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Schrödinger cat states in quantum-dot-cavity systems
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A Schrödinger-cat state is a coherent superposition of macroscopically distinguishable quantum states, in
quantum optics usually realized as superposition of coherent states. Protocols to prepare photonic cats have been
presented for atomic systems. Here we investigate in what manner and how well the preparation protocols can
be transferred to a solid-state platform, namely, a semiconductor quantum-dot–cavity system. In quantum-dot–
cavity systems there are many disruptive influences like cavity losses, the radiative decay of the quantum dot,
and the coupling to longitudinal acoustic phonons. We show that for one of the protocols these influences kill
the quantum coherence between the states forming the cat, while for a second protocol a parameter regime can
be identified where the essential characteristics of Schrödinger-cat states survive the environmental influences
under conditions that can be realized with current equipment.
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I. INTRODUCTION

Schrödinger cats are probably the most popular example of
highly nonclassical, purely quantum mechanical states. Real-
izing a coherent superposition of two macroscopically distinct
states, where in analogy to Schrödinger’s Gedankenexperi-
ment [1] the cat is simultaneously dead and alive, remains a
challenge due to the inevitable decoherence induced by the
environmental coupling. A general Schrödinger-cat state with
two macroscopically distinguishable states |alive〉 and |dead〉
can be written as

|cat〉 = N (|alive〉 + eiϕ|dead〉) (1)

with normalization N and phase ϕ. These states find nu-
merous applications in advanced quantum metrology [2,3],
quantum teleportation [4], quantum computation [5–7], and
quantum error correction algorithms [8]. Cat states being a su-
perposition of more than two states [9–11] as well as phononic
cat states [12] have been investigated. Schrödinger-cat states
are a suitable platform to study the decoherence between two
superposed quantum objects, in other words, to observe the
quantum-to-classical transition [13]. Therefore, Schrödinger-
cat states are of fundamental interest in understanding the very
foundations of quantum mechanics.

Schrödinger-cat states have to be sharply distinguished
from incoherently superposed macroscopically distinct states,
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which are described by the density matrix

ρmixture = 1
2 (|alive〉〈alive| + |dead〉〈dead|), (2)

where the interference terms are missing. This discrimina-
tion is best visible in the Wigner function. While in the cat
state there are negative parts, which imply nonclassicality, the
Wigner function of the classical incoherent mixture ρmixture is
strictly positive.

Because of the fundamental and technological importance
of Schrödinger-cat states, their preparation has long been a
research target. Earlier efforts in this direction focused mostly
on atom-based systems, where atoms are placed in an optical
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FIG. 1. A Schrödinger-cat state appearing in a QDC system.
Photons are created by recombination of the QD exciton. The pho-
toemission is controlled such that cats are created on demand.
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cavity [14–16]. Recently, many concepts of atom quantum op-
tics have been transferred to solid state systems, in particular
to semiconductor quantum-dot–cavity systems (QDCs) giving
rise to the field of semiconductor quantum electrodynamics.
QDCs already have been shown to be highly integrable on-
demand emitters of photons in nonclassical states including
high-quality single photons [17–26] and entangled photon
pairs [27–37]. QDC-based protocols for generating higher-
order Fock states have also been developed [38]. An easy to
use solid-state-based source of Schrödinger cats would be a
highly attractive extension of these achievements.

As atomic systems, QDCs have loss channels, namely,
the energetic loss channels provided by the radiative decay
of a quantum dot (QD) and the finite cavity quality factor.
The main difference between QDC and atomic systems is the
presence of longitudinal acoustic phonons, which is a well-
known source of decoherence even at cryogenic temperatures
of T = 4 K [39,40]. Hence, it is an open question whether in
the QDC platform as well the generation of Schrödinger-cat
states is possible.

In this paper, we consider two protocols to prepare
Schrödinger-cat states in a QDC. For both protocols we adapt
existing preparation schemes and apply them to the QDC
system. The first protocol is based on the proposal by Law
and Eberly [15]. To use this protocol in the QDC we rely
solely on driving the QD by external laser pulses. To create
a Schrödinger-cat state we need a precise timing of the arrival
time of the pulses steering the QD-cavity coupling. We call
the protocol DOD, short for dot-driven protocol. The second
protocol is adapted from Gea-Banacloche [16] and can be
transferred to the QDC system by producing a coherent initial
state. This can be achieved by driving the cavity, hence we call
this protocol CAD, short for cavity-driven protocol.

For both protocols, we analyze the impact of losses and
phonon coupling in detail using realistic parameters that have
been realized in current experiments. For the DOD protocol
we show that the losses are a detrimental influence on the
sensitive coherence in a Schrödinger cat and the protocol
can produce only mixed states [cf. Eq. (2)] under realistic
conditions. In contrast, for the CAD protocol we find that even
under realistic conditions it is possible to create a cat state,
and we identify experimentally accessible parameter regimes
favorable for generating photonic Schrödinger cats.

Our work demonstrates that also in QDCs the preparation
of Schrödinger-cat states is possible, and we propose a proto-
col and specify a suitable parameter regime to prepare them.

II. THEORETICAL MODEL

The QDC system can be well modeled by a driven two-
level QD coupled to a single photon mode [38,40]. The
corresponding Hamiltonian then reads

H = HQDC + Hdriving + Hac-Stark. (3)

The QDC is described by the Jaynes-Cummings model

HQDC = h̄ωX |X 〉〈X | + h̄ωCa†a + h̄g(aσ
†
X + a†σX ), (4)

where |X 〉 is the exciton state at energy h̄ωX . σX := |G〉〈X |
is the transition operator between the excited state |X 〉 and
the ground state |G〉. The energy of |G〉 is set to zero. a

(a†) denotes the photonic annihilation (creation) operator. The
cavity frequency is denoted by ωC and its coupling to the QD
by g. We consider two different forms of driving Hamiltonians
for the two protocols:

Hdriving =
{

− h̄
2

[
f ∗
p (t )σX + fp(t )σ †

X

]
DOD

− h̄
2

[
f ∗
p (t )a + fp(t )a†

]
CAD

. (5)

Effectively decoupling the QD from the cavity can be
achieved with an ac-Stark pulse driving the QD [38,41], de-
scribed by

Hac-Stark = − h̄

2

[
f ∗
ac-Stark(t )σX + fac-Stark(t )σ †

X

]
. (6)

The exciting and Stark laser pulses are represented by the
functions fp(t ) and fac-Stark(t ), which are specified in Ap-
pendix A.

We also account for the coupling to longitudinal acoustic
(LA) phonons [40,42–45] (as detailed in Appendix A) as
well as the radiative decay of the QD exciton and cavity
losses. Whenever we consider phonon effects, the phonons
are assumed to be initially in thermal equilibrium at a tem-
perature of T = 4 K. A sketch of the QDC system is shown
in Fig. 1. The corresponding Liouville equation is solved in a
numerically complete manner by employing a path-integral
formalism (for details see Refs. [46–48]). The parameters
used in the calculations are given in Appendix C.

III. DOT-DRIVEN (DOD) PROTOCOL

In the optical realm, coherent states |α〉 are the most clas-
sical states. A general coherent superposition of two coherent
states of the form

N (|α〉 + eiϕ | − α〉) (7)

with normalization N and phase ϕ is one of the most common
realizations of Schrödinger-cat states in quantum optics [14].
Hence, we choose this realization as the target state for the
DOD protocol and set α = π/2 and ϕ = 0. This choice en-
sures that the corresponding coherent states are distinct, while
their average photon number is low enough that we expect the
influence of cavity losses to be limited.

To prepare this target state we adapt the protocol from
Ref. [15], which is proposed to create arbitrary photonic states
in a single-mode microcavity. However, the originally pro-
posed protocol does not account for any loss channels. The
requirements are a driven Jaynes-Cummings model with con-
trollable driving f (t ) and coupling g(t ) between the two-level
system and the cavity. To transfer the proposal to QDCs, a few
obstacles have to be overcome. While time-dependent driving
of a QDC is possible by applying appropriate laser pulses,
controlling the QD-cavity coupling time dependently remains
a challenge. In particular, the protocol in Ref. [15] relies on a
stepwise switching between f (t ) and g(t ); i.e., one has to be
off, whenever the other one is on.

Accordingly, the challenge of implementing this protocol
in a QDC protocol is twofold: (1) the magnitude of the QD-
cavity coupling has to be varied and (2) the QD and cavity are
supposed to be decoupled during the time the driving is on.
In Ref. [15] the time intervals τ , when either f (t ) or g(t ) is
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FIG. 2. Dynamics of the QDC in the DOD protocol. Panels from
bottom to top: External pulses as well as the Stark pulse, exciton oc-
cupation nX , average photon number 〈n〉, and time-dependent fidelity
F (t ) to the target Schrödinger-cat state in Eq. (7). Dashed lines:
ideal case without phonons and losses. Dashed-dotted lines: without
phonons but with losses. Solid lines: with phonons and losses.

on, are kept constant. Only the products fiτ and giτ in the ith
interval are relevant for the success of the protocol. Therefore,
problem (1) can be solved by varying the time interval while
keeping the coupling constant, i.e., we use gτi. Concerning
problem (2), the decoupling suggested in Ref. [15] can in
principle be realized by inducing suitable Stark shifts, which
is, however, highly demanding experimentally. As demon-
strated for protocols to prepare higher-order Fock states [38],
it can be advantageous to avoid the decoupling provided the
desired goal can be achieved by short enough pulses. Indeed,
when the switching induced by the laser driving f (t ) takes
place on timescales shorter than the dynamics induced by
the cavity, the action of the latter cannot interfere noticeably
with the switching, even though the QD and the cavity are
coupled. Furthermore, on such fast timescales, the precise
shape of the pulse becomes irrelevant (see, e.g., Appendix
A 1 of Ref. [38]). Therefore, a Gaussian pulse with the same
area as the rectangular fiτ can be used, which vastly reduces
the experimental demand. Its full width at half maximum
(FWHM) is chosen to be 100 fs. Note that the corresponding
spectral width of the pulse is quite large. Nonetheless, for
typical energetic spacings to higher lying exciton states [49]
the two-level approximation to the QD still holds well [38].

A. The ideal case

Figure 2 shows the dynamics of the QDC in the DOD pro-
tocol. The lowest panel displays the sequence of laser pulses
proposed to prepare the Schrödinger-cat state in Eq. (7). The
pulse sequence is derived by solving the set of equations de-
termining the protocol to prepare arbitrary states in Ref. [15].
After adapting the solution to pulses as explained above, one

TABLE I. Pulse sequence for the DOD protocol in Sec. III. The
times tc of their maxima and their pulse areas 	 are given.

Number of the pulse tc (ps) 	 (π )

1 0.1 −1
2 14.2 −1
3 24.1 −1
4 34.6 1
5 40.0 −1
6 46.5 −1
7 53.7 −1
8 60.7 −1
9 67.2 −1
10 72.1 −1

obtains the pulse areas and central peak times necessary to
prepare the target state. In total, a series of ten π pulses
is applied. Note that relative phases of π of the pulses are
absorbed into the definition of the pulse areas and that the
time difference between two subsequent pulses is the time
τi where the cavity coupling g takes effect. The arrival times
and pulse areas are listed in Table I. After reaching the target
state, the cavity needs to be decoupled from the QD in order
to preserve the preparation, which is achieved by an ac-Stark
pulse as shown in the lower panel of Fig. 2 .

The resulting time evolution of the exciton occupation nX

is shown in blue in Fig. 2, where the dashed lines correspond
to the ideal case without phonons and losses. Each laser pulse
partially excites the exciton, which then decays by photon cre-
ation. Accordingly, the average photon number 〈n〉, as shown
in the second panel from top in Fig. 2, increases after each
pulse.

To see whether we have created a Schrödinger-cat state, we
consider the fidelity defined as

F (ρ1, ρ2) =
[
Tr

(√√
ρ1ρ2

√
ρ1

)]2

(8)

for two arbitrary density matrices ρ1 and ρ2 [50]. Setting one
density matrix to the target Schrödinger-cat state in Eq. (7), we
get a measure how close we are to this specific cat state. The
results are shown in the topmost panel of Fig. 2. We see that
after the pulse sequence the fidelity reaches unity, implying
that in the purely Hamiltonian ideal case without losses and
phonons, this protocol is able to perfectly prepare the target
state.

This is confirmed by looking at the Wigner function (defi-
nition in Appendix B) in Fig. 3(a). We see all relevant features
of a Schrödinger cat where the two Gaussians indicate the
two macroscopically distinct states, here, coherent states, and
the oscillations between them point to a coherent character of
their superposition.

An important property of a cat state is its nonclassicality.
In general, the nonclassicality δ of a state can be measured
by considering the negative part of its Wigner function W (α),
since all Wigner functions corresponding to classical states are
positive. The doubled volume of the integrated negative part
of the Wigner function was introduced in Ref. [51] as such a
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FIG. 3. Wigner functions of the photonic states prepared by the DOD protocol (a) for the ideal case, (b) including losses, and (c) taking
both phonons and losses into account. The Wigner functions are calculated at the start time of the decoupling Stark pulse, t = 75.5 ps.

nonclassicality measure:

δ =
∫

[|W (α)| − W (α)] dα∫
W (α) dα

, (9)

where δ = 0 implies a classical state. For the DOD protocol
we obtain δ = 0.51 for this Schrödinger cat, thus, indeed
implying quantum features of the state.

The results in Figs. 2 and 3 as well as the value of δ indicate
that the adaption of the protocol in Ref. [15] to ideal QDCs
with constant cavity coupling g is accomplished successfully.

B. Loss and phonon effects

Next, we account for the loss channels. When taking the ra-
diative decay of the QD and the cavity losses into account, the
preparation fidelity drops to F = 48.7 % (cf. dashed-dotted
lines in Fig. 2). Interestingly, the nonclassicality measure δ

drops to 0.03. Looking at the corresponding Wigner function
in Fig. 3(b) reveals that the domains of negative values of the
Wigner function have practically disappeared.

Phonons destroy even the remaining nonclassicality. While
the fidelity in the case including all loss and phonon effects
still yields F = 25.0 % (see solid lines in Fig. 2), δ is identi-
cally zero, thus indicating a classical state. Indeed, the Wigner
function in Fig. 3(c) shows two blurred macroscopically dis-
tinct states, here again coherent states, but no oscillations
between them. Thus, they are superimposed incoherently and,
therefore, closely resemble the statistical mixture in Eq. (2).

The reason for this behavior lies in the nature of a
Schrödinger-cat state, which involves the formation of a
quantum mechanical superposition of distinct states with a
well-defined relative phase. All processes diminishing this
phase relation lead to a degradation of the cat state. For typical
QDCs, the cavity loss rate is much larger than the radiative
decay rate, thus having greater impact on the preparation
scheme. Furthermore, the effective cavity loss rate is pro-
portional to the photon occupation, thus degrading especially
states with large multiphoton contribution, such as cat states.
The phonons then destroy any nonclassicality left after taking
the other two processes into account.

From the analysis in this section it becomes clear that the
fidelity alone is not sufficient to characterize a Schrödinger-cat
state, since it may miss the essential feature of oscillations of

the Wigner function to negative values. Therefore, it is nec-
essary to simultaneously consider a nonclassicality measure
like δ.

In summary, the DOD protocol is not suitable to prepare
the Schrödinger-cat state in a QDC under realistic conditions,
because the interference terms of a cat state do not survive
the environmental coupling. Even at T = 4 K, phonon effects
destroy the coherent superposition of the two macroscopically
distinct states. Note that it is interesting from a fundamental
point of view that the phonons provide sufficiently strong
environmental coupling necessary to facilitate the quantum-
to-classical transition, which in this case is a transition from
a Schrödinger cat as in Eq. (7) to an incoherent mixture as in
Eq. (2).

IV. CAVITY-DRIVEN (CAD) PROTOCOL

The CAD protocol is based on the ideas of Refs. [16,52],
which showed that the textbook collapse-and-revival exam-
ple in the Jaynes-Cummings model has two additional very
striking features: (1) at half the revival time the QD and
photonic subspaces factorize and (2) at precisely this time a
Schrödinger-cat state appears in the cavity mode.

The main requirement for this cat state preparation scheme
is a coherent state in the cavity mode as the initial state
of the Jaynes-Cummings dynamics [16]. The photonic state
prepared at half the revival time is [52]

N (|�+〉 + |�−〉), (10)

which is another realization of a Schrödinger-cat state as de-
fined in Eq. (1). Here N is a normalization constant and

|�±〉 = e− 1
2 〈n〉

∞∑
n=0

〈n〉n/2

√
n!

e−inφe∓iπ
√〈n〉n|n〉 (11)

with 〈n〉 = |α|2 the average photon number of the initial co-
herent state and φ the phase of α. When using a real envelope
Gaussian pulse as in our case, this phase is determined to be
3π/2 as a short analytical calculation shows (cf. Appendix
D). These two states are macroscopically distinguishable, but
they are not coherent states as in Eq. (7) because of the 〈n〉-
and n-dependent phase in Eq. (11). However, it should be
noted that |�±〉 approaches in the limit 〈n〉 → ∞ the coherent
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state |�±〉 → e∓i〈n〉π/2| ∓ iα〉 (cf. Ref. [52]), and therefore the
state in Eq. (10) becomes N (|iα〉 + e−i〈n〉π | − iα〉), which has
the form given in Eq. (7). The fidelity with which the state
in Eq. (10) is reached in the Jaynes-Cummings dynamics at
half the revival time is unity only in the limit 〈n〉 → ∞ [52].
Thus, in the ideal phonon and loss-free case higher average
photon numbers are favorable in this scheme. However, since
the revival time is longer for higher mean photon numbers, the
preparation time rises with increasing mean photon numbers.
The system is thus exposed a longer time to losses before the
end of the protocol. As a result of this trade-off situation, there
is an optimal photon number when losses are accounted for.

Using this idea for a preparation protocol of Schrödinger-
cat states in the microcavity mode, we have to face two
tasks: (1) preparing a suitable initial state in the cavity and
(2) finding a suitable 〈n〉 to achieve maximum fidelity to the
cat state in Eq. (10). Task (1) is solved easily, since it is
textbook knowledge [14] that driving an empty cavity with
a classical laser yields a coherent state in the cavity. Now, the
cavity in a QDC is not empty, but as long as the laser pulse
driving the cavity mode is short enough compared with the
dynamics induced by the coupling g, it may be approximated
as such. We use a 1 ps Gaussian pulse (cf. bottom panel of
Fig. 4) to drive the cavity mode and vary its pulse area 	

to analyze the success of the protocol depending on 〈n〉 to
tackle task (2). Note that the average photon number of the
prepared coherent state is connected to the laser pulse area via
〈n〉 = |α|2 = (	/2)2.

A. The ideal case

Figure 4 shows the dynamics of the QDC in the CAD
protocol when driving the cavity with a pulse of area 1.2π .
As we show later this is the optimal pulse area when losses
are taken into account. The dashed lines in Fig. 4 correspond
to the ideal case.

For the chosen pulse area the average photon number, as
shown in the middle panel in Fig. 4, is about 3. While this
is not high enough to lead to a clear-cut collapse-and-revival
signature, the exciton dynamics (blue curves) shows hints of
this feature with a revival at about 80 ps. The fidelity F shows
oscillations within a bell-like envelope to reach its maximum
of F = 88.1 % at 39.5 ps after the pulse. At the same time,
the photonic subsystem is close to a pure state as indicated
by the near-unity value of the trace of the squared photonic
density matrix. Thus, the QD and photon subspaces factorize.
To preserve the Schrödinger-cat state as it appears at this
point in time, an additional QD-driving pulse is needed to
effectively decouple the QD from the cavity. This is in analogy
to the ac-Stark pulse shown for the DOD protocol in Sec. III.

Figure 5(a) shows the corresponding Wigner function eval-
uated at the time of maximum fidelity when the decoupling is
evoked by a Stark pulse for the ideal case. Two macroscopi-
cally distinct states are clearly visible as elongated Gaussians
corresponding to the states |�±〉 in Eq. (11). Oscillations
to negative values between these two structures indicate
a coherent superposition. Therefore, this state is clearly a
Schrödinger-cat state.

As the CAD protocol depends sensitively on the pulse
areas, we plot in Fig. 6(b) the maximum fidelity to the

FIG. 4. Dynamics of the QDC in the CAD protocol. Panels from
bottom to top: the exciting laser pulse, the occupation of the exciton
nX , the average photon number 〈n〉, Tr(ρ2

photon) which indicates how
close the photonic system is to a pure state, and the fidelity to the
Schrödinger-cat state in Eq. (10). Dashed lines: ideal case without
phonons and losses. Dashed-dotted lines: without phonons but with
losses. Solid lines: with phonons and losses. The temporal range
where the fidelity reaches its maximum value in all three considered
cases is shaded in gray.

Schrödinger-cat state in Eq. (10) during the time evolution
after the cavity preparation pulse as a function of the pulse
area, i.e., the average photon number of the initial state.
Having seen that the fidelity is not sufficient as a measure
for obtaining a nonclassical photon state as the cat state, we
additionally show in Fig. 6(a) the nonclassicality measure δ at
the time of maximum fidelity.

For the ideal case (black lines in Fig. 6) the nonmonotonic
behavior of the fidelity is prominent. In contrast to the naive
expectation that it rises monotonically with 	, i.e., 〈n〉, it
increases for 〈n〉 → 0 and shows an oscillatory behavior for
higher 〈n〉. For decreasing 〈n〉, the prepared state contains a
larger contribution of the vacuum, while the target state in
Eq. (10) itself shows more vacuum characteristics. Therefore,
the fidelity approaches unity, while the nonclassicality mea-
sure δ decreases [cf. Fig. 6(a)]. Thus, the state for low 〈n〉
cannot be considered to be a genuine Schrödinger cat, since
the target state in Eq. (10) ceases to be a superposition of two
macroscopically distinct states.
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FIG. 5. Wigner functions of the photonic states prepared by the CAD protocol (a) for the ideal case, (b) including losses, and (c) taking
both phonons and losses into account. The Wigner functions are calculated at the respective times of maximum fidelity (cf. Fig. 4): t = 39.5 ps
(ideal case), t = 38.5 ps (including losses), and t = 41.0 ps (including losses and phonons).

The nonmonotonic behavior of the maximum fidelity in
Fig. 6(b) starting at 	 = π has its origin in the dynamics
of the fidelity as shown exemplary in Fig. 4. The oscilla-
tion frequency within the bell-like envelope increases with
rising 	 (not shown in the figure), while the maximum of
the oscillation need not coincide with the maximum of the
envelope. Therefore, maxtF (t ) does not rise monotonically
with 	, contrary to the naive expectation.

The proposal in Ref. [16] is based on the assumption of
a coherent state in the cavity mode as an initial state of the
dynamics. The orange line in Fig. 6(b) shows the fidelity
corresponding to the solution of the initial value problem

FIG. 6. (a) Nonclassicality measure δ at the time of maximum
fidelity and (b) maximum fidelity during the time evolution as a
function of the pulse area, i.e., the average photon number of the
initial state. Black: ideal case, blue: including losses but without
phonons, red: with losses and phonons, orange: solution of the initial
value problem.

posed in Ref. [16], i.e., without first preparing the initial state
with a laser pulse. If such a coherent state is to be prepared
in a cavity mode, an external laser pulse is necessary [cf. task
(1) in Sec. IV]. For pulse areas greater than π , the maximum
fidelity obtained after solving the initial value problem per-
fectly coincides with the result obtained in the ideal case of
the preparation. This implies that indeed a coherent state is
prepared in the cavity mode by the external driving. The
deviations seen at smaller pulse areas have their origin in the
finite length of the preparation pulse.

The overall rise of the nonclassicality measure δ with
〈n〉, on the other hand, and its oscillations [cf. black line
in Fig. 6(a)] are a known feature [51]. In particular, the os-
cillation is a signature of a nonzero phase due to a finite
momentum of the cat state in (q, p) representation that dis-
tinguishes “standing” and “moving” cats [51]. Note that the
Wigner function in (q, p) and (Re(α), Im(α)) representation
are connected by a factor of 2π h̄ [53–55]. Since the nonclassi-
cality measure δ is a ratio of volumes of the Wigner function,
it is independent of the representation.

B. Loss and phonon effects

The influence of cavity losses and radiative decay on the
preparation using the CAD protocol is very strong. The dy-
namics of all photonic variables shown in Fig. 4 are damped
(orange dashed-dotted line). The effect is even more pro-
nounced when looking at the protocol as a function of 〈n〉
in Fig. 6 (blue lines). In particular, at high 〈n〉, where the
highest fidelity in the ideal case is achieved, the losses have
the greatest impact and the fidelity drops to almost zero. This
is due to the fact that the effective loss rate for a Fock state |n〉
is proportional to the photon number n, i.e., nκ . Likewise, the
nonclassicality measure δ becomes identically zero when the
pulse area exceeds 1.5π . Thus, in stark contrast to the ideal
case, the limit 〈n〉 → ∞ yields no Schrödinger cat at all.

Considering phonon effects on top of the loss influence
further smooths out the dynamics (cf. solid lines in Fig. 4) and
lowers both the fidelity and the nonclassicality of the target
state (cf. red lines in Fig. 6), while showing qualitatively the
same behavior as in the case with losses but without phonons.
These findings depend on the considered temperature, the
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FIG. 7. The maximum fidelity to the Schrödinger-cat states in
Eqs. (7) and (10) in the case of the DOD protocol (black solid
line) and the CAD protocol (red dashed line), respectively, and the
nonclassicality measure δ (open rectangles and circles) as a function
of the cavity loss rate κ . The cavity quality factor assuming a mode
frequency of h̄ωC = 1.5 meV is displayed as a second axis.

GaAs material parameters, and the QD geometry and might
differ for other parameter sets. In the case considered in this
work, however, the loss effects have the most detrimental in-
fluence on the preparation of the target Schrödinger-cat state.

This is further underscored by considering the dependence
of the protocols’ success on the cavity loss rate, as shown in
Fig. 7 for the case without phonons. For both the DOD and the
CAD protocols, the preparation fidelity rises monotonically
with the quality factor, as does the nonclassicality measure δ.
The latter rises faster for the case of controlling the cavity,
implying a comparatively higher robustness of this scheme
with respect to cavity losses. This is due to the fact that the
total length of the DOD protocol of about 80 ps is roughly
twice the length of the CAD protocol of about 40 ps. There-
fore, loss processes have less time to take effect in the CAD
protocol. Furthermore, the DOD protocol presumes 10 opera-
tions, i.e., pulses which need to be timed exactly, whereas the
CAD protocol relies only on one pulse. This also makes the
CAD protocol more stable against environmental influences
and more attractive for experiments.

Note that it has been shown experimentally that a system
with a Purcell factor roughly three orders of magnitude larger
than in our case is well suited for the preparation of exotic
photonic states. Hofheinz et al. showed [56] that a so-called
voodoo-cat state, a superposition of three coherent states, can
be prepared in a system consisting of a superconducting qubit
in a microwave resonator with a fidelity of 83 %. While such
a setup has drawbacks, such as the wavelength of the emitted
photonic state and the temperature in the mK-regime needed
for the qubit to operate, this amazing result underscores the
necessity of a high-quality resonator, both concerning the
quality factor and the Purcell enhancement for the prepara-
tion of Schrödinger-cat or even more complicated voodoo-cat
states.

Strikingly, in our QD-cavity system there is still a win-
dow of pulse areas, where the fidelity and the nonclassicality
measure are rather high. The optimum pulse area yielding
the maximum preparation fidelity under loss and phonon in-
fluence for our parameters is at 	 = 1.2π , where both the
fidelity and the nonclassicality measure have a maximum.

This is due to a competition between the rising fidelity for
〈n〉 → ∞ as predicted in Ref. [52] and the inclusion of losses,
which also become stronger for increasing 〈n〉. As a check,
whether we indeed have created a cat state at 	 = 1.2π , we
have a look at the Wigner function in Fig. 5(c). The Wigner
function clearly shows two macroscopically distinct states and
oscillations between them, thus indicating a Schrödinger-cat
state even when losses and phonons are accounted for under
realistic conditions.

V. CONCLUSION

We have investigated two protocols for the preparation of
photonic Schrödinger-cat states in the light field mode of a
quantum-dot–cavity system (QDC). While in atomic systems
Schrödinger cats have been already prepared, we here adapted
the protocols used in the atomic case to a solid state system. In
the calculations, we considered realistic values for the cavity
losses as have been reported in QDCs, which showed that the
radiative decay and cavity losses can be quite detrimental to
the preparation scheme. In contrast to atoms, in QDC devices
phonons also play a role, which have a great impact on the
Schrödinger-cat preparation. Therefore, a theoretical guidance
on the feasibility to prepare cat states is of high importance.

The first scheme relies on controlling the quantum dot with
external laser pulses (DOD protocol) by adapting Ref. [15].
We developed a multipulse protocol for the QDC, where
both the precise timing of the pulses and their mutual phases
are of utmost importance. Most detrimental to the fidelity
to the Schrödinger-cat state are cavity and radiative losses.
The environmental coupling to longitudinal acoustic phonons
further reduces drastically the fidelity and completely destroys
the coherence between the two states. Only an incoherent
mixture of the two macroscopically distinct states with zero
nonclassicality remains, such that this scheme is not suitable
to prepare Schrödinger cats in realistic QDCs. We mention
that this is different for superconducting qubits in microwave
cavities, where similar protocols have been successfully em-
ployed [56], because the quality factor of microwave cavities
relative to the coupling strength is higher than in QDCs. A
similar boost of the quality factor would be needed to enable
a Schrödinger-cat preparation with this protocol also in QDCs.

The second protocol exploits the internal dynamics of the
Jaynes-Cummings model, where a Schrödinger-cat state can
be found naturally in the time evolution of the system [16,52].
Only one pulse driving the cavity is necessary to prepare a
single coherent state in the field mode (CAD protocol), which
serves as an initial state for the subsequent Jaynes-Cummings
dynamics. While this protocol in the ideal case works best
for high-pulse areas, the losses also increase in this case such
that no preparation is possible. Again, the losses are the main
cause of destroying the cat, while the phonon effects are less
dramatic than in the first protocol. Remarkably, for intermedi-
ate pulse areas between π and 1.5π , the coherences as well as
the nonclassicality of the Schrödinger cats survive even under
the influence of both losses and phonons. Also in the CAD
protocol, a boost of the cavity quality factor would improve
the characteristics of the prepared cat state.

Our results show that Schrödinger cats in QDCs can be pre-
pared under realistic conditions with an easy to use protocol.
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APPENDIX A: COUPLING HAMILTONIAN

The external laser pulses are described by

fp(t ) =
∑

m

f p
m(t − tm)e−iωp(t−tm ). (A1)

f p
m(t ) are the envelope functions of the pump fields and ωp the

corresponding laser frequencies. The product ωPtm is chosen
as an integer multiple of 2π . The pump fields are Gaussian
pulses with area 	 j ,

f p
j (t ) = 	 j√

2πσ
e− t2

2σ2 , (A2)

where σ denotes the standard deviation. It is connected to
the full width at half maximum (FWHM) by FWHM =
2
√

2 ln 2σ . Throughout this work, ωp = ωX is assumed. The
ac-Stark pulses are assumed to be of rectangular shape:

fac-Stark(t ) = e−iωACSt

⎧⎨
⎩

0 t < − τlength

2

fs − τlength

2 � t � τlength

2

0 t >
τlength

2

, (A3)

where fs denotes the field strength, i.e., the plateau height of
the rectangular pulse, and τlength its duration.

The ac-Stark pulses are tuned below the exciton line by
ωACS,X := ωACS − ωX, which is chosen within the range of
validity of the RWA. The resulting shift of the exciton line
can be calculated from the energies of the laser-dressed states.

The QD is coupled to LA phonons [40,42–45,57].

HPh =
∑

q

h̄ωqb†
qbq +

∑
q

(γqb†
q + γ ∗

q bq)|X 〉〈X |, (A4)

where b†
q and bq are the (bulk) phonon operators with wave

vector q and energy h̄ωq. The deformation potential-type cou-
pling to the electronic state is denoted by γq. This Hamiltonian
is of the so-called pure dephasing type [44,58]. Many well-
known phenomena emerge from the interaction described by
this Hamiltonian, e.g., the phonon sideband in the QD emis-
sion spectrum [42,59], the damping of the Rabi oscillations
[39,60], as well as the renormalization of their frequency
[61,62]. Since our treatment of this Hamiltonian is numeri-
cally complete, all of these phenomena are included in our
results.

Finally, we take radiative recombination of the excitons
with rate γ and cavity loss processes with rate κ into account
by introducing Markovian Lindblad-type operators

LO,�• = �

(
O • O† − 1

2

{•, O†O
}

+

)
, (A5)

where {·, ·}+ denotes the anticommutator. O is a system oper-
ator and � the decay rate of the associated loss process.

The full Hamiltonian then reads as

Hfull = H + HPh (A6)

TABLE II. Relevant system parameters.

QD-cavity coupling (meV) h̄g 0.1
Cavity loss rate (ps−1) κ 0.0085
QD radiative decay rate (ps−1) γ 0.001

with the system Hamiltonian H as defined in Sec. II.
The dynamics of these systems are then described by the
Liouville–von Neumann equation

∂

∂t
ρ = − i

h̄
{Hfull, ρ}− + La,κρ + LσX ,γ ρ, (A7)

where {·, ·}− denotes the commutator.
A path-integral formalism [46,47,63,64] is used to solve

Eq. (A7) in a numerically complete manner. Tracing out the
phonon degrees of freedom analytically yields a phonon-
induced memory kernel for the subsystem of interest H in
Eq. (A6). We call a solution “numerically complete” if a finer
time discretization and considering a longer memory do not
change the result noticeably. Since the states considered in
this paper are product states of the QD and number states
of the cavity mode and therefore quite numerous, no solution
within the path-integral framework could be obtained without
the advances presented in Ref. [48].

APPENDIX B: DEFINITION OF THE OPTICAL
WIGNER FUNCTION

The optical Wigner function, which is a function of the
complex coherent amplitude α, can be obtained as [53–55]

W (α) = 2Tr[ρphotonD(α)(−1)a†aD(−α)], (B1)

where ρphoton is the photonic density matrix of the system
and D(α) the coherent displacement operator. The photonic
density matrix is obtained by tracing out the phonon and QD
degrees of freedom:

ρphoton = TrQD[TrPh(ρ)]. (B2)

Using the Fock basis and introducing ρ ′
photon(α) :=

D(−α)ρphotonD(α), this expression simplifies to

W (α) = 2
∑

n

[ρ ′
photon(α)]nn(−1)n. (B3)

APPENDIX C: PARAMETERS

For the numerical calculations we use typical parameters
for self-assembled strongly confined GaAs/In(Ga)As QDs
[48,65]. Other relevant parameters are summarized in Table II.
Assuming a mode frequency of h̄ωC = 1.5 eV, the cavity
loss rate κ corresponds to a quality factor Q ≈ 268 000,
which has been reported in the experiments in Ref. [66]. The
phonons are assumed to be initially in thermal equilibrium
at a temperature of T = 4 K, whenever phonon effects are
considered in this work.

On a timescale of ≈3 ps, the phonon-induced memory
kernel for GaAs/In(Ga)As QDs of 6 nm diameter at T =
4 K decays to zero [46–48]. To obtain numerically complete
converged results, a two-grid strategy is employed for the
time discretization. Details can be found in Appendix A 3 of
Ref. [38].
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APPENDIX D: CALCULATION OF THE PHASE IN THE
CAD PROTOCOL

The phase φ in Eq. (11) is the phase of the coherent state
which is prepared in the cavity mode by the initial laser pulse
driving the cavity. Since the pulse used to prepare the coherent
state is short compared with the scale of the dynamics induced
by the coupling to the QD, we can neglect the latter in the
analysis of the preparation. In a frame corotating with the laser
frequency, the Hamiltonian thus reduces to

Hdriving(t ) = − h̄

2

[
f ∗
p (t )a + fp(t )a†]. (D1)

Up to second order in the time increment �t , the time evolu-
tion operator reads

U (t + �t, t ) = e− i
h̄ Hdriving(t )�t

=D[u(t )�t] (D2)

with u(t ) := i
2 fp(t ) and the coherent displacement operator D.

Using the relation D(α)D(β ) = exp [Im(αβ∗)]D(α + β ) and
noting that the phase vanishes since u(t ) is purely imaginary
for real pulse envelopes, one obtains for a pulse with center tc
that is chosen such that at 0 and τmax the envelope is essentially
zero (again up to second order in �t)

U (τmax, 0) = D[α(τmax)], (D3)

with

α(τmax) =
∫ τmax

0
u(t ) dt

= i

2

∫ τmax

0

	√
2πσ

e− (t−tc )2

2σ2 dt ≈ i

2
	 = 	

2
e−iφ (D4)

with φ = 3π/2.
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