Synergismen bei der Erosion von amorphen Kohlenwasserstoffschichten mit niederenergetischen und thermischen Teilchenstrahlen, eine In-Situ-Ellipsometriestudie

> Von der Universität Bayreuth zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

> > vorgelegt von

Michael Schlüter

geboren in Lima-Peru

Gutachter: Prof. Dr. Dr. h. c. Volker Dose
 Gutachter: Prof. Dr. Hans Braun

Tag der Einreichung: 17. September 2007 Tag des Kolloquiums: 22. Februar 2008

Synergisms by the erosion of amorphous hydrocarbon films by low energetic ions and thermal particle-beams, an in-situ-ellipsometry study

Abstract

The erosion of amorphous hydrocarbon (a-C:H) films due to the combined irradiation with ions and chemically reactive species was investigated by ellipsometry using quantified particle-beams. In this work the following combinations were investigated: (1) noble gas ions + H°, (2) N_2^+ and N_2^+ +H° and (3) Ar⁺+O₂. The ion energy was varied between 20 and 900 eV and the substrate temperature between 110 and 950 K. In all these cases synergistic effects have been observed: the erosion rate of the simultaneous interactions is much higher than the sum of the individual erosion rates due to energetic ions (physical sputtering) and thermal chemical species (chemical erosion). Two types of synergisms were observed and a model of the erosion of a-C:H films was developed:

(I) At low temperatures chemical erosion due to thermal H°, N° or O₂ species plays an insignificant role, so that the only possible erosion mechanism is due to ion-induced processes: first, the ions break C-C-bonds in the film and second, the chemically reactive species react with these broken bonds within their penetration range and volatile products C:X (X=H, N, O) are formed. This synergism is temperature independent and known as **chemical sputtering**. For the case Ar^++O_2 an increase of the erosion yield was observed with decreasing temperature (110-300 K). This is explained by an O₂-coverage-dependent erosion process at low temperatures. The erosion yield, which is assumed to be proportional to the O₂ coverage, increases with decreasing temperature. The implementation of an adsorption-desorption mechanism for the temperature-dependent coverage of O₂ in the model leads to good agreement with the data. Measurements of the chemical sputtering due to Ar^++H_2O showed a similar temperature dependence of the yields at low temperatures (110-200 K).

(II) As expected, at higher temperatures (above 330 K for H^{\circ} and above 700 K for O₂) chemical erosion due to H^{\circ} or combustion due to O₂ becomes significant. However, the yields in ions + H^{\circ} or ions + O₂ cases increased much more than the sum of the yield of chemical sputtering plus the yield of the chemical erosion due to H^{\circ} or the combustion due to O₂. A mechanism for this new synergism is proposed: **ion-enhanced chemical erosion**. Damage due to ion bombardment (broken C–C-bonds) activates the surface and enhances chemical erosion. By including this mechanisms in the model it was possible to describe the data at high temperatures.

The total erosion yield is therefore the sum of the yields due to physical sputtering and chemical erosion plus the two yield enhancements due to the synergisms, the chemical sputtering process (I) and the ion-enhanced chemical erosion process (II). The model describes the energy, flux and temperature dependence of the measured erosion yields very well.

Inhaltsverzeichnis

1	Motivation und Einführung				
2	Gru	Grundlagen: Eigenschaften von a-C:H-Schichten und Mechanismen ihrer Erosion			
	2.1	2.1 Amorphe Kohlenwasserstoff-Schichten (a-C:H)			
	2.2	Wechselwirkung von Ionen mit a-C:H		6	
		2.2.1	Physikalische Zerstäubung	7	
		2.2.2	Simulation der physikalischen Wechselwirkung mit Festkörpern	7	
	2.3	Wechselwirkung von a-C:H mit Wasserstoff			
		2.3.1 Chemische Erosion durch Wasserstoffmoleküle bzwatome		8	
		2.3.2	Erosion durch die gleichzeitige Wechselwirkung von Wasserstoff und Ionen	10	
		2.3.3	Mechanismus und Modell der chemischen Zerstäubung durch $\mathrm{Ar}^+{+}\mathrm{H}^\circ\ .$	12	
	2.4	2.4 Wechselwirkung von a-C:H mit Stickstoff			
	2.5	2.5 Wechselwirkung von a-C:H mit Sauerstoff			
		2.5.1	Oxidation mit Sauerstoffmolekülen bzwatomen	17	
		2.5.2	Erosion durch die gleichzeitige Wechselwirkung von Sauerstoff und Ionen $\ .\ .$.	19	
	2.6	6 Fragestellungen			
		2.6.1	Chemische Zerstäubung von a-C:H durch Edelgasionen+H° $\ .\ .\ .\ .\ .$	20	
		2.6.2	We check wirkung von N_2^+ und $N_2^+ + H^\circ$ mit a-C:H	20	
		2.6.3	Oxidation durch O_2 und die chemische Zerstäubung durch Ar^++O_2 von a-C:H	20	
3	Exp	eriment	t	21	
	3.1	Das T	eilchenstrahlexperiment MAJESTIX	21	
		3.1.1	Präparationskammer	21	
		3.1.2	Hauptkammer	22	
		3.1.3	Probenhalter	23	
		3.1.4	Ionenquelle	24	
		3.1.5	Quelle für atomaren Wasserstoff H° (D°)	25	
		3.1.6	Erzeugung quantifizierter Flüsse von molekularem Sauerstoff O_2	26	
		3.1.7	Justage der Quellen und des Ellipsometrielasers	27	
	3.2	.2 Ellipsometrie			

		3.2.1	Konzept und Aufbau des Ellipsometers	28			
		3.2.2	Datenerfassung	29			
		3.2.3	Modell eines Schichtstapels	29			
		3.2.4	Beispiel einer Erosionsmessung	32			
4	Che	mische	Zerstäubung durch Edelgasionen und atomaren Wasserstoff	34			
	4.1	Energ	ieabhängigkeit	34			
		4.1.1	Physikalische Zerstäubung	34			
		4.1.2	Chemische Zerstäubung	35			
	4.2	Flussabhängigkeit					
	4.3	Tempe	eraturabhängigkeit	38			
	4.4	Integr	iertes Modell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen				
		Zerstä	ubung durch $Ar^+ + H^\circ$	41			
		4.4.1	Konzept	42			
		4.4.2	Oberflächenbedeckung	43			
		4.4.3	Erosionsrate	44			
		4.4.4	Anpassung des Modells an die Daten	47			
		4.4.5	Ergebnisse und Diskussion des Modells	49			
		4.4.6	Anwendung des integrierten Modells für die chemischen Zerstäubung durch				
			$\mathrm{He^+}{+}\mathrm{H^\circ}$ und $\mathrm{Ne^+}{+}\mathrm{H^\circ}$	52			
	4.5	Ergeb	nis: Antwort auf Fragenkomplex 1	53			
5	Chemische Zerstäubung durch N $_2^+$ und durch N $_2^+$ +H°						
	5.1 Energieabhängigkeit		ieabhängigkeit	55			
		5.1.1	Chemische Zerstäubung durch N_2^+	55			
		5.1.2	Chemische Zerstäubung durch N_2^+ + H°	56			
	5.2	Tempe	eraturabhängigkeit	59			
	5.3	Ergeb	nis: Antwort auf Fragenkomplex 2	60			
6	Che	mische	Zerstäubung durch Ar ⁺ und molekularen Sauerstoff	61			
	6.1	1 Phänomenologie der Wechselwirkung von O_2 , Ar^++O_2 und Ar^++H_2O mit a-C:H-					
	Schichten						
		6.1.1	Oxidation von a-C:H-Schichten	61			
		6.1.2	Chemische Zerstäubung von a-C:H-Schichten durch $\mathrm{Ar}^+{+}\mathrm{O}_2$	62			
		6.1.3	Chemische Zerstäubung von a-C:H-Schichten durch $Ar^++Wasser$	68			
	6.2	Integr	iertes Modell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen				
		Zerstä	ubung $Ar^+ + O_2$	70			

	6.2.1	Konzept	71
	6.2.2	Oberflächenbedeckung	74
	6.2.3	Erosionsrate	74
	6.2.4	Anpassung des Modells an die Daten	76
	6.2.5	Ergebnisse und Diskussion des Modells	76
6.3	Ergeb	nis: Antwort auf Fragenkomplex 3	82

7 Zusammenfassung

1 Motivation und Einführung

Amorphe Kohlenwasserstoffschichten (a-C:H) haben sich wegen ihrer zahlreichen Anwendungen in der Industrie etabliert. Dank ihrer Eigenschaften wie chemischer Inertheit, optischer Transparenz (im Infraroten), Härte und Biokompatibilität werden sie z.B. als Schutzschicht gegen Korrosion und Abnutzung diverser Oberflächen, zur Vergütung optischer Elemente oder bei der Lebensmittelnverpackung eingesetzt [LETTINGTON 1998], [GRILL 1999], [ROBERTSON 2001].

In der Kernfusionsforschung spielt die richtige Auswahl der Materialen für die erste Wand eines Reaktors für den Dauerbetrieb der Maschine eine wichtige Rolle. Die Wechselwirkung mit dem Fusionsplasma führt zur Erosion der ersten Wand. Durch auftreffende energetische Teilchen (Neutronen, Helium-, Wasserstoff- und Verunreinigungsionen) kommt es zur so genanten physikalischen Zerstäubung. Die dadurch von der Wand abgelösten Teilchen können in das Fusionsplasma eindringen und somit das Plasma verunreinigen. Die damit einhergehende Verdünnung des Fusionsbrennstoffes Deuterium und Tritium führt zu einer Verringerung der Fusionsrate. Außerdem können Verunreinigungen das Plasma stark abkühlen, da die gesamte Strahlungsleistung eines Teilchens der Kernladungszahl Z proportional zu $Z^{4...5}$ ist. Daher führen Hoch-Z-Materialen einerseits zu großen Strahlungsverlusten, anderseits ist durch ihre große Masse die physikalische Zerstäubung durch leichte Elemente relativ gering. Umgekehrt ist wegen der geringeren Strahlung die tolerierbare Verunreinigungskonzentration bei Nieder-Z-Materialien zwar höher, jedoch werden sie auch leichter zerstäubt. Beim künftigen größten Testrektor der Welt, dem International Thermonuclear Experimental Reaktor ITER, wird daher Beryllium für den größten Teil der Wandfläche und Wolfram sowie Kohlenstoff an den thermisch stärker belasteten Stellen verwendet.

Kohlenstoff in Graphitform bietet sich dank seiner guten thermischen Belastbarkeit an, da Graphit erst sehr hohen Temperaturen (ca. 3642 K) sublimiert und auf Grund seiner guten Wärmeleitfähigkeit die Wärme von der Oberfläche effektiv abtransportiert. Darum wird besonders an stark belasteten Teilen des Reaktorgefäßes, wie am so genanten Divertor einer Anordnung von Prallplatten am Boden des Reaktorgefäßes, faserverstärkter Graphit eingesetzt.

Die Wechselwirkung von Wasserstoffisotopen mit Kohlenstoff führt allerdings zu einem zusätzlich zur physikalischen Zerstäubung auftretenden Erosionsprozess, der so genannten chemischen Zerstäubung. Kohlenstoffmaterialen können mit den Wasserstoffisotopen aus dem Plasma flüchtige kohlenwasserstoffhaltige Spezies bilden, die dann entweder ins Plasma eindringen und zur Verunreinigung beitragen oder sich dann an anderen Stellen des Reaktorgefäßes in Form von redeponierten Schichten ablagern. Durch das in diesen Schichten enthaltene Tritium wird ein permanentes und stetig anwachsendes Tritium inventar im Reaktor aufgebaut [FEDERICHI 2001]. Das Tritiuminventar stellt aber ein potenzielles radioaktives Gefährdungspotential dar und soll durch geeignete Maßnamen weitestgehend minimiert werden.

Die Grundmechanismen der Wechselwirkung zwischen Plasmateilchen und Kohlenstoffwänden sollen in dieser Arbeit untersucht werden. Mittels Niederdruckplasmen aus kohlenwasserstoffhaltigen Quellgasen hergestellte a-C:H-Schichten werden häufig als Modellsystem für die Untersuchung bestimmter Aspekt der Plasmawandwechselwirkung in Fusionsplasmen verwendet. Sie haben eine ähnliche Struktur wie redeponierte Schichten oder die durch Ionenbeschuss und Aufhydrierung durch Wasserstoff modifizierten Graphitoberflächen [VIETZKE 1987 H], [VIETZKE 1989], [VIETZKE 1989 H]. Eine quantitative Bestimmung von Erosionsraten für a-C:H wurde bereits früher mittels eines Teilchenstrahlexperiments durchgeführt, bei dem Argon-Ionen und atomarer Wasserstoff eine a-C:H-Schicht erodieren [HOPF 2003]. Die gemessene Erosionsrate liegt um eine Größenordnung höher als die Summe der Erosionsrate durch rein physikalische Zerstäubung (Ar⁺) und der Erosionsrate durch chemische Erosion (atomaren Wasserstoff); außerdem liegt ihre Schwellenenergie deutlich unterhalb der Schwellenergie für physikalische Zerstäubung. Darfür entwickelte Hopf ein einfaches Modell zur Beschreibung der Energieabhängigkeit der Erosionsrate, das auf einem Zusammenwirken kinematischer und chemischer Effekte beruht [HOPF 2003]. In der vorliegenden Arbeit soll dieses Modell durch Verwendung anderer Edelgasionenspezies überprüft werden. Ferner soll es so erweitert werden, dass auch die Abhängigkeit der Erosionsrate vom Verhältnis des Wasserstoffflusses zum Ionenfluss und von der Temperatur beschrieben werden.

Untersuchungen der Erosion von Kohlen(wasser)stoffschichten in Wasserstoff-Stickstoff-Mischungen zeigten, dass N₂-Beimischung zu einer starken Zunahme der Erosionsrate führt [HONG 1999], [HONG 2000], [JACOB 2005]. Zusätzlich wurde bei der Plasmadeposition von a-C:H-Schichten in Mischungen von Kohlenwasserstoffgasen mit Stickstoff festgestellt, dass mit zunehmender Strickstoffbeimischung die Depositionsrate stark abnimmt [HONG 2000], [JACOB 2005]. Einige Autoren erklären diese Redzierung der Depositionsrate durch einen so genanten *Scavenger-Effekt* [TABARÉS 2002], [TABARÉS 2003]. Dabei geht man davon aus, dass Kohlenwasserstoffradikale im Plasma mit dem Stickstoff zu unreaktiven Spezies reagieren und somit nicht zur Deposition beitragen können. Die Abnahme des Schichtwachstums lässt sich aber auch durch konkurrierende Prozesse von Erosion und Deposition plausibel erklären [HAMMER 1996], [JACOB 2005]. Einen Beitrag zur Klärung dieser Frage sollen hier durchgeführte Messungen der Abhängigkeit der Erosionsraten von der Ionenenergie durch den Beschuss von a-C:H mit Stickstoffionen mit und ohne atomarem Wasserstoffhintergrund, d.h. N_2^+ +H° bzw. N_2^+ , leisten.

Sauerstoff wird häufig verwendet, um Kohlen(wasser)stoffschichten effizient abzutragen [HSU 1988], [MUELLER 1997], [HAASZ 1998], [PHILIPPS 1999], [DAVIS 2001], [HU 2005], [TAKEISHI 2006],

[HU 2006]. Erosionsmessungen von a-C:H-Schichten mit H₂, D₂ und O₂ als Plasmaquellgas haben zeigen, dass das Sauerstoffplasma mit Abstand die höchste Erosionsrate erzielt [LANDKAMMER 1999], [JACOB 1999]. Sie liegt im Vergleich zu Deuterium-und Wasserstoffplasmen um einen Faktor fünf bzw. zehn höher. Landkammer zeigte [LANDKAMMER 1999], dass es sich bei der Erosion von a-C:H im Sauerstoffplasma um einen Zwei-Stufen-Prozess handelt, bei dem Ionenbeschuss an der Oberfläche Defekte erzeugt, an denen neutrale Sauerstoffspezies reagieren und flüchtige Erosionsprodukte bilden. Dieses Zusammenwirken zwischen Ionen und Neutralen soll in der vorliegenden Arbeit am Beispiel der gleichzeitigen Wechselwirkung von Ar^++O_2 untersucht werden. Ein Ratengleichungsmodell soll die Abhängigkeit der Erosionsrate von der Temperatur, von der Ionenenergie und vom Flussverhältnis (Ar^+/O_2) beschreiben können.

Zur Untersuchung der oben genannten Fragestellungen, wird ein Aufbau verwendet, mit dem quantifizierte Teilchen strahlen erzeugt und auf die Probenoberfläche ausgerichtet werden können. Die Probe ist eine a-C:H-Schicht mit bekannten physikalischen Eigenschaften. Sie wird durch folgende Kombinationen von Teilchenstrahlen erodiert: (1) Edelgasionen und/oder Wasserstoffatome, (2) Stickstoffionen und/oder Wasserstoffatome, (3) Ar-Ionen und/oder Sauerstoffmoleküle bzw. Ar-Ionen und/oder Wassermoleküle. Dabei sind die Ionenenergie, das Flussverhältnis der wechselwirkenden Teilchen und die Probentemperatur einstellbar. Die Messung der Erosionsrate erfolgt mittels In-Situ-Elipsometrie.

2 Grundlagen: Eigenschaften von a-C:H-Schichten und Mechanismen ihrer Erosion

Dieser einführende Abschnitt beschäftigt sich zuerst mit den Grundlagen und Eigenschaften amorpher Kohlenwasserstoffschichten. Anschließend wird der derzeitige Kenntnisstand über die Erosionsmechanismen von a-C:H-Schichten durch Wasserstoffatome, Sauerstoffmoleküle und Bombardement mit unterschiedlichen Ionen (Edelgasionen, Stickstoffmolekülionen) vorgestellt.

2.1 Amorphe Kohlenwasserstoff-Schichten (a-C:H)

Kohlenstoff kommt in den drei Hybridisierungszuständen sp¹, sp² und sp³ vor, wodurch sich ein breites Spektrum möglicher Bindungsstrukturen ergibt. Sie reichen von den wasserstofffreien Kristallstrukturen wie Diamant (vier Valenzelektronen des Kohlenstoffatoms bilden ein tetraedrisch angeordnetes sp³-Orbital, durch diese σ -Bindungen hat der Diamant eine starke Struktur) und Graphit (reine sp²-Orbitale: drei Valenzelektronen sind stark in einer Ebene gebunden und ein delokalisiertes viertes Elektron vernetzt diese Ebenen über schwache Van-der-Waals-Kräfte) bis zu amorphen Kohlenwasserstoffnetzwerken, deren Struktur und Eigenschaften u.a. vom Wasserstoffgehalt abhängen.

Amorphe Kohlenstoffe werden häufig in Form dünner Schichten abgeschieden. Ihre Eigenschaften sind abhängig von den Herstellungsbedingungen. Je nach Wasserstoffgehalt und sp^2/sp^3 -Verhältnis unterscheidet man a-C, ta-C, a-C:H und ta-C:H (a = amorph, t = tetraedrisch koordiniert).

In Rahmen dieser Arbeit werden amorphe Kohlenwasserstoffschichten (a-C:H-Schichten) untersucht. Sie werden mittels Niederdruckplasmen hergestellt. Dafür erzeugt man beispielsweise ein Radio-Frequenz-Plasma (RF-Plasma) oder Elektron-Zylcotron-Resonanz-Plasma (ECR-Plasma) [ANGUS und KOIDL 1986], [ROBERTSON 1992], oftmals mit Methan, Azetylen oder Benzol als Ausgangsgas. Die Moleküle des Gases werden angeregt, ionisiert und dissoziiert, und die dabei erzeugten Ionen und Radikale führen beim Auftreffen auf die Wände zur Schichtbildung. Die Energie der auftreffenden Ionen spielt eine wichtige Rolle für die Schichteigenschaften. So genannte harte a-C:H Schichten (auch als diamantartige Schichten bekannt, DLC=*Diamond Like Carbon*) entstehen bei Ionenenergien oberhalb von ca. 100 eV, während Ionenenergien von wenigen eV zu weichen, wasserstoffreichen, polymerartigen Schichten führen.

Eine systematische Untersuchung [JACOB und MÖLLER 1993] einer Vielzahl von Daten für plasmadeponierte a-C:H-Schichten hat gezeigt, dass eine Korrelation zwischen dem sp²/sp³-Verhältnis und dem Wasserstoffgehalt existiert, die gut durch das Modell des vollständig bestimmten Netzwerks (*random covalent network*: RCN) [PHILLIPS 1979] beschrieben wird. Dieses Modell betrachtet ein Netzwerk, in dem die Zahl der durch kovalente Bindungen erzeugten Einschränkungen der Freiheitsgrade gleich der Anzahl der Freiheitsgrade dieses Netzwerks ist, d.h. drei pro Atom. Eine detaillierte Studie des RCN-Modells findet man in [ANGUS 1986] und [ANGUS und JANSEN 1988]. Die Zusammensetzung von Kohlenwasserstoffschichten hinsichtlich der Anteile an Wasserstoff, sp²- und sp³-koordiniertem Kohlenstoff ist in dem ternären Phasen-Diagramm in Abb. 2.1 veranschaulicht.

Abbildung 2.1: Zusammensetzung von a-C, ta-C, a-C:H und ta-C:H im Drei-Phasendiagramm, nach [ROBERTSON 1992].

Die unterschiedlichen mechanischen, elektrischen und optischen Eigenschaften und Strukturen von a-C:H-Schichten sind im Wesentlichen durch ihr Hybridizierungsverhältnis $(sp^2/sp^3-Verhältnis [JACOB und MÖLLER 1993])$ und ihre Stöchiometrie (H/H+C) festgelegt. Tab. 2.1 vergleicht die $sp^3-Anteile$, Wasserstoffkonzentrationen, Dichten und Härten von unterschiedlichen a-C:H-Schichten mit denen von Diamant, Graphit und Polyethylen.

Man erkennt, dass sp³-Anteil und Wasserstoffgehalt stark mit der Härte der a-C:H-Schichten korreliert sind. Bei wasserstofffreien Schichten (a-C, ta-C) steigt die Härte mit steigendem sp³-Anteil. Bei wasserstoffhaltigen Schichten steigt mit dem sp³-Anteil auch der H-Gehalt und die Härte nimmt ab. Grund dafür ist die Reduzierung der Vernetzung des Kohlenstoffgerüsts durch den Einbau von Wasserstoff [ROBERTSON 2002]. Daher bezeichnet man wasserstoffreiche a-C:H-Schichten als *weich*, wasserstoffarme als *hart*.

a-C:H-Schichten (siehe Tab. 2.1) mit stark variierendem Wasserstoffgehalt wurden in einer früheren Arbeit [SCHWARZ-SELINGER 1996] aus unterschiedlichen Quellgasen und bei unterschiedlichen Ionenenergien mittels Plasmadeposition abgeschieden und anschließend charakterisiert. Dabei wurde eine Korrelation des komplexen Brechungsindex $\hat{n} = n - ik$ dieser Schichten mit ihrer Kohlenstoff-

Material	$sp^3[\%]$	H [%]	Dichte $\rho_0 \ [\text{g cm}^{-3}]$	Härte [Gpa]
Diamant	100	0	3,515	100
Graphit	0	0	2,267	-
a-C	<5	0	2,2	3
ta-C	80-88	0	3,1	80
a-C:H hart	40-50	30-50*	1,6-2,4*	10-20
a-C:H weich	50-80	50-60*	$0,8-1,6^*$	<10
ta-C:H	70	30	2,4	50
Polyethylen	100	67	0,92	0,01

Tabelle 2.1: Vergleich der Eigenschaften von a-C(:H)-Schichten mit denen von Referenzmaterialien wie Diamant, Graphit und Polyethylen [ROBERTSON 2002]. (*) Werte aus [SCHWARZ-SELINGER 1996], siehe Text.

dichte gefunden. Der Zusammenhang zwischen Kohlenstoffdichte $n_{\rm C}$ und Realanteil n des komplexen Brechungsindex (zwischen 1,5 und 2,5) lässt sich näherungsweise durch

$$n_{\rm C}(n) = 10 \,\ln(1,85 \,n - 1,35) \tag{2.1}$$

beschreiben [HOPF 2003]. Schwarz-Selinger [SCHWARZ-SELINGER 1996] zeigte auch, dass Realund Imaginäranteil des Brechungsindex stark korreliert sind.

Die Härte von a-C:H-Schichten nimmt mit steigendem Realteil des Brechungsindex zu. Typische Werte für harte a-C:H-Schichten liegen zwischen 2,0 und 2,5 (Imaginärteil zwischen 0,02 und 0,16). In dieser Arbeit sind alle verwendeten Schichten harte a-C:H-Schichten.

2.2 Wechselwirkung von Ionen mit a-C:H

Trifft ein Ion auf eine Oberfläche, wird es entweder reflektiert oder implantiert. Handelt es sich um ein Molekülion, dessen kinetische Energie größer als seine Bindungsenergie ist, kann es beim Aufprall dissoziieren. Das auftreffende Ion wird in der Regel schon während der Annäherung kurz vor der Oberfläche neutralisiert. Die Projektile werden bei der Wechselwirkung mit Targetatomen einerseits durch die Festkörperelektronen kontinuierlich abgebremst (*electronic stopping* $\propto Z$, dabei ist Z die Kernladungszahl des Projektils) und anderseits geben sie ihre Energie durch Stöße mit den Atomkernen der Targetatome ab (*nuclear stopping* $\propto Z^2$). Die maximal übertragbare Energie beim elastischen Zweier-Stoss ist gegeben durch den kinematischen Faktor, $\gamma = 4 \cdot M_{\text{Projektil}} \cdot M_{\text{Target}}/(M_{\text{Projektil}} + M_{\text{Target}})^2$. Im Allgemeinen wird durch ein auftreffendes Projektil eine Kollisionskaskade ausgelöst. Dabei werden weitere Festkörperatome verlagert, sofern die übertragene Energie höher als ihre **Verlagerungsenergie** E_{dp} (engl. *displacement energy*) ist. E_{dp} hängt von der Bindungsenergie der Festkörperatome ab. Obige Faktoren und die primäre Ionenenergie bestimmen eine Tiefenverteilung der Verlagerungsausbeute, d.h. der Anzahl der permanent verlagerten Targetatome pro einfallendem Ion pro Tiefenintervall. Diese Verlagerungsausbeute ist ein Maß für die Schädigung der Schichtstruktur nach dem Ionenbeschuss.

2.2.1 Physikalische Zerstäubung

Die Projektile (Ionen), die auf die Oberfläche einfallen, verursachen eine Kollisionskaskade. Verlässt innerhalb der Kollisionskaskade ein oberflächennahes Targetatom die Oberfläche, spricht man von **physikalischer Zerstäubung** [BEHRISCH 1981]. Dabei spielt die **Oberflächenbindungsenergie** $E_{\rm sb}$ (engl. surface binding energy), die das Targetatom beim Prozess überwinden muss, eine entscheidende Rolle. Die **Schwellenenergie** für die physikalische Zerstäubung $E_{\rm th}$ (engl. threshold energy), d.h. die Mindestenergie des Projektils, ab der Zerstäubung auftritt, wird in der Regel experimentell bestimmt. Eine empirische Formel für $E_{\rm th}$, die von $E_{\rm sb}$ und der Projektil- und Tagetmasse abhängt, findet man in [BOHDANSKY 1980], [BOHDANSKY 1981].

2.2.2 Simulation der physikalischen Wechselwirkung mit Festkörpern

Zur Simulation der physikalischen Wechselwirkung energetischer Teilchen mit Festkörpern haben sich zwei Verfahren etabliert: Molekulardynamische Simulationen (MD) und Monte-Carlo-Simulationen (MC). Die ersteren basieren auf der Berechnung klassischer Bewegungsgleichungen aller Atome und Projektile im simulierten Volumen. Diese detaillierte Beschreibung einzelner Ereignisse erfordert einen erheblichen Rechenaufwand, so dass die Anzahl der simulierten Atome (typischerweise 1000) und die simulierte Zeitspanne (einige ps) begrenzt sind.

Auf der anderen Seite benötigen Monte-Carlo-Simulationen (MC) wie z.B. TRIM.SP (TRIM: transport of ions in matter und SP: sputtering, [ECKSTEIN 1991]) wesentlich kürzere Rechenzeit um gute statistische Aussagen über die Häufigkeit bestimmter Prozesse zu erhalten. Die TRIM.SP-Simulationen betrachten die Trajektorien von auftreffenden Ionen (Projektile) und angestoßenen Festkörperatomen (Target) in einer Nährung binärer elastischer Stöße. Dafür werden nach jedem Stoss die Distanz zum nächsten Stoss, sein Stossparameter und der azimutale Winkel zwischen den Stosspartnern zufällig gewählt. Außerdem wird der kontinuierliche Abbremseffekt, der durch inelastische Stöße mit den Targetelektronen Energieverluste verursacht, berücksichtigt. Die Trajektorien des Ions und aller angestoßenen Atome werden verfolgt, bis eine Mindestenergie unterschritten wird. TRIM.SP zählt ein bestimmtes Ereignis als eingetreten, wenn einem Targetatom mehr als eine für diesen Prozess festgelegte Schwellenenergie übertragen wird. Zum Beispiel wird ein Oberflächenatom als zerstäubt gezählt, wenn ihm in der Richtung von der Oberfläche senkrecht nach außen mehr als die Oberflächenbindungsenergie $E_{\rm sb}$ übertragen wird. Für die a-C:H-Oberflächenbindungsenergie wurde sowohl für Kohlenstoff und für Wasserstoff $E_{\rm sb} = 2,8$ eV gewählt, da dieser Wert gute Übereinstimmung mit den gemessenen physikalischen Zerstäubungsausbeuten liefert (siehe auch Kapitel 4).

Ein anderes gezähltes Ereignis ist die Verlagerung von Targetatomen, denen hierfür mehr als die Verlagerungsenergie E_{dp} in beliebiger Richtung übertragen werden muss. Dieser Zähler kann auch für einen anderen physikalischen Prozess verwendet werden, indem man E_{dp} durch die entsprechende Schwellenenergie ersetzt. So wurde in dieser Arbeit als ein Maß für die Schichtschädigung durch den Ionenbeschuss die Anzahl von gebrochenen Bindungen (engl. *dangling bonds*) pro einfallendem Ion berechnet, indem E_{dp} durch eine **Schwellenenergie für Bindungsbrüche** E_{bb} ersetzt. Für a-C:H wurde als Bindungsenergie für H–C-Bindungen $E_{bb}^{H} = 2,5$ eV bzw. für C–C-Bindungen $E_{bb}^{C} = 5$ eV angenommen.

2.3 Wechselwirkung von a-C:H mit Wasserstoff

2.3.1 Chemische Erosion durch Wasserstoffmoleküle bzw. -atome

 H_2 reagiert sehr träge mit Kohlenstoff [ISOBE 2004], [OGITA 2004] und [ESPINAL 2005]. Bereits in früheren Arbeiten wurden Erosionsraten von Kohle durch H_2 gemessen [ZIELKE 1955], [FEISTEL 1977]. Dort wurde gefunden, dass sogar bei relativ hohem H_2 -Partialdruck von 1 bis 7 MPa und Temperaturen zwischen 800 und 1400 K, die Erosionsraten im Vergleich zu denen aus der Erosion durch H° ([WALKER 1959]) um **drei Größenordnungen kleiner** sind.

Die chemische Erosion von a-C:H-Oberflächen durch H[°] wurde bereits in mehreren Arbeiten [VIETZKE 1989], [VIETZKE 1989 H] [ROTH 1987], [BIENER 1993] ausführlich untersucht. Sie wird durch das **Küppers-Modell** beschrieben ([KÜPPERS 1995]) und ist in Abb. 2.2 gezeigt.

Abbildung 2.2: Küppers-Modell für den Reaktionsmechanismus der chemischen Erosion von a-C:H durch atomaren Wasserstoff H[°] [KÜPPERS 1995]. Die Wirkungsquerschnitte bzw. Aktivierungsenergien der einzelnen Reaktionen sind angegeben.

Ausgangspunkt ist ein sp²-Zustand im CH-Netzwerk (unten in Abb.2.2). Dieser wandelt sich durch die Chemisorption eines Wasserstoffatoms (H $^{\circ}$) in den radikalischen Zwischenzustand sp^x um und nach der Chemisorption eines zweiten H° in einen sp³-Zustand (obere Seite in Abb.2.2). Der sp³-Zustand kann mit einer CH₃-Gruppe mit einem benachbarten Wasserstoff terminiert sein. Durch Abstraktion dieses gebundenen Wasserstoffs durch ein einfallendes H° entstehen ein flüchtiges H_2 und eine freie Bindung (rechte Seite in Abb. 2.2). Dabei geht der sp³-Zustand in den radikalischen Zwischenzustand sp^x über. Durch ein weiteres H°, das diese freie Bindung sättigt, kann die Rückreaktion (Chemisorption) in den sp³-Zustand geschehen. Der radikalische sp^x-Zustand kann aber auch über einen thermisch aktivierten Prozess durch Abspaltung der CH_3 -Gruppe in den Ursprungszustand sp² relaxieren. Die Aktivierungsenergie beträgt 1,6 eV. Die Abspaltung von CH₃-Gruppen aus dem C:H-Netzwerk ist der eigentliche Erosionsschritt, der aber erst bei Temperaturen oberhalb von ca. 400 K wesentlich wird. Bei Temperaturen oberhalb ca. 600 K existieren noch zwei Zerfallskanäle, eine thermisch aktivierte H°-Abspaltung mit einer Aktivierungsenergie von 1,7 eV (unten-links in Abb.2.2) und die thermische Zersetzung mit einer Aktivierungsenergie von 2,4 eV (mittlerer Pfeil in Abb.2.2), die den Aufhydrierungskreis vom sp²- zum sp³-Zustand verhindern [FINK 1984] und somit zu einem Rückgang der chemischen Erosion mit steigender Temperatur führen.

Abbildung 2.3: Logarithmische Auftragung der Erosionsausbeute bzw. rate der chemischen Erosion von a-C:H-Schichten durch atomaren Wasserstoff (H°) und Deuterium (D°) als Funktion der Temperatur. Die Erosionsausbeute durch H° wurden im Rahmen der vorliegenden Arbeit gemessen (Messpunkte). Die Abbildung vergleicht sie mit Erosionsmessungen von Vietzke [VIETZKE 1987 H] und Horn [HORN 1994]. Die Linien dienen als Orientierung.

Abb. 2.3 zeigt die im Rahmen dieser Arbeit durchgeführten temperaturabhängigen Erosionsmessungen von a-C:H Schichten durch H° (Messpunke). Man beobachtet ein Maximum der Erosionsausbeute bei T_{max} ca. 650–730 K. Die chemische Erosion nimmt bei Temperaturen unterhalb ca. 400 K stark ab. Bei Raumtemperatur ist sie mit dem verwendeten Aufbau nicht mehr messbar. Zum Vergleich sind Erosionsmessungen mittels Massenspektroskopie von Vietzke [VIETZKE 1987 H] und Auger-Elektronen-Spektroskopie von Horn [HORN 1994] aufgetragen.

2.3.2 Erosion durch die gleichzeitige Wechselwirkung von Wasserstoff und Ionen

Die Messung der Erosionsausbeuten von Graphit bei Raumtemperatur mit Wasserstoff- (H⁺) und Deuteriumionen (D⁺) im Energiebereich zwischen 15 eV und 4 keV bzw. zwischen 15 eV und 8 keV hat gezeigt, dass die Erosionsausbeuten durch H⁺ mindestens **einer Größenordnung höher** als die der rein chemischen Erosion durch thermischen Wasserstoff (H^o) sind [BALDEN und ROTH 2000]. Die Ausbeuten für H⁺ liegen nahezu konstant bei 0,01 C-Atome/H⁺ von 15 bis ca. 500 eV und erst bei 4 keV sinken sie bis auf $3 \cdot 10^{-3}$ C-Atome/H⁺. Die Erosionsausbeuten von D⁺ bleiben über den gesamten Energiebereich bis 8 keV deutlich höher als die Erosionsausbeuten von H⁺ und steigen zu niedrigen Energien hin sogar an [BALDEN und ROTH 2000].

Modellrechungen mit TRIM.SP ergeben für Graphit (mit $E_{\rm sb} = 7, 4 \, {\rm eV}$) ein Maximum der physikalischen Zerstäubung bei ca. 500 eV für H⁺. Die Rechnungen beschreiben den Verlauf bei hohen Energien gut, nicht jedoch bei niedrigen Energien kleiner als 200 eV bis hin zu der Energieschwelle der physikalischen Zerstäubung (ca. 50 eV), bei der die berechnete physikalische Erosionsausbeute rapide abnimmt. Mehrere Vergleiche zwischen TRIM.SP-Modellrechungen und experimentellen Ergebnissen haben gezeigt, dass TRIM.SP die physikalischen Wechselwirkungen gut beschreibt ([ECKSTEIN 1991]), es kann jedoch, im Gegensatz zu MD-Rechungen, keine Aussagen über die chemischen Reaktionen zwischen den Konstituenten des Targets oder zwischen Projektil und Target modellieren.

Erste Versuche mit empirischen Modellen zur Erklärung der obigen niederenergetischen Wechselwirkungen von H^+ mit Graphit wurden von Haasz und Davis vorgeschlagen [HAASZ und DAVIS 1986]. Dabei gehen sie davon aus, dass H^+ durch Verlagerung und Bindungsbrüche die Graphitoberfläche aktiviert. An dieser reaktiven Oberfläche können Wasserstoffatome CH₃-Gruppen bilden, die in einem zweiten Prozessschritt mit einem weiteren Wasserstoffatom reagieren und zur Desorption von CH₄ führen. Das Modell von Haasz und Davis lieferte jedoch keine Erklärung gemessener Temperaturabhängigkeit. Die Temperaturabhängigkeit des Erosionsprozesses wurde später von Küppers und Mitarbeitern untersucht (Küppers-Modell, siehe Abschnitt 2.3.1) [KÜPPERS 1995].

Weitere Modelle der Erosion von Graphit durch H^+ wurden nach der Entwicklung des Küppers-Modells [KÜPPERS 1995] postuliert. Eines davon wurde von Roth vorgeschlagen [ROTH und GARCÍA-ROSALES 1996], [ROTH 1999]. Dabei setzt sich die gesamte Erosionsausbeute Y_{total} als eine Summe von drei Beiträgen zusammen:

$$Y_{\text{total}} = Y_{\text{phys}} + Y_{\text{chem}} + Y_{\text{surf}} \tag{2.2}$$

Hierin wird die physikalische Zerstäubungsausbeute Y_{phys} durch die überarbeitete Bodansky-Formel [GARCÍA-ROSALES 1994] beschrieben. Y_{chem} beinhaltet thermische Prozesse bei höheren Temperaturen, d.h. die chemischen Reaktionen aus dem Küppers-Modell. Y_{surf} beschreibt einen oberflächenaktiven Prozess, die so genannte kinetische Kohlenwasserstoffemission. Dieser Term spielt bei niedrigen Temperaturen z.B. Raumtemperatur und unterhalb der Energieschwelle für physikalische Zerstäubung eine wesentliche Rolle. Der Prozess basiert auf der Hypothese, dass durch Reaktivität eines thermalisierten H⁺ schwach gebundene CH₃-Gruppen gebildet werden, die anschließend durch die einfallenden Ionen physikalisch zerstäubt werden. Der Mangel an experimentellen Daten bei niedrigen Ionenenergien unterhalb von 10 eV erschwert allerdings die Überprüfung des Y_{surf} -Terms im obigen Modell.

Um Klarheit über die chemischen und physikalischen Prozesse zu erlangen und sie voneinander trennen zu können, führte Vietzke Untersuchungen zur gleichzeitigen Wechselwirkung von H[°] und chemisch unreaktiven Ar⁺ bei 500 eV und 5 keV mit a-C:H-Oberflächen durch [VIETZKE 1982]. Er maß mittels eines Quadrupol-Massenspektrometers eine starke Zunahme der bei der Erosion gebildeten Kohlenwasserstoffspezies, hauptsächlich Methan. Vietzke führte weitere massenspektroskopische Messungen der Erosion von Graphit durch die gleichzeitige Wechselwirkung von 3 keV Ne⁺ und D[°] bei unterschiedlichen Substrat-Temperaturen durch und fand, dass bei 800 K CD₃ dominiert. Mit sinkenden Temperaturen, von 800 K bis Raumtemperatur, überwiegen jedoch stabile Erosionsprodukte wie CD₄ statt CD₃ bilden [VIETZKE 2001]. Offenbar handelt es sich nicht mehr um eine rein chemische Erosion sondern um eine synergetische Erosion durch die Wechselwirkung von Ionen und chemisch reaktiven Teilchen.

Obige Beobachtungen führten zum Begriff chemische Zerstäubung (engl. chemical sputtering). Im Rahmen dieser Arbeit bedeutet chemische Zerstäubung die synergetische Erosion von a-C:H durch die gleichzeitige Wechselwirkung von energetischen Ionen und chemisch-reaktiven Teilchen (Details im Abschnitt 2.3.3). Handelt es sich um eine rein chemische Erosion durch thermische, reaktive Teilchen wird von chemischer Erosion die Rede sein. Wird nur die kinematische Erosion durch energetische Ionen betrachtet, spricht man von physikalischer Zerstäubung.

Abb. 2.4 zeigt die von Hopf gemessenen Erosionsausbeuten (erodierte Kohlenstoffatome pro einfallendem Ar⁺) bzw. Erosionsrate von a-C:H-Schichten bei 340 K durch die gleichzeitige Wechselwirkung von Ar⁺ und H° im Ar⁺-Energiebereich zwischen 20 und 900 eV [HOPF 2003]. Die Flussdichten betrugen für Ar⁺ $j_{Ar^+} = 3, 5 \cdot 10^{12} \text{ cm}^{-2}\text{s}^{-1}$ und für H° $j_{H^\circ} = 1, 4 \cdot 10^{15} \text{ cm}^{-2}\text{s}^{-1}$. Zum Vergleich sind ebenfalls der gemessene Betrag der Erosionsrate durch H° (chemische Erosion; horizontale, gepunktete Linie) und die Messungen der Erosionsausbeuten durch Ar⁺ (physikalische Zerstäubungsausbeute, Kreissymbole) aufgetragen [HOPF 2003].

Für die TRIM.SP-Rechungen der physikalischen Zerstäubung verwendete Hopf eine Oberflächenbindungsenergie $E_{\rm sb}$ von 3,0 eV [HOPF 2003]. Eine gute Übereinstimmung zwischen Messung (Kreissymbole) und TRIM.SP-Rechnung (durchgezogene Linie) der physikalischen Zerstäubung von a-C:H-Oberflächen durch Ar⁺ ist in Abb. 2.4 zu sehen. Die Summe der berechneten Zerstäubungsraten durch Ar⁺ (durchgezogene Linie) plus die Erosionsrate der chemischen Erosion durch H^o (gepunktete Linie) ergibt die gestrichelte Linie. Sie ist um gut eine Größenordnung unterhalb der gemessene Erosionsraten durch die gleichzeitige Wechselwirkung von Ar⁺ und H^o (Sternsymbole) mit a-C:H-Schichten. Diese Messung weist auf einen markanten Synergismus durch Ar⁺ und H^o hin, der im Wesentlichen

Abbildung 2.4: Erosionsausbeute (links) bzw. -rate (rechts) von a-C:H bei 340 K durch die gleichzeitige Wechselwirkung von $Ar^+ + H^\circ$ (Sternsymbole) in Abhängigkeit der Ar^+ -Energie von 20 bis 900 eV. Zusätzlich sind die Messungen der Ar⁺-Zerstäubungsausbeute (Kreissymbole) mit der dazugehörigen TRIM.SP-Rechnung (durchgezogene Linie) und der Beitrag der chemischen Erosionsrate durch H° (gepunktete Linie, ausschließlich rechte Skala) eingetragen. Die gestrichelte Linie entspricht der Summe der einzelnen Beiträge zur Erosion durch Ar^+ und H^{\circ}. Die Strich-Punkt Modellkurve ist die Ausbeuteberechnung der chemischen Zerstäubung Ar^++H° [HOPF 2003] (Details siehe Abschnitt 2.3.3).

zwei Eigenschaften zeigt: die gemessene Erosionsraten Ar^++H° sind nicht nur deutlich höher als die Summe der einzelne Beiträge zur Erosion durch Ar^+ und H° (gestrichelte Linie) sondern auch die Energieschwelle verschiebt sich bis herab zu Energien unter 20 eV und liegt damit deutlich unterhalb der Energieschwelle für physikalische Zerstäubung (etwa 100 eV). Der Synergismus zwischen Ar^+ und H° ist ein Beispiel für **chemische Zerstäubung**. Dafür entwickelte Hopf ein **Modell für die Energieabhängigkeit** der Erosion [HOPF 2003]. Dieses Modell ist als Strich-Punkt Linie in Abb. 2.4 gezeigt. Die Abhängigkeit der Erosionsrate bzw. -ausbeuten Ar^++H° vom Flussverhältnis $R = j_{H^\circ}/j_{Ar^+}$, das für die gezeigte Messung in Abb. 2.4 $R \approx 400$ betrug, lässt sich durch ein empirisches **Modell für die Flussabhängigkeit** der Erosionsausbeute beschreiben [HOPF 2003]. Beide Modelle werden im Abschnitt 2.3.3 im Detail erläutert.

2.3.3 Mechanismus und Modell der chemischen Zerstäubung durch Ar⁺+H^o

Modell für die Flussabhängigkeit

Das Modell der Flussabhängigkeit der Erosionsausbeute von a-C:H durch Ar⁺ und H° von Hopf unterscheidet zwei Oberflächenplätze: Θ_{CH} beschreibt die Bedeckung an denen H° in der Nachbarschaft von Kohlenstoff vorhanden ist, und Θ_{CC} solche ohne H°; dabei ist $\Theta_{CH} + \Theta_{CC} = 1$ [HOPF 2003]. Hopf setzt an, dass die chemische Zerstäubung nur an Θ_{CH} -Plätzen und die physikalische Zerstäubungsausbeute nur an Θ_{CC} -Pläzen stattfinden kann. Die entsprechenden Zerstäubungsausbeuten sind Y_{cs} und Y_{ps} . Die gesamte Ausbeute wird als $Y_{Modell} = Y_{ps}(1 - \Theta_{CH}) + Y_{cs}\Theta_{CH}$ angesetzt. Aus einem Gleichgewicht des Einbaus von einfallendem H[°] und der Freisetzung von H[°] durch den Ionenbeschuss erhält Hopf einen stationären Wert der Bedeckung Θ_{CH} und damit für die Ausbeute:

$$Y_{\text{Modell}} = Y_{\text{ps}} + \frac{R}{R + S_{\text{H}^{\circ}\text{out/in}}} (Y_{\text{cs}} - Y_{\text{ps}}), \qquad (2.3)$$

wobei

- $Y_{\rm ps}$ der Beitrag der rein physikalischen Zerstäubung durch die Ionen,
- $R = j_{\mathrm{H}^{\circ}}/j_{\mathrm{Ion}}$ das Flussverhältnis.
- Y_{cs} der Term der chemischen Zerstäubung durch die gleichzeitige Wechselwirkung von Ionen und H° bei größerem R (asymptotischer Wert für $j_{H^\circ} \gg j_{Ar^+}$ bzw. Wasserstoffüberschuß) und
- $S = Y_{\text{H}^{\circ}\text{out}}/p_{\text{H}^{\circ}\text{in}}$ das Verhältnis der ionenunterstützten Freisetzungsausbeute von Wasserstoffatomen durch ein einfallendes Ion $Y_{\text{H}^{\circ}\text{out}}$ zu dem Einbau von einfallendem H°, $p_{\text{ein}}^{\text{H}^{\circ}}$,

ist.

Die drei Parameter $Y_{\rm ps}$, $Y_{\rm cs}$ und S lassen sich durch Anpassen des Modells an die Daten bestimmen. Messungen der Erosionsausbeuten für 200 eV Ar⁺+H^o in Abhängigkeit vom R im Flussverhältnisbereich von R = 0 bis $R \approx 500$ lieferten folgende Parameterwerte: $Y_{\rm ps} = 0, 12, Y_{\rm cs} = 2, 86$ und S = 176. Dabei betrugen die gemessenen Erosionsausbeuten Y = 0, 12 bei R = 0 (nur physikalische Zerstäubung) bis ca. Y = 2 bei $R \approx 500$. An diesem Ergebnis sieht man, dass der Mechanismus der chemischen Zerstäubung erheblich effektiver ist, je mehr H^o vorhanden ist; d.h. für eine hohe Erosionsausbeute ist ein Überangebot an H^o nötig.

Modell für die Energieabhängigkeit

Abbildung 2.5 stellt schematisch den von Hopf vorgeschlagenen Mechanismus der chemischen Zerstäubung von a-C:H-Oberflächen mit Ar^+ und H° [HOPF 2003] dar.

Man kann diesen mikroskopischen Mechanismus der chemischen Zerstäubung in vier Schritten beschreiben:

- 1. Die einfallenden Ionen brechen innerhalb ihrer Reichweite C-C-Bindungen.
- 2. Wasserstoffatome sättigen innerhalb ihrer Reichweite die offenen Bindungen ab bevor es zur Rekombination der gebrochenen Bindungen kommt.
- Durch wiederholte Bindungsbrüche (Schritt 1) und deren Passivierung durch Wasserstoffatome (Schritt 2) bilden sich stabile Kohlenwasserstoffmoleküle.
- 4. Diese gebildeten stabilen und volatilen kohlenstoffhaltigen Spezies (Schritt 3) können thermisch aus der Schicht diffundieren. Das ist der eigentliche Erosionsschritt.

Abbildung 2.5: Schematische Darstellung des mikroskopischen Mechanismus der chemischen Zerstäubung von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von Ar^+ und H° nach [HOPF 2003].

Auf Basis des vorgeschlagenen Mechanismus wurde ein mathematisches Modell der Energieabhängigkeit der chemischen Zerstäubung entworfen [HOPF 2003]. Es besagt, dass die Erosionsausbeute der gleichzeitigen Wechselwirkung von Ionen und atomarem Wasserstoff $Y_{\text{Ion+H}^{\circ}}$ proportional zum Integral (Υ_{C}^{E}) aus dem Produkt zweier Faktoren über die Tiefe x unter der Oberfläche ist:

$$Y_{\text{Ion}+\text{H}^{\circ}} = a \cdot \int \underbrace{y_{\text{bb}}^{\text{C}}(x, E)}_{\text{Bindungsbrüche} (1)} \cdot \underbrace{\exp(-x/\lambda)}_{\text{H}^{\circ}-\text{Passivierung} (2)} dx = a \cdot \Upsilon_{\text{C}}^{E}, \qquad (2.4)$$

darin sind:

- $y_{bb}^{C}(x, E)$ die Tiefenverteilung der Dichte der Ausbeute für C–C-Bindungsbrüche, d.h. die Ausbeute im Tiefenintervall $[x; x + \delta x]$ dividiert durch δx . Das Integral $\int y_{bb}^{C}(x, E) dx$ ist die **Ausbeu**te für Bindungsbrüche (engl. *dangling bonds*) von Kohlenstoff-Kohlenstoff-Bindungen durch Ionenbeschuss. $y_{bb}^{C}(x, E)$ wird mittels TRIM.SP für jede Ionenenergie E berechnet. Der Schlüsselparameter ist die Bindungsbruchenergie E_{bb} , siehe Abschnitt 2.2. Die Reichweite der Ionen (Tiefenprofil) hängt von ihrer Energie und ihrer Masse ab und wird bei der TRIM.SP Berechnung berücksichtigt.
- $\exp(-x/\lambda)$ ist die tiefenabhängige Passivierungswahrscheinlichkeit der gebrochenen Bindungen durch H°. Dabei wird angenommen, dass die Passivierungswahrscheinlichkeit proportional zur lokalen Dichte an H° ist. Für die H°-Dichte wird angenommen, dass sie mit zunehmendem Abstand x von der Oberfläche (Abb. 2.5) exponentiell abnimmt (Abfalllänge-Parameter λ). Plasma-Experimente [PILLATH 1987], [VON KEUDELL und JACOB 1996] haben gezeigt, dass H° bis zu ca. 2 nm Tiefe vorhanden ist. Somit ist die Wahl $\lambda = 0,4$ nm angemessen.
- *a* ist ein Skalierungsparameter für das Modell. Durch die Wahl von a = 0,4 wird die chemische Zerstäubung durch Ar⁺+H^o gut beschrieben (siehe Abb. 2.4).

2.4 Wechselwirkung von a-C:H mit Stickstoff

Bei der Abscheidung von Kohlenwasserstoffschichten mit Niedertemperatur-Plasmen wurde beobachtet, dass die Beimischung von Stickstoff im Plasma zu einer Abnahme des Schichtwachstums führt [HONG 2000], [JACOB 2005]. Tabarés und Mitarbeiter versuchen diese Redzierung durch einen so genanten Scavenger-Effekt zu erklären [TABARÉS 2002], [TABARÉS 2003]. Dabei gehen sie davon aus, dass Kohlenwasserstoff-Radikale in der Gasphase mit dem Stickstoff zu unreaktiven Spezies abreagieren. Es gibt bis heute keinen direkten Nachweis dieses Mechanismus. Eine alternative Erklärung ist, dass Stickstoff die Kohlenwasserstoffschicht erodiert und dadurch die Nettodepositionsrate sinkt. Plasmaexperimente haben gezeigt, dass das Zusammenwirken der Ionenenergie und der chemischen Reaktivität der wechselwirkenden Spezies (Stickstoff, Kohlenstoff und Wasserstoff), d.h. die chemische Zerstäubung von a-C:H durch Stickstoff, eine wichtige Rolle spielt [JACOB 2004] [JACOB 2005], [SCHWARZ-SELINGER 2007]. Um die Entstehung von flüchtigen $C_x N_y$ $(x, y \leq 2)$ Spezies nachzuweisen wurden eine Reihe von Erosionsmessungen an kohlen(wasser)stoffhaltigen Schichten durch Stickstoffionenbeschuss durchgeführt [HAMMER 1996], [GRIGULL 1998], [GRIGULL 1999], [HONG 1999], [HONG 2000]. Mittels massenspektroskopischer Methoden identifizierte Hammer beim Beschuss mit 170 eV N₂⁺ stabile Erosionsprodukte wie HCH, CN und C₂N₂ [HAMMER 1996]. Anhand der gemessenen Signale bestimmte er eine Erosionsausbeute von etwa 0,5 Kohlenstoffatomen pro einfallendem Stickstoffmolekülion (N_2^+) . Eine systematische Studie zur absoluten Quantifizierung von Erosionsausbeuten Y existiert vor allem bei N_2^+ -Energien unterhalb 100 eV jedoch nicht.

Das Interesse an der Synthese einer hypothetischen, so genannten β -C₃N₄-Kristallstruktur, die außergewöhnliche mechanische Eigenschaften ähnlich wie Diamant [LIU 1990] besitzen soll, hat mehre Autoren motiviert, Kohlenstoff-Stickstoff-Schichten mit unterschiedlichen Methoden herzustellen. Eine der experimentellen Herausforderung liegt darin, die Stickstoffkonzentration von 57%[BADZIAN 1999], [MALKOW 2000], die Der Stöchiometrie von C₃N₄-Kristallen entspricht, zu erreichen. Zahlreiche Versuche wie Plasmadepositions- ([FRANCESCHINI 2000], [HONG 2000]), Sputter-([HAMMER 1996], [KALTOFEN 1997a], [KALTOFEN 1997b], [HELLGREN 2001]) und Teilchenstrahlexperimente ([HAMMER 1996], [BAKER 1997]) mit Stickstoff und kohlen(wasserstoff)haltigen Schichten wurden durchgeführt. Es wurde jedoch maximal ca. 40 % Stickstoffanteil in den Schichten erreicht [TODOROV 1994]. Grund dafür ist die Bildung flüchtiger $C_x N_y$ Spezies, die einen weiteren Einbau von Stickstoff in die Kohlenstoffstruktur verhindert. Eine Möglichkeit die Stickstoffkonzentration zu erhöhen besteht darin, die Mobilität der flüchtigen $C_x N_y$ Spezies in der Schicht zu reduzieren, d.h. die Schichten zu kühlen. Magentron-Sputter-Experimente mit Stickstoffionen ($\leq 200 \text{ eV N}^+$) bei tiefen Temperaturen (bis zu 143 K) haben das Wachstum von gut geordneten Kristallstrukturen gezeigt [HELLGREN 2000], [HULTMAN 2003], [NEIDHARDT 2003]. Unter bestimmten Bedingungen ist es möglich fullerenartige Strukturen aus Kohlenstoff-Stickstoff-Komplexen herzustellen [ARCE 2002], [NEIDHARDT 2005]. Dort wird vermutet, dass das Wachstum solcher fullerenähnlicher Strukturen durch den Einbau von bereits im Plasma gebildeten $C_x N_y$ $(x, y \leq 2)$ -Spezies und nicht aus einzelnen N- und C-Atomen geschieht. Desorptionsexperimente lieferten den Hinweis, dass diese $C_x N_y$ Spezies, insbesondere das stabile Molekül $C_2 N_2$ (Cyanogen), bei Temperaturen unterhalb von 158 K in großen Mengen im Substrat vorkommen kann [NEIDHARDT 2005]. Dazu wurden Schichten bei Temperaturen unterhalb von 150 K abgeschieden und anschließend erwärmt. Das Signal für $C_2 N_2$ wurde massenspektroskopisch gemessen. Es zeigte sich, dass oberhalb von 158 K, der Sublimationstemperatur von $C_2 N_2$, das massenspektroskopische Signal von $C_2 N_2$ um mehreren Großenordnungen anstieg.

2.5 Wechselwirkung von a-C:H mit Sauerstoff

Exponiert man a-C:H Schichten einem Sauerstoffplasma, bilden sich als flüchtige Erosionsprodukte CO, CO₂, Wasser und H₂ [LANDKAMMER 1999]. Sie werden durch vielfältige mikroskopische Mechanismen erzeugt: bei der Oxidation durch O₂, bei der chemischen Erosion durch Radikale (O°, O₃), beim Bombardement der Oberfläche mit Sauerstoffionen (O⁺, O⁺₂, O⁺₃) und bei der gleichzeitigen Wechselwirkung von Ionen und Neutralen (O₂).

Neutrale Sauerstoffmoleküle alleine verbrennen kohlenstoffhaltige Materialen bei genügend hohen Temperaturen. Bei a-C:H beginnt die Oxidation bei Temperaturen über ca. 500-600 K [WANG 1997], [MARUYAMA 1999]. Thermische Sauerstoffradikale, d.h. Sauerstoffatome [ROSNER 1970] und Ozon [MOORMANN 2000], zeigen eine erhöhte Reaktivität bei moderaten Temperaturen, so dass eine wesentliche Reaktivität mit a-C:H bis hinunter zu Raumtemperatur zu erwarten ist. Beim Bombardement von Kohlenstoffoberflächen mit Sauerstoffionen handelt es sich um chemische Zerstäubung [HECHTL 1981], [HECHTL 1984], [REFKE 1994]. Zusätzlich zur physikalischen Zerstäubung reagieren die Ionen am Ende ihre Reichweite und bilden CO, CO_2 und Wasser. Dadurch sinkt die Energieschwelle für Erosion und die Erosionsausbeute erhöht sich.

Bei der Erosion von a-C:H mit Sauerstoffplasmen, bei dem alle erwähnte Spezies gleichzeitig mit der Oberfläche wechselwirken, sind Synergismen zu erwarten, wie sie auch bei der Erosion von a-C:H durch Wasserstoffatome und Edelgasionen (siehe Abschnitt 2.3) oder bei der Erosion von Silizium durch fluorhaltige Plasmen [COBURN 1979] gefunden wurden. Erosionsexperimente von a-C:H-Schichten mit H_2 , D_2 und O_2 als Plasmaquellgas (ECR-Plasma) zeigen, dass das Sauerstoffplasma mit Abstand die höchsten Erosionsraten erzielt [LANDKAMMER 1999], [JACOB 1999]. Sie liegen bei den unterschiedlichen Plasmabedingungen, wie Druck, Probentemperatur und Substratvorspannung (Biasspannung), im Vergleich zu den Deuterium- und Wasserstoffplasmen fünf- bzw. -zehnfach höher. Die Erosionsrate steigt mit der Ionenenergie erheblich und zeigt eine schwache Temperaturabhängigkeit. Diese zwei Merkmale lassen erahnen, dass der Erosionsprozess durch thermisch aktivierte Reaktionen und ioneninduzierte Effekte gegeben ist. Dabei haben Plasmaexperimente mit unterschiedlichen Mischungsverhältnissen von Edelgas- und Sauerstoffionen gezeigt, dass nur der kinematische Faktor (siehe Abschnitt 2.2) und die Ionenenergie für Oberflächenschädigung verantwortlich sind [LANDKAMMER 1999]. Zusammenfassend kann man sich den Mechanismus der chemischen Erosion durch Sauerstoffplasmen als Zwei-Schritt-Prozess vorstellen: der Ionenbeschuss verursacht Schädigungen mit denen thermische Sauerstoffspezies chemisch reagieren und CO, CO₂ und Wasser bilden [LANDKAMMER 1999]. Eine quantifizierte und absolute Bestimmung der im Plasma wechselwirkenden Teilchen sowie ihrer Energien und Flüsse, sind jedoch schwierig und meistens sehr ungenau. Im Rahmen dieser Arbeit sollen mit einem Teilchenstrahlexperiment die mikroskopischen Prozesse identifiziert und quantifiziert werden.

2.5.1 Oxidation mit Sauerstoffmolekülen bzw. -atomen

Die chemischen Reaktionen von Kohlenstoff mit molekularem Sauerstoff (O_2) sind seit langem Gegenstand der Forschung und relativ gut untersucht [ROSNER 1970], [WALKER 1991], [VIETZKE und HAASZ 1997], [HAYHURST 1998], [LI 2001], [HAYNES 2001]. Im LEO (Low Earth Orbit) spielen die Wechselwirkungen von Ozon (O₃) und atomarem Sauserstoff (O°) mit kohlenstoffbasierten Materialien eine wichtige Rolle [ROSNER 1970], [BANKS 1990], [DE GROH 2002]. In der Fusionsforschung erwägt man Sauerstoff zur Entfernung von redeponierten Kohlenwasserstoffschichten von den Wänden von Fusionsanlagen zu verwenden [MUELLER 1997], [HAASZ 1998], [PHILIPPS 1999], [DAVIS 2001], [TAKEISHI 2006], [HU 2006].

Abb. 2.6 zeigt die Erosionsausbeute von Graphit durch O°, O₂ und durch die gleichzeitige Wechselwirkung von Ar⁺+O₂, die im Abschnitt 2.5.2 behandelt wird. Grundsätzlich sind die Reaktionswahrscheinlichkeiten von Sauerstoff mit Kohlenstoff höher als die von Wasserstoff mit Kohlenstoff [ROSNER 1970]. Aus einem Vergleich von Abb. 2.3 mit Abb. 2.6 erkennt man, dass bei der jeweiligen Temperatur der maximalen Kohlenstofferosion die Erosionsausbeute durch Sauerstoffatome ($\approx 1600 \text{ K}$) um zwei Größenordnungen höher ist als die durch Wasserstoffatome ($\approx 700 \text{ K}$)¹.

Experimente mit Sauerstoffisotopen und Kohlenstoff [WALKER 1967] haben gezeigt, dass sich CO und CO₂ direkt als Primär-Produkte nach der Chemisorption von Kohlenstoff-Sauerstoff-Komplexen an aktiven Stellen von Kohlenstoffoberflächen, ASA (engl. *active surface area*), bilden. Man kann solche C $-O_2$ -Reaktionen ([MARSH 1989]) wie folgt darstellen:

$$2C_f + O_2 \rightarrow 2 C (O) \rightarrow 2 CO \quad (E_c = 2, 10 \pm 0, 20 eV)$$
 (2.5)

$$C_f + O_2 \rightarrow C(2O) \rightarrow CO_2 \qquad (E_c = 2, 80 \pm 1, 14 \text{ eV})$$

$$(2.6)$$

Darin bedeutet C_f eine freie aktive Stelle des Kohlenstoffs. C(O) und C(2O) symbolisieren eine mit atomarem bzw. molekularem Sauerstoff belegte Kohlenstoff-Stelle. Die Aktivierungsenergien E_c

¹Man vergleicht allerdings a-C:H (Abb. 2.3) mit Graphit (Abb. 2.6)

Abbildung 2.6: Logarithmische Darstellung der Temperaturabhängigkeit der Erosionsausbeute von Graphit durch O° und O₂. Außerdem sind die temperaturabhängigen Erosionsmessungen von Graphit durch das gleichzeitige Angebot von 5 keV Ar⁺ und O₂ eingetragen. Die Erosionsausbeuten wurden aus Massenspektroskopie-Signalen ausgewertet [VIETZKE und HAASZ 1997]. Die Daten für O° stammen aus absoluten Erosionsmessungen von Graphit mittels Kalorimetrie [ROSNER 1970].

wurden aus der temperaturkontrollierten Oxidation (400–1000 K) von Graphit bei 1,3–6,1 kPa O₂ bestimmt [LI 2001]. Im Falle einer nicht geordneten Graphitprobe zeigte Gozzi jedoch, dass im Temperaturbereich von ca. 650 bis 850 K die Reaktivität einer frischen Probe deutlich stärker als die einer bereits oxidierten Probe ist [GOZZI 1996]. Dies ist offenbar ein Indiz, dass es sich um einen irreversiblen Prozess handelt. Nach der Sauerstoffexposition bilden sich (CO)-Komplexe auf der Oberfläche als Vorläuferspezies für die Oxidation. Er bestimmte anhand seiner Messdaten die Aktivierungsenergie für die Oxidation. Sie entsprechen $E_c \approx 1, 2$ eV für die frische bzw. $E_c \approx 2, 3$ eV für die oxidierte Probe.

Das Verhältnis der Primär-Produkte CO/CO_2 wächst exponentiell mit steigender Temperatur zwischen ca. 700 bis 1600 K ([ARTHUR 1956], [HAYHURST 1998]) ist jedoch sowohl von ASA als auch vom Sauerstoffpartialdruck abhängig.

Bei Temperaturen unterhalb ca. 1000 K, wie in der vorliegenden Arbeit, lassen sich die Reaktionen von Kohlenstoff mit O₂ mit folgender Formel zur Bestimmung der Kohlenstoffverlustrate -dC/dt gut berechnen [WALKER 1991]:

$$-dC/dt = \kappa_T \cdot (p_{O_2})^n \cdot ASA \cdot (1 - \Theta)$$
(2.7)

Hierbei stellt κ_T die temperaturabhängige Ratenkonstante, p_{O_2} den Sauerstoffpartialdruck und n die Reaktionsordnung bezüglich Sauerstoff dar. Θ gibt den Bruchteil von ASA an, der während der einzelnen Reaktionsschritte durch Oberflächensauerstoffkomplexe bedeckt ist. Obige Diskussion gilt für relativ hohe Sauerstoffpartialdrücke, die in der Grössenordnung von 1 kPa liegen. Betrachtet man sehr geringe Sauerstoffpartialdrücke (kleiner als 10^{-3} Pa), wie sie typischerweise als Restgas in Fusionsexperimenten vorkommen, stellt sich die Frage ob die gleichen C $-O_2$ -Reaktionen dort immer noch Gültigkeit besitzen. Mit Teilchenstrahlenexperimenten haben Vietzke und Haasz gezeigt (siehe Abb. 2.6), dass die Erosionsausbeuten von Graphit durch O_2 bei ca. 10^{-3} Pa und Temperaturen von etwa 1300 K in der Größenordung von 10^{-3} C/O liegen [VIETZKE und HAASZ 1997]. Diese Werte stimmen mit den Berechenten von Walker [WALKER 1991] bei kleinem Θ in Gl. 2.7 überein.

Abb. 2.6 zeigt auch die deutlich höheren Erosionsausbeuten (knapp unterhalb Eins) von O° mit isotropen Graphit im gemessenen Temperaturbereich von 600 bis 2000 K [ROSNER 1970]. Otterbein entdeckte, dass die O°-C-Reaktionen bei Raumtemperatur eine kleine Aktivierungsenergie von 0,22 eV haben [OTTERBEIN 1964]. Eine lineare Extrapolation der Kurve für die O°-C-Reaktion in Abb. 2.6 auf Raumtemperatur führt zu einer Erosionsausbeute C/O von etwa 0,02.

2.5.2 Erosion durch die gleichzeitige Wechselwirkung von Sauerstoff und Ionen

Eine Übersicht mehrerer Erosionsmessungen von Graphit durch Sauerstoffionen (O^+) in Abhängigkeit von der Ionenenergie im Bereich zwischen 15 eV bis 10 KeV ist in [VIETZKE und HAASZ 1997] zusammengestellt. Ein Vergleich der gemessenen Erosionsausbeuten mit den mit TRIM.SP berechneten physikalischen Zerstäubungsausbeuten zeigt eine noch stärkere Lücke zwischen TRIM.SP-Modellierung und Messung als im Fall von H⁺ auf Graphit. Erste messbare Erosionsprozesse bei Raumtemperatur werden bei Energien deutlich unterhalb der Schwelle für physikalische Zerstäubung (ca. 100 eV) registriert; bei 20 eV O⁺ ist die Erosionsausbeute C/O⁺ etwa 0,03 [LUBERT 1988] bzw. 0,1 [KRECH 1993]. Bereits bei Energien oberhalb von 30 eV ist die Erosionsausbeute annähernd 1 C/O⁺ [AKISHIN 1994]. Dieser Wert bleibt fast konstant bis zu der maximalen Energie, für die Messungen existieren, von 10 KeV. TRIM.SP-Rechnungen ergeben jedoch nur Erosionsausbeuten von 0,4 C/O⁺ bei 10 KeV O⁺.

Die Erosion von Graphit durch die gleichzeitige Wechselwirkung von O_2 und Ar-Ionen (5 keV) wurde bereits in Abb. 2.6 gezeigt [VIETZKE 1987 O], [VIETZKE und HAASZ 1997]. Dort sieht man einen Anstieg der Erosionsausbeuten nicht nur bei Temperaturen oberhalb von 1000 K, bei denen die Oxidation durch O_2 alleine wesentlich wird, sondern auch bei Temperaturen unterhalb von 700 K bis hin zur Raumtemperatur, bei denen es sich um chemische Zerstäubung durch Ar^+ und O_2 handelt. Bei Raumtemperatur ist dort sogar die maximale Erosionsausbeute von ca. 0,05 C/O gemessen worden. Bei ca. 1200 K erreichte die Erosionsausbeute einen Wert von ca. 0,03 C/O, der zwar deutlich höher als der durch die O_2 -Oxidation, jedoch kleiner als der bei Raumtemperatur ist.

2.6 Fragestellungen

Die Ziele dieser Arbeit werden hier anhand von offenen Fragen formuliert, die im Laufe der Arbeit behandelt und am Ende des zutreffenden Kapitels beantwortet werden.

2.6.1 Chemische Zerstäubung von a-C:H durch Edelgasionen+H°

In Abschnitt 2.3.3 wurde ein mikroskopisches Modell der chemischen Zerstäubung von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von H[°] und Ar⁺ präsentiert. Das Modell basiert jedoch hauptsächlich auf Messungen der chemischen Zerstäubungsausbeuten durch Ar⁺ und H[°].

Fragenkomplex 1: Kann man dieses Modell für die chemische Zerstäubung auf andere Ionen verallgemeinern? Kann die Abhängigkeit der Erosionsausbeute von der Ionenenergie, dem Verhältnis Ionen/H[°] (Flussabhängigkeit) und der Temperatur in ein einziges Modell integriert werden?

2.6.2 Wechselwirkung von N $_2^+$ und N $_2^+\text{+H}^\circ$ mit a-C:H

Um Details über die mikroskopischen Mechanismen bei der Wechselwirkung von Stickstoffionen sowie von der gleichzeitigen Wechselwirkung von Sickstoffionen und Wasserstoffatomen mit a-C:H-Schichten zu lernen sind quantifizierte Messungen unerlässlich.

Fragenkomplex 2: Lässt sich die Wechselwirkung von niederenergetischen Stickstoffionen (einige zehn bis einige hundert eV) mit kohlenwasserstoffhaltigen Schichten mittels chemischer Zerstäubung erklären? Ist die Modellvorstellung der Energieabhängigkeit der chemischen Zerstäubung im Abschnitt 2.3.3 dafür geeignet? Wie ändert sich die chemische Zerstäubung bei tiefen Temperaturen, insbesondere unterhalb der Sublimationstemperatur von C_2N_2 (158 K)?

2.6.3 Oxidation durch O_2 und die chemische Zerstäubung durch Ar⁺+ O_2 von a-C:H

a-C:H oxidiert ab ca. 500-600 K [WANG 1997], [MARUYAMA 1999]. Bei tieferen Temperaturen kommt es zu keiner chemischen Erosion von a-C:H durch O_2 . Exponiert man a-C:H-Schichten einem Sauerstoffplasma bei Raumtemperatur wird jedoch eine erhebliche Abhängigkeit der Erosionsraten mit der Ionenenergie beobachtet [LANDKAMMER 1999]. Erosionsmessungen von Graphit durch Ar^++O_2 zeigen sogar ein Anstieg der Erosionsraten mit sinkender Temperaturen [VIETZKE und HAASZ 1997].

Fragenkomplex 3: Wie verhält sich der Erosionsprozess von a-C:H durch die gleichzeitige Wechselwirkung von Ar^+ und O_2 ? Lässt sich die Abhängigkeit der Ionenenergie beim Erosionsprozess von a-C:H-Schichten durch Ar^+ und O_2 unter der Modellvorstellung der chemischen Zerstäubung im Abschnitt 2.3.3 erklären? Welcher Einfluss hat die Temperatur während des ionenunterstützten Erosionsprozesses, besonders bei tieferen Temperaturen? Wie stark ist die Abhängigkeit der Erosionsrate vom Ar^+ -zu- O_2 -Flussverhältnis?

3 Experiment

Dieses Kapitel befasst sich mit dem Teilchenstrahlexperiment MAJESTIX. Dessen Aufbau und seine Komponenten werden im ersten Teil des Kapitels beschrieben. Im zweiten Teil werden die Messtechnik der In-Situ-Ellipsometrie zum Studium der Wechselwirkung von Ionen und chemisch reaktive Teilchen mit a-C:H Schichten erläutert.

3.1 Das Teilchenstrahlexperiment MAJESTIX

Das Ultrahochvakuum-Teilchenstrahlexperiment MAJESTIX ist schematisch in Abb. 3.1 dargestellt. Es besteht aus zwei Vakuumkammern, einer Proben-Präparationskammer (PK) und der Hauptkammer (HK), die durch einen Schieber getrennt sind. Proben können mittels einer Transferstange zwischen der PK und der HK unter Vakuum transferiert werden. Um die Wechselwirkung der auf der Probe deponierten a-C:H Schicht mit Teilchenstrahlen zu untersuchen, sind eine Radikalteilchenstrahlquelle und eine Ionenquelle an der Hauptkammer angeflanscht. Die Radikalteilchenstrahlquelle ist auf die Probe unter 45° bezüglich der Probenoberflächennormalen ausgerichtet (Abb. 3.1). Die Ionenquelle ist parallel zur Probenoberflächennormalen (x-Richtung in Abb. 3.1) ausgerichtet. Eine detaillierte Beschreibung der erwähnten Experimentkomponenten folgt weiter unten. An der Hauptkammer ist außer den zwei Teilchenquellen ein Thermo-Ventil, das weit von der Probe entfernt ist, angeschlossen. Durch das Thermo-Ventil kann Sauerstoff oder Wasserdampf kontrolliert in die Hauptkammer eingelassen werden.

Änderungen an der Probenoberfläche werden mit Ellipsometrie in-situ untersucht. Dabei wird ein Laserstrahl an der Probenoberfläche unter einem Einfallswinkel von ca. 75,8° zur Oberflächennormalen reflektiert. Dieser optische Aufbau befindet sich in einer Ebene, die gegenüber der x-y-Ebene um ca. 45° um die x-Achse gedreht ist. Die Ellipsometrie und ihre Anwendung als Oberflächendiagnostik wird im Kapitel 3.2 separat vorgestellt.

3.1.1 Präparationskammer

Die Probenpräparationskammer dient zum Ein- und Ausschleusen der Proben und zur Abscheidung bzw. Entfernung von a-C:H Schichten. Als Substratmaterial wird ein polierter ca. 30 x 30 mm² großer Siliziumwafer verwendet, der aufgrund seiner Reflexionseigenschaften im Sichtbaren ein gut geeignetes Substratmaterial für die Ellipsometrie ist. Um eine bessere Handhabung der Probe zu erreichen, wird

Abbildung 3.1: Schematischer Aufbau des Teilchenstrahlexperiments MAJESTIX: Präparationskammer (PK), Hauptkammer (HK) mit der Ionenquelle und der Quelle für atomaren Wasserstoff H[°] bzw. D[°], sowie dem Ellipsometrieaufbau. O_2 wurde über die nicht geheizte Kapillare oder ein separates Ventil eingelassen.

der Siliziumwafer in einen beweglichen, metallischen Probenrahmen eingespannt. So ist es möglich, mit der Transferstange die Probe in den Hauptkammerhalter zu schleusen.

Die Deposition von a-C:H Schichten erfolgt über eine kapazitiv gekoppelte Radiofrequenzentladung bei 13,56 MHz. Dabei wird der Probenrahmen zusammen mit der Probe als Elektrode betrieben. Als Quellgas dient Methan bei einem Druck von ca. 2 Pa. Regelt man die RF-Leistung auf eine Bias-Spannung von -300 V, werden harte a-C:H Schichten erzeugt. Die typischen Schichtdicken nach ca. 8 Minuten Beschichtungszeit betragen etwa 60 bis 70 nm.

Die Entfernung der a-C:H-Schichten nach dem Experiment erfolgt mittels eines Sauerstoffplasmas. Die übrige Siliziumoxidschicht wird danach in einem Wasserstoffplasma reduziert. Auf diese Weise entfällt das häufige Belüften der Präparationskammer, da man einen Siliziumwafer für mehrere Experimente verwenden kann.

3.1.2 Hauptkammer

Für die Restgasanalyse ist ein Quadrupol Mass Spektrometer angeschlossen. Die Hauptkammer hat einen Basisdruck von weniger als 10^{-8} mbar, wobei der Wasser-Partialdrucksignal bei Raumtemperatur ca. $2 \cdot 10^{-10}$ mbar ist. Zum Reinigen der Hauptkammer verwendet man, wie für die Präpara-

tionskammer, eine Sauerstoffentladung, um Kohlenstoffschichten, die sich während der Erosion von a-C:H-Schichten bilden, zu entfernen. Hierzu wird der in der Mitte der Hauptkammer befindliche Probenhalter als RF-Elektrode betrieben. Danach wird die Hauptkammer mindestens eine Nacht lang mit Heizbändern bei etwa 180°C ausgeheizt. Zusätzlich wird der resistive Heizer, der im Probenhalter integriert ist, zum Heizen der Probe verwendet. Er kann eine Heizleistung von bis zu ca. 400 Watt liefern.

Während des Betriebs der beiden Teilchenquellen kann der Kammerdruck bis zu einigen 10^{-5} mbar steigen.

3.1.3 Probenhalter

Der von der Präparationskammer transferierbare Probenrahmen wird in den Probenhalter geschoben. Der Probenhalter ist an einem Manipulator befestigt, der fünf Freiheitsgrade der Bewegung der Probe besitzt: drei aufeinander senkrecht stehende Translationen in x, y und z Richtung, wie in Abb. 3.1 zu sehen, und zwei Rotationen, eine um die z-Achse (bis 180°) und die andere um eine Achse in der x-y-Ebene (Kippen möglich bis 20°). Der Probenhalter verfügt über ein Temperaturregelungssystem, mit dem sich die Probentemperatur zwischen 110 bis 950 K regeln lässt. Dafür werden, je nach Temperaturbereich, zwei Konfigurationen verwendet:

- Heizungsmodus (Temperatur oberhalb Raumtemperatur bis 950 K): Die Probe wird der Strahlung eines resistiven Heizers ausgesetzt, der aus einem eng auf eine Keramikplatte gewickelten Wolframdraht besteht und hinter der Probe angebracht ist. Gegenüber der Probe ist, symmetrisch zum Heizer, eine Referenzprobe festgeklemmt. Dieser symmetrische Aufbau ermöglicht eine verlässliche, indirekte Temperaturmessung der Probe durch ein mit Keramikkleber an der Referenzprobe befestigtes Thermoelement. Die Temperaturregelung geschieht mittels eines kommerziellen PID-Reglers von EUROTHERM.
- Kühlungsmodus (Temperaturen zwischen Raumtemperatur und 110 K): Die Kühlung der Probe erfolgt über flüssigen Stickstoff, der über flexible, vakuumdichte Stahlleitungen durch die Probenhalterung fließt. Dafür ist es notwendig, für eine ausreichend große Kontaktfläche zwischen Siliziumwafer und Probenhalter zu sorgen, so dass die Probe homogen gekühlt werden kann. Um dies zu gewährleisten, wird ein Probenrahmen in Form einer massiven Kupferplatte verwendet. Dadurch besteht jedoch keine Symmetrie zwischen Probe und Referenzprobe mehr, sodass die Temperaturmessung mittels eines zweiten Thermoelements durchgeführt werden muss. Dieses Thermoelement wird mithilfe eines Federelements gegen die Vorderseite der Probe gedrückt. Das Federelement kann im Heizungsmodus nicht verwendet werden, da es durch die hohe Temperatur seine Federwirkung verlieren würde. Die Probentemperaturregelung erfolgt, wie beim

Heizungsmodus, über das EUROTHERM-Gerät. Dabei wird mit flüssigen Stickstoff gekühlt und mit geringer Heizleistung auf die Solltemperatur gegengeheizt.

Schließlich ist der Probenhalter mit einem Faraday-Cup und einem Microchannelplate vom Chevron-Typ mit Leuchtschirm ausgerüstet. Beide Detektoren sind (siehe Abb. 3.2) unterhalb der Probe montiert. Sie dienen zur Quantifizierung und Justage des Ionenstrahls.

3.1.4 Ionenquelle

Zur Erzeugung von niederenergetischen Ionen dient eine kommerzielle Colutron G-2 Ionenquelle der Colutron Research Corporation, Boulder, Colorado, USA [WÅHLIN 1964].

Abbildung 3.3: Schematischer Aufbau der Ionenquelle, [WÅHLIN 1964]

In der verwendeten Konfiguration der Ionenquelle werden Ionenenergien von einigen eV bis 1 keV erreicht. Abb. 3.3 zeigt die schematische Darstellung des Aufbaus: Ionenquelle, Einzellinse, Wienfilter, Strahlablenkungsplatten und Abbremsoptik. Die Ionen werden in einer durch ein heißes Filament unterstützten Gleichstromentladung erzeugt. Da der Entladungsstrom sehr empfindlich vom Druck in der Ionenquelle abhängt, muss der Gasdruck unmittelbar vor der Ionenquelle möglichst konstant gehalten werden. Dafür wird ein Thermoventil verwendet, das über ein Manometer (Baratron) geregelt wird. Dieses Druckregelungssystem ermöglicht eine Genauigkeit von bis zu 10^{-4} mbar bei 10^{-2} mbar Entladungsdruck.

Die Ionen werden durch eine Öffnung in der Anode der Ionenquelle extrahiert und auf 1 keV beschleunigt, durch eine Einzellinse fokussiert, mittels eines Wienfilters massenselektiert, danach abgelenkt (y-z-Lagejustage) und mit der Abbremsoptik auf die gewünschte Energie abgebremst und refokussiert.

Die absolute Quantifizierung des Ionenstrahls erfolgt über die am Probenhalter befindlichen Detektoren (siehe Abb. 3.2). Die Ionenflussdichte wird aus dem Verhältnis des Ionenstromes durch die Blende des Faraday-Cups und der Fläche der Blende von $\pi \cdot 0,75^2$ mm² bestimmt. Typische Ionenflussdichten sind in der Größenordung von 10^{12} cm⁻¹s⁻¹. Das Strahlprofil wird mit Hilfe einer Microchannelplate verstärkt und einem dahinter eingebauten Leuchtschirms visualisiert. Ohne Blende und Fokussierung kann der Strahldurchmesser bis 8 mm groß werden.

Eine detaillierte Charakterisierung der Ionenkanone wurde in einer früheren Doktorarbeit durchgeführt [HOPF 2003].

3.1.5 Quelle für atomaren Wasserstoff H° (D°)

Die verwendete Quelle für atomaren Wasserstoff oder Deuterium (H[°]- bzw. D[°]-Quelle) wurde im Rahmen der Doktorarbeit von Schwarz-Selinger [SCHWARZ-SELINGER 2000] entwickelt und absolut quantifiziert.

Das Prinzip der Erzeugung von H° (oder D°) beruht auf der Dissoziation von Wasserstoffmolekülen auf einer heißen Wolframoberfläche. Bei einer Oberflächentemperatur von ca. 2100 K beträgt der Dissoziationsgrad etwa 30 % [SCHWARZ-SELINGER 2000]. Lässt man das Wasserstoffmolekülgas durch eine heiße Wolframkapillare strömen, werden gerichtete Strahlflüsse atomaren Wasserstoffs erreicht. Die Strahlformung hängt aber nicht nur von der Kapillarlänge ab ([CLAUSING 1930], [CLAUSING 1932], [GOTTWALD 1973]) sondern auch vom Temperaturgradienten in der Kapillare und von Gasdurchsatz ab [SCHWARZ-SELINGER 2000].

Abb. 3.4 zeigt schematisch diese H°-Quelle: Sie besteht aus einer resistiv geheizten Wolframkapillare (Länge: 50 mm, Innendurchmeser: 1mm) mit zwei Wolframfilamenten (Drahtdruchmeser: 0,4 mm). Die ganze Quelle ist wassergekühlt und besitzt eine Kupferblende, um die thermische Strahlung Richtung Probe abzuschirmen. Die Quelle ist auf einen Linearmanipulator montiert, so dass der Abstand zwischen Kapillare und Probe von 35 bis 105 mm variiert werden kann. Als Quellgas zur Entstehung von H° dient molekularer Wasserstoff. Eine praktische und schnelle Möglichkeit den H°-Fluss zu variieren,

Abbildung 3.4: Schematischer Aufbau der Teilchenstrahlquelle nach [SCHWARZ-SELINGER 2000]

ohne die Strahlformung zu verändern, ergibt sich aus der $1/d^2$ -Abhängigkeit der H°-Flussdichte vom Abstand d zwischen Kapillare und Probe [MEIER 2002].

Der atomare Wasserstofffluss wird anhand der H[•]-Erosionsmethode bestimmt [SCHWARZ-SELINGER et al. 2000]. Dazu wird mittels Ellipsometrie die Erosionsrate einer a-C:H Schicht bei der Temperatur der maximalen chemischen Erosion T_{max} (650–700 K, siehe Abschnitt 2.3.1) durch den atomaren Wasserstoff aus der Quelle gemessen. Da sowohl die chemische Erosionsausbeute bei 650 K ($Y_{H^{\circ}}^{max} = 0,02 \text{ C/H}^{\circ}$) als auch die Kohlenstoffdichte der verwendeten Schichten ($n_{\rm C} = 10^{23} \text{ cm}^{-3}$, siehe Gl. 2.1 im Abschnitt 2.1) bekannt sind, kann man den lokalen atomaren Wasserstofffluss berechnen durch

$$j_{\rm H^{\circ}} = n_{\rm C} \cdot \Gamma_{650\rm K}^* / 0,02 \qquad [\rm cm^{-2} \rm s^{-1}],$$
(3.1)

wobei Γ_{650K}^* die gemessene Erosionsrate bei 650 K in $[nm \ s^{-1}]$ ist. Typische H°-Flüsse liegen in der Größenordung von $\approx 10^{15} \ cm^{-2} s^{-1}$ bei der Standardeinstellung (H₂-Fluss $\approx 0,13$ sccm, vorderer Filamentstrom ≈ 40 A, hinterer Filamentstrom ≈ 36 A \Rightarrow Kapillartemperatur ≈ 2100 K). Aufgrund der Wärmestrahlung, die bei dieser Kapillartemperatur die Probe erreicht, wird eine nicht gekühlte Probe ca. 340 K warm.

3.1.6 Erzeugung quantifizierter Flüsse von molekularem Sauerstoff O₂

Molekularer Sauerstoff wurde aus der Laborflasche (Reinheitsgrad 99,999%) über das Thermo-Ventil in die Hauptkammer eingelassen. Aus dem O₂-Partialdruck in der Hauptkammer, der bis $2 \cdot 10^{-4}$ mbar betrug und mittels eines auf O₂-kalibrierten Ionisationsvakuummeters gemessen wurde, wurde die O₂-Flussdichte auf die Probe quantifiziert. Um höhere Flüsse zu erzielen wurde O₂ über die nicht geheizte Kapillare der H°-Quelle (Abb. 3.4) eingelassen. Damit erreicht man eine maximale O₂-Flussdichte j_{O_2} bis zu ca. $5 \cdot 10^{16}$ O₂ cm⁻²s⁻¹. Die Strahlform des O₂-Strahls aus der Kapillare ist allerdings stark von seinem Durchfluss abhängig, so dass eine direkte Bestimmung des O₂-Flusses durch eine Berechung nicht möglich ist. Die Quantifizierung der O₂-Flüsse aus der Kapillare erfolgte daher indirekt aus dem Vergleich von Erosionsraten von a-C:H-Schichten durch O₂ aus der Kapillare mit denen durch O_2 aus dem Thermo-Ventil in der Hauptkammer bei verschiedenen O_2 -Partialdrücken. Dazu wurden die gemessenen Erosionsraten als Funktion der verschiedenen O_2 -Partialdrücke parametrisiert. Diese Funktion wurde bis zu den maximal gemessenen Erosionsraten durch O_2 aus der Kapillare extrapoliert und somit die O_2 -Flussdichten bestimmt.

3.1.7 Justage der Quellen und des Ellipsometrielasers

Die Nullstellung der Probenhalterung entspricht einem 0°-Einfallswinkel der Ionen bzw. einem 45°-Einfallswinkel der H°-Radikalen zur Probennormalen (siehe Abb. 3.1).

Da beim Teilchenstrahlexperiment mit gerichteten Strahlen gearbeitet wird, ist es von entscheidender Bedeutung, eine genaue Justage der beiden Teilchenquellen und des Ellipsometerlasers auf die Probe zu gewährleisten. Dazu dienen zwei Detektoren, die am Probenhalter montiert sind: ein Microchannelplate mit einem Leuchtschirm zur Visualisierung des Ionenstrahlprofils und ein Faraday-Cup, um den Ionenstrom durch die Eintrittsöffnung (von 1,5 mm Durchmesser) zu messen. Zuerst wird der Ionenstrahl in die Faraday-Cup-Eintrittsöffnung mittig justiert, danach werden die Radikalteilchenquelle und der Ellipsometerlaser auf diese Öffnung ausgerichtet. Zur Ausrichtung der Radikalteilchenquelle wird durch die Kapillare mit einem Laserpointer geleuchtet. Der auf den Faraday-Cup abgebildete Laserstrahl dient dann zu ihrer Justage.

Wegen der langen Messzeiten bis zu 4 Tagen ist es sinnvoll, die Stabilität der Quellen, insbesondere die der Ionenquelle, kontinuerlich zu überprüfen. Es gibt viele Faktoren die zu einer Drift des Ionenstrahls führen können, z.B. der Entladungsdruck in der Ionenquelle oder die thermische Verformung und Erosion des Heizfilaments (siehe Abschnitt 3.1.4). Sie alle führen zur Defokussierung oder zu Driften bis hin zum Ausfall des Ionenstrahls. Daher ist eine Überwachung des Ionenstrahlstroms unerläßlich. Dazu wird mit einer Justierstange eine Blende vor die Probe gebracht. Die Probe und die Blende sind dabei jeweils über ein Elektrometer geerdet und es werden beide Ströme gemessen. Eine Strahldefokussierung oder ein Strahldrift wird aus dem Stromverhältnis festgestellt und gegebenfalls korrigiert.

3.2 Ellipsometrie

Die Ellipsometrie ist ein empfindliches optisches Messverfahren, mit dem der komplexe Brechungsindex und/oder die Schichtdicke dünner Schichten bestimmt werden können. In der vorliegenden Arbeit wird sie als in-situ Diagnostik für das Studium der Erosionsprozesse von a-C:H Schichten während des Teilchenbeschusses verwendet. In diesem Abschnitt werden ihre Grundlagen und ihre Anwendung behandelt.

3.2.1 Konzept und Aufbau des Ellipsometers

Die Ellipsometrie beruht auf der Messung der Änderung des Polarisationszustandes einer elektromagnetischen Welle nach Reflexion an einer Probenoberfläche. Hierzu wird Licht mit einer bekannten Polarisation (meist linear polarisiert) auf eine Probe eingestrahlt und die Polarisation des reflektierten Lichts (im allgemeinen elliptisch polarisiert, daher der Name Ellipsometrie) gemessen.

Die physikalische Messgröße ist die sogenannte ellipsometrische Funktion:

$$\rho \equiv \frac{r_{\rm p}}{r_{\rm s}} = \frac{|r_{\rm p}|}{|r_{\rm s}|} \exp(\mathrm{i}\Delta) = \tan(\Psi) \exp(\mathrm{i}\Delta), \qquad \Psi \in [0, 90], \ \Delta \in [0, 360].$$
(3.2)

Dabei sind $r_{\rm p}$ und $r_{\rm s}$ die komplexen Reflexionskoeffizienten für parallel bzw. senkrecht zur Einfallsebene (siehe Abb. 3.5) polarisiertes Licht. ρ wird durch die *ellipsometrischen Winkel* Ψ und Δ ausgedückt [AZZAM und BASHARA 1977].

Der vorliegende Aufbau ist ein Einwellenlängenellipsometer, wobei das linear polarisierte Licht eines He-Ne-Lasers bei 632,8 nm verwendet wird. Das Laserlicht wird zuerst durch ein $\lambda/4$ -Plättchen zirkular polarisiert und mittels eines Polarisators die gewünschte Einfallspolarisationsebene bezüglich der Probennormalen definiert. Der so polarisierte Strahl wird an der Probe unter einem Winkel von ca. 70°¹ zur Oberflächennormalen in Richtung eines rotierenden Analysators reflektiert. Hinter dem Analysator befindet sich eine Fotodiode, die das durch die Analysatordrehung generierte periodische Intensitätssignal drehwinkelabhängig misst [ASPNES und STUDNA 1975], [COLLINS 1990].

Aus den Intensitäten, die innerhalb einer Analysatordrehung gemessen werden, kann man mittels Fouriertransformation den Polarisationszustand des reflektierten Lichts und daraus die ellipsometrische Funktion bestimmen [COLLINS 1990].

 $^{^1 \}mathrm{Aus}$ technischen Grunden betrug der hier verwendete Winkel etwa $75,8^\circ$

3.2.2 Datenerfassung

In dieser Arbeit wurde als Datenerfassungssystem ein über einen PC gesteuertes ADwin-Pro Modul der Firma Keithley verwendet. Es steuert auch den Analysatorschrittmotor zwischen 1 und 50 Hz. Die somit erreichte experimentelle Zeitauflösung ist für die In-Situ-Untersuchung der relativ langsamen Oberflächenprozesse ausreichend. Abhängig vom Zeitablauf der Wechselwirkung der a-C:H Oberflächen mit den Teilchenstrahlen wird jeweils das Rohsignal über mehrere Umdrehungen des Analysators gemittelt. Die typische Messzeit pro Messpunkt beträgt zwischen 1,3 bis 21,4 s.

Die Streuung der ellipsometrischen Winkel beträgt im typischen Messbereich $\delta \Psi \approx 0,005^{\circ}$ für Ψ im Winkelintervall [10°, 30°] und $\delta \Delta \approx 0,01^{\circ}$ für Δ in [20°, 80°].

3.2.3 Modell eines Schichtstapels

Die Ellipsometrie als optisches Messverfahren dünner Schichten alleine liefert nicht direkt die physikalisch relevanten Größen einer Probe wie die **Dicke** d und/oder den **komplexen Brechungsindex** $\hat{n} = n$ -ik des Schichtsystems. d und \hat{n} werden durch Anpassung eines entsprechenden optischen Modells an die gemessenen Daten bestimmt. Das optische Modell für die Reflexionskoeffizienten (r_p und r_s) der Probe basiert auf der Reflexion und Transmission an der Grenzfläche zweier Medien, die durch die Fresnelkoeffizienten [BORN 1964] beschrieben werden. Sie hängen vom Einfallswinkel (ϕ) und von den komplexen Brechungsindizies der beiden Medien (\hat{n}_1 , \hat{n}_2) ab. Mit der Ellipsometrie wird pro Messpunkt ein (Ψ, Δ)-Paar gemessen (Abb. 3.7), wobei $\Psi = \Psi(d, \hat{n})$ und $\Delta = \Delta(d, \hat{n})$ sind.

Im Spezialfall einer Probe, die nur aus einer homogenen Schicht auf bekanntem Substrat besteht, ist die Auswertung einfach. Ein Beispiel ist die in der Halbleiterindustrie häufig durchgeführte Messung der Schichtdicke einer SiO₂-Schicht auf Si.

In der Regel entsteht durch die Wechselwirkung von Teilchenstrahlen mit einer Schicht jedoch ein tiefenabhängiger Brechungsindex $\hat{n} = \hat{n}(x)$, d.h. die Schicht ist inhomogen. Annähernd kann man eine solche Probe meist als einen Stapel homogener Schichten betrachten. Zur Berechnung von dessen optischer Antwort müssen Vielfachreflexion und Überlagerung der ausfallenden Teilstrahlen berücksichtigt werden. Dadurch steigt die Anzahl der Modellparameter um drei (jeweils d, n und k) pro Schicht.

Im Folgenden wird ein konkretes optisches Modell für die verschiedenen experimentellen (in-situ) Situationen vorgestellt. Das Modell ist nur für die Erosion im **stationären Zustand** gültig. Anfängliche, transiente Veränderungen der a-C:H-Oberfläche beim Ein-/Ausschalten der Teilchenflüsse oder durch Temperaturvariationen werden nicht modelliert. Diese **transienten Phasen**, die von vielen Faktoren abhängen, lassen sich nur qualitativ beschreiben [VON KEUDELL 1995], [HOPF 2003].

Die Erosion einer a-C:H-Schicht durch Teilchenstrahlen lässt sich im stationären Zustand duch ein Drei-Schichtsystem auf einem Siliziumsubstrat ($\hat{n}_{Si} = 3,9473$ -i0,0257 bei 300 K) beschreiben: Eine obere durch die Wechselwirkung mit den Teilchenstrahlen modifizierte Schicht, eine homogene Volumenschicht und eine SiO₂-Schicht.
Abb. 3.6 zeigt am Beispiel der Erosion von a-C:H-Schichten durch Ar^++H° das für diesen Fall verwendete Schichtmodell. Im stationären Zustand bildet sich an der Oberfläche eine modifizierte Schicht mit einer Dicke, die durch die Reichweite der wechselwirkenden Teilchen gegeben ist. Durch Erosion der Oberfläche können die wechselwirkenden Teilchen entsprechend tiefer eindringen und das Volumenmaterial bis zu ihrer Reichweite erneut modifizieren. Somit bleibt die Dicke einer modifizierten oberen Schicht konstant (d_{Ober} in Abb. 3.6). Die Dicke der darunter liegenden Volumenschicht dagegen reduziert sich kontinuierlich ($d_{Vol} = d_{Vol}(t)$ in Abb. 3.6).

Abbildung 3.6: Schichtmodell der Erosion von a-C:H-Schichten durch Ar^++H° . Links ist die Reichweite von H° und die Verlagerungausbeute von Ar^+ dargestellt, siehe Gl. 2.4 im Abschnitt 2.3.3.

Im Detail und von unten nach oben besteht das Dreischichtsystem von Abb. 3.6 aus:

- 1. Einer Siliziumoxidschicht (SiO₂): Diese Schicht ist ein natürliches Oxid oder bildet sich nach der Reinigung des Silizium-Substrats mit einem Sauerstoffplasma (siehe Abschnitt 3.1.1). Bevor eine neue a-C:H-Schicht deponiert wird, wird diese Siliziumoxidschicht, so weit es geht, mit einem Wasserstoffplasma reduziert. Die verbleibende Oxidschicht hat in der Regel eine Dicke d_{SiO_2} von ca. 4 nm, sie kann jedoch bis zu 10 nm dick werden. Sie bleibt während der gesamten Erosion der oberen Schichten unverändert und hat einen Brechungsindex $\hat{n}_{SiO_2} = 1,4578 i0,0000$ bei 300 K.
- 2. Einer a-C:H-Volumenschicht (Grundschicht): Sie ist eine homogene a-C:H-Schicht mit komplexen Brechungsindex \hat{n}_{Vol} (siehe Abschnitt 2.1), die während der Erosion an Dicke verliert, $d_{Vol}(t) = d_o - t \cdot \Gamma^*$. Dabei ist d_o die anfängliche Volumenschichtdicke. Die Erosionsrate lässt sich aus der Schichtdickenänderung pro Zeit im stationären Zustand $\Gamma^* = \Delta d / \Delta t$ bestimmen.
- 3. Einer modifizierten a-C:H-Oberflächenschicht: Sie ist durch die Wechselwirkung mit den Teilchenstrahlen, Ionen und/oder reaktive Spezies, modifiziert. Ihre Dicke d_{Ober} ist durch die maximale Reichweite der wechselwirkenden Teilchen (siehe Beispiel in Abb. 3.6 links) definiert.

Typischerweise ist sie zwischen einer Monolage und 5 nm (maximale Reichweite von 1 keV Ar⁺) dick. Im stationären Zustand wird sie als eine homoge Schicht mit $\hat{n}_{Ober}(x) \approx$ konstant betrachtet. Dabei gilt hier die Korrelation zwischen Real- und Imaginärteil des Brechungsindexes k(n)von [SCHWARZ-SELINGER 1996] i.a. nicht mehr, da es sich um eine durch Ionenimplantation und Teilchendiffusion (H°, O₂, N) veränderte a-C:H-Schicht handelt.

Dieses Schichtmodell lässt sich auf die im Rahmen dieser Arbeit durchgeführten Experimente mit den Teilchenstrahlen (Edelgasionen+H°, N_2^+ , N_2^+ +H°, Ar⁺+O₂ und Ar⁺+H₂O) unterhalb einer bestimmten Grenztemperatur für die verwendeten Spezies anwenden.

Grenztemperatur für die Gültigkeit des Schichtmodells

Ellipsometriemessungen werden auch von der Probentemperatur beeinflusst, da die optischen Eigenschaften temperaturabhängig sind [VON KEUDELL 1995]. Hinzu treten bei höheren Temperaturen thermisch-induzierte Änderungen der Schicht und möglicherweise Diffusion von reaktiven Spezies durch die Probe auf. Diese Diffusion kann zu einem Stöchiometrie-Gradienten führen und die Probe stark verändern. Falls diese Veränderungen der Probe schnell verglichen mit der Erosion sind, existiert keine in ihren Eigenschaften unveränderliche Volumenschicht mehr, wie in der Aufteilung des Schichtstapels in Abb. 3.6. Ein stationärer Zustand der Erosion ist daher nicht mehr gewährleistet.

Für die Wechselwirkung von a-C:H mit H $^{\circ}$ und O₂, für die Messungen bei hohen Temperaturen durchgeführt wurden, wurde jeweils eine Grenztemperatur bestimmt, bis zu der die Annahme eines 3-Schicht-Systems gerechtfertigt ist. Dazu wurde eine temperaturabhängige Eindringtiefe von H° und O₂ in die Schicht nach der chemischen Erosion in einem separaten Experiment bestimmt. Die untersuchten a-C:H-Schichten wurden in MAJESTIX mit H $^{\circ}$ oder O₂ bei einer bestimmten Temperatur chemisch erodiert bis der dynamische Gleichgewichtszustand der modifizierten Oberfläche erreicht war. Die so präparierten Schichten wurden in einer ECR-Plasmaanlage namens PLAQ, die ebenfalls mit In-Situ-Ellipsometrie ausgerüstet ist (Aufbau in [VON KEUDELL 1995]), in einem O₂-Plasma erodiert. Aus früheren Untersuchungen ist bekannt [VON KEUDELL 1995], dass in einem solchen O₂-Plasma die a-C:H-Schichten monolagenweise abgetragen werden, ohne die Schichtstruktur messbar zu verändern. Das Schichtsystem wird in PLAQ so lange erodiert, bis die unveränderte a-C:H-Volumenschicht erreicht ist. Aus der Analyse der zeitaufgelösten Ellipsometriemessung während der Erosion in PLAQ kann man die Dicke der modifizierten Schichten und somit die temperaturabhängigen Eindringtiefen von H° und O₂ bestimmen. Die Grenztemperatur, bei der noch eine im Wesentlichen unveränderte a-C:H-Volumenschicht existieren kann und das Schichtmodell aus Abb. 3.6 angewendet werden kann, beträgt ca. 950 K für H° und ca. 850 K für O_2 .

3.2.4 Beispiel einer Erosionsmessung

Abbildung 3.7 zeigt beispielhaft die Ellipsometriedaten der Erosion einer a-C:H-Schicht bei 340 K durch 400 eV Ne⁺ (Messstrecke zwischen 1 und 3) und anschließend durch die gleichzeitige Wechselwirkung von 400 eV Ne⁺ +H° (Messstrecke zwischen 3 und 5). Die Messpunkte zwischen 2 und 3 bei Ne⁺ und zwischen 4 und 5 bei Ne⁺ +H° entsprechen der Erosion im stationären Zustand. Nur diese Messstrecken werden für die Bestimmung der Erosionsraten ausgewertet. Die Messpunkte zwischen 1 und 2 bei Ne⁺ sowie zwischen 3 und 4 bei Ne⁺ +H° sind transiente Phasen. Sie werden viel schneller durchlaufen als die Messstrecken im stationären Zustand. Abb. 3.7 zeigt auch die auf dem Dreischichtsystem in Abb. 3.6 basierende optische Modellierung (offene Kreise), die nur an die Messpunkte der Erosion durch Ne⁺ +H° (von 4 bis 5) angepasst wurde. Daraus ergibt sich eine Schichterosion zwischen 4 und 5 von ca. 35 nm in 9 Stunden, was einer Erosionsrate von $\Gamma \approx 1, 1 \cdot 10^{-3}$ nm s⁻¹ entspricht. Unter Verwendung von Gleichung 2.1 (Abschnitt 2.1) lassen sich die Erosionsraten in Einheiten von erodierten Kohlenstoffatomen pro Zeit und Fläche, $\Gamma = n_{\rm C}(n) \cdot \Gamma^*$, umrechnen. Im Messbereich zwischen 4 und 5 ergibt sich der Wert $\Gamma \approx 8 \cdot 10^{12}$ cm⁻² s⁻¹.

Abbildung 3.7: Ellipsometriemessung der Erosion einer a-C:H-Schicht bei 340 K durch 400 eV Ne⁺ (Start = 1, stationärer Zustand ab 2, Ende = 3) und anschließend durch 400 eV Ne⁺ +H[°] (Start = 3, stationärer Zustand ab 4, Ende = 5); mit $j_{\text{Ne}^+} = 4 \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ und $j_{\text{H}^\circ} = 1, 4 \cdot 10^{15} \text{ cm}^{-2} \text{s}^{-1}$. Die gezeigte Modellkurve wurde nur an die Messstrecke der Erosion durch Ne⁺ +H[°] (von 4 bis 5) angepasst, wobei zwei nacheinander folgende Modellpunkte einer Schichtdickenänderung von 1 nm entsprechen. Die Erosionsmessung mit Ne⁺ und Ne⁺ +H[°] dauerte ca. 10,5 bzw. ca. 9 Stunden.

Für die Messtrecke zwischen 2 und 3 wurde eine in Abb. 3.7 nicht gezeigte Modellierung mit anderen optischen Parameter durchgeführt. Daraus ergibt sich analog eine Schichterosion von ca. 10 nm. Summiert man die Schichterosion beider Strecken, d.h. von 2 bis 3 plus von 4 bis 5, ergibt sich der Gesamterosionskrater am Ende der Messung von etwa 45 nm. Dabei ist anzumerken, dass die transienten Phasen nicht wesentlich zur Gesamterosion beitragen.

Abb. 3.8 zeigt das Tiefenprofil (Erosionskrater), das nach dem beschriebenen Experiment mit einem Ex-Situ-Ellipsometer gemessen wurde. Die in dieser Messung bestimmten Modellparameter \hat{n} und d stimmen mit denen aus der In-Situ-Ellipsometriemessugen in Abb. 3.7 gut überein. Wie man aus Abb. 3.8 ersieht, ist die Tiefe des Kraters ca. 50 nm. Die Diskrepanz zwischen Ex-Situ- und In-Situ-Ellipsometriemessung von 5 nm lässt sich anhand der unterschiedlichen verwendeten Laserstrahldurchmesser erklären, da der Strahldurchmesser beim Ex-Situ- (ca. 10 μ m) im Vergleich zum In-Situ-Laser (ca. 1 mm) deutlich schmaler ist. Bei einem Einfallswinkel von ca. 75° bezüglich der Probennormalen, bildet der Laserstrahl auf der Probe eine Ellipse, die die Größe des Messbereichs bestimmt. Für das In-Situ-Ellipsometer ist die Längsachse der Ellipse ca. 3 mm und für das Ex-Situ-Ellipsometer ca. 30 μ m. Gemessen wird eine mittlere Schichtdicke über den Messfleck. Da der Erosionskrater an der tiefsten Stelle nur ca. 1-2 mm Durchmesser hat, kann mit der besseren Auflössung des Ex-Situ-Ellipsometers dessen Tiefe genauer bestimmt werden.

Abbildung 3.8: Auswertung der Ex-Situ-Ellipsometriemessung der erodierten Probe von Abb. 3.7 mit einer Modellrechnung von von Toussaint [VON TOUSSAINT 2006]. Der 50 nm tiefe Erosionskrater mit einem Durchmesser von ca. 3 bis 5 mm ist in einer a) Dreidimensional- bzw. b) Seitenansicht dargestellt.

Die Vermessung des Erosionskraters mittels eines taktilen Profilometers (Modell Dektak 8M der Firma Veeco, Diamantnadelradius: 12,5 μ m, vertikale Auflösung: 0,1 nm) ergab eine maximale Tiefe des Erosionskraters von 60 ± 10 nm. Dieser Wert ist innerhalb der Messtoleranz in akzeptabler Übereinstimmung mit der Beschreibung des Erosionskraters mittels Ellipsometrie.

4 Chemische Zerstäubung durch Edelgasionen und atomaren Wasserstoff

Ziel des Kapitels ist es, ein Modell für die chemische Zerstäubung von a-C:H-Schichten durch Edelgasionen + H° zu entwickeln, das gleichzeitig die Fluss-, Energie- und Temperaturabhängigkeit beschreibt. Dazu soll durch Variation der Probentemperatur und des Flussverhältnisses H°/Ionen der Bereich der experimentellen Parameter vergrößert werden. Es werden Messungen der chemischen Zerstäubung von a-C:H durch die gleichzeitige Wechselwirkung von $Ar^+ + H^\circ$, $Ne^+ + H^\circ$ und $He^+ + H^\circ$ präsentiert.

4.1 Energieabhängigkeit

4.1.1 Physikalische Zerstäubung

Um den Anteil der physikalischen Zerstäubung bei der gleichzeitigen Wechselwirkung von Edelgasionen und H° abschätzen zu können, wurden zunächst die Erosionsraten durch reinen Edelgasionenbeschuss von a-C:H bestimmt. Abb. 4.1 zeigt solche Messungen mit Ar⁺, Ne⁺ und He⁺ im Ionenenergiebereich von 100 bis 900 eV. Dabei wurde die Ionenflussdichte bei ca. $j_{\text{Ion}} = (3, 9 \pm 0, 5) \cdot 10^{15} \text{cm}^{-2} \text{s}^{-1}$ für alle Ionenspezies konstant gehalten.

Wie Abb. 4.1 zu entnehmen sind die physikalischen Zerstäubungsausbeuten für Ar⁺ und Ne⁺ im gesamten untersuchten Energiebereich fast gleich. Zwar ist der kinematischer Faktor bei Ne⁺ ($\gamma_{Ne} = 0,938$) größer als bei Ar⁺ ($\gamma_{Ar} = 0,710$), jedoch ist auf Grund der größeren Kernladung von Ar⁺ auch der Wirkungsquerschnitt für die Kern–Kern-Stöße größer. Die beiden Effekte heben sich gerade auf.

Wie im Abschnitt 2.2 erläutert wurde, lassen sich die rein physikalischen Zerstäubungsausbeuten mit dem Monte-Carlo Computercode TRIM.SP [ECKSTEIN 1991] gut berechnen. Der für die Berechung der physikalischen Zerstäubungsausbeute relevante Parameter ist die Oberflächenbindungsenergie $E_{\rm sb}$. Für den Fall der Zerstäubung von a-C:H-Schichten mit Ar⁺ wurde in früheren Arbeiten (siehe Abb. 2.4) der Wert $E_{\rm sb} = 3,0$ eV verwendet. Die Messungen in Abb. 4.1 und die jeweiligen TRIM.SP-Modellrechungen zeigen jedoch, dass die Wahl von $E_{\rm sb} = 2,8$ eV zu einer besseren Übereinstimmung mit den experimentellen Daten führt.

Abbildung 4.1: Physikalische Zerstäubung von a-C:H-Schichten durch den Beschuss mit Edelgasionen im Energiebereich zwischen 100 und 900 eV. In der logarithmischen Darstellung sind die gemessenen Erosionsausbeuten Y (Kohlenstoffatome pro einfallendem Ion) für Ar⁺, Ne⁺ und He⁺ aufgetragen. Die Modellkurven sind die zugehörigen TRIM.SP-Rechnungen mit $E_{\rm sb} = 2, 8$ eV.

4.1.2 Chemische Zerstäubung

Abb. 4.2 zeigt die Erosionsausbeute durch die gleichzeitige Wechselwirkung von Ionen und H° für Ar^++H° , Ne^++H° und He^++H° (gefüllte Symbole) im Ionenenergiebereich von 20 bis 900 eV; als offene Symbole sind außerdem die Messungen von Hopf eingetragen [HOPF 2003]. Die Probentemperatur betrug zwischen 320 bis 340 K. Sie war vom Abstand zwischen Probe und H°-Quelle abhängig, da diese die Probe durch Wärmestrahlung (siehe Abb. 3.4) aufheizt.

Der Vergleich beider Datensätze von $Ar^+ + H^\circ$ zeigt eine systematische Abweichung. Die neuen Messungen der Erosionsausbeuten unter gleichen Experimentbedingungen liegen 10 bis 20 % höher als die von Hopf [HOPF 2003]. Eine mögliche Erklärung dafür ist der unterschiedliche Strahldurchmesser des verwendeten Ellipsometrielasers. Im aktuellen Experimentaufbau ist der Laserstrahldurchmesser nur ungefähr halb so groß wie im experimentellen Aufbau von Hopf [HOPF 2003]. Wie man aus Abb. 3.8 erkennen kann, sind die Erosionsprofile spitz. Da mit dem Ellipsometer die über den Strahldurchmesser zu einer Mittelung über einen größeren Bereich um das Maximum herum, und somit zu einer Unterschätzung der Erosionsausbeuten. Diese Abweichung liegt aber noch im Bereich der experimentellen Unsicherheit. Allerdings ist die Energieabhängigkeit in beiden Messbereichen identisch, so dass man die Übereinstimung als sehr gut bezeichnen kann.

Ähnlich wie die physikalischen Zertäubungsausbeuten sind auch die chemischen Zerstäubungsausbeuten von Ar⁺ und Ne⁺ in Abb. 4.2 fast identisch. Erst bei Ionenenergien höher als 400 eV weisen die Erosionsausbeuten messbare Unterschiede auf, die Ne⁺-Ausbeuten werden kleiner als die von Ar⁺. Grund dafür ist die Verschiebung der Verlagerungsausbeuten mit zunehmender Ne⁺-Energie zu größe-

Abbildung 4.2: Logarithmische Darstellung der Energieabhängigkeit der Erosionsausbeute Y (Kohlenstoffatome pro einfallendem Ion) von a-C:H-Schichten durch gleichzeitiges Angebot an H° $(j_{\text{H}^{\circ}} = 1, 4 \cdot 10^{15} \text{ cm}^{-2} \text{s}^{-1})$ und Ionen $(j_{\text{Ion}} = (3, 9 \pm 0, 5) \cdot 10^{15} \text{ cm}^{-2} \text{s}^{-1})$. Die gefüllten Symbole sind neue Datensätze, die in dieser Arbeit gemessen wurden. Die offene Symbole stammen aus [HOPF 2003]. Die Linien sind berechneten Erosionsausbeuten aus dem Modell Gl. 2.4 mit a = 0, 5. Nur die Modellkurve der Erosionsausbeute von a-C:H durch $H_2^+ + H^\circ$ (gepunktete Linie) stammt aus [HOPF 2003] mit a = 0, 4.

ren Tiefen, in die H° kaum eindringen kann und in denen demzufolge so gut wie keine H°-Passivierung stattfindet.

Die Linien in Abb. 4.2 sind berechnete Erosionsausbeuten aus dem Modell Gl. 2.4. Als Vorfaktor für das Chemische-Zerstäubungsmodell Gl. 2.4 wurde a = 0, 5 für alle hier gemessenen Daten gewählt. Hopf hatte hier einen Vorfaktor von a = 0, 4 gewählt. Der höhere Wert gegenüber Hopf ist eine Folge der höheren gemessenen Ausbeuten. Nur für die Messreihe der Erosionsausbeuten von a-C:H durch $H_2^++H^\circ$ (offene Symbole), die aus [HOPF 2003] stammen, wurde für die Modellkurve (gepunktete Linie) der dortige Vorfaktor a = 0, 4 verwendet [HOPF 2003].

4.2 Flussabhängigkeit

Die Abhängigkeit der Erosionsausbeute vom Atom-zu-Ionen-Flussverhältnis R für die Kombinationen H°/Ar⁺, D°/Ar⁺ und H°/Ne⁺ ist in Abb. 4.3 gezeigt. Dabei wurden 200 und 50 eV Ar⁺ sowie 200 eV Ne⁺ bei konstanter Ionenflussdichte $j_{\rm Ar^+} = j_{\rm Ne^+} = (4, 0 \pm 0, 5) \cdot 10^{12} \rm \ cm^{-2} s^{-1}$ verwendet und die thermische Wasserstoffflussdichte (H°) zwischen $j_{\rm H^\circ} = 0$ und $6, 6 \cdot 10^{15} \rm \ cm^{-2} s^{-1}$ bzw. die Deuteriumflussdichte (D°) zwischen $j_{\rm D^\circ} = 0$ und $1, 8 \cdot 10^{15} \rm \ cm^{-2} \ s^{-1}$ variiert. Die verwendeten H°- bzw. D°-Flussdichten wurden in separaten Messungen mit der H°-Erosionsmethode (siehe Abschnitt 3.1.5) bestimmt. Die Probentemperatur in Abb. 4.3 betrug zwischen 320 und 340 K (vergleiche Abb. 4.2).

Ebenfalls aufgetragen sind in Abb. 4.3 (a) die Erosionsausbeuten der chemischen Zerstäubung für 200 eV Ar⁺+H[°] im Flussverhältnisbereich zwischen R = 0 und R = 450 von Hopf [HOPF 2003]. Sie zeigen wieder eine systematische Abweichung von bis zu 20 % von den hier gemessenen Ar-Daten. Ver-

Abbildung 4.3: (a) Erosionsausbeute (C/Ion) durch 200 eV $Ar^+ +H^\circ$, 200 eV $Ar^+ +D^\circ$ und 200 eV $Ne^+ +H^\circ$ als Funktion des Verhältnises der Flussdichten $R = j_{H^\circ \text{ oder } D^\circ}/j_{\text{Ion}}$. Die Abhängigkeit der Erosionsausbeute vom Flussverhältniss von [HOPF 2003] ist zum Vergleich aufgetragen, sie liegt systematisch etwas unter den aktuellen Messdaten (siehe auch Vergleich in Abb. 4.2). (b) Flussabhängigkeit für 50 eV $Ar^+ +H^\circ$ und 200 eV $Ar^+ +H^\circ(D^\circ)$ auf einer logarithmischen Skala für R. Das innere Bild in (b) ist eine Vergrößerung der Messdaten bei R < 40 auf einer linearen Skala. Alle Datenpunke wurden bei konstanter Probentemperatur von ca. 330 ± 10 K gemessen. Die Linien zeigen die modellierte Flussabhängigkeit der chemischen Zerstäubung Gl. 2.3 von Hopf.

gleicht man nur die neuen Ar- und Ne-Daten in Abb. 4.3 (a), so sieht man, dass die Erosionsausbeuten beider Datensätze über den gesamten gemessenen Bereich von Flussverhältnissen von vergleichbarer Größe sind. Die Ne-Daten liegen nur etwa 5% unter den Ar-Daten. Eine ähnliche Beobachtung wurde auch im Abschnitt 4.1 bei der Energieabhängigkeit beider Datensätze gemacht (siehe Abb. 4.2). Betrachtet man nur die 200 eV Ar⁺+H°(D°)-Daten, die sowohl in Abb. 4.3 (a) als auch in der halblogarithmischen Darstellung in Abb. 4.3 (b) aufgetragen sind, stellt man fest, dass der Austausch von H° durch D° bei der chemischen Zerstäubung keine wesentliche Rolle spielt. Innerhalb der Messgenauigkeit sind die Erosionsausbeuten Ar⁺+H° und Ar⁺+D° im untersuchten Flussverhältnisbereich von R = 0 bis $R \approx 1000$ praktisch nicht unterscheidbar. Abb. 4.3 (b) zeigt auch den Vergleich der Ar-Datensätze bei 50 eV Ar⁺+H° und 200 eV Ar⁺+H°(D°). Die Erosionsausbeuten steigen im gemessenen Flussverhältnisbereich im Falle 200 eV Ar⁺+H°(D°) von ca. 0,25 auf ca. 3, d.h. um über eine Größenordnung, und von Null bis 1,5 im Falle von 50 eV Ar⁺+H°.

In Abb. 4.3 (a) sieht man für alle gezeigte Datensätze einen anfänglich steilen Anstieg der Erosionsausbeute Y mit dem Flussverhältnis R (siehe auch das innere Bild in (b) für die 200 eV Ar⁺+H^o(D^o)-Daten). Bei hohem Flussverhältnis R, etwa ab ca. R > 200, erfolgt der Übergang zur Sättigung. Die Erosionsausbeuten in Abb. 4.3 (b) bei kleinem Flussverhältnis (von R = 0 bis $R \approx 40$) für die beiden Energien sind durch den H°(D°)-Fluss limitiert, d.h. die Erosionsausbeute der chemischen Zerstäubung steigt linear mit dem H°(D°)-Fluss an. Bei großem Flussverhältnis (R > 1000) sind die Erosionsausbeuten durch den Ar⁺-Fluss limitiert und die chemische Zerstäubung ist gesättigt. Durch das Überangebot von H°(D°)-Atomen in der oberflächennahen Schicht, d.h. in der H°(D°)-Reichweite, wird die maximale Passivierungswahrscheinlichkeit von *dangling bonds* erreicht. Bei 50 eV Ar⁺+H° durch das vergleichsweise geringere Austreiben von Wasserstoff schon bei kleinerem Flussverhältnis (R < 1000) in Sättigung als bei 200 eV Ar⁺+H°(D°).

Die gezeigten Modellkurven in Abb. 4.3 (a) und (b) wurden durch Anpassen des Modells (Gl. 2.3) an die Ne- bzw. Ar-Daten berechnet. Die dafür bestimmten energieabhängigen Modell-Parameter Y_{ps} , Y_{cs} und S sind in Tab. 4.1 zusammengefasst.

Ion	Energie [eV]	$Y_{\rm ps}$	$Y_{\rm cs}$	S
Ar	50	0	$1,40\pm0,10$	50 ± 15
Ar	200	$0,175\pm0,025$	$3,12\pm0,14$	112 ± 26
Ne	200	$0,20\pm0,05$	$3,07\pm0,13$	127 ± 18

Tabelle 4.1: Modell-Parameter Y_{ps} , Y_{cs} und S für die $Ar^+ + H^{\circ}(D^{\circ})$ -Datensätze für 50 und 200 eV in Abb. 4.3 (a) und (b) und für den 200 eV Ne⁺ + H^{\circ}-Datensatz in Abb. 4.3 (a). Die Parameter wurden durch Anpassen des Hopf-Modells (Gl. 2.3) an die Daten berechnet.

4.3 Temperaturabhängigkeit

Der Prozess der rein thermisch aktivierten chemischen Erosion von a-C:H-Schichten durch H[°] ist bereits untersucht worden und durch das Küppers-Modell beschrieben (Abschnitt 2.3.1). Die Erosionsrate Γ ist proportional zum Wasserstofffluss $j_{\text{H}^{\circ}}$ bzw. Deuteriumfluss $j_{\text{D}^{\circ}}$:

$$\Gamma = j_{\mathrm{H}^{\circ}(\mathrm{D}^{\circ})} \cdot Y_{\mathrm{H}^{\circ}(\mathrm{D}^{\circ})}^{T}, \qquad (4.1)$$

wobei $Y_{\mathrm{H}^{\circ}}^{T}$ die temperaturabhängige Erosionsausbeute C/H° (erodierte Kohlenstoffatome pro H°) ist. Wie in Abb. 2.3 gezeigt, wird die chemische Erosion durch H° erst bei Temperaturen oberhalb von 400 K wesentlich und erreicht bei T_{max} (650–730 K) ihr Maximum, $Y_{\mathrm{H}^{\circ}(\mathrm{D}^{\circ})}^{\mathrm{Tmax}} = 0,02 \text{ C/H}^{\circ}(\mathrm{D}^{\circ})^{-1}$. Abb. 4.4 zeigt die Temperaturabhängigkeit der Erosionsausbeuten bzw. -raten von a-C:H durch Ar⁺+H° für Energien von 50 bis 800 eV. Die Erosionsraten der chemischen Erosion durch H° alleine sind zum Vergleich in Abb. 4.4 (a) (Sternsymbole) mitgezeigt.

¹Dieser Wert wurde für D° bestimmt. Er wird allerdings auch für H° verwendet.

Abbildung 4.4: (a) Erosionsausbeute (links) bzw. -rate (rechts) von a-C:H durch $Ar^+ + H^{\circ}$ im Temperaturbereich von 110 bis 950 K für unterschiedliche Ar^+ -Energien. Die chemische Erosion durch H° aus Abb. 2.3 ist zum Vergleich mitgezeigt (ausschließlich rechte Skala). Das Flussverhältnis wurde bei allen Messpunkten in etwa bei $R \approx 350 \pm 10$ konstant gehalten ($j_{H^{\circ}} = (1, 35 \pm 0, 10) \cdot 10^{15}$ cm⁻²s⁻¹ und $j_{Ar^+} = (3, 5 - 4, 3) \cdot 10^{12}$ cm⁻²s⁻¹). Die Linien dienen nur zur Orientierung. (b) Vergleich der Erosionsraten für H° und 800 eV $Ar^+ + H^{\circ}$ auf einer linearen Skala bei zwei Temperaturen: eine im Bereich von low T und die andere bei T_{max} (Details siehe Text).

Die Temperaturabhängigkeit der Erosionsausbeuten aus Abb. 4.4 (a) zeigt, dass die chemische Zerstäubung bei 330 K bis zu den tieferen Temperaturen von ca. 110 K innerhalb der Messgenauigkeit konstant ist. In diesem mit _{low}T bezeichneten Temperaturbereich ist der Erosionsprozess im Wesentlichen durch die gleichzeitige Wechselwirkung Ar^++H° , wie im Abschnitt 2.3.3 beschreiben wurde, gegeben. Die Erosionsausbeute steigt erst bei Temperaturen bei denen die durch das Küppers-Modell beschriebene chemische Erosion wesentlich wird und hat bei T_{max} unabhängig von der Ionenenergie ein Maximum. Ab etwa 800 K fallen die Erosionsausbeuten wieder ab und bei Temperaturen jenseits von 900 K, bei denen die thermische Desorption von H[°] und die thermische Zersetzung der a-C:H-Schicht beginnen, liegen sie unterhalb der Werte bei Temperaturen im Bereich von _{low}T.

Abb. 4.4 (b) zeigt auf einer linearen Skala den Betrag der Erosionsrate durch H° bei $T_{max} \approx 700 \text{ K}$ ($\Gamma_{H^{\circ}}^{Tmax}$) und für 800 und 100 eV die Beträge der Erosionsraten durch $Ar^{+}+H^{\circ}$ bei T_{max} ($\Gamma_{Ar^{+}+H^{\circ}}^{Tmax}$) bzw. bei einer Temperatur im _{low}T-Bereich (z.B. Raumtemperatur, $\Gamma_{Ar^{+}+H^{\circ}}^{low}$).

Addiert man die Erosionsrate $\Gamma_{H^*}^{Tmax}$ zu der Erosionsrate $\Gamma_{Ar^++H^*}^{low^T}$, so zeigt sich, dass die gemessenen Raten bei T_{max} sowohl für 800 eV als auch für 100 V deutlich über diese Summe liegen. Diese Erhöhung der gemessenen Erosionsrate zeigt sich auch für alle anderen Ar⁺-Energien bis herab 100 eV, bei 800 eV

beträgt sie ca. 60 %, bei 100 eV ca. 30 %. Bei 50 eV ist diese Erhöhung allerdings sehr gering und innerhalb der Messtoleranz. Offensichtlich gibt es einen weiteren Prozess, der bei Temperaturen über Raumtemperatur und größeren Ionenenergien eine Rolle spielt.

Abb. 4.4 zeigt die Temperaturabhängigkeit der Erosionsraten bei einem festgehaltenen Flussverhältnis von $R = j_{\mathrm{H}^{\circ}}/j_{\mathrm{Ar}^{+}} \approx 350$. Abb. 4.5 (a) und (b) zeigt die Erosionsausbeuten der chemischen Zerstäubung in Abhängigkeit vom Flussverhältnis R für (a) 50 eV Ar⁺+H^o bzw. (b) 200 eV Ar⁺+H^o(D^o) jeweils bei T_{max} ≈ 700 K und bei ca. 330 K, eine Temperatur im Bereich von _{low}T. Dabei sind die Messpunkte bei ca. 330 K und die entsprechenden Modelllinien I in Abb. 4.5 (a) und (b) die gleichen wie in Abb. 4.3 (b).

Abbildung 4.5: Abhängigkeit der Erosionsausbeute bzw. -rate der chemischen Zerstäubung bei ca. 330 K (low T-Bereich) und bei $T_{\max} \approx 700$ K vom Verhältnis R (a) der H[•]- zu 50 eV Ar⁺-Flussdichte und (b) der H[•](D[•])- zu 200 eV Ar⁺-Flussdichte in doppelt logarithmischer Darstellung. Dabei wurde die Ar⁺-Flussdichte konstant gehalten. Die gestrichelte Linie I ist das Modell Gl. 2.3, das bei 330 K gilt (wie Abb. 4.3 (b)). Der Betrag der rein chemischen Erosion durch H[•] (oder D[•]) bei T_{\max} hat den Wert $\Gamma_{H^{\circ}(D^{\circ})}^{T\max} = j_{H^{\circ}(D^{\circ})} \cdot Y_{H^{\circ}(D^{\circ})}^{T\max}$ (Gl. 4.1, ausschließlich rechte Skala) und entspricht der gepunkteten Linie II. Die Strich-Punkt-Linie ist die Summe aus I+II.

In der logarithmischen Darstellung in Abb. 4.5 (a) und (b) geht der Flussverhältnisbereich von R = 0 bis $R \approx 2000$, wobei nur der H°(D°)-Fluss variiert wurde. Der Ar⁺-Fluss wurde für alle Messpunkte bei $j_{\rm Ar^+} = (4, 0 \pm 0, 5) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ konstant gehalten. Das ermöglicht einen direkten

Vergleich der chemischen Zerstäubungsraten durch die gleichzeitige Wechselwirkung von Ar⁺ und H[•] $(Y_{\text{Ar}^++\text{H}^\circ}^T = \Gamma_{\text{Ar}^++\text{H}^\circ}^T / j_{\text{Ar}^+})$ und der rein chemischen Erosionsrate durch H[•] $(\Gamma_{\text{H}^\circ}^{\text{Tmax}})$.

Man sieht aus dem Vergleich der Abb. 4.5 (a) und (b), dass die einfache Summe des Modells der chemischen Zerstäubung bei 330 K (_{low}T-Bereich) (I) nach Gl. 2.3 und des Betrags der rein chemischen Erosion durch H[°] bei T_{max} (II) die gemessene Erosionsausbeute bei T_{max} nur im Falle (a) (50 eV Ar⁺+H[°]) jedoch nicht im Falle (b) (200 eV Ar⁺+H[°]) wiedergibt. Die gesamte Erosionsausbeute im Falle (b) ist deutlich höher als die einfache Summe der einzelnen Erosionsprozesse I + II.

Obige Beobachtungen offenbaren eine **zusätzliche synergetische Erhöhung der Erosionsrate** bei der gleichzeitigen Wechselwirkung von Ar^+ und H° bei hohen Temperaturen und Ionenenergien über 50 eV, die im Hopf-Modell (Abschnitt 2.3.3) nicht enthalten ist.

4.4 Integriertes Modell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen Zerstäubung durch Ar⁺+H°

Ausgehend vom Hopf-Modell (Abschnitt 2.3.3) wird ein Modell entwickelt, das die Energie-, Flussund Temperaturabhängigkeit beschreibt. Dazu wird in einem ersten Schritt die Energie- und Flussabhängigkeit und in einem zweiten die Temperaturabhängigkeit mit einbezogen.

Im Abschnitt 4.1 wurde diskutiert, dass die Rolle der Ionen bei der chemischen Zerstäubung die ist, Bindungsbrüche (*dangling bonds*) in der Schicht zu erzeugen. Die Ausbeute von Bindungsbrüchen ist für jedes Ion charakteristisch und kann berechnet werden (beispielsweise mittels TRIM.SP). Die Kenntnis dieser energie- und speziesabhängigen Ausbeuten von Bindungsbrüchen sollte es ermöglichen, mit dem Modell der Flussabhängigkeit (Gl. 2.3) auch die Energieabhängigkeit zu beschreiben und es so zu erweitern, dass es allgemein für das System Ion + H° angewendet werden kann. Aus diesem Grund werden sich die nächsten Abschnitte dieses Kapitels speziell nur mit dem Fall der chemischen Zerstäubung durch Ar^+ +H°(D°) befassen.

Die in Abschnitt 4.3 dargestellten Messungen zeigen, dass bei höheren Ionenenergien und höheren Temperaturen ein weiterer synergetischer Effekt bei der Erosion durch die gleichzeitige Wechselwirkung Ion + H° auftritt. Dieser Prozess unterscheidet sich aber von dem im Abschnitt 2.3.3 dargestellten Mechanismus der chemischen Zerstäubung bei Raumtemperatur. Um sie voneinander unterscheiden zu können, wird der Prozessschritt aus Abschnitt 2.3.3, der als temperaturunabhängig angenommen wurde, als chemische Zerstäubung Ion + H° (engl. chemical sputtering: CS) bezeichnet, während der neu beobachtete Prozessschritt, der bei höheren Temperaturen zusätzlich auftritt, mit dem Namen ioneninduzierte Erhöhung der chemischen Erosion (engl. ion-enhanced chemical erosion: IECE) bezeichnet wird. IECE ist somit energie- und temperaturabhängig.

4.4.1 Konzept

Ein erster Ansatz, um das Modell der Flussabhängigkeit (Gl. 2.3) mit dem Modell der Energieabhängigkeit (Gl. 2.4) zu vereinen, besteht darin, die drei energieabhängigen Terme $Y_{\rm ps}$, $Y_{\rm cs}$ und S in Gl. 2.3, die bisher als empirische Fitparameter angenommen werden, durch TRIM.SP-Rechungen zu ersetzen. Die physikalische Zerstäubung $Y_{\rm ps} \equiv Y_{\rm ps}^E$ kann man direkt mittels TRIM.SP für jede Ionenenergie berechnen. Der $Y_{\rm cs}$ -Term beschreibt die Ausbeute der chemischen Zerstäubung (CS) im H°-Sättigungsbereich. Daher ist es plausibel den gleichen Ansatz wie in Gl. 2.4 zu wählen, d.h. das Integral ($\Upsilon_{\rm C}^E$) über die Schichtdicke (x) des Produktes der Kohlenstoff-Verlagerungsausbeuten ($y_{\rm bb}^{\rm C}({\rm x}, {\rm E})$) mal der H°-Passivierungswahrscheinlichkeit ($\exp(-x/\lambda)$). Damit lässt sich $Y_{\rm cs}$ wie folgt umschreiben:

$$Y_{\rm cs} \equiv Y_{\rm cs}^E = a_{\rm cs} \cdot \Upsilon_{\rm C}^E. \tag{4.2}$$

 $\Upsilon_{\rm C}^E$ ist durch die in Gl. 2.4 gewählten Modellparameter ($\lambda = 0, 4$ nm, $E_{\rm bb}^{\rm C} = 5$ eV) festgelegt. Lediglich der Vorfaktor $a_{\rm cs}$ soll als freier Modellparameter angepasst werden. Der S-Term beschreibt das Verhältnis der durch den Ionenbeschuss freigesetzten Wasserstoffatome $Y_{\rm H^\circ out}$ zu der chemischen Einbau-Wahrscheinlichkeit eines einfallenden Wasserstoffatoms $p_{\rm ein}^{\rm H^\circ}$. Dabei ist $p_{\rm ein}^{\rm H^\circ}$ eine Konstante und nur $Y_{\rm H^\circ out}$ energieabhängig. Für die Ausbeute $Y_{\rm H^\circ out}$ wird daher die H-Verlagerungsausbeute $(y_{\rm bb}^{\rm H}({\rm x},{\rm E}))$ analog zu der C-Verlagerungsausbeute $(y_{\rm bb}^{\rm C}({\rm x},{\rm E}))$ mit TRIM.SP berechnet. Somit erhält man folgenden Ausdruck:

$$Y_{\mathrm{H}^{\circ}\mathrm{out}} \equiv Y_{\mathrm{H}^{\circ}\mathrm{out}}^{E} = a_{\mathrm{H}} \cdot \Upsilon_{\mathrm{H}}^{E}.$$

$$(4.3)$$

Der entsprechende Vorfaktor $a_{\rm H}$ soll auch hier angepasst werden.

Die temperaturabhängige, rein chemische Erosionsausbeute durch atomaren Wasserstoff $Y_{\mathrm{H}^{\circ}}^{T}$ wurde im Temperaturbereich von 300 bis 800 K für a-C:H-Schichten gemessen (siehe Abb. 2.3). Die zusätzliche Erhöhung der chemischen Erosion $Y_{\mathrm{H}^{\circ}}^{T}$ durch den Ionenbeschuss, d.h. die ionenunterstützte Erhöhung der chemischen Erosion (IECE) durch H°, wird als proportional zur rein chemischen Erosion durch H° und zur Oberflächenschädigung durch den Ionenbeschuss angesetzt. Der Proportionalfaktor $D_{\mathrm{H}^{\circ}}$ kann als ein Maß für die Reaktivität von H° mit einer geschädigten Oberflächenstelle betrachtet werden. Unter dem Synergismus bei der IECE kann man sich vorstellen, dass der Ionenbeschuss und damit die entstandene Schichtschädigung zusätzliche Reaktionszentren für den Angriff von H° bilden, die die chemische Erosion erhöhen.

Zur Veranschaulichung sind die involvierten Mechanismen der chemischen Zerstäubung von a-C:H durch die Wechselwirkung von Ion und H° in Abb. 4.6 schematisch dargestellt. Sie lassen sich wie folgt beschreiben:

1. Physikalische Zerstäubung (PS physical sputtering) durch den Ionenbeschuss.

- 2. Chemische Zerstäubung durch die gleichzeitige Wechselwirkung von Ionen und H[°] (CS *chemical sputtering*). Dieser Prozess ist als temperaturunabhängig angenommen (siehe Abschnitt 2.3.3).
- 3. Thermisch aktivierte, chemische Erosion (CE chemical erosion) durch H°, die durch die chemische Reaktionen von Wasserstoffatomen mit a-C:H gegeben ist. Der Mechanismus der chemischen Erosion durch H° wird durch das im Abschnitt 2.3.1 beschriebene Küppersmodell erklärt. Hier wird die im Rahmen dieser Arbeit gemessene Ausbeute $(Y_{H^*}^T)$ verwendet.
- 4. Ioneninduzierte Erhöhung der chemischen Erosion (IECE ion-enhanced chemical erosion) durch H°. Dieser Prozessschritt setzt Temperaturen voraus, bei denen die chemische Erosion durch H° wesentlich wird und eine Oberflächenschädigung durch den Ionenbeschuss.

Abbildung 4.6: Schematische Darstellung der chemischen Zerstäubung von a-C:H-Schichten durch die Wechselwirkung von Ar^+ und H° , aufgeteilt in vier Erosionsmechanismen: PS, CS, CE und IECE. Dabei ist CS der in Abb. 2.5 präsentierte Mechanismus der chemischen Zerstäubung von Hopf [HOPF 2003]. Die ersten zwei Erosionsmechanismen sind temperaturunabhängig (PS, CS), die andere beiden (CE, IECE) sind erst bei Temperaturen über 340 K bis etwa 1000 K wesentlich.

4.4.2 Oberflächenbedeckung

Um ein Ratengleichungsmodell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen Zerstäubung von a-C:H-Schichten durch Ar⁺ und H[°] aufzustellen, betrachtet man eine effektive Oberflächenschicht von einigen nm Dicke, die mit den einfallenden H[°] und Ionen gleichzeitig wechselwirkt. Die Dicke wird durch die Überlappung der Reichweite der wechselwirkenden Spezies bestimmt. Die Modellvorstellung in Gl. 2.3 geht von einer Aufteilung der Oberflächenschicht in zwei mögliche Bedeckungen aus, $\Theta_{\rm C}$ und $\Theta_{\rm CH}$, d.h. eine Konzentration an freien Kohlenstoffplätzen und eine an Kohlenstoffplätzen mit Wasserstoff in der Nachbarschaft. Dem Prozess der ionenunterstützten Erhöhung der chemischen Erosion (IECE) durch H° wird eine neue Bedeckungsart in der Oberflächenschicht zugeordnet. Diese neue Bedeckung, die die durch Ionenbeschuss erzeugten, reaktiven Stellen in der Schicht beschreibt, ist für die Erhöhung der chemischen Erosion durch H° verantwortlich. Sie wird mit $\Theta_{\rm r}$ (*reaktiv*) bezeichnet. Die Summe der drei Bedeckungen ist auf Eins normiert:

$$\Theta_{\rm C} + \Theta_{\rm CH} + \Theta_{\rm r} = 1. \tag{4.4}$$

4.4.3 Erosionsrate

Ausgehend von den Erosionsmechanismen (Abb. 4.6) setzt sich die gesamte Erosionsrate somit aus vier Komponenten zusammen:

$$\Gamma = \underbrace{j_{\mathrm{Ar}^+} Y_{\mathrm{ps}}^E}_{1: \mathrm{PS}} + \underbrace{j_{\mathrm{Ar}^+} Y_{\mathrm{cs}}^E \Theta_{\mathrm{CH}}}_{2: \mathrm{CS}} + \underbrace{j_{\mathrm{H}^\circ} Y_{\mathrm{H}^\circ}^T}_{3: \mathrm{CE}} + \underbrace{j_{\mathrm{H}^\circ} Y_{\mathrm{H}^\circ}^T D_{\mathrm{H}^\circ} \Theta_{\mathrm{r}}}_{4: \mathrm{IECE}}$$

oder

$$\Gamma = \underbrace{j_{Ar^+} (Y_{ps}^E + Y_{cs}^E \Theta_{CH})}_{1+2} + \underbrace{j_{H^\circ} Y_{H^\circ}^T (1 + D_{H^\circ} \Theta_r)}_{3+4},$$
(4.5)

dabei sind j_{Ar^+} und j_{H° die Flussdichten von Ar^+ bzw. H°. Die physikalische Zerstäubungsausbeute Y_{ps}^E und die chemische Zerstäubungsausbeute für Ion + H° bei Raumtemperatur Y_{cs}^E sind die im Abschnitt 4.4.1 eingeführten energieabhängige Terme, die aus dem ursprünglichen Flussabhängigkeitsmodell Gl. 2.3 stammen. $Y_{\text{H}^\circ}^T$ ist die chemische Erosionsausbeute durch H° und der einzige temperaturabhängige Terme. D_{H° ist der Proportionalitätsfaktor für die Oberflächenreakivität (Abschnitt 4.4.1).

Man geht davon aus, dass die chemische Zerstäubung (CS) ausschließlich an Θ_{CH} -Plätzen wirkt. IECE ist hingegen nur von Θ_r abhängig. Dabei beinhaltet nur die Θ_r -Bedeckung, nicht aber der Proportionalitätsfaktor D_{H° , die Energieabhängigkeit der IECE. Eine ähnliche Annahme für die Erhöhung der chemischen Zerstäubung von Graphit mit Wasserstoffionen bei Temperaturen oberhalb von 600 K wurde in [ROTH und GARCÍA-ROSALES 1996] erfolgreich eingeführt.

Bedeckungsdynamik

Die Dynamik der Erzeugung und Vernichtung der drei Bedeckungen $\Theta_{\rm C}$, $\Theta_{\rm CH}$ und $\Theta_{\rm r}$ der a-C:H-Schicht ist durch fünf Prozessschritte gegeben. Tabelle 4.2 fasst sie zusammen und gibt die Terme an, durch die ein Ratengleichungssystem beschrieben wird.

Die Bedeutung der Prozessschritte ist folgende:

4.4 Integriertes Modell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen Zerstäubung durch $\rm Ar^+ + H^\circ$

Prozessschritt	Term (Rate)	$\Theta_{\rm C}$ $\Theta_{\rm CH}$ $\Theta_{\rm r}$
a) H°-Einbau	$j_{\mathrm{H}^{\circ}} p_{\mathrm{H}^{\circ}\mathrm{in}} (1 - \Theta_{\mathrm{CH}})$	> <
b) Erzeugung von reaktiven Stellen	$j_{\rm Ar^+} Y_{\rm r}^E \left(1 - \Theta_{\rm CH} - B\Theta_{\rm r}\right)$	>
c) H°-Freisetzung	$j_{\mathrm{Ar}^+} Y^E_{\mathrm{H}^\circ\mathrm{out}} \Theta_{\mathrm{CH}}$	<
d) Erosionsmechanismus 2: CS	$j_{\mathrm{Ar}^+} \; Y^E_{\mathrm{cs}} \; \Theta_{\mathrm{CH}}$	<
e) Erosionsmechanismus 4: IECE	$j_{\mathrm{H}^{\circ}} \; Y_{\mathrm{H}^{\circ}}^{T} \; D_{\mathrm{H}^{\circ}} \; \Theta_{\mathrm{r}}$	<

Tabelle 4.2: Schema der Bedeckungsdynamik bei der chemischen Zerstäubung von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von $Ar^+ + H^\circ$.

a) $\Theta_{\rm CH}$ wird durch H°-Einbau mit gleicher Wahrscheinlichkeit $p_{\rm H^\circ in}$ aus $\Theta_{\rm C}$ und $\Theta_{\rm r}$ gebildet.

b) $\Theta_{\rm r}$ wird durch Ionenbeschuss mit einer energieabhängigen Erzeugungsausbeute für reaktive Oberflächenstellen $Y_{\rm r}^E$ aus der $\Theta_{\rm C}$ -Bedeckung erzeugt. Der Wert von $\Theta_{\rm r}$ unterliegt allerdings einer Begrenzung. Die Annahme einer hohen Dichte an $\Theta_{\rm r}$ -Plätzen ist nicht sinnvoll, da angenommen werden muss, dass benachbarte $\Theta_{\rm r}$ -Stellen rekombinieren. Man nimmt an, dass wenn in der Umgebung eines $\Theta_{\rm r}$ -Platzes ein weiterer entsteht, diese beiden Plätze rekombinieren und vernichtet werden. Aus der Betrachtung einer hexagonalen Anordnung von Oberflächenstellen lässt sich ein Maximalwert von 1/Bfür die $\Theta_{\rm r}$ -Bedeckung abschätzen. Die Wahl B = 13 ergibt sich aus dieser Annahme und wurde experimentell von Hopf bei dem ionenunterstützten Wachstum von a-C:H-Schichten bestätigt [HOPF 2005]. B wird daher als Rekombinationsfaktor für $\Theta_{\rm r}$ eingeführt.

c) Wasserstoffatome werden durch Ionenbeschuss mit der Ausbeute $Y_{\text{H}^{\circ}\text{out}}^{E}$ freigesetzt. Die dadurch entstandenen offenen C-H-Bindungen tragen definitionsgemäß nicht zur Erzeugung von Θ_{r} bei, da dabei keine C-C-Bindungen betroffen sind; lediglich wird Θ_{CH} in Θ_{C} abgebaut. Dieses direkte Austreiben von H° trägt nicht zur Schichterosion bei. Die hier verwendete Definition der Schichterosion setzt die Abtragung von mindestens einem Kohlenstoffatom, sei es als einzelnes Atom oder Kohlenwasserstoffkomplex, voraus.

d) Bei der CS wird Θ_{CH} verbraucht und Θ_{C} gebildet. Dabei entstehen mit der Erosionsausbeute Y_{cs}^{E} flüchtige Kohlenwasserstoffspezies. Die Erosionsprodukte, die nicht nur Kohlenstoff sondern auch Wasserstoffatome beinhalten, sind zugleich ein zweiter Verlustkanal für H°.

e) Schließlich führt die Wechselwirkung von H° mit Θ_r bei Temperaturen, bei denen die chemische Erosion durch H° relevant wird, zur IECE durch H°. Dadurch wird Θ_r in Θ_C umgewandelt.

Für die zeitliche Änderung von Θ_{CH} und Θ_{r} erhält man:

$$n_{0} \frac{\mathrm{d}\Theta_{\mathrm{CH}}}{\mathrm{d}t} = j_{\mathrm{H}^{\circ}} p_{\mathrm{H}^{\circ}\mathrm{in}} (1 - \Theta_{\mathrm{CH}}) - j_{\mathrm{Ar}^{+}} (Y_{\mathrm{H}^{\circ}\mathrm{out}}^{E} + Y_{\mathrm{cs}}^{E}) \Theta_{\mathrm{CH}},$$

$$n_{0} \frac{\mathrm{d}\Theta_{\mathrm{r}}}{\mathrm{d}t} = j_{\mathrm{Ar}^{+}} Y_{\mathrm{r}}^{E} (1 - \Theta_{\mathrm{CH}} - B \Theta_{\mathrm{r}}) - j_{\mathrm{H}^{\circ}} p_{\mathrm{H}^{\circ}\mathrm{in}} \Theta_{\mathrm{r}} - j_{\mathrm{H}^{\circ}} Y_{\mathrm{H}^{\circ}}^{T} D_{\mathrm{H}^{\circ}} \Theta_{\mathrm{r}}.$$

$$(4.6)$$

Dabei ist n_0 die Flächendichte der Summe aller betrachteten Plätze.

Die Lösung des Gleichungssystems 4.6 im stationären Fall zusammen mit Gl. 4.4 ergibt die drei Bedeckungen:

$$\Theta_{\rm C} = 1 - \Theta_{\rm CH} - \Theta_{\rm r},$$

$$\Theta_{\rm CH} = \frac{R}{R + S_{\rm H^{\circ}out/in}^{E}},$$

$$\Theta_{\rm r} = \frac{Y_{\rm r}^{E} S_{\rm H^{\circ}out/in}^{E}}{(R + S_{\rm H^{\circ}out/in}^{E}) (B Y_{\rm r}^{E} + R(p_{\rm H^{\circ}in} + Y_{\rm H^{\circ}}^{T} D_{\rm H^{\circ}}))}.$$
(4.7)

Dabei beschreibt R das Flussverhältnis $R = j_{\mathrm{H}^{\circ}}/j_{\mathrm{Ar}^{+}}$ und $S^{E}_{\mathrm{H^{\circ}out/in}}$ das Verhältnis der gesamten ionenunterstützten Freisetzungsausbeute von Wasserstoffatomen zu der Einbau-Wahrscheinlichkeit eines einfallenden Wasserstoffatoms $p_{\mathrm{H^{\circ}in}}$:

$$S_{\rm H^{\circ}out/in}^{E} \equiv \frac{Y_{\rm H^{\circ}out}^{E} + Y_{\rm cs}^{E}}{p_{\rm H^{\circ}in}}.$$
(4.8)

 $S_{\mathrm{H}^{\circ}\mathrm{out/in}}^{E}$ ist durch die Prozessschritte a, c und d in Tab. 4.2 gegeben. Dabei wurde angenommen, dass bei der ionenunterstützten Freisetzung von gebundenen Wasserstoffatomen nicht nur der Prozessschritt c (Hauptprozess) sondern auch der Prozessschritt d (chemische Zerstäubung) eine Rolle spielt. Für den Prozessschritt d wird der Einfachkeithalber die gleiche Ausbeute Y_{cs}^{E} wie für die Erosion eines Kohlenstoffatoms verwendet, d.h. pro erodiertem Kohlenstoffatom wird ein Wasserstoffatom entfernt.

Erosionsausbeute

Mit Hilfe von Gl. 4.7 lässt sich die Gesamterosionsrate Gl. 4.5 umschreiben. Man erhält die Erosionsausbeute, d.h. die Zahl der erodierten Kohlenstoffatome pro einfallendem Ar-Ion Y [C/Ar⁺], indem man die Gesamterosionsrate auf den Ar-Ionenfluss j_{Ar^+} normiert:

$$Y_{\text{Modell}}^{E,R,T} = \frac{\Gamma}{j_{\text{Ar}^{+}}} = \underbrace{Y_{\text{ps}}^{E} + \frac{R}{R + S_{\text{H}^{\circ}\text{out/in}}^{E}} Y_{\text{cs}}^{E}}_{Y_{I}} + \underbrace{R \; Y_{\text{H}^{\circ}}^{T} \left(1 + \frac{D_{\text{H}^{\circ}} \; Y_{\text{r}}^{E} \; S_{\text{H}^{\circ}\text{out/in}}^{E}}{(R + S_{\text{H}^{\circ}\text{out/in}}^{E}) \left(BY_{\text{r}}^{E} + R(p_{\text{H}^{\circ}\text{in}} + Y_{\text{H}^{\circ}}^{T} D_{\text{H}^{\circ}})\right)}_{Y_{II}} \right)}_{Y_{II} = R \; Y_{\text{H}^{\circ}}^{T} (1 + D_{\text{H}^{\circ}} \Theta_{\text{r}})}$$

$$(4.9)$$

In Gl. 4.5 bzw. Gl. 4.9 ist $Y_{\text{H}^{\circ}}^{T}$ der **einzige** temperaturabhängige Parameter. Damit besteht Gl. 4.9 aus einem temperaturunabhängigen Term (Y_{I}) und einem temperaturabhängigen Term (Y_{II}) .

4.4.4 Anpassung des Modells an die Daten

Außer dem Rekombinationsfaktor B = 13 für die $\Theta_{\rm r}$ -Begrenzung und der temperaturabhängigen, chemischen Erosionsausbeute $Y_{\rm H^{\circ}}^{T} = \Gamma/j_{\rm H^{\circ}}$, deren Messung in Abb. 2.3 gezeigt ist, besitzt Gl. 4.9 zusammen mit Gl. 4.8 noch weitere sechs nicht temperaturabhängige Parameter. Zwei davon, nämlich $D_{\rm H^{\circ}}$ und $p_{\rm H^{\circ}in}$, werden als konstant angenommen. Die anderen vier Parameter $Y_{\rm ps}^{E}$, $Y_{\rm cs}^{E}$, $Y_{\rm H^{\circ}out/in}^{E}$ und $Y_{\rm r}^{E}$ sind energieabhängig. Die physikalische Zerstäubung ($Y_{\rm ps}^{E}$) lässt sich direkt mittels TRIM.SP berechen. Sie ist in Tab. 4.3 neben der gemessenen Zerstäubungsausbeute für die untersuchten Ar⁺-Energien aufgetragen. Dabei ist 200 eV Ar⁺ die niedrigste Energie, bei der man noch physikalische Zerstäubung messen konnte (vergl. Abb. 4.1).

$\mathrm{Ar^{+}[eV]}$	$Y_{\rm ps}^E$ (gemessen)	$Y^E_{\rm ps}$	$\Upsilon^E_{\mathrm{C}} = \int y^{\mathrm{C}}_{\mathrm{bb}} \mathrm{e}^{-\frac{\mathrm{x}}{\lambda}} \mathrm{d}\mathrm{x}$	$\Upsilon^E_{\mathrm{H}} = \int y^{\mathrm{H}}_{\mathrm{bb}} \mathrm{e}^{-\frac{\mathrm{x}}{\lambda}} \mathrm{d}\mathrm{x}$
50	nicht gemessen	$1 \cdot 10^{-4}$	2,184	0,574
100	≈ 0	0,029	3,262	1,209
200	$0,17\pm0,05$	$0,\!130$	4,585	1,874
400	$0,28\pm0,04$	0,320	5,991	2,540
800	$0,55\pm0,02$	$0,\!557$	7,195	3,085

Tabelle 4.3: Gemessene und berechnete physikalische Zerstäubungsausbeute Y_{ps}^E und die berechneten Integrale Υ_{C}^E und Υ_{H}^E für die unterschiedlichen Ar^+ -Energien. Diese Integrale haben die Form wie Gl. 2.4, d.h. die Integrale des Produkts der H^o- Passivierungswahrscheinlichkeit $(e^{-\frac{x}{\lambda}}, \lambda = 0, 4 \text{ nm})$ mit den Verlagerungsausbeuten für Kohlenstoff- (y_{bb}^C) bzw. Wasserstoffatome (y_{bb}^H) . Die Rechungen für Y_{ps}^E , y_{dp}^C und y_{bb}^H erfolgen mittels TRIM.SP mit E_{sb} 2,8 eV und $E_{bb}^C = 5 \text{ eV}$ bzw. $E_{bb}^H = 2,5 \text{ eV}$ (siehe Abschnitt 2.2). Die mittels Ellipsometrie gemessene Ausbeute für Y_{ps}^E bei 100 eV Ar^+ lieferte nach einer Beschusszeit von zwei Tagen einen Wert unterhalb der Nachweisgrenze. Daher wurde für 50 und 20 eV Ar^+ Null angesetzt.

Für Y_{cs}^E und $Y_{H^\circ out/in}^E$ werden die Ausdrücke Gl. 4.2 und Gl. 4.3 mit den berechneten Integraltermen von Tab. 4.3 (Υ_C^E bzw. Υ_H^E) verwendet, so dass es nur die entsprechenden energieunabhängige Vorfaktoren a_{cs} bzw. a_H zu bestimmen gilt.

Analog wird für Y_r^E ein Ausdruck postuliert, der proportional zu einem energieabhängigen Term ist. Dieser energieabhängige Term soll mittels TRIM.SP berechnet werden, so dass nur ein energieunabhängiger Proportionalitätsfaktor a_r bestimmt werden muss. Um einen geeigneten TRIM.SP-Term für Y_r^E zu verwenden, wird folgende Beobachtung herangezogen:

Die Messungen in Abb. 4.4 und Abb. 4.5 bei T_{max} haben gezeigt, dass die ioneninduzierte Erhöhung der chemischen Erosion (IECE) bei höheren Temperaturen (über 340 K) und erst bei Ionenenergien über 50 eV wesentlich wird. Das bedeutet in Gl. 4.9, dass das Produkt $D_{H^{\circ}} Y_{r}^{E} S_{H^{\circ}out/in}^{E}$

²Oder $S_{\text{H}^{\circ}\text{out}}^{E}$ durch Gl. 4.8.

bei Energien unterhalb 50 eV verschwinden muss. Da $D_{\mathrm{H}^{\circ}}$ und $S^{E}_{\mathrm{H}^{\circ}\mathrm{out/in}}$ von Null verschieden sind, muss $Y^{E=50}_{\mathrm{r}}$ sehr klein sein. Bei 100 eV und höheren Energien muss dagegen Y^{E}_{r} deutlich von Null verschieden, so dass die Messdaten bei höheren Temperaturen durch den Prozess IECE beschrieben werden können.

Aus dieser Beobachtung folgt, dass die Erzeugungsausbeute Y_r^E , d.h. der Prozessschritt b in Tab. 4.2, erst bei einer ausreichend großen Ionenenergie wesentlich wird. Die Energie von ca. 50 eV liegt im Bereich der Schwellenenergie für physikalische Zerstäubung durch Ar⁺ (siehe Tab. 4.3). Die Vermutung liegt nahe, dass es eine direkte Korrelation zwischen der Ausbeute Y_r^E und der entsprechenden physikalischen Zerstäubungsausbeute Y_{ps}^E gibt. Man beschreibt Y_r^E deshalb mit folgenden Ausdruck:

$$Y_{\rm r}^E = a_{\rm r} \cdot Y_{\rm ps}^E, \tag{4.10}$$

Proportionalitätsfaktor wobei einenergieunabhängiger ist. Bei der chemischen $a_{\rm r}$ Zerstäubung von Graphit durch Wasserstoffionen findet ähnliche Annahme man eine [ROTH und GARCÍA-ROSALES 1996].

Gl. 4.9 lässt sich schließlich mit Hilfe von Gl. 4.2, Gl. 4.3 und Gl. 4.10 im untersuchten Fluss-Energie-Temperaturbereich wie folgt umschreiben:

$$Y_{\text{Modell}}^{\text{E,R,T}} = \underbrace{Y_{\text{ps}}^{E} + \frac{R \ p_{\text{H}^{\circ}\text{in}} \ a_{\text{cs}} \Upsilon_{\text{C}}^{E}}{R \ p_{\text{H}^{\circ}\text{in}} + (a_{\text{H}} \Upsilon_{\text{H}}^{E} + a_{\text{cs}} \Upsilon_{\text{C}}^{E})}_{Y_{I}}}_{Y_{I}} + \underbrace{R \ Y_{\text{H}^{\circ}}^{T} \left(1 + \frac{D_{\text{H}^{\circ}} \ a_{\text{r}} \ (a_{\text{H}} \Upsilon_{\text{H}}^{E} + a_{\text{cs}} \Upsilon_{\text{C}}^{E}) \ Y_{\text{ps}}^{E}}{(R \ p_{\text{H}^{\circ}\text{in}} + (a_{\text{H}} \Upsilon_{\text{H}}^{E} + a_{\text{cs}} \Upsilon_{\text{C}}^{E})) \ (B \ a_{\text{r}} \ Y_{\text{ps}}^{E} + R(p_{\text{H}^{\circ}\text{in}} + Y_{\text{H}^{\circ}}^{T} D_{\text{H}^{\circ}}))}_{Y_{II}} - R \ Y_{\text{H}^{\circ}}^{T} (1 + D_{\text{H}^{\circ}} \Theta_{\text{r}})}$$

$$(4.11)$$

Durch Anpassen des Modells an die Daten wurden die Vorfaktoren a_{cs} , a_{H} und a_{r} so wie $D_{H^{\circ}}$ und $p_{H^{\circ}in}$ bestimmt. Dafür wurde ein Fitprogramm verwendet, das im Rahmen dieser Arbeit entwickelt wurde. Dieses Programm findet durch systematische Variation aller Fitparameter das Minimum für die Abweichung zwischen Modell und Daten (mittlere quadratische Abweichung) für alle Messpunke gleichzeitig. Die für das Modell notwendigen Werte für die Integrale Υ_{H}^{E} und Υ_{C}^{E} so wie die physikalische Zerstäubungsausbeute Y_{ps}^{E} wurden aus Tab. 4.3 entnommen. Die Werte für λ und für den Rekombinationsfaktor B wurden aus [HOPF 2005] übernommen. Tab. 4.4 stellt die Modellparameter zusammen:

4.4 Integriertes	Modell für	die Energie-	, Fluss-	und	Temperaturabhängigkeit	der c	hemischen
Zerstäubung du	urch Ar ⁺ +H	l°					

Parameter	Wert	Bemerkung
$a_{\rm cs}$	0,60	Vorfaktor bei $Y_{\rm cs}^E$ in Gl. 4.2
$a_{ m H}$	31, 4	Vorfaktor bei $Y_{\text{H}^\circ\text{out/in}}^E$ in Gl. 4.3
$a_{ m r}$	6207	Vorfaktor bei $Y^E_{\rm r}$ in Gl. 4.10
$D_{\mathrm{H}^{\circ}}$	37,0	Proportionalitätsfaktor bei IECE in Gl. 4.5
$p_{\mathrm{H}^{\circ}\mathrm{in}}$	0,57	57%des einkommenden Wasserstoffs werden eingebaut (Gl. 4.8)
В	13	für die Rekombination von benachbarten reaktiven Plätzen $(\Theta_{\rm r})$
λ	0,4 nm	Abfalllänge für das Eindringen von H°

Tabelle 4.4: Verwendete Modellparameter. Dabei sind die Werte für a_{cs} , a_{H} , a_{r} , $D_{H^{\circ}}$ und $p_{H^{\circ}in}$ Fitergebnisse. Die Werte für B und λ stammen aus [HOPF 2005].

4.4.5 Ergebnisse und Diskussion des Modells

Abb. 4.7 (unteres Bild) zeigt einen Vergleich der Datensätze der Flussabhängigkeit für 50 eV (a) und 200 eV Ar⁺ (b) aus Abb. 4.5 mit den Ergebnissen des Modells (Gl. 4.11). Bei 330 K, eine Temperatur im _{low}T-Bereich, ist $Y_{\text{H}^{\circ}}^{T} \approx 0$, so dass die Erosionsausbeute nur durch den Term Y_{I} in Gl. 4.11 (gestrichelte Linien) gegeben ist. Der Term Y_{I} beschreibt die Daten im gemessenen Flussverhältnisbereich gut. Bei T_{max} \approx 700 K sieht man, dass die Summe I + II (strich-gepunktete Linie) nur im Falle (a) jedoch nicht im Falle (b) gilt. Das Modell bei T_{max} (durchgezogene Linie in Abb. 4.7) allerdings beschreibt die Datensätzen sowohl für 50 (a) als auch für 200 eV Ar⁺-Energie (b) gut. Dafür ist der Term $D_{\text{H}^{\circ}}\Theta_{\text{r}}$ in Y_{II} (Gl. 4.11) verantwortlich, der bei 50 eV Null ($\Theta_{\text{r}} = 0$) und bei 200 eV von Null verschieden ($\Theta_{\text{r}} > 0$) ist.

Abb. 4.7 (oberes Bild) zeigt auch $\Theta_{\rm CH}$ und $\Theta_{\rm r}$ aus Gl. 4.7. Man sieht wie $\Theta_{\rm CH}$ mit zunehmenden Angebot an H° (größeres R) in Sättigung geht; bei R > 1000 ist $\Theta_{\rm CH} \approx 1$. Bei kleinem R überwiegt dagegen die $\Theta_{\rm r}$ -Bedeckung. Der Flussbereich, in dem $\Theta_{\rm r}$ durch den Sättigungswert 1/B gegeben ist, hängt stark von der Energie ab: Bei 50 eV Ar⁺ wird der Sättigungswert nur für R = 0 erreicht, bei 200 eV Ar⁺ dagegen im Bereich von 0 bis ca. 10. Für größere Flussverhältnisse wird $\Theta_{\rm r}$ durch den effektiven Einbau von H° reduziert.

Abb. 4.8 zeigt den Vergleich des Modells (Gl. 4.11, durchgezogene Linien) mit den Messdaten (Datensätze aus Abb. 4.4) für die Energie- und Temperaturabhängigkeit. Man sieht, dass das Modell die Daten gut beschreibt. Das Modell und die Daten zeigen eine klare Trennung der Temperaturabhängigkeit in zwei Bereiche. Bei tieferen Temperaturen bis ca. 340 K, bei denen die Erosionsausbeute näherungsweise temperaturunabhängig ist, wird die Erosionsausbeute hauptsächlich durch den ersten Term Y_I in Gl. 4.11 beschrieben. Erst bei Temperaturen oberhalb von ca. 340 K, bei denen $Y_{\text{H}^{\circ}}^{T}$ relevant wird, spielt der zweite Term Y_{II} in Gl. 4.11 eine wichtige Rolle.

Abbildung 4.7: Abhängigkeit der Erosionsausbeute der chemischen Zerstäubung bei 330 K, im _{low} T-Bereich, und bei $T_{max} = 700$ K vom Flussverhältnis (R) aus Abb. 4.5 (a) für 50 eV und (b) für 200 eV Ar⁺. Unteres Bild: die gestrichelte und durchgezogene Linien in (a) und (b) entsprechen dem Modell nach Gl. 4.11 bei 330 bzw. 700 K. Im Falle (a) lässt sich die Modellkurve bei 700 K von der Summe I+II (Strich-Punkt-Linie) kaum unterscheiden. Im Falle (b) ist die Modellkurve deutlich oberhalb der Summe I+II. Oberes Bild: Abhängigkeit der Bedeckungen Θ_{CH} und Θ_r (Gl. 4.7) von Flussverhältnis.

Abb. 4.8 (oberes Bild) zeigt bei konstantem Flussverhältins $R \approx 350$ eine schwache Abhängigkeit von $\Theta_{\rm r}$ von der Temperatur. $\Theta_{\rm r}$ ist abhängig von der Ionenenergie (50 bis 800 eV). $\Theta_{\rm CH}$ wird nicht gezeigt, da es nicht temperaturabhängig ist (siehe Gl. 4.7).

Näherungen

Im folgenden wird das integrierte Modell Gl. 4.11 bei Temperaturen unterhalb von 340 K mit den Hopf-Modellen des Abschnitts 2.3.3 für Fluss- bzw. Energieabhängigkeit verglichen. Aus Gründen des vereinfachen Ausdrucks wird jedoch die Gl. 4.9, die identisch mit Gl. 4.11 ist, für den Vergleich genommen.

Bei tieferen Temperaturen bis etwa Raumtemperatur, bei denen $Y_{\text{H}^{\circ}}^{T} \approx 0$ (siehe Abb. 2.3) ist, verschwindet der rechte Term Y_{II} in Gl. 4.9, so dass nur $S_{\text{H}^{\circ}\text{out/in}}^{E}$, Y_{cs}^{E} und Y_{ps}^{E} für den Term Y_{I} betrachtet werden.

Setzt man in Gl. 4.2 ($Y_{cs}^E = a_{cs}\Upsilon_C^E$) und Gl. 4.3 ($Y_{H^\circ out}^E = a_H\Upsilon_H^E$) die entsprechenden Vorfaktoren a_{cs} bzw. a_H aus Tab. 4.4 und Integralwerte Υ_C^E bzw. Υ_H^E aus Tab. 4.3 ein, stellt man fest, dass für jede Ionenenergie $Y_{H^\circ out}^E$ über eine Größenordnung größer als Y_{cs}^E ist. Folglich gilt für die Gl. 4.8:

Abbildung 4.8: Unteres Bild: Erosionsausbeute bzw. -rate zwischen 110 bis 950 K durch H° alleine und durch $Ar^+ + H^\circ$ für unterschiedliche Ar^+ -Energien aus Abb. 4.4. Die gestrichelte Kurve verbindet die gemessenen Datenpunkte der chemischen Erosionsraten durch H° (aus Abb. 2.3). Die durchgezogenen Kurven sind die Modellrechungen Gl. 4.11. Oberes Bild: Temperaturabhängigkeit der Θ_r -Bedeckung (Gl. 4.7) bei $R \approx 350$ und bei Ionenenergien von 50 bis 800 eV.

$$S_{\rm H^{\circ}out/in}^{E} \equiv \frac{Y_{\rm H^{\circ}out}^{E} + Y_{\rm cs}^{E}}{p_{\rm H^{\circ}in}} \implies S_{\rm H^{\circ}out/in}^{E} \approx \frac{Y_{\rm H^{\circ}out}^{E}}{p_{\rm H^{\circ}in}}.$$
(4.12)

Dadurch erkennt man, dass $S_{\mathrm{H}^{\circ}\mathrm{out/in}}^{E}$ die gleiche Bedeutung und näherungsweise den Wert wie S in Gl. 2.3 hat.

Für jede Ionenenergie sind aber obige Werte für $Y_{cs}^E = a_{cs} \Upsilon_C^E$ über eine Größenordnung größer als die für Y_{ps}^E aus Tab. 4.3, so dass der Term Y_I in Gl. 4.9, abgesehen von der Differenz $(Y_{cs}^E - Y_{ps}^E)$, mit dem Modell für die Flussabhängigkeit von Hopf (Gl. 2.3) identisch ist. Somit erhält man aus Gl. 4.9 bei ausreichend großen R folgende Nährung:

$$Y_{\text{Modell, T<340 K}}^{E,R} = Y_{\text{ps}}^{E} + \frac{R}{R + S_{\text{H}^{\circ}\text{out/in}}^{E}} a_{\text{cs}} \Upsilon_{\text{C}}^{E} \approx \underbrace{\frac{R}{R + S_{\text{H}^{\circ}\text{out/in}}^{E}} a_{\text{cs}} \cdot \Upsilon_{\text{C}}^{E}}_{a} = a \cdot \Upsilon_{\text{C}}^{E}. \quad (4.13)$$

Der Ausdruck für die Erosionsausbeute rechts in Gl. 4.13 hat dieselbe Form wie das Modell für die Energieabhängigkeit von Hopf (Gl. 2.4). Aus diesem Vergleich kann man dem Vorfaktor *a* beim Modell von Hopf eine bestimmte Abhängigkeit vom Flussverhältnis *R* zuordnen. Bei $R \approx 350$ ist a = 0, 5 (in [HOPF 2003] allerdings a = 0, 4, siehe Abb. 4.2). Der asymptotische Wert von *a* bei $R \gg S_{\text{H}^{\circ}\text{out/in}}^{E}$ in Gl. 4.13, d.h. im H°-Sättigungsbereich, ergibt $a_{cs} = 0, 6$ (siehe Tab. 4.4).

Schlussbemerkung

Laut Modell werden bis zu ca. 60 % der einfallenden Wasserstoffatome eingebaut. Der Nettoeinbau von H° ist wesentlich kleiner, da die ioneninduzierte H°-Freisetzung dem entgegewirkt, so dass sich das Verhältnis $S^E_{\text{H°out/in}}$ ergibt.

Bei Ar-Ionenenergien unterhalb von 100 eV ist der IECE Erosionsmechanismus vernachlässigbar. Sobald die Energie steigt gewinnt IECE an Bedeutung und die $\Theta_{\rm r}$ -Bedeckung (Prozessschritt b in Tab. 4.2) wird relevant. Der Faktor *B* schränkt die maximale $\Theta_{\rm r}$ -Bedeckung auf 1/B ein, wie man direkt aus Gl. 4.7 für R = 0 (nur Ionen) erkennen kann. Der in Gl. 4.10 eingeführte Ansatz für die Bestimmung von $\Theta_{\rm r}$ -Erzeugungsausbeuten $Y_{\rm r}^E = a_{\rm r} \cdot Y_{\rm ps}^E$ (proportional zur physikalischen Zerstäubungsausbeute) erwies sich als geeignet. Versuche mit einer ähnlichen Annahme wie in Gl. 4.2, d.h. $Y_{\rm r}^E = a_{\rm r} \cdot \Upsilon_{\rm C}^E$, lieferten deutlich schlechtere Fitergebnisse. Der Hauptunterschied zwischen den Annahmen in Gl. 4.2 und Gl. 4.10 besteht darin, dass es sich beim Ersten um eine Wechselwirkungszone handelt, die von der Reichweite der Ionen und der Wasserstoffatome abhängt, also das Integral $\Upsilon_{\rm C}^E$. Unter der Annahme von Gl. 4.10 handelt sich eher um eine Oberflächennahwechselwirkung, wobei die Oberflächenbindungsenergie ($E_{\rm sb}$) die wichtige Rolle spielt. Daraus kann man vermuten, dass die $\Theta_{\rm r}$ -Bedeckung nur in den ersten Monolagen entstehen kann um mit H° bei höheren Temperaturen chemisch zu reagieren. Folglich ist die IECE ein oberflächennaher Erosionsmechanismus.

4.4.6 Anwendung des integrierten Modells für die chemischen Zerstäubung durch He^++H° und Ne^++H°

Die Entwicklung des präsentierten Modells nach Gl. 4.11 basiert allerdings auf die Messungen der chemischen Zerstäubung von a-C:H-Schichten durch Ar^++H° . Messungen der chemischen Zerstäubung durch He^++H° und Ne^++H° wurden am Anfang dieses Kapitels (Abb. 4.2 und Abb. 4.3 (a)) gezeigt. Sie werden durch das Modell der Energieabhängigkeit (Gl. 2.4) und für Ne^++H° durch das Modell der Flussabhängigkeit (Gl. 2.3) von Hopf unabhängig gut beschrieben.

Um das Modell (Gl. 4.11) für die Fälle He⁺+H[°] und Ne⁺+H[°] anzuwenden, benötigt man die entsprechenden Rechungen der physikalischen Zerstäubungsausbeuten Y_{ps}^E und der Integrale Υ_C^E und Υ_H^E sowohl für He als auch für Ne. Sie sind im Energiebereich von 10 bis 1000 eV zusammen mit den Rechungen für Ar (vergl. Tab. 4.3) in Tab. 4.5 zusammengestellt.

Ion [eV]	He:	$Y^E_{\rm ps}$	$\Upsilon^E_{\rm C}$	$\Upsilon^E_{\rm H}$	Ne:	$Y^E_{\rm ps}$	$\Upsilon^E_{\rm C}$	$\Upsilon^E_{\rm H}$	Ar:	$Y^E_{\rm ps}$	$\Upsilon^E_{\rm C}$	$\Upsilon^E_{\rm H}$
10		0	0,191	0,252		0	$0,\!650$	0,017		0	0,509	0,012
20		0,003	$0,\!597$	0,466		0	1,200	$0,\!230$		0	1,141	$0,\!051$
50		$0,\!038$	$1,\!282$	0,749		0,006	$2,\!359$	0,826		10^{-4}	$2,\!184$	$0,\!574$
100		$0,\!065$	$1,\!633$	0,855		$0,\!056$	$3,\!476$	$1,\!362$		0,029	3,262	1,209
200		$0,\!095$	$1,\!688$	0,828		$0,\!175$	4,707	1,920		0,130	4,585	1,874
400		$0,\!108$	$1,\!458$	0,698		0,338	5,725	2,380		0,320	$5,\!991$	$2,\!540$
800		$0,\!107$	$1,\!187$	0,543		$0,\!499$	$6,\!103$	2,615		$0,\!557$	$7,\!195$	$3,\!085$
1000		0,104	1,046	0,471		$0,\!544$	6,048	2,602		0,636	7,615	3,262

Tabelle 4.5: Berechneten physikalische Zerstäubungsausbeute Y_{ps}^E und Integrale Υ_C^E und Υ_H^E für He⁺, Ne⁺ und Ar⁺ im Energiebereich von 10 bis 1000 eV. Die Rechnungen erfolgen analog wie in Tab. 4.3.

Abb. 4.9 (a) zeigt die Energieabhängigkeit der Erosionsausbeute für die He⁺+H^o, Ne⁺+H^o und Ar⁺+H^o Daten aus Abb. 4.2. Abb. 4.9 (b) zeigt die Flussabhängigkeit der Erosionsausbeute für die Ne⁺+H^o Daten aus Abb. 4.3 (a). Die Modellkurven entsprechen den Rechnungen nach Gl. 4.11 (Term Y_I , da die Temperatur unterhalb von 340 K ist) mit den Werten für Y_{ps}^E , Υ_C^E und Υ_H^E aus Tab. 4.5 für die jeweiligen He-, Ne- und Ar-Ionen. Die verwendeten Modell-Parameter stammen aus Tab. 4.4. Die hervorragende Übereinstimmung des Modells mit den Daten zeigt, dass man die Gültigkeit des Modells für die chemische Zerstäubung durch Ion + H^o, zumindest bei Temperaturen unterhalb von 340 K, erweitern kann. Bei höheren Temperaturen erwartet man für die chemische Zerstäubung durch Ion + H^o eine ähnliche Modellbeschreibung des IECE-Mechanismus wie für den Fall Ar⁺+H^o, da der wesentliche Prozess, eine durch den Ionenbeschuss hervorgerufene reaktive Oberfläche zu erzeugen, mit der H^o chemisch reagieren kann.

4.5 Ergebnis: Antwort auf Fragenkomplex 1

Die präsentierten Messungen der Erosion von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von Ionen+H° haben gezeigt, dass sich die Modellvorstellung der chemischen Zerstäubung von Hopf (Abschnitt 2.3.3), die aus Erosionsmessungen durch Ar^++H° beruht, allgemein auf das System Ion + H°(D°) übertragen werden kann. Fluss- und Energieabhängigkeit der Erosionsausbeute wurde aus diesem Konzept (Abschnitt 2.3.3) in einem Modell vereint, das die Daten im Temperaturbereich von 110 bis 340 K gut beschreibt. Der vorgeschlagene Erosionsmechanismus ist allerdings eine temperaturunabhängige chemische Zerstäubung und entsprich nur dem Term Y_I in Gl. 4.11. Bei höheren Temperaturen (über 340 K) und größeren Energien (über 50 eV) wurde gezeigt, dass es ein weiterer

Abbildung 4.9: (a) Erosionsausbeute in Abhängigkeit von der Energie von He⁺, Ne⁺ und Ar⁺ aus Abb. 4.2. (b) Abhängigkeit der Erosionsausbeute vom Verhältnis $R = j_{\text{H}^{\circ}}/j_{\text{Ne}^{+}}$ aus Abb. 4.3 (Ne-Daten). Die Modellkurven entsprechen jeweils die Terme Y_{I} in Gl 4.11 (Temperaturen unterhalb von 340 K) für He⁺, Ne⁺ bzw. Ar⁺ in (a) und für Ne⁺ in (b). Dafür wurden die Modellparameter aus Tab. 4.4 und die Werte für Y_{ps}^{E} , Υ_{C}^{E} und Υ_{H}^{E} aus Tab. 4.5 verwendet.

synergetischer Effekt bei der Wechselwirkung von Ionen + H° auftritt, eine ioneninduzierte Erhöhung der chemischen Erosion. Die Erweiterung des Modells (Term Y_{II} in Gl. 4.11) durch die Einführung von ioneninduzierten reaktiven Oberflächenplätzen (Θ_r -Bedeckung), mit denen sich die chemische Reaktivität von H° erhöht, erwies sich als erfolgreich. Das **integrierte Modell** Gl.4.11 beschreibt somit die Energie-, Fluss- und Temperaturabhängigkeit der gemessenen Erosionsausbeuten gut.

5 Chemische Zerstäubung durch N_2^+ und durch N_2^+ +H°

Eine systematische Studie der chemischen Zerstäubung von a-C:H durch N_2^+ sowie durch N_2^+ und Wasserstoffatome in Abhängigkeit von der N_2^+ -Energie, wird im folgenden Kapitel präsentiert. Ferner wird die Erosionsausbeute von a-C:H-Schichten durch N_2^+ und N_2^+ +H° in Abhängigkeit von der Temperatur untersucht.

5.1 Energieabhängigkeit

5.1.1 Chemische Zerstäubung durch N⁺₂

Im Rahmen dieser Arbeit wurden Erosionsausbeuten von a-C:H-Schichten während des Bombardements mit Stickstoffmolekülionen N_2^+ bei unterschiedlichen Ionenenergien gemessen. Aus praktischen Gründen wurde N_2^+ statt N⁺ verwendet, da die ersteren höhere Ionenströme liefern. Abb. 5.1 zeigt diese Erosionsausbeuten (Y [C/N₂⁺], Anzahl der erodierte Kohlenstoffatome pro einfallendem Stickstoffmolekülion) im Energiebereich zwischen 30 und 900 eV N_2^+ bei ca. 340 K. Die Ionenflussdichte betrug $j_{N_2^+} = (3, 9 \pm 0, 5) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ für alle Messpunkte.

Abbildung 5.1: Erosionsausbeute Y von a-C:H-Schichten durch das Bombardement mit N_2^+ für unterschiedliche N_2^+ Energien (gefüllte Kreise) bei ca. 340 K. Die durchgezogene Linie ist die physikalische Erosionsausbeute berechnet mit TRIM.SP mit einer Oberflächenbindungsenergie $E_{\rm sb} = 2, 8 \text{ eV}$ (Tab. 5.1). Als Vergleich sind die Erosionsdaten (gefüllte Dreiecke) und die entsprechenden TRIM.SP-Rechnungen (gestrichelte Linie) für Ne⁺ aus Abb. 4.1 aufgetragen.

Innerhalb der Fehlerbalken ist die gemessene Erosionsausbeute bei Ionenenergien oberhalb von ca. 50 bis 900 eV fast konstant und mit knapp über eins relativ hoch. Erst ab Ionenenergien unterhalb 50 eV ist eine deutliche Abnahme der Erosionsausbeute zu beobachten. Vergleicht man sie mit den Erosionsausbeuten von Ne⁺, die eine ähnlichen Masse wie Stickstoff haben und somit zu einer vergleichbaren physikalischen Zerstäubung führen, erkennt man bei letzteren eine markante Energieabhängigkeit (Abb. 5.1). Die Ne⁺-Erosionsausbeuten sinken im untersuchten Energiebereich mit abnehmender Ionenenergie bis zu einer Größenordnung ab. Sie liegen im gesamten Energiebereich unterhalb der Erosionsausbeute von N⁺₂ und für Energien kleiner als 100 eV unterhalb der Nachweisgrenze.

Die Linien in Abb. 5.1 zeigen die mittels TRIM.SP berechneten Erosionsausbeuten für die physikalische Zerstäubung von a-C:H-Schichten. Für die Berechung wurde eine Oberflächenbindungsenergie $E_{sb} = 2, 8$ eV verwendet, die sich für die Bestimmung der physikalischen Zerstäubung mit Ar^+ , Ne^+ und He⁺ (siehe Abb. 4.1) gut bewährt hat. Weil TRIM.SP nicht in der Lage ist Molekülionen zu behandeln, wurde angenommen, dass sich ein N_2^+ wie zwei N^+ mit der Hälfte der Energie verhält. Diese Annahme wird mit sinkender Ionenenergie zunehmend fraglich. Näherungsweise geht man davon aus, dass ein einfallendes Molekülion fragmentiert, wenn die übertragene Energie beim Aufprall auf die Schichtoberfläche höher als seine Bindungsenergie (ca. 9 eV) ist. Die TRIM.SP-Rechenergebnisse für N_2^+ (Tab. 5.1) und Ne⁺ sind als durchgezogene bzw. gestrichelte Linie in Abb. 5.1 gezeigt. Die maximale übertragbare Energie beim elastischen Zweierstoß ($\gamma = 4 \cdot M_{Projektil} \cdot M_{Target}/(M_{Projektil} + M_{Target})^2$) beträgt mit Kohlenstoff als Targetatom $\gamma_N = 0,994$ und $\gamma_{Ne} = 0,938$ für N bzw. Ne.

Die Ne-Messungen werden durch die TRIM.SP-Rechnungen gut wiedergegeben. Auf der anderen Seite zeigen die Stickstoffmessungen einen völlig anderen Verlauf als die Vohersagen der TRIM.SP-Rechungen. Die gemessene Erosionsausbeute von N_2^+ ist deutlich höher als die berechnete und praktisch energieunabhängig über den Energiebereich von 900 bis ca. 50 eV. Bei 900 eV ist sie fast doppelt so groß wie die TRIM.SP-Rechnung. Das liegt daran, dass der chemische Anteil der Wechselwirkung in den Simulationsrechnungen nicht berücksichtigt werden kann. Das Ergebnis dieser Messungen ist damit konsistent mit den veröffentlichen massenspektroskopischen Messungen. Sie zeigen, dass $C_x N_y$ als Erosionsprodukte entstehen [HAMMER 1996], [GRIGULL 1998], [GRIGULL 1999], [HONG 1999], [HONG 2000]. Es ist zu vermuten, dass diese flüchtigen CN-Moleküle sich am Ende der Stickstoffionen-Reichweite bilden. Dort hat N⁺ nach mehreren Stößen thermische Energien erreicht und ist in der Lage mit der Schicht chemisch zu reagieren.

5.1.2 Chemische Zerstäubung durch N₂⁺+H[•]

Bietet man während des N_2^+ -Bombardements von a-C:H zusätzlich Wasserstoffatome an, ergibt sich, wie Abb. 5.2 zeigt, eine deutlich höhere Erosionsausbeute (Sternsymbole) als die durch N_2^+ (Kreissymbole) alleine. Die dazu verwendeten Flussdichten für Wasserstoff und Stickstoffmoleküllionen betrugen

Abbildung 5.2: Erosionsausbeute von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von $N_2^+ + H^\circ$ (Sternsymbole) im N_2^+ -Energiebereich von 30 bis 900 eV bei ca. 340 K. Zum Vergleich werden die Messpunkte der chemischen Zerstäubung von N_2^+ -Ionen aus Abb. 5.1 (Kreissysmbole) mitgezeigt. Die durchgezogene Linie stellt das Modell der chemischen Zerstäubung $Ion + H^{\circ}$ des Kapitels 4 Gl. 4.11 (Term Y_I) mit den Parametersatz aus Tab. 4.4 und die TRIM.SP-Rechnungen für $N_2^+ + H^\circ$ dar (Details siehe Text). Die Summe der gemessenen Erosionsausbeuten $Y(N_2^+)$ (Kreissymbole) plus die berechnete Erosionsausbeute dieses Modells (durchgezogene Linie) ergibt die Strich-Punkt-Linie.

Die Erosionsausbeuten durch N_2^+ + H° weisen im Gegensatz zu den Erosionsausbeuten durch N_2^+ eine ausgeprägte Energie
abhängigkeit auf. Abgesehen von Energien unterhalb von 50 e
V $\rm N_2^+,$ bei denen die Erosionsausbeuten durch N_2^+ auch stark energieabhängig sind, unterscheiden sich die Erosionsausbeuten durch N_2^+ +H° von denen durch N_2^+ (konstant bei etwa eins) um einen Faktor zwei bis sieben bei 50 bzw. 900 eV. Dieser Synergismus erinnert an die chemische Zerstäubung durch Ar⁺+H° in Kapitel 4. Dort wurde gezeigt, dass die gemessene Erosionsausbeute durch Ar⁺+H° durch das in Gl. 2.4 gegebene Modell gut wiedergegeben wird. Zur Anwendung dieses Modells im Fall der chemischen Zerstäubung durch N_2^+ +H° benötigt man die mit TRIM.SP berechneten Verlagerungsausbeuten durch N_2^+ . Angesichts der verwendeten N⁺₂-Energien, die deutlich höher als ihre Molekülbindungsenergie von etwa 9 eV liegen, geht man wie im Abschnitt 5.1.1 davon aus, dass die Stickstoffmoleküllionen beim Aufprall auf die Oberfläche in zwei Stickstoffatome (oder Ionen) aufbrechen. Man betrachtet für die TRIM.SP-Rechung daher die Kohlenstoff-Verlagerungsausbeute von a-C:H durch einzelne Stickstoffionen. Dabei nimmt man wieder an, dass sich ein N_2^+ wie zwei N^+ mit halber Energie verhält. Die starke chemische Reaktivität von Stickstoffionen wird allerdings bei der TRIM.SP-Rechung, wie im Abschnitt 2.2.2 erläutert, nicht berücksichtigt, da TRIM.SP nur die kinetische Wechselwirkung beschreibt. Tab. 5.1 zeigt die entsprechenden TRIM.SP-Rechungen für die physikalische Zerstäubung und die Integrale der $\Upsilon^E_{\rm C}$ und $\Upsilon^E_{\rm H}$ für N^+_2 , dabei wurden die gleiche TRIM.SP-Parameter und $\lambda = 0, 4$ nm wie in Tab. 4.3 verwendet.

N_2^+ [eV]	20	30	50	80	130	200	400	800	900	1000
$Y_{\rm ps}$	0	0	0	0,009	$0,\!052$	$0,\!138$	0,361	$0,\!641$	0,700	0,750
$\Upsilon^E_{ m C}$	1,41	$2,\!13$	3,10	4,30	5,70	7,20	9,90	$10,\!30$	$10,\!50$	$10,\!45$
$\Upsilon^E_{ m H}$	0,09	$0,\!31$	0,70	$1,\!16$	1,40	1,70	$2,\!80$	$3,\!19$	3,20	$3,\!25$

Tabelle 5.1: Berechnete physikalische Zerstäubungsausbeute Y_{ps} und Integrale Υ_{C}^{E} und Υ_{H}^{E} im Energiebereich von 10 bis 1000 eV N_{2}^{+} für das Modell N_{2}^{+} +H[°] (analog wie Tab. 4.3 für das Modell Ion + H[°] im Kapitel 4). Für die TRIM.SP-Rechnung wurde ein N_{2}^{+} wie zwei N^{+} mit halber Energie angenommen $(N_{2}^{+} = 2 N^{+})$.

Verwendet man dann das Modell Gl. 4.11 (Term Y_I , Temperatur ca. 340 K) der chemischen Zerstäubung Ion + H° mit den Parametern aus Tab. 4.4 und die TRIM.SP-Rechnungen aus Tab. 5.1 für N_2^+ + H° ergibt sich die durchgezogene Modelllinie in Abb. 5.2. Die Modellkurve liegt unterhalb der gemessenen Erosionsausbeute (Sternsymbole). Offensichtlich spielt die Stickstoffchemie, wie man sie bei der chemischen Zerstäubung durch N_2^+ alleine beobachtet hat, auch bei der chemische Zerstäubung N_2^+ + H° eine wichtige Rolle.

Summiert man in Abb. 5.2 zu dem gemessenen Erosionsausbeuten durch Stickstoffionen $Y(N_2^+)$ die berechneten Erosionsausbeute durch die Wechselwirkung N_2^+ +H[°] aus dem Modell Gl. 4.11 (durchgezogene Linie), so ergibt sich die obere Strich-Punkt-Linie. Sie gibt die Messung der Erosionsausbeuten durch N_2^+ +H[°] (Sternsymbole) gut wieder. Man kann daraus folgern, dass die Chemie des Erosionsprozesses von N_2^+ (Stickstoffchemie) und die der Wasserstoffatome unabhängig wirken. Abb. 5.3 zeigt diesen Prozess schematisch.

Abbildung 5.3: Schematische Darstellung des Erosionsprozesses durch die chemische Zerstäubung durch Ionen (N_2^+) und H° (wie im Falle $Ar^+ + H^\circ$, Abb. 2.5) und die chemische Reaktion von N° am Ende seiner Reichweite (x). Die Erosionsprodukte bestehen daher aus flüchtigen Kohlenwasserstoffspezies und Kohlen(wasser)stoff-Stickstoff-Verbindungen.

Es wird folgender Mechanismus vorgeschlagen:

- Der Erosionsprozess durch N₂⁺ findet erst am Ende der Stickstoffionen-Reichweite statt. Prinzipiell werden chemisch unreaktive N₂-Molekülle durch den Aufprall in chemisch stark reaktive N-Atome aufgespalten, die aber erst bei thermischen Energien am Ende ihrer Reichweite in der Schicht mit dem Targetatom (Kohlenstoff) chemisch reagieren können. Wie im Abschnitt 5.1.1 erwähnt, bilden sich vermutlich flüchtige Stickstoff-Kohlenstoff-Komplexe, die als stabile Erosionsprodukte die Oberfläche verlassen können.
- 2. Die chemische Zerstäubung N₂⁺+H° benötigt nur die kinetische Energie der Ionen (physikalische Wechselwirkung von N⁺ mit C) die zur Produktion von gebrochenen Bindungen führt. Der Erosionsprozess ist identisch mit dem der chemischen Zerstäubung von Edelgasion+H° des Kapitels 4. Die dabei entstehenden Erosionsprodukte sind nicht C-N-haltige sondern C-H-haltige Spezies.

5.2 Temperaturabhängigkeit

Um der Temperaturabhängigkeit der Entstehung von a-C:N:H-Schichten nachzugehen, wurde in der vorliegenden Arbeit die Wechselwirkung beim Bombardement von a-C:H-Schichten mit Stickstoffionen bei tiefen Temperaturen im Temperaturbereich von 110 bis 340 K gemessen. Abb. 5.4 stellt diese Messungen für N_2^+ -Energien von 50 und 400 eV vor. Zusätzlich ist die chemische Zerstäubung N_2^+ +H° bei 400 eV im gleichen Temperaturbereich gezeigt.

Abbildung 5.4: Temperaturabhängigkeit der Erosionsausbeuten Y von a-C:H-Schichten durch N_2^+ -Ionen bei 50 und 400 eV und N_2^+ +H° bei 400 eV im Temperaturbereich von 110 bis 340 K. Die Linien wurden als Orientierung eingezeichnet. Die vertikale Linie bei ca. 158 K markiert die Temperatur der Sublimation von C_2N_2 .

Jeder Messpunkt bei 50 eV N_2^+ und bei 400 eV N_2^+ (offene bzw. geschlossene Kreise in Abb. 5.4) wurde mit einer neuen a-C:H Probe durchgeführt. Die Messpunkte bei 400 eV N_2^+ +H° (Sternsymbole)

wurden mit den Proben, die bereits mit 400eV N₂⁺ bei der jeweiligen Temperaturen erodiert wurden, gewonnen. Dazu wurde lediglich zu den 400 eV N₂⁺-Ionen zusätzlich der H°-Strahl eingeschaltet und weiter gemessen. Die verwendeten Stickstoff- bzw. Wasserstoffflussdichten betrugen $j_{N_2^+} = (3, 9 \pm 0, 5) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ bzw. $j_{\text{H}^\circ} = (1, 5 \pm 0, 1) \cdot 10^{15} \text{ cm}^{-2} \text{s}^{-1}$. Sie wurden für alle Messpunkte in Abb. 5.4 konstant gehalten.

Die in Abb. 5.4 gezeigte Linien dienen nur als Orientierung. Innerhalb der Messgenauigkeit (Fehlerbalken) sind keine Abweichungen der Erosionsausbeuten von 110 bis 340 K festzustellen. Die Erosionsausbeuten durch 50 und 400 eV N_2^+ liegen im gemessenen Temperaturbereich knapp unterhalb bzw. oberhalb Eins. Die Erosionsausbeute durch 400 eV N_2^+ +H° ist fünfmal so groß als durch N_2^+ alleine. Sie ist ebenfalls im gemessenen Temperaturbereich näherungsweise konstant. Nur der letzte Messpunkt bei 340 K liegt leicht höher. Grund dafür ist die mit steigender Temperatur stärkere chemische Erosion durch H°. Es ist zu vermuten, dass auch bei N_2^+ +H° die Erosionsmechanismen CE und IECE, die im Kapitel 4 eingeführt wurden, die chemischen Zerstäubung durch Ion + H° beschreiben. Dort wurde gezeigt, dass bei höheren Temperaturen (über 330 K) die Energie (über 50 eV) der Ionen für den Prozess IECE verantwortlich ist.

Eine erkennbare Zunahme der Erosionsausbeuten durch die Desorption von C_2N_2 bei Temperaturen oberhalb seiner Kondensationstemperatur, wie von [NEIDHARDT 2005] vorgeschlagen (siehe Abschnitt 2.4), lässt sich Anhand der gemessenen Erosionsausbeuten in Abb. 5.4 nicht feststellen.

5.3 Ergebnis: Antwort auf Fragenkomplex 2

Es zeigte sich, dass der im Kapitel 4 vorgeschlagene Mechanismus der chemischen Zerstäubung von a-C:H-Schichten durch Ion + H° auch für die Wechselwirkung von N_2^+ +H° gilt. Dafür werden die energieabhängige Terme (Y_{ps} , Υ_C^E und Υ_C^E) im Modell Ion + H° (Gl. 4.11) mit TRIM.SP für Stickstoffionen berechnet. Die Stickstoffchemie spielt bei der Berechung keine Rolle. Man stellte fest, dass die Summe der gemessenen Erosionsausbeuten durch N_2^+ alleine und der mit dem Modell für N_2^+ +H° berechneten Erosionsausbeute die gemessene Erosionsausbeute durch die gleichzeitige Wechselwirkung N_2^+ und H° ergibt.

Das Stickstoffion reagiert am Ende seiner Rechweite bei thermischen Energien mit einem Kohlenstoff des Materials chemisch und bildet eventuell flüchtige C–N-Komplexe als Erosionsprodukte. Bei der chemischen Zerstäubung durch N_2^+ und H° handelt es sich um ein Erosionsprozess mit kombinierter Chemie (N-und H-Chemie), die aber unabhängig von einander wirken.

Die Messung der Erosionsausbeuten von a-C:H-Schichten durch N_2^+ und N_2^+ +H° im Temperaturbereich zwischen 110 und 340 K hat keine nennenswerte Temperaturabhängigkeit gezeigt. Eine in der Literatur vermutliche Abnahme der Erosionsausbeuten durch N_2^+ bei Temperaturen unterhalb der Kondensationstemperatur von C_2N_2 (158 K) wurde nicht beobachtet.

6 Chemische Zerstäubung durch Ar⁺ und molekularen Sauerstoff

Anhand von Ellipsometrie-Messungen wurde beobachtet, dass Sauerstoffmoleküle (O_2) alleine bei Probentemperaturen unterhalb der Temperatur für Oxidation von ca. 700 K zu keinen messbaren Erosion oder Veränderung von a-C:H-Schichten führen. Erst nach dem Zuschalten eines Argon-Ionen-Strahls wurde eine beträchtliche Erosion registriert, die deutlich höher als die rein physikalische Zerstäubung durch Ar^+ alleine liegt. Dieser Synergismus motivierte eine systematische Studie der ionenunterstützten Erosion durch Ar^+ und O_2 bei unterschiedlichen Flussverhältnissen $R = j_{O_2}/j_{Ar^+}$, Probentemperaturen und Ar^+ -Energien.

Dieses Kapitel beginnt mit der Phänomenologie der Oxidation von a-C:H-Schichten und der ionenunterstützten Erosion von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von $Ar^+ + O_2$ sowie von $Ar^+ + H_2O$. Schließlich wird ein vereinfachtes Modell zur Erosion von a-C:H-Schichten durch $Ar^+ + O_2$ vorgeschlagen.

6.1 Phänomenologie der Wechselwirkung von O₂, Ar^++O_2 und Ar^++H_2O mit a-C:H-Schichten

Wie im Abschnitt 2.5.1 erläutert wurde, sind die chemischen Reaktionen von Kohlenstoff mit molekularem Sauerstoff O₂ intensiv untersucht worden. Viele diese Arbeiten beschäftigen sich jedoch mit der Oxidation von kohlenstoffhaltigen Materialen an Sauerstoff oder Luft bei relativ hohem Druck (einige mbar bis atmosphärischer Druck) und hohen Temperaturen (über 1000 K). In der vorliegenden Arbeit werden hingegen harte a-C:H-Schichten bei relativ geringen Sauerstoffpartialdrücken ($2 \cdot 10^{-4}$ mbar bis weniger als $1 \cdot 10^{-10}$ mbar) und Temperaturen im Bereich von 110 bis 850 K untersucht. Der folgende Abschnitt behandelt zuerst kurz die Oxidation von a-C:H-Schichten durch O₂ und anschließend die gleichzeitige Wechselwirkung von Argon-Ionen und O₂ sowie von Argon-Ionen und Wasser mit einer a-C:H-Schicht.

6.1.1 Oxidation von a-C:H-Schichten

Abb. 6.1 zeigt die in MAJESTIX gemessene Oxidationsausbeute $(Y_{O_2}^T)$ bzw. -rate (Γ) von a-C:H-Schichten von 300 bis 850 K bei einer Sauerstoffflussdichte von $j_{O_2} = (9, 2 \pm 1, 3) \cdot 10^{15} \text{ cm}^{-2} \text{s}^{-1}$.

Mit dem vorliegenden experimentellen Aufbau ist es möglich eine nennenswerte Erosion von a-C:H-Schichten ab ca. 700 K zu messen. Die Erosionsraten steigen von 700 bis 850 K um zwei Größenordnungen an.

Abbildung 6.1: Gemessene Oxidationsrate (rechte Skala) bzw. -ausbeute (linke Skala) von a-C:H-Schichten durch O_2 von Raumtemperatur bis ca. 850 K. Für jeden Messpunkt wurde eine frische a-C:H-Schicht verwendet. Die Messpunkte bei Raumtemperatur und 500 K betragen Null, d.h. die O_2 -Exposition der Probe bei 300 K bzw. bei 500 K über mehr als drei Tage ergab keine messbare Erosion. Die gestrichelte Linie ist die Gl. 6.1 (Details siehe Text).

Ein Arrhenius-Plot durch die Messdaten zwischen ca. 1/700 und 1/850 1/K ergibt eine Gerade. Die temperaturabhängige Erosionsausbeute $Y_{O_2}^T$ (erodierte Kohlenstoffatome pro einkommendem Sauerstoffmolekül) entspricht der gestrichelten Linie in Abb. 6.1 und lässt sich wie folgt bestimmen:

$$Y_{O_2}^T = \frac{\Gamma}{j_{O_2}} = \frac{\Gamma_0 \cdot \exp(-E_c/k_B T)}{j_{O_2}},$$
(6.1)

wobei $\Gamma_0 = (1, 1 \pm 0, 1) \cdot 10^{21} \text{ cm}^{-2} \text{s}^{-1}$ durch Anpassen an die Daten bestimmt wurde und k_B die Boltzmann-Konstante ist. Die Aktivierungsenergie für die Oxidation ergibt $E_c = (1, 3 \pm 0, 1)$ eV. Dieser Wert ist sehr ähnlich zu der Aktivierungsenergie von $E_c \approx 1, 2$ eV für CO bei der Oxidation einer frischen, nicht geordneten Graphitprobe (siehe Abschnitt 2.5.1) [GOZZI 1996].

6.1.2 Chemische Zerstäubung von a-C:H-Schichten durch Ar⁺+O₂

Der folgende Abschnitt zeigt die Abhängigkeit der Erosion von a-C:H-Schichten durch Ar^++O_2 vom Flussverhältnis (O₂-zu-Ar⁺), der Temperatur und der Ar-Ionenenergie.

Flussabhängigkeit

Abb. 6.2 zeigt die Erosionsausbeute bei Raumtemperatur in Abhängigkeit des Sauerstoffmolekülzu-Argon-Ionen Flussverhältnisses $R = j_{O_2}/j_{Ar^+}$ im Flussverhältnisbereich zwischen R = 0 und

 $R \approx 15000$, wobei 400 eV Ar⁺ bei einer konstanten Ionenflussdichte von $j_{\rm Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12}$ cm⁻²s⁻¹ verwendet wurde. Abb. 6.2 (a) und (b) zeigen dieselben Daten in einer linearen- bzw. halblogarithmischen Auftragung. Das innere Bild in Abb. 6.2 (a) zeigt vergrößert die Abhängigkeit der Erosionsausbeute vom Sauerstofffluss bei kleinem Flussverhältnis, d.h. bei R < 20. Dabei ist die physikalische Zerstäubungsausbeute durch 400 eV Ar⁺ mitgezeigt, als Sternsymbol bei R = 0.

Abbildung 6.2: Lineare (a) bzw. halblogarithmische (b) Auftragung der Erosionsausbeuten von a-C:H-Schichten bei 300 K durch 400 eV Ar⁺+O₂ in Abhängigkeit vom O₂-zu-Ar⁺-Flussverhältnis R. Der Ar⁺-Fluss wurde konstant bei $j_{\rm Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ gehalten und die O₂-Flussdichte zwischen $j_{\rm O_2} = 0$ und $j_{\rm O_2} \approx 5, 4 \cdot 10^{16} \text{ cm}^{-2} \text{s}^{-1}$ variiert. Der Messpunkt (Sternsymbol) bei R = 0 entspricht der Erosionsausbeute der rein physikalischen Zerstäubung durch 400 eV Ar⁺ ($Y \approx 0, 25$). Das innere Bild in (a) ist eine Vergrößerung der Messdaten für R < 20. Die Linien dienen als Orientierung.

Bei konstantem 400 eV Ar⁺-Fluss führt das zusätzliche Angebot von molekularem Sauerstoff anfänglich zu einem schnellen Anstieg der Erosionsausbeuten um einen Faktor 10 von $Y \approx 0,25$ bei R = 0bis $Y \approx 2,5$ bei $R \approx 1000$. Bei größeren Flussverhältnissen, etwa bei R > 5000 kommt es zu einer Sättigung der Erosionsausbeute. Zwar steigen die Erosionsausbeuten monoton weiter mit R an, sind aber nahezu konstant bei $Y \approx 4$ bis hin zu dem maximalen gemessenen Sauerstofffluss von $j_{O_2} \approx 6 \cdot 10^{16}$ cm⁻²s⁻¹ bei $R \approx 15000$.

Man sieht aus Abb. 6.2, dass es bei der gleichzeitigen Wechselwirkung von Sauerstoffmolekülen und energetischen Edelgasionen die Erosionsausbeuten relativ hoch sind. Daraus lassen sich Parallelen zu der Modellvorstellung der chemischen Zerstäubung im Abschnitt 2.3.3 für Ar^++H° ziehen. Ähnlich wie dort (siehe Abb. 4.3) kann man zwei Grenzbereiche der Erosion durch Ar^++O_2 als Funktion von R festlegen. Der hohe Flussverhältnisbereich bei etwa R > 10000, wird durch die Anzahl an gebrochenen Bindungen (engl. *dangling bonds*) begrenzt, d.h. die Erosionsausbeute ist durch den Ar⁺-Fluss limitiert. Der Flussverhältnisbereich bei etwa $0 \le R < 1000$ wird dagegen stark durch die Reaktionen der *dangling bonds* mit O₂ dominiert, die Erosionsausbeute wird also durch den O₂-Fluss limitiert.

Temperaturabhängigkeit

Abb. 6.3 zeigt die Erosionsraten bzw. -ausbeuten von a-C:H-Schichten in Abhängigkeit der Probentemperatur durch den Beschuss mit 400 eV Ar⁺+O₂ bei konstantem Flussverhältnis von $R = j_{O_2}/j_{Ar^+} \approx$ 2750. Zum Vergleich sind die Messungen der Oxidationsraten durch Sauerstoffmoleküle alleine aus Abb. 6.1 (ausschließlich rechte Skala) und die Erosionsausbeuten durch 400 eV Ar⁺ ($Y \approx 0, 25$) mitgezeigt.

Abbildung 6.3: Erosionsausbeute (links) bzw. -rate (rechts) von a-C:H durch 400 eV $Ar^+ + O_2$ (gefüllte Kreise) in Abhängigkeit von der Temperatur. Der gezeigte Temperaturbereich ist in drei Zonen aufgeteilt (dazu mehr im Text). Die Flüsse betrugen $j_{O2} = (1, 1 \pm 0, 2) \cdot 10^{16} \text{ cm}^{-2} \text{s}^{-1}$ bzw. $j_{\text{Ar}^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$. Zum Vergleich sind die Messungen der physikalischen Zerstäubung durch $400 \text{ eV } Ar^+$ (Sternsymbole) angezeigt, die offensichtlich temperaturunabhängig sind. Die offenen Kreise sind die Oxidationsraten durch O_2 aus Abb. 6.1 (ausschließlich rechte Skala).

Der Temperaturbereich von etwa 110 bis ca. 900 K lässt sich in drei Temperaturzonen für die Erosion von a-C:H-Schichten durch Ar^++O_2 unterteilen:

• Zone I ist der im Abschnitt 6.1.1 behandelte Temperaturbereich der Oxidation. Dort sieht man nicht nur die Oxidationsraten durch O₂ alleine, sondern auch eine Erhöhung der Oxidationsraten durch den Ionenbeschuss.

- Zone II entspricht dem diskutierten Temperaturbereich des vorangegangenen Abschnitts (Flussabhängigkeit), bei dem der Synergismus Ar⁺+O₂ von Raumtemperatur bis zur Temperatur für Oxidation im Wesentlichen temperaturunabhängig ist.
- Zone III ist der Temperaturbereich unterhalb von Raumtemperatur bis herab zu 110 K. Man erkennt in Zone III einen deutlichen Anstieg der Erosionsausbeute mit abnehmender Temperatur. Die Erosionsausbeute bei 300 K hat sich bei 110 K mehr als verdoppelt.

Auf den ersten Blick ist der Anstieg der Erosionsausbeute in Zone III überraschend. Man würde erwarten, dass die Reaktivität mit sinkender Temperatur abnimmt. Man stellt sich folgende

Frage 1: Wie erklärt sich den Anstieg der Erosionsausbeute bei tieferen Temperaturen?

Eine mögliche Erklärung dafür wäre, dass die durch das Ionenbombardement entstandene Schädigung bei tieferen Temperaturen länger aufrecht erhalten wird und dadurch die Wahrscheinlichkeit für die Reaktion mit den ankommenden Sauerstoffmolekülen erhöht ist. Diese Hypothese steht allerdings im Widerspruch zu den Messungen der chemischen Zerstäubung Ar^++H° und $N_2^++H^{\circ}$ bei tieferen Temperaturen in Abb. 4.4 (Abschnitt 4) bzw. Abb. 5.4 (Abschnitt 5). Dort wurde weder ein Anstieg noch einen Abfall der Erosionsausbeuten durch die gleichzeitige Wechselwirkung von Ion + H° bei der Zone III entsprechenden Temperaturen beobachtet.

Eine ähnliche Zunahme der Erosionsausbeute von Graphit durch 5 keV Ar^++O_2 bei tieferen Temperaturen wurde in Abb. 2.6 (Abschnitt 2.5.1) bereits präsentiert. Der dortige Temperaturverlauf alledings ist zu etwas höheren Temperaturen verschoben. Eine Interpretation des Anstiegs der Erosionsausbeuten hin zu tieferen Temperaturen liefern die Autoren jedoch nicht [VIETZKE und HAASZ 1997].

Der Anstieg der Erosionsausbeute in Abb.6.3 am Ende der Zone III um 100 K, nahe der Siedetemperatur von O₂ bei ca. 90 K, legt nahe, dass die Erosionsrate proportional zur Sauerstoffmenge an der Oberfläche sein könnte, d.h. die Erosionsrate hängt von der Sauerstoffbedeckung an der Oberfläche ab. Ein ähnliches ionenunterstütztes Erosionsexperiment von Siliziumoberflächen mit 1 keV Ar⁺ und Fluoratomen (Ar⁺+F°) im Temperaturbereich zwischen 300 und 77 K unterstützt diese Idee [MULLINS 1994]. Dort wurde ebenfalls beobachtet, dass mit sinkender Temperatur die Erosionsausbeute ansteigt. Die Erosionsausbeute Y (erodierte Siliziumatome pro Ar⁺) betrug bei Raumtemperatur $Y \approx 13, 6$. Sie stieg nur langsam mit fallender Temperatur an. Kurz bevor die Siedetemperatur von Fluor von ca. 85 K erreicht wurde, erhöhte sie sich jedoch deutlich bis $Y \approx 19$. Bei 77 K betrug sie $Y \approx 20$.

Antwort auf Frage 1: Die Vermutung liegt nahe, dass es sich bei dem in Zone III beobachteten Anstieg um eine sauerstoffbedeckungsabhängige **chemische Zerstäubung** durch Ar⁺+O₂ handelt. Mit sinkender Temperaturen baut sich auf der a-C:H-Oberfläche eine Sauerstoffbedeckung auf, die durch ein temperaturabhängiges Adsorptions-Desorptions-Gleichgewicht geben ist. Trifft ein Ion
auf die Oberfläche, findet durch die hervorgerufene Oberflächenschädigung eine chemische Reaktion mit den lokalen O_2 statt. Dabei bilden sich flüchtige C-O-Komplexe, die von der Oberfläche als Erosionsprodukte desorbieren. Erhöht man die Probentemperatur desorbiert O_2 . Die Erosionsausbeute, die proportional zur O_2 -Bedeckung ist, nimmt dadurch ab. Bei Temperaturen in der Zone II geht die adsorbierte O_2 -Bedeckung auf der a-C:H-Oberfläche gegen Null. Trotzdem ist die Erosionsausbeute in diesem Temperaturbereich immer noch hoch. Die synergetische Erosion durch Ar^++O_2 ist offensichtlich auch chemische Zerstäubung. Der Erosionsmechanismus unterscheidet sich allerdings von dem in Zone III: das einfallende O_2 reagiert direkt mit einer durch den Ionenbeschuss erzeugten reaktiven Oberflächenstelle um flüchtige C-O-Komplexe zu bilden. Dazu müssen diese reaktiven Oberflächenstellen lange genug existieren um gegebenenfalls mit später einfallenden Sauerstoffmolekülen reagieren zu können.

Um beide Erosionsmechanismen unterscheiden zu können, wird für den Ersten (Zone III) die Bezeichnung Erhöhung der chemische Zerstäubung durch Oberflächenadsorbtion (ALECS, Adsorbed-layer-enhanced chemical sputtering) und für den Zweiten (Zone II) (temperaturunabhängige) chemische Zerstäubung (CS, chemical sputtering) eingeführt.

Addiert man die Erosionsrate durch O_2 bei 800 K ($\approx 1 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$) (siehe Abb. 6.3) zu der Erosionsrate durch Ar⁺+O₂ in Zone II ($\approx 0, 8 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$) ergibt sich eine Erosionsrate von ca. $2 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$. Diese Erosionsrate beträgt gerade ein Drittel des bei 800 K gemessenen Werts ($\approx 6 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$). Man stellt sich folgende

- Frage 2: Welcher Prozess ist für die zusätzliche Erhöhung der Erosionsausbeute durch Ar^++O_2 bei höheren Temperaturen verantwortlich?
- Antwort auf Frage 2: Basierend auf dem Konzept von der **ioneninduzierten Erhöhung der chemischen Erosion** (IECE, *ion-enhanced chemical erosion*), das im Abschnitt 4 für die Erosion von a-C:H durch Ar⁺+H[°] eingeführt wurde, kann man sich einen ähnlichen Mechanismus zur Erklärung dieser ionenunterstützten Erhöhung der Oxidation in Zone I vorstellen. Das Ionenbombardement kann durch die hervorgerufene Schichtschädigung neue reaktive Oberflächenstellen erzeugen, so dass die Oxidation durch O₂ gefördert wird.

Energieabhängigkeit

Obige Ergebnisse zur Wechselwirkung von Ar⁺+O₂ mit a-C:H-Schichten bei unterschiedlichen Sauerstoffbedeckungen haben prinzipiell die Rolle der Ar⁺-Ionen beim Erosionsprozess gezeigt, nämlich die Oberfläche durch den Ionenbeschuss zu aktivieren. Die Energieabhängigkeit wurde bei drei Substrattemperaturen, bei 300, 150, und 800 K, gemessen. Abb. 6.4 zeigt die Erosionsausbeute Ar⁺+O₂ im Enenergiebereich von 20 bis 800 eV bei konstantem Flussverhältnis $R = j_{O_2}/j_{Ar^+} \approx 2750$. Als Vergleich ist die Erosionsrate durch O₂ alleine bei 800 K mit eingezeichnet.

Abbildung 6.4: Logarithmische Darstellung der Erosionsausbeuten (links) bzw. -rate (rechts) von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von $Ar^+ + O_2$ in Abhängigkeit von der Ar⁺-Energie im Energiebereich von 20 bis 800 eV. Die Abbildung zeigt die Energieabhängigkeit bei 150 K, 300 K und 800 K. Die Flüsse be- $\begin{array}{l} trugen \ j_{\rm O_2} \ = \ (1,2 \ \pm \ 0,2) \ \cdot \ 10^{16} \\ cm^{-2}s^{-1} \ bzw. \ j_{\rm Ar^+} \ = \ (4,0 \ \pm \ 0,3) \ \cdot \\ 10^{12} \ cm^{-2}s^{-1}. \ Die \ Modellkurven \end{array}$ wurden aus den $\Upsilon^E_{\mathbf{C}}$ -Rechungen der Form Gl. 2.4 für die jeweiligen Energien durch Anpassen der Vorfaktoren a_{150} , a_{300} bzw. a_{800} und der Abfalllänge λ bestimmt. Der Pfeil rechts zeigt als vergleich die Erosionsrate durch O_2 alleine bei 800 K (ausschließlich rechte Skala).

Im gemessenen Energiebereich variiert die Erosionsausbeute für alle Probentemperaturen um mehr als eine Größenordnung. Für alle Ar^+ -Energien ist die Erosionsausbeute bei 150 K näherungsweise fast doppelt so hoch wie bei Raumtemperatur, bei 800 K sogar über einen Faktor von fünf.

Bei 100 eV sieht man, dass die Summe der Erosionsrate durch O_2 bei 800 K und der Erosionsrate durch Ar^++O_2 bei 300 K nur halb so groß ist wie die tatsächlich gemessene Erosionsrate durch Ar^++O_2 bei 800 K. Das bedeutet, dass die ionenunterstützte Erhöhung der chemischen Erosion (IECE) durch Ar^++O_2 bei niedrigen Energien wesentlich stärker als die durch Ar^++H° (vergl. Abb. 4.4, Seite 39) ist.

Die Modellkurven in Abb. 6.4 basieren auf dem Modell der Energieabhängigkeit der chemischen Zerstäubung durch $\operatorname{Ar}^+ + \operatorname{H}^\circ$ (Gl. 2.4). Dabei wurde die Berechung in Gl. 2.4 für den Fall $\operatorname{Ar}^+ + \operatorname{O}_2$ angepasst, d.h. der nicht energieabhängige Term $e^{-\frac{x}{\lambda}}$ in Gl. 2.4 hat nun die Bedeutung der O₂-Reaktionswahrscheinlichkeit mit reaktiven Oberflächenstellen. Rechnerisch betrachtet bleibt das Integral $\Upsilon_{\mathbf{C}}^E$ in Gl. 2.4 hingegen gleich. Die Überlagerung der O₂-Tiefenverteilung mit der Tiefenverteilung der Verlagerungsausbeuten durch den Ar⁺-Beschuss ergibt, analog wie in Abb. 3.6, die Wechselwirkungszone für die chemische Zerstäubung. Der Parameter λ , der ein Maß für die Reichweite von O₂ in der Schicht ist, wurde durch Anpassung an die Daten in Abb. 6.4 bestimmt. Daraus ergibt sich für O₂ der Wert $\lambda = 2$ nm. Tab. 6.1 zeigt die entsprechenden Integrale $\Upsilon_{\mathbf{C}}^E$ berechnet mit $\lambda = 2$ nm.

Der Vorfaktor a soll unter der einfachen Vorstellung des Modells Gl. 2.4 alle andere Parameter wie das Flussverhältnis R und die Temperatur beinhalten. Da das Flussverhältnis konstant bei $R \approx 2750$ für alle Messpunke in Abb. 6.4 gehalten wurde, soll a nur temperaturabhängig sein. Durch Anpassen

Ar^+ [eV]	10	20	50	100	200	400	800	1000
Υ^E_{C}	0,511	1,293	3,102	5,717	$10,\!302$	17,804	$28,\!603$	$32,\!628$

Tabelle 6.1: Berechnete $\Upsilon_{\rm C}^E = \int y_{\rm bb}^{\rm C} e^{-\frac{x}{\lambda}} dx$ mit $\lambda = 2$ nm im Energiebereich von 10 bis 1000 eV Ar⁺.

an jeden Temperatur-Datensatz in Abb. 6.4 wird entsprechend a bestimmt. Die Datensätze bei 300, 150 und 800 K ergeben: $a_{150} = 0, 30, a_{300} = 0, 15$ und $a_{800} = 0, 85$. Die entsprechenden Modellkurven sind als Linien in Abb. 6.4 eingezeichnet. Die Übereinstimmung mit den experimentellen Daten ist exzellent.

6.1.3 Chemische Zerstäubung von a-C:H-Schichten durch Ar⁺+Wasser

Abb. 6.5 zeigt die gemessene Erosionsrate (rechte Skala) durch 800 eV Ar⁺ und die der gleichzeitigen Wechselwirkung von 800 eV Ar⁺+H₂O im Temperaturbereich von 110 bis 800 K. Die linke Skala zeigt die entsprechenden Erosionsausbeuten. Die offenen Kreise zeigen den Fall ohne Wasser. Die Erosionsrate ist unabhängig von der Temperatur und stimmt mit den TRIM.SP-Berechungen der physikalischen Zerstäubung (siehe Tab. 4.3, gepunktete Linie in Abb. 6.5) gut überein. Der zusätzliche Zugabe von Wasserdampf von $j_{H_2O} \approx 2 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$ (volle Kreise) beeinflussen die Erosionsrate bei Raumtemperatur und oberhalb von Raumtemperatur nicht. Beim Abkühlen der Probe auf Temperaturen von 200 K und darunter steigen jedoch die Erosionsraten deutlich über die Erosionsraten der physikalischen Zerstäubung durch Ar⁺ an und zeigen dadurch eine synergetische Erosion, die chemische Zerstäubung durch Ar⁺ und Wasser. Eine Verdoppelung des Wasserdampfflusses bei 110 K verdoppelt näherungsweise die Erosionsrate (Sternsymbol). Bei Wasserdampfflüssen über $\approx 10^{14} \text{ cm}^{-2} \text{s}^{-1}$ wurde bei 110 K keine Erosion mehr gemessen. Stattdessen wurde das Wachstum von Eis mittels In-Situ-Ellipsometrie beobachtet. Bei der Erhöhung der Temperatur (bis Raumtemperatur) verdampft die Eisschicht und die Ellipsometrie kehrt zum Signal der ursprünglichen a-C:H-Schicht zurück.

Anscheinend hängt der Mechanismus für die Erhöhung der Erosionsrate bei tieferen Temperaturen mit einer ioneninduzierten Reaktion zwischen dem Sauerstoff im adsorbierten Wasser und dem Kohlenstoff der a-C:H-Schicht zusammen, die zur Bildung flüchtiger C-O-Komplexe führt.

Im Folgenden wird ein einfaches Adsorptions-Desorptions-Modell vorgeschlagen, um die Bedeckung von Wasser auf der a-C:H-Oberfläche in Abhängigkeit von der Temperatur zu beschreiben. Θ_{H_2O} sei der Anteil der Oberfläche, der mit Wasser bedeckt ist. Für seine Berechung im Gleichgewichtszustand werden ein Adsorptions- und zwei Desorptionsprozesse betrachtet. Die Adsorptionsrate der auftreffenden Wasserflussdichte j_{H_2O} ist durch $j_{H_2O} p_{ads}(1 - \Theta_{H_2O})$ gegeben, wobei p_{ads} eine von der Bedeckung unabhängige Wahrscheinlichkeit für Adsorption ist. Es wird dabei angenommen, dass die Wassermoleküle nur an nicht wasserbedeckten Plätzen $(1 - \Theta_{H_2O})$ der a-C:H-Oberfläche adsorbieren.

Abbildung 6.5:

Temperaturabhängigkeit der Erosionsausbeute *(linke*) Skala) bzw. -rate (rechte Skala) von a-C:H-Schichten durch $800 \text{ eV} \text{Ar}^+$ und H_2O (volle Kreise und das Sternsymbol) und durch 800 eV Ar^+ (offene Krese). Der Ar^+ -Fluss betrug $j_{\rm Ar^+}~=~(4,0\,\pm\,0,3)\,\cdot\,10^{12}$ $cm^{-2}s^{-1}$ und wurde für jeden Messpunkt konstant gehalten. Der Wasserfluss wurde aus dem Wasserpartialdruck bei Raumtemperatur, bevor die Probe gekühlt bzw. aufgeheizt wurde, bestimmt. Die gepunktete Linie ist die mittels TRIM.SP berechnete physikalische Zerstäubung. Die strich-punkte Linie ist das Modellergebnis von Gl. 6.3. Die durchgezogene Linie dient nur als Orientierung.

Mit der Annahme, dass die thermische Desorption von adsorbiertem Wasser mit einer bestimmten Desorptionsenergie E_{des} erfolgt, lässt sich die Desorptionsrate $n_0 \nu_{des} \exp(-E_{des}/k_BT) \Theta_{H_2O}$ berechnen; wobei n_0 die maximale Flächendichte für die Bedeckung mit einer Monolage Wasser und ν_{des} der Vorfaktor sind. k_B ist die Boltzmann-Konstante. Der zweite Mechanismus durch den Θ_{H_2O} abgebaut wird, ist der Verbrauch von Wasser beim Erosionsprozess. Aus Gründen der Einfachheit bietet sich an, dafür die Erosionsrate der chemischen Zerstäubung $j_{Ar}+Y_0 \Theta_{H_2O}$ zu nehmen, worin $j_{Ar}+$ die Argon-Ionenflussdichte und Y_0 die Erosionsausbeute einer vollständig mit Wasser bedeckten a-C:H-Oberfläche sind. Die zeitliche Änderung von Θ_{H_2O} lässt sich wie folgt darstellen:

$$n_0 \frac{\mathrm{d}\Theta_{\mathrm{H}_2\mathrm{O}}}{\mathrm{d}t} = j_{\mathrm{H}_2\mathrm{O}} \ p_{\mathrm{ads}}(1 - \Theta_{\mathrm{H}_2\mathrm{O}}) - n_0 \ \nu_{\mathrm{des}} \exp(-E_{\mathrm{des}}/\mathrm{k}_{\mathrm{B}}T) \ \Theta_{\mathrm{H}_2\mathrm{O}} - j_{\mathrm{Ar}^+} Y_0 \ \Theta_{\mathrm{H}_2\mathrm{O}}.$$
(6.2)

Im stationären Fall verschwindet die zeitliche Ableitung in Gl. 6.2 und man löst nach Θ_{H_2O} auf. Schließlich bekommt man die Erosionsausbeute:

$$Y = Y_{\rm phys} + Y_0 \Theta_{\rm H_2O} = Y_{\rm phys} + \frac{j_{\rm H_2O} \ p_{\rm ads} \ Y_0}{j_{\rm H_2O} \ p_{\rm ads} \ + \ n_0 \ \nu_{\rm des} \ \exp(-E_{\rm des}/k_{\rm B}T) \ + \ j_{\rm Ar} + Y_0}, \ (6.3)$$

dabei ist $Y_{\rm phys}$ die mittels TRIM.SP berechnete physikalische Zerstäubungsausbeute, die bei 800 eV Ar⁺ den Wert $Y_{\rm phys} = 0,55$ (siehe Tabelle 4.3) hat. Die maximale Flächendichte einer Monolage Wasser, n_0 , wird als die Oberflächendichte von Eis angenommen, d.h. $n_0 \approx 10^{15}$ cm⁻². Für $E_{\rm des}$ wird die Sublimationsenergie von Eis, $E_{\rm S,H_2O} = 0,45$ eV [SACK 1993] eingesetzt. Als Frequenz $\nu_{\rm des}$ wird die typische Schwingungsfrequenz von Molekülen von $1 \cdot 10^{13}$ Hz verwendet. Ein plausibler Wert für $p_{\rm ads}$ lässt sich aus folgenden Überlegungen ableiten: Die maximale Erosionsrate beträgt $\approx 2 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$ (Abb. 6.5), die Wasserflussdichte beträgt $4 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$. Das bedeutet, dass jedes zweites Wassermolekül zum Erosionsprozess beiträgt. Daraus kann man schließen, dass die chemische Zerstäubung ein wichtiger Verlustkanal für den Abbau der Wasserbedeckung ist und dementsprechend p_{ads} größer als 0,5 sein muss; man nimmt $p_{\text{ads}} = 1$.

 Y_0 kann mit folgender Überlegung bestimmt werden: Im Experiment wurde gefunden, dass bei einem Wasserfluss von ca. $j_{H_2O} = 1 \cdot 10^{14} \text{ cm}^{-2} \text{s}^{-1}$ bei einer Temperatur von 110 K die Erosion in Wachstum einer dicken Eisschicht umschlägt. Bei diesem Grenzwert muss gelten, dass die Adsorptionsrate gleich der gesamten Desorptionsrate, bestehend aus thermische Desorption und Wasserverbrauch durch chemische Zerstäubung, bei $\Theta_{H_2O} = 1$ ist: $p_{ads}j_{H_2O} = n_0\nu_{des}\exp(-E_{des}/k_BT) + j_{Ar^+}Y_0$. Setzt man obige Werte ein ergibt sich $Y_0 = 25$.

Die gestrichelte Linie in Abb. 6.5 zeigt die Modellergebnisse von Gl. 6.3 mit $j_{\rm H_2O} = 2 \cdot 10^{13} \, \rm cm^{-2} s^{-1}$. Das Modell zeigt chemische Zerstäubung unterhalb von ca. 200 K und ist in plausibeler Übereinstimmung mit den Messdaten. Grund für die Abweichung, d.h. für den deutlich langsamen Anstieg zu niedrigen Temperaturen könnte sein, dass die H₂O-Desorptionsenergie eine relativ breite Verteilung aufweist.

Die Messungen der chemischen Zerstäubung von a-C:H durch Ar⁺+Wasser in Abb. 6.5 und das Adsorptions-Desorptions-Modell in Gl. 6.3 bestätigen die Vermutung, dass eine zunehmende Wasserbedeckung bei tiefern Temperaturen als Erklärung für die Erhöhung der Erosionsrate bei Temperaturen unter 200 K sinnvoll ist.

Die Untersuchung der chemischen Zerstäubung durch $Ar^++Wasser$ soll hier nicht umfassend untersucht werden, sondern nur zur Unterstützung der Modellvorstellung für die Erklärung der Erhöhung der Erosionsausbeute bei tiefern Temperaturen im Fall der chemischen Zerstäubung durch Ar^++O_2 dienen. Wie für Ar^++O_2 kann der Anstieg zu niedrigen Temperaturen für Ar^++H_2O durch eine temperaturabhängige Oberflächenbedeckung plausibel erklärt werden.

6.2 Integriertes Modell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen Zerstäubung Ar⁺+O₂

Analog zur Entwicklung des Modells der chemischen Zerstäubung von a-C:H durch Ar^++H° im Kapitel 4 wird in den folgenden Abschnitten ein Ratengleichungsmodell für die chemische Zerstäubung von a-C:H-Schichten durch Ar^++O_2 beschrieben.

Die Modellvorstellung berücksichtigt die Anwesenheit von Wasserstoff in der a-C:H-Schicht für die Bestimmung der Reaktionen, die zur Erosion führen, nicht. Wasser kann sich dennoch bilden, es ist für die Bestimmung der Erosion von Kohlenstoff aber nicht von Bedeutung. Abgesehen von der physikalischen Zerstäubung von Kohlenstoff durch Ar^+ sind CO und CO₂ die Haupterosionsprodukte bei der chemischen Zerstäubung, die im Modell allerdings nicht unterscheiden werden. Sie werden als C-O-Komplexe betrachtet.

6.2.1 Konzept

Ausgehend vom Adsorptions-Desorptions-Modell in Gl. 6.3 für die chemische Zerstäubung von Wasser wird ein Modell entwickelt, das die Temperaturabhängigkeit der chemischen Zerstäubung durch Ar^++O_2 bei tieferen Temperaturen ALECS, siehe Abschnitt 6.1.2, Seite 64 beschreibt. Dafür wird angenommen, dass bei Temperaturen in der Zone III die einfallenden Sauerstoffmoleküle auf der a-C:H-Oberfläche adsorbieren und während des Ar^+ -Beschusses zur chemischen Zerstäubung der a-C:H-Schicht führen können. Die Haftwahrscheinlichkeit eines Sauerstoffmoleküls an der Oberfläche $(p_{O_{2in}}^{a-C:H})$ hängt von deren lokaler Struktur ab, z.B. davon, ob eine geschädigte oder nicht geschädigte a-C:H-Oberflächenstelle vorliegt. Sauerstoff kann gegebenenfalls thermisch desorbieren. Die O₂-Desorptionsrate von einer Oberfläche hängt ab von der Temperatur *T*, der Desorptionsenergie E_{des} und der Anzahl der adsorbierten Sauerstoffmoleküle $n_0\Theta_O$. Dabei ist n_0 die maximale Flächendichte der Oberflächenplätzen und Θ_O der Anteil an Oberflächenbedeckung mit Sauerstoff (Details im Abschnitt 6.2.2). Die Desorptionsrate kann man schreiben als:

$$r_{O_{2}out}^{T} = n_0 \nu_{des} \exp(-E_{des}/k_B T) \Theta_O, \qquad (6.4)$$

worin k_B die Boltzmann-Konstante ist. Die Kohlenstoff-Flächendichte bei einer a-C:H-Oberfläche lässt sich aus ihrer Dichte $\rho_0 \approx 2 \text{ g cm}^{-3}$ und ihrem Kohlenstoffanteil C $\approx 60 \%$ (Tabelle 2.1) berechnen. Damit ergibt sich näherungsweise $n_0 = 10^{15}$ C cm⁻². Die Desorptions-Versuchsfrequenz ν_{des} ist die Anzahl der Versuche pro Sekunde, die das Sauerstoffmolekül hat, um seine Bindung mit der Oberfläche zu überwinden. Für ν_{des} wurde ein Wert von 10^{13} s⁻¹ angenommen.

Die Gleichung 6.4 beschreibt eine O_2 -Desorptionsrate $r_{O_2out}^T$ von einer Oberfläche, auf der die Desorptionsenergie E_{des} überall dieselbe ist. Für eine a-C:H-Oberfläche ist es, wegen ihrer unregelmäßigen Struktur angemessen eine Verteilung der Desorptionsenergie anzunehmen. Der Einfachkeit halber bietet sich eine Gaussverteilung der Desorptionsenergie an. Damit lässt sich die Gl. 6.4 für die O_2 -Desorptionsrate aus einer a-C:H-Schicht umschreiben in die Form

$$R_{O_{2}out}^{T} = n_{0} \nu_{des} \frac{1}{\sqrt{2\pi} \cdot \sigma_{des}} \int \left[\exp(-E/k_{B}T) \cdot \exp\left(-(E-E_{des})^{2}/(2 \cdot \sigma_{des}^{2})\right) \right] dE \Theta_{O}$$

$$= A_{O_{2}out}^{T} \Theta_{O}, \qquad (6.5)$$

worin σ_{des} die Energieverbreitung der Gaussverteilung um den Erwartungswert der Desorptionsenergie E_{des} ist. Da n_0 und ν_{des} für bereits a-C:H festgelegt wurden, bleiben als freie Parameter, von denen der Vorfaktor abhängt lediglich E_{des} und σ_{des} .

Bei Temperaturen in der Zone II und Zone I (Abb. 6.3, Seite 64) geht die adsorbierte O₂-Bedeckung auf der a-C:H-Oberfläche gegen Null. Die Erosionsmechanismen sind dann durch die Prozesse CS bzw. IECE (Abschnitt 6.1.2, Seite 6.1.2) gegeben.

Man unterscheidet zwischen fühf grundsätzlichen Erosionsmechanismen bei der Wechselwirkung von Ar^+ und O_2 . Sie sind in Abb. 6.6 schematisch dargestellt und lassen sich wie folgt beschreiben:

- 1. Physikalische Zerstäubung (PS, physical sputtering) durch den Ionenbeschuss.
- 2. Erhöung der chemischen Zerstäubung durch das Vorhandensein einer adsorbierten Schicht aus molekularem Sauerstoff an der a-C:H-Oberfläche (ALECS, adsorbed-layer-enhanced chemical sputtering) bei Temperaturen der Zone III (Abb. 6.3). Dabei induzieren auftreffende Ionen eine chemische Reaktion des adsorbierten O₂ mit Kohlenstoff aus der a-C:H-Schicht die zur Erosion führt (siehe Abschnitt 6.1.2, Seite 64).
- 3. Chemische Zerstäubung durch Ar⁺+O₂ (CS, chemical sputtering). Durch den Ioneneinschlag werden reaktive Oberflächenstellen (gebrochene Bindungen) erzeugt, die lang genug existieren müssen, um mit einem später auftreffenden O₂-Molekül mit einer Wahrscheinlichkeit P_{cs} flüchtige Spezies bilden zu können. CS tritt im gesamten Temperaturbereich auf und ist im Wesentlichen temperaturunabhängig (siehe Abschnitt 6.1.2 Seite 64). In Zone II spielt CS die Hauptrolle; in Zonen I und III trägt es zur Erosion bei, steht aber eventuell in Konkurenz zu den dort vorherrschenden Prozessen.
- Oxidation, eine rein thermische, chemische Erosion (CE, chemical erosion¹) durch O₂, die lediglich durch die chemische Reaktivität von Sauerstoff bei Temperaturen der Zone I (Abb. 6.3) mit a-C:H gegeben ist.
- 5. Ioneninduzierte Erhöhung der chemischen Erosion (IECE, *ion-enhanced chemical erosion*) durch O_2 , die an einer bereits vorhandenen reaktiven Oberflächenstelle möglich ist. Sie tritt bei Temperaturen ein, bei denen die chemische Erosion durch O_2 wesentlich wird, und ihre Wirkung ist zu der chemischen Erosion proportional. Der Proportionalitätsfaktor ist D_{O_2} , der als ein Maß für die Reaktivität von O_2 mit einer geschädigten Oberflächenstelle betrachtet werden kann (vergl. Kapitel 4, Seite 42).

Die Abhängigkeit der Erosionsausbeute von der Ionenenergie wird ähnlich wie für den Fall Ar^++H° im Kapitel 4 beschrieben. Die Ausbeute für die chemische Zerstäubung (Y_{cs}^E) und die Ausbeute für die Erzeugung von reaktiven Oberflächenstellen durch den Ionenbeschuss (Y_r^E) sind beide energieabhängige Terme. Sie werden durch Ausdrücke wie in Gl. 2.4 beschrieben,

 $^{^1 \}mathrm{In}$ diesem Kapitel bezieht sich der Begriff chemische Erosion (CE) auf die Oxidation durch O_2

Abbildung 6.6: Schematische Darstellung der chemischen Zerstäubung von a-C:H-Schichten durch die Wechselwirkung von Ar^+ und O_2 aufgeteilt in fünf Erosionsmyechanismen: PS, ALECS, CS, CE und IECE. Dabei sind die in Abb. 6.3 definierten Temperaturzonen zu den jeweiligen Erosionsmechanismen angegeben. Eine Trennung der Erosionsprodukte in CO und CO₂ wird in dieser einfachen Darstellung nicht berücksichtigt. Die Bildung von Wasser aus Sauerstoff und dem Wasserstoff der a-C:H-Schicht wird ebenfalls nicht berücksichtigt.

$$Y_{\rm cs}^E = a_{\rm cs} \cdot \Upsilon_{\rm C}^E,$$

$$Y_{\rm r}^E = a_{\rm r} \cdot \Upsilon_{\rm C}^E,$$
(6.6)

so dass der energieabhängige Ausdruck, das Integral $\Upsilon_{\rm C}^E$, mit TRIM.SP berechnet wird und nur die entsprechenden Vorfaktoren bestimmt werden müssen. Für die Eindringtiefe von Sauerstoff in die a-C:H-Schicht wird der Wert $\lambda = 2$ nm angenommen (Abfalllänge von O₂, siehe Abschnitt 6.1.2). Im Fall Ar⁺+H[°] wurde allerdings $Y_{\rm r}^E = a_{\rm r} \cdot Y_{\rm ps}^E$ (Gl. 4.10) angenommen. Grund dafür ist die unterschiedliche Schwellenenergie des IECE-Mechanismus, der proportional zu $Y_{\rm r}^E$ ist. Bei kleineren Energien (unterhalb von 100 eV) tritt IECE deutlich stärker im Fall Ar⁺+O₂ (siehe Abb. 6.4, Seite 67) als im Fall Ar⁺+H[°] (siehe Abb. 4.4, Seite 39) auf. Eine empirische, aber geeignete Wahl für Ar⁺+O₂ sind daher die von Null verschieden Werte des Integrals $\Upsilon_{\rm C}^E$ in Tab. 4.3.

Die reaktiven Stellen werden prinzipiell wie die Θ_r -Bedeckung in Kapitel 4 behandelt. Es ist doch plausibel anzunehmen, dass auf Grund unterschiedlicher Reaktivität von O_2 und H° verschiedene Arten von Oberflächenschädigung notwendig sind. Dies ist eine mögliche Begründung für die unterschiedlichen Annahmen bei der Erzeugung von Θ_r durch Gl. 6.6 für Sauerstoff und Gl. 4.10 für Wasserstoff.

6.2.2 Oberflächenbedeckung

Die für das Modell betrachteten drei Bedeckungen sind in Abb. 6.6 schematisch dargestellt. Sie entsprechen einer Konzentration an freien Kohlenstoffplätzen $\Theta_{\rm C}$, einer an Kohlenstoffplätzen, an denen Sauerstoff als Atom oder Molekül adsorbiert vorliegt $\Theta_{\rm O}$, und einer dritten Bedeckung $\Theta_{\rm r}$, die den in der Schicht durch des Ionenbombardement erzeugten reaktiven Stellen entspricht. Nach ihrer Erzeugung müssen diese reaktiven Stellen lang genug existieren, um mit einem einkommenden O_2 die Erosionsmechanismen CS und IECE anzutreiben.

Die Summe der Bedeckungen ist auf Eins normiert:

$$\Theta_{\rm C} + \Theta_{\rm O} + \Theta_{\rm r} = 1. \tag{6.7}$$

6.2.3 Erosionsrate

Die gesamte Erosionsrate lässt sich aus den fünf Erosionsmechanismen zusammenstetzen:

$$\Gamma = \underbrace{j_{Ar} + Y_{ps}^E}_{1: PS} + \underbrace{j_{Ar} + Y_{cs}^E \Theta_O}_{2: ALECS} + \underbrace{j_{O_2} P_{cs} \Theta_r}_{3: CS} + \underbrace{j_{O_2} Y_{O_2}^T}_{4: CE} + \underbrace{j_{O_2} Y_{O_2}^T D_{O_2} \Theta_r}_{5: IECE}$$
Her

oder

$$\Gamma = \underbrace{j_{Ar^+} Y_{ps}^E}_{1} + \underbrace{(j_{Ar^+} Y_{cs}^E \Theta_O + j_{O_2} P_{cs} \Theta_r)}_{2+3} + \underbrace{j_{O_2} Y_{O_2}^T \left(1 + D_{O_2} \Theta_r\right)}_{4+5}.$$
(6.8)

Dabei sind j_{Ar^+} und j_{O_2} die Flussdichten von Ar^+ bzw. O_2 . Die Ausbeute der erodierten Kohlenstoffatome pro einfallendem Ar^+ beim Erosionsmechanismus PS entspricht Y_{ps}^E . Sie wurde für einige Ar^+ -Energien in Tabelle 4.3 berechnet und gemessen. Die ionenenergieabhängige Erosionsausbeute beim Erosionsmechanismus ALECS ist durch den Term Y_{cs}^E gegeben. Die Wahrscheinlichkeit, dass ein einfallendes O_2 mit einer vorhandenen reaktiven Stelle reagiert und dadurch ein Erosionsprodukt (CS Mechanismus) erzeugt, entspricht dem Term P_{cs} . Die rein chemische Erosionsausbeute durch ein Sauerstoffmolekül $Y_{O_2}^T$ (Oxidationsausbeute), lässt sich im Temperaturbereich von ca. 650 bis 850 K aus Gl. 6.1 bestimmen. Die zusätzliche Erhöhung der chemischen Erosion $Y_{O_2}^T$ durch den Ionenbeschuss (IECE) wird durch den fünften Term in Gl. 6.8 beschrieben. Dieser Term hat, analog zu Gl. 4.5 des Kapitels 4, D_{O_2} als multiplikativen, nicht energieabhängigen Vorfaktor vor Θ_r . D_{O_2} ist der Verstärkungsfaktor beim Erosionsmechanismus IECE und daher ein Maß für die Reaktivität eines Θ_r -Oberflächenplatzes mit O₂ bei hohen Temperaturen.

Bedeckungsdynamik

Tabelle 6.2 zeigt die Dynamik der Entstehung und Vernichtung der drei Bedeckungen $\Theta_{\rm C}$, $\Theta_{\rm O}$ und $\Theta_{\rm r}$ in sechs Prozessschritten und gibt die Terme an, durch die ein Ratengleichungsystem beschreiben wird.

6.2 Integriertes Modell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen Zerstäubung $\rm Ar^+ + O_2$

Prozessschritt	Term (Rate)	$\Theta_{\rm C}$ $\Theta_{\rm O}$ $\Theta_{\rm r}$
a) O ₂ -Adsorption (Θ_{O} -Bildung)	$j_{\mathrm{O}_2} \; p_{\mathrm{O}_2\mathrm{in}}^{\mathrm{C}} \; \Theta_{\mathrm{C}}, j_{\mathrm{O}_2} \; p_{\mathrm{O}_2\mathrm{in}}^{\mathrm{r}} \; \Theta_{\mathrm{r}}$	> <
b) Erzeugung von reaktiven Stellen	$j_{\rm Ar^+} Y_{\rm r}^E \left(1 - \Theta_{\rm O} - B \Theta_{\rm r}\right)$	>
c) O_2 -Desorption	$R_{\rm O_2out}^T = A_{\rm O_2out}^T \ \Theta_{\rm O}$	<
d) Erosionsmechanismus 2: ALECS	$j_{\mathrm{Ar}^+}Y^E_{\mathrm{cs}}~\Theta_{\mathrm{O}}$	<
e) Erosionsmechanismus 3: CS	$j_{\rm O_2}~P_{\rm cs}~\Theta_{\rm r}$	<
f) Erosionsmechanismus 5: IECE	$j_{\mathrm{O}_2} Y_{\mathrm{O}_2}^T D_{\mathrm{O}_2} \Theta_{\mathrm{r}}$	<

Tabelle 6.2: Schema der Bedeckungsdynamik bei der chemischen Zerstäubung von a-C:H-Schichten durch die gleichzeitige Wechselwirkung $Ar^+ + O_2$.

Die Prozessschritte lassen sich wie folgt interpretieren:

a) beschreibt die Bildung von $\Theta_{\rm O}$ durch die Adsorption von Sauerstoffmolekülen auf $\Theta_{\rm C}$ - und $\Theta_{\rm r}$ -Stellen der a-C:H-Oberfläche. Dabei wurde angenommen, dass die O₂-Adsorptionswahrscheinlichkeiten auf $\Theta_{\rm C}$ und $\Theta_{\rm r}$ unterschiedlich groß sind ($p_{\rm O_{2}in}^{\rm C}$ bzw. $p_{\rm O_{2}in}^{\rm r}$).

b) stellt die $\Theta_{\rm r}$ -Erzeugung durch das Ionenbombardement mit einer Ausbeute $Y_{\rm r}^E$ aus der $\Theta_{\rm C}$ -Bedeckung dar. Analog zu dem Prozessschritt b) in Tabelle 4.2 (Kap. 4) stellt der Parameter *B* für die Rekombination von benachbarten $\Theta_{\rm r}$ -Plätze ihre Begrenzung auf Maximal 1/*B* sicher.

c) Die thermische Desorption von Sauerstoffmolekülen baut die Θ_{O} -Bedeckung ab und ist durch Gl. 6.5 gegeben.

Obige drei Prozessschritte a, b und c tragen jedoch nicht zur Schichterosion bei. Erst die Prozessschritte d, e und f stellen konkrete Erosionsschritte dar. Sie entsprechen den in Abb. 6.6 dargestellten Erosionsmechanismen von 2, 3 und 5. Sie führen auch zu einem Abbau von $\Theta_{\rm O}$ (Prozessschritt d) und $\Theta_{\rm r}$ (Prozessschritte e und f).

Für die zeitliche Änderung von $\Theta_{\rm O}$ und $\Theta_{\rm r}$ erhält man aus Tabelle 6.2:

$$n_{0} \frac{d\Theta_{O}}{dt} = j_{O_{2}} p_{O_{2in}}^{C} \Theta_{C} + j_{O_{2}} p_{O_{2in}}^{r} \Theta_{r} - (A_{O_{2out}}^{T} + j_{Ar^{+}}Y_{cs}^{E}) \Theta_{O},$$

$$n_{0} \frac{d\Theta_{r}}{dt} = j_{Ar^{+}}Y_{r}^{E}(1 - \Theta_{O} - B\Theta_{r}) - j_{O_{2}}(p_{O_{2in}}^{r} + P_{cs} + Y_{O_{2}}^{T}D_{O_{2}}) \Theta_{r}.$$
(6.9)

Die Lösung des Gleichungssystems 6.9 im stationären Fall zusammen mit Gl. 6.7 ergibt die drei Bedeckungen:

$$\begin{split} \Theta_{\rm C} &= 1 - \Theta_{\rm O} - \Theta_{\rm r}, \\ \Theta_{\rm O} &= \frac{j_{\rm O_2}^2 + c_1 j_{\rm O_2}}{j_{\rm O_2}^2 + c_2 j_{\rm O_2} + c_3}, \\ \Theta_{\rm r} &= \frac{c_3}{j_{\rm O_2}^2 + c_2 j_{\rm O_2} + c_3}, \end{split}$$

mit

$$c_{1} = j_{Ar^{+}} Y_{r}^{E} \left((B-1) p_{O_{2}in}^{C} + p_{O_{2}in}^{r} \right) / z,$$

$$c_{2} = c_{1} + \left(A_{O_{2}out}^{T} + j_{Ar^{+}} Y_{cs}^{E} \right) \left(p_{O_{2}in}^{r} + P_{cs} + Y_{O_{2}}^{T} D_{O_{2}} \right) / z,$$

$$c_{3} = B j_{Ar^{+}} Y_{r}^{E} \left(A_{O_{2}out}^{T} + j_{Ar^{+}} Y_{cs}^{E} \right) / z,$$

$$z = p_{O_{2}in}^{C} \left(p_{O_{2}in}^{r} + P_{cs} + Y_{O_{2}}^{T} D_{O_{2}} \right).$$
(6.10)

Erosionsausbeute

Man erhält die erodierten Kohlenstoffatome pro einfallendem Ar-Ion, d.h. die Erosionsausbeute Y [C/Ar⁺], in dem man die Gesamterosionsrate Gl. 6.8 durch den Ar-Ionenfluss j_{Ar^+} dividiert:

$$Y_{\text{Modell}}^{E,R,T} = \frac{\Gamma}{j_{\text{Ar}^+}} = \underbrace{Y_{\text{ps}}^E}_{1} + \underbrace{Y_{\text{cs}}^E \Theta_{\text{O}}}_{2} + \underbrace{R P_{\text{cs}} \Theta_{\text{r}}}_{3} + \underbrace{R Y_{\text{O}_2}^T \left(1 + D_{\text{O}_2} \Theta_{\text{r}}\right)}_{4+5}.$$
 (6.11)

dabei sind $\Theta_{\rm O}$ und $\Theta_{\rm r}$ die Bedeckungen aus Gl. 6.10 und R das Flussverhältnis $R = j_{\rm O_2}/j_{\rm Ar^+}$.

6.2.4 Anpassung des Modells an die Daten

Außer den festgehaltenen Parametern $\lambda = 2 \text{ nm}, n_0 = 10^{15} \text{ C cm}^{-2} \text{ und } \nu_{\text{des}} = 10^{13} \text{ s}^{-1}$ und der bekannten physikalischen Zerstäubungsausbeute Y_{ps}^E (Tab. 4.3) bzw. der chemischen Erosionsausbeute $Y_{\text{O}_2}^T$ (Gl. 6.1) besitzt das Ratenmodell (Gl. 6.8 zusammen mit Gl. 6.10) noch neun weitere Parameter: $B, p_{\text{O}_2\text{in}}^C, p_{\text{O}_2\text{in}}^r, P_{\text{cs}}, D_{\text{O}_2}, a_{\text{r}}$ (für Y_{r}^E), a_{cs} (für Y_{cs}^E) und E_{des} und σ_{des} in $A_{\text{O}_2\text{out}}^T$.

Die Bestimmung dieser neun Parameter erfolgt, wie im Kapitel 4, mit einem dazu entwickelten Fitprogramm. Dafür verwendet man die 91 Datenpunkte (Abschnitt 6.2.5) für die Erosionsausbeuten von a-C:H-Schichten durch Ar^++O_2 bei Ar^+ -Energien zwischen 20 und 800 eV, Temperaturen von 110 bis 850 K und O₂-Flussdichten von $j_{O_2} = 0$ bis 5, $4 \cdot 10^{16}$ cm⁻²s⁻¹.

Um die Möglichkeit einer dissoziativen Adsorption von einfallenden Sauerstoffmolekülen auf der Oberfläche nicht auszuschließen, wird erlaubt, dass die Wahrscheinlichkeiten für die O₂-Adsorption $p_{O_{2}in}^{C}$ und $p_{O_{2}in}^{r}$ und die Wahrscheinlichkeit für die O₂-Passivierung P_{cs} beim Erosionsmechanismus CS Werte zwischen null und zwei annehmen können.

Tab. 6.3 stellt die Modellparameter, die sich aus dem Fit an die experimentellen Daten ergeben, zusammen:

6.2.5 Ergebnisse und Diskussion des Modells

Die Anpassung des Modells an die Daten liefert einen plausibel großen Wert für $p_{O_{2}in}^{r}$ von knapp zwei im Vergleich zu $p_{O_{2}in}^{C}$. Die bevorzugte Adsorption von O_{2} an reaktiven Θ_{r} - statt an unmodifizierten, blanken Θ_{C} -Oberflächenplätzen unterstützt die Modellvorstellung, dass durch Ionenbombardement

Parameter	Wert	Bemerkung
$p_{\rm O_2in}^{\rm C}$	0,003	O_2 -Adsorptionswahrscheinlichkeit auf Θ_C
$p_{\rm O_2in}^{\rm r}$	1,999	$\mathrm{O}_2\text{-}\mathrm{Adsorptions wahrscheinlichkeit}$ auf Θ_r
$P_{\rm cs}$	0,261	O_2 -Passivierungswahrscheinlichkeit bei CS
D_{O_2}	4937	Oberflächenreaktivität bei IECE
$a_{ m r}$	0,891	Vorfaktor der $\Theta_{\rm r}$ -Erzeugungsausbeute (Gl. 6.6)
$a_{\rm cs}$	0,523	Vorfaktor der direkten Erosionsausbeute bei ALECS (Gl. 6.6)
$E_{\rm des}$	$1,43~{\rm eV}$	Desorptionsenergie für O_2
$\sigma_{ m des}$	$0,183~{\rm eV}$	Energieverbreiterung von $E_{\rm des}$
λ	2 nm	Abfalllänge für das Eindringen von O_2
В	10	für die Rekombination von benachbarten reaktiven Plätzen $(\Theta_{\rm r})$

6.2 Integriertes Modell für die Energie-, Fluss- und Temperaturabhängigkeit der chemischen Zerstäubung $\rm Ar^++O_2$

Tabelle 6.3: Verwendete Modellparameter. Dabei sind die Werte für $p_{O_{2}in}^{C}$, $p_{O_{2}in}^{r}$, P_{cs} , $D_{O_{2}}$, a_{r} , a_{cs} , E_{des} und σ_{des} Fitergebnisse.

erzeugte reaktive Stellen stark mit O_2 reagieren. Der hohe Wert der ioneninduzierten Oberflächenreaktivität D_{O_2} zeigt, dass die synergetische Erosion durch Ar^++O_2 auch bei Temperaturen der Zone I (IECE) eine bedeutende Rolle spielt und zu einer starken Erhöhung der Erosionsausbeute führt. Die Desorptionsenergie für O_2 liegt im Bereich von 1 eV, wobei die Gauss-Verteilung eine große Energiebreite von ca. 10 % liefert.

Im Folgenden werden die Abhängigkeit des Modells von der Ar⁺-Energie, der Temperatur und dem O_2/Ar^+ -Flussverhältnis erläutert:

Energieabhängigkeit

Abb. 6.7 zeigt die Abhängigkeit sowohl der Erosionsraten Γ als auch der Erosionsausbeten Y [C/Ar⁺] von a-C:H-Schichten durch Ar⁺+O₂ von der Ar⁺-Energie im Energiebereich von 20 bis 800 eV bei Raumtemperatur und 150 K. Dabei sind die Daten in Abb. 6.7 und die in Abb. 6.4 dieselben. Die Modellkurven in Abb. 6.7 wurden allerdings durch das chemische Zerstäubungsmodell nach Gl. 6.11 mit den Parametern aus Tab. 6.3 berechnet. Die gezeigten Energieabhängigkeiten werden gut wiedergegeben.

Das Modell der Energieabhängigkeit der chemischen Zerstäubungsausbeuten von Hopf $Y = a \cdot \Upsilon_{C}^{E}$ (Abschnitt 2.3.3) beschreibt auch die Messungen Abb. 6.4 ebenfalls gut. Der konstante Vorfaktor *a* muss allerdings einzeln für jeden Temperaturdatensatz angepasst werden. Im Gegensatz dazu ist in dem Modell nach Gl. 6.11 die Temperaturabhängigkeit bereits integriert.

Abbildung 6.7: Logarithmische Darstellung der Erosionsausbeuten $Y [C/Ar^+]$ (links) bzw. Erosionsraten Γ (rechts) von a-C:H-Schichten durch Ar^++O_2 in Abhängigkeit von der Ar^+ -Energie bei 150, 300 und 800 K. Die Daten stammen aus Abb. 6.4, die Modellkurven jedoch entsprechen dem chemischen Zerstäubungsmodell nach Gl. 6.11 und dem Parametersatz aus Tab. 6.3.

Bei einer bestimmten Probentemperatur und bei gegebenen O₂ und Ar⁺ Flussdichten hängt das Modell für die Erosionsausbeute (Gl. 6.11) im Wesentlichen nur von den zwei Termen $Y_{\rm r}^E$ und $Y_{\rm cs}^E$ (Gl. 6.6) ab. Diese zwei Terme wiederum hängen vom selben Integralterm $\Upsilon_{\rm C}^E$ (Integral der Form Gl. 2.4) ab.

Temperaturabhängigkeit

Abb. 6.8 zeigt die Erosionsausbeute im Temperaturbereich von ca. 110 bis 850 K (unteres Bild). Dieser Temperaturbereich ist, wie in Abb. 6.1 eingeführt, in die drei Zonen aufgeteilt. Dabei sind die Messpunkte bei 400 eV Ar⁺+O₂ (gefüllte Kreissymbole) dieselben wie die in Abb. 6.3. Zum Vergleich sind die Messungen der Oxidationsraten durch O₂ aus Abb. 6.1 (offene Kreise) mitgezeigt. Die Modellkurven für die Erosionsausbeuten in Abb. 6.8 (unteres Bild) wurden mittels Gl. 6.11 für die angegebenen Ar⁺-Energien in Temperaturschritten von 10 K und dem Parametersatz aus Tab. 6.3 bei fixen Ar⁺- und O₂-Flussdichten von $j_{\rm Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \, {\rm cm}^{-2} {\rm s}^{-1}$ bzw. $j_{\rm O_2} = (1, 1 \pm 0, 2) \cdot 10^{16} \, {\rm cm}^{-2} {\rm s}^{-1}$ berechnet. Die dazu verwendeten $\Theta_{\rm C}$, $\Theta_{\rm O}$ und $\Theta_{\rm r}$ Bedeckungen (Gl. 6.10) sind ebenfalls in Abb. 6.8 (oberes Bild) aufgetragen.

Wie am Anfang des Kapitels erwähnt, ist hier vor allem die Wechselwirkung Ar^++O_2 mit einer a-C:H-Schicht in den Zonen II und III von Interesse. Der Anstieg der Erosionsausbeuten bei tiefen Temperaturen (Zone III) ist proportional zu der Θ_O -Bedeckung. Dafür ist hauptsächlich der zweite Erosionsmechanismus ALECS in Gl. 6.11 (~ Θ_O) verantwortlich. In Zone II, wie in Abb. 6.8 (oberes Bild) zu sehen ist, sinkt die Population von Θ_O stark ab. Trotzdem ist eine beträchtliche Erosions-

Abbildung 6.8: Unteres Bild: Erosionsausbeuten (links) bzw. -raten (rechts) von a-C:H durch $Ar^+ + O_2$ bei Ar^+ -Energien von 20 bis 800 eV in Abhängigkeit von der Temperatur, die in die bereits diskutierten drei Zonen aufgeteilt ist (Abschnitt 6.1.2). Die Flussdichten betrugen $j_{O_2} = (1, 1 \pm 0, 2) \cdot 10^{16} \text{ cm}^{-2} \text{s}^{-1}$ bzw. $j_{Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$. Die Oxidationsraten durch O_2 aus Abb. 6.1 (offene Kreise) sind mitgezeigt (ausschließlich rechte Skala). Oberes Bild: Abhängigkeit von $\Theta_{\rm C}$, $\Theta_{\rm O}$ und $\Theta_{\rm r}$ von der Temperatur und der Ar^+ -Energie (das Innere Bild oben rechts ist eine Vergrößerung der Bedeckungen im gesamten Temperaturbereich). Die Kurven (durchgezogene Linien) für Γ bzw. Y und die Bedeckungen sind Modellrechungen (siehe Text).

ausbeute (Abb. 6.8, unteres Bild) zu erkennen. Beispielsweise beträgt $Y \approx 2,5$ bei 400 eV Ar⁺+O₂ und bei 50 eV Ar⁺+O₂, einer Energie unterhalb der Schwelle für physikalische Zerstäubung, immerhin $Y \approx 0,5$. In Zone II, in der $\Theta_{\rm O}$ sehr klein ist, bleibt nur der Erosionsmechanismus CS übrig. Voraussetzung für CS ist eine durch den Ionenbeschuss erzeugte Oberflächenschädigung, mit der das ankommende Sauerstoffmolekül reagiert und ein flüchtiges Erosionsprodukt bildet. Für diesen Prozess ist keine Sauerstoffbedeckung auf der Oberfläche notwendig. Verfolgt man in Abb. 6.8 (oberes Bild) den Verlauf von $\Theta_{\rm r}$ in Abhängigkeit von der Temperatur, stellt man fest, dass $\Theta_{\rm r}$ in Zone II näherungsweise konstant ist. Der CS-Mechanismus, dessen Erosionsraten proportional zur $\Theta_{\rm r}$ -Bedeckung sind, spielt in der Zone II die Hauptrolle.

In Zone I sieht man in Abb. 6.8 einen steilen Anstieg der Erosionsraten ab ca. 700 K, also der Temperatur bei der die Oxidation durch O_2 auch wesentlich wird. In diesen Temperaturbereich dominieren die letzten beiden Erosionsmechanismen aus Gl. 6.11, nämlich CE (reine Oxidation) durch O_2 und IECE bei der gleichzeitige Wechselwirkung von Ar⁺+O₂. Bei 400 eV und bei 100 eV sieht man, dass die gemessenen Erosionsraten durch Ar^++O_2 bei 800 K um ca. 300 % bzw. 200 % höher sind als die Summe der Erosionsrate durch O_2 alleine bei 800 K und der Erosionsrate durch Ar^++O_2 bei 300 K. Diese Erhöhung der Erosionsrate bei 800 K zeigt den synergetischen Effekt, der durch den IECE-Mechanismus beschrieben wird. IECE ist im Fall Ar^++O_2 deutlich stärker als im Fall Ar^++H° (bei 100 eV ist die Erhöhung gerade mal 30 %, siehe Abb. 4.4, Seite 39). Bei Temperaturen jenerseits von 800 K wird Θ_r durch den IECE-Mechanismus verbraucht. Dadurch geht $\Theta_C \rightarrow 1$ (siehe Abb. 6.8 oben).

Flussabhängigkeit

Die Abhängigkeit der Erosion von a-C:H durch 400 eV Ar⁺+O₂ vom O₂-zu-Ar⁺-Flussverhältnis R zwischen R = 0 und $R \approx 15000$ ist in Abb. 6.9 (unteres Bild) gezeigt. Zum Vergleich sind zwei Datensätze aufgetragen, ein Datensatz bei 110 K (Quadrate) und der Datensatz bei Raumtemperatur (Kreise) aus Abb. 6.2. Die Ar⁺-Flussdichte wurde für alle Messpunkte konstant bei $j_{\rm Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \, {\rm cm^{-2} s^{-1}}$ gehalten. Nur der O₂-Fluss wurde zwischen $j_{\rm O_2} = 0$ und $j_{\rm O_2} \approx 5, 4 \cdot 10^{16} \, {\rm cm^{-2} s^{-1}}$ variiert.

Die Modellkurven in Abb. 6.9 (unteres Bild) für die Erosionsausbeuten wurden mittels Gl. 6.11 mit den Parametern aus Tab. 6.3 bei 400 eV Ar⁺ und für die Temperaturen von 110 K (durchgezogene Linie) und 300 K (Strich-Punkt-Linie) berechnet. Die dazu verwendeten Bedeckungen $\Theta_{\rm C}$, $\Theta_{\rm O}$ und $\Theta_{\rm r}$ wurden aus Gl. 6.10 für die 400 eV Ar⁺-Energie und die Temperaturen von 110 und 300 K im Flussverhältnis-Bereich von R = 0 bis R = 20000 (bei fixen $j_{\rm Ar^+} = 4, 0 \cdot 10^{12} \, {\rm cm}^{-2} {\rm s}^{-1}$) berechnet. Die Modellkurven für $\Theta_{\rm O}$ und $\Theta_{\rm r}$ sind ebenfalls in Abb. 6.8 (oberes Bild) aufgetragen.

Für den Datensatz bei Raumtemperatur (Kreise) in Abb. 6.9 (unteres Bild) ist nicht nur die Modellkurve (Strich-Punkt-Linie) der Gesamterosionsausbeute (Gl. 6.11) gezeigt, sondern auch die Modellkurven ihrer zwei Hauptbeiträge bei dieser Temperatur, nämlich ALECS (gepunktete Linie) und CS (gestrichelte Linie). Man erkennt in Abb. 6.9 beim Vergleich von ALECS (unteres Bild) mit Θ_0 bei 300 K (oberes Bild) die Proportionalität ALECS ~ Θ_0 besonders gut. Die Abhängigkeit von CS vom Produkt $j_{O_2} \cdot \Theta_r$ lässt sich in Abb. 6.9 auch erkennen. Die O₂-Flussdichte in Abb. 6.9 stetigt proportional zu *R*. Die durchgezogene Θ_r -Kurve (oberes Bild) dagegen sinkt mit steigenden *R*. Somit bildet das Produkt beider Kurven die gestrichelte Kurve mit einem flachen Maximum um *R* ≈ 1000 für CS (unteres Bild). Der Verhältnismäßig kleine Beitrag zur Erosion durch die temperaturunabhängige physikalische Zerstäubungsrate (PS), die aber im gesamten Bereich des Flussverhältnisses konstant ist, wird zu den Ausbeuten von ALECS und CS als konstante Ausbeute $Y_{ps}^{E=400}$ (in Abbildung nicht gezeigt) addiert. Somit ergibt sich im wesentlich die als Strich-Punkt-Linie dargestellte Modelkurve in Abb. 6.9 (unteres Bild). Die andere Erosionsmechanismen CE und IECE in Gl. 6.8 spielen bei 300 K keine wesentliche Rolle. Bei 110 K steigt Θ_0 deutlich an. Dadurch ist ALECS der Haupterosionsmechanismus. CS (~ Θ_0) spielt dagegen keine wichtige Rolle, da Θ_r bei 110 K sinkt. Der Datensatz bei

Abbildung 6.9: Unteres Bild: Halblogarithmische Darstellung der Erosionsausbeuten (links) bzw. -raten (rechts) von a-C:H bei Raumtemperatur (Kreise) und 110 K (Quadrate) durch Ar^++O_2 bei 400 eV Ar^+ -Energie in Abhängigkeit vom O_2 -zu- Ar^+ -Flussverhältnis R. Die Ar^+ -Flussdichte wurde konstant bei $j_{Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ gehalten. Nur die O_2 -Flussdichte wurde zwischen $j_{O_2} = 0$ und $j_{O_2} \approx 5, 4 \cdot 10^{16} \text{ cm}^{-2} \text{s}^{-1}$ variiert. Der Datensatz bei Raumtemperatur (Kreissymbole) und der in Abb. 6.2 ist derselbe. Oberes Bild: Abhängigkeit von Θ_C , Θ_O und Θ_r vom Flussverhältnis R bei Raumtemperatur und bei 110 K. Die Kurven für Γ bzw. Y und die Bedeckungen sind Modellrechungen (dazu mehr im Text).

110 K zeigt die Proportionalität der Modellkurve (ALECS) mit Θ_{O} bei 110 K sehr gut. Θ_{O} steigt genau so wie ALECS ab $R \approx 10$ stärker und ab $R \approx 100$ nur langsam an.

Schließlich zeigt Abb. 6.10 die Abhängigkeit der Erosionsausbeuten von a-C:H-Schichten bei Raumtemperatur vom O₂-zu-Ar⁺-Flussverhältnis R bei Ar⁺-Energien von 50 bis 800 eV. Dabei wurde wie in Abb. 6.9, bei einer konstanten Ar⁺-Flussdichte von $j_{\rm Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ gemessen. Lediglich wurde die O₂-Flussdichte zwischen $j_{\rm O_2} = 0$ und $j_{\rm O_2} \approx 5, 4 \cdot 10^{16} \text{ cm}^{-2} \text{s}^{-1}$ variiert. Zum Vergleich ist in Abb. 6.10 noch der Datensatz von 400 eV Ar⁺+O₂ bei 300 K aus Abb. 6.9 (bzw. Abb. 6.2) aufgetragen.

Die Modellkurven in Abb. 6.10 wurden durch das chemische Zerstäubungsmodell Gl. 6.11 mit den Parametern aus Tab. 6.3 bei 300 K und für die jeweilige Ar⁺-Energien im gezeigten Flussverhältnisbereich berechnet.

Abbildung 6.10: Erosionsausbeuten von a-C:H bei Raumtemperatur durch Ar^++O_2 bei 50, 200, 400 und 800 eV Ar^+ -Energie in Abhängigkeit vom O_2 -zu- Ar^+ -Flussverhältnis R in linearer (a) bzw. halblogarithmische (b) Auftragung. Die Ar^+ -Flussdichte wurde jedoch konstant bei $j_{Ar^+} = (4, 0 \pm 0, 3) \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$ gehalten. Nur die O_2 -Flussdichte wurde zwischen $j_{O_2} = 0$ und $j_{O_2} \approx 5, 4 \cdot 10^{16} \text{ cm}^{-2} \text{s}^{-1}$ variiert. Der Datensatz bei 400 eV (Kreissymbole) und der in Abb. 6.2 ist derselbe. Die Linien sind die Modellrechnungen nach Gl. 6.11.

Die Erosionsausbeuten in Abb. 6.10 zeigten mit zunehmender Energie eine stärkere Flussabhängigkeit (R. Die Erosionsausbeute von 50 eV Ar⁺+O₂ ist ab $R \approx 10$ bis $R \approx 2500$, also über mehr als zwei Größenordnungen, näherungsweise bei $Y \approx 0,4$ konstant. Die Erosionsausbeute von 800 eV Ar⁺+O₂ dagegen steigt bis um eine Größenordnungen von $Y \approx 0,5$ bei R = 0 auf $Y \approx 4,5$ bei $R \approx 2500$ an.

6.3 Ergebnis: Antwort auf Fragenkomplex 3

Erosionsmessungen von a-C:H-Schichten durch Ar^++O_2 haben gezeigt, dass bei hohen Temperaturen, bei denen die Oxidation von a-C:H eine Rolle spielt, die Erosionsausbeute sich durch den Ionenbeschuss stark erhöht. Bei Temperaturen unterhalb der Oxidation durch molekularen Sauerstoff alleine wurde allerdings auch eine erhebliche Erosionsausbeute gemessen. Bei tiefen Temperaturen zeigte sich sogar ein monotoner Anstieg der Erosionsausbeute mit sinkenden Temperaturen.

Basierend auf dem Modell des Erosionsprozesses im Fall Ar^++H° wurde analog ein integriertes Modell der Energie-, Fluss- und Temperaturabhängigkeit der Erosion von a-C:H durch Ar^++O_2 entwickelt, das auf fünf Erosionsmechanismen beruht. Die gesammte Erosion ist die Summe der physikalischen Zerstäubung durch Ar^+ (PS) und der chemischen Erosion durch O_2 (CE) sowie der synergetischen Beiträge: IECE + CS + ALECS.

Bei gegebener Temperatur, O_2 und Ar^+ Flussdichten hängt die Erosionsausbeute (Gl. 6.11) im Wesentlichen nur von den zwei Termen Y_r^E und Y_{cs}^E (Gl. 6.6) ab. Diese zwei Terme beruhen auf die Modellvorstellung der Energieabhängigkeit von Hopf aus dem Abschnitt 2.3.3 und beide hängen vom selben Integralterm Υ_C^E (Integral der Form Gl. 2.4) ab. Die Energieabhängigkeit der Erosionsausbeute in Gl. 6.11 wird jedoch nicht durch eine einfache, lineare Darstellung von Υ_C^E beschieben.

Für die Erosionsausbeuten durch Ar^++O_2 wurden drei Temperaturzonen identifiziert. Eine Zone bei hohen Temperaturen über 700 K, bei der die Oxidation durch O₂ alleine wesentlich ist. Die gleichzeitige Wechselwirkung von Ar^++O_2 bei diesen Temperaturen führt zu einer synergetischen Erosion, eine ioneninduzierte Erhöhung der chemischen Erosion (IECE). Sie ist analog zur IECE durch Ar⁺+H° jedoch bei gleichen Ionenenergien bis zu einem Faktor fünf stärker (vergl. Abb. 4.4 und Abb. 6.8). In der zweiten Zone bei Temperaturen unterhalb von ca. 700 K bis Raumtemperatur ist die chemische Zerstäubung (CS) durch Ar^++O_2 im wesentlich temperaturunabhängig und wird durch einen ähnlichen Erosionsmechanismus wie bei Ar⁺+H° bei Raumtemperatur beschrieben, d.h. Ionen erzeugen reaktiven Oberflächenstellen, die lang genug existieren müssen bis einfallende O_2 mit ihnen chemisch reagieren und flüchtige Erosionsprodukte bilden können. Eine dritte Temperaturzone beginnt unterhalb von Raumtemperatur. In dieser Temperaturzone, bei der man eine vernachlässigbare chemische Reaktivität erwartet, wurde eine monotone Erhöhung der Erosionsausbeuten durch Ar^++O_2 mit sinkenden Temperaturen gemessen. Eine Erklärung für diesen Anstieg ist die Bildung einer O₂-Bedeckung auf der a-C:H-Oberfläche bei tieferen Temperaturen. Durch Ionenbeschuss werden zwischen dieser O₂-Bedeckung in der Oberfläche Reaktionen ausgelöst, in denen flüchtige CO_x gebildet werden. Dieser Erosionsmechanismus wird daher als ALECS (adsorbed-layer-enhanced CS) bezeichnet. Messungen der Abhängigkeit der Erosionsausbeuten vom Ar⁺-zu-O₂-Flussverhältnis bei 300 und 110 K unterstützen diese Idee. Eine monotone Erhöhung der Erosionsausbeuten wurde mit zunehmendem O₂-Fluss bei einem konstanten Ar⁺-Fluss gemessen. Bei 110 K sättigt die O₂-Bedeckung früher als bei 300 K.

7 Zusammenfassung

In-Situ Ellipsometrie-Messungen von Schichtdickenänderungen im Bereich einger Monolagen bei der Erosion von a-C:H-Schichten durch unterschiedliche Kombinationen von Ionen (He⁺, Ne⁺, Ar⁺, N₂⁺) und chemisch reaktiven Teilchen (H°, O₂, H₂O) wurden mittels eines Teilchenstrahlexperiments systematisch durchgeführt. Die Anlage ermöglichte die Probentemperatur zwischen 110 und 950 K und die Ionenenergie im Bereich von 20 bis 900 eV einzustellen und kontinuierlich Teilchenflussdichten von Null bis $j_{\text{Ionen}} \approx 4 \cdot 10^{12}, j_{\text{H}^{\circ}} \approx 6 \cdot 10^{15}, j_{\text{O}_2} \approx 6 \cdot 10^{16} \text{ bzw. } j_{\text{H}_2\text{O}} \approx 4 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1}$ zu variieren. Dadurch war es möglich, elementare Erosionsmechanismen von a-C:H-Schichten für die folgenden drei untersuchten Kombinationen von Teilchenstrahlen zu identifizieren und entsprechende Erosionsmodelle zu entwickeln:

Chemische Zerstäubung durch Edelgasionen (He⁺, Ne⁺, Ar⁺) und atomaren Wasserstoff (H^o)

Ausgehend von einem mikroskopischen Mechanismus der chemischen Zerstäubung von a-C:H-Schichten durch die gleichzeitige Wechselwirkung von Ar^+ und Wasserstoffatomen ([HOPF 2003], Abschnitt 2.3.3) wurde ein integriertes Modell entwickelt, das die Abhängigkeit der Erosionsrate von der Energie, dem Flussverhältnis (Ion/H°) und der Temperatur beschreibt. Dieses Modell beruht auf vier grundsätzlichen Prozessen. Die Gesamterosion ergibt sich aus der Summe der physikalischen Zerstäubung durch Ar^+ (PS), der rein chemischen Erosion durch H° (CE) und der zwei synergetischen Beiträge, chemische Zerstäubung Ion + H° (CS) sowie ioneninduzierte Erhöhung der chemischen (thermischen) Erosion durch H° (IECE). Dabei sind nur der CE- und IECE-Mechanismus temperaturabhängig. Die Energieabhängigkeit der Erosionsausbeuten im Modell ist durch eine Ausbeute für chemische Zerstäubung im H°-Sättigungsbereich (Y_{cs}^E) und eine Ausbeute für eine ionenunterstütze H°-Freisetzung ($Y_{H'out}^E$) gegeben. Diese Ausbeuten können mit TRIM.SP (Abschnitt 2.2.2) berechnet werden. Dadurch lässt sich das Modell verallgemeinern und auf das System **Ion + H°** übertragen.

Chemische Zerstäubung durch N_2^+ und durch N_2^+ und H°

Die Erosionsausbeute durch N_2^+ liegt deutlich über der erwarteten Ausbeute der physikalischen Zerstäubung. Stickstoffionen reagieren am Ende ihre Rechweite bei thermischen Energien chemisch mit den Kohlenstoffatome der a-C:H-Schicht und bilden flüchtige C-N-Komplexe als Erosionsprodukte.

Bei der gleichzeitigen Wechselwirkung von $N_2^+ + H^\circ$ kommt die chemische Zerstäubung mit H° als zusätzlicher chemisch reaktiver Spezies hinzu. Diese lässt sich durch das verallgemeinere Modell der chemischen Zerstäubung von a-C:H-Schichten durch Ion + H° beschreiben. Dabei spielt nur die Energie der Stickstoffionen für die TRIM.SP-Rechungen eine Rolle, die Stickstoffchemie wird jedoch nicht berücksichtigt. Es zeigt sich, dass die Summe der gemessenen Erosionsausbeute durch N₂ alleine und der berechneten Erosionsausbeute durch N₂⁺+H° mit dem Modell für Ion + H° die gemessene Gesamterosionsausbeute durch die gleichzeitige Wechselwirkung N₂⁺ und H° ergibt. Die beteiligte Stickstoffund Wasserstoffchemie scheinen sich gegenzeitig wenig zu beeinflussen.

Ferner haben Messungen der Erosionsausbeuten von a-C:H-Schichten durch N_2^+ und $N_2^++H^\circ$ im Temperaturbereich von 110 bis 340 K keine nennenswerte Temperaturabhängigkeit gezeigt, so dass eine in der Literatur vermutete Abnahme der Erosionsausbeute durch Ausfrieren von flüchtigen Spezies wie C_2N_2 (Kondensationstemperatur 158 K) nicht gefunden wurde.

Oxidation mit O_2 und chemische Zerstäubung durch Ar⁺ und O_2

Es wurden drei Temperaturzonen zwischen 110 und ca. 850 K bei der gleichzeitigen Wechselwirkung von Ar^+ und O_2 mit a-C:H identifiziert: Bei höheren Temperaturen (650–850 K) findet mit O_2 alleine die Oxidation statt. Das Zuschalten eines Ar^+ -Strahls während der Oxidation durch O_2 erhöht die Erosion. Diese Erhöhung, analog zum Fall Ar^++H° , ist energieabhängig und beruht auf einer ioneninduzierten Oberflächenaktivierung der a-C:H-Schicht. Bei mittleren Temperaturen (325–700 K), bei denen die Verbrennung keine Rolle spielt, bewirken Ar^++O_2 eine chemische Zerstäubung von a-C:H, die schwach temperatur- und stark energieabhängig ist. Dabei handelt es sich ebenfalls um eine Erosion durch ioneninduzierte Oberflächenaktivierung. Bei tieferen Temperaturen (110–325 K) beobachtete man eine zunehmende Erosionsrate mit sinkenden Temperaturen. Eine ähnliche Beobachtung wurde bei der chemischen Zerstäubung von a-C:H durch Ar^++H_2O gemacht. Für beide Fälle wird ein Erosionsmechanismus vorgeschlagen, der das Vorhandensein von adsorbiertem O_2 bzw. H_2O auf der a-C:H-Oberfläche voraussetzt, das durch Ar-Ionenbeschuss zur Reaktion gebracht wird. Die Erosionsrate ist proportional zur Bedeckung der Oberfläche mit O_2 bzw. H_2O . Diese Bedeckung wird durch ein temperaturabhängiges Adsorption-Desorption-Gleichgewicht bestimmt und steigt daher mit sinkender Temperatur an.

Die Messung der Abhängigkeit der Erosionsausbeute durch Ar^++O_2 von der O₂-Flussdichte bei Raumtemperatur und 110 K zeigten eine stakte Erhöhung der Erosionsausbeuten mit zunehmendem O₂-Fluss. Diese Flussabhängigkeit wird mit zunehmender Energie deutlich ausgeprägter und hängt stark von der Temperatur ab. Im Vergleich zur Raumtemperatur geht bei tiefen Temperaturen die O₂-Bedeckung und damit die Erosionsrate bei steigenden O₂-Flussdichten wesentlichen schneller in Sättigung. Auf Basis des Modells der chemischen Zerstäubung von a-C:H-Schichten durch die gleichzeitigen Wechselwirkung von Ar^+ und Wasserstoffatomen wurde eine vergleichbare Modellbeschreibung für die chemische Zerstäubung durch Ar^++O_2 entwickelt, die die Energie-, Fluss- und Temperaturabhängigkeit der Erosion von a-C:H gut beschreibt. Das Modell beruht auf fünf Erosionsmechanismen. Die gesammte Erosion ist die Summe der physikalischen Zerstäubung durch Ar^+ (PS) und der chemischen Erosion durch O_2 (CE) sowie der synergetischen Beiträge: IECE + CS + ALECS. Dabei entsprechen IECE und CE den Prozessen im Fall Ar^++H° . Die Erhöhung der Erosionsausbeuten bei tiefen Temperaturen wird durch das Vorhandensein einer adsorbierten Schicht aus molekularem Sauerstoff an der a-C:H-Oberfläche, nämlich den Prozess ALECS, beschrieben.

Literaturverzeichnis

- [AKISHIN 1994] A.I. AKISHIN et al. Bull. Russ. Acad. Sci., Phys. 58, No. 3, 109 (1994)
- [ANGUS 1986] J.C. ANGUS. Thin Solid Films, 142, 145 (1986)
- [ANGUS und KOIDL 1986] J. C. ANGUS, P. KOIDL and S. DOMITZ. Plasma deposited thin films, edited by J. Mort und F. Jansen (CRC, Boca Raton, 1986), p. 89
- [ANGUS und JANSEN 1988] J. C. ANGUS and F. JANSEN. Dense diamondlike hydrocarbons as random covalent networks. J. Vac. Sci. Technol. A, **6** 1778 (1988)
- [ARCE 2002] I. ARCE GARCIA, E.R. BERASATEGUI, S.J. BULL, T.F. PAGE, N. HELLGREN, J. NEIDHARDT, L. HULTMAN, Philos. Mag., A 82, 2133 (2002)
- [ARTHUR 1956] J.A. ARTHUR. Reactions between carbon and oxygen. Trans. Faraday Soc. 47, 164 (1956)
- [ASPNES und STUDNA 1975] D. E. ASPNES and A. A. STUDNA. High precision scanning ellipsometer. Appl. Opt., 14, 220 (1975)
- [AZZAM und BASHARA 1977] R. M. A. AZZAM and N. M. BASHARA. Ellipsometry and polarized light. Elsevier Science Publishers, Amsterdam, 1 Auf. (1977)
- [BADZIAN 1999] A. BADZIAN, T. BADZIAN, R. ROY, W. DRAWL, Thin Solid Films **354**, 148 (1999)
- [BAKER 1997] M.A. BAKER, P. HAMMER, C. LENARDI, J. HAUPT and W. GISSLER, Surf. Coat. Technol. 97, 544 (1997)
- [BALDEN und ROTH 2000] M. BALDEN and J. ROTH. New weigh-loss measurements of the chemical erosion yields of carbon materials under hydrogen ion bombardment. J. Nucl. Mater., 280, 39 (2000)
- [BANKS 1990] B.A. BANKS. LDEF Materials Data Analysis Workshop, compiled by B.A. Stein and P.R. Young. NASA CP 10046, 191 (1990)
- [BEHRISCH 1981] R. BEHRISCH. Sputtering by particle bombardment I. Springer-Verlag, 1. Aufl. (1981)

- [BEWS 2001] I.M. BEWS, A.N. HAYHURST, S.M. RICHARDSON and S.G. TAYLOR. The order, Arrhenius parameters, and mechanism of the reaction between gaseous oxygen and solid carbon. Combustion and Flame 124, 231-245 (2001)
- [BIENER 1993] J. BIENER, U. A. SCHUBERT, A. SCHENK, B. WINTER, C. LUTTERLOH, J. KUEPPERS. Advan. Mater. 5, 639 (1993)
- [BOHDANSKY 1980] J. BOHDANSKY, J. ROTH and H. BAY. An analytical formula and important parameters for low-energy ion sputtering. J. Appl. Phys., **51**, 2861 (1980)
- [BOHDANSKY 1981] J. BOHDANSKY, J. ROTH and H. BAY. Erratum: An analytical formula and important parameters for low-energy ion sputtering. J. Appl. Phys., **52**, 1610 (1981)
- [BORN 1964] M. BORN, E. WOLF. Principles of Optics. Pergamon Press, Oxford (1964)
- [BOURDON 1993] E. B. D. BOURDON, A. RAVEH, S.C. GUJRATHI and L. MARTINU. J. Vac. Sci. Technol. A 11, 2530 (1993)
- [CLAUSING 1930] P. CLAUSING. Über die Strahlformung bei der Molekularströmung. Zeitschrift für Physik, 66, 471 (1930)
- [CLAUSING 1932] P. CLAUSING. Über die Strömung sehr verdünnter Gase durch Röhren von beliebiger Länge. Annalen der Physik, 12, 961 (1932)
- [COBURN 1979] J. W. COBURN and H. F. WINTERS. Ion- and electron-assisted gas-surface chemistry. An important effect in plasma etching. J. Appl. Phys. 50, 3189 (1979)
- [COLLINS 1990] R. W. COLLINS. Automatic rotating element ellipsometers: calibration, operation, and real-time applications. Rev. Sci. Ins., **61**, 2029 (1990)
- [DAVIS 2001] J.W. DAVIS and A.A. HAASZ. Overview of Thermo-oxidation of Tokamak Codeposits. Physica Scripta. **T91**, 33 (2001)
- [DE GROH 2002] K. DE GROH and B. BANKS. Techniques for measuring Low Earth Orbital atomic oxygen erosion of polymers. NASA/TM-2002-211479 (2002)
- [ESPINAL 2005] J.F. ESPINAL, F. MONDRAGÓN, T.N. TRUONG. Mechanisms for methane and ethane formation in the reaction of hydrogen with carbonaceous materials. Carbon 43, 1820 (2005)
- [ECKSTEIN 1991] W. ECKSTEIN. Computer simulation of ion-solid interactions. Springer Series in Materials Science, Berlin and Heidelberg 1 Aufl. (1991)

- [ECKSTEIN 1993] W. ECKSTEIN, C. GARCÍA-ROSALES, J. ROTH and W. OTTENBERGER. Sputtering Data Technischer Report IPP 9/82 Max-Planck-Institut für Plasmaphysik (1993)
- [ERGUN 1965] S. ERGUN and M. MENTSER. Chemistry and Physics of Carbon. Ed. P.L. Walker, Jr. VOL 1, 203 (1965)
- [FEDERICHI 2001] G. FEDERICHI, C.H. SKINNER, J. N. BROOKS, J. P. COAD, C. GRISOLIA, A. A. HAASZ, A. HASSANEIN, V. PHILIPPS, C. S. PITCHER, J. ROTH, W. R. WAMPLER and D. G. WHYTE. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion, 41, 1967 (2001)
- [FEISTEL 1977] P.P. FEISTEL, K.H. VAN HEEK, H. JUNTGEN and A.H. PULSIFER. Gasification of a German bituminous coal with H₂O, H₂ and H₂O/H₂ mixtures. Am. Chem. Soc. Div. Fuel Chem. Preprints 22 (1), 53 (1977)
- [FINK 1984] J. FINK., T. Mueller-Heinzerling, J. Pfluger, B. Scheerer, P. Koidl, B. Dischler, A. Bubenzer, R.E. Sah. Phys. Rev. 30, 4713 (1984)
- [FRANCESCHINI 2000] D.F. FRANCESCHINI, Braz. J. Phys. 30, 517 (2000)
- [GARCÍA-ROSALES 1994] C. GARCÍA-ROSALES, W. ECKSTEIN, J. ROTH. J. NUCL. MATER 218, 8 (1994)
- [GOTTWALD 1973] B. A. GOTTWALD. Über die Strahlformung bei der Molekularströmung. Vakuum-Technik, **22**, 106 (1973)
- [GOZZI 1996] D. GOZZI, G. GUZZARDI, A. SALLEO. High temperatur reactivity of different forms of carbon at low oxygen fugacity. Solid State Ionics 83, 177 (1996)
- [GRIGULL 1998] S. GRIGULL, W. JACOB, D. HENKE, C. SPAETH, L. SÜMMCHEN and W. SIGLE, J. Appl. Phys. 83, 5185 (1998)
- [GRIGULL 1999] S. GRIGULL, R. BEHRISCH and S. PARASCANDOLA, J. Nucl. Mater. 275, 158 (1999)
- [GRILL 1999] A. GRILL. Diamond-like carbon: state of the art. Diamond and Rel. Mater. 8, 428 (1999)
- [HAASZ und DAVIS 1986] A.A. HAASZ and J.W. DAVIS. Synergistic methane formation kinetics for hydrogen impact on carbon. J. Chem. Phys., 85, 3293 (1986)
- [HAASZ 1998] A.A. HAASZ and J.W. DAVIS. The removal of codeposited layers from TFTR tiles by O₂ gas exposure. J. of Nucl. Mater. **256**, 65 (1998)

- [HAGSTRUM 1965] H.D. HAGSTRUM, Y. TAKEISHI and D.D. PRETZER. Energy broadering in the Auger-type neutralisation of slow ions at solid surfaces. Phys. Rev., 139, A526 (1965)
- [HAYHURST 1998] A.N. HAYHURST and M.S. PARMAR. Does solid carbon burn in oxygen to give the gaseous intermediate CO or produce CO₂ directly? Some experiments in a hot bed of sand fluidized by air. Chem. Engineering Science 53, No 3, 427 (1998)
- [HAYNES 2001] B.S. HAYNES. A Turnover model for carbon reactivity I. Development. Combustion and Flame **126**, 1421-1432 (2001)
- [HAMMER 1996] P. HAMMER and W. GISSLER, Diamond Relat. Mater. 5, 1152 (1996)
- [HAMMER 2001] P. HAMMER and F. ALVAREZ, Thin Solid Films 398-399, 116 (2001)
- [HECHTL 1981] E. HECHTL, J. BOHDANSKY and J. ROTH. The sputtering yield of typical impurity ions for different fusion reactor materials. J. Nucl. Mater. **103**, 333 (1981)
- [HECHTL 1984] E. HECHTL, J. BOHDANSKY and J. ROTH. Sputtering behavior of graphite and molybdenum at low bombarding energies. J. Nucl. Mater. 123, 1431 (1984)
- [HELLGREN 2000] N. HELLGREN, K. MACÁK, E. BROITMAN, M.P. JOHANSSON and L. HULTMAN, J. Appl. Phys. **94**, 7059 (2003)
- [HELLGREN 2001] N. HELLGREN, M.P. JOHANSSON, E. BROITMAN, P. SANDSTRÖM, L. HULTMAN and J.-E. SUNDGREN, Thin Solid Films **382**, 146 (2001)
- [HONG 1999] J. HONG and G. TURBAN, Diamond Relat. Mater. 8, 572 (1999)
- [HONG 2000] J. HONG, A. GOULLET and G. TURBAN, Diamond Relat. Mater. 9, 573 (2000)
- [HULTMAN 2003] L. HULTMAN, J. NEIDHARDT, N. HELLGREN, H. SJÖSTRÖM, J.-E. SUND-GREN, MRS Bull 28, 19 (2003)
- [HURT 2005] R.H. HURT, B.S. HAYNES. On the origin of power-law kinetics in carbon oxidation. Proceedings of the Combustion Institute. **30**, 2161-2168 (2005)
- [HOPF 2003] C. HOPF. Chemische Zerstäubung und ionenunterstütztes Wachstunm amorpher Kohlenwasserstoffschichten. Doktrorarbeit, Universität Bayreuth (2003)
- [HOPF 2005] C. HOPF and W. JACOB. Ion-induced surface activation, chemical sputtering and hydrogen release during plasma-assisted hydrocarbon film growth. J. Appl. Phys. 97, 094904 (2005)

- [HORN 1994] A. HORN, A. SCHENK, J. BIENER, B. WINTER, C. LUTTERLOH, M. WITTMANN and J. KÜPPERS. H atom impact induced chemical erosion reaction at C:H film surfaces. Chem. Phys. Lett., 231, 193 (1994)
- [HSU 1988] W.L. HSU. Glow-discharge removal of codeposited carbon films in graphite-lined tokamak reactors. J. Vac. Sci. Technol. A, 7(3) (1988)
- [HU 2005] J.S. HU, J.G. LI, X.M. WANG and the HT-7 team. The first results of O-ICR experiments to remove re-deposited layers and hydrogen in the HT-7 superconducting tokamak. Plasma Phys. Control. Fusion 47, 1271 (2005)
- [HU 2006] J.S. HU, J.G. LI and X.M. WANG. Oxygen glow discharge experiment to remove deposited layers and to release trapped hydrogen isotopes in HT-7 superconducting tokamak. J. Nucl. Mater. 350, 9 (2006)
- [ISOBE 2004] S. ISOBE, T. ICHIKAWA, J.I. GOTTWALD, E. GOMIBUCHI, H. FUJII. Catalytic effect of 3d transition metals on hydrogen storage properties in mechanically mitted graphite. J. Phys. Chem. Solids 65 (2-3), 535 (2004)
- [JACOB und MOLLER 1993] On then Structure of Thin Hydrocarbon Films. Appl. Phys. Lett., **63**, 1771 (1993)
- [JACOB 1998] W. JACOB. Surface reactions during growth and erosion of hydrocarbon films. Thin Solid Films, 326, 1 (1998)
- [JACOB 1999] W. JACOB, B. LANDKAMMER, A. VON KEUDELL. Erosion of thin hydrogenated carbon films in oxygen, oxygen/hydrogen and water plasmas. J. Nucl. Mater. 264, 48 (1999)
- [JACOB 2004] W. JACOB, C. HOPF, M. SCHLÜTER, T. SCHWARZ-SELINGER and C. SUN. Optimisation of hydrocarbon redeposition reduction by tokamak-compatible scavenger techniques. European Fusion Development Agreement TW3-TPP-SCAVOP, EFDA/03-1081, No. FU06-CT2003-00180 (2004)
- [JACOB 2005] W. JACOB, C. HOPF and M. SCHLÜTER. Chemical sputtering of carbon by nitrogen ions. Appl. Phys. Lett. 86, 204103 (2005)
- [KALTOFEN 1997a] R. KALTOFEN, T. SEBALD and G. WIESE, Surf. Coat. Technol. 97, 131 (1997)
- [KALTOFEN 1997b] R. KALTOFEN, T. SEBALD and G. WIESE, Thin Solid Films 308-309, 118 (1997)

- [KELLY 1981] B.T. KELLY. Physics of Graphite. Applied Science Publishers, London and New Jersey, 1. Aufl. (1981)
- [KOIDL 1987] P. KOIDL and P. OELHAFEN. Amorphous hydorgenated carbon films. E-MRS Symp. Proc. Vol XVII, Les Editions des Physique, Les Ulis (1987)
- [KRECH 1993] R. KRECH et al. Proc. EOIM-3 BMDO Experiment Workshop, Arcadia, California (1993)
- [KÜPPERS 1995] J. KÜPPERS. The hydrogen surface chemistry of carbon as a plasma facing material. Surf. Sci. Rep. 22, 249 (1995)
- [LANDKAMMER 1999] B. LANDKAMMER. Untersuchung der Erosion von Kohlenwasserstoffschichten in Sauerstoff-Gasentladungen. Doktorarbeit, Universität Bayreuth (1999)
- [LETTINGTON 1998] A. H. LETTINGTON. Applications of diamond-like carbon thin films. Carbon 36 (5-6), 555 (1998)
- [LIU 1990] A. Y. LIU and M. COHEN, Phys. Rev. B 41, 10727 (1990)
- [LI 2001] C. LI, T.C. BROWN. Carbon oxidation kinetics from evolved carbon oxide analysis during temperature-programmed oxidation. Carbon 39, 725 (2001)
- [LUBERT 1988] L. LUBERT et al. Proc. 4th Eur. Symp. on Spacecraft Materials, CERT, Toulouse, France (1988), p. 393, Publ. CEPAD 1989
- [MALKOW 2000] TH. MALKOW, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process 292, 112 (2000)
- [MARSH 1989] H. MARSH and K. KUO. Kinetics and catalysis of carbon gasification. Introduction of Carbon Science. Ed. by H. Marsh, Butterworths, London, 107 (1989)
- [MARUYAMA 1999] K. MARUYAMA, W. JACOB and J. ROTH. Erosion behavior of soft, amorphous deuterated carbon films by heat treatment in air and under vacuum. J. Nucl. Mater. 264, 56 (1999)
- [MEIER 2002] M. MEIER. Elementare Mechanismen bei der Wechselwirkung von Methylradikalen und Wasserstoffatomen mit der Oberfläche amorpher Kohlenwasserstoff-Filme. Doktrorarbeit, Universität Bayreuth (2002)
- [MOORMANN 2000] R. MOORMANN, S. ALBERICI, H.-K. HINSSEN and C. H. WU. Examination of codeposited a-C:D-layers in oxygen. Fusion Eng. Des. **49-50**, 295 (2000)

- [MÖLLER und SCHERZER 1987] W. MÖLLER and B.M.U. SCHERZER. Subsurface molecule formation in hydrogen-implanted graphite. Appl. Phys. Lett., **50**, 1870 (1987)
- [MÖLLER 1993] W. MÖLLER. Modelling and computer simulation of ion-beam- and plasma-assisted film growth. Thin Solid Films, **228**, 319 (1993)
- [MÖLLER 1995] W. MÖLLER, W. FUKAREK, K. LANGE, A. VON KEUDELL and W. JACOB. Mechanisms of the deposition of hydrogen carbon films. Jpn. J. Appl. Phys., 34, 2163 (1995)
- [MUELLER 1997] D. MUELLER, W. BLANCHARD, J. COLLINS, J. HOSEA, J. KAMPERSCHRO-ER, P.H. LAMARCHE, A. NAGY, D.K. OWENS and C.H. SKINNER. Tritium removal from TFTR. J. of Nucl. Mater. 241-243, 897 (1997)
- [MULLINS 1994] C.B. MULLINS and J.W. COBURN. Ion-beam-assisted etching of Si with fluorine at low temperatures. J. Appl. Phys. **76**, 11 (1994)
- [NEIDHARDT 2003] J. NEIDHARDT, ZS. CZIGÁNY, I.F. BRUNELL, L. HULTMAN, J. Appl. Phys.. **93**, 3002 (2003)
- [NEIDHARDT 2005] J. NEIDHARDT, H. HÖGBERG, L. HULTMAN, Thin Solid Films 478, 34-41 (2005)
- [OGITA 2004] N. OGITA, K. YAMAMOTO, C. HAYASHI, T. MATSUSHIMA, S. ORIMO, T. ICHI-KAWA. Raman scattering and infrared absorption investigation of hydrogen configuration state in mechanically milled graphite under H₂ gas atmosphere. J. Phys. Soc. Jpn. **73** (3), 553 (2004)
- [OLANDER 1972] D.R. OLANDER, R.H. JONES, J.A. SCHWARZ and W.J. SIEKHAUS. Reactions of modulated molecular beams with pyrolytic graphite. II Oxidation of the prisma plane. J. of Chem. Phys. Vol 57, No 1, p. 421 (1972)
- [OTTERBEIN 1964] M. OTTERBEIN and L. BONETAIN. Compt. Rend. 259, 791 (1964)
- [PHILLIPS 1979] J. C. PHILLIPS. Structure of amorphous (Ge, Si)_{1-x} Y_x alloys. Phys. Rev. Lett, 42, 1151 (1979)
- [PHILIPPS 1999] V. PHILIPPS, G. SERGIENKO, A. LYSSOVAN, H.G. ESSER, M. FREISINGER and H. REIMER. Removal of carbon layers by oxygen treatment of TEXTOR. J. Nucl. Mater. 266-269, 386 (1999)
- [PILLATH 1987] J. PILLATH, J. WINTER and F. WAELBROEK. Influence of an a-C:H layer on the gas and plasma driven permeation of hydrogen trough iron. Mater. Res. Soc. Symp. Proc., XVII, 449 (1987)

[RAYLEIGH 1892] Lord RAYLEIGH. Phil. Mag. 33, 1 (1892)

- [REFKE 1994] A. REFKE, V. PHILIPPS, E. VIETZKE, M. ERDWEG and J. VON SEGGERN. Interaction of energetic oxygen with different boron/carbon materials. J. Nucl. Mater. 212-215, 1255 (1994)
- [ROBERTSON 1992] J. ROBERSON. Surf. Coat. Technol. 50, 185 (1992)
- [ROBERTSON 2001] J. ROBERTSON. Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films **81** 383 (2001)
- [ROBERTSON 2002] J. ROBERTSON. Diamond-like amorphous carbon. Materials Science and Enginering R37 129-181 (2002)
- [ROSNER 1970] D.E. ROSNER, H.D. ALLENDORF. Heterogeneous kinetics at elevated temperatures. Proc. Int. Conf. Univ. Pennsylvania 1969. Plenum, New York, p. 231 (1970)
- [ROTH 1983] J. ROTH, Topics in Applied Physics: Sputtering by Particle Bombardement, Topics in Applied Physics. Springer, Berlin, 1983, p. 91
- [ROTH 1987] J. ROTH, J. BODHANSKY. Appl. Phys. Lett. 51, 964 (1987)
- [ROTH 1991] J. ROTH, E. VIETZKE, A.A. HAASZ. Atomic and Plasma-Material Interaction Data for Fusion. Suppl. to Nuclear Fusion 1, 63 (1991)
- [ROTH und GARCÍA-ROSALES 1996] J. ROTH and C. GARCÍA-ROSALES. Analytic description of the chemical erosion of graphite by hydrogen ions. Nucl. Fusion, **36**, 1647 (1996)
- [ROTH 1999] J. ROTH. Chemical erosion of carbon based materials in fusion devices. J. Nucl. Mater., 51, 266 (1999)
- [SACK 1993] N. J. SACK and R. A. BARAGIOLA. Sublimation of vapor-deposited water ice below 170 K, and its dependence on growth conditions. Phys. Rev. B 48, 9973-9978 (1993)
- [SCHWARZ-SELINGER 1996] T. SCHWARZ-SELINGER. Einfluss der Quellgasen auf die plasmagestützte Deposition von Kohlenwasserstoffschichten. Diplomarbeit, Technische Universität München (1996)
- [SCHWARZ-SELINGER 2000] T. SCHWARZ-SELINGER. Bestimmung des Haftkoeffizienten von Methyl-Radikalen auf amorphen, wasserstoffhaltigen Kohlenstoffschichten unter Verwendung von quantifizierten Teilchenstrahlquellen. Doktorarbeit, Universität Bayreuth (2000)

- [SCHWARZ-SELINGER et al. 2000] T. SCHWARZ-SELINGER, A. VON KEUDELL and W. JA-COB. Novel method for absolute quantification of the flux and angular distribution of a radical beam source for atomic hydrogen. J. Vac. Sci. Technol. A, 18, 995 (2000)
- [SCHWARZ-SELINGER 2007] T. SCHWARZ-SELINGER, C. HOPF, C. SUN, W. JACOB. Growth and erosion of amorphous carbon (a-C:H) films by low-temperature laboratory plasmas containing H and N mixtures. J. Nucl. Mater. 363-365 174-178 (2007)
- [STANMORE 2001] B.R. STANMORE, J.F. BRILHAC, P. GILOT. The oxidation of soof: a review of experiments, mechanisms and models. Carbon **39**, 2247 (2001)
- [TABARÉS 2002] F.L. TABARÉS, D. TAFALLA, I. TANARRO, V.J. HERRERO, A. ISLYAIKIN and C. MAFFIOTTE. Suppression of hydrogen carbon film deposition by scavenger techniques and their application to the tritium inventory control of fusion devices. Plasma Phys. Control. Fusion 44, L37 (2002)
- [TABARÉS 2003] F.L. TABARÉS and D. TAFALLA. Hydorogen trapping in carbon films deposition in the presence of radical and ion Scavengers. Physica Scripta. Vol. T103, 47 (2003)
- [TAKEISHI 2006] T. TAKEISHI, K. KATAYAMA, M. NISHIKAWA, K. MASAKI and N. MIYA. Tritium release from bulk of carbon-based tiles used in JT-60U. J. of Nucl.Mater. 349, 327 (2006)
- [THIELE 1997] J.-U. THIELE, E. VIETZKE and P. OELHAFEN. Interaction of energetic oxygen ions with lithium-containing amorphous hydrogenated carbon films: A mass spectrometry study. J. Nucl. Mater. 241-234, 1127 (1997)
- [TODOROV 1994] S.S. TODOROV, D. MARTON, K.J. BOYD, A.H. AL-BAYATI and J.W. RABA-LAIS, J. Vac. Sci. Technol. A 12, 3192 (1994)
- [VIETZKE 1982] E. VIETZKE, K. FLASKAMP and V. PHILIPPS. Hydrogen formation in the reaktion of atomic hydrogen with pyrolytic graphite and the synergistic effect of argon ion bombardment. J. Nucl. Mater., 111 & 112, 763 (1982)
- [VIETZKE 1987 O] E. VIETZKE, T. TANABE, V. PHILIPPS, M. ERDWEG and K. FLASKAMP. The reaction of energetic O₂⁺, thermal O₂ and thermal O₂/Ar⁺ on graphite and the use of graphite for oxygen collector probes. J. Nucl. Mater. **145-147**, 425 (1987)
- [VIETZKE 1987 H] E. VIETZKE, K. FLASKAMP, V. PHILIPPS. Chemical erosion of amorphous hydrogenated carbon films by atomic and energetic hydrogen. J. Nucl. Mater. 145-147, 443 (1987)

[VIETZKE 1989] E. VIEZKE, V. PHILLIPS. Fusion Technol. 15, 108 (1989)

- [VIETZKE 1989 H] E. VIETZKE, K. FLASKAMP and V. PHILIPPS. Chemical reactivity of atomic hydrogen on graphite pre-irradiated by hydrogen and argon ions. J. Nucl. Mater. 162-164, 898 (1989)
- [VIETZKE 1995] E. VIETZKE, A. REFKE, V. PHILIPPS and M. HENNES. Energy distribution of the reaction products from graphite and B₄C during energetic oxygen impact. J. Nucl. Mater. 220-222, 249 (1995)
- [VIETZKE und HAASZ 1997] E. VIETZKE and A.A. HAASZ. Physical processes of the interaction of Fusion Plasmas with solids. New York Academic Press 153 (1997)
- [VIETZKE 2001] E. VIETZKE. Energy distribution of CD_4 and CD_3 chemically released from graphite by D⁺ and D°/Ne⁺ impact. J. Nucl. Mater., **158**, 290 (2001)
- [VON KEUDELL 1995] A. VON KEUDELL. Wachstumsmechanismen bei der plasmagestützten Abscheidung von Kohlenwasserstoffschichten, eine in situ Ellipsometriestudie. Doktorarbeit, Universität Bayreuth (1995)
- [VON KEUDELL und JACOB 1996] A. VON KEUDELL and W. JACOB. Growth and erosion of hydrocarbon films investigated by in situ ellipsometry. J. Appl. Phys., 79, 1092 (1996)
- [VON TOUSSAINT 2006] U. VON TOUSSAINT. Private Miteilung (2006)
- [WALKER 1959] P.L. WALKER, JR., F. RUSINKO, JR. and L.G. AUSTIN. Gas reaction of carbon. Advan. Catalysis 11, 133 (1959)
- [WALKER 1967] P.L. WALKER, JR., F.L. VASTOLA and P.J. HART. Fundamentals of Gas-Surface Interactions. New York Academic Press 307 (1967)
- [WALKER 1991] P.L. WALKER, JR., R. L. TAYLOR and J. M. RANISH. An update on the Carbon-Oxygen reaction. Carbon 9, 411 (1991)
- [WANG 1997] W.M. WANG, W. JACOB and J. ROTH. Oxidation and hydrogen isotope exchange in amorphous, deuterated carbon films. J. Nucl. Mater. 245, 66 (1997)
- [WÅHLIN 1964] L. W°AHLIN. The colutron, a zero deflection isotope separator. Nucl. and Meth., 27, 55 (1964)
- [WIJESUNDARA 2000] M.B.J. WIJESUNDARA, Y. JI, B. NI, S.B. SINNOTT and L. HANLEY. Effect of polyatomic ion structure on thin-film growth: Experiments and molecular dynamics simulations. J. Appl. Phys. 88, 5004 (2000)

- [WINTERS und COBURN 1992] H.F. WINTERS and J.W.COBURN. Surface science aspects of etching reactions. Surf. Sci. Reports, 14, 161 (1992)
- [ZIELKE 1955] C.W. ZIELKE and E. GORIN. Kinetics of carbon gasification. Ind. Eng. Chem. 47, 820 (1955)

Veröffentlichungen

- W. JACOB, C. HOPF, M. SCHLÜTER, T. SCHWARZ-SELINGER and C. SUN. Optimisation of hydrocarbon redeposition reduction by tokamak-compatible scavenger techniques. European Fusion Development Agreement TW3-TPP-SCAVOP, EFDA/03-1081, No. FU06-CT2003-00180 (2004)
- W. JACOB, C. HOPF and M. SCHLÜTER. Chemical sputtering of carbon by nitrogen ions. Appl. Phys. Lett. 86, 204103 (2005)
- W. JACOB, C. HOPF and M. SCHLÜTER. Chemical sputtering of carbon materials due to combined bombardment by ions and atomic hydrogen. Phys. Scr. **T124** 32-36 (2006)
- W. JACOB, C. HOPF and M. SCHLÜTER, T. SCHWARZ-SELINGER, and C. Sun. Deposition and erosion of amorphous carbon (a-C:H) films in H and N containing low-temperature laboratory plasmas. 17th International Conference on Plasma Surface Interactions in Controlled Fusion Devices, Hefei, Anhui, China, May 22-26, P1-15. (2006)
- W. JACOB, C. HOPF, M. SCHLÜTER, and T. SCHWARZ-SELINGER. Chemical Sputtering of Carbon Surfaces by Low-energy Ions. 8th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials, Huangshan Mountain, China, May 29-30, (2006)
- C. HOPF, M. SCHLÜTER and W. JACOB. Chemical sputtering of carbon films by argon ions and molecular oxygen at cryogenic temperatures. Appl. Phys. Lett. 90, 224106 (2007)
- M. SCHLÜTER, C. HOPF, T. SCHWARZ-SELINGER, and W. JACOB. Chemical Sputtering of Carbon Films with Nitrogen and Hydrogen. J. Appl. Phys. (wird eingereicht)
- M. SCHLÜTER, C. HOPF, and W. JACOB. Temperature Dependence of the Chemical Sputtering of Carbon Films by Hydrogen. New J. Phys. (wird eingereicht)
- M. SCHLÜTER, C. HOPF, and W. JACOB. Chemical sputtering of hydrocarbon films due to combined irradiation with atomic hydrogen and noble gas ions (Ar, He and Ne). New J. Phys. (wird eingereicht)
- M. SCHLÜTER, C. HOPF, and W. JACOB. Flux dependence of chemical sputtering of hydrocarbon films due to combined irradiation with atomic hydrogen and noble gas ions (Ar, He and Ne). New J. Phys. (wird eingereicht)
- M. SCHLÜTER. Vortrag über: Chemical Sputtering, simultaneous interaction of thermal radicals and ions with a-C:H surfaces. XIII. Erfahrungsaustausch Oberflächentegnologie mit Plasmaprozessen. Mühlleithen, 14.-16. März 2006

Danksagung

Grüß Gott! Es war wirklich ein langer Weg bis ich endgültig mich mit diesem wichtigen Teil meiner Arbeit beschäftigen kann. Die Leute, die ich erwähnen werde, haben nicht nur positiv für die Entwicklung dieser Arbeit mitgewirkt, sondern auch mein Wissenshorizont mit deren verschiedenen Erfahrungen um mehre Größenordnungen erweitern.

An erster Stelle gilt mein Dank Herrn Prof. Dr. Dr. Volker Dose, der mir sehr wertvolle Ratschläge bei der Verfassung dieser Arbeit gab und mich zu deren erfolgreichen Abschluss unterstützte.

Herrn Dr. Wolfgang Jacob, der beste Chef, den ich hatte, danke ich recht herzlich für die stetige Förderung und pausenlose Unterstützung, da er ein *reaktiver* Mensch ist, sowie für die konstruktive Kritik, die das Gelingen dieser Arbeit ermöglicht haben, also alles rund wie unserer runder Tisch. Mein Dank gilt insbesondere für die Geduld und das aufgebrachte Verständnis dafür, dass Deutsch nicht meine Muttersprache sonder eher mein Vatersprache ist.

Den Dr. Christian Hopf danke i sehr herzlich aa. Vor allem wegen seiner tollen Vorschägen und den unendlichen Geduld mit mir gegenüber, da i baeirisch versucht hab zu lernen. Das ist als versuch geblieben, weil ich sogar das übliche *a gueeten* in der Mensa nicht richtig aussprechen kann. Ich kann es nur essen. Wahrscheinlich soll ich lieber richtig deutsch lernen, gel?

Aber wie soll ich den Dr. Thomas Schwarz-Selinger vergessen. Er ist ein sehr strenger und disziplinierter Mensch, der aber ein großes Herz hat. Von ihm habe ich nicht nur tolle Plasmaphysik gelernt sonder auch, dass man die richtige Werkzeuge für die Apparatur im Labor verwenden muss und kein Fusch-Mechaniker sein soll!

Besonders habe ich Respekt von Dr. von Toussaint und seine Kenntnisse in der Welt der Mathematik und der theoretischen Physik. Ich danke ihn für seine Hilfe bei der MC-Berechnung und dem Fit der Parameter beim N-Dimensional-Modell, mit N > 8.

Ich grüüüssse Herrn Dr. Vasile Vartolomei und bedanke mich für seine wertvolle Ratschläge und ausführliche Beschreibung eines von den Menschen formulierten Grundproblems nicht nur in der Welt der Physik.

Herrn Thomas Dürbeck danke ich für die schöne Zusammenarbeit beim Reparieren von MAJESTIX und die Hinweise bezüglich die Gefahren im Labor.

Natürlich danke ich sehr allen Arbeitskolleginnen und -Kollegen, einige davon wie Ing. Berndhard Plöckl, Dr. Matthias Meier und Dr. Martin Bauer sind leider inzwischen ausgeschieden, für die reibungslose Zusammenarbeit.

Y por supesto que tambien le agradezco bastante a mi mama y hermana por el apoyo moral y familiar durante este tiempo de investigaciones.