in the following,
we show that there is a (n− 1)2−1-approximation to δ∗:

4.2. Solving Instances with Given Feedback Vertex Sets 75

Notation 4.6 For a point c ∈ R2 and r > 0 let Dr(c) be the smallest multi-
color-ball for a given sequence C and let c̄i be a point of Ci that lies in Dr(c)
for all 1 ≤ i ≤ n. We write

T app = (c̄1, . . . , c̄n) and

δapp := γ(C, T app, G).

Lemma 4.7 For a point c ∈ R2 and r > 0 let Dr(c) be a smallest multi-color-
ball for the sequence C and let c̄i be a point of Ci that lies in Dr(c) for all
1 ≤ i ≤ n. Then, δapp is a (n− 1)2−1-approximation to δ∗.

Proof. The points c̄i and c̄j lie within Dr(c) for all 1 ≤ i, j ≤ n and ‖c̄i− c̄j‖ ≤
2r, thus

δ∗ ≤ max
{i,j}∈E

‖c̄i − c̄j‖ = δapp ≤ 2r.

We prove δ∗ ≥ 2r(n− 1)−1 by contradiction:

Suppose δ∗ < 2r(n − 1)−1. The constraint encoded in the edge {i, j} ∈ E is
equivalent to the L2-distance between c̄i and c̄j , since ti = c̄i for all 1 ≤ i, j ≤ n.
The graph G is connected, and the graph diameter is at most n− 1. Now let vi
and vk be the vertices at the end of a longest shortest path in G. The geometric
interpretation of this path is a sequence of line segments from c̄i to c̄k so that
in an optimal solution every line segment has length at most δ∗. As illustrated

c2
c3

c4

c1
v1

v2

v3

v4

G

Figure 4.2: The points c1, . . . , c4 within the smallest multi-color-ball, the graph
G and its geometric interpretation as a sequence of line segments.

76 Chapter 4. EGSM on Neighborhoods that Contain Cycles

in Figure 4.2, since there are at most n− 1 edges between vi and vk,

‖c̄i − c̄k‖ ≤ (n− 1)δ∗

< (n− 1)
2r

(n− 1)
= 2r.

As a consequence, the diameter of the smallest enclosing disk of T app is strictly
less than 2r. This implies that Dr(c) is not the smallest multi-color-ball for
the sequence C, which is a contradiction. Thus,

δ∗ ≥ 2r
1

(n− 1)
=

2

n− 1
δapp.

Combining the results of Lemma 3.5 and Lemma 4.7 instantly shows that δapp

is a 2−13(n− 1)-approximation to δ∗. In other words,

2

3(n− 1)
δapp ≤ δ∗ ≤ δapp. (4.1)

Unfortunately, the Multi-Color-Ball-Problem is NP -hard. So there is no way
of computing δapp in polynomial time. However, the 2-approximation to the
problem given in [26] can be computed O(nm logm+m log n) time. Let δ2app

be approximation to δapp computed with the algorithm described in [26]. Then,
δapp is a 3(n− 1)-approximation to δ∗.
As mentioned earlier this holds for graphs with more than one connected
component as well, since the strategy can then be applied on each of the
connected components separately.

The Algorithm

Before we state the actual algorithm that, for an ε > 0, gives a (1 + ε)-
approximation to δ∗ for Problem 7 with a given feedback vertex set, we consider
a simpler EGSM setting for illustrating the technique that will be used.

In Chapter 3, Problem 7 under cyclic neighborhoods and under fixed corre-
spondence has already been discussed in detail. For most parts, the approach
presented in Chapter 3 can easily be adapted to Problem 7 under cyclic neigh-
borhoods (with unknown correspondence):
Let G be a simple cycle and suppose that a value δ and a translation t are
given. Consider the following decision problem:

4.2. Solving Instances with Given Feedback Vertex Sets 77

Is there is a δ-admissible sequence T = (t1 = t, . . . , tn)?
Since t1 is fixed, solving this decision variant of Problem 7 equals solving the
decision variant of Problem 7 where G is a path with n+ 1 vertices in order
v1, . . . , vn, v1 and fixed translations on both ends of the path. This means, we
can cut the cycle and modify it to be a path by guessing one translation for a
given value of δ.
Recall that every (δ∗, i)-admissible translation ti lies within the set

Dδ2app(Ci) =
⋃
c∈Ci

Dδ2app(c) :

If γ(C, T,G) ≤ δ2app for a sequence of translations T , this implies that
~h(ti, Ci) ≤ δ2app for all 1 ≤ i ≤ n and all ti ∈ T .
A simple idea to get a (1 + ε)-approximation to Problem 7 is to sample t1 from
a dense enough εgrid-grid that covers Dδ2app(C1) (we call the points of this grid
translation-samples) and to sample δ on the interval [3−1(n− 1)−1δ2app, δ2app]
(we call the samples of this interval radius-samples) with a suitable sample
rate εobj. Here, εgrid, εobj = Θ(εδ2app). Then, a binary search on the interval
[3−1(n− 1)−1δ2app, δ2app] is carried out and in every step of the binary search,
Algorithm 2 is used to test for the radius-sample δ at hand if one of the
translation-samples is part of a δ-admissible sequence.

This approach can be applied to other graphs that contain exactly one cycle:
W.l.o.g., let v1 ∈ V be the vertex so that the graph induced by V ′ = V \ {v1}
is cycle-free.

Notation 4.8 Let G = (V,E) be a graph. We denote the degree of the vertex
v ∈ V with deg(v).

Instead of transforming G into a path, we transform G into a forest Gdg by
copying v1 deg(v)− 1 times and replacing every endpoint v1 of the edges of G
with a different copy of v1, see Figure 4.3.
Additionally, for every call of Algorithm 2, we use the same fixed translation-
sample for every copy of v1 and sample-radius δ. Note that we need the
same translation-sample for each copy of v1, because they represent the same
vertex in the original graph G, which means that they correspond to the same
translation.
A generalization of this approach of graphs that contain more than one cycle is
described in the following.

Let X be a FVS of G so that |X| = kf > 1 and for V = {v1, . . . , vn} let w.l.o.g.
X = {v1, . . . , vkf}. We can transform G into a forest: We create a set of new

78 Chapter 4. EGSM on Neighborhoods that Contain Cycles

Figure 4.3: Left: Neighborhood graph G with a FVS of cardinality 1 (red).
Right: Neighborhood graph G after it has been transformed into a tree. The
red vertices are the eight copies of the red vertex of G before the transformation.

vertices of size deg(x) for every x ∈ X:

VCopy(x) := {xi | 1 ≤ i ≤ deg(x)} ,

the set of copies of x. Let Ex be the set of edges in E that are adjacent to x, so

Ex := {{x, v} ∈ E | v ∈ V } .

We create a new set of edges ECopy(x) that is similar to Ex, but in every edge x
is replaced with a different copy of x, i.e., with a different vertex of VCopy(x):

ECopy(x) :=
{
{xi, v} | {x, v} ∈ Ex and xi ∈ VCopy(x)

}
.

As illustrated in Figure 4.4, with this definition, we can construct the desired
graph, i.e., a dissected version of G, as follows:

Gdg := (Vdg, Edg) with

Vdg := (V \X) ∪

(⋃
x∈X

VCopy(x)

)
and

Edg := (E \ Ex) ∪

(⋃
x∈X

ECopy(x)

)
,

. (4.2)

With this, we can now state Algorithm 5:

Algorithm 5 We are given the point sets P = {p1, . . . , pn} and Q =
{q1, . . . , qm}, a undirected graph G = (V,E) and a FVS X of G so that
|X| = kf > 1 and for V = {v1, . . . , vn} let w.l.o.g. X = {v1, . . . , vkf}.

4.2. Solving Instances with Given Feedback Vertex Sets 79

Figure 4.4: Left: Neighborhood graph G with a FVS of cardinality 3 (green,
red and blue).
Right: Neighborhood graph G after it has been transformed into a tree. The
colored vertices are the copies of the vertices of the same color of G before the
transformation.

First, we construct Gdg = (Vdg, Edg), dissected version of G, as elaborately
described above.
Now a binary search on the interval [3−1(n − 1)−1δ2app, δ2app] is carried out,
until a (1 + ε)-approximation to δ∗ is found. For every radius-sample δ ∈
[3−1(n − 1)−1δ2app, δ2app], we sample ti from a dense enough εgrid-grid that
covers Dδ(Ci) for all 1 ≤ i ≤ kf .
Then, we test by applying Algorithm 2 on Gdg, δ and the kf -tuple (t1, . . . , tkf)
of fixed translation-samples at hand if there is a solution

T ′ = (t1 = t′1, . . . , tkf = t′kf , t
′
kf+1, . . . , t

′
n) with

γ(C, T ′, Gdg) ≤ δ.

Finally, the smallest radius-sample that permits a yes-instance of Algorithm 2
is returned along with a withness T ′.

Note that for any vi ∈ X we assign the same translation-sample to each
vertex in VCopy(vi) in Gdg, since all vertices in VCopy(vi) represent the same
vertex in the original graph G, which means that they correspond to the same
translation. Since the translation-samples for the different vertices in X are
chosen independently from each other, every possible combination of them has
to be tested by a run of Algorithm 2. Let li(δ) ∈ N be the number of translation-
samples that constitute the grid that covers Dδ(Ci) for any 1 ≤ i ≤ n, then
Π1≤i≤kf li(δ) kf -tuples of translation-samples have to be tested for every fixed
radius-sample δ.
In particular, this number can slightly be reduced in most cases. For the
radius-sample at hand, it is enough to find one kf -tuple of translation-samples

80 Chapter 4. EGSM on Neighborhoods that Contain Cycles

that permits a YES-instance of Algorithm 2. Also, a clever choice of which kf -
tuples of translation-samples are tested first, could be promising: In Section 3.3,
we rated translation-samples that constitute a NO-instance of the algorithm
at hand by counting the steps of the propagation algorithm until the first
intersection operation results in an empty set. However, it is not known if this
strategy also improves the upper bound on the runtime of Algorithm 5.

Lemma 4.9 For every 1 ≤ i ≤ n, the following equation holds:

δ∗ = min
t∈Dδ2app (Ci)

min
T with ti=t

γ(C, T,G).

Proof. Since δ∗ ≤ δ2app, ti ∈ Dδ2app(Ci) for every optimal sequence of transla-
tions and thus

min
t∈Dδ2app (Ci)

min
T with ti=t

γ(C, T,G) = min
T
γ(C, T,G) = δ∗.

Theorem 4.10 For an ε > 0, let

εgrid :=
1
√

2
5

1

3(n− 1)
εδ2app,

εobj :=
1

4

1

3(n− 1)
εδ2app and

εA2 :=
1

2

1

3(n− 1)
εδ2app.

For a given neighborhood graph G = (V,E) with n vertices and a FVS X ⊆ V
of cardinality kf ≥ 1, Algorithm 5 computes a (1 + ε)-approximation to δ∗ in

O

((
1

ε2
n2m

)kf (
log n+ log

1

ε

)
TA2

(ε
n
, kfn,m

))

time and

O

((
1

ε2
n2m

)
kfTA2

(ε
n
, kfn,m

))
space.

Proof. The proof of correctness directly follows from the proof of correctness
of Algorithm 2 in Chapter 2 together with Lemma 4.9.
We now estimate the runtime of Algorithm 5: First, δ2app is computed in
O(nm logm + m log n) time and Gdg is constructed in O(kfn) time. Note

4.2. Solving Instances with Given Feedback Vertex Sets 81

that in the worst case, the endpoints of O(kfn) edges in G get replaced by
a copy of their endpoints in Gdg, so Vdg consists of O(kfn) vertices at most.
Every translation that corresponds to a vertex of the FVS is sampled by an
εgrid-grid of O(ε−2n2m) translation-samples, since there are m disks of radius
δ2app to be covered with an εgrid-grid and δ∗ ∈ [3−1(n−1)−1δ2app, δ2app]. Calling
Algorithm 2 for all possible kf -tuples results in O((ε−2n2m)kf) calls. For every
kf -tuple, a binary search on the interval [3−1(n− 1)−1δ2app, δ2app] is carried out
up to accuracy εobj to find a suitable radius-sample. This takes (log n+ log ε−1)
time per kf -tuple. Since Vdg consists of O(kfn) vertices at most, Algorithm 2
itself requires TA2 (εn−1, kfn,m) time per call. This results in a total runtime
of O((ε−2n2m)kf (log n+ log ε−1)TA2 (εn−1, kfn,m)).
In every step of Algorithm 5, the best possible sample-radius along with the
corresponding kf -tuple is stored, which requires O(ε−2kf) space. Algorithm 2
requires TA2 (εn−1, kfn,m) space per call, which directly follows from the results
given in Chapter 2. Hence, Algorithm 2 requires O(TA2 (εn−1, kfn,m)) space.
This makes O((ε−2n2m)kf + TA2 (εn−1, kfn,m)) space in total.

c1

∂C1

t̄1

t1

δ∗

1
2

√
2εgrid

Figure 4.5: One disk from Dδ∗(C1) (red) and a grid of translation-samples
along with the collection of disks (black), where every translation-sample in
Dδ∗(C1) is the center of a disks and all disks have radius 2−1

√
2εgrid. The point

t1 is the translation-sample, which is closest to t̄1.

Now we prove the quality of the approximation: There are three inaccuracies
that add up: εA2, εgrid and εobj. Suppose, we know δ∗ and let w.l.o.g. Dδ∗(C1)
be covered with an εgrid-grid. Consider the collection of disks, where every
translation-sample in Dδ∗(C1) is the center of a disks and all disks have radius√

2εgrid. Then, Dδ∗(C1) is completely contained in this collection of disks,

82 Chapter 4. EGSM on Neighborhoods that Contain Cycles

whereas for a radius of 2−1
√

2εgrid the collection would not neccessarily cover
Dδ∗(C1) completely, see Figure 4.5.
In particular, any point in Dδ∗(C1) which is furthest from any grid-point of
Dδ∗(C1) in the worst case is located on ∂Dδ∗(C1). Let one of these points be
called t̄1 and let the closest grid point be called t1. Then, in the worst case,

‖t1 − t̄1‖ <
√

2εgrid

(4.1)
=

1

4

1

3(n− 1)
εδ2app

≤ 1

4
εδ∗.

Since we have to add εA2 and εobj to this, the total relative error is no more
than

1

4
εδ∗ +

1

2

1

(3(n− 1))
εδ2app +

1

4

1

(3(n− 1))
εδ2app ≤

1

4
εδ∗ +

1

2
εδ∗ +

1

4
εδ∗ = εδ∗.

On Feedback Vertex Sets and Fixed Correspondence

The runtime of Algorithm 5 improves significantly if the correspondence between
the points of the pattern and the points of the model is known that is, n = m
and w.l.o.g. pi is matched to qi for all 1 ≤ i ≤ n. Let

ci := qi − pi for 1 ≤ i ≤ n and

C := (c1, . . . , cn).

Then, every (δ, i)-admissible translation lies within the L2-disk Dδ(ci). Also,
there is a 3-approximation to δ∗, see Lemma 3.5. Therefore, let δ(3) be defined
as in Lemma 3.5 (δ(3) = γ(C,C)). This means, δ∗ ∈ [3−1δ(3), δ(3)] in this
section.
With that, we can proof the following theorem:

Theorem 4.11 Let n = m and let pi be matched to qi for all 1 ≤ i ≤ n. Let

εgrid :=
1

3
√

2
5 εδ

(3),

εobj :=
1

12
εδ(3) and

εA2 :=
1

6
εδ(3).

4.2. Solving Instances with Given Feedback Vertex Sets 83

For a given neighborhood graph G = (V,E) with n vertices and a FVS X ⊆ V
of cardinality kf ≥ 1, Algorithm 5 computes a (1 + ε)-approximation to δ∗ in
O(ε−2kf−1/2 log ε−1kfn) time and O(ε−1/2kfn+ ε−2kf) space.

Proof. The proof of correctness directly follows from the proof of correctness
of Theorem 4.10.
At the start, the value of a 3-approximation to δ∗ is computed in O(n) time and
Gdg is constructed in O(kfn) time. In the worst case, the endpoints of O(kfn)
edges in G get replaced by a copy of their endpoints in Gdg, which is why Vdg

consists of O(kfn) vertices at most. Every translation that corresponds to a
vertex of the FVS is sampled by an εgrid-grid of O(ε−2) translation-samples,
since there is just one disk of radius δ(3) to be covered with an εgrid-grid and
δ∗ ∈ [3−1δ(3), δ(3)]. As a consequence, calling Algorithm 2 for all possible
kf -tuples results in O(ε−2kf) calls. For every kf -tuple, a binary search on
the interval [3−1δ(3), δ(3)] is carried out up to accuracy εobj to find a suitable
radius-sample. This binary search needs O(log ε−1) steps per kf -tuple.
Now, we need to analyse the runtime of Algorithm 2 for the special case of known
correspondence. At the start, Algorithm 2 approximates each (δ, i)-admissible
set of translations with a regular convex polygon with O(ε−1/2) vertices. Since
each of these regions is convex, their intersection is also convex and can therefore
be described with O(ε−1/2) vertices, see Lemma 2.12. According to Lemma 2.12,
the Minkowski sum of such an object and the inscribed polygon of the unit
disk in the algorithm does not change the description complexity of the object.
Since Vdg consists of O(kfn) vertices, Algorithm 2 works with kfn objects
of description complextity O(ε−1/2) each. Intersecting and inflating convex
polygons can be done in linear time, which is why one call of Algorithm 2 takes
O(ε−1/2kfn) time. This results in a total runtime of O

(
ε−2kf−1/2 log ε−1kfn

)
.

We now analyze the space required by Algorithm 5 for the case of known
correspondence. In every step of Algorithm 5, the best possible sample-radius
along with the corresponding kf -tuple is stored, which requires O(ε−2kf) space.
Algorithm 2 requires O(ε−1/2kfn) space per call, which directly follows from
the analysis above. Hence, Algorithm 5 requires O(ε−1/2kfn+ ε−2kf) space in
total.
We now prove the quality of the approximation: There are three inaccuracies
that add up: εA2, εgrid and εobj. First we consider εgrid: In the worst case,

‖t1 − t̄1‖ <
√

2εgrid

= 2−23−1εδ(3)

≤ 2−2εδ∗,

see Theorem 4.10 for details. Since we have to add εA2 and εobj to this, the

84 Chapter 4. EGSM on Neighborhoods that Contain Cycles

total absolute error is no more than

1

4
εδ∗ +

1

6
εδ(3) +

1

12
εδ(3) ≤

1

4
εδ∗ +

1

2
εδ∗ +

1

4
εδ∗ = εδ∗.

4.3 Solving Instances with Bounded Path-

width or Treewidth

In Section 4.2 we saw that we can approximate the solution to Problem 7, even
if the neighborhood graph G contains several cycles, although the runtime of
the (1 + ε)-approximation algorithm strongly depends on the size of a (M)FVS,
which is also related to the number of cycles in G. However, if we know that
the cycles are somehow separated into disjoint or almost disjoint groups, the
runtime can be improved by exploiting the structural features of a given path-
or tree decomposition of the neighborhood graph at hand:

Pathwidth

The pathwidth of a given graph G = (V,E) is defined as follows:

Definition 4.12 A path decomposition of a graph G = (V,E) is a sequence
P = (X1, . . . , Xr) of subsets of V , called bags, with Xi ⊆ V for all 1 ≤ i ≤ r
so that

1.
⋃r
i=1Xi = V .

2. For every {u, v} ∈ E, there is an 1 ≤ l ≤ r so that the bag Xl contains u
and v.

3. For every u ∈ V , if u ∈ Xi ∩Xk for some i ≤ k, then u ∈ Xj for every
i ≤ j ≤ k.

The width of a path decomposition P = (X1, . . . , Xr) is defined as
max1≤i≤r |Xi| − 1. The pathwidth of a graph G is the smallest possible width
of any path decomposition of G.

An approximation algorithm that, given a graph with n vertices, determines in
O(8kk2n2) time, whether the path- or treewidth of the graph is at most k, is
presented in [24]. This algorithm is able to return a path or tree decomposition
of width at most 4k + 4 in case of a YES-instance.

4.3. Solving Instances with Bounded Pathwidth or Treewidth 85

X1
X2

Xr
Xr−1

X3 Xr−2

Figure 4.6: Neighborhood graph G of pathwidth 3.

In the following, let P = (X1, . . . , Xr) be a given path decomposition of G of
width kw, see Figure 4.6. Note that checking for a given graph G if there is a
path decomposition of width kw is NP -complete.

Notation 4.13 For a path decomposition P = (X1, . . . , Xr) of the graph G =
(V,E), Gi := (Xi, Ei) is the subgraph of G induced by the bag Xi for all
1 ≤ i ≤ r, i.e., Ei := {{u, v} ∈ E | u, v ∈ Xi}.
Also, we denote the cardinality of Xi with xi for all 1 ≤ i ≤ r.
The subset of C that corresponds to the vertices in Xi is denoted with Ci.

Note, that xi ≤ kw + 1 for all 1 ≤ i ≤ r.

Problem 7 for a given path decomposition is a special case of Problem 7 for
a given tree decomposition, which will be discussed in the next section. The
approach to compute a (1 + ε)-approximation to δ∗ is the same in both cases.
However, to illustrate the strategy that is used, we first focus on the case that
the given decomposition of G is a path decomposition. The proof of correctness
and the analyses of run-time, space requirements and approximation quality
are included in the next section.

The main idea to get a (1 + ε)-approximation to δ∗ for the variant of Problem 7
with given path decomposition is to sample δ from a suitable interval and then
for a fixed δ start at one end of the path decomposition and solve the decision
variant of the problem separately bag by bag along the path until the other
end of the path is reached.
The 3(n − 1)-approximation δ2app introduced in Section 4.2 is the basis for
the following strategy: We perform a binary search on the interval [3−1(n−
1)−1δ2app, δ2app] up to accuracy εobj to determine the smallest radius-sample
that permits a yes-instance for the decision variant of Problem 7, where all sets
of admissible translations are approximated by grids of translation-samples:
Let the radius-sample at hand be called δ. In each iteration, the following
strategy is applied: Starting with bag X1, and then bag by bag until we reach
Xr, we compute an approximate solution to the decision variant of Problem 7
restricted to the bag at hand, i.e., the subgraph induced by it, until we either

86 Chapter 4. EGSM on Neighborhoods that Contain Cycles

G1
Dδ(C1)

Dδ(C2)

Dδ(C3)

t1
t2

t3

t′3,1

t′3

X1

v1

v2 v3

Figure 4.7: Bag X1 contains the graph G1, a complete graph with 3 vertices.
The sets Dδ(C1), Dδ(C2) and Dδ(C3) are covered by grids of translation-samples.
The 3-tuples of translation samples T1 = (t1, t2, t3) and T ′1 = (t1, t2, t

′
3) are

the only ones that are δ-admissible for the bag X1, i.e., γ(C1, T1, G1) ≤ δ and
γ(C1, T

′
1, G1) ≤ δ.

find a subgraph that is a no-instance (for the radius-sample δ) or the subgraph
Gr induced by Xr permits a yes-instance (for δ): Recall that every vertex in
G and with that, every vertex vj ∈ X corresponds to a set of m disks of radius
δ, Dδ(Cj) for 1 ≤ j ≤ x = |X|.
We start with X1. For every vertex vj ∈ X1, we sample Dδ(Cj) with a dense
enough εgrid-grid, see Figure 4.7. This results in x1 grids of translation-samples.
The goal is to test if there is a sequence of translation samples T̄ = (t1, . . . , tx1)
so that γ(C1, T̄ , G1) ≤ δ. Note that the translation-samples for different vertices
are chosen independently from each other. This results in O((ε−2n2m)x1) x1-
tuples of translation-samples that may be δ-admissible for the bag X1. Note
that we sample Dδ(Cj), for every vertex vj ∈ X1 (and later for all other bags
of the path decomposition), since the structure of the subgraph of G with
vertices in bag X1 is arbitrary. Thus we do not know beforehand if it is enough
to sample the corresponding sets of a certain subset of vertices in order to
cut all cycles involved. For certain graph classes, there may also be a more

4.3. Solving Instances with Bounded Pathwidth or Treewidth 87

sophisticated way to search for valid tuples of translation-samples.
For each x1-tuple T̄ , we test, if all constraints encoded in G for the vertices
contained in X1 are met, i.e., we test, if γ(C1, T̄ , G1) ≤ δ. This means that we
can decide, for every x1-tuple and for a fixed sample-radius δ, whether the x1-
tuple is δ-admissible (and with this whether it is a witness for a YES-instance)
restricted to bag X1 or if it is not δ-admissible. This information can be stored
in a table. If none of the x1-tuples turns out to be δ-admissible, we conclude
that δ was chosen too small and proceed with the next step of the binary search
on the radius-samples.
However, if there are any δ-admissible x1-tuples, we proceed with the next step
and iteratively repeat the same step bag by bag for all bags X2, . . . , Xr: Let
1 ≤ i < r. The translations of the unions of disks corresponding to Xi ∩Xi+1

have already been sampled in the ith step of the algorithm. Therefore, only the
|Xi ∩Xi+1|-tuples of translation-samples that belong to a δ-admissible xi-tuple
of the previous bag may be part of a δ-admissible sequence of translations
and hence are considered as candidates for the next bag. In doing so, all xi+1-
tuples for bag Xi+1 in question are checked and the information of δ-admissible
translation-samples is carried on through the path, until either none of the
xi-tuples of bag Xi is δ-admissible for some 1 ≤ i ≤ r or at least one xr-tuples
of bag Xr turns out to be δ-admissible, which implies that there is a sequence
of translation-samples so that all constraints encoded in G are met for the
considered sample-radius δ.

Treewidth

The treewidth of a graph G = (V,E) is defined as follows:

Definition 4.14 A tree decomposition of a graph G = (V,E) is a pair T =
(T, {Xt})t∈V (T), where T is a tree so that every vertex t of T is assigned to a
bag Xt ⊆ V with

1.
⋃
t∈V (T) Xt = V .

2. For every {u, v} ∈ E, there is a vertex t of T so that the bag Xt contains
u and v.

3. For every u ∈ V , the set Tu = {t ∈ V (T) | u ∈ Xt} induces a subtree of
T .

We define
nv := |V (T)|.

The width of a tree decomposition T = (T, {Xt})t∈V (T) is

max
t∈V (T)

|Xt| − 1.

88 Chapter 4. EGSM on Neighborhoods that Contain Cycles

Xt

Xc1(t)

Figure 4.8: Neighborhood graph G of treewidth 3.

The treewidth of a graph G is the smallest possible width of any tree decompo-
sition of G.

In the following, let T = (T, {Xt})t∈V (T) be a given tree decomposition of G
of width kw, see Figure 4.8. Checking for a given graph G if there is a tree
decomposition of width kw is NP -complete.

Notation 4.15 For a tree decomposition T = (T, {Xt})t∈V (T) of the graph
G = (V,E), Gt := (Xt, Et) is the subgraph of G induced by the bag Xt for all
t ∈ T , i.e., Et := {{u, v} ∈ E | u, v ∈ Xt}.
Also, we denote the cardinality of Xt with xt for all t ∈ T .

The subset of C that corresponds to the vertices in Xt is denoted with Ct.

The strategy that can be applied in case of a neighborhood graph with given
treewidth, is just a slight modification of the one for given pathwidth:

Algorithm 6 We are given the point sets P = {p1, . . . , pn} and Q =
{q1, . . . , qm}, a undirected graph G = (V,E) and a tree decomposition T =
(T, {Xt})t∈V (T) of G.

First, we pick an arbitrary vertex r of T as the root and from now on consider
Tr, the tree rooted in r. We perform a binary search on the interval [3−1(n−
1)−1δ2app, δ2app] up to accuracy εobj to determine the smallest radius-sample

4.3. Solving Instances with Bounded Pathwidth or Treewidth 89

that permits a yes-instance for the decision variant of Problem 7, where all
sets of admissible translations are approximated by grids of translation-samples:

Let the sample-radius at hand be named δ. In every iteration, we propagate
δ-admissible translation-samples from bottom to top through Tr by computing
an approximate solution to the decision variant of Problem 7 restricted to the
bag at hand, i.e., the subgraph induced by it, until we either find a subgraph
that is a no-instance (for the radius-sample δ) or the subgraph Gr induced by
Xr permits a yes-instance (for δ):

We start with the leafs of Tr and the bags they correspond to. Let l be a leaf of Tr.
Just as we did for the case that a path decomposition is given, for every vertex
vj ∈ Xl with 1 ≤ j ≤ xl, we sample Dδ(Cj) with a dense enough εgrid-grid.
This results in xl grids of translation-samples. The goal is to test if there is a
sequence of translation samples T̄ = (t1, . . . , txl) so that γ(Cl, T̄ , Gl) ≤ δ. Note
that the translation-samples for different vertices are chosen independently from
each other. This results in O((ε−2n2m)xl) xl-tuples of translation-samples that
may be δ-admissible for the bag Xl. Note that we sample Dδ(Cj), for every
vertex vj ∈ Xl (and later for all other bags of the tree decomposition), since the
structure of the subgraph of G with vertices in bag Xl is arbitrary. Thus we
do not know beforehand if it is enough to sample the corresponding sets of a
certain subset of vertices in order to cut all cycles involved. For certain graph
classes, there may also be a more sophisticated way to search for valid tuples of
translation-samples. For each xl-tuple T̄ , we decide if it is δ-admissible (so it
is a witness for a yes-instance) for the problem restricted to bag Xl or if it is
not δ-admissible by testing, if γ(Cl, T̄ , Gl) ≤ δ. This information can be stored
in a table.

Then we proceed with the inner vertices of Tr: For every inner vertex t of Tr,
let nt be the number of children of t and let c1(t), . . . , cnt(t) be the children of t.
We call the bags Xci(t) child-bags of Xt for 1 ≤ i ≤ nt and Xt the parent-bag
of Xci(t) for 1 ≤ i ≤ nt. All child-bags of Xt have already been handled in a
previous iteration of the algorithm. In particular, all translations corresponding
to vertices in

(⋃nt
i=1Xci(t)

)
∩Xt have been sampled. As a consequence, only the

|
(⋃nt

i=1Xci(t)

)
∩Xt|-tuples of translation-samples that belong to a yes-instance

in all of the child-bags they appear in, are considered as candidates for the
parent-bag. In doing so, all xt-tuples for bag Xt in question are tested and the
information of δ-admissible translation-samples is carried on through the tree,
until all xt-tuples of a bag Xt are not δ-admissible for some t ∈ V (Tr) or at
least one xr-tuple of bag Xr turns out to be δ-admissible, which implies that
there is a δ-admissible sequence of translations for the sample-radius δ.

90 Chapter 4. EGSM on Neighborhoods that Contain Cycles

Theorem 4.16 For an ε > 0, let

εgrid :=
1
√

2
3

1

3(n− 1)
εδ2app and

εobj :=
1

2

1

3(n− 1)
εδ2app.

For a given neighborhood graph G = (V,E) with n vertices and a given tree-
decomposition T = (T, {Xt})t∈V (T) with width kw ≥ 1, Algorithm 6 computes a
(1 + ε)-approximation to δ∗ in

O

((
1

ε2
n2m

)(kw+1)(
log

1

ε
+ log n

)
kw

2n

)

time and

O

((
1

ε2
n2m

)(kw+1)
)

space.

Proof. The proof of correctness equals the proof of correctness for Algorithm 1
given in Chapter 2, Theorem 2.4 with the slight difference that the vertices
of the tree become bags. Therefore, we refer to Theorem 2.4 for the proof of
correctness.
The binary search on the interval [3−1(n−1)−1δ2app, δ2app] takesO(log ε−1+log n)
time. In each step of the binary search, the whole graph is analysed: There
are O(n) bags. We focus on one specific bag Xt with t ∈ Tr and let the
radius-sample at hand be named δ. There are up to kw + 1 vertices and
2−1(kw + 1)(kw + 2) edges in Xt and every vertex and every edge in Xt encodes
one constraint in the objective function. Hence it takes

O((kw + 1) + 2−1(kw + 1)(kw + 2)) = O(kw
2)

time to test for a fixed tuple T̄ of translation-samples, if γ(Ct, T̄ , Gt) ≤ δ. Each
tuple of translation-samples for bag Xl consists of xl ≤ kw + 1 translation-
samples. For every vertex vi ∈ Xt, the corresponding translation-sample of the
tuple at hand is chosen from a dense enough εgrid-grid that covers Dδ(Ci). Since
in the worst case, the largest radius-sample is 3(n − 1)δ∗ covering a disk of
this radius with an εgrid-grid results in O(n2εgrid

−1) translation-samples. Dδ(Ci)
consists of m disks, thus O(n2mεgrid

−1) translation-samples are needed to cover
Dδ(Ci). Since the translation samples corresponding to different vertices in
Xt can be chosen independently from each other, there are O((ε−2n2m)xt)

4.3. Solving Instances with Bounded Pathwidth or Treewidth 91

xt-tuples of translation-samples that are possibly a solution to the decision
variant of Problem 7, restricted to bag Xt. Thus, processing one bag takes
O((ε−2n2m)(kw+1)kw

2) time.
Computing all YES-tuples of one parent-bag from its nt child-bags takes
O(nt(ε

−2n2m)(kw+1)) time. Since there are O(n) child-bags in total, the whole
updating process takes O(n(ε−2n2m)(kw+1)) time. This results in a total runtime
of O((ε−2n2m)(kw+1)(log ε−1 + log n)kw

2n).
The space that is required is bounded by the size and number of tables that
have to be managed. There are O(n) tables of size O((ε−2n2m)(kw+1)) each.
Now we prove the quality of the approximation: There are two inaccuracies
that add up: εgrid and εobj. First we consider εgrid: In the worst case,

‖t1 − t̄1‖ <
√

2εgrid

= 2−1(3(n− 1))−1εδ2app

≤ 2−1εδ∗,

see Theorem 4.10 for details. Since we have to add εobj to this, the total
absolute error is no more than

2−1εδ∗ + 2−1(3(n− 1))−1εδ2app ≤ εδ∗.

On Path- or Tree Width and Fixed Correspondence

If the correspondence between the points of the pattern and the points of the
model is known that is, n = m and pi is matched to qi for all 1 ≤ i ≤ n, there
is a much faster approach to get a (1 + ε)-approximation to the optimum of
Problem 7. We use Algorithm 6 with one slight alternation:
Instead of using the 3(n− 1)-approximation δ2app to δ∗, we can now use the
3-approximation δ(3) to δ∗ given in Lemma 3.5. As a consequence, the interval
that contains δ∗ shrinks to [3−1δ(3), δ(3)], which is why the binary search on this
interval takes O(log ε−1) time. Since pi is matched to qi for all 1 ≤ i ≤ n, every
(δ, i)-admissible translation lies within the single L2-disk Dδ(ci) with ci := pi−qi
(instead of the union of m disks in the case for unknown correspondence).
Additionally, the largest radius-sample is 3δ∗ and thus we need no more than
O(ε−2) translation-samples, to sample this disk. This reduces the time to
process one bag to O((ε−2)(kw+1)kw

2) and the whole updating process takes
O(n(ε−2)(kw+1)) time.
Summing all that up, we see that Algorithm 6 runs in O(ε−2(kw+1) log ε−1kw

2n)
time and O(ε−2(kw+1)n) space under fixed correspondence under the usage of
the 3-approximation δ(3) .

92 Chapter 4. EGSM on Neighborhoods that Contain Cycles

4.4 Combining both Approaches

Solving EGSM problems under translations for neighborhood graphs that con-
tain cycles is a complex task, in particular, because the algorithmic complexity
of the problem seems to depend on the number these cycles. The strategies
discussed in this chapter for given FVSs or given path- or tree decomposition
have a lot in common: Both “cut” the cycles of G by sampling some sets of
admissible transformations at hand and use the structure of the given graph
G in order to keep the number of regions that have to be sampled as small as
possible. Also, both approaches can be combined:
Suppose we are given a decomposition G = (G′, {Xt})t∈V (G′) of G which is
defined analog to a tree decomposition of G but is not necessarily cycle-free
and suppose G has a small (given) feedback vertex set X ⊂

⋃
t∈V (G′){Xt} (i.e.,

X contains bags of G). Then we can transform G into a tree decomposition
Gdg by following the strategy of Equation (4.2) and then solve the problem
approximately as described in Section 4.3 by computing feasible tuples of
translation-samples bag by bag and bottom-to-top through Gdg while using the
same translation-samples for every bag of Gdg that corresponds to a bag in the
FVS of G.

4.5 Discussion

Overall, the runtimes and space requirements of the algorithms introduced
in this chapter seem somehow disappointing, especially for instances under
unknown correspondence, and are therefore to some extend not of use in real-
life applications. Regarding Algorithm 6, the algorithm for bounded path- or
treewidth, the cause of this is the combinatorial complexity of the structures
inside the particular bags, which does not depend on the path- or treewidth of
the graph but rather the structure of the graph restricted to the bags, which is
unknown in our setting. By adding more information beforehand,Algorithm 6
could be customized in order to get reasonably faster.
For some instances, e.g., instances where G is a planar graph, it could be even
faster to just run Algorithm 6 under fixed correspondence for all mn possible
matchings of the points of P to the points of Q instead of using Algorithm 6
for instances under unknown correspondence, since in this setting, the runtimes
of processing one bag under unknown and under fixed correspondence differ by
a factor of O((n2m)kw+1) = O((n2m)

√
n+1).

One question that arrises when looking critically at the results displayed in
this chapter is the question of what happens if we use Algorithm 6 on an

4.5. Discussion 93

instance, where the neighborhood graph is an actual tree or path, i.e., kw = 1.
Suppose, the correspondence of the points of the pattern to the points of the
model is fixed and G is a path. Then, Algorithm 6 takes O((ε−2)2 log ε−1n)
time, where O(ε−2) is the number of samples needed to sample each of the n
disks involved. Appendix A contains Algorithm 11, a comparable algorithm
that runs in O(ε−1n) time if the decision variant is considered and can easily
be adapted to solve the optimization version of the problem in O(ε−1 log ε−1n)
time.
Obviously, the runtimes of both algorithms differ by a factor of O(ε−3). One rea-
son is that Algorithm 11 approximates every disk by just sampling its boundary,
hence O(ε−1) samples are needed for each of the n disks involved. Algorithm 6
can be adjusted accordingly, resulting in a runtime of O((ε−1)2 log ε−1n). Note
that this method only works for instances under fixed correspondence where
the neighborhood graph is a tree or a path. However, Algorithm 6 is still slower
by a factor of O(ε−1) after the adjustment. During a call of Algorithm 6, every
bag is processed separately. Since every bag contains exactly two vertices, all
possible 2-tuples of samples contained in each bag are considered and we test
for the value δ at hand if they are δ-admissible restricted to the corresponding
bag. This takes O(ε−2) time. This step is crucial if kw > 1 in order to “cut” all
possible cycles contained in the bags at hand. However, if G is a tree or a path,
there are no cycles and this step is unneeded, which explains the conceptual
difference between both algorithms.

94 Chapter 4. EGSM on Neighborhoods that Contain Cycles

Chapter 5

The Combinatorial Complexity
of Admissible Regions under the
Euclidean Distance

A key operation used in Chapter 3 and Chapter 4 in order to compute exact
solutions for EGSM problem instances under the L2-norm is computing the
Minkowski sum of an L2-disk and a set A that originated from intersecting
and merging L2-disks of different radii (we also call it inflating the admissible
regions). Usually, the number of circular arcs that define the boundary of the
set gained from inflating A is greater than the number of circular arcs defining
the boundary of A, which is one major reason for considering other norms
than the L2-norm and the design of Algorithm 2, the approximation algorithm
given in Chapter 2. In this chapter, we provide some insights about the issue
of estimating the combinatorial complexity of such regions and give upper and
lower bounds for the following special EGSM instances.

5.1 Problem Statement

In this chapter, ‖ · ‖ denotes the L2-norm.

Problem 8 Given:

P = (p1, . . . , pn) a sequence of points (the pattern),

Q = (q1, . . . , qn) a sequence of points (the model),

G = (V,E) a cycle-free graph with V = {v1, . . . , vn} and

E ⊆ {{vi, vj} | vi, vj ∈ V }, and

δ ∈ R+ a parameter.

96 Chapter 5. Complexity of Admissible Regions under the L2-Distance

Find: A sequence of translations T = (t1, . . . , tn) so that

max

(
max
1≤i≤n

‖qi − (pi + ti)‖, max
{vi,vj}∈E

‖ti − tj‖
)
≤ δ. (5.1)

Let
ci := qi − pi for 1 ≤ i ≤ n and

C := (c1, . . . , cn).
(5.2)

Recall that measuring the distance of the points (ti + pi) to qi in model space is
the same as measuring the distance of the points ti and ci in translation space,
which is why Problem 8 can be studied in translation space entirely. Then,
inequality (5.1) changes to

γ(T,C,G) := max

(
max
i∈V
‖ci − ti‖, max

{i,j}∈E
‖ti − tj‖

)
≤ δ. (5.3)

In [16] the authors give an algorithm, called Algorithm B, that solves Problem 8
in O(n2 log n) time if only translations in a fixed direction are allowed. In the
first part of this chapter, we adapt the algorithm to Problem 8, then called
Algorithm 7, and prove that it runs in O(n2 log n) time and space if G is a
path and arbitrary translations in the plane are allowed. We give an example
illustrating the fact that solving the problem using Algorithm 7 requires Ω(n2)
space. However, if G is not a path, the problem seems to be more complicated.
In the second part of this chapter, we give (non-polynomial) upper bounds on
the time and the space required by Algorithm 7 to solve the problem if G is a
tree, which can be improved to be polynomial if G is a complete, not neccesarily
binary, tree. In the last part of this chapter, we give a rough description of
the difficulties in estimating the combinatorial complexity that arise if the
correspondence between the points of the pattern and the points of the model
is not fixed.
Note that the neighborhood graph G is not necessarily connected. However, if
G consists of more than one connected component, the problem at hand can
be solved by computing the solution for every tree within the forest separately.
Then, the given EGSM instance is a YES-instance, iff there is a valid sequence
of translations for every tree in G.

First, we introduce some notation:

Recall that for a closed set A ⊂ R2, ∂A denotes its boundary. Also, for c ∈ R2

and r > 0, Dr(c) denotes the disk with radius r centered in c. Dδ denotes the
disk with radius δ centered in the origin.

5.2. The Algorithm 97

Notation 5.1 Let c ∈ R2 and r > 0, and let s and e be two points on ∂Dr(c).
Then (r, c, s, e) denotes the circular arc of ∂Dr(c) with startpoint s and endpoint
e (clockwise).

Also recall from Defintion 2.5 that for a closed connected set B ⊂ R2 a closed
set A ⊂ R2 is called B-fat if every point a ∈ A can be covered by a translated
copy of B that is fully contained in A.

Definition 5.2 We call a point t admissible (for δ, C and G), iff t is part of a
sequence T so that

γ(T,C,G) ≤ δ.

Strictly speaking, the concept of admissibility depends on δ and C, but since δ
and C are part of the input, we refrain from including them in the notation.
Let c ∈ R2. Recall that Ic denotes the set of translations that are at most δ-far
from c:

Ic := {t | ‖c− t‖ ≤ δ} = Dδ(c).

To simplify the presentation, we associate the points of C with the vertex set
V , since every point in C corresponds to one vertex of V . For a vertex v ∈ V
that represents the translation that is to be computed for point c ∈ C, we store
the set of translations Ic that are admissible for ({v},∅} in v and refer to it
simply as Iv.

5.2 The Algorithm

In [16] the authors give an algorithm, here called Algorithm B, that solves
Problem 8 in O(n2 log n) time and space if only translations in a fixed direction
are allowed. This algorithm has already been used as the basis for solving
Problem 8 under different norms and with unknown correspondence between
the points of the pattern and the points of the model in Chapter 2. Algorithm
B can easily be adapted to solve Problem 8, although the runtime changes due
to the more complex geometry of the objects that are processed. Chapter 2
contains a detailed description of this algorithm for problem instances under
the L1-, the L∞-, or under polygonal norms along with a proof of its correctness.
Since we need some information on how the algorithm works under the L2-
norm in order to evaluate its runtime for solving Problem 8, we give a short
description of a variant of this algorithm which is adjusted to solve Problem 8
at this point:

Algorithm 7 We are given a point sequence C = (c1, . . . , cn), a tree G = (V,E)
and a parameter δ ≥ 0.

98 Chapter 5. Complexity of Admissible Regions under the L2-Distance

Every vertex v corresponds to a point c ∈ C and we can identify v with c.
Hence, at start, the set

Iv = Ic = Dδ(c)

is stored in every node v of the tree.
We then pick an arbitrary vertex r ∈ V and henceforth consider Tr, the tree
rooted in r. For an internal vertex v let c1(v), . . . , cnv(v) be the nv children v
and let Tv be the subtree in Tr rooted in v.
In each step of the algorithm, a vertex v of the current tree is selected with the
property that all children of v are leaves or vertices which already have been
updated. Then, the vertex v is updated to a new vertex v′ and the set Iv′ of
admissible regions for v′ is computed as follows: First, we inflate all regions
Ici(v) by δ for 1 ≤ i ≤ nv which results in a set

Iδci(v) := Ici(v) ⊕Dδ,

where ⊕ denotes the Minkowski sum. The admissible region Iv′ for the new
vertex v′ is given by

Iv′ =

(
nv⋂
i=1

Iδci(v)

)
∩ Iv.

This process is repeated until one of the following cases occurs:

1. There is a vertex v with Iv = ∅ (after a contraction):
The process stops and no is returned as the answer to Problem 8.

2. The root r is updated and Ir′ 6= ∅:
The algorithm terminates and returns yes as the answer to Problem 8.

Note that, if Iv′ 6= ∅, the sequence of translations T can be computed from Iv′
and the sets of admissible translations stored in the vertices of Tv.
Figure 5.1 illustrates the computed admissible regions for a given point sequence
C = (c1, . . . , c8) and δ∗.

5.3 Minkowski Sums of Admissible Regions

and their Combinatorial Complexity

Inflating admissible regions with an L2-disk increases the number of circular
arcs that compose the boundaries of the corresponding regions at hand, see
Figure 5.2. To this point there are no results on what the combinatorial
complexity of these regions is or even if it is polynomial. Computing reasonable
upper and lower bounds of these objects appears to be challenging. In the

5.3. Minkowski Sums of Admissible Regions and their Complexity 99

Figure 5.1: The computed admissible regions (turqouise) for a given point
sequence C = (c1, . . . , c8) and δ∗. The edges of the corresponding neighborhood
graph are indicated as line segments (blue). The figure also contains a witness
for an optimal sequence of translations (green points).

Figure 5.2: An admissible region with a boundary that consists of two circular
arcs (solid line). Its inflated version (dashed line) consists of four circular arcs.

100 Chapter 5. Complexity of Admissible Regions under the L2-Distance

following, we take a closer look at these regions and their complexity as they
are constructed as intermediate results during a run of Algorithm 7 if applied
to Problem 8 under the 1-to-1-distance. Each of these regions can be described
by a sequence of circular arcs:

Definition 5.3 A (not necessarily convex or connected) set B ⊂ R2 is called
arc-set if the boundary of B can be described by a sequence of circular arcs;
k(B) denotes number of these arcs.
We call k(B) the description complexity of B.
If two successive circular arcs share the same tangent in their common endpoint,
this endpoint point is called smooth. We call ∂A smooth if all endpoints of ∂A
are smooth.

One of the goals in this chapter is to find an upper bound on the description
complexity of given arc-sets. Since the number of arcs of an arc-set that consists
of at least zwo circular arcs equals the number of its endpoints, we can either
estimate the number of circular arcs or the number of endpoints of the arc-set
at hand in order to get an upper bound for its description complexity.

Observation 5.4 Let A ⊂ R2 be a convex arc-set, so that ∂A consists of l
circular arcs a1, . . . , al (i.e., k(A) = l) with radii ri, centers mi and endpoints
ei, hence

ai = (ri,mi, ei, ei+1)

for all 1 ≤ i ≤ l with el+1 = e1, see Figure 5.3 for an example.
Then ∂Aδ = ∂(A⊕Dδ) is given by the sequence of circular arcs

(b1, ā1, b2, ā2, . . . , bl, āl)

with

bi =

(
δ, ei,

δ

ri−1

(ei −mi−1) + ei,
δ

ri
(ei −mi) + ei

)
and

āi =

(
ri + δ,mi,

δ

ri
(ei −mi) + ei,

δ

ri
(ei+1 −mi) + ei+1

)
.

(5.4)

The common endpoint ei+1 of the circular arcs ai and ai+1 is smooth if the
rays [miei+1 and [mi+1ei+1 are subsets of the same straight line. In this case
the circular arc bi+1 of ∂Aδ framed by āi and āi+1 has length 0. Also, ∂Aδ is
smooth by construction.
The following equation holds:

l ≤ k
(
Aδ
)
≤ 2l. (5.5)

Furthermore, k
(
Aδ
)

= k
(
(Aδ)δ

)
. For more information about Minkowski sums,

we refer to [2].

5.3. Minkowski Sums of Admissible Regions and their Complexity 101

m1

m2

m3

a1

ā1

a2

ā2b2

b3

a3

ā3

e2

e3

e1

A

Aδ

Figure 5.3: The set ∂A (solid fat lines) consists of the three arcs a1, a2 and a3.
∂Aδ (dashed fat lines) consists of the five arcs ā1, b2, ā2, b3 and ā3. The endpoint
e1 on ∂A is smooth and creates one endpoint of ∂Aδ, while the endpoints e2

and e3 on ∂A are not smooth and each create two endpoints on ∂Aδ.

In other words, each endpoint of ∂A creates one or two endpoints on ∂Aδ,
depending on wether or not the endpoint of ∂A is smooth, see Figure 5.3. Note
that this only holds if A is convex.

On Path Neighborhoods

In the following, let G = (V,E) be a path with V = {v1, . . . , vn} and E =
{{vi, vi+1} | 1 ≤ i ≤ n− 1}.

Theorem 5.5 Algorithm 7 solves Problem 8 in O(n2 log n) time if the neigh-
borhood graph G is a path with n vertices.

Proof. Let G be rooted in vertex vn. After the initialization step, the admissible
region stored in vertex vi for 1 ≤ i ≤ n is Ivi = Dδ(ci).
In the next step of Algorithm 7, the vertex v2 is updated to a new vertex
v′2 (since it is the only vertex whose child v1 is a leaf) by inflating Iv1 and
intersecting it with Iv2 . The new vertex v′2 then represents the region

Iv′2 = Iv2 ∩ Iδv1 = Dδ(c2) ∩D2δ(c1),

hence k
(
Iv′2
)
≤ 2.

102 Chapter 5. Complexity of Admissible Regions under the L2-Distance

The same procedure is repeated iteratively until the root is updated (or I ′vi = ∅
at some point). Therefore, in the ith step of Algorithm 7, the set

Iv′i+1
= Ivi+1

∩ Iδv′i = Dδ(ci+1) ∩ Iδv′i

is computed. The set Ivi+1
is a disk of radius δ and Iδv′i

is a convex set that

is Dδ-fat, since it is the Minkowski-sum of a convex set and Dδ. Hence the
boundaries of Ivi+1

and Iδvi intersect in at most two points and

k
(
Iv′i+1

)
≤ k

(
Iδv′i

)
+ 2

for every 2 ≤ i < n.
In the next step, Iv′i+1

is inflated. As we know from Observation 5.4, every

endpoint of ∂Iδvi is smooth and hence every endpoint of ∂Iδvi that is now part of
∂Iv′i+1

causes one endpoint in Iδv′i+1
. In the worst case there are two endpoints

on Iv′i+1
that originated from the intersection of Ivi+1

and Iδv′i
. They are not

necessarily smooth and therefore can create at most 4 endpoints in Iδv′i+1
. Hence,

k
(
Iδv′i+1

)
≤ k

(
Iδv′i

)
+ 4

and

k
(
Iv′n
)
≤ 2 + k

(
Iδv′n−1

)
≤ 2 +

n−1∑
i=2

4 = 2 + 4(n− 2).

The intersection operation on each vertex can be done in O(n log n) time by
using a sweep line strategy, which leads to a total runtime of O(n2 log n).

We now give an example, where k
(
I ′vn
)

= 2(n − 1). For the construction of
this example, we need the following lemma.

Lemma 5.6 Let Dr1(c1) and Dr2(c2) be two disks so that their boundaries
intersect in exactly two points e and ē. We define

fe : R+
0 → R2 with

x 7→ c1 + x(e− c1) and

fē : R+
0 → R2 with

x 7→ c1 + x(ē− c1).

The distance ‖fe(x) − fē(x)‖ increases linearly with respect to x and so does
the length of the circular arc defined by Dx(c1), fe(x) and fē(x).

5.3. Minkowski Sums of Admissible Regions and their Complexity 103

c1 c2

e

ē

fe(3r1)

fē(3r1)

Figure 5.4: Illustration of Lemma 5.6 with ‖fe(3r1)− fē(3r1)‖ (solid fat line)
and the circular arc (3r1, c1, fe(3r1), fē(3r1)) (dashed fat line).

Proof. See Figure 5.4 for a small example of this proof. The application of
Thales’ theorem leads to

‖fe(x)− fē(x)‖ = ‖c1 + x(e− c1)− (c1 + x(ē− c1))‖
= ‖x(e− ē)‖
= x‖e− ē+ 2c1 − 2c1‖
= x‖fe(1)− fē(1)‖.

Let α be the interior angle of the triangle ∆(c1, fe(x), fē(x)) at vertex c1. The
circular arc (x, c1, fe(x), fē(x)) has length

α

2π
2xπ = xα.

Example 5.7 Illustrations of this example can be found in Figure 5.5 and
Figure 5.6.
We define c1 := (0, 0) and δ := 1. For 1 < i ≤ n the points ci are placed on
the positive y-axis with ci.y < cj.y for all i < j. The instance is therefore
symmetric with respect to the y-axis. In the following, the exact placement of
the points of C is described step by step mainly by using Thales’ theorem.
The boundaries of the admissible regions can each be described as a sequence of
circular arcs and we will focus on the endpoints of these arcs in the description.

104 Chapter 5. Complexity of Admissible Regions under the L2-Distance

We will denote the endpoints with negative x-component and the endpoints with
positive x-component on the boundary of every admissible region with ei,j and
ēi,j for 1 ≤ i, j ≤ n, respectively. Here, the index i indicates that ei,j originated
from the intersection Iδv′i

∩D1(ci+1) and the index j indicates the L2-distance

of ei,j to the corresponding centerpoint ci: ‖ci − ei,j‖ = j + 1.
Hence, let e1,1 and ē1,1 be the intersection points of ∂I1

v1
= ∂D2(c1) and ∂Iv2 =

∂D1(c2). For all 1 < j < n, let

e1,j := e1,1 +
j − 1

2
(e1,1 − c1)

be the point on the ray [c1e1,1 with ‖c1 − e1,j‖ = j + 1 and let ē1,j be defined
similarly. Also, let

d1,j := ‖e1,j − ē1,j‖.

Note that for 1 < j ≤ n the points e1,j are the endpoints on Iδv′j
that originated

from the intersection between the circular arcs with center c1 and center c2, see
Observation 5.4, Equation (5.4). Let c2 be placed on the y-axis so that

d1,1 = 2
1

n2
.

Then, k
(
Iδv′2

)
= 4. Let c3 be placed on the y-axis so that e1,2 and ē1,2 are

contained in D1(c3) and the boundaries of I1
v′2

and D1(c3) intersect in two points

e2,1 and ē2,1 with

d2,1 := ‖e2,1 − e1,2‖ =
1

n2
.

Note that as a consequence e2,1 and ē2,1 are placed on ∂D1(e1,1) and ∂D1(ē1,1).
For all 1 < j < n, let

e2,j := e2,1 + (j − 1)(e2,1 − e1,1)

and let
ē2,j := ē2,1 + (j − 1)(ē2,1 − ē1,1).

Let
d2,j := ‖e2,j − e1,j+1‖.

We iteratively place all of the ci for 2 < i ≤ n the same way: We place every ci
on the y-axis so that ei−2,2 and ēi−2,2 are contained in D1(ci) and the boundaries
of I1

v′i−1
and D1(ci) intersect in two points ei−1,1 and ēi−1,1 with

di−1,1 := ‖ei−1,1 − ei−2,2‖ =
1

n2
.

5.3. Minkowski Sums of Admissible Regions and their Complexity 105

Note that as a consequence ei−1,1 and ēi−1,1 are placed on ∂D1(ei−2,1) and
∂D1(ēi−2,1). For all 1 < j < n, let

ei−1,j := ei−1,1 + (j − 1)(ei−1,1 − ei−2,1)

and let
ēi−1,j := ēi−1,1 + (j − 1)(ēi−1,1 − ēi−2,1)

Let
di−1,j := ‖ei−1,j − e1−2,j+1‖,

see Figure 5.5.
After n− 1 iterations ∂I ′vn consists of several circular arcs. Instead of counting
these arcs, we can count the number of endpoints on ∂I ′vn. These endpoints are
given by the sequence

En := (en−1,1, en−2,2, . . . , e1,n−1, ē1,n−1, . . . , ēn−1,1)

of length 2(n− 1), due to construction, see Figure 5.6. Let

Ei := (ei−2,2, . . . , e1,i−1, ē1,i−1, . . . , ēi−2,2)

for 2 ≤ i ≤ n. In order to prove that the construction is actually valid, it
remains to show that the sequence of circular arcs with endpoints Ei is completely
contained in D1(ci):
According to Lemma 5.6 every di,n−i for 1 ≤ i < n has length at most n−1, and
so

‖ei−1,1 − ēi−1,1)‖ < 2.

Also, the curvature of every circular arc in between the endpoints is at least the
curvature of a disk with radius 1, and all endpoints are smooth, since I1

v′i−1
is

an inflated set. Hence, the projection of the boundary part of I1
v′i−1

described by

Ei on the y-axis is an interval of length less than 1. As a consequence, there
is a line segment ab with a, b ∈ R2, a.x = b.x = 0 an a.y < b.y so that every
endpoint of Ei on ∂I1

v′i−1
is completely contained in any disk D1(c) with c ∈ ab.

Thus every centerpoint ci we placed is actually part of the corresponding line
segment on the y-axis and henceforth valid.

On Tree Neighborhoods

In the following, we consider instances, where the neighborhood graph G =
(V,E) is a tree rooted in r ∈ V , i.e., G = Tr.

106 Chapter 5. Complexity of Admissible Regions under the L2-Distance

c1

e1,1

c2
e1,2e2,1

c3
e1,3e2,2

e3,1

e1,1

e1,2

e1,3

e2,1

e2,2
e3,1

c4

d1,1

d1,2

d1,3

d2,1

d2,2d3,1
d2,2 d3,1

d2,1

@D2(c1)

@D1(c2)

@D1(c3)

@D1(c4)

e1,1 ē1,1

d1,1

Figure 5.5: Illustration of Example 5.7 with n = 4.

5.3. Minkowski Sums of Admissible Regions and their Complexity 107

e1,n�1e2,n�2

cn

c1

d1,n�1

en�1,1

@D1(cn)

Figure 5.6: The sequence En after the last intersection operation in Example 5.7.

108 Chapter 5. Complexity of Admissible Regions under the L2-Distance

The main reason why Algorithm 7 runs in polynomial time for instances with
path neighborhoods is that every intersection operation creates no more than
two new endpoints. Unfortunately, this is not true if G is a tree that does not
equal a path. The runtime of Algorithm 7 strongly depends on the combinatorial
complexity of the intermediate admissible regions. One way of computing the
combinatorial complexity of such regions is interpreting the involved sequences
of circular arcs as arrangements of Jordan arcs:

Lemma 5.8 Let A and C be convex arc-sets. Also, let k(A) = a and k(C) = c
for a, c ∈ N. Then

k(A ∩ C) ≤ 4(a+ c).

Proof. Lemma 5.8 is a special case of the well known Combination Lemma of
Sharir et al. in [27]: Let Γred and Γblue be two arrangements of Jordan arcs. Also,
each pair of arcs from Γred ∪ Γblue is assumed to intersect in at most s points.
In the beginning of the proof of the Combination Lemma, Sharir et al. consider
the special case of counting the number of arcs composing the boundary of
one of the connected components (which we call E) of the intersection of a
single face R of Γred and a single face B of Γblue. Let r and b describe the total
number of arcs composing the boundary of R and B, respectively, and let u
and v be the number of connected components composing the boundary of ∂R
and ∂B, respectively. Then, the combinatorial complexity of E is bounded
from above by

(s+ 2)(b+ r + 2u+ 2v − 4t),

where t is the number of connected components of ∂E.
This result can be applied to the sets A and C: Since both sets are convex,
they each consist of one connected component, so u = v = 1. The intersection
of two convex sets is also convex. Therefore ∂(A∩C) consists of one connected
component as well and t = 1. Since the Jordan arcs that define the boundary
of A and C are circular arcs, each pair of them intersect at most twice, and
thus s = 2. As a consequence,

k(A ∩ C) ≤ (2 + 2)(a+ c+ 2 + 2− 4) = 4(a+ c).

An even better upper bound on the combinatorial complexity of the involved
admissible regions can be obtained by using the fact, that the union of two
admissible regions is star-shaped, or empty:

Lemma 5.9 Let A and C be convex arc-sets in the plane and let A ∩ C 6= ∅.
Also, let k(A) = a and k(C) = c for a, c ∈ N. Then

k(A ∩ C) ≤ 3(a+ c).

5.3. Minkowski Sums of Admissible Regions and their Complexity 109

p

C

A

Figure 5.7: The sets A and C and a+ c rays with initial point p ∈ A ∩ C.

Proof. Since A and C are convex and A∩C 6= ∅, the set A∪C ist star-shaped.
In particular, we can consider any point in p ∈ A∩C and for every p′ ∈ ∂A∪∂C
the line segment pp′ is completely contained in A ∪ C. Hence, any ray with
apex p ∈ A ∩ C intersects exactly once with ∂A and once with ∂C.
Let the endpoints of the circular arcs on ∂A and ∂C in order be named
u1, . . . , ua and v1 . . . , vc, respectively. For a fixed p ∈ A ∩ C, we now divide
the plane into (a + c) sections by inserting the (a + c) rays [pui and [pvj for
all 1 ≤ i ≤ a and 1 ≤ j ≤ c, see Figure 5.7. Each of the resulting regions is
framed by two rays and contains exactly two circular arcs: one that originates
from ∂A and one that originates from ∂C. Since two circular arcs intersect in
at most two points and A ∪ C is star shaped, the part of ∂(A ∩ C) that lies in
the region at hand consists of at most tree circular arcs. Hence,

k(A ∩ C) ≤ 3(a+ c).

This result can be generalized for the intersection of l ∈ N convex arc-sets.
First, we need the following definition:

Definition 5.10 Let h, l, s ∈ N. A sequence U = (u1, . . . , uh) with ui ∈ N for
all 1 ≤ i ≤ h is an (l, s) Davenport-Schinzel sequence iff

1. 1 ≤ ui ≤ l for all 1 ≤ i ≤ h,
2. ui 6= ui+1 for all 1 ≤ i < h, and

110 Chapter 5. Complexity of Admissible Regions under the L2-Distance

3. there are no s+ 2 indices 1 ≤ i1 < . . . < is+2 ≤ h with

ui1 = uij for all 1 ≤ j ≤ s+ 2 with j = 1 mod 2,

ui2 = uij for all 1 ≤ j ≤ s+ 2 with j = 0 mod 2

and ui1 6= ui2.

In [27], Sharir et al. give upper bounds on the length of (l, s) Davenport-Schinzel
sequences subject to s, including the following:

Lemma 5.11 The length of any (l, 2) Davenport-Schinzel sequence is at most
2l − 1.

Proof. The following proof is also included in [27], Theorem 1.9.
Let h ∈ N and let U = (u1, . . . , uh) with ui ∈ N for all 1 ≤ i ≤ h be an (l, s)
Davenport-Schinzel sequence. The proof proceeds by induction on l:
If l = 1, then

|U | = h = 1 = (2l − 1).

For the induction step l − 1→ l we suppose that the length of any (l − 1, 2)
Davenport-Schinzel sequence is at most 2l−3. For each 1 ≤ a ≤ l let µa denote
the smallest index with uµa = a. If µa is undefined for some a, then U is an
(l − 1, 2) Davenport-Schinzel sequence and thus

h ≤ 2l − 3 < 2l − 1

by induction hypothesis. Now let µa be defined for all 1 ≤ a ≤ l. Let b be the
symbol for which µb is largest. We can assume that U contains only a single
occurrence of b (at position µb): Suppose that on the contrary uk = b for some
k > µb. Then c = uµb+1 6= b and since U is a (l, 2) Davenport-Schinzel sequence,
all appearances of c in U must occur between the positions µb and k. Thus
µc = µb + 1, which is a contradiction to the maximality of µb. We now remove
the single appearance of b from U and if uµb−1 = uµb+1, we also remove one of
the newly adjacent equal elements from U . We call the resulting sequence U ′.
U ′ is an (l− 1, 2) Davenport-Schinzel sequence and h− 2 ≤ |U ′| ≤ h− 1. Thus
by using the induction hypothesis we get

h ≤ (2l − 3) + 2 = 2l − 1.

With this, we can now state the following lemma:

5.3. Minkowski Sums of Admissible Regions and their Complexity 111

Lemma 5.12 For an l ∈ N let A1, . . . , Al be convex arc-sets in the plane. Then

k

(
l⋂

i=1

Ai

)
≤ (2l − 1)

l∑
i=1

k(Ai).

Proof. and let
⋂l
i=1Ai 6= ∅ First, we introduce the following notation to simplify

the presentation:

AI,l :=
l⋂

i=1

Ai and

AU,l :=
l⋃

i=1

Ai.

Obviously,

k

(
l⋂

i=1

Ai

)
= 0 ≤ (2l − 1)

l∑
i=1

k(Ai),

if
⋂l
i=1 Ai = ∅.

So in the following, let
⋂l
i=1Ai 6= ∅.

The first part of this proof follows the line of argument in the proof of Lemma 5.9:
Since the sets A1, . . . , Al are convex and AI,l 6= ∅, the set AU,l ist star-shaped.

Hence, given a point in p ∈ AI,l, for every p′ ∈
⋃l
i=1 ∂Ai, the line segment pp′ is

completely contained in AU,l. Also, for all 1 ≤ i ≤ l, any ray with apex p ∈ AI,l

intersects ∂Ai exactly once.
Let the endpoints of the circular arcs on ∂Ai in order be named ui1, . . . , u

i
k(Ai)

for

all 1 ≤ i ≤ l. For a fixed p ∈
⋂l
i=1Ai, we now divide the plane into

∑l
i=1 k(Ai)

sections by inserting the rays [puij for all 1 ≤ j ≤ k(Ai) and 1 ≤ i ≤ l. Each of
the resulting regions, we call them slices for now, is bounded by two rays and
contains exactly l circular arcs, one originating from each ∂Ai for 1 ≤ i ≤ l.
Note that a ray can either be described by two points p (the apex) and a in
the plane, which is denoted with [pa, or by a point p (the apex) in the plane
and a angle α ∈ [0, 2π[. For a simpler notation, in the following we will use the
latter option. Let the ray with apex p and angle α be denoted with r(α) in the
following. Note that r(α) depends on p, but since p is fixed, we refrain from
including it in the notation. Let r(α1) and r(α2) with α1, α2 ∈ [0, 2π[be two
of the rays constructed above that frame the same region and let α1 < α2. We
consider the collection F = {f1, . . . , fl} of l functions:

fi : [α1, α2]→ R+
0 with

x 7→ ‖p− (r(x) ∩ ∂Ai) ‖

112 Chapter 5. Complexity of Admissible Regions under the L2-Distance

p

∂A2

∂A1

∂A3

r(α1) r(α2)

α1 α2

f1(x)

f2(x)

f3(x)

xI1 I2 I3 I4

Figure 5.8: Left: The circular arcs of ∂Ai for 1 ≤ i ≤ 3 within the region
framed by the rays r(α1) and r(α2).
Right: The graphs of the corresponding collection F = {f1, f2, f3} of functions
together with the subintervals I1, . . . , I4 that visualize the change points of EF .
Here, U = (1, 3, 2, 1).

for all 1 ≤ i ≤ l. The function fi describes the distance between p and ∂Ai
subject to the angle x ∈ [α1, α2]. The lower envelope of F is defined as

EF(x) = min
1≤i≤n

fi(x)

for x ∈ [α1, α2], and describes the part of ∂A(I,l) that is contained in the
respective slice.
Let h be smallest number of subintervals I1, . . . , Ih of [α1, α2] so that for each
1 ≤ s ≤ h there is an index us with EF(x) = fus(x) for all x ∈ Is. In
other words, h is the number of circular arcs that constitute the part of ∂A(I,l)

contained in the region at hand, see Figure 5.8.
The sequence of indices of functions U := (u1, . . . , uh) denotes the order in
which the functions f1, . . . , fl that describe these circular arcs, appear on EF .
Since two circular arcs intersect in at most two points, there are no 4 indices
1 ≤ i1 < i2 < i3 < i4 ≤ h such that ui1 = ui3 and ui2 = ui4 with ui1 6= ui2 .
Hence, U is an (l, 2) Davenport-Schinzel sequence and according to Lemma 5.11

h ≤ 2l − 1.

This means that the part of ∂AI,l contained in the region at hand consists of

2l − 1 circular arcs at most. Since we divided the plane into
∑l

i=1 k(Ai) such
regions,

k

(
l⋂

i=1

Ai

)
≤ (2l − 1)

l∑
i=1

k(Ai).

5.3. Minkowski Sums of Admissible Regions and their Complexity 113

The combinatorial complexity of the intersection of an admissible region with
a unit-disk can be bounded as follows:

Lemma 5.13 Let r > 0 and c ∈ R2. Let B be an arc-set where the radius of
each arc is at least r. Then

k (Dr(c) ∩B) ≤ 2k(B).

Proof. Let a be a circular arc of ∂B. There are five possible ways for a to
intersect with ∂Dr(c), see Figure 5.9: They

1. 2. 3.

4. 5.

Figure 5.9: Five ways for a (solid circular arc) to interact with ∂Dr(c) (solid
circle).

1. do not intersect and a is completely contained in Dr(c). Then, a is one
of the circular arcs of ∂(Dr(c) ∩B).

2. do not intersect and a lies completely outside Dr(c). Then, a is not part
of ∂(Dr(c) ∩B).

3. intersect in one point. Then, both a part of a and a part of Dr(c) are
circular arcs of ∂(Dr(c) ∩B).

114 Chapter 5. Complexity of Admissible Regions under the L2-Distance

4. intersect in two points e1 and e2 and the centers of a and Dr(c) are
located on different sides of the line e1e2. Then, a part of a appears once
on ∂(Dr(c) ∩B) and k (Dr(c) ∩B) = 2.

5. intersect in two points e1 and e2 and the centers of a and Dr(c) are both
located on the same side of the straight line e1e2. Then, a part of a
appears once on ∂(Dr(c) ∩B). Since the radius of a is at least r, a part
of Dr(c) appears to either side of the part of a on ∂(Dr(c) ∩B).

Hence, every circular arc of ∂B can (partly) occur on ∂(Dr(c) ∩ B) at most
once. And since B and Dr(c)∩B are both convex, the circular arcs composing
∂B appear (partly) on ∂(Dr(c) ∩B) in the same order as they appear on ∂B.
In the worst case, part of ∂Dr(c) appear between every two consecutive arcs of
∂B on ∂(Dr(c) ∩B) and thus

k (Dr(c) ∩B) ≤ 2k(B).

Theorem 5.14 Let G = Tr be a tree rooted in r and let each vertex v have at
most m children with m ≥ 2. Algorithm 7 runs in O ((4m(2m− 1))n n log n)
time. If G is also complete, i.e., each vertex has either 0 or m children, the
runtime improves to O(8logm nn3 log n).

Proof. Let the root r have nr ≤ m children c1(r), . . . , cnr(r). Recall that
C = (c1, . . . , cn) with ci = qi − pi for 1 ≤ i ≤ n, see Equation (5.2). Let cr ∈ C
be the point that corresponds to r and let h ∈ N be the height of Tr. Recall,
that for any vertex v ∈ V we denote the updated version of v with v′. Then,
the following holds:

k(Ir′) = k

((
nr⋂
i=1

Iδc′i(r)

)
∩Dδ(cr)

)
Lemma 5.13

≤ 2k

(
nr⋂
i=1

Iδc′i(r)

)
Lemma 5.12

≤ 2(2nr − 1)
nr∑
i=1

k
(
Iδc′i(r)

)
(5.5)

≤ 4(2nr − 1)
nr∑
i=1

k
(
Ic′i(r)

)
≤ 4(2m− 1)

nr∑
i=1

k
(
Ic′i(r)

)
≤ 4(2m− 1)m · max

1≤i≤nr
k
(
Ic′i(r)

)
.

5.3. Minkowski Sums of Admissible Regions and their Complexity 115

Note that this estimation does not use the fact, that r is the root of Tr and thus
holds for the admissible region Iv′ for any v ∈ V . Hence we can find an upper
bound on the description complexity of Iv′ that depends on the description
complexity of the admissible regions stored in the updated version of the
children of v. So by starting the estimation at I ′r and repeating top-to-bottom
through the tree Tr with height h until we reach the leaves, we get

k(Ir′) ≤ 4(2m− 1)m · max
1≤i≤nr

k
(
Ic′i(r)

)
≤ (4m(2m− 1))h .

Hence, the combinatorial complexity of Ir′ isO ((4m(2m− 1))n), and since there
are O(n) internal vertices in Tr Algorithm 7 runs in O ((4m(2m− 1))n n log n)
time.
If Tr is complete, h = logm n, and therefore

k(Ir′) ≤ (4m(2m− 1))logm n

≤ 8logm nm2logm n

= 8logm nn2 ∈ O(n5).

Since there are O(n) internal vertices in Tr and the description complexity
of the object stored in each vertex is bounded from above by O(8logm nn2),
Algorithm 7 runs in O(8logm nn3 log n) time.

This estimate of the description complexity of admissible regions that appear
during a run of Algorithm 7 holds for EGSM problems under the Euclidean
1-to-1-distance. However, if the correspondence between the pattern and the
model is not known, the combinatorial complexity of the respective admissible
regions may be even bigger. At present, there are no results known to whether
the problem under the directed L2-Hausdorff distance for tree neighborhoods
is solvable in polynomial time. This is one of the major reasons for designing
reasonably fast approximation algorithms for the problems of this flavor.

Note that we already considered an approximation algorithm for EGSM prob-
lems under the directed L2-Hausdorff distance for neighborhood graphs that
are trees in Chapter 2: Every disk is approximated with a regular polygon
with O(ε−1/2) vertices, which reduces the combinatorial complexity of the
admissible regions, see Algorithm 2. If applied to Problem 8, where the
correspondence between the pattern and the model is known, Algorithm 2
gives a (1 + ε)-approximation to the optimum of the objective function in
O(ε−1/2n(log n+ log ε−1)) time. Here, (1 + ε)-approximation means that if δ(ε)

is the smallest value that permits a YES-instance for a given ε > 0, the optimal

116 Chapter 5. Complexity of Admissible Regions under the L2-Distance

value δ∗ is bounded by(
1− 1

2
ε

)
δ∗ ≤ δ(ε) ≤

(
1 +

1

2
ε

)
δ∗.

Another valid strategy to solve the problem approximately is covering ev-
ery admissible region with a dense-enough grid of Algorithm 11, a (1 + ε)-
approximation algorithm that works on sample-points and runs in O(ε−1n)
time and space is given in Appendix A.

On Problem Instances under Unknown Correspondence

So far, we focused on Problem 8, where the correspondence between the points
of the pattern and the points of the model is fixed. This is the reason why the
admissible regions at hand are convex at any point during Algorithm 7. If we
look at the version of the problem, where the correspondence between the points
of the pattern and the points of the model is not known, this property does
not apply to the admissible regions anymore and estimating the combinatorial
complexity of such sets becomes even more complicated:

Problem 9 Given:

P = {p1, . . . , pn} a point set (the pattern),

Q = {q1, . . . , qm} a point set (the model), and

G = (V,E) a cycle-free graph with V = {i | 1 ≤ i ≤ n} and

E ⊆ {{i, j}| i, j ∈ V }.

Find: n translation vectors T = (t1, . . . , tn), so that the function

γ(P,Q, T,G) := max

(
~h(T (P), Q), max

{i,j}∈E
‖ti − tj‖

)
is minimized.

Problem 9 is similar to Problem 8 apart from the fact that the distance between
the transformed pattern and the model is the directed Hausdorff distance. As
described in detail in Chapter 2 and Chapter 4, in the beginning of Algorithm 7,
the admissible region Iv consists of m disks with radius δ for any vertex v ∈ V
and all such regions are translational copies of each other.
As a consequence, every admissible region Iv (after the initialization step)
and every admissible region Iv′ (after updating v to v′ due to an intersection
operation) may consists of more than one connected component and some of
them may merge during the inflation operation, which is why Observation 5.4

5.3. Minkowski Sums of Admissible Regions and their Complexity 117

Iv′

Iδv′

Figure 5.10: The set Iv′ the set Iδv′ consist of one and two connected components
respectively. Here, k (Iv′) = 4 and k

(
Iδv′
)

= 10.

does not hold for this setting. A conceptional illustration of a counterexample,
where

2k(Iv) < k(Iδv)

is given in Figure 5.10.
Another key feature used in this chapter to estimate the complexity of the
admissible regions at hand is displayed in Lemma 5.8: Given two convex sets
A and C, so that their boundaries consists of a and c circular arcs, it follows
that their intersection A ∩ C consists of 4(a + c) circular arcs at most. The
constraint that A and C are convex implies that each of them consists of one
connected component and that their boundaries each consist of one connected
component. If the latter property is not given, i.e., A and C contain holes,
k(A ∩ C) depends on the number of connected components of ∂A and ∂C, as
well as the number of connected components of A ∩ C, which seems hard to
estimate.
Furthermore, if we consider two admissible regions that are not necessarily
convex and may consist of several connected components, estimating the number
of connected components of their intersection becomes a difficult task as well,
see Figure 5.11 for a small schematic illustration.
The algorithms that (apporximately) solve EGSM problems of different graph
classes and distance measures described in the previous chapters are all designed
in order to avoid these difficulties while still computing suitable approximations
in reasonable time.

118 Chapter 5. Complexity of Admissible Regions under the L2-Distance

Iu′

Iv′

Figure 5.11: A schematic illustration of admissible regions: The set Iδv′ and the
set Iδu′ each consist of three connected components, and k

(
Iδv′ ∩ Iδu′

)
= 14.

Chapter 6

Variants of the Problem

In the previous chapters, which are self-contained for the most part, we focused
on one specific variant of Problem 3, an EGSM problem for point sets under
translations in R2. However, as elaborately described in Section 1.4, there more
generally stated Problem 2 offers much more options to choose from.
In this chapter, we consider different variants of Problem 2 that exceed Prob-
lem 3 in some aspects and give some insights about possible solution strategies.
However, since the content of the sections in this chapter varies a lot, we refrain
from describing the EGSM setup and already existing solution strategies in
detail again and refer to the previous chapters for more information.
Here and in the following, ‖ · ‖ denotes the L2-norm.

6.1 Weights within the Objective Function

A central topic in discussing EGSM problems is the tradeoff between minimizing
the distance between the transformed pattern and the model and maximizing
the similarity of neighbored transformations. In this thesis, both goals were
seen as equally important and were therefore integrated in a common objective
function with the same weight. Depending on the application, it may as well
be reasonable to weigh them differently instead.
An example for a problem with interesting characteristics in this context is
the following ESGM problem under translations and the injective bottleneck
distance:

Problem 10 Given:

P = (p1, . . . , pn) a sequence of points (the pattern),

Q = (q1, . . . , qm) a sequence of points (the model), and

δo, δt ∈ R+ two parameters.

120 Chapter 6. Variants of the Problem

Find:
A sequence T = (t1, . . . , tn) of translations with

b(T (P), Q) ≤ δo and (6.1)

max

(
max
1≤i<n

(‖ti − ti+1‖) , ‖tn − t1‖
)
≤ δt. (6.2)

Note that the neighborhood graph is a simple cycle and implicitly given in
Constraint (6.2). In Problem 10, the maximum distance between the trans-
formed pattern and the model in object space, δo, and the maximum distance
between neighbored transformations in transformation space, δt, can be chosen
independently from each other.
Problem 10 is closely related to the problem of finding Hamiltonian cycles in
grid graphs: A grid graph is a finite, node-induced graph whose vertex set
consists of points in the plane with integer coordinates, in which two vertices
are connected iff the L2-distance between them is 1.

Problem 11 (Finding Hamiltonian Cycles in Grid Graphs) Given:

Gg = (Vg, Eg) a grid graph with

n vertices.

Find: A sequence of n vertices V ∗ = (v∗1, . . . , v
∗
n) with

v∗i ∈ Vg for 1 ≤ i ≤ n,

v∗i 6= v∗j for 1 ≤ i < j ≤ n,

‖v∗i − v∗i+1‖ = 1 for 1 ≤ i < n and

‖v∗n − v∗1‖ = 1.

(6.3)

In other words, the goal is to find a simple cycle within the graph Gg that
visits every vertex exactly once. This Problem was proven to be NP -complete
in [28].

Theorem 6.1 Problem 10 is NP -hard.

Proof. The following proof is a reduction from the NP -complete Problem 11
of finding Hamiltonian cycles in grid graphs.
Let Gg = (Vg, Eg) be a grid graph with n vertices v1, . . . , vn ∈ Vg, i.e., vi =
(vi.x, vi.y) ∈ Z2 for all 1 ≤ i ≤ n. The goal is to decide, whether there is a
sequence of n vertices V ∗ that satisfies Constraints (6.3). From Gg, we now
construct an EGSM instance where the pattern P as well as the model Q
consist of n points, i.e., m = n in the notation of Problem 10. We set the

6.1. Weights within the Objective Function 121

points of P = (p1, . . . , pn) and Q = (q1, . . . , qn) as well as the parameters δo
and δt as follows:

δo :=
1√
2
− 1

2
− ε,

δt := 1,

pi := (0, 0) and

qi := −vi

for some ε > 0 and all 1 ≤ i ≤ n. In the following, we describe why deciding
whether there is a sequence of n vertices V ∗ that satisfies Constraints (6.3) is
the same as deciding whether there is a sequence of translations T that satisfies
Contraints (6.1) and (6.2) for the given EGSM instance.
A sequence of translations T that satisfies Contraints (6.1) and (6.2) for the
given EGSM instance has the property that every translation in T moves the
corresponding point of P at least δo-close to some point of Q. For a specific
point p ∈ P , the set of such translations is defined as

Ip :=
⋃
q∈Q

{t ∈ T | ‖p+ t− q‖ ≤ δo} =
⋃
q∈Q

Dδo(p− q),

where Dδo(p − q) is the disk with radius δo and center (p − q). And since P
contains n copies of the same point (0, 0), all Ip together form an arrangement
of n2 disks: For every v ∈ Vg, we have n disks with radius δo centered in q = −v,
and we call every such set of disks a stack of disks:
For all 1 ≤ i ≤ n and one fixed q = −v, all

Ipi,q := {t ∈ T | ‖pi + t− q‖ ≤ δo} = Dδo(pi − q) = Dδo(−q) = Dδo(v)

form one stack of disks.
The centers of the stacks are the vertices of Gg. By construction, there is
an edge e ∈ Eg between two vertices of Vg iff the vertices (respectively the
centers of two stacks of disks) have distance 1, see Figure 6.1. On the relation
between the instances: As the injective bottleneck distance is used to measure
the distance between the pattern and the model, all p ∈ P are forced to be
mapped to pairwise different q ∈ Q. This implies that every translation t ∈ T
needs to be picked from a different stack of disks. The distance between two
translations in T that correspond to adjacent vertices in the neighborhood
graph is at most δt = 1, which is why neighbored translations have to be picked
from horizontally or vertically neighbored stacks on the integer grid. This
equals adjacent vertices in the grid graph. Note that the distance between

122 Chapter 6. Variants of the Problem

Figure 6.1: Illustration of a grid graph Gg together with stacks of disks with
radius δo centered in the vertices of Gg.

diagonally neighbored stacks is

√
2− 2δo =

√
2− 2

(
1√
2
− 1

2
− ε
)

= 1 + 2ε > 1,

see Figure 6.2.
Since the neighborhood graph is a simple cycle, finding a sequence of translations
T that solves Problem 10 includes finding a tour through the grid graph where
n vertices have to be visited and no vertex is allowed to be visited more than
once, i.e., finding a Hamiltonian cycle in the constructed grid graph.

6.2 Thoughts on Rigid Motions

Recall that T encodes the class of transformations that match the partitions
of P to the model Q. In [16], the authors introduced the first algorithms that
solve some EGSM variants, along with an NP -hardness proof for others. In
their paper, they mostly considered translations in one direction.
In this thesis, T was the class of translations in R2. Measuring the similarity
of two translations in translation space according to a suitable norm, e.g.,
the L2-norm, the L∞-norm or some polygonal norm, is a promising approach
because the geometric interpretation is clear.

6.2. Thoughts on Rigid Motions 123

< 1

> 1

δo =
1√
2
− 1

2 − ε

1

Figure 6.2: Four stacks of disks with radius δo on the integer grid.

However, choosing T to be, e.g., rigid motions makes the choice of a suitable
similarity measure more complicated, as the geometric interpretation of the
well-established matrix norms, such as the spectral norm is not trivial in this
context. A short insight about the difficulty in finding a suitable norm is given
in the following.

A Distance Measure for Rigid Motions

In this section, everything is stated in R2. We represent any point p as vector
p = (p.x, p.y)T. A rigid motion T = (t, α) consists of a translation vector t as
well as a rotation angle α ∈ [0, 2π[and transforms any point p as follows:

T (p) :=

(
cosα − sinα
sinα cosα

)
p+ t.

Given two rigid motions T1 = (t1, α1) and T2 = (t2, α2), we want to determine
their distance in transformation space using a distance measure that allows
for a plausible geometric interpretation. Since T1 and T2 consist of two parts,
the translation vector and the rotation angle, it seems natural to match them
separately and then somehow add up the results using suitable weights for each
summand. In the following definition, we introduce a possible choice for such a
distance measure:

Definition 6.2 The rigid motion distance of two rigid motions T1 = (t1, α1)

124 Chapter 6. Variants of the Problem

and T2 = (t2, α2) is defined as

dRM(T1, T2) := ‖t1 − t2‖+
4

π
min (|α1 − α2|, 2π − |α1 − α2|) ,

where ‖ · ‖ denotes the L2-distance.

Lemma 6.3 The rigid motion distance is a metric.

Proof. Let Ti = (ti, αi) be a rigid motion for 1 ≤ i ≤ 3. The rigid motion
distance meets all metric conditions:

1. Non-negativity:

dRM(T1, T2) = ‖t1 − t2‖+
4

π
min (|α1 − α2|, 2π − |α1 − α2|) ≥ 0.

2. Identity of indiscernibles:

dRM(T1, T2) = 0

⇔ ‖t1 − t2‖ = 0 and min (|α1 − α2|, 2π − |α1 − α2|) = 0

⇔ t1 = t2 and α1 = α2.

3. Symmetry:

dRM(T1, T2) = ‖t1 − t2‖+
4

π
min (|α1 − α2|, 2π − |α1 − α2|)

= dRM(T2, T1).

4. Triangle Inequality:
First, we proof the following statement:

min (|α1 − α2|, 2π − |α1 − α2|) + min (|α2 − α3|, 2π − |α2 − α3|) (6.4)

≥ min (|α1 − α3|, 2π − |α1 − α3|) . (6.5)

We proof the upper statement by examining the following cases:

• α1 < α2 < α3 (the case α3 < α2 < α1 is equivalent to this case due
to symmetry):

– |α1 − α3| ≤ π:
It follows, that |α1 − α2| ≤ π and |α2 − α3| ≤ π and thus

(6.4) ≥ (6.5)⇔ |α1 − α2|+ |α2 − α3| ≥ |α1 − α3| ⇔ 0 ≥ 0.

6.2. Thoughts on Rigid Motions 125

– |α1 − α3| > π and |α1 − α2| > π:
It follows, that |α2 − α3| ≤ π and thus

(6.4) ≥ (6.5) ⇔ 2π − |α1 − α2|+ |α2 − α3| ≥ 2π − |α1 − α3|
⇔ α1 − α2 + α3 − α2 ≥ α1 − α3

⇔ α3 ≥ α2.

– |α1 − α3| > π, |α1 − α2| ≤ π and |α2 − α3| ≤ π:

(6.4) ≥ (6.5) ⇔ |α1 − α2|+ |α2 − α3| ≥ 2π − |α1 − α3|
⇔ α2 − α1 + α3 − α2 ≥ 2π − α3 + α1

⇔ α3 − α1 ≥ π.

– |α1 − α3| > π, |α1 − α2| ≤ π and |α2 − α3| > π:

(6.4) ≥ (6.5) ⇔ |α1 − α2|+ 2π − |α2 − α3| ≥ 2π − |α1 − α3|
⇔ α2 − α1 − α3 + α2 ≥ α1 − α3

⇔ α2 ≥ α1.

• α1 < α3 < α2 (the case α3 < α1 < α2 is equivalent to this case due
to symmetry):

– |α1 − α2| ≤ π:
It follows, that |α1 − α3| ≤ π and |α2 − α3| ≤ π and thus

(6.4) ≥ (6.5)⇔ |α1 − α2|+ |α2 − α3| ≥ |α1 − α3| ⇔ 0 ≥ 0.

– |α1 − α2| > π and |α1 − α3| > π:
It follows, that |α2 − α3| ≤ π and thus

(6.4) ≥ (6.5) ⇔ 2π − |α1 − α2|+ |α2 − α3| ≥ 2π − |α1 − α3|
⇔ α1 − α2 + α2 − α3 ≥ α1 − α3

⇔ 0 ≥ 0.

– |α1 − α2| > π, |α1 − α3| ≤ π and |α2 − α3| ≤ π:

(6.4) ≥ (6.5) ⇔ 2π − |α1 − α2|+ |α2 − α3| ≥ |α1 − α3|
⇔ 2π − α2 + α1 + α2 − α3 ≥ α3 − α1

⇔ π ≥ α3 − α1.

– |α1 − α2| > π, |α1 − α3| ≤ π and |α2 − α3| > π:

(6.4) ≥ (6.5) ⇔ 2π − |α1 − α2|+ 2π − |α2 − α3| ≥ |α1 − α3|
⇔ 4π − α2 + α1 − α2 + α3 ≥ α3 − α1

⇔ 2π ≥ α2 − α1.

126 Chapter 6. Variants of the Problem

• α2 < α1 < α3 (the case α2 < α3 < α1 is equivalent to this case due
to symmetry):

– |α2 − α3| ≤ π:
It follows, that |α1 − α2| ≤ π and |α1 − α3| ≤ π and thus

(6.4) ≥ (6.5)⇔ |α1 − α2|+ |α2 − α3| ≥ |α1 − α3| ⇔ 0 ≥ 0.

– |α2 − α3| > π and |α1 − α3| > π:
It follows, that |α1 − α2| ≤ π and thus

(6.4) ≥ (6.5) ⇔ |α1 − α2|+ 2π − |α2 − α3| ≥ 2π − |α1 − α3|
⇔ α1 − α2 − α3 + α2 ≥ α1 − α3

⇔ 0 ≥ 0.

– |α2 − α3| > π, |α1 − α3| ≤ π and |α1 − α2| ≤ π:

(6.4) ≥ (6.5) ⇔ |α1 − α2|+ 2π − |α2 − α3| ≥ |α1 − α3|
⇔ α1 − α2 + 2π − α3 + α2 ≥ α3 − α1

⇔ π ≥ α3 − α1

– |α2 − α3| > π, |α1 − α3| ≤ π and |α1 − α2| > π:

(6.4) ≥ (6.5) ⇔ 2π − |α1 − α2|+ 2π − |α2 − α3| ≥ |α1 − α3|
⇔ 4π − α1 + α2 − α3 + α2 ≥ α3 − α1

⇔ 2π ≥ α3 − α2.

With this, the correctness of (6.4) ≥ (6.5) is proven and we conclude the
following:

dRM(T1, T2) + dRM(T2, T3)

= ‖t1 − t2‖+ ‖t2 − t3‖

+
4

π
min (|α1 − α2|, 2π − |α1 − α2|)

+
4

π
min (|α2 − α3|, 2π − |α2 − α3|)

≥ ‖t1 − t3‖+
4

π
min (|α1 − α3|, 2π − |α1 − α3|)

= dRM(T1, T3).

6.2. Thoughts on Rigid Motions 127

Recall that Dr(c) denotes the disk with center c ∈ R2 and radius r > 0 and
∂Dr(c) denotes its boundary. The unit disk with center in the origin is denoted
with D.

We introduce the following EGSM problem under rigid motions and the rigid
motion distance:

Problem 12 Given:

P = {p1, . . . , pn} a point set (the pattern) with

P1, . . . , Pk a partition of P,

Q = {q1, . . . , qm} a point set (the model) with

Q1, . . . , Qk a partition of Q, and

G = (V,E) an undirected graph with V = {i | 1 ≤ i ≤ k} and

E ⊆ {{i, j}| i, j ∈ V }.

Find: k rigid motions T = {T1, . . . , Tk}, so that

γ(P,Q,T, G) = max

(
max
{i,j}∈E

(dRM(Ti, Tj)) , max
1≤i≤k

~h(Ti(Pi), Qi)

)
is minimized.

Note that the correspondence between the partitions of P and the partitions of
Q is fixed and the distance between every transformed partition Ti(Pi) of the
pattern and the corresponding partition Qi of the model is measured with the
L2-Hausdorff distance for 1 ≤ i ≤ k.

One more difficulty in designing reasonable EGSM problem formulations is the
non-trivial tradeoff between minimizing the difference between neighboring rigid
motions, i.e., rigid motions encoded as adjacent vertices in the neighborhood
graph G in transformation space and minimizing the distance between the
transformed pattern T(P) and the model Q in object space.

Assumptions on the Pattern and the Model

The following ideas are stated under the assumption that the smallest enclosing
disks of the point sets P and Q are centered in the origin and the smallest
enclosing disk with the greatest diameter is the unit disk in R2. If these
assumptions do not hold, it is possible to scale and translate P and Q so that
their transformed versions meet the assumptions made above.

128 Chapter 6. Variants of the Problem

α2

α1

p

pα1

pα2

t1

t2

x

y

Figure 6.3: The rigid motions T1 = (t1, α1) =
((

1
4
, 3

4

)T
, π

4

)
and T2 = (t2, α2) =((

1, 1
2

)T
, 3π

4

)
and the geometric interpretation of |α1−α2| (red arc on the left)

and ‖t1 − t2‖ (red line segment on the right).

Their rigid motion distance is dRM(T1, T2) = ‖t1 − t2‖+ 4
π
|α1 − α2| =

√
10
4

+ 2.

Rigid Motions and their Effect on the Pattern

There are different ways of measuring the similarity of rigid motions. In partic-
ular, one can choose any matrix norm, although the geometric interpretation
of most of them is not obvious. As one of the tasks in EGSM is mapping
neighboring subpatterns of P similarly in terms of geometry, a distance measure
for rigid motions with a suitable geometric interpretation is needed. The rigid
motion distance meets this condition well:
Let T1 = (t1, α1) and T2 = (t2, α2) be two rigid motions. The similarity of
the translations at hand is measured with the L2-distance, which is the same
distance measure we sucessfully used in most of the EGSM variants under
translations. Let p be a point on ∂D and pα1 and pα2 be the images of p rotated
by α1 and α2 respectively. The points pα1 and pα2 split δD into two arcs, see
Figure 6.3. We interpret the difference in the rotation angles as the minimum
of the lengths of these arcs on ∂D, which is why we choose dRM(T1, T2) as

dRM(T1, T2) = ‖t1 − t2‖+
4

π
min (|α1 − α2|, 2π − |α1 − α2|)

≤ ‖t1 − t2‖+ 4.

Since P and Q both are point sets within the unit disk, and P1, . . . , Pk are to be
matched to Q1, . . . , Qk, ‖t1‖ ≤ 2 and ‖t2‖ ≤ 2 and thus ‖t1−t2‖ ≤ 4. Therefore

6.2. Thoughts on Rigid Motions 129

the distance between the translations at hand and the distance between the
rotation angles at hand contribute a similar share to the rigid motion distance.
Of course, the summands of dRM can also be weighted differently if needed.

Although dRM seems suitable for the EGSM framework because of the plausible
geometric interpretation, the approach turns out to be insufficient: It is not
enough for any two neighbored rigid motions to be somehow similar. It is
crucial to also transform neighboring subpatterns of P similarly. However,
depending on the size and the location of these subpatterns (with respect to
the origin), two rigid motions with a great distance in transformation space
may generate two similar pictures of the same subpattern in object space.

Example 6.4 In the following EGSM instance, the input sets P and Q are
divided into subpatterns. Let

P1 = {p1, p2} with p1 = (−1, 0)T,

p2 = (1, 0)T,

P2 = {p3, p4} with p3 = (0, 0)T,

p4 = (ε, 0)T,

Q1 = {q1, q2} with q1 = (−1, 0)T,

q2 = (1, 0)T,

Q2 = {q3, q4} with q3 = (0, 0)T,

q4 = (0, ε)T.

for some ε > 0, see Figure 6.4, and let the neighborhood graph G = (V,E) with
V = {1, 2} and E = {{1, 2}}, a path with two vertices. In the following, the
translation t = (0, 0)T is denoted with id. We consider the rigid motions

T1 = (id, 0),

T2 =
(

id,
π

2

)
and

T ′2 = (id, 0).

Let T := (T1, T2) and T′ := (T1, T
′
2).

Note that the sequence T matches the pattern precisely to the model, hence

γ(P,Q,T, G) = max
(

dRM(T1, T2),~h(T1(P1), Q1),~h(T2(P2), Q2)
)

= max (2, 0, 0) = 2.

Applying T′ to the object function results in

γ(P,Q,T′, G) = max
(

dRM(T1, T
′
2),~h(T1(P1), Q1),~h(T ′2(P2), Q2)

)
= max

(
0, 0,
√

2ε
)

=
√

2ε.

130 Chapter 6. Variants of the Problem

q1 q2q3

q4
p1 p2

p3

p4 = T ′
2(p4)

T2(p4)

Figure 6.4: The sets P = T ′(P), T2(p4) and Q.

In Example 6.4, the point p4 is very close to the origin, hence the impact of
any rigid motion T = (id, α) on the image of p4 is small in the sense that T (p4)
is close to p4. The rigid motions T2 and T ′2 have a relatively great distance
in transformation space due to the different rotation angles, but the impact
of this difference on P2 is just O(ε). Also, it is not clear if simply requiring
approximately equal-sized subpatterns of P and Q is enough in order to avoid
problems like displayed in Example 6.4. However, this facts suggest that in order
to design a suitable distance measure for rigid motions in the EGSM context
it is not enough to use a uniform measure on rigid motions but a distance
measure that also somehow takes other features of the problem instance, e.g.,
the geometric structure of the pattern and the model, into account.

Analyzing the neccessary requirements on P , Q and G, e.g., approximately
equal-sized subpatterns of P and Q, so that using dRM as the distance measure
in transformation space is a sufficient choice in the EGSM context is a promising
topic of future research.

6.3 On Imprecise Point Sets

Irrespective of the choice of the class S of geometric objects of the input,
the imprecision of the input due to, e.g., inaccuracies in the acquisition, is
a prominent issue in theoretical computer science. Suppose that the pattern
P and the model Q are point sets in the plane. There is a popular model of
imprecise point sets, in which an imprecise point in the plane can be described
as a disk Dr(c) with radius r > 0 and center c ∈ R2. The actual position
of the imprecise point can be anywhere in Dr(c) and the probability of all

6.4. Line Segments, Triangles and Triangulated Surfaces 131

possible positions depends on a suitable distribution function, e.g., the uniform
distribution. Computing distance measures of imprecise point sets seems to be
an ambitious task:

In [15], the authors consider different cases of the problem of computing the
directed Hausdorff distance of two point sets P and Q if at least one of the
sets consists of imprecise points. The authors prove that for some cases of
their problem setup the problem is NP -hard and present an algorithm with a
polynomial runtime for others.

These ideas can also be incorporated in the EGSM setting, where the input
sets P and Q may be imprecise due to the way they were acquired.

6.4 Line Segments, Triangles and Triangu-

lated Surfaces

In the previous chapters, we chose P and Q to be point sets in the plane and
all strategies were based to this choice. A possible next step is to consider
line segments instead of point sets with the option to generalize the results of
the EGSM setting for line segments to triangles or even triangulated surfaces.
Intuitively, all strategies considered so far may still work if P and Q are sets of
line segments instead of point sets, even though slight adjustments have to be
made. For instance, the boundaries of regions of admissible translations in the
L2-setting, that are elaborately discussed in Chapter 5, then consist of circular
arcs and line segments, which can be interpreted as circular arcs with infinite
radius.

The introduction of new geometric input objects also allows for shifting the
focus to other distance measures in object space. A prominent example for
measuring the distance between line segments or polygonal curves in general
that also provides a plausible geometric interpretation is the discrete Fréchet
distance (DFD) introduced in [29]. Imagine a dog and its owner taking a walk.
Given two finite curves in a metric space, the owner walks on one of the curves
and their dog walks on the other one while they are connected by a leash. Both
can vary their speed but cannot move backwards. The Fréchet distance of the
two curves equals the length of the shortest possible leash sufficient for both
the owner and their dog to traverse the curves from start to finish. In the
discrete case, we are given two polygonal curves defined by the point sequences
P = (p1, . . . , pn) and Q = (q1, . . . , qm) for n,m ∈ N and the dog and its owner
use the points in P and Q as stepping stones from start to finish in the given
order, see [30] for a detailed introduction.

132 Chapter 6. Variants of the Problem

Let P and Q be point sequences in the plane. In this section, we denote the
Lp-norm of a vector x by ‖x‖p for p ∈ {1, 2,∞}.

Definition 6.5 A coupling K for n,m ∈ N (i.e., for P and Q) is a sequence
of L ∈ N ordered pairs of indices K = ((α1, β1), . . . , (αL, βL)) so that

• 1 ≤ αi ≤ n and 1 ≤ βi ≤ m for all 1 ≤ i ≤ L,
• (α1, β1) = (1, 1) and (αL, βL) = (n,m), and
• for every 1 ≤ k < L the following holds:

(αk+1, βk+1) ∈ {(αk + 1, βk), (αk, βk + 1), (αk + 1, βk + 1)} .

Let K(P,Q) be the set of all couplings of P and Q. The discrete Fréchet distance
(DFD) of the point sequences P and Q is defined as

F(P,Q) := min
K∈K(P,Q)

max
(α,β)∈K

‖pα − qβ‖p.

A coupling K∗ ∈ K(P,Q) is called optimal (for P and Q) if

F (P,Q) = max
(α,β)∈K∗

‖pα − qβ‖p.

See Figure 6.5 for an illustration.
Note that strictly speaking, the DFD is defined for point sequences. Since we
use point sequences to describe polygonal curves, we also use the term polygonal
curves instead of point sequences in the context of the DFD.
In the context of shape matching under translations, we seek to find a translation
t so that F(t(P), Q) ≤ δ for a parameter δ ≥ 0. This problem has already been
studied along with several variants in, e.g., [30] and [31].
The variant of this problem we consider in the following is the partial discrete
Fréchet matching problem. In order to formulate this problem, we first need to
introduce some notation:

Notation 6.6 For a point sequence Q = (q1, . . . , qm) of m points in the plane,
let

Qs,f := (qs, . . . , qf) ⊆ Q

with 1 ≤ s ≤ f ≤ m denote the subsequence of Q from qs to qf .

Now we consider the following problem:

Problem 13 (Discrete Partial Fréchet Matching under translations) Given:

P = (p1, . . . , pn) a sequence of points,

Q = (q1, . . . , qm) a sequence of points, and

δ ≥ 0 a parameter.

6.4. Line Segments, Triangles and Triangulated Surfaces 133

P

Q

P

Q

P

Q

p1

p2

p3
p4

p5

q1

q2 q3

P

Q

p1

p2

p3
p4

p5

q1

q2 q3

Figure 6.5: Two couplings (dashed lines) of the point sequences P and Q (solid
lines). The coupling displayed in the lower illustration is optimal.

Find: a translation t so that there is a subsequence Qs,f ⊆ Q with 1 ≤ s ≤ f ≤
m so that

F(t(P), Qs,f) ≤ δ.

See Figure 6.6 for an illustration. Note that in Problem 13, it is also possible
for P to be matched to a single point of Q.

We can now state the following EGSM problem:

Problem 14 Given:

P = {P 1, . . . , P k} ⊂ R2 a set of k sequences of points (the pattern), with

P i = (pi1, . . . , p
i
ri

) a sequence of points of length ri ≥ 1

for all 1 ≤ i ≤ k and n =
k∑
i=1

ri,

Q = (q1, . . . , qm) ⊂ R2 a sequence of points (the model), and

δ ≥ 0 a parameter.

Find: A sequence of k translations T = (t1, . . . , tk) so that there are k sub-
sequences Qsi,fi ⊆ Q for 1 ≤ i ≤ k with fi ≤ si+1 for all 1 ≤ i < k so

134 Chapter 6. Variants of the Problem

P

Q

p1

p2

p3

p4 p5

p6

t(p1)

t(p2)

t(p3)

t(p4) t(p5)

t(p6)q1

q2
q3 q4

q5

q6

t(P)

δ

t

Figure 6.6: The point sequence t(P) and the subsequence Q2,4 of the point
sequence Q (solid lines) with F(t(P), Q2,4) ≤ δ.

that

max
1≤i≤k

F
(
ti(P

i), Qsi,fi

)
≤ δ.

See Figure 6.7 for an illustration.

In this problem formulation, the similarity constraints on the translations are
not given as edges in a neighborhood graph. Instead, the given order in which
the partitions of P have to be matched to Q provides a (in the context of
measuring the DFD under translation) natural kind of similarity constraints
on the translations. Later in this section, we will also discuss a variant of
Problem 14 where the similarity constraints on the translations are encoded in
a given neighborhood graph.

Definition 6.7 We say that a sequence of translations T ∗ = (t∗1, . . . , t
∗
k) solves

Problem 14, iff there are k subsequences Qsi,fi ⊆ Q for 1 ≤ i ≤ k with fi ≤ si+1

for all 1 ≤ i < k so that

max
1≤i≤k

F
(
t∗i (P

i), Qsi,fi

)
≤ δ.

Elastic Partial Discrete Fréchet Matching for Polygonal
Curves that are Line Segments

For now, we consider instances where P l = (pl1, p
l
2) for all 1 ≤ l ≤ k, i.e., the

pattern P consists of k polygonal curves that equal line segments. Then, the
following holds:

6.4. Line Segments, Triangles and Triangulated Surfaces 135

P 1

P 2

P 3

t1(P
1)

t2(P
2)

t3(P
3) Q

Figure 6.7: The point sequences P 1, P 2 and P 3 are matched to the point
sequence Q with the sequence of translations T = (t1, t2, t3) in order.

Lemma 6.8 Let P = (p1, p2) and Q = (q1, . . . , qm) be two sequences of points
in the plane. Then, there is an index 1 ≤ j ≤ m so that

F (P,Q) ≥ F (P,Qj,j)

or there is an index 1 ≤ j < m so that

F (P,Q) ≥ F (P,Qj,j+1).

Proof. Let K∗ ∈ K(P,Q) be an optimal coupling for P and Q and let the length
of K∗ = ((α∗1, β

∗
1), . . . , (α∗L, β

∗
L)) be L ≥ 1. Then, as illustrated in Figure 6.8,

one of the following cases occurs:

• There is an index 1 ≤ j ≤ m so that (α∗l , β
∗
l) = (1, j) and (α∗l+1, β

∗
l+1) =

(2, j) for an 1 ≤ l < L. Since

F (P,Qj,j) = max (‖p1 − qj‖p, ‖p2 − qj‖p) ,

it follows that F (P,Q) ≥ F (P,Qj,j).
• There is an index 1 ≤ j < m so that (α∗l , β

∗
l) = (1, j) and (α∗l+1, β

∗
l+1) =

(2, j + 1) for an 1 ≤ l < L. Since

F (P,Qj,j+1) = max (‖p1 − qj‖p, ‖p2 − qj+1‖p) ,

it follows that F (P,Q) ≥ F (P,Qj,j+1).

136 Chapter 6. Variants of the Problem

P

Q

qj

qj+1

Q

qj

P

Figure 6.8: First: Two polygonal curves P and Q and an index 1 ≤ j ≤ m so
that F (P,Q) ≥ F (P,Qj,j).
Second: Two polygonal curves P and Q and an index 1 ≤ j < m so that
F (P,Q) ≥ F (P,Qj,j+1).

As a consequence, if we want to decide if F (P,Q) ≤ δ for a δ ≥ 0, one neccessary
condition is that there is an index 1 ≤ j ≤ m so that F (P,Qj,j) ≤ δ or an
index 1 ≤ j < m so that F (P,Qj,j+1) ≤ δ. The same holds, if we are given
t(P) instread of P for a translation t. Hence, finding a translation t so that
the partial DFD of t(P) and Q is at most δ is equal to finding a translation t
so that the DFD of t(P) and a point or a line segment of the polygonal curve
defined by Q is at most δ.

Let t1, t2 ∈ R2 be the translations that shift p1 exactly to q1 and p2 to q2

respectively, i.e., t1 := (p1− q1) and t2 := (p2− q2). By looking at their distance
in translation space, we can determine if there is a translation t that shifts
both p1 and p2 δ-close to their corresponding point in Q. The same holds if p1

and p2 are matched to the same point q1.

Lemma 6.9 Let P = (p1, p2) and Q = (q1, q2) be two point sequences in the
plane. Then, there is a translation t so that

6.4. Line Segments, Triangles and Triangulated Surfaces 137

• F(t(P), Q) ≤ δ iff

‖(p1 − q1)− (p2 − q2)‖p ≤ 2δ.

• F(t(P), (q1)) ≤ δ iff
‖p1 − p2‖p ≤ 2δ.

Proof. • Let t be a fixed translation. We know that F(t(P), Q) =
F((t(p1), t(p2)), Q). There are three couplings of t(P) and Q:

K1 = ((1, 1), (1, 2), (2, 2)),

K2 = ((1, 1), (2, 1), (2, 2)) and

K3 = ((1, 1), (2, 2)),

hence K(t(P), Q) = {K1, K2, K3}. Since

max(‖t(p1)− q1‖p, ‖t(p2)− q2‖p)
≤ max(‖t(p1)− q1‖p, ‖t(p1)− q2‖p, ‖t(p2)− q2‖p) and

max(‖t(p1)− q1‖p, ‖t(p2)− q2‖p)
≤ max(‖t(p1)− q1‖p, ‖t(p2)− q1‖p, ‖t(p2)− q2‖p),

K3 is an optimal coupling for t(P) and Q, hence

F (t(P), Q) = max
(α,β)∈K3

‖t(pα)− qβ‖p = max(‖t(p1)− q1‖p, ‖t(p2)− q2‖p).

With this, we get

F (t(P), Q) ≤ δ ⇔ ‖t(p1)− q1‖p ≤ δ and ‖t(p2)− q2‖p ≤ δ

⇔ ‖t+ (p1 − q1)‖p ≤ δ and ‖t+ (p2 − q2)‖p ≤ δ

⇔ t ∈ Dδ(p1 − q1) ∩Dδ(p2 − q2),

where Dr(c) denotes the Lp-disk with radius r > 0 and center c ∈ R2.
Hence there is a translation t so that F (t(P), Q) ≤ δ iff

Dδ(p1 − q1) ∩Dδ(p2 − q2) 6= ∅
⇔ ‖(p1 − q1)− (p2 − q2)‖p ≤ 2δ.

• Let t be a fixed translation. We know that F(t(P), Q) =
F((t(p1), t(p2)), (q1)). There is one coupling of t(P) and Q:

K = ((1, 1), (2, 1)),

138 Chapter 6. Variants of the Problem

hence K(t(P), Q) = {K} and

F (t(P), Q) ≤ δ ⇔ max(‖t(p1)− q1‖p, ‖t(p2)− q1‖p) ≤ δ

⇔ ‖t(p1)− q1‖p ≤ δ and ‖t(p2)− q1‖p ≤ δ

⇔ ‖t+ (p1 − q1)‖p ≤ δ and ‖t+ (p2 − q1)‖p ≤ δ

⇔ t ∈ Dδ(p1 − q1) ∩Dδ(p2 − q1),

Hence there is a translation t so that F (t(P), (q1)) ≤ δ iff

Dδ(p1 − q1) ∩Dδ(p2 − q1) 6= ∅
⇔ ‖(p1 − q1)− (p2 − q1)‖p ≤ 2δ

⇔ ‖(p1 − p2)‖p ≤ 2δ.

The problem of deciding whether there is a translation that brings a line
segment P l δ-close to Q in terms of the partial DFD can be converted into the
problem of finding a path with minimum edge weight in a directed weighted
graph:

Definition 6.10 Let P1, . . . , Pk be k point sequences of size 2 and let Q be a
sequence of m points. For every 1 ≤ l ≤ k, we define the directed weighted
graph GP l,Q as follows:

GP l,Q = (VP l,Q, EP l,Q) with

VP l,Q := {vli,j | 1 ≤ i ≤ 2, 1 ≤ j ≤ m} and

EP l,Q := Eh
P l,Q ∪ E

v
P l,Q ∪ E

d
P l,Q

with

Ed
P l,Q := {(vl1,j, vl2,j+1) | 1 ≤ j ≤ m− 1},

Ev
P l,Q := {(vl1,j, vl2,j) | 1 ≤ j ≤ m}, and

Eh
P l,Q := {(vl2,j, vl2,j+1) | 1 ≤ j ≤ m− 1}.

Let
w : EP l,Q → R+

0

be the weight function on the edges of EP l,Q. We define

w
(
(vli,j, v

l
i′,j′)

)
:=

{
‖(pli − qj)− (pli′ − qj′)‖p if (vli,j, v

l
i′,j′) ∈

(
Ed
P l,Q
∪ Ev

P l,Q

)
0 if (vli,j, v

l
i′,j′) ∈ Eh

P l,Q

for 1 ≤ i, i′ ≤ 2 and 1 ≤ j, j′ ≤ m.

6.4. Line Segments, Triangles and Triangulated Surfaces 139

. . .

. . .

. . .

. . .

GPk,Q

GPk−1,Q

GP 2,Q

GP 1,Q

t

s

. . .

v11,1 v11,m

v12,1 v12,m. . .

. . .

Figure 6.9: Left: An illustration of the directed graph GP 1,Q.
Right: An illustration of the directed graph GP,Q.

The left part of Figure 6.9 provides a schematical illustration.

For every 1 ≤ l ≤ k, the graph GP l,Q consists of 2m vertices where every vertex
vli,j corresponds to a pair of points pli ∈ P l and qj ∈ Q with 1 ≤ i ≤ 2 and
1 ≤ j ≤ m. All possible matchings are encoded in the edges of GP l,Q. If pl1
is matched to qj, p

l
2 has to be matched to either qj or qj+1, see Lemma 6.8.

Hence there is an edges from vl1,j to vl2,j for all 1 ≤ j ≤ m and to vl2,j+1 for all
1 ≤ j < m. Also there are edges from vl2,j to vl2,j+1 for 1 ≤ j < m, which have
no significance now but will be needed later.

The vertex vli,j corresponds to the pair of points pli and qj . However, it can also
be associated with a point (pli − qj) in translation space, i.e., the translation
that shifts pli to qj. An edge e ∈ (Ed

P l,Q
∪ Ev

P l,Q
) can be interpreted as the Lp-

difference between two such translations. Therefore, this difference is assigned
as the weight on the corresponding edges.

Definition 6.11 Let π := (v1, . . . , vr) be a path in an edge-weighted graph
G = (V,E) with vi ∈ V for 1 ≤ i ≤ r. The weight of a path π = (v1, . . . , vr) is
defined as

mW(π) := max
1≤i<r

w ((vi, vi+1)) ,

i.e., the weight of the heaviest edge of π.

Corollary 6.12 There is a translation t and a subsequence Qj,j′ of Q with

140 Chapter 6. Variants of the Problem

1 ≤ j ≤ j′ ≤ m and j ≤ j′ ≤ j + 1 so that

F(t(P l), Qj,j′) ≤ δ,

iff there is a path π in GP l,Q from vl1,j to vl2,j′ so that

mW(π) ≤ 2δ.

Proof. The correctness of the statement follows directly from Lemma 6.8 and
Lemma 6.9.

Corollary 6.13 There is a sequence of translations that solves Problem 14 iff
there are k paths πl for 1 ≤ l ≤ k with the following property: πl is a path in
GP l,Q from vl1,jl to vl2,j′l

with 1 ≤ jl ≤ j′l ≤ m and jl ≤ j′l ≤ jl + 1 so that

mW(πl) ≤ 2δ

and j′l ≤ jl+1 for all 1 ≤ l < k.

Proof. The correctness of the statement follows directly from Lemma 6.8 and
Corollary 6.12.

Now we appropriately combine the graphs GP l,Q in order to decide Problem 14
by including a source s and a sink t to the set of vertices and by adding edges
that link consecutive subgraphs G(P l, Q):

Definition 6.14 Let GP,Q = (VP,Q, EP,Q) be a directed weighted graph with

VP,Q := {s} ∪ {t} ∪

(
k⋃
l=1

VP l,Q

)
and

EP,Q :=

(
k⋃
l=1

EP l,Q

)
∪ Es

P,Q ∪ Et
P,Q ∪ Ec

P,Q

with

Es
P,Q := {(s, v1

1,j) | 1 ≤ j ≤ m},
Et
P,Q := {(vk2,j, t) | 1 ≤ j ≤ m},

Ec
P,Q := {(vl2,j, vl+1

1,j) | 1 ≤ l ≤ k − 1, 1 ≤ j ≤ m},

and w(e) := 0 for all edges e ∈
(
Es
P,Q ∪ Et

P,Q ∪ Ec
P,Q

)
.

See the right side of Figure 6.9 for a schematical illustration of GP,Q.

6.4. Line Segments, Triangles and Triangulated Surfaces 141

Theorem 6.15 There is a sequence of translations that solves Problem 14, iff
there is a (directed) path π in GP,Q from s to t so that mW(π) ≤ 2δ.

Proof. Concerning GP,Q we make the following observations:

• Every edge (u, v) ∈ EP,Q is directed. Let

u ∈ VP,Q \
{
{s} ∪ {t} ∪ {vk2,j | 1 ≤ j ≤ m}

}
.

Then u = vli,j for an 1 ≤ l ≤ k, 1 ≤ i ≤ 2 and 1 ≤ j ≤ m and v = vl
′

i′,j′

with l′ ≥ l, i′ ≥ i and j′ ≥ j. All other edges are of the form (s, v1
1,j) or

(vk2,j, t) for 1 ≤ j ≤ m. As a consequence, there is no path from s to t
that visits a vertex twice, i.e., the graph is cycle-free.

• Every path π in G from s to t contains exactly one edge from Ed
P l,Q
∪Ev

P l,Q

for each 1 ≤ l ≤ k and they appear in increasing order with l along π,
since the subgraphs GP l,Q are combined consecutively by the edges of
Ec
P,Q. All other edges of the path have weight 0.

• There is a path from vl2,j ∈ VP l,Q to vl+1
1,j′ ∈ VP l+1,Q for all 1 ≤ l ≤ k − 1

and 1 ≤ j ≤ j′ ≤ m.

Recall that the edges in Ed
P l,Q
∪Ev

P l,Q
encode all possible assignments between

P l and Q. As a consequence, the set of paths from s to t encodes the set of all
possible valid couplings of P and Q.
According to Corollary 6.13, there is a sequence of translations that solves
Problem 14 iff there are k paths πl for 1 ≤ l ≤ k so that πl is a path in GP l,Q

from vl1,jl to vl2,j′l
with 1 ≤ jl ≤ j′l ≤ m and jl ≤ j′l ≤ jl + 1 with mW(πl) ≤ 2δ

and j′l ≤ jl+1 for all 1 ≤ l < k. Suppose, π1, . . . , πk with this property exist.
Since the set of paths from s to t encodes the set of all possible valid couplings
of P and Q, there is a path from s to t that contains the paths π1, . . . , πk as
subpaths. It follows that

mW(π) = max
1≤l≤k

mW(πl),

since all edges in EP,Q \ (Ed
P l,Q
∪ Ev

P l,Q
) have weight 0. On the other hand, if

there is an index 1 ≤ l ≤ k so that mW(π′l) > 2δ for all paths π′l in GP l,Q it
follows that mW(π) > 2δ for all paths π from s to t.

We now state the following algorithm:

Algorithm 8 We are given a set of k sequences of points P = {P 1, . . . , P k}
with P i = (pi1, p

i
2) for all 1 ≤ i ≤ k, a sequence of points Q = (q1, . . . , qm) and

a parameter δ ≥ 0.

142 Chapter 6. Variants of the Problem

First, we construct the directed weighted graph GP,Q = (VP,Q, EP,Q) from P and
Q as elaborately described above. Then, by using the depth-first-search variant
for finding shortest paths in DAGs, see [32], we test, if there is a path for GP,Q

from s to t.
One of the following cases occurs:

1. A path from s to t is found, and yes is returned as the answer to
Problem 14 for a pattern that consists of line segments. A witness T can
be computed from the information encoded in the path at hand.

2. There is no path from s to t and no is returned as the answer to Prob-
lem 14 for a pattern that consists of line segments.

Theorem 6.16 Problem 14 can be decided in O(nm) time if the pattern consists
of line segments, also when returning a witness T = (t1, . . . , tk).

Proof. We use Algorithm 8 to decide Problem 14 for a pattern that consists of
line segments.
The construction of GP,Q takes O(nm) time, since |VP,Q| = 2km and n = 2k
and

|EP,Q| =

∣∣∣∣∣
(

k⋃
l=1

EP l,Q

)
∪ Es

P,Q ∪ Et
P,Q ∪ Em

P,Q

∣∣∣∣∣
=

(
k∑
l=1

|Eh
P l,Q|+ |E

v
P l,Q|+ |E

d
P l,Q|

)
+ |Es

P,Q|+ |Et
P,Q|+ |Em

P,Q|

= k((m− 1) +m+ (m− 1)) +m+m+ (k − 1)m

= (4k + 1)m− 2k

= (2n+ 1)m− n ∈ O(nm)

and all operations during the construction of the graph can be carried out in
constant time.
Let π be a path in GP,Q from s to t. Obviously, π contains exactly one edge

from Ed
P l,Q
∪ Ev

P l,Q
for each 1 ≤ l ≤ k, at most m− 1 edges from

⋃k
l=1E

h
P l,Q

,

exactly k − 1 edges from Ec
P,Q and exactly one edge from Es

P,Q and Et
P,Q each.

Hence, π contains at most 2k +m = n+m edges in total.
The question if there is a path π from s to t with mW(π) ≤ 2δ can be answered
by using the depth-first-search variant for finding shortest paths in DAGs in
O(nm) time, see [32]. Let π′ be a path in GP,Q from s to t with mW(π′) ≤ 2δ.
Moreover, let (v′l1,j, v

′l
2,j′) with 1 ≤ j ≤ j′ ≤ m and j ≤ j′ ≤ j + 1 be the edge

from Ed
P l,Q
∪ Ev

P l,Q
in π′ for all 1 ≤ l ≤ k. We define

tl = ‖(pl1 − qj)− (pl2 − qj′)‖p

6.4. Line Segments, Triangles and Triangulated Surfaces 143

for all 1 ≤ l ≤ k. Then T = (t1, . . . , tk) can be returned as a witness without
increasing the runtime of Algorithm 8.

In the optimization version of Problem 14, the goal is to find the optimal
(smallest) value δ∗, so that there is a sequence of translations that meets the
constraints of Problem 14 for this specific δ = δ∗.

Theorem 6.17 The optimization version of Problem 14 can be solved in O(nm)
time if the pattern consists of line segments, also when returning a witness
T = (t1, . . . , tk).

Proof. We adjust Algorithm 8 slightly: The depth-first-search variant for finding
shortest paths in DAGs, see [32], can be applied on GP,Q in order to find the
path π∗ with minimal weight in O(nm) time, since GP,Q is a DAG. Then,
mW(π∗) = δ∗ can be returned as the answer to the optimization version of
Problem 14.

Note that the strategy introduced above does not depend on the Lp-norm at
hand for p ∈ {1, 2,∞}. In fact, the strategy works for other norms as well.

Elastic Partial Discrete Fréchet Matching for Polygonal
Curves

In this section, the subpatterns P 1, . . . , P k encode polygonal curves that may
consist of more than one line segment each. In this setting, the strategy
introduced in the previous section (transforming the problem into a problem of
finding a path of minimal weight in a single DAG) does not work:

For now, we consider Problem 13 for the sub-pattern P 1 = (p1
1, . . . , p

1
r1

), the
model Q = (q1, . . . , qm) and the parameter δ ≥ 0, i.e., the question is whether
there is a subsequence Qs,f ⊆ Q with 1 ≤ s ≤ f ≤ m and a translation t so
that

F(t(P 1), Qs,f) ≤ δ.

The answer to Problem 13 is yes, iff there is a subsequence Qs,f ⊆ Q so that
there is a translation t and a coupling Kδ for P 1 and Qs,f with

F(t(P 1), Qs,f) = max
(α,β)∈Kδ

‖t(p1
α)− qβ‖p ≤ δ. (6.6)

Now suppose the indices s and f as well as a coupling Kδ are fixed and the
task is to decide whether there is a translation t that meets Equation (6.6).

144 Chapter 6. Variants of the Problem

Let |Kδ| = L > 0. Then there is a translation that meets Equation (6.6), iff ⋂
(α,β)∈Kδ

Dδ(p
1
α − qβ)

 6= ∅, (6.7)

where each Dδ(p
1
α−qβ) is an Lp-disk with radius δ centered in (p1

α−qβ). Clearly,
the question whether there is a coupling Kδ that meets Equation (6.7) cannot
simply be transformed into a problem of finding a path in a single directed
graph in the same way as we did in the previous section, because in this case,
the validility of a coupling Kδ depends on the combinatorial structure of the
intersection the disks Dδ(p

1
α − qβ) for all (α, β) ∈ Kδ and not just on the fact

whether, e.g., consecutive disks each intersect in at least one point. In the
following, we therefore present another approach in order to decide Problem 13
for the sub-pattern P 1, if it consists of more than two points. And with this as
a basis we will then present a strategy to decide Problem 14.
In [33], the authors describe an algorithm that considers the classical DFD
problem under translation, i.e., given P 1, Q and δ ≥ 0, it decides whether
there is a translation t so that F(t(P 1), Q) ≤ δ, in O(r3

1m
2(1 + log(mr−1

1)))
time, if m ≥ r1 and in O(r2

1m
3(1 + log(r1m

−1))) time, if m < r1. To simplify
the presentation, we assume rl < m for all 1 ≤ l ≤ m in the following. Since
their algorithm can easily be adjusted to decide the partial DFD problem
under translation (Problem 13), it will be the basis for our algorithm, see
Algorithm 10 below. Note that the following strategy works for all Lp-norms
with p ∈ {1, 2,∞}. However, since the authors of [33] focus on the L2-distance
and it is the distance measure that seems the most complicated to analyze, we
focus on the L2-distance in the following.
Given the point sequences P 1 and Q as well as a parameter δ ≥ 0, the authors
consider the arrangement

D1 := {Dδ(p
1 − q) | p1 ∈ P 1, q ∈ Q}

of r1m disks with radius δ. D1 consists of O(r2
1m

2) 0-, 1- and 2-dimensional faces.
Let f be a face of this arrangement. Then there is a translation t ∈ f so that
F(t(P 1), Q) ≤ δ iff there is a coupling Kδ for P 1 and Q with (f∩Dδ(p

1
α, qβ)) 6= ∅

for all (α, β) ∈ Kδ. In order to test, whether there is such a coupling Kδ, a
0-1-matrix M1

f with r1 rows and m columns is generated for every face f of
the arrangement. We set

M1
f [i, j] =

{
1, if (f ∩Dδ(p

1
i , qj)) 6= ∅,

0, else,

see the left part of Figure 6.10.

6.4. Line Segments, Triangles and Triangulated Surfaces 145

11 1

11 1

1

1

1

1

1

1

11

1

1

1

1 1

1

1

1

1

p11

p12

p13

p14

p15

p16

p17

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

1

1

1111

11 1

11 1

1

1

1

1

1

1

11

1

1

1

1 1

1

1

1

1

p11

p12

p13

p14

p15

p16

p17

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

1

1

1111

1 1 1 1 1 1 1 1 1 11

Figure 6.10: Left: Matrix M1
f as introduced in [33] for P 1 = (p1

1, . . . , p
1
6) and

Q = (q1, . . . , q10) along with a path from M1
f [1, 1] to M1

f [7, 10].
Right: Matrix M1

f with an additional row of 1-entries at the bottom along with
a path from M1

f [0, 1] to M1
f [7, 10].

Definition 6.18 We call a 1-entry M1
f [a′, b′] for 1 ≤ a′ ≤ r1 and 1 ≤ b′ ≤ m

reachable from M1
f [a, b] for 1 ≤ a ≤ a′ and 1 ≤ b ≤ b′, iff there is a (weakly) row-

and column-monotone sequence of 1-entries from M1
f [a, b] to M1

f [a′, b′] where all
consecutive 1-entries M1

f [i, j] (with a ≤ i ≤ a′ and b ≤ j ≤ b′) and M1
f [i′, j′] of

the sequence have the property that (i′, j′) ∈ {(i, j + 1), (i+ 1, j), (i+ 1, j + 1)}.

Note that in order to determine the 1-entries of M1
f that are reachable from a

fixed 1-entry of M1
f , in every step one can move from the current entry of M1

f

to the entry above, to the right or to the entry to the right of the one above
(diagonal). There is a translation t ∈ f so that F(t(P 1), Q) ≤ δ, if M1

f [r1,m]
is reachable from M1

f [1, 1]. This procedure is repeated for every face of the
arrangement. Finally, we can conclude that there is a translation t so that
F(t(P 1), Q) ≤ δ iff there is at least one face f in the arrangement so that
M1

f [r1,m] is reachable from M1
f [1, 1]. Actually, solving this decision problem by

finding a sequence of 1-entries in M1
f is similar to finding a path in a suitable

directed graph that depends on the face f at hand.
The algorithm described in [33], which we use as a black box in the following,
uses a specific data structure to partition M1

f into blocks which then are
analyzed individually in order to decide the DFD problem under translation at
hand. Their algorithm returns additional information about the cells in M1

f :

• for each 1-entry of M1
f [r1, j

′] with 1 ≤ j′ ≤ m, the list of 1-entries M1
f [1, j]

with 1 ≤ j ≤ j′ so that M1
f [r1, j

′] is reachable from M1
f [1, j] and

• for each 1-entry of M1
f [1, j] with 1 ≤ j ≤ m, the list of 1-entries M1

f [r1, j
′]

with j ≤ j′ ≤ m so that M1
f [r1, j

′] is reachable from M1
f [1, j].

146 Chapter 6. Variants of the Problem

This allows us to adjust the algorithm in order to decide the partial setting. In
order to test, if there is a translation t so that the partial DFD of t(P 1) and
Q restricted to a single face f of the arrangement is at most δ, it is enough
to check whether there is a 1-entry M1

f [r1, j
′], with 1 ≤ j′ ≤ m with a list, as

described above, that contains at least one element.
By using the following adjustment, we can simplify the procedure so that we
only have to check the corresponding list of one cell of M1

f without changing
the runtime: We slightly alter the matrix M1

f by inserting a row of 1-entries at
the bottom, hence there are m additional 1-entries M1

f [0, j] with 1 ≤ j ≤ m,
see the right part of Figure 6.10. We observe the following:

Observation 6.19 There is an index 1 ≤ j ≤ m so that M1
f [r1, j

′] with
j ≤ j′ ≤ m is reachable from M1

f [1, j], iff M1
f [r1, j

′] is reachable from M1
f [0, 1].

Also, we can find the smallest index j̄ so that M1
f [r1, j̄] is reachable from M1

f [0, 1]
without increasing the runtime of the algorithm by checking the corresponding
list of M1

f [0, 1]. Let f1 be the minimum of all such indices. We repeat the
same strategy for all faces of the arrangement and compute the face f ∗ so that
M1

f∗ [r1, f1] is reachable from M1
f [0, 1] with 1 ≤ f1 ≤ m. Hence there is an index

1 ≤ s1 ≤ f1 and a translation t with

F(t(P 1), Qs1,f1) ≤ δ.

Of course, this strategy works for every point sequence P l ∈ P with 1 ≤ l ≤ k.

We formally state the following algorithm, called A9 in short:

Algorithm 9 We are given two point sequences P l with 1 ≤ l ≤ k and
Q = (q1, . . . , qm) as well as a parameter δ ≥ 0. We compute an answer to the
question of there is a translation t and indices sl and f ′l so that

F(t(P l), Qsl,f
′
l
) ≤ δ (6.8)

by applying the following the strategy:
First, we compute the arrangement

Dl := {Dδ(p
l − q) | pl ∈ P l, q ∈ Q}.

For every face f of the arrangement, we construct the 0-1-matrix M l
f with rl + 1

rows and m columns as elaborately described above. Then, we use the algorithm
described in [33] to determine the smallest index 1 ≤ jf ≤ m so that M l

f [rl, jf]

is a 1-entry that is reachable from M l
f [0, 1], or if there is no such index at all.

If a test was positive for at least one of the faces of Dl, we set fl := minf jf .
We return

6.4. Line Segments, Triangles and Triangulated Surfaces 147

• no, if there is no such translation t, i.e., none of the tests was positive,
and

• (yes, fl), if there is a translation that satisfies Inequality (6.8), where fl
is the smallest index 1 ≤ fl ≤ j′ so that there is an index 1 ≤ sl ≤ fl with
F(t(P l), Qsl,fl) ≤ δ.

We state the following theorem:

Theorem 6.20 Given two point sequences P l = (pl1, . . . , p
l
rl

) and Q =
(q1, . . . , qm) with rl < m, and a parameter δ ≥ 0, Algorithm 9 decides in
O(r3

lm
2(1 + log m

rl
)) time, whether there is an index 1 ≤ f ′l ≤ m and a transla-

tion t so that there is an index sl with

F(t(P l), Qsl,f
′
l
) ≤ δ

and, in case of a yes-instance, also returns the smallest index 1 ≤ fl ≤ m so
that there is an index 1 ≤ sl ≤ fl with

F(t(P l), Qsl,fl) ≤ δ.

Proof. In [33], the authors proved the correctness of their algorithm that decides
the DFD problem under translation for two given point sequences P l and Q.
Let f be the face at hand. We made altered their algorithm in two ways:

1. We checked whether there is a 1-entry M l
f [rl, j

′], with 1 ≤ j′ ≤ m with a
list, that contains at least one element instead of just verifying this for
M l

f [rl,m].

2. We added one row of 1-entries at the bottom of every matrix M l
f .

On Alteration 2: We observe, that there are two indices 1 ≤ sl ≤ fl ≤ m and a
translation t restricted to face f with

F(t(P 1), Qsl,fl) ≤ δ,

iff there are two indices 1 ≤ sl ≤ fl ≤ m so that M l
f [rl, fl] is reachable from

M l
f [1, sl]. This is true, iff there is an index 1 ≤ fl ≤ m so that M l

f [rl, fl] is

reachable from M l
f [0, 1], see Observation 6.19. Since the algorithm given in [33]

verifies this correctly, Algorithm 9 also verifies this correctly by making use of
the information that is computed and stored in the lists attached to the entries
of M l

f as described in 1.
The correctness of Algorithm 9 follows.
Since M l

f has rl + 1 rows and m columns and rl < m, the algorithm introduced
in [33] takes O((rl + 1)3m2(1 + log m

(rl+1)
)) = O(r3

lm
2(1 + log m

rl
)) time. Since

this algorithm and Algorithm 9 take approximately the same time, the stated
upper bound on the runtime of Algorithm 9 follows.

148 Chapter 6. Variants of the Problem

This strategy can be applied on the point sequences P l for 1 ≤ l ≤ k consecu-
tively in order to decide Problem 14:

Algorithm 10 We are given a set of k sequences of points P = {P 1, . . . , P k}
where P i = (pi1, . . . , p

i
ri

) is a sequence of points of length ri ≥ 1 for all 1 ≤ i ≤ k

and n =
∑k

i=1 ri, a sequence of points Q = (q1, . . . , qm) and a parameter δ ≥ 0.
We set s1 = 1. For l = 1 to k, we proceed as follows:
We call A9(P l, Qsl,m).

• If A9(P l, Qsl,m, δ) =no, we stop and return no as the answer to Prob-
lem 14.

• If A9(P l, Qsl,m, δ) = (yes, fl), we set sl+1 = fl and proceed with l = l + 1.

After the last step of the algorithm, one of the following cases occurs:

• A9(P k, Qsk,m, δ) =no and we return no as the answer to Problem 14.
• A9(P k, Qsk,m, δ) = (yes, fk) with fk ≤ m. Then, yes is returned as the

answer to Problem 14.

Note that by tracking the faces, e.g., storing them in a list, that admit the
yes-instances of the calls of A9(P l, Qsl,m) in every step, a sequence of admissible
translations (t1, . . . , tk) can also be returned as a witness without increasing
the runtime of the algorithm.

Theorem 6.21 Algorithm 10 is correct.

Proof. Suppose, Algorithm 10 returns yes. Since Algorithm 9 is correct and by
construction fl ≤ sl+1 for all 1 ≤ l < k, P l is matched to Q correctly for every
1 ≤ l ≤ k and thus Algorithm 10 returns the correct answer to Problem 14.
Now suppose Algorithm 10 returns no and suppose, this is false. Then there
are translations (t1, . . . , tk) and indices s′l and f ′l for 1 ≤ l ≤ k with s′l < f ′l+1

for all 1 ≤ l < k so that

F(tl(P
l), Qs′l,f

′
l
) ≤ δ

for all 1 ≤ l ≤ k. Let 1 ≤ j ≤ k be the greatest index so that A9(P j, Qsj ,m, δ) =
(yes, fj) during a run of Algorithm 10, i.e., A9(P j+1, Qsj+1,m, δ) = no. Then,
f ′j ≥ fj since A9 returns the smallest index fl that permits a valid partial
DFD matching under translation of P l to Q (that is, P l is matched to the
subsequence Qsl,fl) for a given index sl fot all 1 ≤ l ≤ k. Since all possible
matchings of P j+1, . . . , P k to Q starting at index f ′j are a subset of all possible
matchings starting at index fj, and Algorithm 9 is correct. This means that
there is no valid matching of P j+1 to Qfj ,m = Qsj+1,m, hence the answer to
problem 14 is no, which is a contradiction.

6.4. Line Segments, Triangles and Triangulated Surfaces 149

Theorem 6.22 Problem 14 can be decided in

O

(
k∑
l=1

r3
lm

2

(
1 + log

m

rl

))
time, if rl < m for all 1 ≤ l ≤ k.

Proof. Algorithm 9 takes O(r3
lm

2(1 + log(mr−1
l))) time per call. Adding up

the runtime of all calls for 1 ≤ l ≤ k results in the runtime claimed above.

Algorithm 10 can be altered in order to decide the optimization version of
Problem 14, where the goal is to find the optimal (smallest) value δ∗, so that
there is a sequence of translations that meets the constraints of Problem 14 for
this specific δ = δ∗: Consider a fixed P l and the question whether there is a
translation t so that the partial DFD of t(P l) and Q is at most δ. Recall that
part of the algorithm described above is testing for all faces of the arrangement
Dl, if the translations they describe permit a yes-instance of the subproblem at
hand. As elaborately described in [33], there are O(r3

lm
3) values of δ that lead

to a combinatorial change of this arrangement as the disks involved expand or
shirk by varying δ accordingly. Hence the following holds:

Theorem 6.23 The optimization version of Problem 14 can be decided in

O

((
k∑
l=1

r3
lm

2

(
1 + log

m

rl

))(k∑
l=1

r3
lm

3

))
time, also when returning a witness T = (t1, . . . , tk).

In [33], the authors use a parametric search technique and a parallel implemen-
tation of their decision algorithm that finds δ∗ after O(log(m + rl)) parallel
steps on O(m2r2

l) processors. A slightly adjusted version of this strategy could
probably also applied in our setting. However, since we have k point sequences
P 1, . . . P k that are to be matched to Q, we have O(

∑k
l=1 r

3
lm

3) critical values

in total, which leads to a total of O(log(m +
∑k

l=1 rl)) = O(m + n) parallel
steps. Hence, the runtime stated in Theorem 6.23 could be reduced to

O

((
k∑
l=1

r3
lm

2

(
1 + log

m

rl

))
log (m+ n)

)
.

On Instances with Given Neighborhood Graph

Instead of designing the similarity of the involved translations as the order in
which the polygonal curves of the pattern are to be matched along the model,

150 Chapter 6. Variants of the Problem

we can also choose to use a neighborhood graph with k vertices instead or even
combine both strategies.
However, including a neighborhood graph also means taking up all difficulties
of this approach, e.g., the difficulty of estimating the combinatorial complexity
of admissible regions after various inflations that were discussed in the previous
chapters. This means that, e.g., there are no known polynomial time algorithms
for EGSM instances under the partial DFD for graphs that contain cycles or
graphs that are incomplete trees.

6.5 Extension to Higher Dimensions

So far, we considered EGSM problems for point sets in the plane. However,
in some applications, strategies to match geometrical objects in 3D-space well
are needed. Problem 3 (EGSM under translations for point sets in the plane)
can easily be adapted to EGSM for point sets in R3 and does not differ much
from the original problem, so that slightly adapted versions of the solution
strategies given in Chapters 2 to 5 can be used to solve it. However, since
the description complexity of the involved geometrical objectso increases with
increasing number of dimensions of the input, the runtime of the corresponding
exact and approximate algorithms also increases to a certain degree.

In this section, everything is stated in R3 and ‖ · ‖ denotes the L2-norm. For a
point p = (p.x, p.y, p.z) ∈ R3 and a translation vector t = (t.x, t.y, t.z) ∈ R3,

t(p) := (p.x+ t.x, p.y + t.y, p.z + t.z).

We consider the following EGSM problem:

Problem 15 Given:

P = {p1, . . . , pn} ⊂ R3 a point set (the pattern),

Q = {q1, . . . , qm} ⊂ R3 a point set (the model),

G = (V,E) an undirected graph with V = {i | 1 ≤ i ≤ n} and

E ⊆ {{i, j}| i, j ∈ V }, and

δ ≥ 0 a parameter.

Find: A sequence of n translation vectors T = (t1, . . . , tn) so that

max

(
d(T (P), Q), max

{i,j}∈E
‖ti − tj‖

)
≤ δ,

where d is a suitable distance measure.

6.5. Extension to Higher Dimensions 151

On Exact Algorithms for Problem Instances with Tree-
Neighborhoods

For now, let G = T be a tree.

In Chapter 5, we considered a variant of Problem 15 for points in the plane
for tree neighborhoods where d equals the Euclidean 1-to-1-distance. We
gave insights about the geometric structure of the so-called admissible regions
computed by Algorithm 7 as intermediate results as well as lower and upper
bounds on their description complexity. In the following, we use the same
notation as in Chapter 5.

The strategy of Algorithm 7 and the variants of it used in this thesis to solve
EGSM problems for tree-neighborhoods work for different norms and in different
dimensions. Recall that for EGSM for points in the plane under the Euclidean
distance, the algorithm essentially used intersection and inflation operations
on admissible regions and propagated them bottom-to-top through T . These
admissible regions are L2-disks and sets that originated from intersecting and
inflating L2-disks, so-called arc-sets. One major reason why there are no
polynomial upper bounds on the description complexity of these sets if the
corresponding neighborhood graph is an arbitrary tree or d equals the Euclidean
Hausdorff distance is that inflating an arc-set (computing the Minkowski sum of
an arc-set with an L2-disk) creates a new arc-set with a boundary that consists
of at most twice as much arcs as the original arc-set.

In R3, this issue becomes even more important:

Notation 6.24 For an r > 0 and c ∈ R3, Sr(c) denotes the sphere with radius
r centered in c and Sr denotes the sphere with radius r and center in the origin.

Example 6.25 Consider the three spheres Sri(ci) with ri > 0 and ci ∈ R3 for
1 ≤ i ≤ 3 and the sphere Sr4 for r4 > 0. Suppose

⋂3
i=1 Sri(ci) 6= ∅ and suppose

the intersection
⋂3
i=1 Sri(ci) has three faces (which originated from different

spheres), three circular arcs and two vertices, see Figure 6.11. The Minkowski
sum of this object with Sr4 has eight faces, twelve arcs and six vertices, see
Figure 6.11.

The inflation of an admissible region that originated from many intersection-
and inflation operations may result in an even more complex admissible region
and up to now we do not know of any way to estimate the description complexity
of such objects. However, this is different if the L1- the L∞- or a polygonal
norm is used instead of the L2-norm.

152 Chapter 6. Variants of the Problem

Figure 6.11: Left: a collection of three spheres Sri(ci) for 1 ≤ i ≤ 3.
Middle: the intersection of the three spheres

⋂3
i=1 Sri(ci).

Right: the Minkowski sum of
⋂3
i=1 Sri(ci) and Sr4 .

On Approximation Algorithms for Problem Instances
with Tree-Neighborhoods

In this section, let G = T be a tree.

Considering Problem 15 under the L1- the L∞- or under a polygonal norm
avoids the problems that arise during a run of algorithm B under the L2-norm:
In Chapter 2, we considered this variant of Problem 15 for points in the plane.
Under the L1-norm, at the start, the admissible regions consist of unions of
axis-parallel squares, which are then propagated bottom-to-top through T by
intersecting and inflating them and the resulting admissible regions. In R3 the
squares become axis-parallel cubes, but the strategy to compute a solution
stays the same. Since a cube with diagonal 2δ is contained in a sphere with
radius δ, Algorithm 1, if adapted to 3D-input, can be used to approximate the
Euclidean setting:

Corollary 6.26 Algorithm 1, adapted to 3D-input, with tree-neighborhoods
gives a

√
3-approximation for Problem 15 with the same settings under the

L2-norm.

Chapter 2 also contains an extension of this strategy to polygonal norms, which
then allows for a (1 + ε)-approximation for the Euclidean setting. This strategy
can also be adapted to Problem 15. The main idea is to approximate all spheres
with convex polyhedra that are translational copies of each other. In doing so,
the unions of polygons that constitute the admissible regions at the start of
Algorithm 2 for the problem in the plane become unions of convex polyhedra

6.5. Extension to Higher Dimensions 153

Figure 6.12: Left: two polyhedra P1 and P2.
Middle: the intersection of the polyhedra P1 and P2.
Right: the Minkowski sum of P1 ∩ P2 and a scaled version of P1.

in R3.

Note that in [34], the author proves that every sphere S1(c) with c ∈ R3 can
be approximated with some convex polyhedron P with O(ε−1) vertices so that
~h(Src,P) ≤ ε. By computing one of these polyhedra and using it for the
R3-version of Algorithm 2, we get the following observation:

Observation 6.27 For any ε > 0, Algorithm 2, adapted to 3D-input for convex
polyhedra, computes a (1 + ε)-approximation for Problem 15 under the L2-norm.

Theorem 6.28 For any b ∈ N, Algorithm 2, adapted to 3D-input for convex
polyhedra, gives a (1 + ε)-approximation for Problem 15 under the L2-norm in
O(bn3m2(log b+ log n+ logm)) time.

Proof. At the start of the algorithm, every vertex of G corresponds to a set
of admissible translations that is approximated by a collection of m convex
polyhedra with O(b) vertices. The union of m convex polyhedra that are
translational copies of each other form a union of pseudo spheres, and computing
the union of m such pseudo disks in R3 takes O(m2b(logm+log b)) time, see [22].

Pairwise intersecting nm convex objects creates at most n2m2 convex objects.
At the beginning there are O(nm) polyhedra with description complexity O(b)
each. Let f > 0 be the number of faces of the the polyhedron at hand, thus
f ∈ O(b). The following line of argument follows the line of argument in
Lemma 2.12, where convex polygons in R2 is considered: Since all polyhedra
are translational copies of each other, the number of possible orientations for
each face of every polyhedron is f . The intersection as well as the Minkowski
sum of two such polyhedra is convex, see Figure 6.12. Hence, every face of
the resulting polyhedron has a different orientation. Since there are f different

154 Chapter 6. Variants of the Problem

orientations in total, the resulting polyhedron again has f faces at most. Since
there are no more than O(n2m2) polyhedra in total, the description complexity
of every admissible region at any iteration of the algorithm is bounded by
O(bn2m2). There are n sets of admissible translations, which is why O(bn3m2)
space is required in total.
In [35], the authors give a strategy for computing the intersection of two
convex polyhedra in O(k log k) time, where k is the number of vertices of
both polyhedra. This strategy can be used to calculate the intersection of
admissible regions. Since G is a tree with n vertices, admissible regions will
be intersected n times at most. Hence, the algorithm described above runs in
O(bn3m2(log b+ log n+ logm)) time.

Chapter 7

Discussion and Outlook

In this thesis, we studied the very flexible and versatile topic of elastic geometric
shape matching, which is of significant relevance in many applications such
as computer assisted surgery. Computing a most accurate transformation
is crucial in this setting, and modelling the needed registrations as EGSM
problem instances offers the opportunity to describe and handle local and global
distortions of the pattern, such as the deformation of the organ due to the
operation process itself, as well as the thorax movement due to breathing, or
the influence of magnetic fields on the tracking device etc., in a very accurate
way.
Many applications benefit from the flexibility of the EGSM framework that
allows for a both globally consistent and locally precise mapping in cases, where,
e.g., local deformations may occur, and thus leads to more accurate results
than other approaches such as the conventional GSM approach. However, after
EGSM was first introduced in 2011 in the dissertation of Stehn [14] and a paper
by Knauer, Kriegel and Stehn [15], it soon became clear that computing a
solution for a given EGSM problem can be challenging. The number of variants
of this problem is vast, depending on how the different options are chosen to
match the application at hand, and only minor changes in the problem setup
result in the need of completely different strategies to compute a solution, which
is why there are no efficient approaches for most of the EGSM variants.

7.1 Contribution

The goal of this research was getting a deeper understanding of the EGSM
framework in order to design efficient exact solutions for different EGSM
variants as well as efficient approximation algorithms for EGSM variants where
finding efficient exact solutions is not possible due to, e.g., the hardness of the

156 Chapter 7. Discussion and Outlook

problems at hand.
All considered problem instances share that the pattern and the model are point
sets in the plane and each point of the pattern forms an individual subshape of
the pattern. Also, the distance between the translated pattern and the model
is measured with the directed Hausdorff distance under different norms or the
1-to-1-distance under the Euclidean norm and the transformation class at hand
is the class of translations. This thesis contains the designs of the following
solution strategies:

• We presented an efficient exact algorithm for the decision variant of an
EGSM problem for neighborhood graphs that are trees where the norm
at hand is the L1-norm or a polygonal norm and gave an FPTAS for the
same problem under the Euclidean norm.

• An FPTAS for an EGSM problem under the 1-to-1-distance and the
Euclidean norm where the neighborhood graph is a simple cycle was
designed.

• We gave an algorithm that, for an ε > 0, gives a (1 + ε)-approximation
to the optimum of the objective function for an EGSM problem variant
under the directed Euclidean Hausdorff distance with a given feedback
vertex set and an algorithm that gives a (1 + ε)-approximation to the
optimum of the objective function for the problem with a given path or
tree decomposition.

• An algorithm from [16] was adapted to an EGSM problem for tree
neighborhoods under the Euclidean 1-to-1-distance that runs polynomial
time and space, if the neighborhood graph is a path and gave non-
polynomial upper bounds on the time and the space required by the
algorithm to solve the problem if the neighborhood graph is a tree. This
can be improved to polynomial if the tree is complete. We also gave a
rough description on how the difficulties in estimating the combinatorial
complexity advance if the correspondence between the points of the
pattern and the points of the model is not fixed.

• We gave insights about EGSM under rigid motions and discussed how
existing strategies for problem variants for point sets can be modified
to solve EGSM problems for line segments, triangles and triangulated
surfaces. We also considered EGSM in higher dimensions, with differently
weighted objectives and for imprecise input sets.

Overall, we provided efficient strategies for many different EGSM problem
variants under translations, which can be used in different applications. With
this we built a solid basis for further research in different aspects of the
framework such as EGSM in higher dimensions or under rigid motions.

7.2. Future Work 157

7.2 Future Work

Due to the flexibility of the EGSM framework, there is a great number of
options to choose from, depending on the application at hand. This results
in many different problem variants and the need for a wide range of solution
strategies. In this thesis, we were able to discuss but a fraction of these variants
and the strategies to solve them and further research on both improving existing
strategies as well as considering completely new problem variants seems very
promising.

On Linear Time Propagation. In a student project [36] and a master
thesis [37], among other things Problem 8 from Chapter 5 was considered,
where the distance measure at hand is the 1-to-1-distance under the Euclidean,
the L1- or a polygonal norm and the neighborhood graph is a path or a tree.
An implementation of the algorithm given in Section 5.2 was presented that
seems to handle any intersection and inflation operation in linear time subject
to the combinatorial complexity of the geometric shapes involved.
If this was proven to work, the upper bound on the runtime all of the algorithms
presented in Chapters 2, 3 and5 could be improved by a logarithmic factor.

The EGSM Variants of Chapter 6. In Chapter 6, we briefly discussed
different EGSM variants that are not covered by Problem 3, the EGSM variant
that is considered in the previous chapters. Each of these variations seems to
be a promising topic for further research:
Considering imprecise input points and an extension to the 3D-space along
with the possibility to match objects such as triangulated surfaces are of great
interest in many applications. While EGSM for line segments and EGSM in 3D
seem to be solvable by just customizing existing strategies, considering other
topics such as EGSM under rigid motions require new strategies in order to
solve the EGSM problem at hand.

Including Time Dependency. In all EGSM variants we considered so far,
including the most general version Problem 2, we are given two sets P and
Q and the goal is to find a set of transformations T so that d(T (P), Q) is
minimized. However, in many applications such as computer-aided medicine,
the pattern may change over time so that many EGSM instances of the same
problem, but with a changing pattern, have to be solved. In this case, the
transformations that are assigned to the same part of the pattern at different
times should be somehow similar as well. In the following, we consider two ways
to design discrete and continuous time dependent EGSM problem formulations.

158 Chapter 7. Discussion and Outlook

A Discrete Setting: We are given a model Q from a class of geometric shapes
S, a class of transformations T and a neighborhood graph G = (V,E). Now
suppose, we have t ∈ N different points in time and for every point in time
1 ≤ l ≤ t, we are given a different pattern P l ∈ S together with a partition
{P l

1, . . . , P
l
k} of P l and the task is to compute a transformation ensemble T l

from class T for every 1 ≤ l ≤ t so that the distance between T (P l) and Q
is minimized (according to a suitable distance measure) and the similarity of
the transformations that are adjacent in the corresponding neighborood graph
is maximized (according to a suitable similarity measure). Additionally, the
similarity of transformations that act on the same subpattern at succeeding
points in time, should be maximized.
The discrete time dependent EGSM problem can be formulated as follows:

Problem 16 Given:

S a class of geometric shapes,

T a class of transformations,

P 1, . . . , P t ∈ S t patterns with

{P l
1, . . . , P

l
k} a partition of P l for 1 ≤ l ≤ t,

Q ∈ S the model, and

G = (V,E) an undirected graph with V = {i | 1 ≤ i ≤ k} and

E ⊆ {{i, j}| i, j ∈ V }.

Find: t transformation ensembles T l = (tl1, . . . , t
l
k) ∈ T for 1 ≤ l ≤ t, so that

min
1≤l≤t

d(T l(P l), Q)

with d : S × S → R+
0 is minimized and

max

(
max
1≤l≤t

(
simG T

l
)
, sim{(tli, tl+1

i) | 1 ≤ l ≤ t− 1 and 1 ≤ i ≤ k}
)

with simG : T → R+
0 is maximized.

On the Continuous Setting: In a continuous setting for a time interval [0, t]
with t ∈ R+, the subpatterns and transformations become functions, i.e.:

Pi : [0, t] → S and

ti : [0, t] → S,

for 1 ≤ i ≤ k. In order to estimate, how fast the transformation function
changes over time, the derivative of the transformation function can be analyzed.

7.2. Future Work 159

In most cases, a discrete problem formulation is sufficient, since the input of
any application is discrete. However, time dependent EGSM is an interesting
topic for future research because there are many applications that benefit from
a time dependent setting and up to now there are no results on this topic.
The most challenging part of this setup seems to be the computation of the
similarity constraints on the transformations. In the previous chapters we
saw that EGSM problems seem to get more complex with increasing number
of cycles in the neighborhood graph. In the discrete setting, including the
similarity constraints of transformations that act on the same subpattern at
succeeding points in time essentially equals creating a neighborhood graph that
consists of t copies of G (one copy for every point in time) and linking them
with edges that encode these similarity constraints. In doing so, a graph with
kt vertices and many cycles is created.

160 Chapter 7. Discussion and Outlook

Appendix A

An Algorithm on Samples

In the following, we use the notation and the results introduced in Chapter 5
and take up the end of Section 5.3. Let the neighborhood graph G = Tr, a tree
rooted in r.
We already considered Algorithm 2, an approximation algorithm for EGSM
problems under the directed Euclidean Hausdorff distance for neighborhood
graphs that are trees in Chapter 2: Every disk is approximated with a regular
polygon with O(ε−1/2) vertices, which reduces the description complexity of
the admissible regions. For Problem 8, where the correspondence between the
pattern and the model is known, Algorithm 2 gives a (1 + ε)-approximation to
the optimum of the objective function in O(ε−1/2n(log n+ log ε−1)) time. Here,
(1 + ε)-approximation means that if δ(ε) is the approximation to δ∗ computed
by Algorithm 2 for a given ε > 0, the optimal value δ∗ is bounded by(

1− 1

2
ε

)
δ∗ ≤ δ(ε) ≤

(
1 +

1

2
ε

)
δ∗.

However, there is an even simpler way to compute a (1 + ε)-approximation
for the EGSM variant discussed in Chapter 5. In the following, we present
an algorithm that computes an (1 + ε)-approximation to the optimum of the
objective function of Problem 8 in O(ε−1n) time and space for a given ε > 0.
The main idea is based on sampling each ti from a dense enough εgrid-grid that
covers Ivi , where the sample-rate εgrid is chosen depending linearly on ε and a
3-approximation to δ∗. The approximation algorithm uses the same strategy as
the exact algorithm from Section 5.2, but instead of propagating the concrete
admissible regions Ivi , the convex hull Svi of the points on the εgrid-grid that lie
in the admissible region at hand are propagated, see Figure A.1. The inflation
and intersection operations are also done solely on these objects. Since the
admissible regions are convex at any point of the algorithm, the convex hulls

162 Appendix A. An Algorithm on Samples

each have complexity O(ε−1). Any of the convex hulls can be computed in
O(ε−1) time and inflating them also takes O(ε−1) time. Since all of these objects
are part of the same grid, it takes O(kε−1) time to compute the intersection of
k such objects. This leads to a total runtime of O(nε−1). The details of the
algorithm will be discussed in the remainder.

Notation A.1 We define

δ(3) := γ(C,C,G).

Then, T (3) is a 3-approximation to δ∗, see Lemma 3.5 for details.
In other words, if δ ≥ δ(3) (or δ ≤ 3−1δ(3)) we instantly know that (δ, C,G)
is a YES-instance (or NO-instance). If 3−1δ(3) < δ < δ(3), the area of any
admissible region that is sampled is bounded by a disk of radius δ(3) from above
and the area of any inflated admissible region is bounded by a disk of radius
2δ(3) from above. Let εgrid be the sample-rate of the grid of the admissible
regions.

A.1 The Algorithm

At the start, we need to shift every point ci of the input sequence C to the
closest grid-point, where C̄ := (c̄1, . . . , c̄n) denotes the shifted input sequence.
As a consequence, the center of any admissible region Ivi = Dδ(c̄i) is part of
the grid.

Notation A.2 We define

S := {(lεgrid,mεgrid) ∈ R2 | l,m ∈ Z ∧ ‖(lεgrid,mεgrid)‖ ≤ δ} and

Svi := {(lεgrid,mεgrid) ∈ R2 | l,m ∈ Z ∧ ‖(lεgrid,mεgrid)− c̄i‖ ≤ δ}

for 1 ≤ i ≤ n and denote the convex hull of any point set R with h(R).

Note that the point sequences h(S) and h(Svi) can each be computed in O(ε−1)
time in a straightforward manner, since Dδ and Dδ(c̄i) are convex and the
convex hulls h(S) and h(Svi) each consist of O(ε−1) points, see Figure A.1.

Then, we can follow the same strategy as Algorithm 2 described in Section 5.2:
We pick a vertex r ∈ V and henceforth consider Tr, the tree rooted in r. In
each step of the algorithm, an unmarked vertex v of Tr is selected with the
property that all children of v are marked/updated. Let c1(v), . . . , cnv(v) be
the nv children of v. Then, the admissible region of v and those of the children
of v are merged into a new admissible region that is stored in the new vertex

A.1. The Algorithm 163

ci

Figure A.1: The set S (the solid line indicates the order of the points of h(S))
is applied to Dδ(c̄i) (dashed circle).

v′, the updated and marked version of v. Here, merging means inflating the
admissible regions of c1(v), . . . , cnv(v) and then computing the intersection of
them and the admissible region stored in v.

At any point of the algorithm, the admissible regions are approximated by the
convex hull of the set of points on the εgrid-grid they cover. The key operations,
inflating and intersecting such regions, can be done as follows.
The convex hull h(Sδv) is formally given by

h(Sδv) = h(p ∈ R2 | p ∈ Sv ⊕ S)

= h(p ∈ R2 | p ∈ h(Sv)⊕ h(S)).

However, the sequence h(Sδv) can be computed from h(Sv) and h(S) in a straight-
forward manner without explicitly computing h(Sv)⊕h(S). The sequence h(Sv′)
is given by

h(Sv′) := h

(
Sv

nv⋂
i=1

Sδci(v)

)
,

see Figure A.2.
We can now state the following algorithm:

Algorithm 11 We are given a sequence of points C = (c1, . . . , cn), a directed
graph G = (V,E) and a parameter δ ≥ 0.
First, very point ci of the input sequence C is shifted to the closest grid-point,
where C̄ := (c̄1, . . . , c̄n) denotes the shifted input sequence. Also, we compute
h(Sv) for every vertex v ∈ V and store it in v.

164 Appendix A. An Algorithm on Samples

h(A)

h(B)

h(A ∩B)

Figure A.2: Point sets A and B with h(A) and h(B), as well as A ∩ B and
h(A ∩B) (dashed lines).

Then, we pick a vertex r ∈ V and henceforth consider Tr, the tree rooted in r.
In each step of the algorithm, an unmarked vertex v of Tr is selected with the
property that all children of v are marked/updated. Let c1(v), . . . , cnv(v) be the
nv children of v. We update v to v′ by inflating h(Sv) by δ as follows

h(Sδv) = h(p ∈ R2 | p ∈ h(Sv)⊕ h(S)),

and then storing the updated set of admissible translations

h(Sv′) = h

(
Sv

nv⋂
i=1

Sδci(v)

)
,

in v′.
This process is repeated until:

1. There is a vertex v with Iv = ∅ (after a contraction):
The process stops and no is returned as the answer to Problem 8.

2. The root r is updated and Ir′ 6= ∅:
The algorithm terminates and returns yes as the answer to Problem 8.

A.2 Correctness and Complexity.

Theorem A.3 Let

εgrid :=
εδ

3
(
2−
√

2
)

A.2. Correctness and Complexity. 165

for a given ε > 0. The optimization version of Algorithm 11 gives a (1 + ε)-
approximation for the optimization version of Problem 8 under the L2-norm
under the 1-to-1-distance.

Proof. There are two sources of relative error that have to be evaluated to
guarantee the quality of the approximation:

• At start, the points of the input sequence C are shifted to the nearest
grid-point, in order to ensure that, if δ∗ = 0, the optimal sequence
(t1 = c̄1 . . . = tn = c̄n) is actually admissible, resulting in the set C̄. We
define

eshift := max
1≤i≤n

‖ci − c̄i‖ ≤
√

2εgrid

2

for any 1 ≤ i ≤ n.
• The distance between any point within Dδ(c̄) and the nearest grid-point

within Dδ(c̄), which is obviously bounded from above by egrid := εgrid.

Let δ ≤ (1− ε2−1)δ∗. Since

eshift =

√
2εgrid

2
=

√
2εδ

6
(
2−
√

2
) < εδ

2
,

every disk Dδ(c̄i) is completely contained in the interior of Dδ∗(ci). Suppose,
δ permits a YES-instance. Then, there is a sequence of translations T =
(t1, . . . , tn) with ti ∈ Dδ(c̄i) for every 1 ≤ i ≤ n and as a consequence, ‖ti−ci‖ <
δ∗ for every 1 ≤ i ≤ n. Hence, the value

max
1≤i≤n

‖ti − ci‖ < δ∗

permits a YES-instance, which is a contradiction.
Now let δ ≥ (1 + ε2−1)δ∗. Since

eshift + egrid =

√
2εgrid

2
+ εgrid =

εδ

6
≤ εδ∗

2
,

there is at least one grid-point within Dδ(c̄i) that is a witness for a YES-
instance.

Theorem A.4 A (1+ ε)-approximation to Problem 8 under the L2-norm under
the 1-to-1-distance can be computed in O(nε−1) time and a (1+ε)-approximation
to the optimization version of this problem can be computed in O((nε−1) log ε−1)
time.

166 Appendix A. An Algorithm on Samples

Proof. Since h(Sδvi) is convex, only contains points of the εgrid-grid and can be
covered by a disk with radius 2δ, the length of h(Sδv) as well as the time that is
needed to compute it is bounded by 4 · 2δε ∈ O(ε−1). Hence, computing the
convex hulls of all admissible regions in the beginning as well as the inflation
process for all n− 1 regions takes O(nε−1) time.
The sequence h(Sv′) can also be computed from h(Sv) and h(Sδci(v)) for 1 ≤ i ≤
nv in a straightforward manner in O(nvε

−1) time. Since there are n vertices in
total, the total time that is needed to perform all intersection operations is also
bounded by O(nε−1). Therefore, the total runtime of Algorithm 11 is O(nε−1).
Note that Algorithm 11 considers the decision version of an EGSM problem. It
can easily be adapted to solve the optimization version of the same problem
approximately by including it in a binary search on the interval [3−1δ(3), δ(3)],
which needs O(log ε−1) time. As a consequence, the optimization version of
Algorithm 11 runs in O((nε−1) log ε−1) time.

List of Figures

1.1 Illustration of an GSM instance. 2
1.2 Illustration of an EGSM instance. 6

2.1 Illustration of updating step of the basic algorithm. 16
2.2 Illustration of the contraction step of the basic algorithm. 18
2.3 Illustration for the proof of Lemma 2.8. 20
2.4 Illustration for the proof of Lemma 2.8. 21
2.5 Illustration for the proof of Lemma 2.8. 22
2.6 Illustration for the proof of Lemma 2.8. 23
2.7 Illustration of the configuration that achieves the maximum

description complexity in Example 2.10. 27
2.8 Illustration of Example 2.10. 28
2.9 Illustration of Example 2.10. 29
2.10 Illustration of an initial and an inflated set of admissible trans-

lations under the Euclidean norm. 30
2.11 Illustration of a polygon with 16 vertices. 31
2.12 Illustration of a polygon segment. 34

3.1 Illustration of a Euclidean disk covered by a grid of samples. . . 40
3.2 Illustration of a Euclidean disk covered by a samples arranged

as boundaries of polygons. 41
3.3 Illustration of a key-point. 42
3.4 Illustration of the geometric interpretation of the constraints

given in (3.1). 43
3.5 Illustration of the geometric interpretation of the constraints

given in (3.1). 44
3.6 Illustration for the proof of Proposition 3.9. 45
3.7 Illustration for the proof of Lemma 3.10. 47
3.8 Illustration for the proof of Lemma 3.10. 48
3.9 Illustration for the proof of Lemma 3.14. 49
3.10 Illustration for the proof of Lemma 3.16. 53

168 List of Figures

3.11 Illustration of the quadliteral considered in Proposition 3.18. . . 55
3.12 Illustration for the proof of Lemma 3.17. 57
3.13 Illustration for the proof of Lemma 3.19. 60
3.14 Illustration of Algorithm 4 applied on an EGSM instance under

cyclic neighborhoods. 65
3.15 Illustration of a run of Algorithm 4 on an EGSM instance under

cyclic neighborhoods, intermediate step 1. 66
3.16 Illustration of a run of Algorithm 4 on an EGSM instance under

cyclic neighborhoods, intermediate step 2. 66
3.17 Illustration of a run of Algorithm 4 on an EGSM instance under

cyclic neighborhoods, intermediate step 3. 66
3.18 Illustration of a run of Algorithm 4 on an EGSM instance under

cyclic neighborhoods, intermediate step 4. 66
3.19 Illustration of a run of Algorithm 4 on an EGSM instance under

cyclic neighborhoods, intermediate step 5. 67

4.1 Illustration of four point sets and their smallest multi-color-ball. 74
4.2 Illustration of four points with their smallest multi-color-ball

along with constraints on their distance induced by a neighbor-
hood graph. 75

4.3 Illustration of a neighborhood graph with a FVS of size 1 before
and after being transformed into a forest. 78

4.4 Illustration of a neighborhood graph with a FVS of size 3 before
and after being transformed into a forest. 79

4.5 Illustration of covering a Euclidean disk with a grid of samples. 81
4.6 Illustration of a neighborhood graph with pathwidth 3. 85
4.7 Illustration of sampling a bag of a path decomposition of a graph. 86
4.8 Illustration of a neighborhood graph with treewidth 3. 88

5.1 Illustration of a run of Algorithm 7 on an EGSM instance under
tree neighborhoods. 99

5.2 Illustration of an admissible region and its inflated version. . . . 99
5.3 Illustration of Observation 5.4. 101
5.4 Illustration for the proof of Lemma 5.6. 103
5.5 Illustration of Example 5.7. 106
5.6 Illustration of Example 5.7. 107
5.7 Illustration for the proof of Lemma 5.9. 109
5.8 Illustration for the proof of Lemma 5.12. 112
5.9 Illustration for the proof of Lemma 5.13. 113
5.10 Illustration of the inflation of a set of admissible translations

that consists of two connected components. 117

List of Figures 169

5.11 Schematic illustration of two admissible regions and their inter-
section. 118

6.1 Illustration for the proof of Theorem 6.1. 122
6.2 Illustration for the proof of Theorem 6.1. 123
6.3 Example of measuring the rigid motion distance. 128
6.4 Illustration of Example 6.4. 130
6.5 Illustration of two couplings of two point sequences. 133
6.6 Illustration of a discrete partial Fréchet matching under transla-

tions. 134
6.7 Illustration of an EGSM problem under the DFD. 135
6.8 Illustration for the proof of Lemma 6.8. 136
6.9 Illustration of the graph constructed in Section 6.4. 139
6.10 Illustration of the graph constructed in Section 6.4. 145
6.11 Illustration of three spheres, their intersection and their inflated

intersection. 152
6.12 Illustration of three polyhedra, their intersection and their in-

flated intersection. 153

A.1 Illustration of sampling a Euclidean disk with the convex hull of
a grid. 163

A.2 Illustration of the intersection of two convex hulls. 164

170 List of Figures

Bibliography

[1] H. Alt, L. Guibas, Discrete Geometric Shapes: Matching, Interpolation,
and Approximation, in: Handbook of Computational Geometry, Elsevier
B.V., 2000, pp. 121–153.

[2] M. d. Berg, O. Cheong, M. v. Kreveld, M. Overmars, Computational
Geometry: Algorithms and Applications, Vol. 3, Springer-Verlag TELOS,
Santa Clara, CA, USA, 2008.

[3] S. Xu, Robust traffic sign shape recognition using geometric matching,
Intelligent Transport Systems, IET 3 (2009) 10 – 18.

[4] R. H. Davis, J. Lyall, Recognition of Handwritten Characters – A Review,
in: Image and Vision Computing, Vol. 4, Butterworth-Heinemann, Newton,
MA, USA, 1986, pp. 208–218.

[5] H. Alt, L. Scharf, S. Scholz, Probabilistic Matching and Resemblance
Evaluation of Shapes in Trademark Images, in: Proceedings of the ACM
International Conference on Image and Video Retrieval (CIVR), Amster-
dam, The Netherlands, 2007, pp. 533–540.

[6] T. Yoshikawa, M. Koeda, H. Fujimoto, Shape Recognition and Grasping by
Robotic Hands with Soft Fingers and Omnidirectional Camera, in: IEEE
International Conference on Robotics and Automation (ICRA), 2008, pp.
299–304.

[7] J. B. A. Maintz, M. A. Viergever, A Survey of Medical Image Registration,
in: Medical Image Analysis, Vol. 2, 1998, pp. 1–36.

[8] S. Venkatasubramanian, Geometric Shape Matching and Drug Design,
Ph.D. thesis, Department of Computer Science, Stanford University (1999).

[9] R. C. Veltkamp, M. Hagedoorn, State of the Art in Shape Matching, in:
Principles of Visual Information Retrieval. Advances in Pattern Recogni-
tion, Springer, London, 2001, pp. 87–119.

172 Bibliography

[10] S. Rusinkiewicz, M. Levoy, Efficient Variants of the ICP Algorithm, in:
Proceedings Third International Conference on 3-D Digital Imaging and
Modeling, 2001, pp. 145–152.

[11] L. G. Brown, A Survey of Image Registration Techniques, ACM Comput.
Surv. 24 (4) (1992) 325–376.

[12] M. Peterhans, T. Oliveira, V. Banz, D. Candinas, S. Weber, Computer-
Assisted Liver Surgery: Clinical Applications and Technological Trends,
Critical Reviews&Trade; in Biomedical Engineering 40 (3) (2012) 199–220.

[13] V. M. Banz, P. C. Müller, P. Tinguely, D. Inderbitzin, D. Ribes, M. Pe-
terhans, D. Candinas, S. Weber, Intraoperative Image-Guided Navigation
System: Development and Applicability in 65 Patients Undergoing Liver
Surgery, Langenbeck’s Archives of Surgery 401 (4) (2016) 495–502.

[14] F. Stehn, Geometric Hybrid Registration, Ph.D. thesis, Institut für Infor-
matik, Freie Universität Berlin (2011).

[15] C. Knauer, M. Löffler, M. Scherfenberg, T. Wolle, The Directed Hausdorff
Distance between Imprecise Point Sets, Theoretical Computer Science 412
(2011) 4173–4186.

[16] C. Knauer, F. Stehn, Elastic Geometric Shape Matching for Point Sets
under Translations, in: Proceedings of Algorithms and Data Structures -
14th International Symposium (WADS), 2015, pp. 578–592.

[17] A. M. Bazen, S. H. Gerez, Fingerprint Matching by Thin-Plate Spline
Modelling of Elastic Deformations, in: Pattern Recognition, Vol. 36, 2003,
pp. 1859–1867.

[18] K. Rohr, H. Stiehl, R. Sprengel, T. Buzug, J. Weese, M. Kuhn, Landmark-
Based Elastic Registration using Approximating Thin-Plate Splines, in:
Medical Imaging, IEEE Transactions on, Vol. 20, 2001, pp. 526–534.

[19] A. Myronenko, X. Song, Point Set Registration: Coherent Point Drift, in:
Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 32,
2010, pp. 2262–2275.

[20] H. Abdelmunim, A. Farag, Elastic Shape Registration Using an Incremental
Free Form Deformation Approach with the ICP Algorithm, in: Canadian
Conference on Computer and Robot Vision (CRV), 2011, pp. 212–218.

Bibliography 173

[21] S. Rusinkiewicz, M. Levoy, Efficient Variants of the ICP Algorithm, in:
Proceedings of the Third International Conference on 3D Digital Imaging
and Modeling, 2001, pp. 145–152.

[22] P. K. Agarwal, J. Pach, M. Sharir, State of the Union (of Geometric
Objects): A Review, in: Discrete & Computational Geometry, 2007, pp.
9–48.

[23] A. Barvinok, D. S. Johnson, G. J. Woeginger, R. Woodroofe, Finding
Maximum Length Tours Under Polyhedral Norms, in: Proceedings of
IPCO VI, Lecture Notes in Computer Science 1412, Springer, 1998, pp.
195–201.

[24] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, 1st Edition, Springer
Publishing Company, Incorporated, 2015.

[25] R. Fleischer, X. Xu, Computing Minimum Diameter Color-Spanning Sets,
in: Proceedings of the 4th international conference on Frontiers in algo-
rithmics, FAW’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 285–292.

[26] Y. Wang, Y. Xu, An Approximation Algorithm for the Smallest Color-
Spanning Circle Problem , in: D. Xu, D. Du, D. Du (Eds.), Computing
and Combinatorics, Springer International Publishing, Cham, 2015, pp.
171–182.

[27] M. Sharir, P. K. Agarwal, Davenport-Schinzel Sequences and their Geo-
metric Applications, Cambridge University Press, New York, NY, USA,
1996.

[28] A. Itai, C. Papadimitriou, J. Szwarcfiter, Hamilton Paths in Grid Graphs,
SIAM J. Comput. 11 (1982) 676–686.

[29] T. Eiter, H. Mannila, Computing Discrete Frechet Distance, Technical
Report CD- TR 94/64 (05 1994).

[30] H.-K. Ahn, C. Knauer, M. Scherfenberg, L. Schlipf, A. Vigneron, Comput-
ing the Discrete Fréchet Distance with Imprecise Input, in: O. Cheong,
K.-Y. Chwa, K. Park (Eds.), Algorithms and Computation, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 422–433.

[31] A. Mosig, M. Clausen, Approximately Matching Polygonal Curves with
Respect to the Fréchet Distance, Computational Geometry 30 (2) (2005)

174 Bibliography

113 – 127, special Issue on the 19th European Workshop on Computational
Geometry.

[32] J. Kleinberg, E. Tardos, Algorithm Design, Pearson Education, Addison
Wesley, 2006.

[33] R. B. Avraham, H. Kaplan, M. Sharir, A faster Algorithm for the Discrete
Fréchet Distance under Translation (2015).

[34] P. M. Gruber, Chapter 1.10 - Aspects of Approximation of Convex Bodies,
in: P. Gruber, J. Wills (Eds.), Handbook of Convex Geometry, North-
Holland, Amsterdam, 1993, pp. 319 – 345.

[35] D. Muller, F. Preparata, Finding the intersection of two convex polyhedra,
Theoretical Computer Science 7 (2) (1978) 217 – 236.

[36] S. Lützow, Implementation of ESM Problems under the 1-to-1– and
Hausdorff Distance, M.Sc. Project, Universität Bayreuth, Germany (2016).

[37] S. Lützow, Deciding ESM Problem Instances under Various Distance
Measures and Variable Underlying Metrics, M.Sc. Thesis, Universität
Bayreuth, Germany (2017).

Own Publications

[A38] Christian Knauer, Luise Sommer, and Fabian Stehn. Elastic Geometric
Shape Matching for Translations under Manhattan Norm. In Proceedings
of the 31th European Workshop on Computational Geometry (EuroCG),
2015.

[A39] Christian Knauer, Luise Sommer, and Fabian Stehn. An FPTAS for
an Elastic Shape Matching Problem with Cyclic Neighborhoods. In
Computational Science and Its Applications – ICCSA 2018, pages 425–
443, 2018.

[A40] Christian Knauer, Luise Sommer, and Fabian Stehn. Elastic Geomet-
ric Shape Matching for Translations under the Manhattan Norm. In
Computational Geometry: Theory and Applications, 2018.

176 Own Publications

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig verfasst und keine anderen als die von mir angegebenen Quellen und
Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern
bzw. -vermittlern oder ähnlichen Dienstleistern weder in Anspruch genommen
habe, noch künftig in Anspruch nehmen werde.

Zusätzlich erkläre ich hiermit, dass ich keinerlei frühere Promotionsversuche
unternommen habe.

Bayreuth, den 11. Juli 2022,

Luise Sommer

	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Geometric Shape Matching
	Registration
	Elastic Geometric Shape Matching
	The Problem in Close Up
	State of the Art
	The Contribution of this Thesis

	Elastic Geometric Shape Matching for Translations under the Manhattan Norm
	Problem Statement
	Deciding Problem Instances for Trees for the directed Manhattan Hausdorff distance
	Elastic Geometric Shape Matching under Polygonal Norms
	On Possible Modifications

	An FPTAS for an Elastic Shape Matching Problem with Cyclic Neighborhoods
	Problem Statement
	The Algorithm
	A Detailed Description of the Algorithm
	The Strategy for Paths Does not Work for Cycles

	Elastic Geometric Shape Matching on Neighborhoods that Contain Cycles
	Problem Statement
	Solving Instances with Given Feedback Vertex Sets
	Solving Instances with Bounded Pathwidth or Treewidth
	Combining both Approaches
	Discussion

	The Combinatorial Complexity of Admissible Regions under the Euclidean Distance
	Problem Statement
	The Algorithm
	Minkowski Sums of Admissible Regions and their Combinatorial Complexity

	Variants of the Problem
	Weights within the Objective Function
	Thoughts on Rigid Motions
	On Imprecise Point Sets
	Line Segments, Triangles and Triangulated Surfaces
	Extension to Higher Dimensions

	Discussion and Outlook
	Contribution
	Future Work

	An Algorithm on Samples
	The Algorithm
	Correctness and Complexity.

	List of Figures
	Bibliography
	Own Publications
	Eidesstattliche Versicherung

