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Abstract. Plant community biomass production is co-dependent on climatic and edaphic factors that are
often covarying and non-independent. Disentangling how these factors act in isolation is challenging, espe-
cially along large climatic gradients that can mask soil effects. As anthropogenic pressure increasingly
alters local climate and soil resource supply unevenly across landscapes, our ability to predict concurrent
changes in plant community processes requires clearer understandings of independent and interactive
effects of climate and soil. To address this, we developed a multispecies phytometer (i.e., standardized
plant community) for separating key drivers underlying plant productivity across gradients. Phytometers
were composed of three globally cosmopolitan herbaceous perennials, Dactylis glomerata, Plantago lanceo-
lata, and Trifolium pratense. In 2017, we grew phytometer communities in 18 sites across a pan-European
aridity gradient in local site soils and a standardized substrate and compared biomass production. Stan-
dard substrate phytometers succeeded in providing a standardized climate biomass response independent
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of local soil effects. This allowed us to factor out climate effects in local soil phytometers, establishing that
nitrogen availability did not predict biomass production, while phosphorus availability exerted a strong,
positive effect independent of climate. Additionally, we identified a negative relationship between biomass
production and potassium and magnesium availability. Species-specific biomass responses to the environ-
ment in the climate-corrected biomass were asynchronous, demonstrating the importance of species inter-
actions in vegetation responses to global change. Biomass production was co-limited by climatic and soil
drivers, with each species experiencing its own unique set of co-limitations. Our study demonstrates the
potential of phytometers for disentangling effects of climate and soil on plant biomass production and sug-
gests an increasing role of P limitation in the temperate regions of Europe.

Key words: aridity; climate gradient; nitrogen; nutrient availability; phosphorus; phytometer; plant productivity;
resource limitation.
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INTRODUCTION

Understanding vegetation responses to multi-
ple global change factors is a central goal in ecol-
ogy (Franklin et al. 2016). Key to addressing this
challenge is disentangling the co-occurring and
covarying environmental factors that drive
responses such as primary production (Dormann
et al. 2013). Vegetation biomass production is co-
dependent on precipitation (Huxman et al.
2004), temperature (Larcher 2003), soil nutrients
(Fay et al. 2015), inherent characteristics of the
vegetation (Michaletz et al. 2014), among other
things. An additional challenge emerges as these
drivers often have non-linear effects (Knapp
et al. 2017) and non-additive interactions (Wang
et al. 2017). Isolating drivers of primary produc-
tion can improve our understanding of vegeta-
tion dynamics in the face of global change. Yet,
controlling for multiple influential factors while
allowing for natural variation in others is a chal-
lenging task, particularly along environmental
gradients at continental scales.

Soils control productivity through water regula-
tion (Vicca et al. 2012), the availability of essential
soil nutrients, such as nitrogen (LeBauer and Tre-
seder 2008), phosphorus (Vitousek et al. 2010),
additional macro- and micronutrients (Fay et al.
2015), and soil properties such as texture and pH
(Van Sundert et al. 2018). Temperate regions have
long been considered nitrogen-limited systems
(LeBauer and Treseder 2008), but anthropogenic

nitrogen deposition and agricultural runoff may
alleviate this limitation, potentially causing other
nutrients to become limiting (Kaspari and Powers
2016). Increased soil N often shifts nutrient limita-
tions to soil P (Vitousek et al. 2010), although K
limitations are also common (Sardans and Pe~nue-
las 2015). Furthermore, the ratio of soil N to P can
strongly influence productivity (Penuelas et al.
2013) and community composition (Wassen et al.
2005) as pathways by which plants uptake soil
nutrients, such as mycorrhizal associations,
become more or less effective (Lambers et al.
2008). The interaction of soil properties in driving
plant productivity makes isolating single soil
resource effects challenging.
Climatic drivers, similarly to soil properties,

are multi-faceted (Nemani et al. 2003) and inter-
act with soil properties to drive plant productiv-
ity. Long-term climate–soil interactions, such as
soil pH being linked to the climatic water balance
(Slessarev et al. 2016), create uncertainty as to
the relative importance of climate versus soil in
driving productivity due to covariation between
drivers. Moreover, more abrupt changes in cli-
mate increase the complexity. For instance,
chronic fertilization can lead to decreased
drought resistance in grassland ecosystems
(Bharath et al. 2020), drought and fertilization
can interactively change community composition
(Van Sundert 2021) and decrease N and P avail-
ability to plants by altering water availability (He
and Dijkstra 2014), and plant water availability
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from precipitation is regulated by soil properties
(Vicca et al. 2012). Thus, to even begin to unravel
the complex soil dynamics underlying plant pro-
ductivity, the backdrop of climatic variability
must be considered.

The species composition of a community is an
additional layer of complexity that can influence
primary production through changes in diversity
(Loreau and Hector 2001). Though, even at static
species richness levels, species in local plant com-
munities react asynchronously to changes in the
environment to stabilize productivity (Wilcox
et al. 2017). Additionally, species composition
and productivity can change concurrently in
response to environmental changes (Owensby
et al. 1999), creating additional uncertainty
whether productivity changes directly with the
environment or is mediated by species composi-
tion (Hautier et al. 2020).

Recently, coordinated experimental protocols
and collaborative approaches have been used
successfully to disentangle the effects of these
drivers across continental to global gradients
(Halbritter et al. 2020). Coordinated studies have
shown how primary production is controlled by
multiple soil nutrients (Fay et al. 2015), species
diversity (Fraser et al. 2015), increased tempera-
ture (Pe~nuelas et al. 2007, Reinsch et al. 2017),
and mediation of drought impacts by biodiver-
sity (Kr€oel-Dulay et al. 2015, Kreyling et al. 2017,
Craven et al. 2018). Nonetheless, drivers remain
partially obscured due to inseparable covariation
between climate, soil properties, and species
composition across study gradients and sites.
Common metrics use protocols and materials to
provide standardized quantifications of ecosys-
tem properties, helping link cross-site studies
(Halbritter et al. 2020). Yet, standardized metrics
for plant community ecology remain elusive. As
the diversity of communities and their con-
stituent species play a clear role in mediating
ecosystems responses to environmental changes
(Hautier et al. 2015), disentangling soil and cli-
mate effects on primary production may be facil-
itated by standardizing plant communities.

In order to improve understanding of how soil
and climate drivers independently and interac-
tively drive plant biomass production, we devel-
oped a living reference system in the form of a
multispecies phytometer that integrates
community-level processes and is designed to

specifically separate climatic from edaphic
effects. We expand on the traditional definition
of a phytometer as a model plant community
used within a single study (Clements and Gold-
smith 1924) by introducing a standardized proto-
col and plant community grown in both local
soil and a standardized substrate under different
climate regimes. By testing this approach across
a pan-European climate gradient, we address the
following hypotheses: (1) Biomass production
will decrease with aridity and increase with N
and P availability, (2) biomass production in stan-
dard substrate will decrease with aridity but be
unrelated to nutrient availability, (3) factoring
out the biomass production from standard sub-
strate in local soils (i.e., climate correction) will
clarify soil relationships and potentially allow
new relationships to biomass to emerge in local
soils, and (4) species will have asynchronous
responses to climate and soil drivers and the nat-
ure of these responses will be clearer using stan-
dard substrate and climate-corrected biomass.

MATERIAL AND METHODS

Site descriptions
Phytometers were installed at 18 experimental

sites across 11 European countries (Table 1) in
2017. The habitats were predominantly grass-
lands. In the two shrubland and four forest habi-
tats, the phytometers were installed in unshaded,
open areas. The sites spanned a gradient in mean
annual temperature from 2.9 to 15.5°C and in
mean annual precipitation from 560 to 2005 mm.
Local climate data were collected on-site or from
weather stations at most 10 km away. All mate-
rial necessary for germinating phytometer plants
was distributed from the University of Bayreuth
to ensure uniformity (see Appendix S1 for full
list).
Phytometers were established in sets of 10 (five

local soils, five standard substrates). Each phy-
tometer consists of three species: Dactylis glomer-
ata (grass), Plantago lanceolata (non-leguminous
forb), and Trifolium pratense (leguminous forb).
These species are cosmopolitan but non-
aggressive perennial weeds. They naturally co-
occur but have different sensitivities to environ-
mental stressors, while also demonstrating suffi-
cient survival rates across a range of climates,
making them suitable candidates for global
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distribution in such a phytometer (Joshi et al.
2001). By standardizing the plant community, we
minimized variation from turnover in species,
allowing a more focused inference of plant–envi-
ronment relationships. Seeds for these species
were provided from a single seed source located
in Central Germany. Then, as early as March
2017, site partners began following a standard-
ized protocol for plant germination, transplanta-
tion, phytometer installation, and data collection
(Fig. 1a; Appendix S1).

Phytometer preparation
Seeds were germinated by the local site scien-

tists in a standardized potting soil in a green-
house or area with high natural light
availability and regulated temperatures. Follow-
ing an eight-week germination and growth per-
iod, plants were transplanted into the 30 cm
diameter, 23 cm depth, phytometer pots, with

2–3 cm between the rim and substrate to
ensure water penetration. Local soil pots con-
sisted of soil from 5 to 30 cm below the surface
at each site. The standard substrate was vermi-
culite (an inert, inorganic substance; 0–2 mm
grain size), with 4 g of slow-release Osmocote
fertilizer (see Appendix S1 for nutrient content)
mixed evenly into the top 3 cm of substrate, a
rate that likely removed nutrient limitations
from these pots. Vermiculite was selected as a
substrate to maximize the soil water holding
capacity and isolate the water-related controls
on plant performance derived from precipita-
tion (i.e., the water supply to the soil) from the
water controls derived strictly from the local
soil properties (i.e., the soil capacity to store the
water supplied by precipitation and to provide
water to plants during rainless periods). Plants
were planted systematically in exactly the same
arrangement with an even density across the

Table 1. Summary of sites.

Site name Country Habitat Latitude Longitude
Elevation
(m a.s.l.)

MAP
(mm)

MAT
(°C)

Start
date of
50-d
period

Precipitation
(mm)

Aridity
(mm)

Soil GDD
(Standard) Soil pH

Antwerp Belgium Semi-natural
grassland

51° 9’ 36’’ N 4° 24’ 29” E 11 778 10.1 26 June 2017 104.1 110.2 712 8.1

Aveiro Portugal Mediterranean
shrubland

40° 37’ 48’’ N 8° 39’ 0’’ W 4 916 13.9 3 July 2017 2 184.9 1059 6.9

Bayreuth Germany Semi-natural
grassland

49° 55’ 19’’ N 11° 35’ 48’’ E 365 745 8.7 29 May 2017 144.9 115.3 830 4.1

B�ıl�y K�r�ı�z Czech Republic Semi-natural
grassland

49° 49’ 48’’ N 18° 54’ 30’’ E 890 1312 6.3 11 July 2017 105 70.8 663 3.6

Brandbjerg† Denmark Semi-natural
grassland

55° 52’ 48’’ N 11° 58’ 12’’ E 15 742 9.7 29 June 2017 105 77.8 620 3.5

Doman�ınek Czech Republic Semi-natural
grassland

49° 52’ 48’’ N 16° 23’ 60’’ E 530 609 7.2 10 July 2017 107.2 104.6 715 6.2

Esterberg Germany Semi-natural
grassland

47° 31’ 12’’ N 11° 9’ 36’’ E 1250 1450 2.9 29 May 2017 219.7 21.4 608 5.6

FAHM Estonia Forest 58° 13’ 48’’ N 27° 18’ 0’’ E 44 650 5.4 14 June 2017 76.4 �49.0 576 4.5
Fendt Germany Semi-natural

grassland
47° 49’ 45” N 11° 3’ 58” E 550 900 8.7 29 May 2017 241 2.8 765 5.3

GARRAF Spain Mediterranean
shrubland

41° 18’ 8” N 1° 49’ 5” E 212 560 15.5 26 May 2017 27 296.8 1133 8.1

Graswang Germany Semi-natural
grassland

47° 34’ 12’’ N 11° 1’ 48’’ E 850 1300 6 29 May 2017 282.9 �43.1 716 6.8

Gumpenstein Austria Semi-natural
grassland

47° 29’ 44” N 14° 5’ 53” E 700 1033 6.9 12 July 2017 424.1 �185.4 828 6.4

Kacka Suma Serbia Forest 45° 17’ 24’’ N 19° 53’ 24’’ E 86 647 11.4 20 July 2017 65.6 204.1 1022 7.2
Kiskuns�ag Hungary Grassland 46° 52’ 16’’ N 19° 25’ 16’’ E 108 594 11 4 June 2017 114.2 208.3 1025 8.1
Mols Denmark Semi-natural

grassland
56° 22’ 6” N 10° 54’ 37” E 56 669 8.7 29 June 2017 113.2 69.6 644 4.1

Oldebroek Netherlands Semi-natural
grassland

52° 24’ 36’’ N 5° 55’ 12’’ E 25 2005 10.1 3 July 2017 115.4 80.2 626 4.3

Waldstein† Germany Forest 50° 8’ 24’’ N 11° 52’ 12’’ E 775 1165.5 5.3 29 May 2017 182.1 3.7 714 7.3
Z€obelboden† Austria Forest 47° 50’ 24’’ N 14° 26’ 24’’ E 950 1645 7.8 16 June 2017 371.9 �204.2 706 5.8

Notes: MAP, Mean annual precipitation; MAT, Mean annual temperature. Precipitation, aridity, and soil GDD are specific to
the 50-d growth period of the phytometer trial. Aridity was the difference between site PET and precipitation during the 50-d
trial, where PET was calculated using the Hargreaves-Samani equation. Growing Degree Days (GDD) is the area under the
curve for temperature between 5 and 30°C. PRS adsorption values can be found in Appendix S2: Table S13.

† Site removed from analyses due to heavy herbivory.
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surface resulting in six individuals per species.
A root-ingrowth core (3 cm diameter, 20 cm
length, 2 mm mesh size) was installed in each
pot in an area immediately surrounded by one
of each species. To account for initial size differ-
ences due to varying greenhouse environments
at the different sites, 25 individuals per species
not planted in phytometer pots were clipped,
dried at 60°C for 48 h, and weighed. Soil

temperature data loggers (HOBO TidbiT v2
Temp Logger) were installed at 5 cm depth at
this time. Following this, plants were watered
for ten days at a rate of 1 liter per pot per day
to avoid transplant shock; this also meant that
phytometer pots at the beginning of the natural
growth period were at or near field capacity.
Then, pots were transferred out to the field and
buried up to the rim.

Fig. 1. (a) The phytometer workflow: from right to left, phytometers are planted in a standardized pattern
with equal density of three globally distributed, perennial herbaceous species: Dactylis glomerata, Plantago lanceo-
late, and Trifolium pratense. Phytometer communities are planted in a standardized substrate and the local site
soil. Study sites were distributed across an aridity (PET—precipitation; mm) and temperature gradient in Eur-
ope. The displayed gradient is calculated from mean annual PET and precipitation derived from WorldClim,
while our study focused on 50-d values of this index (see Table 1). (b) The expected parsing of climate from soil
effects, where local soils are influenced jointly by climate and soil. Standard substrate is influenced by only cli-
mate, which can be used to factor our climate influences from the local soil, clarifying the independent effects of
soil. Dashed lines represent an expected absence of a relationship.

 v www.esajournals.org 5 August 2021 v Volume 12(8) v Article e03719

METHODS, TOOLS, AND TECHNOLOGIES WILFAHRT ET AL.



Phytometer harvest
Phytometers were exposed to 50 d of growth

in the local environment. This duration was cho-
sen to accommodate possible sites with short
growing seasons, but also limits inference to a
juvenile stage of establishment where competi-
tion pressure may be lower than in more mature
communities. Plants were inventoried for mortal-
ity (i.e., how many individuals were still present
with green tissue), clipped 3 cm aboveground to
avoid damaging roots, and all aboveground bio-
mass was separated by species and each species
was separated into green tissue and dead or
senesced (i.e., brown) tissue to assess environ-
mental stress. Root biomass in the root-ingrowth
core was careful washed free of substrate and
collected. All biomass was dried at 60°C for 48 h
and weighed. More details on any of these steps
may be found in the full protocol (Appendix S1).
Three sites (Brandenbjerg, DK, Waldstein, DE,
and Z€obelboden, AU) showed clear visual signs
of heavy vertebrate herbivory and were excluded
from the analyses.

Environmental variables
Plant Root Simulator (PRS) probes (Western

Ag, Saskatoon, Canada) were installed in pairs in
four local soil and four standard substrate pots
for ten days prior to the harvest by placing them
vertically in the top 10 cm of soil or substrate.
These attract and adsorb soil ions, simulating
plant root uptake, and indicate the availability of
soil nutrients to plants in the final 10 d of the
experiment when plant communities were most
mature. Probes were analyzed in aggregate for
each substrate type per site. This resulted in a
single mean estimate for each ion per substrate
type per site (i.e., variance was quantified only
across sites). Soil pH was additionally measured
in the local soil.

Climate data were matched to the 50-d growth
period of the phytometer trial. We calculated two
indices thought to be important to plant growth.
First, we calculated an aridity index (PET—pre-
cipitation) (Thornthwaite 1948). PET was calcu-
lated using the Priestley-Taylor equation
(Priestley and Taylor 1972), integrating daily mini-
mum and maximum air temperature and relative
humidity, daily clear sky radiation based on lati-
tude and elevation, and solar radiation at ground
level using the Hargreaves-Samani equation,

which estimates cloudiness based on the differ-
ence between maximum and minimum daily tem-
perature (Hargreaves and Samani 1982). Aridity
indices have the desirable quality of integrating
temperature and precipitation into a single vari-
able (Maliva and Missimer 2012), but may still
imperfectly integrate all climate variables (Stocker
et al. 2018) before even considering its non-
independencies with soil factors. Thus, the appeal
of our standardized substrate phytometer lies in
being an integrative proxy for both measured and
unmeasured climate variables (e.g., microclimate,
cloud cover, wind, climate-mediated plant–soil
feedbacks). Second, we calculated growing degree
days (GDD) per soil type per site by fitting a sinu-
soidal function to the maximum and minimum
soil temperature each day, calculating the area
under the curve that was above 5°C and below
30°C where plants are expected to be most photo-
synthetically active, and then summing each day
to produce an integrated value per site. Here, we
relied on temperature values taken from soil data
loggers buried at 5 cm depth, as this more closely
represents the temperature the plants experience
than typical weather station data collected at 2 m
aboveground (K€orner and Hiltbrunner 2018).

Statistical analyses
Empirical data.—We explored how non-

independence between climate and soil variables
may influence patterns of biomass production.
First, we used linear mixed-effects models to
examine the relationship between biomass pro-
duction at the community and species level to
aridity, N availability, and P availability. Second,
we used model selection to identify the most
important predictors on biomass production.
Third, we used interaction models to see how cli-
mate may have moderated soil effects on bio-
mass production. In all three cases, we separately
examined the response of biomass production in
local soil phytometers, biomass production in
standard substrate phytometers, and climate-
corrected biomass. Climate-corrected biomass
was calculated as local soil biomass production
minus the mean of standard substrate biomass
production at that site (Fig 1b).
In order to further understand causes of bio-

mass changes in response to environmental dri-
vers, we tested whether mortality, the proportion
of brown tissue, or root:shoot biomass were
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predicted by aridity, N availability, and P avail-
ability in local soil and standard substrate. For
mortality, we used generalized linear mixed-
effects models with a negative binomial distribu-
tion link function to account for the large number
of zeros in the data using site as a random effect.
For the proportion of brown tissue, a sign of
environmental stress, we took the mean propor-
tion of brown tissue within a site and soil type
and used generalized linear models with a beta
distribution link function. As beta distributions
cannot use true zeros and ones, any observed
zero was set at 0.01 and any observed one was
set at 0.99. We used linear mixed-effects models
for root:shoot biomass using site as a random
effect. We expected that environmental stress
(i.e., low resource availability) would increase
mortality, the amount of brown tissue, and root:
shoot production.

Model selection.—We investigated abiotic dri-
vers of community and species biomass produc-
tion in our local soil phytometers by first using
linear mixed-effect models with site as a random
effect to determine how biomass production in
each phytometer pot was driven by our principal
climate variable, aridity, and our principal soil
variables, N and P availability, at the community
and species levels. We also ran separate models
with aridity and N:P availability as predictors to
test whether N:P availability was similarly or
more predictive. The soil variables were log10-
transformed to achieve normality in the residu-
als. In order to examine the importance of addi-
tional variables, we used the “dredge” function
in R package MuMIn (Barton 2020) to test which
combination of soil properties, PRS ion adsorp-
tion of macronutrients (N, P, K, Mg, S, and Ca
availability), climate predictors (aridity, soil
GDD), and whether between site differences in
initial size caused by differences in growth dur-
ing the greenhouse phase affected final biomass.
For this analysis, all variables were scaled to
have a mean of zero and standard deviation of 1
to allow direct comparison of coefficients. Site
was included as a random effect in all models.
We selected all models that were within two of
the model with the lowest AICc (Burnham and
Anderson 2003) and used model averaging to
produce a final fit. We calculated the relative
importance of each predictor by refitting a model
with all of the selected variables and calculating

the semi-partial R2 for each term using the
r2glmm package (Jaeger 2017), following the
Nakagawa and Schielzeth (2013) method of cal-
culating a pseudo-R2 of fixed effects in random-
effects models. Ca and S availability were addi-
tionally log10-transformed to achieve normally
distributed residuals.
We repeated the process in the standard sub-

strate phytometers, albeit with several different
predictor variables. Aridity and soil GDD were
used to represent climate and macronutrient
availability was used to determine whether soil
resource supply differed. In the standard sub-
strate, macronutrient availability effects could
indicate different rates of nutrient release from the
fertilizer in different climatic conditions. Soil pH
was unmeasured in the standard substrate as it
was assumed to be homogenous at the start of the
experiment by design, with any subsequent
changes being mediated by differences in climate.
We additionally tested whether observed subsi-
dence of the vermiculite substrate affected our
results. As the subsidence was not measured at
two sites, it could not be included in the full mod-
els. Therefore, we tested whether the residual
variation of the best standard substrate model of
the subset with shrinkage data was related to
shrinkage using standard linear regression.
We isolated the effect of soil drivers from cli-

matic drivers in the local soil phytometer by sub-
tracting away the site mean of standard substrate
phytometer biomass from each local soil phy-
tometer biomass to obtain a “climate-corrected
biomass” value. Using linear mixed-effect models,
we followed the same linear mixed-effects model
and model selection procedure using the same set
of predictors as the uncorrected local soil model.
Interaction models.—We explored whether cli-

mate and soil had non-additive interactions in
our three response variables (biomass in local
phytometers, biomass in standard phytometers,
and climate-corrected biomass values). We exam-
ined how aridity and soil GDD interacted with
both N and P availability using linear mixed-
effect models with all four two-way interactions
between the climate and soil variables with site
as a random effect. These variables were selected
as drought conditions are known to interfere
with plant uptake of N and P (He and Dijkstra
2014). We calculated the relative importance of
each group (soil predictors, climate predictors,
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and the four possible interactions) in predicting
community biomass.

RESULTS

Empirical data
Linear regression of the principle biomass–en-

vironment relationships revealed that above-
ground community biomass production in the
local soil phytometers decreased with increasing
aridity (pseudo-R2 = 0.81, P < 0.001; Fig. 2;
Appendix S2: Table S1), increased with P avail-
ability (pseudo-R2 = 0.55, P = 0.012), and had no
relationship with N availability (P = 0.84).
Species-specific biomass production of T. pratense
had the same relationships as community bio-
mass with aridity (P < 0.001, pseudo-R2 = 0.78)
and P availability (P < 0.01, pseudo-R2 = 0.52).
Dactylis glomerata and P. lanceolata showed quali-
tatively similar, though non-significant relation-
ships, with aridity and P availability
(Appendix S2: Table S1). No species had a rela-
tionship with N availability. Aboveground com-
munity biomass production in the standard
substrate phytometers also decreased with the
aridity gradient (Fig. 3; Appendix S2: Table S2;
pseudo-R2 = 0.59, P < 0.01). Species-specific bio-
mass production in standard substrate was nega-
tively related to the aridity gradient for T.
pratense (P < 0.01); D. glomerata (P = 0.067) and
P. lanceolata (P = 0.66) showed no significant rela-
tionship with aridity (Fig. 3; Appendix S2:
Table S2). No relationships between biomass
production and N or P availability were found
(Appendix S2: Table S2), confirming that any
uneven soil supply rates of N and P from the fer-
tilizer were not driving biomass production.

Using the standard substrate phytometers to
factor out the independent influence of climate,
we found that the community climate-corrected
biomass was positively correlated with P avail-
ability of the local soil (Fig. 3; Appendix S2:
Table S3; P = 0.016, pseudo-R2 = 0.63), but
showed no significant relationship with N avail-
ability (Fig. 3; P = 0.47). Species-specific climate-
corrected biomass in the local soil phytometers
had no significant relationships with N or P
availability, though P availability had relatively
high predictive power for all three as indicated
by the semi-partial pseudo-R2 (Appendix S2:
Table S3; all pseudo-R2 > 0.3).

Aridity was not significantly correlated with N
or P availability in local soil or standard sub-
strate. N:P availability was not a significant pre-
dictor of local soil (Appendix S2: Table S1),
standard substrate (Appendix S2: Table S2), or
climate-corrected (Appendix S2: Table S3) bio-
mass production, though it often had similar pre-
dictive power to P availability.
Individual mortality increased with aridity in

local soil (P < 0.01; Appendix S2: Table S4) and
in standard substrate (P < 0.001). Percentage of
brown tissue increased with aridity in local soil
(P < 0.01; Appendix S2: Table S5) and in stan-
dard substrate (P < 0.001). Neither mortality nor
percentage brown tissue showed a relationship
with P or N availability in local or standard sub-
strate (Appendix S2: Tables S4, S5) Root:shoot
biomass showed no relationship to aridity, P
availability, or N availability in either local soil or
standard substrate (Appendix S2: Table S6).

Model selection
In the local soil biomass production, top models

for community biomass included 9 of 10 predic-
tors and model averaging included aridity and
soil GDD (50-d thermal radiance), P availability,
Mg availability, and soil pH as significant predic-
tors (pseudo-R2 = 0.92, Appendix S2: Table S7).
Best-fit models for the species all had unique sets
of predictors in the local soil phytometers, though
each species had at least one climatic and one soil
variable that were both significant and high in
predictive power (Appendix S2: Table S7).
The top models in standard substrate biomass

production of communities contained 7 of 9 pre-
dictors, but only aridity and soil GDD were signif-
icant (pseudo-R2 = 0.68, Appendix S2: Table S8).
This demonstrated that potential variability in
nutrient release from the applied fertilizer may
have had some impact in driving biomass produc-
tion but was relatively small compared with the
direct effect of climatic drivers. In the standard
substrate phytometers, species-specific top mod-
els all contained unique sets of predictors
(Appendix S2: Table S8). Notably, no predictor
was significant after model averaging for P. lanceo-
lata, although the 8 predictors chosen in top mod-
els were able to account for 54.7% of its variation
in biomass (i.e., semi-partial pseudo-R2).
For climate-corrected community biomass in

the local soil phytometers, the top model
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contained all variables, though only P, K, and Mg
availability were significant (pseudo-R2 = 0.76;
Appendix S2: Table S9). Notably, the climate-
corrected biomass model revealed potassium as
a significant predictor, which was not selected in
the local soil model; potassium was also signifi-
cant for D. glomerata and P. lanceolata. Top models
for species-specific climate-corrected biomass all
contained unique sets of predictors and signifi-
cant predictors; P availability was the only con-
sistent significant predictor for all species and D.

glomerata and T. pratense contained significant cli-
matic variables despite the climate correction
(Appendix S2: Table S9).

Interaction models
Linear models with two-way interactions

between the two climate variables and P and N
availability revealed no significant interactions in
local soil (Appendix S2: Table S10), standard
substrate (Appendix S2: Table S11), or climate-
corrected biomass responses (Appendix S2:

Fig. 2. Fifty-day aboveground biomass production of community and species in local soil across an aridity
index (50-d PET—precipitation) and soil N and P availability. Soil predictor variables are log-transformed and
black lines are the best-fit line from a mixed-effects linear model fit to the transformed data when P < 0.05. Sig-
nificant relationships have the semi-partial pseudo-R2 displayed for significant relationships.
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Table S12). Including interactions in models also
masked the previously detected significance of
main effects (i.e., aridity and P availability;
Figs. 2, 3). Post hoc model simplification also did
not reveal any significant interactions.

DISCUSSION

Our phytometer trial showed biomass produc-
tion strongly decreased with aridity and
increased with P availability, but surprisingly

Fig. 3. Biomass response to aridity in the standard substrate and climate-corrected biomass response to P and
N availability in the local soil phytometers at the community and species levels. Climate-corrected values are the
50-d biomass production in the local soil minus the mean biomass produced in the standard substrate during the
same period. Negative climate-corrected values indicate sites where the standard substrate was more productive
than the local soil and vice versa. Soil predictor variables are log-transformed and black lines are the best-fit lines
from mixed-effect linear models fit to the transformed data when P < 0.05. Significant relationships have the
adjusted R2 displayed.

 v www.esajournals.org 10 August 2021 v Volume 12(8) v Article e03719

METHODS, TOOLS, AND TECHNOLOGIES WILFAHRT ET AL.



had no relationship to N availability. Phytome-
ters grown in local soil revealed strong effects of
aridity, soil temperature, and several soil param-
eters on biomass production, but failed to clearly
separate the effects. Phytometer biomass in stan-
dard substrate was explained predominantly by
climate variables. Climate-corrected biomass in
local soil reacted strongly to soil parameters,
with reduced climatic influence. The emergence
of a climate-corrected biomass relationship with
potassium that was not evident in the local soil
analysis demonstrates that studies crossing large
climate gradients may unintentionally mask rela-
tionships with soil nutrients (Bruelheide et al.
2018). This experimental separation of climatic
and soil influences advances our ability to under-
stand mechanistic controls on primary produc-
tion, such as multiple-resource limitation (Fay
et al. 2015) or non-linearity in climate responses
(Knapp et al. 2017).

Aridity was a strong determinant of commu-
nity biomass production across our European
gradient in both local soil and standard substrate
phytometers. High aridity led to increased mor-
tality and senesced tissue, factors which would
reduce aboveground biomass production. The
weaker relationship of biomass with aridity in
standard substrate may be partly explained by
larger within site variance compared with local
soil phytometers, which could result from the
observed subsidence of the vermiculite substrate.
Additionally, standard substrate phytometers
had an overall lower range of biomass values
across sites, which may artificially constrain R2

values. We recommend a modified standard sub-
strate using quartz sand in combination with ver-
miculite in our revised protocol to mitigate these
effects in future trials (Appendix S2: Fig S2).
There is additionally the possibility that plant–
soil feedbacks led to changes in pH or microbial
communities in the standard substrate (van der
Putten et al. 2013), though given the isolation
from the surrounding soil any such changes
should themselves be largely mediated by cli-
mate, and we did not detect any effect of climate
on soil nutrient availability in the standard sub-
strate. The upshot is that standardized substrate
phytometers could be an important tool even in
the absence of paired local soil phytometer, by
detailing non-linearities of biomass production
in response to climatic influences when

employed regularly along natural climatic gradi-
ents (Schweiger et al. 2016, Knapp et al. 2017,
Kreyling et al. 2018). Additionally, this makes
the use of standard substrate phytometers appro-
priate for clarifying soil influences as we do in
this study.
Biomass production was responsive to multi-

ple soil nutrients and properties, suggesting co-
limiting factors (Fay et al. 2015). In the local soil
phytometers, the role of multiple soil nutrients
was clear. Correcting biomass values using the
standardized substrate phytometers strongly
shifted the predictive power of environmental
variables from climate to soil nutrients and
exposed potassium as a driver of biomass. Tem-
perate grassland productivity is generally limited
by N (LeBauer and Treseder 2008), but we sur-
prisingly observed neither a direct nor an indi-
rect relationship between biomass production
and N availability in local soil or climate-
corrected soil. High atmospheric deposition of N
and fertilization of sites has the potential to shift
soil nutrient limitations toward non-nitrogen
sources, such as P (Vitousek et al. 2010) and K
(Sardans and Pe~nuelas 2015). P limitation was
apparent in both the local soil biomass produc-
tion and climate-corrected biomass, as biomass
production was highest in the presence of large P
pools. K relationships became evident only after
correcting for climate effects. However, increased
K availability was actually associated with
decreased biomass, potentially indicating that
larger K pools were a result of decreased uptake
resulting from decreased biomass. Plant nutrient
uptake, and therefore nutrient demand, is not
linear across plant ontogeny and resource gradi-
ents (Coleman et al. 1993), suggesting shifts to
different resource limitations such as N would be
possible as our phytometer communities mature.
Communities of species are more likely to

experience multiple-resource co-limitation (Har-
pole et al. 2011). Here, species-specific biomass
production was responsive to different soil nutri-
ents and properties, suggesting that species were
themselves uniquely co-limited by sets of
resources (Harpole et al. 2016). Trifolium pratense
reacted more strongly to climate, while the dee-
per rooting Plantago lanceolata showed more
responsiveness to soil properties after climate
correction, suggesting a more fundamental split
between climate and soil as the dominant source
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of variation between the species. Community-
level data displayed clearer responses to drivers,
supporting the use of multiple species that may
asynchronously respond to environmental condi-
tions to stabilize biomass production (Loreau
and de Mazancourt 2013). The discrepancy
between community and species-specific bio-
mass responses is likely due in part to confound-
ing biotic interactions, which are impossible to
separate from abiotic factors in this current
approach. For instance, in the climate-corrected
biomass, there is a notable uptick in biomass pro-
duction of T. pratense at the highest P available
site, while D. glomerata and P. lanceolata appear to
decrease or level off at this site. P may limit the
rate of nitrogen fixation, which is demanding in
terms of ATP, leading to high P soils benefiting
N-fixers like T. pratense (Dynarski and Houlton
2018), which could in turn competitively sup-
press other species at this site, though we lack
the data to test this. The initial starting biomass
(i.e., from the greenhouse growth phase),
appeared as a significant contributor in several
species models, particularly for D. glomerata,
implying this species may have benefitted from
an unintended advantage of being bigger relative
to its competitors at some sites. However, while
this clouds the species-level responses, communi-
ties are by definition networks of interacting spe-
cies, and the underlying trade-offs between
species are integrated into the emergent pro-
cesses that interest ecologists.

In conclusion, our phytometer approach for
parsing climatic and edaphic contributions to
biomass production revealed that aridity and P
availability were the strongest determinants of
biomass production. While our focus was on cli-
mate–soil interdependencies, we believe the phy-
tometer approach offers a flexible protocol for
investigating additional drivers. For instance, soil
microbes undoubtedly drive plant biomass pro-
duction, and this could be tested by titrating
local soil microbes into standardized soil pots.
Similarly, plant competition and environmental
filters could be explored more thoroughly
through the addition of monocultures and single
individual pots. Our study adds to a growing
body of evidence suggesting increasing P limita-
tion in temperate zones and climate-dependent
N effects on biomass production. As ecosystems
continue to face multiple global change

pressures, unraveling independent and depen-
dent effects of these drivers will only increase in
importance.
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