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Zusammenfassung

In der Biochemie wird das Verhalten und die Funktion eines untersuchten

biologischen Systems charakterisiert, wobei genaue Kenntnis über dessen Ei-

genschaften entscheidend ist. Viele Details derartiger Eigenschaften können

aus experimentellen Ergebnissen oft nicht ermittelt werden. Das Teilgebiet

der computergestützten Biochemie kann dabei Laborexperimente mit mikro-

skopischen Details ergänzen und mehr Informationen über den makrosko-

pisch messbaren Bereich hinaus beitragen. Die computergestützte Forschung

wird auch genutzt, um experimentelle Messungen daraus abzuleiten. Bei-

de Gebiete stehen dabei nicht in Konkurrenz zueinander, sondern ergänzen

sich.

Zur Untersuchung wissenschaftlicher Fragestellungen verwendet man in

der computergestützten Biochemie dafür geeignete Modelle zur Beschrei-

bung biologischer Systeme. Passende Modelle sind je nach Fragestellung ent-

weder explizit und beschreiben das Verhalten einzelner Atome mit ihren Be-

standteilen, oder implizit und simulieren physikalische Eigenschaften gan-

zer Bereiche des untersuchten Systems. Modelle unterschiedlicher Abstrak-

tionsebenen können auch kombiniert werden, um große Systeme mit hoher

Genauigkeit in relevanten Bereichen zu untersuchen. Im Rahmen dieser Ar-

beit verwendete ich kontinuumelektrostatische und kombinierte quanten-

mechanische/molekularmechanische Modelle. Die Werkzeuge in der com-

putergestützten Biochemie sind die Algorithmen, die man auf die erstellten

Modelle anwendet.

Für die Analyse der Protonierungseigenschaften verwendete ich kontinu-

umelektrostatische Modelle mit Monte Carlo basierten Abtastalgorithmen,

die innerhalb der Arbeitsgruppe entwickelt wurden. Für die Untersuchung

der genauen katalytischen Mechanismen und der Enzymkinetik wurden die

Reaktionsmechanismen analysiert. Ein wesentlicher Bestandteil der Reakti-

onspfadanalyse von Peptidasen in der vorliegenden Arbeit war der conjugate

peak refinement (CPR; deutsch: konjugierte Höchstpunktverfeinerung) Algo-

rithmus. Dieser wurde als PyCPR in Zusammenarbeit mit einem Kollegen
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für das Python-basierte Framework pDynamo implementiert. PyCPR ist eine

chain-of-states (COS; deutsch: Kette-aus-Zuständen) Methode, die einen Re-

aktionspfad mit diskretisierten aber verbundenen Strukturen darstellt. Der

Algorithmus basiert auf Eigenschaften eines Sattelpunkts, mit Fokus darauf

sich iterativ einer Sattelpunktregion anzunähern, um den Übergangszustand

von Reaktionsschritten zu finden. Die Funktionalität und die Zuverlässig-

keit bei der Suche von Übergangszuständen von PyCPR wurde in unseren

aufgeführten Beispielen über eine konformationelle Änderung von Butan

und über den Reaktionsmechanismus des Glycylradikal Enzyms 4-Hydroxy-

phenylacetat Decarboxylase gezeigt.

In meiner Arbeit verwendete ich PyCPR, um den ähnlichen, aber den-

noch unterschiedlichen Mechanismus von Cystein- und Serinpeptidasen zu

analysieren. Peptidasen sind Enzyme mit vielfältiger Funktionalität und sind

wichtig in Bereichen wie Peptidabbau, Pathogenabwehr oder Regulation zel-

lulärer Pfade. Es ist bekannt, dass Katalyse durch Cysteinpeptidasen schritt-

weise über ein Ionenpaarintermediat abläuft, während die Schritte in der Ka-

talyse durch Serinpeptidasen gekoppelt ablaufen. Allerdings sind die Ursa-

chen für den gekoppelten Mechanismus in Serinpeptidasen kaum verstan-

den. Die Analyse des elektrostatischen Potentials bestätigte die geläufige

Meinung, dass um das Cystein ein positives Potential vorliegt, welches das

entstehende Thiolat in Cysteinpeptidasen stabilisiert. Im Gegensatz dazu ha-

be ich ein negatives Potential in Serinpeptidasen gefunden. Die Untersu-

chung der Protonierungseigenschaften zeigte, dass solch ein negatives Po-

tential in Serinpeptidasen wesentich ist, um die Basizität des katalytischen

Histidins zu verstärken, um Protonenaufnahme vom Serin zu ermöglichen.

Als Folge kann aber kein Ionenpaarintermediat stabilisiert werden. Doch das

negative Potential unterstützt auch einen gekoppelten Mechanismus, indem

es das nukleophile Potential des katalytischen Serins verstärkt. Zusätzlich

muss das aktive Zentrum in Serinpeptidasen kompakter gebaut sein, damit

der Protonentransfer zum Histidin und der nukleophile Angriff gekoppelt

ablaufen können. Diese Ergebnisse stimmen mit der experimentell nachge-

wiesenen Inaktivität von Cysteinpeptidasen überein, deren katalytisches Cy-

stein in ein Serin mutiert wurde. Ich untersuchte zunächst den Mechanismus

einer Cysteinpeptidase, die von uns ebenfalls im Labor charakterisiert wur-

de. Die Mutation des katalytischen Cysteins zu einem Serin führte erwar-

tungsgemäß zur Inaktivierung, wodurch das Substrat nicht prozessiert in der
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Bindetasche vorgefunden wurde. Diese Struktur wurde als Basis für weite-

re computergestützte Untersuchungen verwendet. Die Analyse des Reakti-

onspfads dieser mutierten Peptidase ergab eine viel zu hohe Energie für die

Serin-basierte Katalyse innerhalb des aktiven Zentrums einer Cysteinpepti-

dase. Die hier gezeigte computergestützte Analyse ergab, dass eine zusätz-

liche Übertragung der gefundenen relevanten Eigenschaften auf die Umge-

bung des aktiven Zentrums für die Aktivität der Serinpeptidase erforderlich

ist.

Im Rahmen dieser Arbeit wurde ein Suchalgorithmus für Reaktionspfade

implementiert und ein Verfahren zu deren Charakterisierung etabliert. Un-

ter Anwendung dieses Verfahrens zusammen mit anderen Methoden habe

ich eine Cysteinpeptidase untersucht und mit deren inaktiver Serinvariante

und einer natürlichen Serinpeptidase verglichen. Dabei wurden weitere De-

tails zur Katalyse von Serinpeptidasen erforscht und zu deren Erfordernis an

einen gekoppelten Mechanismus, der durch die Umgebung der katalytischen

Triade ermöglicht wird.
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Abstract

In biochemistry, detailed knowledge about the properties of an investigated

biological system is fundamental to understand its behavior and its function.

Experimental results are often limited to describe such properties in every

detail. The branch of computational biochemistry can contribute more infor-

mation to macroscopic measurements, and reveal microscopic details, which

go beyond the scope of laboratory experiments. Computational research can

also guide experimental measurements. Thereby both fields are not in com-

petition but complement each other.

The research of computational biochemists is based on the description of

biological systems with an appropriate computational model regarding the

scientific issue. Suitable models can be explicit with detailed descriptions

of atoms and their components, or implicit to simulate physical properties of

whole parts of the investigated system. Models of different abstraction levels

can also be combined, which allows to investigate large systems with high

accuracy of the relevant parts. In this thesis I used continuum electrostatic,

and hybrid quantum mechanical/molecular mechanical models. The tools

of computational biochemists are the algorithms, which are applied on the

constructed models.

For analysis of protonation characteristics, I applied continuum electro-

static models with Monte Carlo based sampling algorithms, which have been

developed within the group. To investigate mechanistic details and kinet-

ics of enzyme catalysis, reaction paths were analyzed. An essential element

in my reaction path investigation of peptidase mechanisms was the conju-

gate peak refinement (CPR) algorithm. The algorithm was modified, and im-

plemented as PyCPR by me together with a colleague for the Python-based

framework pDynamo. PyCPR is a chain-of-states method, which represents

a reaction path as discretized but linked structures. The algorithm is based

on the characteristics of a saddle point, with focus to approach a saddle point

region within an iterative procedure to gradually find the transition state of
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reaction steps. The reliable performance of PyCPR was confirmed by our pro-

vided examples on the conformational change of butane, and on the mecha-

nism of the glycyl radical enzyme 4-hydroxyphenylacetate decarboxylase.

Within my thesis, PyCPR was used for detailed analysis of the similar but

different cysteine and serine peptidase mechanisms. Peptidases are enzymes

with diverse functionality and perform important tasks in peptide degrada-

tion, pathogenic defense, or regulation in cellular pathways. It is known,

that cysteine peptidase catalysis proceeds stepwise with an ion-pair inter-

mediate, and serine peptidase catalysis proceeds concerted. However, the

reason for a concerted mechanism in serine peptidases is poorly understood.

The analysis of the electrostatic potential confirmed the common opinion of a

positive potential around the cysteine, which stabilizes the emerging thiolate

in cyteine peptidases. Contrary to this, I found a negative potential within

serine peptidases. Analysis of protonation characteristics showed, that such

a negative potential in serine peptidases is essential to enhance the basicity

of the catalytic histidine, which facilitates proton acceptance from serine. As

a consequence no ion-pair state intermediate is stabilized. But the negative

potential further supports the concerted mechanism by increasing the nucle-

ophilic potential of the catalytic serine. In addition to that, the active site

geometry of serine peptidases has to be compact to allow for the simulta-

neous events of proton transfer to histidine and nucleophilic attack. These

findings are in line with the experimentally measured inactivity of cysteine

peptidases with their catalytic cysteine mutated into serine. At first I investi-

gated the mechanism of a cysteine peptidase, which we also characterized in

the laboratory. As expected, mutation of the catalytic cysteine to a serine led

to inactivation, by which the substrate was bound non-processed within the

binding pocket. This structure was used for further computational research.

Reaction path analysis of this mutant serine peptidase revealed a much too

high energy required for serine-based catalysis within the catalytic site of a

cysteine peptidase. Computational analysis presented here showed, that ad-

ditional transfer of features of the environment of the active site is required

for serine peptidase activity.

In the context of this thesis, a reaction path search algorithm was imple-

mented, and a procedure was established to investigate reaction path charac-

teristics. With the application of the reaction path search procedure, together

with other methods, I investigated a cysteine peptidase, and compared it to
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its inactive serine variant and a natural serine peptidase. By that, I revealed

further details about serine peptidase catalysis, and the necessity for serine

peptidases to have a concerted mechanism, which is facilitated by the sur-

rounding of the catalytic triad.
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Chapter 1

Computational Investigation of

Enzyme Mechanisms

1.1 The Field of Computational Biochemistry

Biochemistry is a discipline for the study of the structure or the function of

biological systems on the basis of chemistry. The combination of biology with

different fields of chemistry allows for the description and explanation of the

properties of living organisms.

To maintain life, it is essential for living organisms to obtain energy, to

transform it into chemical energy such as adenosine triphosphate, and to use

it again. One energy source are nutrients, which have to be broken down

to applicable units, for instance by peptidase enzymes. Further processing

and transformation is performed to utilize the obtained energy for other pro-

cesses. To explain the function of involved proteins, their actions and inter-

actions need to be investigated. However, a direct observation of molecular

events such as enzymatic mechanisms is difficult. But conclusions can be

drawn from indirect approaches, such as the analysis of heat production in

binding studies, or the time-dependent measurement of reactant or prod-

uct concentrations to obtain reaction rates. Further, molecular structures can

be determined, which provide information about certain states of a system.

Such studies are essential to construct hypotheses, which are then utilized to

explain observations, and build scientific theories. [Chapter 1 in ref. 1]
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1.1.1 Scientific Models

Scientific theories are a basis to explain investigated systems, processes or

phenomena. The descriptions of scientific findings thereby rely on the ap-

plication of models, which can be interpreted as applicable translations of

scientific theories. A biochemical mechanism for instance, by which an en-

zyme catalyzes a chemical reaction, is represented as a model, which reflects

the real events on a certain level of abstraction, and allows for a more univer-

sal description. As basic elements in science, models can simplify events or

characterizations and make them transferrable to different systems or fields.

In fact, a description of an enzymatic reaction is an abstracted illustration

of that biochemical event with focus on relevant steps. These steps can be

derived from experimental measurements or computational investigations,

and in return also help to interpret obtained results. Consequently, the in-

vestigated system itself is represented as a model of interacting atoms, which

can be modeled computationally. For further understanding of investigated

systems or for predicitons, such computational models can then be used to

simulate system properties and behaviors. In my thesis, I focus on the com-

putational investigation of specific biological systems, namely peptidases.

1.1.2 Computer Simulations and Laboratory Experiments

Laboratory experiments are performed in biochemistry to investigate real bi-

ological systems by experimental methods. Computer simulations, however,

are based on representations of biological systems as computational mod-

els. Algorithms are applied on such computational models, analog to the

experimental methods in laboratory experiments. These algorithms are the

computational methods, which are specific mathematical procedures to ob-

tain results. Common to both, the laboratory field and the computational

field, is the requirement of scientific models to interpret obtained results.

Synergy of the Laboratory and the Computational Field. Computational

research can be seen as idealized, since it is based on a constructed rep-

resentation of reality. It is even dabated, if computer simulations are real

experiments. Within this debate, the field of computational research is ab-

stracted by Peter Galison to an artificial world, in which experiments take

place [2]. This artificial world allows to perform tasks within an idealized
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Scientific
model

Laboratory
experiments

Computer
simulations

experimental methods applied
 on real biological systems

computational methods (algorithms)
applied on computational models of 

real biological systems

obtained
macroscopic

results

obtained
microscopic

results
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improvements,
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translated scientific theory for
interpretation of obtained results,

and communication between
disciplines

FIGURE 1.1: Illustrated correlation between the laboratory field, which acts on real
systems and the computational field, which simulates model representations of real
systems. Both fields rely on scientific models for interpretation of obtained results,
and supplement each other with predictions, improvements and ideas.

reality. Within this idealized reality the behavior of a biological system is de-

termined by the principles of the applied conceptual model. However, com-

putational analysis can reveal more details than experiments, and is used to

understand and explain experimental results or to predict them. But not only

computational investigations are limited to the scope of the applied scientific

theory. Also laboratory experiments rely on conceptual models for the inter-

pretation of obtained results. When the interpretation of results is no longer

possible with existing models, then new scientific theories have to be devel-

oped, which can be tested by computational research. Further, predictions

on the basis of newly developed scientific theories can be made, which are

useful for the design and the interpretation of experiments. So the computa-

tional and the laboratory field complement each other based on the overlap

of a scientific model. That correlation is illustrated in Figure 1.1.

Macroscopic Results and Microscopic Results. Computational investiga-

tion is often essential to explain processes and phenomena, since simula-

tions can go beyond experimental resolution. Laboratory experiments re-

veal macroscopic characterizations of biochemical events. Obtained results

can arise from mixtures of states or sequences of steps, which are not dis-

tinguishable. The macroscopic result is a representation of an average of all

microscopic details. Computer simulations are used to reveal more details
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beyond laboratory experiments. Macroscopic results from laboratory exper-

iments, such as reaction rates for enzymatic catalysis reveal the overall per-

formance of an enzyme. For the microscopic picture, with all single steps of

the catalytic event, a probable reaction path has to be simulated. However,

the simulation is not straightforward, and further information is required.

Crystal structures of initial states prior to catalysis may be available, which

are optimal starting points for the reaction path simulation. Further, crystal

structures of stable intermediates or transition state analogs can yield infor-

mation about the probable catalytic pathway. The simulated reaction path

and the calculated energy profile can be correlated to the measured reaction

rate, and supplements the laboratory characterization. For the biochemical

characterization of biological systems or events it is essential to take advan-

tage of the synergy of the laboratory and the computational field. The com-

bination of both fields can improve the interpretations of results and the un-

derlying investigation methods.

1.2 Concepts and Approaches to Model Biological

Systems

For biochemical characterization of biological systems or events, a variety

of computational methods exist, which can be seen as algorithmic descrip-

tions of computational experiments. Such computational methods are in-

deed comparable to laboratory experiments. However, computational meth-

ods are not applied to real biological systems, but to their modeled in silico

analogs. The basis of all computational investigations is the computational

model. It is an abstraction of the real system, and provides a description

of the biological system appropriate for the application. The scientific ques-

tion determines the level of abstraction. Physical properties of whole system

parts can be simulated with an implicit representation by continuum models.

The simulation of detailed behaviors and properties of molecules or atoms

is performed with explicit models, such as molecular mechanical models or

quantum mechanical models. The following subsections outline computa-

tional models and computational methods for biochemical investigation. An

extensive review is provided in Manuscript A.
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1.2.1 Computational Models of Biological Systems

All computational models of a biological system are based on its atomic coor-

dinates, which are required to place the atoms or the corresponding charges

in space. The structure of atoms within simple molecules can be generated

based on chemical rules. Despite improving modeling techniques, structure

generation from scratch is difficult for more complex molecules up to pro-

teins or even larger systems, since the degrees of freedom enormously in-

crease. Recently, AlphaFold [3], an artificial-intelligance-based system was

able to predict many protein structures with high accuracy and thus made

the use of such predicted structures more reliable. However, computational

biochemists often use structures, which are determined by laboratory experi-

ments. Common laboratory methods for structure determination are nuclear

magnetic resonance (NMR) spectroscopy, X-ray crystallography, or electron

microscopy (EM).

With NMR spectroscopy structures can be directly investigated in solu-

tion, which can reveal dynamic aspects under physiological conditions [4,

5]. However, it is still difficult to determine structures of large proteins or

complexes. An alternative approch is X-ray crystallography, where struc-

tures of crystallized proteins are determined by their diffraction pattern of

an X-ray beam. The major drawback is to obtain suitable crystals for anal-

ysis which is even more difficult if proteins do not naturally occur in solu-

tion, but for instance are anchored to membranes. An emerging technique

for the determination of biomolecular structures is EM, in particular cryo-

EM. Instead of protein crystals, whole protein solutions can be frozen and

analyzed by an electron beam, analog to light microscopy. Also dynam-

ics can be investigated, since the frozen solution contains several different

conformations, while variety in well-orderd crystals is significantly reduced.

Determined biomolecular structures are provided for the community in the

protein data bank (PDB), which contains more than 150000 entries, mainly

crystallographic data [6].

On the basis of biomolecular structures, a computational biochemist mod-

els biological systems in silico by application of specific model types, such as

mechanical models, or continuum models. Thereby it is essential to describe

the interactions between the particles, and their properties in a way, that the

modeled system appropriately represents the properties of the real biologi-

cal system. Such a description is obtained by a mathematical equation, the
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energy function, which is used to energetically evaluate states of the investi-

gated system. On the basis of an energy function, various algorithms can be

designed, for instance, to explore enzymatic reaction paths.

Particle Models. The most explicit computational models in the field of

computational biochemistry represent systems on the level of atomic nuclei

and electrons. Most models rely on the Born-Oppenheimer approximation,

which separates the motion of atomic nuclei and electrons. This is possible

because of the mass difference, which effects the different time scales of their

motions. To obtain the wavefunction, which is a mathematical description

of a system state, ab initio approaches are applied, such as Hartree-Fock [7],

which solve an approximate Schrödinger equation. However, a major weak-

ness of the Hartree-Fock approach is the mean-field approximation of the

Coulomb correlation of electrons. An alternative ab initio approach, which

is widely applied in computational biochemistry, is density functional the-

ory (DFT) [8]. DFT relies on the total electron density with the wavefunction

as its functional. DFT approaches include approximate electron correlation,

and a possible use of hybrid functionals as a combination with Hartree-Fock

admixes exact electron exchange [9, 10]. In comparison to Hartree-Fock ap-

proaches, DFT approaches show a favorable ratio of computational cost and

performance [11]. With rising computer power larger systems can be ac-

cessed, even whole proteins [12]. However, a computational model of a bio-

logical system can consist of hundreds of thousands of atoms, which becomes

unfeasible to treat with quantum mechanics (QM) in reasonable time.

In contrast to QM approaches, molecular mechanics (MM) models de-

scribe biological systems with classical physics, where atoms are simulated

as spherical particles with partial charges. Covalent interactions are approxi-

mated with spring potentials, and nonbonded interactions are described with

a Lennard-Jones potential or a Coulomb potential. For a realistic simulation

of molecules force fields are used, which contain parameters for all interac-

tions, such as bond constants, or charges. The description of complex biolog-

ical systems with MM is feasable, especially with modern computer power,

but a reasonable description is limited to well-parametrized regions. How-

ever, it can be difficult to derive proper parameters for cofactors or specific

substrates. Further, the simulation of bond breakage or bond formation is

restricted, which is necessary for the simulation of enzymatic reactions.
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With the combination of QM and MM to hybrid QM/MM models com-

plex biological systems can be simulated with high accuracy in reasonable

time. Thereby a small relevant part of the whole system is simulated with

QM, and embedded into the remaining MM treated part to allow for con-

sistent behavior of the whole system. This approach was first described

by Warshel and Levitt [13] in 1976 and is widely used to investigate en-

zymes [14, 15].

Continuum Models. For an implicit description of features of a system or

its parts continuum models can be applied, which assign average properties

to space. For enzymatic behaviors electrostatic effects are prevalent and often

sufficient to describe molecular features. A common model is the Poisson-

Boltzmann continuum-electrostatics model. Protein regions are represented

as a low dielectric with a fixed charge distribution, and aqueous regions as

a high dielectric, where ion charges take a Boltzmann distribution [16]. As

solution of the Poisson-Boltzmann equation, a position-dependent electro-

static potential is obtained. This potential comprises a Colomb term caused

by the distributed charges within a certain permittivity, and a reaction field

potential associated with the solvent. Integration of the potential distribu-

tion yields the energy for the simulated state of the system. Such models can

be applied to visualize the electrostatic potential of molecules [17]. Further,

solvation energies or ligand binding energies can be estimated, as well as

protonation probabilities for titratable groups [18].

1.2.2 Simulation of Properties of Biological Systems

Analog to laboratory experiments, computational biochemistry investigates

biological systems, which are, however, represented as computational mod-

els. Application of computational experiments, the computational methods,

yield specific system properties. For the investigation of enzymatic mecha-

nisms thermodynamic and kinetic properties are required. Thermodynamic

properties characterize different system states, for instance, an educt state,

intermediates, or the product states. Kinetic properties describe the behavior

of the system by assignment of reaction rates to enzymatic processes, which

characterize the likelihood of transitions between stable states. Such com-

putational data can be compared to laboratory findings or can predict them,

which supports the design of laboratory experiments. More importantly, the
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macroscopic view of laboratory experiments can be supplemented with com-

puted microscopic details to further explain or interpret results.

Thermodynamic Properties. The basis for the computational investigation

of enzymatic processes are thermodynamic equilibrium states. These states

are stable because they are energetically trapped in a minimum, with no

forces acting on them. Therefore, they can be structurally determined by

the laboratory methods discussed in subsection 1.2.1. However, not all stable

states along a reaction path are available. The initial state of an enzyme with

bound substrate is often obtained by inactivated enzyme mutants, which are

unable to process the native substrate. Alternatively, substrate analogs can

be used, which are not processed by the enzyme, and thus can be structurally

determined in the active pocket. Similarly, intermediate states can be deter-

mined by appropriate intermediate analogs, which will not be processed by

the enzyme. From these structures computational biochemists model respec-

tive states. If states are not directly accessible, they can be generated out of

available states by chemical intuition, and with use of path exploration meth-

ods. Methods such as adiabatic surface mapping or growing string methods

allow constraint path searches to find possible stable states. Possible states

are then energetically minimized within the respective model. Relative en-

ergies between these states provides information about the reaction process,

if it is endergonic or exergonic. However, the probability for a transition be-

tween stable states is based on the investigation of enzyme kinetics.

Kinetic Properties. In enzyme kinetics, a reaction rate is related to the re-

action energy barrier between two states. The rate constant can be seen as

a probability factor to get over the reaction energy barrier. It can be cal-

culated from the energy barrier of computationally obtained reaction paths

by Eyring-Polanyi equation. The application of computational methods on

computational models allows to simulate reaction paths, and to obtain tran-

sitions between two states with corresponding energy barrier. An allrounder

method to obtain the best simulation of a reaction path does not exist, rather

a combination of different methods with different strengths is advisable to

succeed. Unfortunately, that combination is often difficult, since available

software packages do not contain all existing methods or their variants at

once, and are usually not compatible among each other.
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The studies within my thesis were performed within the free and versa-

tile pDynamo framework [19]. It contains various approaches to explore and

simulate reaction paths. However, a specialized method for reliable tran-

sition state search was missing in our opinion. We therefore implemented

PyCPR, which is further described as part of this thesis in Masuscript B. Py-

CPR is an implementation of the conjugate peak refinement (CPR) algorithm,

which was developed by Fischer and Karplus [20] based on the work of Sin-

clair and Fletcher [21]. It was shown to perform effectively to find transition

states [22]. Surprisingly, it was just implemented within one software pack-

age, which was not appropriate for QM/MM models. The algorithm of CPR

exploits the characteristics of a first order saddle point. There, the Hessian

matrix has exactly one negative eigenvalue. To locate a saddle point, the al-

gorithm approaches to its vicinity and follows the vector associated with the

negative eigenvalue.

In principle, all found saddle points structurally and energetically de-

scribe the transition states along the reaction path. By that the rate can be

calculated, and compared to results of laboratory experiments. In addition,

microscopic structural details from the computational analysis supplement

the laboratory results.

1.2.3 Biological Relevance of Performed Computational In-

vestigations

In this thesis, I investigated catalytic mechanisms of proteolytic enzymes

with computational approaches. The computational models were constructed

on the basis of structures determined by X-ray crystallography, which is a

well-established technique to produces high resolution crystal stuctures of

enzymes. Structurally flexible parts can sometimes be resolved in several

conformations but often it is difficult to locate the positions of the atoms,

especially for low quality data. Regions, which are not resolved properly

can be modeled in combination with additional information and biochem-

ical understanding. Despite good-quality data and high resolution struc-

tures, hydrogen atom positions are normally not well accessible, and have

to be modeled. As a consequence, protonation states are not determined.

I first prepared MM representations of the biological systems based on the

crystal structures. With Poisson-Boltzmann continuum-electrostatics, proto-

nation probabilities of titratable groups were determined, to adjust the MM
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models. Electrostatic interactions are important in protein systems and con-

tribute in large part to the catalytic potential of enzymes [16]. Therefore,

continuum electrostatic approaches are suitable for the determination of pro-

tonation states, and were then applied on the updated models, to estimate

ligand binding energies. I further compared the electrostatic potential of

proteins to characterize and compare relevant regions of similar proteins.

For the explicit simulation of the catalytic mechanisms, I prepared QM/MM

models on the basis of the MM models with an explicit water shell to al-

low for mechanistic interactions. QM/MM is an appropriate state-of-the-art

approach to treat biological systems [14, 15]. For the QM models I used hy-

brid DFT functionals, which have proven to achieve good results [23]. For

reaction path exploration and reaction path simulation I used approaches

within the pDynamo framework, a versatile and extendable set of compu-

tational models and methods, which is free of charge, and constantly de-

veloped [19]. Commonly used computational methods and models are de-

scribed in Manuscript A. For reaction path simulations, mainly PyCPR was

applied, which was implemented for the pDynamo framework as part of this

theses, and is described in Manuscript B. We critically discuss the results of

our PyCPR implementation, and show that they perform well for transition

state search [22]. Together, the used approaches are reliable for the represen-

tation of biological systems, and for the study of their properties. I applied

the approaches to study the catalytic characteristics of cysteine and serine

peptidases, which are introduced in Chapter 2.
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Chapter 2

Cysteine and Serine Peptidases

2.1 Classification of Peptidases

Peptidases are specific proteolytic enzymes, which facilitate the biochemical

cleavage of peptide bonds. Such enzymes are termed proteases, proteinases,

or peptidases, whereof the latter will be used throughout this thesis. Initi-

ated by Hartley [24], peptidases can be characterized by their catalytic type,

cysteine, serine, threonine, aspartic, glutamic, asparagine, and metallo. This

characterization describes the portion, which acts as the nucleophile in the

catalytic mechanism. However, peptidases with the same catalytic type have

very different molecular structures, and are not all homologues, which is

why another classification evolved. The analysis of sequence data and molec-

ular structures enabled the assignment of peptidases to families, which were

grouped in clans [25]. The MEROPS database is build upon this classifica-

tion, and provides a comprehensive set of more than 4000 peptidases [26,

27]. A peptidase family, such as the papain family C1, is usually termed ac-

cording to the most studied member. The papain family then contains all

peptidases with homologous peptidase unit, where homology is shown to

papain or another member of that family. Families can be divided into sub-

families, due to a very ancient divergence. Families, which originated from

a common ancestor but have already diverged too far to belong to the same

family, are combined in a clan. This is the case for papain (family C1) and the

phytochelatin synthase (PCS) of Nostoc sp. (NsPCS, family C83). NsPCS is

structurally similar to papain, and is ascribed to the papain superfamily [28,

29], which paraphrases the cysteine peptidase clan CA. Manuscript C shows
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a structural and biophysical investigation of NsPCS. The MEROPS classifi-

cation further defines species, which are all peptidases within a family, such

as PCS of the gamma-glutamylcysteine dipeptidyltranspeptidase family or

trypsin of the chymotrypsin family. Each peptidase species can be present in

various organisms, and is assumed to have approximately the same biologi-

cal function.

The MEROPS database currently contains more than one million pepti-

dase sequences, of which about more than 50 % are listed as cysteine or ser-

ine peptidases. Within this thesis, I will focus on these two prevalent catalytic

types of peptidases. In Manuscript D, I used papain and NsPCS as represen-

tative models for cysteine peptidases, and trypsin as a representative model

for serine peptidases.

2.2 Relevance of Cysteine and Serine Peptidases

Biological Relevance of Cysteine and Serine Peptidases. Peptide bonds

are difficult to cleave. However, proteolysis is required for life [30]. Thus,

proteolytic enzymes are supposed to have emerged early with life on earth,

and are present in every living organism [31]. The necessity of a biological

catalyst for peptide bond cleavage lies in the rather high stability of these

chemical bonds. This stability is fundamental to build functional polypep-

tides, but has to be overcome to break them down. The simple digestion of

polypeptides is an important recycle process to reuse amino acids as build-

ing blocks, which saves energy for their biosynthesis [32]. It is further im-

portant to digest nutrient proteins to acquire essential amino acids. But the

potential of peptidases can be seen in various other functions, which have

emerged during the evolution of life from a small number of ancestral forms

[31]. Diversity of peptidases thereby increases notably from prokaryotes to

eukaryotes to multicellular organisms [31, 30]. As described in section 2.1, a

large number of all peptidases are of the cysteine or serine catalytic type.

These peptidases are involved in various highly regulated biological pro-

cesses, such as the immune system response [33], blood coagulation [34],

or apoptosis [35], where they have to act very specifically. Also pathogens

utilize peptidases in a specific way, for instance, to invade the host system

[36], or to affect host immunity [37]. These diverse biological processes are

carefully regulated, and any alteration can be pathogenic [33, 38]. In turn,
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peptidases are of great medical or pharmaceutical importance [39]. But they

are also used as highly specific tools within technical applications.

Application-Technical Relevance of Cysteine and Serine Peptidases. The

diverse functionality of peptidases, and their high specificity is extensively

applied in molecular biology [38]. In this field biological processes are stud-

ied on a molecular basis, which requires in vitro investigation of involved

proteins. The purification of such recombinant proteins is often performed

with affinity chromatography, where attached affinity tags have to be cleaved

off specifically [40]. In contrast to the analysis of isolated proteins, the field

of proteomics investigates the full protein composition within cells under

specific conditions. For that purpose highly sequence-specific cleavage is re-

quired to analyze obtained data [41]. Furthermore, peptidases are applied in

industry, such as food industry [39, 42], where research is, for instance, car-

ried out on rennet substitutes in cheese production [43]. Peptidases are also

applied for the reduction of food protein allergy [44, 45]. But also non-food

applications are available, such as cleaning of surgical instruments, contact

lenses or laundry [42]. All these different applications require a diverse set

of natural or engineered peptidases to cover the technical requirements.

2.3 Diverse Functionality but Identical Principle

As outlined before, nature created a wide variety of cysteine and serine pepti-

dases with diverse functionality. However, all this diversity rests on the same

simple principle. A nucleophilic amino acid, the nucleophile, is embedded

in a supporting environment, which is defined by the protein. In an acyla-

tion step, the substrate is cleaved by the formation of an ester bond between

the nucleophile and the N-terminal part of the substrate (Figure 2.1, Pepti-

dase Mechanism: Acylation). The C-terminal part of the peptide substrate

is cleaved off, and leaves the binding pocket. In a deacylation step, the na-

tive enzyme is restored by hydrolytic cleavage of the enzyme-substrate ester

(Figure 2.1, Peptidase Mechanism: Deacylation). In this thesis I focus on the

acylation reaction, since there the different characteristics of a cysteine or a

serine nucleophile require a different active site environment to facilitate sub-

strate cleavage. The succeeding deacylation, however, is performed by water

as a nucleophile, independent of the peptidase catalytic type. In general, the
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FIGURE 2.1: Illustration of the general peptidase mechanism for cysteine and serine
peptidases. The peptidase mechanism can be divided into an acylation reaction and
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employ a catalytic dyad or triad, which consists of the respective nucleophile, a his-
tidine, and optionally an asparagine or aspartate. Another catalytic requirement is
the oxyanion hole, which supports the generation of a tetrahedral state.
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acylation reaction is performed by a catalytic dyad or triad, which consists

of the respective nucleophile, a histidine, and optionally an asparagine or as-

partate (Figure 2.1, Acylation). The third residue coordinates the histidine,

which accepts the proton of the nucleophile in a first step and donates it to

the substrate in a second step. In the first step, the bound substrate is attacked

by the nucleophile, which forms a tetrahedral state with the substrate. The

proton of the nucleophile is transfered to the histidine. In the tetrahedral

state, the carbonyl group of the peptide bond of the substrate formally car-

ries a negative charge. The formation of a tetrahedral state is supported by

an essential element of peptidases, the oxyanion hole, which is a region with

positive partial charges. Once the abstracted proton at the histidine is do-

nated to the substrate in a second step, cleavage of the substrate occurs. The

N-terminal part of the substrate forms an ester bond with the enzyme, and

the C-terminal part of the substrate leaves the binding pocket.

This identical principle is utilized in cysteine and serine peptidases to per-

form various tasks. Diverse utilization of peptidases is basically the cause

of different environments, under which peptidases act, in combination with

their various substrate specificity [46]. Thereby an identical substrate can

also be cleaved at different positions, which makes peptidases highly se-

quence specific scissors. The specificity can vary from cleavage of a broad

range of peptides to highly specific cleavage of just one target peptide at a

certain position. Further, the activities of peptidases depend on the condi-

tions within different cellular compartments or extracellular environments.

Oxidizing conditions in general inactivate cysteine peptidases, which is uti-

lized to regulate cysteine peptidases within the cellular redox environment

[47, 48]. However, oxidation inhibits the peptidase activity, which makes

cysteine peptidases less generally applicable. But a cysteine nucleophile can

be effectively activated by deprotonation, in contrast to a serine nucleophile,

with the respective pKa values of around 9 [49, 50] and 16 [51]. As a conse-

quence the nucleophilic attack in serine peptidases and the proton transfer to

the histidine occurs concerted [52], while for cysteine catalysis it occurs step-

wise [53]. These different characteristics of serine and cysteine based cataly-

sis require a different set of amino acids to create a proper surrounding of the

catalytic residues and support the catalytic action of the nucleophile. In the

following subsections, I will describe the current state of research about the
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common properties of cysteine and serine peptidases, and different require-

ments for their mechanisms.

2.3.1 Specific Mechanisms of Cysteine and Serine Peptidases

Cysteine and serine peptidases utilize the same principle for cleavage of pep-

tide bonds (see Figure 2.1). However, the nucleophilic attack occurs con-

certed [52] for serine peptidases, and stepwise for cysteine peptidases [53],

which utilize an activated ion-pair intermediate state. The difference relies

on the deprotonation of cysteine, which results in an activated ion-pair inter-

mediate state. This intermediate state is stabilized by hydrogen bonds, and a

positive electrostatic potential around the cysteine [53, 54, 55]. However, re-

quirements on the active site environment for efficient serine peptidase catal-

ysis are not known. The following paragraphs describe the mechanistics of

three peptidases, which were used in Manuscript D as model peptidases for

computational investigation of cysteine and serine peptidase mechanisms.

Trypsin Trypsin is one of the most studied serine peptidase. According

to MEROPS classification [26, 27], trypsin is a member of the chymotrypsin

family, which is the largest classified family. Trypsin is an intestinal digestion

enzyme, and contains the catalytic triad serine, histidine and aspartate. It is

an endopeptidase, and cleaves substrates exclusively C-terminal to aginine,

or lysine [56]. Peptide bond cleavage is catalyzed with a concerted mech-

anism, which means, that the nucleophilic attack of the nucleophile at the

substrate occurs concerted with the proton transfer from the nucleophile to

the catalytic histidine (Figure 2.2). The resulting tetrahedral state formally

carries a negative charge at the carbonyl oxygen, which is stabilized by an

oxyanion hole. The occurence of a meta-stable tetrahedral intermediate is

still under debate [57], which is addressed in Manuscript D. With the proton

transfer from the histidine to the substrate the peptide bond gets cleaved,

and the enzyme-substrate ester is formed.

Papain and Phytochelatin Synthase NsPCS Papain is one of the most stud-

ied cysteine peptidases. According to MEROPS classification [26, 27], pa-

pain is a member of the papain family. Papain has a broad substrate range

and is naturally available in high concentration in the papaya latex, where

it is used for defense. Papain contains the catalytic triad cysteine, histidine
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FIGURE 2.2: Illustration of the catalytic mechanism of the serine peptidase trypsin.
In the first step, the initial nucleophilic attack and the proton transfer to the histidine
occur concerted. In a second step, the proton is transfered to the substrate, which
initiates cleavage of the substrate.

and asparagine. The phytochelatin synthase NsPCS is a cyanobacterial en-

zyme, which has peptidase activity and cleaves off glycine from glutathione.

NsPCS is ascribed to the papain superfamily and is supposed to have a com-

parable enzymatic mechanism [28, 29]. NsPCS contains the catalytic triad

cysteine, histidine and aspartate, which is directly comparable to the cat-

alytic triad of trypsin. Peptide bond cleavage is catalyzed with a stepwise

mechanism, where in the first step a reactive ion-pair intermediate is formed

by hydrogen transfer from the cysteine nucleophile to the catalytic histidine

(Figure 2.3). For the hydrogen transfer a low energy barrier was shown in

computational studies [58, 59]. In the second step, nucleophilic attack of

the nucleophile at the substrate occurs. Analog to serine peptidases, also

for cysteine peptidases the occurrence of a stable tetrahedral intermediate is

debated [59, 60, 61]. This tetrahedral state carries a formal charge at the car-

bonyl oxygen of the cleavage bond of the substrate, which is stabilized by

an oxyanion hole. Analog to serine peptidases, cleavage of the substrate is

performed with the proton transfer from the histidine to the substrate.
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FIGURE 2.3: Illustration of the catalytic mechanism of the cysteine peptidase pa-
pain. In the first step, the formation of a reactive ion-pair state is performed by
proton transfer from cysteine to histidine. In a second step, nucleophilic attack of
the nucleophile at the substrate occurs. In a third step, the proton is transfered to the
substrate, which is then cleaved.

2.3.2 Characteristics of Cysteine and Serine-Based Catalysis

In Manuscript D, I address the details of the concerted serine based catal-

ysis and the stepwise cysteine based catalysis of peptidases. Cysteine and

serine peptidases apply the same basic mechanism for the cleavage of pep-

tide bonds but the different nature of their nucleophiles require a different

environment for the active site, which has to be provided by the surround-

ing enzyme. This can be seen in nucleophile replacement studies. Serine

peptidases, in which the nucleophile is mutated to a cysteine normally show

just very little activity [62, 63]. Cysteine peptidases, in which the nucleophile

is mutated to a serine are rather inactive [64]. It is assumed, that cysteine

peptidases have a positive electrostatic potential around the nucleophile to
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stabilize the emerging thiolate ion [54]. Thus, reduced activity of cysteine

to serine mutations is attributed to the absence of such a positive potential

in wildtype serine peptidases. However, not much is known about require-

ments for serine peptidase catalysis. In Manuscript D, the requirements for

a serine based and a cysteine based catalysis are investigated computation-

ally, and reveal details about the chemical environment for serine peptidases,

which are necessary for their proper function.
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Chapter 3

Synopsis of the Manuscripts

The focus of this thesis is the comparative computational investigation of

cysteine and serine peptidase catalysis. The catalytic mechanism of both

peptidases appears similar but proceeds essentially different with distinct

requirements for the environment of the active site. My research was based

on computational approaches to analyze biophysical properties of selected

peptidases and their biochemistry. This thesis comprises a general descrip-

tion of concepts in the field of compuational biochemistry, with a focus on

the investigation of enzyme mechanisms, and specifically the application of

these concepts on the description and analysis of cysteine and serine pep-

tidase mechanisms (see Figure 3.1). The Manuscript A presents principles

of computational models and computational methods in the field of compu-

tational biochemistry, which comprise the basic theory of this thesis. The

Manuscript B focuses on specific reaction path search methods, of which one

was used to characterize the mechanisms of the enzymes, which are analyzed

within this thesis in the Manuscripts C and D. The Manuscript C provides a

first detailed characterization of one cysteine peptidase and its serine pepti-

dase mutant, a phytochelatin synthase, NsPCS. Both variants were used to

investigate characteristics of cysteine and serine peptidases, which is elabo-

rated in the Manuscript D. The Manuscript D discusses investigated charac-

teristics of cysteine and serine peptidases and compares the two well charac-

terized model peptidases, the serine peptidase trypsin and the cysteine pep-

tidase papain. The cysteine peptidase NsPCS with its serine variant, which

were characterized in the Manuscript D, replaces papain as a model, since it

allows for the direct comparison of both peptidase types. This manuscript
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FIGURE 3.1: Schematic representation of the synopsis of the manuscripts, which are
part of this thesis. Arrows indicate the context of the manuscripts within this thesis,
while the arrow head shows the information flow.

treats the main topic of this thesis, and provides new insights into the re-

quirements for cysteine and serine peptidase catalysis.

Computational Models and Computational Methods. A variety of com-

putational methods exist to simulate enzyme behavior. Common to all is,

that the investigated biological system is represented as a computational

model, which describes relevant characteristics on a certain level of abstrac-

tion. In principle all calculations could be performed on a very precise replica

of the investigated biological system. However, this would extremely in-

crease the computational cost, and at the same time the enormous amount

of details would distract from substantial findings. Therefore the choice of a

computational model with proper abstraction level has to match the leading

question of the research. For analysis of a biological system, computational

methods have to be applied on computational models. A computational

method describes the algorithm, which reveals the state or the behavior of

the modeled system. A detailed review of a variety of computational mod-

els and possible algorithms for the computational investigation of biological

systems is provided in Mauscript A.
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Computational Investigation of Enzyme Mechanisms. For computational

investigation of catalytic mechanisms, I applied a continuum electrostatic

model with a sampling algorithm to obtain information about probable states

of the biological system. This information is used to generate a model of the

initial state to simulate the catalytic reaction. For enzymes, QM/MM mod-

els have emerged as a favorable description of a biological system, which

combines accuracy and performance. Initially I applied the popular nudged

elastic band (NEB) method and its climbing image variant (CI-NEB). These

algorithms belong to the chain-of-states (COS) methods and optimize a chain

of coupled structures, which connect two stable states. In addition to con-

strained energy minimization of all structures, CI-NEB tries to optimize the

highest structure towards a saddle point. By this, the chain of structures

discretizes a path between two stable states, which passes through a sad-

dle point. However, the found transition state within the obtained path

sometimes underestimates the energy barrier. A more reliable method to

find transition states is conjugate peak refinement (CPR). It was only im-

plemented within the program CHARMM, which was not well capable of

hybrid QM/MM calculations. The QM/MM models were instead prepared

with pDynamo, which allows great adjustability, and which is highly com-

patible and extensible due to its python based nature. Compared to pDy-

namo, CHARMM and its QM/MM interface did not feature that. Together

with a colleague I implemented a modified version of the CPR algorithm

with improved features (PyCPR) for the pDynamo framework, which is de-

scribed in Manuscript B. Compared to a previously published NEB-derived

reaction path of 4-hydroxyphenylacetate, we have found a structurally more

reliable transition state with PyCPR. With continuum electrostatics, and with

QM/MM reaction path search approaches, which we partially implemented,

I investigated the central topic of my thesis, the similar but different catalysis

of cysteine and serine peptidases.

Comparison of Cysteine and Serine Peptidase Mechanisms. Computa-

tional models and methods are important tools in computational biochem-

istry to describe biophysical properties and behaviors of biological systems.

Such tools are necessary to reveal details, which are not easily accessible

through laboratory experiments. The mechanism of cysteine and serine pep-

tidases proceeds differently. Cysteine peptidases apply a stepwise mecha-

nism with an ion-pair intermediate, while serine peptidase catalysis proceeds
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concerted. Investigation of cysteine peptidases in the literature revealed re-

quirements for the active site environment for the catalytic residues. A suit-

able cysteine peptidase active site environment supports catalysis by provid-

ing a stabilizing potential for the ion-pair intermediate, which enhances the

nucleophilicity of the cysteine. However, environmental requirements for

serine peptidase catalysis are poorly understood. In a detailed comparative

study, I investigated requirements for serine peptidase catalysis and present

their correlation to the concerted mechanism. I performed continuum elec-

trostatic comparisons and analysis of active site geometries, together with

QM/MM reaction path calculations. By that, I was able to explain, how

the environment of the active site contributes to serine peptidase catalysis,

and that the concerted mechanism is a consequence of that required environ-

ment. Thus it will not be possible to obtain a normally active peptidase by

exchange of the catalytic residues serine and cysteine unless the environment

of the active site is adapted as well. In Manuscript C, the bacterial cysteine

peptidase NsPCS was investigated, which looses activity with change of its

catalytic cysteine to serine (NsPCS-C70S). Fortunately, this mutant did not

process the substrate glutathione but kept it bound non-covalently within

the binding pocket. This provided new insights for the interaction prior to

catalysis and was the structural basis for my QM/MM calculations on that

peptidase. The inactivity of NsPCS-C70S was experimentally shown, and

could be seen computationally by a very high energy barrier for catalysis.

The actual reasons for that inactivity, and possible requirements for the acti-

vation of the mutant enzyme needed to be researched. In my further studies

in Manuscript D, I comparatively investigated requirements for cysteine and

serine peptidase catalysis. I used the serine peptidase trypsin, the cysteine

peptidase NsPCS, and its inactive serine mutant NsPCS-C70S. This research

revealed essential properties of an active site surrounding to allow for proper

catalytic function of a catalytic triad with serine or cysteine as nucleophile.

I further applied my observations to mimic an active site environmment for

a serine peptidase within the inactive serine mutant NsPCS-C70S. From the

computational perspective, this procedure successfully generated a suitable

active site environment for a serine. Manuscript C and Manuscript D com-

prise a detailed analysis of cysteine and serine peptidases, which leads to

a deeper understanding of essential features for the catalytic mechanism of

both enzyme families.
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3.1 Manuscript A:

Computational Biochemistry – Enzyme Mech-

anisms Explored

The field of computational biochemistry approaches the properties of bio-

logical systems by computational methods. One essential component within

biochemical processes are proteins, whose states, interactions, or enzymatic

behaviors can be investigated in detail by computational approaches.

In this review article, we discuss the complementarity between computa-

tional and experimental results. We first review the use and the limitations of

several computational models on different abstraction levels, such as contin-

uum electrostatic models or QM/MM models. We further describe methods,

which can be applied on such models to derive thermodynamic or kinetic

properties, which can be compared to experimental results. However, ex-

perimental measurements provide macroscopic observations, which are sup-

plemented by computational analysis with microscopic details. Thermody-

namic properties provide information about probable states of investigated

sytems, which characterize stable states on the potential energy surface. Ki-

netic properties supplement information about transitions, which energet-

ically evaluate the rate of chemical or physical processes in proteins. These

transitions can be described by transition state theory, which requires explicit

analysis of intermediate structures along the reaction coordinate.

To explore the potential energy surface, methods are applied on compu-

tational models to obtain biochemical properties of the investigated system.

We review several reaction path search methods, such as the adiabatic sur-

face mapping, which is useful to obtain basic information about the inves-

tigated process. The search starts from one stable state and is driven into

specific directions, which are derived by chemical intuition and experimen-

tal data. With basic information about the reaction coordinate, more specific

path search methods can be applied, which often utilize a chain of states,

that discretizes the reaction path between states. Such chain-of-states meth-

ods optimize the whole reaction path until convergence criteria are fulfilled.

One chain-of-states method is conjugate peak refinement, which I used in

this theses for specific reaction path search. The conjugate peak refinement

algorithm is subject of Manuscript B.
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3.2 Manuscript B:

PyCPR – a Python-based Implementation of

the Conjugate Peak Refinement (CPR) Algo-

rithm for Finding Transition State Structures

Conjugate peak refinement (CPR) belongs to the chain-of-states (COS) meth-

ods, which are described in Manuscript A. With COS methods enzymatic

mechanisms can be investigated to obtain reaction coordinates, which are

specified by stable states and transition states on a potential energy sur-

face (PES). The PES originates from the 3N-dimensional energy function of

a molecular system, regarding the coordinates of its N atoms. Thereby, the

PES can be imagined as a landscape with stable states as valleys, and tran-

sition pathways as mountain passes, which connect the stable states. Infor-

mation about stable states and transitions are used in transition state theory

to attribute a rate to a reaction. The rate of an elementary step in catalysis

is calculated from the energy difference of a stable state and the transition

state along its reaction coordinate. The largest energy difference of all ele-

mentary steps defines the rate-limiting step of the reaction. The calculated

overall reaction rate can be correlated with experimentally measured values.

In addition to experimental measurements, computational analysis can pro-

vide further details about the process of enzyme catalysis, and the individual

catalytic effects. Detailed knowledge about enzyme catalysis is relevant for

the understanding of catalytic events, and further to adopt the principles, or

adapt the process.

In this article we extensively describe the theory behind CPR and its im-

plementation (PyCPR) for the Python-based framework pDynamo. We fur-

ther provide examples and a strategy for PyCPR application. The algorithm

of CPR is based on the characteristics of a first order saddle point, whose

Hessian matrix has exactly one negative eigenvalue. Diagonalization of the

Hessian with a conjugate basis set yields a matrix with its eigenvalues as its

diagonal elements. The idea of this method is to approach to the vicinity of a

saddle point and follow the vector associated with the negative eigenvalue to

locate the saddle point. Subsequent energy minimization along all remain-

ing conjugate directions, which are associated to the positive eigenvalues,

optimizes the structure to the first order saddle point. This procedure is an
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adaptation of the conjugate gradient method, but applies an initial search

direction for energetic maximization and further provides a term, which en-

sures to be conjugate to the initial direction. By that, a set of conjugate vectors

can be constructed, which define the conjugate basis set. This strategy is pos-

sible, since diagonalization of the Hessian matrix is independent of the set of

conjugate basis vectors.

The CPR method is an adaptation of this outlined theory to molecular

systems. It is a flexible COS method, which dynamically adjusts the num-

ber of explicit structures along the reaction coordinate. Transition state re-

gions are approached by a higher density of explicit structures to find the

proper transition structure. Explicit structures can be deleted from the path

as well, if they describe regions, which are off a suitable reaction coordinate.

The whole reaction coordinate is linked for the optimization, whereas just a

single structure is optimized at time, with direct influence of its neighbor-

ing structures. The CPR method interpolates the segments between the path

points to find the structure with the highest energy of each segment. If this

structure is unspecified, it will undergo a refinement cycle. The structure

is first energetically maximized along the tangential direction of the path,

which approximates the eigenvector of the negative eigenvalue. Subsequent

minimization is performed along the conjugate directions. This procedure is

performed iteratively until all high energy structures are optimized. Some

of the optimized structures will approximate first order saddle points and

describe the transition states along the reaction coordinate.

We have implemented the CPR algorithm into pDynamo, a Python-based

framework, capable of hybrid QM/MM molecular simulations. Our PyCPR

implementation is open source, and can be combined with the features of

pDynamo. Unlike the original CPR implementation in CHARMM, our Py-

CPR implementation provides several scaling factors for the influence of the

previous search direction, as they can be found for variations of the conju-

gate gradient method. We further utilize a pure mathematical expression for

the conjugacy measure, which can be chosen to be an exit criterion for the

minimization steps. Further minimization, although the minimization direc-

tions are no longer conjugate, can thus lead to different minima and vary

the reaction coordinate. We also implemented a highly efficient procedure

to prevent the iterative addition and deletion of the same path points during
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the complete PyCPR run. Our PyCPR implementation supplements the ex-

isting methods in pDynamo, and profits from the computational models and

algorithms available within the pDynamo framework.

As application of PyCPR, we provide two examples, a principle study on

the conformational change of butane from anti-periplanar to gauche, and the

analysis of the catalytic mechanism of the glycyl radical enzyme 4-hydroxy-

phenylacetate decarboxylase. Both examples are compared to nudged elastic

band (NEB) calculations. For the conformational change of butane, PyCPR

and NEB reach the same conclusion, while the different behavior of NEB and

CPR can be observed. The focus of NEB lies on the path as a whole, whereas

CPR concentrates on transition state regions. However, the comparable re-

sults confirm the functionality of PyCPR. The comparison of results from

PyCPR and NEB for the radical enzyme catalysis showed similar transitions

for all elementary steps except the rate-limiting step. NEB missed a reliable

transition state, which could be found by PyCPR.

PyCPR is a useful and reliable alternative to other reaction path search

methods, and emerged as an essential tool for my reaction path search proce-

dure. I applied PyCPR for the detailed analysis of peptidase catalysis, which

is shown in Manuscript C and Manuscript D.

3.3 Manuscript C:

Structural and Biophysical Analysis of the Phy-

tochelatin-Synthase-like Enzyme from Nostoc

sp. shows that its Protease Activity is Sensitive

to the Redox State of the Substrate

NsPCS (phytochelatin synthase of Nostoc sp.) is a cysteine peptidase of the

papain superfamily. It is a phytochelatin-synthase-like enzyme of the cyano-

bacterium Nostoc sp. and it catalyzes the cleavage of glutathione (GSH) into

glycine and γ-glutamyl-cysteine (γEC). This cleavage is the first step of the

phytochelatin (PC) synthesis. The final product are PCs that are glutathione

derivatives, where the glycine is cleaved off and another GSH molecule is

covalently linked via a peptide bond to γEC. By that reaction, also longer PC

chains can be formed, where all γEC units possess one thiol group. Because
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of the thiol groups PCs can chelate heavy metal ions and are assumed to

participate in heavy metal detoxification or homeostasis.

In this article we performed a quantitative biophysical analysis of NsPCS.

Although the enzyme is named phytochelatin synthase, NsPCS is not cat-

alyzing the synthesis of PC molecules. Weak activity is reported in some

cases but the actual reaction catalyzed by NsPCS is the cleavage of GSH

into glycine and γEC. The oxidized form of the substrate GSH, GSSG, with

two molecules of GSH covalently connected via a disulfide bond at the cys-

teine residues is also bound by NsPCS and the glycine of one GSH moiety

is cleaved off. However, after cleaving off the glycine the remaining γEC-SG

is not released and is inhibiting the enzyme. Thus, we show that GSSG acts

as an inhibitor for NsPCS and makes it possible to trap the enzyme-substrate

complex in an acyl-enzyme form (acyl-NsPCS).

NsPCS is not a phytochelatin synthase but the actual function is unclear.

Since NsPCS processes GSH in its reduced form but is inhibited by its ox-

idized form GSSG, the enzyme might be associated with signaling of the

redox state of the environment. However, the fact that the two GSH moi-

eties in GSSG are close in the active site might have also sporadically led to

a transpeptidase reaction. Then, instead of a water molecule the uncleaved

GSH moiety of GSSG would attack the thioester bond of the enzyme-sub-

strate complex and could lead to the formation of PCs. The characterization

of NsPCS and the understanding of its reaction mechanism might therefore

give insights on how the function of phytochelatin synthesis evolved and

spread among organisms for which the presence of heavy-metal-chelating

molecules became an advantage.

In detail, we analyzed the structures of the wild type enzyme (wt-NsPCS),

the acyl enzyme (acyl-NsPCS) with γEC covalently bound to the catalytic

cysteine, and the inactive serine variant (C70S-NsPCS), where the catalytic

cysteine is mutated to a serine. The serine mutant structure C70S-NsPCS has

been used to measure the binding affinity of the substrates GSH and GSSG to

NsPCS, since C70S-NsPCS is not active and trapped the uncleaved substrate

GSH non-covalently bound inside the binding pocket. The fact that GSH

was found in the crystal structure of the inactive enzyme C70S-NsPCS led to

the conclusion that GSH was co-purified with the enzyme, which assumes

a tight binding. To characterize that binding, we performed binding stud-

ies with the inactive variant C70S-NsPCS. For these studies GSH first had to
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be removed from the binding pocket of C70S-NsPCS, which was achieved

by unfolding and refolding. Proper unfolding and refolding was monitored

with spectroscopic methods and in addition also the activity of the native and

the refolded wild type enzyme (wt-NsPCS) was measured to evaluate how

the refolding affects the function of the enzyme. The spectroscopic results

showed properly restored characteristics and also the activity test showed

that the refolded enzyme was active, though just to an amount of about 10 %.

This amount matched with the active portion of refolded C70S-NsPCS, which

was determined by the binding studies. Nevertheless, the concentration of

the enzyme is considered in the applied binding model and is therefore not

affecting the analysis. The performed binding studies and the evaluation of

the electrostatic interaction energies indicated a tight binding of the substrate

and a slow exchange, which explains the co-purified GSH in the C70S-NsPCS

structure. Although the crystal was grown under aerobic conditions and the

substrate GSH is sensitive to oxidation (i.e. GSSG formation), reduced GSH

is found in the solved crystal structure. The substrate in the active enzyme

was trapped in the acyl-enzyme state, since the cleavage product of the ox-

idized form GSSG , i. e. γEC-SG, is inhibiting the enzyme. We performed

a Monte Carlo simulation to analyze the encounter complex formation with

GSH or γEC present in the active pocket. Encounter complex formation was

clearly visible when the cleaved off glycine moiety of GSH was not present,

which causes different electrostatics. Thus, in the active enzyme, where the

glycine can be cleaved off the acyl enzyme can form an encounter complex

with another GSH molecule, which then could lead to γEC-SG formation un-

der aerobic conditions. However, when the glycine moiety of GSH is not

cleaved off no encounter complex formation was observed. These docking

results explain the presence of a reduced GSH in the binding pocket of C70S-

NsPCS.

Our research provides a first quantitative biophysical analysis of the PCS-

like protein NsPCS and leads us to the assumption that NsPCS may sense the

redox state of the solution and the cleaved off glycine serves as a signal for

reducing conditions. We performed binding studies and activity measure-

ments and complemented them with continuum electrostatic and QM/MM

calculations, whose theories are described in Manuscript A and Manu-

script B. The analysis of NsPCS is important for my thesis since the enzyme

is a cysteine peptidase of the papain superfamily and has a catalytic triade
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proper for comparison with the serine peptidase trypsin. In particular, we

have produced C70S-NsPCS, the inactive serine variant of NsPCS, which

builds a substantial basis for the comparison of cysteine and serine pepti-

dases, which is discussed in Manuscript D.

3.4 Manuscript D:

Serine and Cysteine Peptidases – So Similar,

Yet Different. How the Active-Site Electrostat-

ics Facilitates Different Reaction Mechanisms

Cysteine and serine peptidases perform the cleavage of peptide bonds by

nucleophilic attack and subsequent hydrolytic release of the product. While

cysteine peptidases make use of a stepwise mechanism with an ion-pair in-

termediate, serine peptidases apply a concerted mechanism. Ion-pair stabi-

lization in cysteine peptidases is enabled by hydrogen bonds and a positive

electrostatic potential around the cysteine. Requirements for the active site

environment for serine peptidase catalysis are indeed poorly understood. In

this article I performed a comparative analysis of cysteine and serine pepti-

dase catalysis by continuum electrostatic approaches, and detailed energetic

and geometric analysis of the QM/MM reaction path. For my analysis, I

mainly applied computational methods to a continuum electrostatic model,

and a QM/MM model, which are explained in more detail in Manuscript A

and Manuscript B.

At first, I analyzed the catalytic mechanisms of the serine peptidase tryp-

sin, and the cysteine peptidases papain and NsPCS. NsPCS is a phytochela-

tin-synthase-like enzyme of Nostoc sp., which catalyses the cleavage of GSH

into glycine and γEC, in particular the peptide bond between glycine and

cysteine of glutathione is cleaved. Detailed information about NsPCS is pro-

vided in Manuscript C. The enzyme belongs to the papain superfamily of

cysteine peptidases, and shares a similar fold. However, NsPCS utilizes an

aspartate as the third catalytic triad residue, which is analog to trypsin, in-

stead of an asparagine, which is found in papain. Hence, NsPCS was used

as a model for cysteine peptidases for comparative analysis to trypsin, as

a model for serine peptidases. Further, a serine mutant of NsPCS (C70S-

NsPCS) exists, which experimentally shows no activity (see Manuscript C).
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The QM/MM reaction path results showed an energetically very high tran-

sition state barrier of 31.5 kcal/mol, thus reinforced the inactivity of C70S-

NsPCS. The inactivity is also consistent with other studies on the conversion

of peptidases. The characterization of the electrostatic potential of the ac-

tive site environments of NsPCS and trypsin reflected the common picture

of cysteine peptidase catalysis, which facilitates ion-pair stabilization by a

surrounding positive potential. Electrostatic analysis of the active site of the

serine peptidase trypsin revealed a prevalent negative potential. Protona-

tion characteristics of catalytic residues reveales the importance of a strong

histidine base for serine catalysis, which is achieved by interaction with the

catalytic aspartate, and a negative potential around. Additionally the nucle-

ophilicity of the catalytic serine increases within a negative potential. How-

ever, such an environment of the nucleophile is not able to stabilize an ion

pair. As a consequence serine peptidase catalysis has to proceed concerted.

To ensure reactivity of the catalytic residues, cysteine and serine pepti-

dases impose different requirements on their active site environments. There-

fore the placement of a serine within an active site environment of a cys-

teine peptidase causes inactivity, as can be seen for C70S-NsPCS. The enzyme

evolved for ion-pair stabilization but not for proper activation of a catalytic

serine. Comparison of the active site shape of cysteine and serine peptidases

further revealed a more compact geometry of the catalytic residues of ser-

ine peptidases. A compact active site geometry is a necessity for a concerted

mechanism and thus is essential for serine peptidases. The active site envi-

ronment of the cysteine peptidase NsPCS neither provides a compact active

site geometry, nor a negativ electrostatic potential related to a strong histi-

dine base. Further the catalytic aspartate in NsPCS is not mainly interacting

with the catalytic histidine, but with an arginine on top of the histidine. The

simple change of the cysteine to a serine is therefore not sufficient for the

conversion of the peptidases.

Based on the analysis, I mimicked an active site environment of a ser-

ine peptidase for C70S-NsPCS. In exchange with another residue, the cat-

alytic aspartate was put at a different position, which increased the inter-

action with the catalytic histidine. This modification increased the basicity

of the histidine, and further made the active site electrostatic potential more

negative. Introduction of two more mutations moved the catalytic residues
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closer together, and closer to the substrate, which provides the required com-

pact geometry for a concerted mechanism. The combination of the intro-

duced effects in a computationally varied structure, NsPCS-mut4, caused

a decrease of the calculated transition barrier compared to C70S-NsPCS by

about 11 kcal/mol. The resulting energy barrier of 20.2 kcal/mol for NSPCS-

mut4 reaches the range of natural serine peptidases, which indicates a suit-

able active site environment for serine based catalysis.

This article reveals details about serine peptidase catalysis, which pro-

ceeds concerted in contrast to the stepwise cysteine peptidase catalysis. The

concerted mechanism appears to be a consequence of the negative electro-

static environment of the serine nucleophile, which is essential for serine ac-

tivation. A precondition of the concerted mechanism is a compact active site

geometry to facilitate the simultaneous events. The detailed analysis of the

different requirements for cysteine and serine peptidase catalysis in corre-

lation with their different procedures revealed insights about the catalytic

behavior of both enzyme families.

3.5 Outlook

The peptide bond is an essential component for life on earth. In particu-

lar its stability is important for the creation of stable polypeptides or pro-

teins. However, cleavage of polypeptide chains for digestion or modifica-

tion requires reactive enzymes which compensate the stability of a peptide

bond. Nature evolved different types of peptide bond cleaving enzymes,

so-called peptidases, of which two wide-spread types are cysteine and ser-

ine peptidases. The catalytic mechanism of cysteine peptidases and serine

peptidases appears similar but is essentially different. This difference is re-

markable, since a cysteine and a serine merely differ in one atom, a sulfur

and an oxygen, respectively. The surroundings of the active sites are highly

adapted to the characteristics of the present amino acid to effectively initiate

catalysis, which is performed stepwise in cysteine peptidases and concerted

in serine peptidases. The explanation for this phenomenon is described in

Manuscript D and basically is: specific electrostatics around the catalytic

triad residues in combination with an optimized geometry.

The basic research of my work about the functioning of cysteine and ser-

ine peptidases might have an impact in the design of specific peptidases. But
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this work is not only restricted to peptidases, since the basic mechanism is ap-

plicable for hydrolases in general, which for instance includes also esterases.

Esterases gained particular importance in the last years, since enzymes have

been found, so-called PETases, which are capable of polyethylene terephtha-

late (PET) degradation. The durability of such plastics in nature and dis-

tribution of microplastics in various habitats poses a problem for living or-

ganisms. The detailed understanding of the functioning of hydrolases could

support the design of novel enzymes, which are specifically optimized to di-

gest different kids of plastics. PETases are commonly serine hydrolases. In

Manuscript D I have shown, that the serine nucleophile is difficult to activate

in comparison to a cysteine, and hence specific characteristics are required for

the active site and its surrounding to facilitate a concerted mechanism. A con-

certed mechanism is needed, since a stepwise activation of the nucleophile

via an ion-pair intermediate with a deprotonated serine is not feasible due to

the high pK value of the serine. Indeed mutation studies showed, that the

mutation of the catalytic serine of a serine peptidase into a cysteine results

in a slightly active enzyme, which often shows just a minor activity against

already activated substrates. However, the mutation of the catalytic cysteine

of a cysteine peptidase into a serine causes complete loss of function, which

was also observed for the serine mutant C70S-NsPCS in Manuscript C.

It might be interesting to use specific cysteine peptidases, which recog-

nizes specific targets, and mutate the cysteine nucleophile into a serine, espe-

cially since a serine is less sensitive to the redox state of the environment. In

Manuscript D I performed calculations on the serine mutant of the cysteine

peptidase NsPCS. Based on my observations about a serine peptidase I sug-

gested possible mutations (see Manuscript D, NsPCS-mut4) for the inactive

serine mutant C70S-NsPCS to adapt the characteristics of a serine peptidase.

Reaction path calculations showed an energy barrier for NsPCS-mut4, which

is in the range of functioning serine peptidases. To test that suggestion, I

expressed and purified NsPCS-mut4. However, the introduced mutations

caused instability of the protein, which is why the expression product was

not soluble and had to be purified in denaturing conditions to have it un-

folded and therefore soluble. After purification NsPCS-mut4 was refolded

and the activity was measured with NMR but no activity was observed. No
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conclusion can be drawn directly if the introduced mutations will enable pep-

tidase activity in the calculated structure, since the structure itself is destabi-

lized and not folded properly. Despite the insolubility of NsPCS-mut4 after

expression, the unfolding and refolding experiments for wild type NsPCS,

which are described in Manuscript C also showed just around 10 % of suc-

cessfully refolded protein. Possible next steps would be to test the mutations

individually to account for their effects and to identify destabilizing muta-

tions to avoid the purification in denaturing conditions.

This thesis provides an overview of computational concepts for the anal-

ysis of enzyme mechanisms. It further shows the application of some pre-

sented computational concepts. First, in a complementing structural and

biophysical analysis of a protein combining experimental results and calcu-

lations. Second, in a theoretical study on the comparison of specific enzyme

mechanisms. In particular, I focus on the catalytic mechanisms of cysteine

and serine peptidases, of which many representatives have already been

extensively characterized. However, for a meaningful comparison of both

peptidase types a rather uncharacterized cysteine peptidase, NsPCS, was in-

vestigated as part of this thesis, since it corresponds well to the extensively

characterized serine peptidase trypsin. Although the principle mechanisms

of both peptidase types are known it was not understood how serine pepti-

dases facilitate a concerted mechanism and why it is required. My studies

give detailed insights about the geometrical and electrostatic requirements

for cysteine and serine peptidases, and contributes to the basic research of

this wide-spread type of catalytic reaction.
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Abstract

Understanding enzyme mechanisms is a major task to achieve in order to comprehend
how living cells work. Recent advances in biomolecular research provide huge amount
of data on enzyme kinetics and structure. The analysis of diverse experimental results
and their combination into an overall picture is, however, often challenging. Micro-
scopic details of the enzymatic processes are often anticipated based on several hints
frommacroscopic experimental data. Computational biochemistry aims at creation of a
computational model of an enzyme in order to explain microscopic details of the cat-
alytic process and reproduce or predict macroscopic experimental findings. Results of
such computations are in part complementary to experimental data and provide an
explanation of a biochemical process at the microscopic level. In order to evaluate
the mechanism of an enzyme, a structural model is constructed which can be analyzed
by several theoretical approaches. Several simulation methods can and should be com-
bined to get a reliable picture of the process of interest. Furthermore, abstract models of
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biological systems can be constructed combining computational and experimental
data. In this review, we discuss structural computational models of enzymatic systems.
We first discuss various models to simulate enzyme catalysis. Furthermore, we review
various approaches how to characterize the enzyme mechanism both qualitatively
and quantitatively using different modeling approaches.

1. INTRODUCTION

“Certainly no subject or field is making more progress on so many

fronts at the present moment than biology, and if we were to name the most

powerful assumption of all, which leads one on and on in an attempt to

understand life, it is that all things are made of atoms, and that everything

that living things do can be understood in terms of the jigglings and wig-

glings of atoms” (Feynman, 1964). These words were said by the well-

known physicist Richard Feynman in his famous Lectures on Physics now

more than 50 years ago. Until today, this sentence has not lost its validity

and is the basis for much of the biomolecular research, maybe today even

more than 50 years ago. Today, we are beginning to understand how the

interplay of atoms and molecules lead to the complex processes that we find

in living systems. Recent advances in genomics and systems biology help to

gain more and more insights into the molecular organizations of the cell,

which are nevertheless still too complex to allow a full overview of all

the biochemical processes at atomic detail. New techniques in structural

biology such as the free-electron laser allow to analyze structurally the kinet-

ics of molecular processes at an atomic level (Nango et al., 2016; Pande et al.,

2016). On the other hand, modern electron microscopy allows us to gain

insights into large molecular assemblies that were not accessible to structural

investigations a few years ago (Bartesaghi et al., 2015; K€uhlbrandt, 2014).
These new techniques complement traditional techniques of structural biol-

ogy such as X-ray crystallography and NMR. In the past, a structural char-

acterization of a protein was considered the final goal of an investigation.

Nowadays to gain a deep understanding of an enzymatic mechanism, a

structure is just the beginning. The structural information needs to be com-

pleted by other experimental information for instance from spectroscopy,

kinetics, or electrochemistry. Often, all these different aspects are difficult

to merge. Thus, it is important to approach the enzymatic mechanism also

from a theoretical side. With the help of modern methods from computa-

tional chemistry, it is possible to gain insights into enzymatic mechanisms

and to complete the picture.
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In order to understand experimental data, we build models of reality and

use these models in our theoretical considerations. Models are not only used

for theoretical calculations, but also the interpretation of experimental data

relies on models of the studied system. A model is a generalized hypothetical

description used for analyzing or explaining a system. It is a simplified repre-

sentation of a real system intended to enhance our ability to understand, pre-

dict, and control the behavior of the real system.When a model is made, there

are always approximations required. Therefore a model is always an idealized

representation of the real system. A model reproduces only certain aspects of

the real system, only those that are relevant for the properties under study.

Other aspects of the same real system may not be described equally well by

the model, since it was originally made for another purpose. A model should

be able to explain experimental data and make predictions about the outcome

of new experiments. In order to be able to make predictions, a model has to be

complicated enough to represent all important aspects of a real system at an

appropriate level of description.However, themore complicated and complex

a model is, themore difficult it becomes to interpret the results of the model. It

is therefore required that themodel is as complicated as necessary and notmore

complicated in order to give insights into the behavior of the real system.Most

importantly, a model should promote our understanding of nature.

A model of a real system is generally constructed in several steps (see

Fig. 1). The first and probably most important step is the construction of

the conceptual model. In this step, the real system is translated into an ide-

alized model system. Having in mind which properties of the system are

interesting, the features of the system that are important to reproduce these

properties are selected and it is decided how to use them to describe the

desired aspects of the system. This first step requires a detailed inspection

of the system that should be modeled in order to decide which details are

required for the desired representation.When only a qualitative understand-

ing is requested, the conceptual model is often enough to picture the system

and thus it represents the final goal of the investigation. Instead, when a

quantitative or semiquantitative understanding of the system is desired,

the conceptual model needs to be translated into a mathematical model.

A concrete physical theory is required to forge the mathematical model

designed in the conceptual model. If this mathematical model can be solved

analytically, the goal is reached and the behavior of the model system can be

compared with the behavior of the real system. However, the mathematical

models are often too complex to be solved analytically. In this case, the

mathematical model needs to be translated into a discrete mathematical
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model using methods from numerical mathematics. This discrete model can

then be implemented in computer programs. The computer model can then

be used to perform computer simulations and calculations using sets of

parameters. The resulting simulation data can be compared with experimen-

tal data and so the quality of the model can be judged. The quantities that

have been calculated from the model can lead to a better understanding of

the real system. Moreover, the analysis of the effect of well-defined changes

of the initial parameter can provide deeper insights into the behavior of the

real system.

One of the most basic model that is widely used in the description of

chemical systems is the Born–Oppenheimer approximation according to

which one can separate the motion of nuclei from the motion of the elec-

trons. This approximation allows us to describe molecular structures by

defining the nuclear coordinates and to speak about different electronic

states of a molecule. One fundamental concept that is used in molecular bio-

physics is the molecular energy landscape which describes the energy of a

molecular system with N atoms in dependence of its 3N coordinates. This

energy landscape contains minima which represent stable states of the sys-

tems, (first-order) saddle points which represent transition states of chemical

reactions, and minimum energy paths which represent the trajectory along

which chemical reactions occur. A large part of theoretical biochemistry is

concerned with exploring this energy landscape and to extract different kind
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Fig. 1 Building theoretical models of real systems. This scheme depicts the stages of
building theoretical models that can help to analyze real systems. These theoretical
models are abstractions of the real systems that help to understand the behavior of
the system. Mathematical modeling allows a quantitative comparison between the real
system and the model.
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of data from it. In this article, we review some of the most important

methods to explore this energy landscapes and to explain how they can

be used to explore enzymatic mechanisms.

2. STRUCTURAL MODELS

Themost computational enzymology techniques construct a structural

model of the enzyme in question, usually using its experiment-derived 3D

structure as a starting point. A structural model provides a way to calculate

energy of the given structure, by using various approximations of the real

picture to stay computationally feasible. Based on energy differences

between different states within structural computermodels of enzymes, ther-

modynamics, and kinetics of enzyme catalysis can be addressed.With the use

of structural models (Fig. 2), researchers aim to track the events within the
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Fig. 2 Structural models for the simulation of catalytic events within enzymes. The ver-
tical axis represents an ascending gradient from explicit to implicit models. The system
description lose the detailed (explicit) character in favor of averaged (implicit) descrip-
tion of physical properties. The horizontal axis shows the information that can be
obtained from the models, and together illustrates the size of the biological system,
which is computationally feasible to treat. Themodel bars indicate possible applications.
The fading areas show the potential of future developments enabled by improvements
of algorithmic and computational power. All models can be combined into the so-called
hybrid or multiscale models, which treat different parts of the biological systemwith the
appropriate method, to enhance the effectiveness of the simulation and the quality of
results.
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enzyme that lead to catalysis. Models used to study enzyme mechanisms

can be atomistic, i.e., they explicitly describe the behavior of electrons

and nuclei, or pseudo-atomistic, i.e., they treat groups of atoms as one

entity. In contrast to these particle-based models, continuum models

describe a system in terms of continuous properties assigned to the space.

Typical continuum models in enzymology are implicit solvent models.

Their aim is to describe the average properties of a solvent environment,

instead of discrete contributors of its parts. In this section, we briefly discuss

various types of structural models and their combinations to simulate

enzymatic activities.

2.1 Continuum-Electrostatics Models
Since most of the effects in biochemistry are dominated by electrostatics,

a pure electrostatic model can be used to satisfactory describe many features

of biomolecular systems while being computationally efficient. The most

commonly used continuum-electrostatics model in biochemistry relies on

the Poisson–Boltzmann equation. For a recent review the reader is referred

to Ullmann and Bombarda (2014). The basic idea of this continuum-

electrostatics model is to describe the protein as a low-dielectric region,

which is embedded in (aqueous) solvent, described as a high-dielectric

region. The charge distribution of the protein is described by a fixed charge

distribution in the low-dielectric region, which is given by the molecular

structure of the protein. The charge distribution of the protein is modeled

by (fractional) point charges that are placed at the center of the atoms. The

dissolved ions are represented by a Boltzmann-distributed charge density.

The boundary of the low-dielectric region is defined by the solvent acces-

sible surface of the protein.

The Poisson–Boltzmann equation is usually solved numerically

(Honig & Nicholls, 1995; Warwicker & Watson, 1982). The solution of

the Poisson–Boltzmann equation can be expressed as a potential ϕ(r), that
is, composed of two contributions:

ϕðrÞ¼
XM
i¼1

qi

4πεpjr� r0ij
+ϕrf ðrÞ (1)

First, the Coulomb potential at the position r caused byM point charges qi at

positions r0i in a mediumwith a permittivity εp, and second, the reaction field
potential ϕrf(r), arising from the M point charges qi and the dielectric
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boundary between the protein and the solvent, as well as from the distribu-

tion of ions in the solution. Electrostatic energy can be obtained by integrat-

ing the potential distribution over the space.

Continuum-electrostatics models such as the above described Poisson–
Boltzmannmodel have various applications. Themost straightforward is cal-

culation of solvation energies and visualization of electrostatic potentials

(Baker, Sept, Joseph, Holst, & McCammon, 2001). More advanced appli-

cations allow to calculate energies of different protonation and oxidation

microstates of the protein, as well as ligand binding energies and many other

applications (Ullmann et al., 2008). Furthermore, the Poisson–Boltzmann

model or other popular continuum models such as COSMO (Klamt &

Sch€u€urmann, 1993) are often combined with more detailed models to sim-

ulate solvent effects in a computationally affordable way (Chen, Noodleman,

Case, & Bashford, 1994; Li, Nelson, Peng, Bashford, & Noodleman, 1998;

Liu et al., 2004).

2.2 Quantum-Mechanical Models
The most detailed structural models that treat both electrons and nuclei

explicitly are based on quantum mechanics (QM). In QM models, the

energy of the structure is derived from solving an approximate Schr€odinger
equation. One way is to employ ab initio molecular orbital wave function

approaches such as the single-determinant Hartree–Fock (HF) method

(Cramer, 2004). The major drawback of the HF method is the mean-field

treatment of electron repulsion referred to as the electron correlation prob-

lem. Møller–Plesset theory (Møller & Plesset, 1934) addresses the electron

correlation effects by means of Rayleigh–Schr€odinger perturbation theory.

The most common second-order version is called MP2 (Head-Gordon,

Pople, & Frisch, 1988). In coupled cluster (CC) methods (�Cı́žek, 1966),
multielectron wave-functions are constructed using the exponential cluster

operator to account for the electron correlation. The latter two more accu-

rate approaches are, however, still very costly for larger systems. For com-

plex biological systems, fast semiempirical (SE) approximations of the

Hartree–Fock theory have become very popular in the past and are still used

and developed up to now (Stewart, 2013; Řezáč & Hobza, 2012;

Yilmazer & Korth, 2015). The SE methods achieve considerable calculation

speed-up by parameterizing various parts of the HF theory in order to repro-

duce experimental or high-level ab initio QM results.
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Density functional theory (DFT) is an alternative ab initio approach that

has become very popular for biological systems due to its favorable price/

performance ratio (van Mourik, B€uhl, & Gaigeot, 2014). Instead of

searching for a multidimensional wave-function that describes the position

of every electron, the whole problem is solved from the point of view of

total electron distribution (density) in the space. The electron correlation

is taken into account in DFT methods, albeit on approximate level. In addi-

tion, hybrid DFT–HF methods (Becke, 1993; Zhao & Truhlar, 2008)

combine the best of the both worlds and have turned out to be very suc-

cessful (Bryantsev, Diallo, Van Duin, & Goddard, 2009). Also DFT has a

parameterized alternative called density-functional tight-binding (DFTB).

DFTB is designed to reproduce DFT results rather than fit empirical data

like SE methods (Elstner, 2006). QM methods play an inevitable role in

computational studies of enzyme-catalyzed reactions, since some amount

of quantum-mechanical treatment or QM-based parameterization is always

needed in the active site.

Even with the enormous growth of computational power in last decades,

biological systems such as enzymes can hardly be treated in the full extend by

QM methods. Successful attempts have been made to simulate whole pro-

teins purely by QM methods (Cole & Hine, 2016; Todorovi�c, Bowler,
Gillan, & Miyazaki, 2013). Nevertheless, in order to make the calculations

feasible, researches often reduce the QMmodel of the enzyme to the active

site residues only, by constructing a so-called cluster model. Continuum sol-

vent is used to mimic the protein as a low-dielectric environment beyond

the shell of the active site residues. Cluster models of enzyme active sites

have been used to elucidate the mechanisms of various enzymes, including

difficult cases such as radical enzymes (Feliks & Ullmann, 2012) or metallo-

enzymes (Li & Ryde, 2014; Manta, Raushel, & Himo, 2014). Although a

rather simple approach, due to the absence of various sources of errors that

more complex methods may introduce, the cluster models retain their role

in computational enzymology (Georgieva & Himo, 2010). Considering the

influence of the protein environment, the continuum solvent might be rep-

laced by the protein residues simulated on an empirical level, see QM/MM

approaches later.

2.3 Empirical Molecular-Mechanical Models
Due to the enormous computational cost of the QM approaches, alternative

empirical methods that use principles of classical physics have been
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developed for treatment of complex systems. These methods are generally

referred to as molecular mechanics (MM). In classical MM models, atoms

are represented as spheres connected by springs. Empirical parameters have

been derived to reproduce the expected behavior of biomolecules. These

include spring constants for bond lengths, angles, and torsion angles as well

as nonbonded interaction parameters such as van der Waals radii and partial

atomic charges. The whole set of MM parameters is called force field (FF).

The total potential energy of a system is calculated as a sum of all bonded and

nonbonded contributions:

V ðR!Þ¼
X
bonds

Kbðb� b0Þ2 +
X
angles

Kθðθ�θ0Þ2 +
X

torsions

Kφð1+ cosðnφ�δÞÞ

+
X

improper

torsions

Kωðω�ω0Þ2 +
X

nonbonded

pairs

εmin
ij

Rmin
ij

rij

 !12

�2
Rmin
ij

rij

 !62
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lennard�Jones

potential

+
qiqj

4πε0εrij|fflfflfflffl{zfflfflfflffl}
Coulomb

law

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
(2)

where b is the bond length, θ is the bond angle, ϕ the torsion angle, ω the

improper torsion angle. The 0 indices represent the equilibrium values of

given parameters and K the respective spring constants. Van der Waals

interactions are represented by the Lennard–Jones potential where Rmin
ij is

the distance energy minimum position, rij is the distance between two

atoms and εmin
ij is the interaction constant. Electrostatic interactions are

described by the Coulomb law where qi and qj are the partial charges of

the interacting atoms, rij is their distance and ε0ε is the environment

permittivity.

Several empirical MM force fields for biomolecules have been devel-

oped over the years, e.g., CHARMM (MacKerell et al., 1998), AMBER

(Cornell et al., 1996), GROMOS (Oostenbrink, Villa, Mark, & Van

Gunsteren, 2004), or OPLS (Jorgensen, Maxwell, & Tirado-Rives,

1996). MMmodels proved to be very useful especially for studying protein

dynamics by molecular dynamics (MD) simulations. In context of enzyme

catalysis, pure MMmodels can be used to study conformational changes or

substrate binding dynamics (Costa, Batista, Bisch, & Perahia, 2015;
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Gilson & Zhou, 2007). When one wants to model details of a catalytic

mechanism in the enzyme active site, however, the conventional MM

models are insufficient. They are, however, often used to model the non-

reactive parts of the enzyme in hybrid QM/MM approaches, as described

below.

Nevertheless, attempts have been made to allow for chemical reactivity

within the empirical force fields without employing QM principles. These

approaches are referred to as reactive force fields. One of the most widely

used reactive force field, that has been also utilized for biological systems,

is called ReaxFF (Senftle et al., 2016; van Duin, Dasgupta, Lorant, &

Goddard III, 2001). In ReaxFF, the empirical energy equation (Eq. 2) is

modified to follow a more complex bond order formalism rather than the

balls-on-springs formalism. Although reactive force fields have been origi-

nally developed for material chemistry applications (Liang et al., 2013), first

attempts have been made to model peptides, small proteins (Golkaram,

Shin, & van Duin, 2014; Monti et al., 2013), and DNA (Verlackt et al.,

2015) using ReaxFF.

Empirical force fields are popular because of their speed and their often

realistic description of molecules, which is a consequence of extensive

parameterization to reproduce experimentally derived structures and behav-

iors. It has been shown that MMmethods are able to reproduce experimen-

tally derived molecular structures, except for nonstandard regions (Kulik,

Luehr, Ufimtsev, &Martı́nez, 2012). In such regions, ab initio QMmethods

consistently perform better. Despite this benefit, as already mentioned

above, full ab initio studies of proteins are restricted to rather small systems

(Kulik et al., 2012). Instead, hybrid approaches (referred to as QM/MM)

have been developed to combine accurate ab initio models and fast empirical

models.

2.4 Hybrid QM/MM Models
In QM/MM, the active site, where the reaction takes place, is treated on

QM level, while the rest of the enzyme is modeled by an empirical MM

force field. Since its development in 1976 (Warshel & Levitt, 1976),

QM/MM has become the most popular approach to study enzymatic reac-

tions (Senn & Thiel, 2007, 2009).

The key feature that QM/MM methods have to deal with is the inter-

action between QM and MM regions. For the description of a QM/MM

system, two energy schemes evolved, a subtractive scheme and an additive
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scheme. The energy in the subtractive QM/MM scheme (Eq. 3) is obtained

by an MM calculation of the entire system (S) with the inner part (I) cut out

and replaced by a QM calculation.

Esub
QM=MM

¼EMMðSÞ+EQMðIÞ�EMMðIÞ (3)

The QM energy of the quantum mechanically treated inner part (EQM(I)) is

added to theMM energy of the entire system (EMM(S)), but theMM energy

of the inner part (EMM(I)) has to be subtracted to avoid double counting.

The most widely used approach that employs the subtractive scheme is

ONIOM (Maseras & Morokuma, 1995; Svensson et al., 1996), which is

capable of combining n layers of any implemented QM or MM approach.

The potential drawback of the subtractive scheme is that a proper MM

description of the active site region is required and this is often difficult

to achieve for substrate or enzyme cofactors. In the additive QM/MM

scheme (Field, 2007), the MM energy is only calculated on the outer system

(O) instead of S (Eq. 4). The QM energy is added and additionally, a cou-

pling term (EQM/MM(I,O)) is introduced, which treats the interaction of the

QM and the MM part.

Eadd
QM=MM

¼EMMðOÞ+EQMðIÞ+EQM=MMðI ,OÞ (4)

The EQM/MM(I, O) term itself is composed of van der Waals, electrostatic,

and bonded contributions. Van der Waals interactions are fully described on

theMM level. The common description with the Lennard–Jones potential is
also applied to QM atoms. Therefore it is necessary to have suitable param-

eters for all QM atoms. Since the main impact of van der Waals interactions

occurs in a short range, atoms near the boundary should be well para-

metrized. Thus, changes of QM atom properties during catalysis have no

meaningful influence on EQM/MM(I, O), as long as they appear not close

to the boundary. In proteins, important catalytic contributions are mediated

by electrostatic interactions. All charges and partial charges cause electro-

static forces. Within one model, the interactions of charges are well defined,

but the coupling between two models needs to be adapted.

The electrostatic term within EQM/MM(I, O) describes the coupling

between the QM charge density and the MM charge model. One efficient

but simple method to treat electrostatic interaction is mechanical embedding

(Bakowies & Thiel, 1991), where the MM model is directly applied to the

QM region. Since the charge density of the QM region is then represented
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within the MMmodel, the MM region can react to it. A major drawback is,

however, that the QM calculation is performed in the absence of the elec-

trostatic MM environment, thus the atoms in the QM part cannot react to

their full environment. But especially this electrostatic environment is cru-

cial for enzymatic catalysis (Zhang, 2013). The electrostatic embedding

approach (Bakowies & Thiel, 1991) treats this important interaction by pro-

viding the electrostatic environment for the QM calculation. The electro-

static environment appears as a one-electron term in the QM Hamiltonian.

Thus the charge distribution in the QM region is polarized according to the

MM charges. Despite the higher accuracy in the calculation, charge leakage

effects can occur at the boundary of the QM region, where the QM charge

density is polarized in immediate proximity byMMcharges. In both embed-

ding schemes the MM charges are rigid and do not react to the QM charge

density. In a polarized embedding scheme the polarization happens in both,

the QM region direction and the MM region direction. For the polarization

of theMM region, a polarizable force field has to be applied on theMM level

(Thompson & Schenter, 1995). This approach of polarized embedding is in

general the most accurate, though computational demanding one.

In themajority of QM/MM simulations of enzymes, one has to deal with

covalent bonds on QM/MM boundary (e.g., bond between an amino acid

side chain and the protein backbone) in addition to the nonbonded inter-

actions. The boundary QM atom valency needs to be saturated to allow

for proper electronic structure calculation. The simplest approach to treat

the QM/MM boundary is the link atom approach (Field, Bash, &

Karplus, 1990; Singh & Kollman, 1986), where the QM atom is capped

by an auxiliary atom (usually hydrogen) that is constraint in the direction

of the QM/MM bond. This generates a problem of QM density over-

polarization near the boundary that has to be treated. Alternative approaches

are based on frozen hybrid orbitals (Amara, Field, Alhambra, & Gao, 2000;

Th�ery, Rinaldi, Rivail, Maigret, & Ferenczy, 1994). A frontier atom is cho-

sen in theQM/MMboundary and a set of suitably oriented localized orbitals

is placed on it. This treatment allows to converge on more proper electronic

structure in the boundary region. On the other hand frozen orbital appro-

aches are more technically demanding and require calibration for the specific

bond and QM method.

A conceptually different QM/MM approach that has been used to study

enzyme catalysis is the empirical valence bond (EVB) (Kamerlin &Warshel,

2010, 2011; Warshel, 2003). EVB uses the valence-bond (VB) approach for

quantum description of the enzyme active site. The QMmethods discussed

88 Martin Culka et al.

Manuscript A 71



so far are based onmolecular orbital theory that combines the atomic orbitals

into a molecular orbital wave-function. The VB methods instead describe

the system as a linear combination of all possible states where electrons

occupy localized orbitals. In EVB, the stationary points along the reaction

path are described by anMM force field, while the transitions between them

are treated by an SE valence-bondQM approach (Shurki, Derat, Barrozo, &

Kamerlin, 2015). Thus for every reaction step simulated by EVB, a set of

empirical parameters has to be derived. This is usually done on a model reac-

tion in solution or in gas phase, where the parameters are fitted to reproduce

the experimental data or ab initio QM results (Åqvist & Warshel, 1993).

Once well calibrated, extensive conformational sampling along the reaction

pathway can be achieved in reasonable time with EVB in order to get a

proper free energy landscape (see Section 3.3.2). On the other hand, the

major disadvantage of EVB in comparison to common QM and QM/

MM methods is the need of specific calibration for every reaction step. In

fact, prior knowledge of the reaction mechanism is required to perform

an EVB simulation, while unknown mechanism alternatives can be discov-

ered within conventional ab initio QM and QM/MM models.

2.5 Pseudo-Atomistic Models
Although the computational and algorithmic power is increasing, modeling

of larger protein systems remains difficult. Bridging between molecular

behavior and biological system function requires different levels of abstrac-

tion to manage the huge amount of data in a reasonable time. Pseudo-

atomistic models provide one level of abstraction by introducing pseudo

atoms, which comprise groups of atoms, several amino acids or even whole

molecules. These pseudo atoms are represented as one entity with all atoms

within such an entity considered to be frozen. They are modeled to simulate

the essential or averaged behavior of such entities and their interactions. Pure

pseudo-atomistic models contain merely homogeneous or heterogeneous

pseudo atom species. Besides these pure models, multiscale models are deve-

loped, which combine atomistic resolution of some molecular parts with

pseudo-atomistic simplification. Because of the simplification, to reduce

multiple individual atoms to single entities, comparable to coarser grains,

pseudo-atomistic models are referred to as coarse-grained (CG) models.

The advantage of a CG model is, that the degrees of freedom are decreased.

Therefore larger systems can be studied and longer time scales can be reached

than using classical atomistic models. In the first application of such a
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pseudo-atomistic model on proteins (Levitt & Warshel, 1975), it is pointed

out that this simplification brings additional benefit in the interpretation of

results. With the reduction in degrees of freedom, the energy landscape for

the system is smoothened. That is, less important movements or details are

averaged, and essential features can be focused. Since CG models allow the

treatment of bigger biological systems, and can simplify the analysis, their

development was increasing in the last years, as some recent reviews show

(Ingólfsson et al., 2014; Kar & Feig, 2014; Kmiecik et al., 2016; Meier et al.,

2013; Noid, 2013; Riniker, Allison, & van Gunsteren, 2012; Saunders &

Voth, 2013).

The concept of a coarse-grained model is a reduction of degrees of free-

dom. This reduction is achieved by replacing several individual atoms by

pseudo atoms. For an optimal simulation it is important that the coarse-

grained system keeps the overall character of the all-atom system. Therefore

it is necessary to provide rules for the coarse-grained particles to behave.

Analogue to the all-atom MM force fields described above, the behavior

is evaluated by an empirical potential energy function. Therefore a protein

is represented as an elastic network of coarse-grained beads connected to

each other by elastic springs. In a simple case, each bead represents one

amino acid. Such a representation is useful to investigate domain motions

in large systems, where longer time scales have to be achieved (R€ucker,
Wieninger, Ullmann, & Sticht, 2012). A harmonic bond potential is applied

to each pair of beads, to allow them to move with respect to their surround-

ing. The potential energy function (Eq. 5) is a power series expansion near a

minimum structure r0, represented as a 3N dimensional Cartesian coordi-

nate vector.

V ðrÞ¼V ð0Þ+rV ðrÞ+ 1

2
rTHr (5)

All movements of the system can be evaluated relative to that minimum. The

constant termV (0) describes the energy at the minimum position and can be

set to zero. The first derivative of the potential V (r) is the gradient, which is

zero at a minimum. The elastic network potential simplifies to the second-

order term, which is a sum of pairwise potentials, with the second derivative

matrix H providing the force constants.

In recent years more and more complex models have been developed,

which better and better represent the nature of biological systems

(Tozzini, 2005). A further development in the treatment of big biological

systems is the combination with more accurate methods, such as MM or
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QM/MM. Such so-called multiscale or multiresolution models are suitable

for the description of catalytic effects within a biological relevant surround-

ing. In a recent study (Sokkar, Boulanger, Thiel, & Sanchez-Garcia, 2015)

chorismate mutase and p-hydroxybenzoate hydroxylase were investigated

with a QM/MM/CG approach, by modeling the catalytically relevant part

of the enzyme in QM, the remaining amino acids in MM and the sur-

rounding solvent in CG. In such multiscale models it is important to define

efficient data exchange between the different potentials. A proper exchange

between the different resolutions becomes evenmore important in the adap-

tive resolution multiscale models (Heyden & Truhlar, 2008; Shen & Hu,

2014; Zavadlav, Melo, Marrink, & Praprotnik, 2015). Here, specific regions

are defined, similarly to the QM/MM/CG approach, but with connecting

buffer zones, which enable the entering particles to change their resolution.

Such approaches incorporate all benefits of the multiscale models and the

flexibility to adapt to major changes within the modeled biological system.

A detailed list of CG models and available programs with an extensive

description of the current state of the art can be found in a recent review

(Kmiecik et al., 2016).

3. CALCULATING ENZYMATIC MECHANISMS

As discussed in the introduction, in computational enzymology one is

interested in explaining macroscopic thermodynamic and kinetic data

derived from experiment by microscopic models. In Section 2, we reviewed

types of structural model environments to study the enzyme catalysis. In this

section, we review how to derive thermodynamic and kinetic parameters

within these models.

3.1 Thermodynamic Properties of Biological Systems
Each simulation of biological systems requires the analysis of its thermo-

dynamic equilibrium states. At equilibrium, no driving forces act on the sys-

tem. Thus, these states are thermodynamically stable. The relative stability of

an initial state and a final state, for instance, allows to predict, if a reaction is

endergonic or exergonic.

The direction in which a system changes can be evaluated by changes in

free energy. Dependent on the simulation, the Gibbs free energyΔG (Eq. 6)

at constant temperature T and pressure P, or the Helmholtz free energy ΔA
(Eq. 7) at constant temperature and volume V can be calculated. ΔA is

comprised of the internal energy ΔU of the system, and temperature scaled
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entropy ΔS, a measure for thermally accessible configurations. For ΔG the

system energy is the enthalpyΔH, which is comprised of internal energyΔU
of a system and the work for its volume expansion PV at adjusted pressure.

Since experiments are mainly performed at constant pressure, we will here-

after refer to free energy as the Gibbs free energy ΔG.

ΔG¼ΔH�TΔS¼ΔU +PV �TΔS (6)

ΔA¼ΔU�TΔS (7)

The computational prediction of thermodynamic properties is based on the

analysis of ensembles. An ensemble is a large number of virtual copies of a

system with identical macroscopic properties. To obtain reasonable ensem-

bles, sampling methods such as MD approaches or Monte Carlo (MC)

approaches are applied (Paquet & Viktor, 2015). While MD approaches

are usually based on Newtonian mechanics, MC methods are based on

repeated random sampling using certain thermodynamics principles. MD

simulations are used to investigate the time evolution of biological systems.

Applying Newton’s second law of motion (Eq. 8) the movements of atoms

in a system are described with the classical equation of motion.

Fi¼�riE¼miai (8)

The force Fi acting on atom i with mass mi determines its acceleration ai,

while the force is defined by the negative gradient of the potential energy

function riE with respect to the coordinates of atom i. By integrating

the equations of motion for all atoms over small time steps, it is possible

to obtain their time dependent positions, just providing the initial positions

and the initial velocities. The initial positions are directly given by the coor-

dinates of the atoms, and the initial velocities are usually distributed ran-

domly with a certain probability distribution. Only the acceleration is

needed, which can be obtained by the gradient of the potential energy func-

tion and the atomic mass (Eq. 8). The velocities of the atoms define the

temperature, which is an important thermodynamic property in MD simu-

lations. An equilibration simulation is performed until the system reaches an

equilibrium state, which is a global minimum on the energy surface. During

this process it is important that the system has enough time and energy

(i.e., temperature) to escape local minima. The system can in some cases any-

way remain kinetically trapped in a local minimum. Annealing simulations

start at higher temperature to overcome such energy barriers and gradually
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decrease it to the desired temperature, allowing the system to reach an equi-

librium state.

In contrast to MD simulations, statistical approaches, such as Monte

Carlo sampling, are independent of force evaluation. The sampling is

based on random movements of the system from a set of possible move-

ments, while new configurations are accepted in the case of lower energy,

ΔE < 0. Configurations with higher energy are accepted according to the

Metropolis criterion, which ensures importance sampling of the microstates

by a Boltzmann factor expð�ΔE =kBT Þ. Monte Carlo simulations create

ensembles by energetically evaluating random movements of a system with

the possibility to permit less favorable movements. In contrast to MD,

Monte Carlo moves are not bound to small motions that can happen during

the time integration step. Thus in Monte Carlo, it is often easier to over-

come energy barriers, which prevents the system to be kinetically trapped.

On the other hand in standard Metropolis Monte Carlo, dynamic properties

of the system are not accessible, since the time dimension is not considered in

Monte Carlo. If only sampling is considered, the same level of convergence

is achieved faster by Monte Carlo simulations than with MD, provided

efficient Monte Carlo moves are chosen (Jorgensen & Tirado-Rives,

1996). Monte Carlo sampling can also predict thermodynamic properties

such as preferred protonation states or redox states under specific environ-

mental conditions such as pH, solution redox potential, or membrane

potential (Bombarda, Becker, & Ullmann, 2006; Calimet & Ullmann,

2004; Ullmann, 2000; Ullmann & Ullmann, 2012). These are equally

important properties to define a state, which can be used for further kinetic

analysis of biological systems.

3.2 Kinetic Properties of Biochemical Systems
Once thermodynamics of the stable conformations and protonation or oxi-

dation states of the enzyme are identified, the interest of a computational

enzymologist turns to kinetic properties. Enzyme kinetics aims at tracking

the rates of chemical or physical processes in the enzyme. In computational

enzymology, discrete reaction steps are first addressed within a structural

model before the rate of overall reactions can be related to experimental

measurements.

Reaction rate is characterized by a temperature-dependent rate constant,

which can be viewed as a probability factor for overcoming a free energy
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barrier between two stable states of the system (Fig. 3A). The reaction barrier

can be related to the reaction rate by the Arrhenius law:

kðTÞ¼A exp �βΔG 6¼� �
(9)

where ΔG 6¼ is the free activation energy, β is 1 =kBT (kB is the Boltzmann

constant, T is the absolute temperature), and A is a preexponential factor.

Eq. (9) is further adopted to theoretically describe rates of different processes

involved in the enzyme function.

The first category are long-range electron transfer reactions, which can

be regarded as nonadiabatic processes. A Marcus model of two harmonic

potentials representing an initial and a final electronic configuration

(Fig. 3B) can be used to describe the reaction coordinate. The free activation

energy can be calculated from reaction free energy ΔG° and reorganization
energy λ, which is the energy needed to perform the structural changes

within the system:

ΔG 6¼ ¼ ðΔG°+ λÞ2
4λ

(10)

The reaction rate constant (9) can then be adopted for electron transfers

using Marcus theory for the activation energy and Fermi’s golden rule

(Marcus & Sutin, 1985) for the preexponential factor:

kET ðTÞ¼ 2π

ℏ
H2

DA

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πβ�1λ

p exp �β
ðΔG°+ λÞ2

4λ

 !
(11)

A B

Fig. 3 (A) Reaction coordinate for interconversion between two stable states is thermo-
dynamically characterized by reaction free energy ΔG° and kinetically by the free acti-
vation energy ΔG6¼. (B) Marcus model of two parabolas representing the two stable
electronic configurations of the system. Reaction free energy ΔG° and the reorganiza-
tion energy λ used for calculation of the free activation energy ΔG 6¼ of the electron
transfer are highlighted.
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where ℏ is the reduced Planck constant and H2
DA is the electronic coupling

between the reactant state and the product state, which, to a good appro-

ximation, decreases exponentially with the distance between donor and

acceptor (Gamow, 1928; Gray & Winkler, 2005). Marcus theory for

instance in the form of the Moser–Dutton ruler (Moser, Keske,

Warncke, Farid, & Dutton, 1992; Page, Moser, Chen, & Dutton, 1999)

can be combined with a microstate model used for calculating microscopic

redox potentials (Ullmann, 2000), and an electrostatic model for calculating

reorganization energies (Sharp, 1998) in order to calculate charge transfer

energies in complex systems. This approach was successfully applied within

continuum-electrostatics models to describe electron transfer reactions in

complex systems such as photosynthetic center (Becker, Ullmann, &

Ullmann, 2007; Bombarda & Ullmann, 2011) which was recently reviewed

(Ullmann, Mueller, & Bombarda, 2016).

The second category, which will be discussed more extensively here, is

chemical reactions occurring in the enzyme active site that can be described

by transition state theory (TST). TST assumes that the free activation energy

ΔG 6¼ can be derived from quasi-equilibrium between the reactant and tran-

sition states. Thus, intermediate structures along the reaction coordinate

(Fig. 3A) including the transition state structure are explicitly analyzed.

The reaction rate constant (Eq. 9) can be expressed by Eyring–Polanyi
equation:

kðTÞ¼ ζβ�1h�1exp �βΔG 6¼� �
(12)

where h is the Planck constant and ζ in the transmission coefficient which

corresponds to the probability of being reactive once the transition state is

reached. Even though the transmission coefficient has to be considered in

general (i.e., for quantum tunneling effects), the lowering of ΔG 6¼ is a dom-

inant effect of enzymes in catalysis (Gao et al., 2006) and majority of com-

putational enzymology studies focus on it. To get the rate-limiting energy

barrier of a chemical process, one has to investigate the reaction path

between substrate and product state. On the basis of the models described

in the previous section, potential energy of any conformation in a mole-

cular structure (here enzyme–substrate complex) can be calculated. When

searching for the reaction path, the 3N-dimensional energy function (with

N the number of atoms of the system) is portrayed as a potential energy sur-

face (PES). A PES can be viewed as a landscape with valleys and mountain

passes, which correspond to stable states and easiest transition pathways

between them. A reaction coordinate of an elementary step follows the path
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from a minimum along the shallowest ascent toward the transition state and

from there along the deepest descent toward the product state. Most of the

chemical reactions are composed of several elementary steps forming

together the minimum energy path (MEP) from reactant to product (Fig. 4).

Many methods have been developed to identify reaction paths and to

distinguish among mechanism variants based on corresponding energy

profiles. In general, one has to first identify the mechanistic options and then

get corresponding accurate energy profiles. At the beginning of a computa-

tional kinetic study, optimization techniques are usually used to find minima

and saddle points on the PES, which together define MEPs. The obtained

energy profile corresponds to the enthalpic part of the free energy (Eq. 6). If

the enthalpic differences among mechanism variants are big, one can already

make qualitative conclusions about the preferred mechanism. The entropic

part of Eq. (6) has to be considered to obtain proper reaction free energy

profile at finite temperature in general, although the effect on the reaction

barrier height is not always that profound (Kazemi, Himo, & Åqvist, 2016).

The entropy-corrected PES is referred to as free energy surface at certain

temperature. To get a quantitative free energy surface, one needs to perform

extensive sampling along the reaction path, which can be extremely costly or

even prohibitive in complex structural models. Therefore, the sampling is

usually performed only when the most probable mechanism is identified

on PES.

In the next part, we first discuss methods to identify a reaction path on

PES. We then turn to the sampling methods that aim to get full free energy

reaction profiles. In the end, we return to the preexponential transmission

coefficient of Eq. (12) and discuss the role of nuclear quantum effects.

Reaction coordinate
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Pro
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Pro
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Fig. 4 Reaction path can be imagined as a trail through an energy landscape where
basins represent the stable states and the passes represent the transition states. The
path from substrate (Sub) to product (Pro) usually involves several intermediate (In)
states. The energy change plotted against the position on the path is referred to as reac-
tion profile.
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3.3 Mechanic and Energetic Properties of Molecular
Reaction Paths

Computational investigation of an enzyme mechanism begins with a struc-

tural mechanistic model of the enzyme. As described earlier, stable experi-

mentally determined structures corresponding to minima on the PES are

commonly used as starting states. Approaches for searching reaction paths

can be categorized as single ended or double ended. Double-ended appro-

aches require the knowledge of two states, usually the initial state and the

final state, to search for mechanistic possibilities in between. In most cases,

however, one first explores the PES with a single-ended method and then

loads the first path estimate into a double-ended method for further

refinement.

3.3.1 Methods to Explore and Investigate Mechanistic Possibilities
3.3.1.1 Single-Ended Reaction Path Search Methods
The simplest single-ended approach is the adiabatic mapping of the PES.

Based on chemical intuition and experimental data, a set of movements that

lead toward a desired final state is applied. A function characterizing a desired

movement is called collective variable (CV). For instance, in a cysteine pro-

tease, the catalytic cysteine has to be deprotonated by a neighboring histidine

before it can attack the peptide bond of the substrate. Therefore, a first col-

lective variable to be investigated is the distance between the thiol hydrogen

of the cysteine and the closest nitrogen of the histidine. During adiabatic

mapping along such a CV, the distance is shrunk in discrete steps. The

enzyme structure is optimized at each step, while the CV is biased at given

position by a harmonic potential. The mapping finishes by reaching the

desired product state and the energies of the discrete scanning steps represent

a rough potential energy reaction profile. The energy maxima and minima

along this reaction profile should be further optimized without bias. Minima

can be optimized by standard gradient-based energy minimization routines

(Leach, 2001). Maxima can be refined to first-order saddle points using

the eigenvector following method (Cerjan, 1981) that requires calculation

of the Hessian matrix of second derivatives. The largest negative eigenvector

of the Hessian points in direction of the reaction path and thus can be

followed uphill to reach the saddle point. Since the saddle point is hard

to reach in one step, the Hessian has to be updated. Although various

approximate techniques exist (Munro & Wales, 1999; Wales & Walsh,

1998), the usage of purely single-ended eigenvector following for big sys-

tems with many degrees of freedom may be both unreliable and computa-

tionally unfeasible.
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Alternatively, the single-ended growing string method (Zimmerman &

Bowman, 2016) can be used to locate the nearest saddle point and next stable

intermediate state. This method, like double-ended methods discussed fur-

ther below, generates a chain of structures to sample the reaction coordinate.

Unlike its double-ended sister, which uses both initial and final state struc-

tures for the chain generation, the single-ended growing string method uses

a set of collective variables to indicate the initial direction from the initial

state. Once, a saddle point estimate is located, the eigenvector following

method is used to refine it. Interestingly, the single-ended growing string

method can suggest the CVs automatically and thus explore various reaction

possibilities from a given initial state.

In contrast to the above described PES mapping approaches, the reac-

tion mechanism can be also explored at finite temperature without knowl-

edge of the final state structure. In principle, sufficiently long MD

simulations of the initial state at physiological temperature should lead

to a reaction. Current computer power is, however, not sufficient to per-

form such a long simulation, especially for models with quantum essence

that are required in most cases. Fortunately, MD simulations can be driven

along predefined CVs in a similar way as in adiabatic PES mapping. One

popular technique is called umbrella sampling (US) (Torrie & Valleau,

1977). A harmonic (umbrella) bias potential is applied in order to restrain

the MD simulation around a certain value of the CV. The value of the CV

can be changed in discrete steps, while a sufficiently long biased MD sim-

ulation is performed for each value till the desired final state is reached.

Another elegant method how to sample reaction possibilities at finite tem-

perature in accessible time is called metadynamics (Laio & Parrinello,

2002). In this method, Gaussian bias potential “hills” are added to the

PES in certain time intervals along the values of a CV that has been already

visited in the MD trajectory. In this fashion, the MD is discouraged to

revisit already sampled CV values, and thus the simulation proceeds

toward the desired final state. The bias introduced by metadynamics brings

bigger flexibility compared to the US bias on one hand, but potentially

slower convergence on the other.

Although the single-ended finite temperature methods provide reason-

able conformational freedom and entropic aspects in one simulation, their

use with higher QM models can be computationally unfeasible. Further-

more, while the choice of collective variables in stiff adiabatic PES mapping

is usually trivial, in more flexible bias MD methods it can be rather elusive.

Therefore, double-endedmethods reviewed in the next paragraphs are often
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preferred. The entropic aspects can also be accessed a posteriori once the

PES path is established as we shall see below.

3.3.1.2 Double-Ended Reaction Path Search Methods
Once the final state structure is discovered by a single-ended method or

when it is known from an experimental structure or guessed by chemical

intuition, so-called double-ended methods can be employed to construct

a path between them. Alternatively, an estimated path derived, e.g., from

adiabatic PES mapping described above can be loaded in and refined.

The major double-ended method category that will be described here com-

prises of chain-of-states (COS) methods. A COS method discretizes the

reaction path between the initial and final state into a set of intermediate

structures and optimizes them in a connected manner. Once this procedure

achieves convergence, the resulting path should represent the minimal

energy pathway (MEP) between the initial and final state.

One popular COS approach is nudged elastic band (NEB) (Jonsson,

Mills, & Jacobsen, 1998). NEB approximates the reaction path by a set of

structures that are connected by springs into a chain. The parallel component

of the spring force keeps the images distributed along the whole path, while

the perpendicular component helps to push images to the MEP valley.

Because NEB does not directly seek for the saddle point structures, a

climbing image variant of NEB (CI-NEB) (Henkelman, Uberuaga, &

Jónsson, 2000) has been developed. The converged NEB path is usually

loaded into CI-NEB. The parallel component of the NEB spring potential

acting on the highest image of the path is inversed to drive it uphill, while the

perpendicular component is kept unchanged in order to keep the image on

the path. Once the path is converged again, the highest image should rep-

resent the saddle point structure.

The stringmethod (SM) (E,Ren, &Vanden-Eijnden, 2002) uses a concept

on equal image distribution to cover the path instead of introducing spring

constants between the images. The images are equally redistributed along a

spline fit of the reaction path every optimization cycle. The path is con-

verged once the redistribution does not significantly change the image posi-

tion. An SM variant called growing string method (Peters, Heyden, Bell, &

Chakraborty, 2004) construct the chain of states gradually from the initial

state toward the final state and thus reduces the bias potentially introduced

by initial path guess (e.g., linear interpolation). Another SM variant

optimizes the COS at finite temperature, allowing for a better confor-

mational relaxation of the MEP (Vanden-Eijnden & Venturoli, 2009;
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E,Ren, &Vanden-Eijnden, 2005). Note that the single-ended string method

described above is a variant of the growing string method with even less

initial bias.

The above described COS methods do not a priori search for the tran-

sition state structures. Although CI-NEB makes a step in this direction, it is

not actually guaranteed that it will reach a first-order saddle point. One can,

of course, employ the above described eigenvector following approaches to

refine the maxima of a COS path to saddle points. However, these methods

are both computationally costly and also unreliable once the input structure

is not close to the actual saddle point. An elegant solution is the conju-

gate peak refinement (CPR) (Fischer & Karplus, 1992; Gisdon, Culka, &

Ullmann, 2016) method that gradually constructs chain of states between

the initial and final states while it aims at locating the first-order saddle

points. In contrast to NEB or SM, the number of states along the path is

not fixed and thus the sampling in the saddle point region can be increased

to facilitate its proper location. The CPRmethod is based on the fact that in

the vicinity of a saddle point, there is one direction, which points to an ener-

getic maximum, while all others lead to a minimum. The CPR algorithm

picks the highest energy structure along the discretized path and performs a

line maximization along the corresponding tangential path vector. This

correctedmaximum is thenminimized in conjugate space similar to the con-

jugated gradient minimization method. By staying conjugate to the original

path, falling to the neighboring minimum is prevented. The optimized

structure is added into the chain of states. Gradually the saddle point is

approached by providing more sampling in the transition region and occa-

sionally the conjugate optimization procedure can converge to locate the

first-order saddle point. A successful run ends, when all maxima along the

reaction path between the initial and final state are identified and optimized

to first-order saddle points.

3.3.1.3 Path-Based Reaction Path Search Methods
Once a reaction path is found, it is sometimes necessary to correct it for

conformational flexibility, since a biological system has many possible

degrees of freedom. Path-based methods include the conformational flex-

ibility to evaluate alternative reaction paths or a set of possible reactive coor-

dinates. These methods usually require an initial path, which does not

necessarily have to be properly refined. Any path generated by double-

ended or single-ended methods can be used. The concept of metadynamics,

introduced as a single-ended search method, can also be applied for
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path-based approaches. Instead of using a trivial CV, such as bond distances

or dihedral angles, a function that describes the whole reaction path is used

(Branduardi, Gervasio, & Parrinello, 2007; Bernardi, Melo, & Schulten,

2015). The application of the path CV allows to dynamically sample the

conformational space based on the input path estimate. This provides infor-

mation on the conformational flexibility of the input intermediates and

transition states, which is often crucial for reaction paths obtained from

static approaches, such as adiabatic mapping, NEB, or CPR. If the distance

from the initial path is taken as a second CV to be biased, even alternative

paths can be identified and energetically evaluated.

A conceptually different approach is followed in transition path sampling

(TPS) (Bolhuis, Dellago, & Chandler, 1998; Dellago, Bolhuis, Csajka, &

Chandler, 1998). The aim of TPS is to connect two stable states by a col-

lection of all likely transition pathways, which represent the transition path

ensemble. As mentioned above, an input trajectory does not necessarily have

to be properly refined, thus it may have a low weight in the transition path

ensemble. Therefore, for a TPS simulation the initial trajectory has to be

evaluated and equilibrated toward a representative transition path trajectory.

Unlike US ensembles or metadynamics ensembles, a TPS simulation creates

unbiased trajectories, since it does not enhance the sampling of rare events by

bias potentials (Swenson & Bolhuis, 2014). TPS, however, is also dependent

on a collective variable, yet it is not used to drive the simulation, but rather to

discriminate the stable states of the system, and to monitor the progress along

the trajectory. This makes the CV a crucial quantity in a TPS simulation.

The enhancement of sampling rare events in TPS is achieved by importance

sampling of trajectory space. All dynamic movements are preformed by a

Monte Carlo approach, while a new trajectory is created from an existing

one in the ensemble. For that, specific procedures are available to drive

movements in trajectory space (Bolhuis, Chandler, Dellago, & Geissler,

2002; Rowley &Woo, 2009). TPS has been successfully applied to simulate

biological systems (Dellago & Bolhuis, 2007) and is also recently used to

study enzyme catalysis, such as the hydride transfer in a dihydrofolate reduc-

tase (Wang, Antoniou, Schwartz, & Schramm, 2016).

3.3.2 Methods to Obtain Free Energy
So far, we have been concentrating on the qualitative aspects of the reaction

mechanism. Now we turn to the methods to get the free energy profile esti-

mates. As noted earlier (Eq. 6), the free energy is composed of the potential

energy (enthalpic) part that is calculated directly by the model, and the
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entropic part, for which extensive sampling at finite temperature along the

reaction path is needed. In case of US and metadynamics the sampling is

already included in the path search procedure, so entropic influence is

explicitly included and thus free energy profile can be directly estimated.

For US, weighted histogram analysis method (WHAM) (Kumar,

Rosenberg, Bouzida, Swendsen, & Kollman, 1992) can be used to remove

the umbrella bias and to integrate the simulation windows into a free energy

profile. In case of metadynamics, the sum of added Gaussian hills plotted

against the collective variable directly represents the free energy profile.

TPS collected pathways are dynamic trajectories, thus kinetic information,

such as rate constants, can be extracted (Dellago, 2007). But since only tra-

jectories are considered that connect certain regions in configuration space,

the configurations are not distributed according to the equilibrium distribu-

tion of the system. To determine free energy profiles, one has to obtain

equilibrium-distributed configurations. One possibility is to apply biasing

procedures, such as US variants, to rarely visited states, and divide the

CV into overlapping windows (Dellago, 2007).

In case of static methods such as adiabatic PESmapping or chain-of-states

methods, the entropic aspect has to be added by sampling method (MD or

Monte Carlo) to account for entropic part of the free energy profile. One

option is to use these static paths as an input to above described path-based

approaches. A possible obstacle can be that achieving extensive sampling

when high-level QM methods are used to treat the active site may be com-

putationally prohibitive. In the same time, usage of, e.g., SEQMmodels can

introduce additional bias into the results. A way out of this dilemma offers

the free energy perturbation (FEP) methods. For instance, one can find the

reaction path by a chain-of-states method within QM/MMmodel (K€astner,
Senn, Thiel, Otte, & Thiel, 2006). Subsequently, an MD simulation is per-

formed for every state of the PES reaction path with QM region kept frozen.

Perturbation energy is calculated as energy for moving one step forward in

the PES QM reaction path while staying in the same MM conformational

ensemble:

ΔEpert ¼EQM=MMðri+1
QM,r

i
MMÞ�EQM=MMðriQM,r

i
MMÞ (13)

where i and i + 1 are the indices of adjacent path steps and r are the coor-

dinate vectors. Free energy for the i! i+1 step is then calculated by

averaging over the MM ensemble at step i using Zwanzig equation

(Zwanzig, 1954):
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ΔGi!i+1¼�1

β
lnhexpð�βΔEpertÞii (14)

The reaction free energy profile is calculated by adding QM energy

corrected for zero-temperature vibrations to the perturbation-derived free

energy. Another example where FEP concept is exploited are the FEP/

US studies in EVB model (Warshel, 1991).

3.3.3 Methods to Simulate Nuclear Quantum Effects
The majority of methods commonly used to locate and sample the enzyme

reaction rely on atomistic models that treat the nuclei as classical objects.

Even in the commonQMmethods, just the electrons are treated as quantum

objects. This approximation is necessary to make the calculations on bigger

systems computationally feasible and in many cases also justified, since the

heavy nuclei hardly show any quantum behavior. The quantum nature

becomes in practice significant in case of proton transfer processes, which

are often part of enzyme-catalyzed reaction coordinates. If a proton transfer

is the rate-limiting step, the nuclear quantum-mechanical effects (NQM)

play important role in the overall reaction rate. NQM effect are most pro-

nounced when comparing protium and deuterium variants and calculating

kinetic isotope effects.

Although small number of protons can be treated as quantum particles

using nuclear-electronic orbital (Webb, Iordanov, & Hammes-Schiffer,

2002) methods, most of the approaches that deal with NQM in enzymes

can be classified as correction methods that are applied, e.g., on US path

ensembles. One direction is the ensemble-averaged variational transition state

theory with multidimensional tunneling (EA-VTST/MT) (Garcia-Viloca,

Alhambra, Truhlar, & Gao, 2001; Truhlar et al., 2002) that corrects the free

energy barrier ΔG 6¼ for quantum-mechanical vibrations. EA-VTST/MT in

addition also calculates the transmission coefficient ζ (see Eq. 12) that corrects
mainly for quantum-mechanical tunneling through the free energy barrier.

Another family of approaches to NQM is based on Feynman path integrals.

Quantum nature of the nuclei is approximated by transforming the classical

spheres into rings of quasiparticles connected by springs. Path integral MD

simulation techniques include quantized classical path (QCP) (Hwang &

Warshel, 1993), centroid molecular dynamics (CMD) (Cao & Voth,

1994a, 1994b), or ring-polymer molecular dynamics (RPMD) (Braams &

Manolopoulos, 2006; Craig & Manolopoulos, 2004).
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3.4 Path Search Strategy
Taken together, enormous amount of methods to locate reaction path and

calculate its energy profile has been developed. It is not easy to objectively

find the one and only correct strategy, although different groups certainly

have their preferred approaches. The choice of the method is also influenced

by the primary question that the researcher is asking. If the task is to find the

correct catalytic mechanism, many potential variants of the reaction mech-

anism need to be tested in a reasonable time. If the individual steps of the

mechanism are already known, the task might be to get proper rate constant

to relate the model to experimental parameters. In many cases, big energy

barriers on PES can rule the unfeasible mechanism variants out and find

the most promising set of reaction steps in fraction of time in more accurate

QM models compared to direct usage of sampling approaches in approxi-

mate models. The PES path can be further optimized and corrected bymuch

more demanding sampling methods, or a reaction-specific SE potential

(e.g., EVB) can be constructed based on the previous PES investigation

in high-level QM models.

The kinetic and thermodynamic parameters determined by the afore-

described methods should be combined in order to get a more reliable pic-

ture. The different methods should not be viewed as competitive approaches

but rather as complementary and one should search for synergy among dif-

ferent methods with limitations of the models in mind. The limitations and

synergy should also be considered when comparing computational results

with experimental data.

4. GOING BEYOND THE EXPLORATION OF THE
REACTION PATHS

In order to understand the biological systems, it is not enough to

understand the mechanism of an enzyme. It is required to analyze the

enzyme in its physiological context and how the rate of catalysis is influenced

by parameters such as pH or metabolite concentration. Today’s systems biol-

ogy is using kinetic models with stretched exponential or noninteger stoi-

chiometry in order to describe complex metabolic networks. Even if such

models are of certain practical use to solve some research problems, they

are not satisfactory from a theoretical point of view, since mass and energy

conservation is not guaranteed. Other models are taking kinetic parameters

from databases. However, such parameters were usually determined under
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specific circumstances and cannot account for all possible effects. Consider-

ing the constantly increasing number of complete genomes and partially

reconstructed metabolisms, it comes more andmore important to get a more

realistic view of the metabolic reaction in its context. The challenge for

computational biochemistry today and in the future is to derive enzymatic

parameters from structure models by using methods that we reviewed in this

article. However, it will be required to go beyond such information. The

kinetic parameters can be combined in master equation approaches

(Becker et al., 2007; Bombarda & Ullmann, 2011) or kinetic Monte Carlo

simulations (Till, Becker, Essigke, & Ullmann, 2008) in order to simulate

complete catalytic cycles that are influenced by environmental parameters

such as pH or membrane potential. To carry the approach further, it might

be possible to model the whole cellular context in reaction–diffusion equa-

tions, which may allow in the future to model complex biochemical reac-

tions. Combining structural biology and systems biology may thus be a

promising direction, especially considering the pace in which both fields

make progress in recent years. With the help of computer models that rely

on a solid experimental basis, we may more and more understand how the

jigglings and wigglings of atoms leads to the complex phenomenon we

call life.

REFERENCES
Amara, P., Field, M. J., Alhambra, C., & Gao, J. (2000). The generalized hybrid orbital

method for combined quantum mechanical/molecular mechanical calculations: Formu-
lation and tests of the analytical derivatives. Theoretical Chemistry Accounts, 104, 336–343.
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�Cı́žek, J. (1966). On the correlation problem in atomic and molecular systems. Calculation of
wavefunction components in Ursell-type expansion using quantum-field theoretical
methods. The Journal of Chemical Physics, 45, 4256–4266.

Cole, D. J., & Hine, N. D.M. (2016). Applications of large-scale density functional theory in
biology. Journal of Physics. Condensed Matter, 28, 393001.

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M.,…
Kollman, P. A. (1996). A second generation force field for the simulation of proteins,
nucleic acids, and organic molecules. Journal of the American Chemical Society, 118,
2309–2309.

Costa, M. G. S., Batista, P. R., Bisch, P. M., & Perahia, D. (2015). Exploring free energy
landscapes of large conformational changes: Molecular dynamics with excited normal
modes. Journal of Chemical Theory and Computation, 11, 2755–2767.

Craig, I. R., &Manolopoulos, D. E. (2004). Quantum statistics and classical mechanics: Real
time correlation functions from ring polymer molecular dynamics.The Journal of Chemical
Physics, 121, 3368–3373.

Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models (2nd ed.).
Chichester: Wiley.

Dellago, C. (2007). Transition path sampling and the calculation of free energies. InC.Chipot
& A. Pohorille (Eds.), Free energy calculations (pp. 249–276). Berlin, Heidelberg: Springer.

106 Martin Culka et al.

Manuscript A 89



Dellago, C., & Bolhuis, P. G. (2007). Transition path sampling simulations of biological sys-
tems. In M. Reiher (Ed.), Atomistic approaches in modern biology (Vol. 268, pp. 291–317).
Berlin, Heidelberg: Springer.

Dellago, C., Bolhuis, P. G., Csajka, F. S., & Chandler, D. (1998). Transition path sampling
and the calculation of rate constants. The Journal of Chemical Physics, 108, 1964.

E, W., Ren, W., & Vanden-Eijnden, E. (2002). String method for the study of rare events.
Physical Review B, 66, 052301.

E, W., Ren, W., & Vanden-Eijnden, E. (2005). Finite temperature string method for the
study of rare events. The Journal of Physical Chemistry B, 109, 6688–6693.

Elstner, M. (2006). The SCC-DFTB method and its application to biological systems. The-
oretical Chemistry Accounts, 116, 316–325.

Feliks, M., & Ullmann, G. M. (2012). Glycerol dehydratation by the B12-independent
enzyme may not involve the migration of a hydroxyl group: A computational study.
The Journal of Physical Chemistry. B, 116, 7076–7087.

Feynman, R. (1964). The Feynman lectures on physics. New York, USA: Basic Books.
Retrieved from http://www.feynmanlectures.caltech.edu/.

Field, M. J. (2007). A practical introduction to the simulation of molecular systems (2nd ed.).
Cambridge, UK: Cambridge University Press.

Field, M. J., Bash, P. A., & Karplus, M. (1990). A combined quantummechanical and molec-
ular mechanical potential for molecular dynamics simulations. Journal of Computational
Chemistry, 11, 700–733.

Fischer, S., & Karplus, M. (1992). Conjugate peak refinement: An algorithm for finding reac-
tion paths and accurate transition states in systems with many degrees of freedom. Chem-
ical Physics Letters, 194, 252–261.

Gamow, G. (1928). Zur quantentheorie des atomkernes. Zeitschrift fr Physiotherapie, 51,
204–212.

Gao, J., Ma, S., Major, D. T., Nam, K., Pu, J., & Truhlar, D. G. (2006). Mechanisms and free
energies of enzymatic reactions. Chemical Reviews, 106, 3188–3209.

Garcia-Viloca, M., Alhambra, C., Truhlar, D. G., & Gao, J. (2001). Inclusion of quantum-
mechanical vibrational energy in reactive potentials of mean force.The Journal of Chemical
Physics, 114, 9953–9958.

Georgieva, P., &Himo, F. (2010). Quantum chemical modeling of enzymatic reactions: The
case of histone lysine methyltransferase. Journal of Computational Chemistry, 31,
1707–1714.

Gilson, M. K., & Zhou, H.-X. (2007). Calculation of protein-ligand binding affinities.
Annual Review of Biophysics and Biomolecular Structure, 36, 21–42.

Gisdon, F. J., Culka, M., & Ullmann, G. M. (2016). PyCPR—A python-based implemen-
tation of the Conjugate Peak Refinement (CPR) algorithm for finding transition state
structures. Journal of Molecular Modeling, 22, 242.

Golkaram,M., Shin, Y. K., & van Duin, A. C. T. (2014). Reactive molecular dynamics study
of the pH-dependent dynamic structure of α-helix. The Journal of Physical Chemistry. B,
118, 13498–13504.

Gray, H. B., &Winkler, J. R. (2005). Long-range electron transfer. Proceedings of the National
Academy of Sciences, 102, 3534–3539.

Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1988). MP2 energy evaluation by direct
methods. Chemical Physics Letters, 153, 503–506.

Henkelman, G., Uberuaga, B. P., & Jónsson, H. (2000). A climbing image nudged elastic
bandmethod for finding saddle points andminimum energy paths.The Journal of Chemical
Physics, 113, 9901.

Heyden, A., & Truhlar, D. G. (2008). Conservative algorithm for an adaptive change of res-
olution in mixed atomistic/coarse-grained multiscale simulations. Journal of Chemical
Theory and Computation, 4, 217–221.

107Computational Biochemistry—Enzyme Mechanisms Explored

90 Manuscripts



Honig, B., & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science,
268, 1144–1149.

Hwang, J. K., & Warshel, A. (1993). A quantized classical path approach for calculations of
quantum mechanical rate constants. The Journal of Physical Chemistry, 97, 10053–10058.

Ingólfsson, H. I., Lopez, C. A., Uusitalo, J. J., de Jong, D. H., Gopal, S. M., Periole, X., &
Marrink, S. J. (2014). The power of coarse graining in biomolecular simulations. Wiley
Interdisciplinary Reviews: Computational Molecular Science, 4, 225–248.

Jonsson, H., Mills, G., & Jacobsen, K. W. (1998). Nudged elastic band method for finding
minimum energy paths of transitions. In B. J. Berne, G. Ciccotti, & D. F. Coker (Eds.),
Classical and quantum dynamics in condensed phase simulations (pp. 385–404). Singapore:
World Scientific.

Jorgensen,W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the
OPLS all-atom force field on conformational energetics and properties of organic liquids.
Journal of the American Chemical Society, 118, 11225–11236.

Jorgensen, W. L., & Tirado-Rives, J. (1996). Monte Carlo vs molecular dynamics for con-
formational sampling. The Journal of Physical Chemistry, 100, 14508–14513.

Kamerlin, S. C. L., & Warshel, A. (2010). The EVB as a quantitative tool for formulating
simulations and analyzing biological and chemical reactions. Faraday Discussions, 145,
71–106.

Kamerlin, S. C. L., & Warshel, A. (2011). The empirical valence bond model: Theory and
applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 30–45.

Kar, P., & Feig, M. (2014). Recent advances in transferable coarse-grained modeling of pro-
teins. Advances in Protein Chemistry and Structural Biology, 96, 143–180.

K€astner, J., Senn, H. M., Thiel, S., Otte, N., & Thiel, W. (2006). QM/MM free-energy
perturbation compared to thermodynamic integration and umbrella sampling: Applica-
tion to an enzymatic reaction. Journal of Chemical Theory and Computation, 2, 452–461.
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Abstract Conjugate peak refinement (CPR) is a powerful
and robust method to search transition states on a molecu-
lar potential energy surface. Nevertheless, the method was
to the best of our knowledge so far only implemented in
CHARMM. In this paper, we present PyCPR, a new Python-
based implementation of the CPR algorithm within the
pDynamo framework. We provide a detailed description of
the theory underlying our implementation and discuss the
different parts of the implementation. The method is applied
to two different problems. First, we illustrate the method by
analyzing the gauche to anti-periplanar transition of butane
using a semiempirical QM method. Second, we reanalyze
the mechanism of a glycyl-radical enzyme, namely of 4-
hydroxyphenylacetate decarboxylase (HPD) using QM/MM
calculations. In the end, we suggest a strategy how to use our
implementation of the CPR algorithm. The integration of
PyCPR into the framework pDynamo allows the combina-
tion of CPR with the large variety of methods implemented
in pDynamo. PyCPR can be used in combination with quan-
tum mechanical and molecular mechanical methods (and
hybrid methods) implemented directly in pDynamo, but also
in combination with external programs such as ORCA using
pDynamo as interface. PyCPR is distributed as free, open
source software and can be downloaded from http://www.
bisb.uni-bayreuth.de/index.php?page=downloads.
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Abbreviation list

CI-NEB Climbing image - nudged elastic band
COS Chain-of-states
CPR Conjugate peak refinement
DFT Density functional theory
HPD 4-hydroxyphenylacetate decarboxylase
MEP Minimum energy pathway
NEB Nudged elastic band
PES Potential energy surface
QM/MM Quantum mechanics / molecular mechanics
RMSD Root mean square deviation
RMS Root mean square
ZTS Zero temperature string

Introduction

One of the most fruitful concepts in theoretical chemistry is
the potential energy surface (PES) of a molecular system,
which can be seen as a landscape with the valleys and moun-
tain passes describing the states and reactions of a molecule.
In a mathematical sense, the PES is a 3N-dimensional func-
tion describing the energy of a molecular system in terms
of the coordinates of its N atoms. Each point on the surface
of this landscape can be identified with one particular struc-
ture that the molecular system adopts. Therefore the term
point is often used as synonym for structure when energy
landscapes are discussed. Many problems in thermodynam-
ics and kinetics can be tackled by exploring this landscape.
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Namely, stable conformations are identified as minima, and
transition states are first order saddle points. For an ele-
mentary reaction, a reaction coordinate is the path from a
minimum identified as the reactant state along the shallow-
est ascent towards the transition state and from there along
the deepest descent towards the product state. Many chem-
ical reactions do, however, not proceed in one elementary
reaction, and thus several intermediates and transition states
are involved. While the reactant state and the product state
are usually low energy minima on the energy landscape,
intermediate states are usually high energy minima. The
mechanism of a chemical reaction can be identified as the
sequence of intermediates and transition states that a molec-
ular system passes through when going from the reactant
state to the product state following a minimum energy path
(MEP).

In order to investigate the mechanism of a chemical reac-
tion theoretically, it is required to identify the various min-
ima and saddle points along the reaction path on the PES.
There are many techniques to explore the PES. One promi-
nent method is molecular dynamics, which can be used in
combination with enhanced sampling techniques to explore
the options that a molecular system has [5, 44]. How-
ever, these methods are computational costly, especially if
chemical reactions in proteins are explored for instance
with quantum mechanical/molecular mechanical (QM/MM)
techniques. For such applications, numerical optimization
methods [33] are important alternatives. While it is rela-
tively straightforward to find a nearby local minimum of
any given structure, locating a transition state is much more
challenging. The strategy to find a transition state structure
is to search for a path connecting stable minima and get sad-
dle point estimates along this path. In principle, it is possible
to sample the PES by “walking” through it based on energy,
gradient, and Hessian matrix calculations for instance by
an eigenvector following method [7]. For more complex
systems, however, these methods are inefficient and com-
putational demanding. One approach used in more complex
systems is to represent a reaction path as an estimated reac-
tion coordinate of discrete points, a chain-of-states (COS)
between the reactant and product state, which is optimized
as a whole. A simple minimization of each state in the COS
would cause that all structures optimize to a nearby local
minimum structure or even the reactant or the product struc-
ture. In order to avoid this kind of behavior, various COS
optimization approaches have been developed. Early meth-
ods used a line integral representation, where the whole
path is minimized at once based on a non-linear objective
function. [10] Later the self-penalty walk was developed by
introducing repulsion terms between the path points. [8] The
paths obtained by line integral methods often suffer from
overestimation of the transition states, which is caused by
non-zero force components perpendicular to the path. The

nudged elastic band (NEB) method [24] tries to avoid this
problem by subtracting the perpendicular components of the
force and applying an elastic spring force along the tangen-
tial direction of the path. The problem of this method is,
however, that kinetic barriers are usually underestimated,
since the real transition states are often missed in the path
search. The climbing image extension of the NEB (CI-
NEB) [19] can be applied in order to move the highest point
of the NEB path closer to the saddle point. In CI-NEB,
the parallel force component is inverted in order to move
the chosen point uphill along the path while keeping the
perpendicular component unchanged. Another approach to
search reaction paths is the zero temperature string (ZTS)
method [9], which is not using spring forces between the
points along the path, but instead represents the COS by
a spline. After every optimization step of the COS, the
points are equally redistributed along the spline to ensure
even sampling. A method similar to ZTS is the growing
string method [34], in which a COS between two minima
is gradually constructed. As the string grows, the opti-
mization proceeds analog to the ZTS method. In addition,
several hybrid NEB-ZTS methods were developed as well
[1, 16].

An alternative strategy is followed in the conjugate peak
refinement (CPR), which was first introduced by Fischer
& Karplus [14]. Also the CPR method can be classified as
a COS method. In contrast to many other COS methods, the
number of the states in the chain is not fixed and thus the
path between substrate and product is constructed and mod-
ified gradually. The CPR algorithm interpolates between the
path points in order to find high energy structures along
the path. The highest point on such an interpolated path
is optimized by a single maximization along the tangen-
tial direction of the path. The maximization is followed by
a series of conjugate minimizations. By an iterative proce-
dure, all peaks along the path are optimized and some will
approximate first order saddle points.

Since its introduction in the year 1992, CPR has been
successfully used in numerous studies to investigate reac-
tion paths. [23, 27, 29, 32, 40, 46] To our knowledge,
however, the CPR algorithm is so far only implemented
in the program CHARMM. [6] We decided to implement
the CPR algorithm within the pDynamo [12] framework to
extend the set of reaction path optimization methods of this
software. This python-based framework provides a good
environment for molecular modeling using pure quantum
mechanical (QM) potentials, various empirical molecular
mechanical (MM) force fields, and hybrid QM/MM poten-
tials. Many minimization methods, as well as reaction path
optimization methods like NEB and string methods are
already implemented in the pDynamo framework. Within
pDynamo, our CPR implementation can be easily combined
with the functionality of this framework. Since pDynamo

Manuscript B 99



J Mol Model (2016) 22: 242 Page 3 of 13 242

is open-source and its modules are mainly written in the
modern language Python, the CPR algorithm can be easily
modified and extended.

In this paper, we describe PyCPR, our new implemen-
tation of the CPR algorithm for the pDynamo framework.
First, we summarize the theoretical background of the
CPR algorithm as the basis of our implementation. Further,
we provide the details of our implementation including a
schematic overview of the program flow. Using two exam-
ples, we illustrate the application of the CPR algorithm and
compare our results with the outcome of NEB calculations.
In the first example, we look at the conformation change
of butane using a semiempirical QM method. This exam-
ple is straightforward, but nevertheless provides some idea
about the applicability and strength of CPR. In the second
example, we reanalyze the mechanism of a glycyl-radical
enzyme, namely of 4-hydroxyphenylacetate decarboxylase
(HPD) [11, 28, 41]. In the end, we give some practical
guidance for the usage of PyCPR.

Theory

As a chain-of-states method, CPR tries to build a path
between two minima on the potential energy landscape
(PES). It focuses on finding true first order saddle points,
which can be interpreted as chemical transition states [14].
The characteristic of a first order saddle point is that its
gradient is zero and its Hessian matrix H has exactly one
negative eigenvalue. The theoretical basis of the CPR algo-
rithm is a method for finding first order saddle points
of multidimensional functions, which was developed by
Sinclair & Fletcher [42]. The method is an adaptation of the
conjugate gradient method [15] and relies on the assumption
that the function is quadratic, which is approximately the
case in the vicinity of a stationary point. Sinclair & Fletcher
take advantage of the fact that the Hessian at a saddle point
has exactly one negative eigenvalue. The basic idea is the
following: the Hessian can be diagonalized by E−1HE = D
yielding a matrix D with the eigenvalues of H as its diag-
onal elements and zero as its off-diagonal elements. The
matrix E is the matrix of the eigenvectors of H and E−1

is its inverse. Since the Hessian H is always real and sym-
metric, its eigenvectors form an orthogonal basis and thus
E−1 = ET is valid. In general, one can find other basis sets
S that transform the matrix H into another diagonal matrix
B: ST HS = B. Each of these basis sets are called conjugate
basis sets and the basis vectors have the property sTi Hsj = 0
for i �= j . Sylvester’s law of inertia [45] states that diag-
onalization always results in the same number of positive,
negative and zero entries in the diagonal matrix independent
of the conjugate basis. Consequently, each set of conjugate
basis vectors of the Hessian at the saddle point contains

exactly one direction with a negative diagonal entry and its
associated vector must be equivalent to the eigenvector asso-
ciated with the negative eigenvalue. The idea of this saddle
point search method is that near the saddle point one can
follow the vector associated with the negative entry in the
diagonal matrix to locate the saddle point. Thus, starting
from a point x0 which is close to a saddle point, Sinclair &
Fletcher maximize the function along a vector s0 that should
point towards the saddle point. This direction is thought to
be associated with the negative eigenvalue. After the max-
imization along s0, all remaining directions (s1 to si) are
associated with positive values in the diagonal matrix and
thus the energy function has to be minimized in order to find
a true first order saddle point. Starting from an arbitrary ini-
tial direction s0, Sinclair & Fletcher applied the formulae of
Beale [3] to construct the remaining basis vectors si that are
conjugate to each other with respect to H. If the initial vec-
tor s0 is given, the first conjugate direction is calculated by
Eq. 1.

s1 = −g1 + gT
1 (g1 − g0)

sT0 (g1 − g0)
s0 (1)

All subsequent directions are obtained by Eq. 2

si = −gi+gT
i (g1 − g0)

sT0 (g1 − g0)
s0+βFR

i si−1, i = 2, ..., 3N−1 (2)

βFR
i = gT

i gi

gT
i−1gi−1

(3)

For the first conjugate direction s1, it is necessary to know
the gradient (g0) at an initial point (x0) and the gradient
(g1) after maximization along the direction s0. For all other
directions si , the gradient of the current point gi and pre-
vious point gi−1 as well as the previous direction si−1 are
used in addition. The term βFR

i refers to the so-called beta-
type originally proposed by Fletcher & Reeves [15] which
was used by Fischer & Karplus [14] in the original imple-
mentation of CPR. A beta-type is a scaling factor adjusting
the influence of the previous direction. Different beta-types
exist that may perform better in the case of more com-
plex functions. [25, 37] Therefore in PyCPR, we adapted
Eq. 2 with two different well-established beta-types that are
commonly used in conjugate gradient optimizations [17].
The additionally implemented types are those of Polak &
Ribière [35] and of Polyak [36] (Eq. 4) and Hestenes &
Stiefel [21] (Eq. 5).

βPRP
i = gT

i (gi − gi−1)

gT
i−1gi−1

(4)

βHS
i = gT

i (gi − gi−1)

sTi−1(gi − gi−1)
(5)
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With Eqs. 1–5, a set of conjugate basis vectors with respect
to a matrix can be defined starting with an arbitrary initial
direction s0. Since the Hessian at a saddle point has exactly
one negative eigenvalue, starting at a point x0 close to that
saddle point, one direction s0 exists, where the function has
to be maximized, and minimization has to be performed in
all directions si conjugate to s0 (with respect to H) in order
to find the saddle point.

The method of Sinclair & Fletcher is guaranteed to find
saddle points, if the function is purely quadratic. In prac-
tice, a multidimensional function can be approximated by
a quadratic expansion in proximity of a saddle point. How-
ever, it may happen that the approximation fails, which
causes unstable behavior. A measure for the quality of the
approximation is the parameter τi , which is the normalized

squared scalar product of the respective conjugate gradient
vector gi with the initial search direction s0 [42].

τi = (gT
i s0)

2

(gT
i gi )(sT0 s0)

(6)

The quadratic approximation is good if all τi have values
close to zero. If this criterion is not justified, it may happen
that the optimization diverges too far from the saddle point
and may lead to a nearby minimum. Thus τi can be utilized
to define a stop criterion for conjugate optimization.

The CPR algorithm relies on the theory described above
which resembles to a certain extent the basic ideas of the
eigenvector following algorithm. However, CPR is robust
and may find transition states, even if the initial guess is

Fig. 1 General overview of the PyCPR implementation. The algo-
rithm can be subdivided into three major parts. The Highest Point
Search determines the next point (x0) for the Saddle Point Refine-
ment and communicates with the exit decision of the algorithm. Before

refinement of that chosen point x0, the Futile Loop Prevention is per-
formed to prevent repeated refinement of the same couple (x0, s0)
without success. To escape these futile loops, the Saddle Point Refine-
ment procedure is modified
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not optimal. CPR gains this better performance by gradu-
ally approaching closer to the transition state in several CPR
iterations as will be explained below.

Algorithm of CPR and implementation

In the section Theory, we describe how a saddle point can
be determined, if a starting point x0 and an initial search
direction s0 are provided. The described theory relies on the
assumption that x0 is located near a saddle point, because
there the energy landscape can be well approximated by
a quadratic function. The CPR algorithm, originally pro-
posed by Fischer & Karplus [14], provides a strategy how
the promising point x0 with its initial search direction s0 is
chosen and refined to find eventually a saddle point using
the method of Sinclair & Fletcher [42]. As a starting point
of the transition state search, the initial and the final path
point have to be given and, if required, also an initial guess
of the reaction path can be provided. The CPR algorithm
constructs a chain-of-states and adds more and more states
to the chain, especially close to the saddle point, and thus

approaches closer and closer to a real first order saddle
point. Our implementation of the algorithm is summarized
in Fig. 1.

The CPR algorithm requires at least two structures to
create an initial COS which represents the reaction path
(see Fig. 1). Usually these structures are the reactant state
and the product state of the reaction and if required addi-
tional discrete intermediates. These structures are saved in
a list holding several states that approximate the reaction
path. The algorithm can be subdivided into three major
parts. First, an initial path is generated by interpolating
linearly between the path points and the point with the
highest energy along this path is determined. We call this
step Highest Point Search. Second, the point is refined to
approach closer to a real saddle point. We call this step Sad-
dle Point Refinement. During this step, it is not necessary
that a saddle point is found, but in the course of the CPR
run, saddle points will be gradually approached until the
algorithm is able to locate transition states. After the Sad-
dle Point Refinement, the path is modified and a new highest
path point is searched. During this iterative process, futile
loops can occur in which the same points are refined without

a b c

d e f

Fig. 2 Schematic illustration of the CPR algorithm on an artificial
energy landscape starting from the initial path connecting the minima
(p0, p1, p2). a The whole initial path is approximated by piecewise
linear interpolations (segments) between the path points. For each seg-
ment, the linear interpolation is discretized and the point with the
highest energy is determined. In the end, the point with the highest
energy of the whole reaction path (x0) is determined. b The initial
search direction s0 corresponding to the highest point x0 is determined.
The point x0 is maximized along s0 yielding x1. For each subsequently
calculated search direction si , a line minimization is performed. In 2D-
space, just one subsequent search direction s1 exists along which x1 is
minimized yielding x2. c The optimized point x2 is inserted into the
path as p1. After extending the path, only the modified segments are
updated. d The algorithm proceeds with finding the highest point along

the path and optimizes it respectively. While the point between p2 and
p3 was optimized to a normal path point, which lies along the path but
is not yet a saddle point, the point between p1 and p2 was optimized
to a saddle point. e The first part of the path from point p0 to point
p3 is refined. It contains one saddle point connecting two minima and
has no higher points along the linear interpolations connecting the path
points. Thus this part will not be treated by the algorithm anymore. The
second part of the path from point p3 to p5 is not completely refined.
The path point p4 is the highest energy point of the whole path, which
will be optimized next. f Since p4 is an existing path point, the initial
search direction s0 is calculated according to Eq. 8. The optimization
of this point in the conjugate direction results in the second saddle
point of the path. The reaction path is fully refined and the algorithm
terminates
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success again and again. These futile loops are prevented in
the third part of our implementation, which we call Futile
Loop Prevention. A schematic illustration of a transition
path search using CPR on a fictive energy landscape is pro-
vided in Fig. 2 and explained in detail in the caption of
this figure. After CPR has finished successfully, the path
contains the transition states of different path regions. The
algorithm is not performing optimizations to connect the
transition states with stable intermediates on the PES. Thus,
additional calculations should follow in order to generate
the full MEP. In the following subsections, the three main
parts of the algorithm are described in detail.

Highest point search This procedure determines the start-
ing point x0 for the subsequent optimization and an initial
search direction s0. The path from the reactant to the prod-
uct state is approximated by piecewise linear interpolations
between the path points. Each piece between existing path
points is called segment. These segments are a rough esti-
mate of the true reaction path between path points. The
number of interpolation steps is calculated dependent on the
segment length. For each segment, the structure with the
highest energy is identified. In the first iteration of the CPR
algorithm, all segments are linearly interpolated, while in
the subsequent cycles only modified segments are updated.
The point x0 is determined as the point with the high-
est energy of the whole reaction path that is not already
a saddle point or another type of stationary point or that
is not marked as unrefinable (for explanation, see Section
Futile Loop Prevention). If no such point is found, the
reaction path is considered to be refined and the algorithm
stops.

In addition to the search of x0, the initial search direction
s0 is determined, which is a vector in tangential direction of
the reaction path at the point x0. If x0 is located between two
path points pi and pi+1, s0 is the vector connecting these
two points (Eq. 7).

s0 = pi+1 − pi (7)

If x0 is an already existing path point pi = x0, s0 is
calculated by Eq. 8 [14].

s0 = pi+1 − pi

|pi+1 − pi | − pi−1 − pi

|pi−1 − pi | (8)

The point x0 and the initial search direction s0 are passed to
the Saddle Point Refinement.

Saddle point refinement In this procedure, the point x0 is
optimized towards a saddle point by the theory described
above. At the beginning of each Saddle Point Refinement,
we employ a line search algorithm [30] to search more thor-
oughly for a nearby maximum along the search direction s0.

The direction s0 is considered to approximate the direction
of the eigenvector corresponding to the negative eigenvalue
of the Hessian. Whether a maximum is nearby or not is
determined on the basis of the root mean square deviation
(RMSD) between the structure corresponding to x0 and the
potential maximum x1. If no proper maximum was found,
the optimization ends. Depending on where x0 is located on
the reaction path, the algorithm will proceed differently. If
x0 was found within a segment, it will be inserted into the
path as a normal path point. If x0 was an existing path point
pi , it will get deleted from the reaction path. If a nearby
maximum x1 was found, the optimization continues with a
conjugate minimization along the direction s1, using again
a line search algorithm. The optimization continues along
the other conjugate directions si and stops, if one of the
following three criteria is fulfilled:

(1) A saddle point has been found: This criterion is ful-
filled, if the gradient of the energy function is vanish-
ing in all 3N directions where N is the total number
of atoms of the system and the second derivative of
the energy function is negative in one direction and
non-negative in all others. In practice this criterion is
too stringent for large molecules. To reduce the com-
putational cost, it is reasonable to assume, that the
optimization reached a point sufficiently close to a
saddle point, if the gradient is close to zero in M suc-
cessive dimensions. Noé et al. [32] suggested to set M

to
√

N . In our implementation, the default value of M

is
√

N but can be replaced by any user-defined value.
If a saddle point is found, it is inserted into the reaction
path and marked as a saddle point.

(2) The new search direction si is not anymore conjugate
to the initial search direction: This criterion is fulfilled,
if the quadratic approximation does not hold anymore.
A measure for the quality of the quadratic approxi-
mation is the parameter τi , which was described in
the theory section. Ideally τi is zero. If τi reaches a
predefined threshold value t , we stop the optimiza-
tion and insert the point xi into the path but do not
mark it as a saddle point. In our implementation, we
have also the possibility to continue the optimization.
If the continuation of the optimization leads to a point
with vanishing gradients in M successive dimensions,
the point will be inserted into the path and marked as
stationary point but not as saddle point.

(3) A predefined maximum number of optimization steps
are performed: This criterion is only reached if cri-
terion (1) or (2) did not lead to the stopping of the
optimization. The default value of the maximum num-
ber of optimization steps is 3N −1, but it can be set by
the user. However it should be noted, that this number
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should be greater than the number M of criterion (1).
Since a low gradient region is usually not found from
the beginning of the optimization, the maximal number
of steps should be at least in the order of 2M .

After the Saddle Point Refinement is finished, the algo-
rithm continues with the Highest Point Search. Only the
segments that have changed because of the modification of
the path are updated, i. e. only in those changed segments
a new linear interpolation is performed and a new highest
segment point is determined. This procedure repeats until
no refinable highest point was found in the Highest Point
Search. Since points are inserted into and deleted from the
COS by the algorithm, futile loops can occur in which the
same point is inserted and deleted repeatedly. This behav-
ior is prevented because of the implementation of the Futile
Loop Prevention.

Futile loop prevention If the Highest Point Search returns
a point x0 (together with a direction s0), which is not already
part of the reaction path, it will be checked if the same (x0,
s0) couple was already treated in a previous Saddle Point
Refinement. This check is done by calculating the RMSD
between the corresponding vectors of the new (x0, s0) cou-
ple and of each of the previously treated (x0, s0) couples. A
futile loop is predicted, if the RMSD values for x0 and s0

are both below a certain threshold which can be adjusted.
In order to prevent such a futile loop, we have implemented
several modifications in the optimization procedure, which
can be optionally applied. First we increase the number
of discretization steps along the considered segment and
choose the highest point among these points as x0. If this
treatment was not successful, the next step is to increase the
threshold t for τi (Eq.: 6) to 2t . This option is only exe-
cuted, if the τi parameter is considered as an exit criterion
for the Saddle Point Refinement. As a final modification of
the optimization strategy, the search directions si (i �= 0) are
determined using orthogonal instead of conjugate directions
(Eqs. 9 and 10) [13].

s1 = −g1 + gT
1 s0

sT0 s0
s0 (9)

si = −gi + gT
i s0

sT0 s0
s0 + βFR

i si−1, i = 2, ..., 3N − 1 (10)

If all modifications do not prevent the futile loop, the point
is included in the reaction path and marked as unrefinable.
An unrefineable point will be ignored in the Highest Point
Search in order to concentrate on different regions of the
path. In PyCPR, we provide an option that the points which
were marked as unrefinable are optimized once before

quitting the CPR algorithm. If the optimization was not suc-
cessful, these points will be kept in the path still marked as
unrefinable.

The result of a CPR run is a COS, connecting the struc-
tures that were given as an initial and final state. The COS
contains, besides the product state and the reactant state,
transition states as well as other states that lie approximately
on the MEP.

Variation of PyCPR from CPR algorithm by Fischer
& Karplus Although our PyCPR implementation is based
on the original implementation of the CPR algorithm by
Fischer & Karplus [14], it features several differences. As
already noted in the section Theory, we introduced alterna-
tive scaling factors – beta-types. In PyCPR, the beta-type of
Polak & Ribière [35] and of Polyak [36] (Eq. 4) was chosen
as the default one, because it was reported [37] as more effi-
cient than the originally used one of Fletcher & Reeves [15].
We use the original expression for conjugacy measure τi as
proposed by Sinclair & Fletcher [42], while in the Fischer
& Karplus CPR an empirical version that varies with sys-
tem size was used [14]. In contrast to the original CPR, we
also introduced an option to not use τi as an exit criterion
for the conjugate optimization and thus allow generation of
more intermediates in an early stage of the refinement. In
the futile loop detection process, we introduced storing of
every (x0, s0) couple already treated in a list. By compar-
ing the currently treated couple with this list, we are able to
detect a futile loop of any length. This strategy turned out to
be extremely effective.

Implementation in pDynamo We have implemented the
above described CPR algorithm within the open source
framework pDynamo [12]. Within this framework, sim-
ulations of molecular systems can be performed using
hybrid quantum mechanical (QM) and molecular mechani-
cal (MM) potentials. In pDynamo, computational expensive
operations are implemented in the programming language
C, while the higher order algorithms are organized in Python
modules and packages. The accessibility of these modules
makes the code highly adaptable and convenient to extend.

PyCPR is structured in three Python modules, which
can be directly added to a working pDynamo version. We
tested the compatibility of our implementation for version
1.8.0 and 1.9.0 of pDynamo. The first module Conjugate-
PeakRefinement contains the main CPR algorithm. The
second module CPRSaddlePointRefinement is performing
one complete conjugate optimization as described in the
Saddle Point Refinement paragraph. The last module is
inherited from pDynamo’s MoreThuenteLineSearch. This
module contains a line search algorithm with the additional
feature of a line maximizationMoreThuenteLineSearchWithMax.
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Since pDynamo is a highly flexible framework, also alter-
natives for the optimizers could be used if they comply the
necessary data requirements.

We provide the full source code of PyCPR free of charge.
It can be downloaded from our web page http://www.bisb.
uni-bayreuth.de/index.php?page=downloads.

Computational details

Conformational analysis of butane For analyzing the
conformational change of butane from the anti-periplanar
conformation to the gauche conformation, both confor-
mations were optimized to a root-mean-square (RMS)
gradient of 2.5 · 10−4 kcal/(mol Å) with the conjugate
gradient algorithm using pDynamo [12]. For all calcula-
tions, the RM1 [39] method was used in combination with
ADIIS/DIIS SCF conversion [22]. During CPR, the thresh-
old for the successive low gradient structures was 2.5 · 10−4

kcal/(mol Å). The option to quit the Saddle Point Refine-
ment, if the threshold of τ is reached, was not set. For the
prevention of futile loops, the option to increase the number
of discrete interpolation steps was disabled. The beta-type
of Polak & Ribière [35] and of Polyak [36] (Eq. 4) was used
to construct the conjugate directions. The resulting path
consisted of ten points. For comparison, we performed a
search with nudged elastic band (NEB) and climbing image
(CI) NEB [1] as implemented in pDynamo. Since NEB is
restricted to the initially adjusted number of path points,
the PyCPR generated path defined the sampling accuracy.
Thus, ten points were used to construct the COS using NEB.
These structures were generated by the growing string [34]
procedure implemented in pDynamo using an RMS gradi-
ent tolerance of 0.35 kcal/(mol Å). The NEB optimization
was performed with an RMS gradient tolerance of 2.5 ·10−4

kcal/(mol Å), a spring force constant of 120 kcal/(mol Å2)
and no spline redistribution. The same parameters were cho-
sen for CI-NEB. The highest point of the prior NEB was
used as the climbing image.

Refinement of the reaction mechanism of HPD Opti-
mized stable intermediate structures from the previous work
on HPD in our group [11] were used as a basis for this
study. The transition states that were obtained by an NEB
method [16] implemented in pDynamo were used here only
for structural comparison. The biggest QM region (des-
ignated M4 in Ref. [11]) was used for all the QM/MM
studies here. Same QM/MM setup as in the previous work
was employed, namely the CHARMM27 [26] force field
combined with UB3LYP [4]:6-31G* [18] QM method. We
used the pDynamo [12] framework in combination with
ORCA [31] for all the QM/MM calculations. PyCPR was
used to find all the transition states. The threshold for the

low gradient was set to 0.02 kcal/(mol Å). The beta-type
of Polak & Ribière [35] and of Polyak [36] (Eq. 4) was
chosen. For the vibration frequencies analysis of the tran-
sition states, the whole MM region was fixed to reduce the
computational load.

Results and discussion

Conformational analysis of butane The conformational
change of butane from the anti-periplanar conformation to
the gauche conformation is a simple example for an MEP
search that passes one saddle point. The structures of both
states were minimized using the RM1 method [39]. The
anti-periplanar conformation has a dihedral angle of the car-
bon chain of −180.0◦, while this dihedral angle adopts a
value of −64.7◦ in the gauche conformation. Our value for
the gauche angle is matching well with values found in the
literature ranging from −60◦ to −66◦, which were obtained
from high-level ab initio calculations [2, 20, 38, 43]. We cal-
culated the transition between these two states using three
different methods: CPR, NEB, and CI-NEB (Fig. 3). For the
transition state search with PyCPR, no intermediates were
provided, so the algorithm found the complete transition
from just the initial and final structures resulting in a path of
ten points. For consistency also for NEB and CI-NEB, we
used ten points and optimized the gradients to the same tol-
erance. The transition state structure obtained by CPR has
a torsional angle of −119.7◦ and a barrier of 2.00 kcal/mol.
The value of the torsional angle is close to the ideal value
of 120.0◦ and agrees with other studies [2, 38]. Frequency
analysis confirms a true saddle point showing exactly one
negative frequency. Pure NEB without the climbing image
modification misses the true transition state. Note that pure

Fig. 3 Reaction energy profiles of the conformational change of
butane from anti-periplanar to gauche. Full black line: CPR started
from initial and final state; dashed red line: NEB started from ten
points; dashed orange line: CI-NEB of point 4 of the NEB-derived
path. The calculations were done on the semiempirical RM1 level.
The angles of the shown states are: anti-periplanar −180.0◦, transition
−119.7◦ and gauche −64.7◦
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NEB is able to locate the correct transition state for some
different numbers of initial path points, yet one can hardly
derive this number rationally. Thus a successful transition
state search is dependent on the initially set number of path
points. This example nicely shows the different behavior of
NEB and CPR. Since CPR is a method identifying transition
states, the resulting path has a higher point density around
the transition state. Further the flexibility to add and delete
path points allows CPR to adapt the path to the respective
reaction. NEB distributes points along the whole reaction
path and thus represents the path as a whole very well. How-
ever, especially the sampling around the transition state is
not optimal. For bigger systems, NEB is known to miss
saddle points, which was the reason why the CI-NEB mod-
ification was developed [19]. CI-NEB was able to find the
same transition as CPR at −119.7◦. But we experienced
problems finding a proper transition state with the CI-NEB
method for more complex reactions. Identifying proper tran-
sition states gets more difficult with a higher number of
degrees of freedom of a system, unless the starting point for
CI-NEB is close to the saddle point. A problematic case,
where the NEB procedure and also the CI-NEB procedure
failed to locate the transition state, is shown in the following
section.

Mechanism of 4-hydroxyphenylacetate decarboxylase
To test our CPR implementation on a more complex example,
we have returned to the mechanism of 4-hydroxyphenylac-
etate decarboxylase (HPD) which was recently studied in
our group [11]. 4-hydroxyphenylacetate decarboxylase is a

glycyl radical enzyme that cleaves 4-hydroxyphenylacetate
into p-cresol and CO2 [28, 41]. Glycyl radical enzymes
transfer an electron and a proton from a cysteine (Cys503
in HPD) to a glycine radical (Gly873 in HPD) in the
activation phase, which results in a neutral cysteinyl rad-
ical species. This neutral radical state is the initial state
of the analysis of the reaction cycle. The reaction mecha-
nism of HPD starts with transfer of a single electron from
the substrate to the Cys503. This electron transfer occurs
in a concerted manner with a proton transfer from pheno-
lic hydroxyl group of the substrate to a nearby glutamate
(Glu637). The resulting deprotonated radical intermediate
reprotonates causing a cleavage of the intermediate into
CO2 and p-hydroxybenzene radical. The thiolate of Cys503
receives a proton from a nearby glutamic acid (Glu505).
In the final step, a hydrogen atom (i. e. a proton and an
electron) are transferred from Cys503 to the methylene car-
bon of the p-hydroxybenzene radical producing p-cresol and
regenerating the neutral cysteinyl radical.

In this paper, we employ PyCPR to reanalyze transition
states between the stable intermediates found in the previous
study and compared them with the NEB-derived transition
states presented previously [11]. We use the same computa-
tional setup as in Ref. [11]. For all but one reaction step, we
found essentially the same transition states both from struc-
tural and energetic point of view (Fig. 4). However, for the
last reaction step, where a hydrogen atom is transferred from
the Cys503 to the methylene carbon (C7) of the substrate, a
barrier (TS4) of 7.2 kcal/mol relative to the last intermedi-
ate (In3) or 16.3 kcal/mol relative to the initial (Sub) state

a b

Fig. 4 Reaction energy profiles of the enzymatic cleavage of 4-
hydroxyphenylacetate by the enzyme 4-hydroxyphenylacetate decar-
boxylase. The two reaction energy profiles derived by NEB (blue)
and CPR (red) are based on identical intermediates. Data for the
NEB-derived energy profile were taken from previous work [11]. A

frequency analysis showed, that the NEB failed to find a real transition
state and thus underestimates the barrier. a: NEB- and CPR-derived
energy profiles. b: Map of the spin density distribution (purple pos-
itive, green negative) in the active site for the energetically different
TS4 states shown at isovalue of 0.01 au
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was found. This transition state has a significantly higher
energy than the original TS4 barrier found with the same
QM setup by NEB – 5.1 or 14.2 kcal/mol relative to In3 or
Sub, respectively (Fig. 4a). The two TS4 structures differ in
several ways. First, the hydrogen being transferred is 1.5 Å
away from both Cys503 SG and the methylene carbon (C7)
of the substrate for the CPR-derived TS4, while in case of
original NEB-derived TS4 it is 1.4 Å and 2.1 Å away from
SG and C7, respectively. More insight to the bonding situ-
ation can be derived from the Mayer bond order analysis.
For the CPR-derived TS4, the hydrogen that is transferred
in this step has a partial bond to both, C7 of the substrate
(bond order 0.32) and SG of the Cys503 (bond order 0.62),
while the original NEB-derived TS4 has only a bond to
C7 (bond order 0.85). The next difference lies in the dis-
tribution of the unpaired spin. Although the total amount
of the spin 〈S2〉 is comparable in both systems (0.76, and
0.77 for the CPR-derived and NEB-derived TS4, respec-
tively), it is distributed differently. The CPR-derived TS4
has the unpaired spin density partitioned between the sub-
strate (mostly on methylene C7 carbon, Mulliken population
0.52) and SG of Cys503 (Mulliken population 0.24). In con-
trast, the unpaired spin density is located exclusively on the
substrate (again mostly on C7, Mulliken population 0.69) in
the original NEB-derived TS4. The differences are shown
in Fig. 4b and the Mulliken populations are summarized to
Table 1. Finally, we performed vibrational frequency anal-
ysis on the both TS4 structures. The CPR-derived TS4 has
one imaginary frequency and all other frequencies posi-
tive, a sign of a first order saddle point. In contrast, the
original NEB-derived TS4 does not show this feature. To
make the picture complete, we tried to refine the origi-
nal NEB-derived TS4 using CI-NEB approach. For these
calculations, we obtained a distorted structure with unre-
alistically high energy of more than 350 kcal/mol above
the initial state indicating that the CI-NEB failed to stay

Table 1 Mulliken spin populations on selected atoms of the transition
state of the last step (TS4) of substrate-bound 4-Hydroxyphenylacetate
Decarboxylase

NEB-derived TS4 CPR-derived TS4

C1 (subst.) −0.15 −0.08

C2 (subst.) 0.20 0.14

C3 (subst.) −0.10 −0.05

C4 (subst.) 0.21 0.15

C5 (subst.) −0.10 −0.07

C6 (subst.) 0.21 0.14

C7 (subst.) 0.69 0.52

O4 (subst.) 0.06 0.06

SG (Cys503) 0.03 0.24

on the original path. All these hints indicate that the NEB
approach may have actually missed the real transition state
TS4 and therefore underestimated the overall reaction bar-
rier, while the CPR was able to find a transition state
structure.

Strategy of path search using PyCPR PyCPR can be used
to find a reaction path using only the reactant and prod-
uct structure as an input. However, one has to keep in mind
that there may be more reaction paths connecting the reac-
tant and product state (see Fig. 5). Since the algorithm
uses linear interpolations between the path points, the CPR
approach may not find the path with the lowest overall acti-
vation barrier for going from the reactant state to the product
state. Instead, the path that is near the initial linear interpo-
lation is likely to be found as illustrated in Fig. 5. In this
example, we use the same energy landscape as in Fig. 2 but
provide just the reactant state and the product state. This
starting scenario results in a different path with higher bar-
rier (see Fig. 5). Once this passage is approached during the
path refinement, CPR will hardly escape from there. But
this problem is not specific for CPR. Especially for more

a

b

Fig. 5 Schematic illustration for finding the closest MEP to the initial
path, which is represented by the initial COS with the linear interpola-
tions connecting the points. Using the same artificial energy landscape
as in Fig. 2 but providing just the reactant and product state without the
intermediate, CPR fails to find the lowest MEP. Instead a less favor-
able path with a higher transition state is found. a The point with the
highest energy found along the linear interpolation s0 between p1 and
p0 is optimized along the conjugate direction s1, the intermediate state
(minimum on the right-hand side of the energy landscape) is not found.
b Further refinement of the path takes place only in the region around
the path point p1 until the saddle point is found. The refinement ends
without approaching the lowest MEP
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complex systems, we are not aware of an algorithm to find
the correct MEP from scratch. The results always have to
be analyzed critically. A crucial point for finding a promis-
ing reaction path is a good initial guess of the path. Starting
from the pure linear estimation of the reaction pathway,
the most concerted mechanism is usually found by CPR. A
reasonable initial guess of the reaction path can consist of
structures from an adiabatic PES scan guided by chemical
intuition or it can be a preoptimized path from some other
COS method. Within pDynamo, the growing string method
can for instance be used for rapid gradual construction of
the first path guess. Both, a path from adiabatic PES scan
intermediates or a growing string path can be further opti-
mized by NEB methods implemented in pDynamo prior to
passing it to CPR. The initial guess can be obtained with
computational cheap methods, since it is just a guidance for
CPR. But even when a well-optimized NEB path is used as
an initial guess, it can still have low sampling in the tran-
sition state regions where CPR might find higher structures
and refine these to saddle points.

Another problem that is caused by the linear interpola-
tion between two states is that the highest point on the initial
(interpolated) path might have an unrealistically distorted
structure with a high energy. Optimization may fail on such
a distorted structure if quantum chemical methods are used,
since the self-consistent field iteration during the electronic
structure calculation may not converge, as also discussed in
the CHARMM manual [13]. Also these problems can be
prevented by adding less distorted geometries as interme-
diate structures. The intermediates do not need to be very
realistic intermediates of the path, since they will be treated
during the refinement of the MEP [13].

If a prerefined path is not available, it may help to run
PyCPR with the option not to quit the Saddle Point Refine-
ment procedure when τ (Eq. 6) reaches the tolerance t . This
setting leads to a less restricted search that can divert the
path further from the initial linear interpolation by adding
new points to the path between the starting points. Once
new structures are found, it is advisable to restart the CPR
but now exiting the Saddle Point Refinement procedure if
τ reaches the tolerance criterion, which leads to better path
sampling in the transition state regions. As also discussed
in the CHARMM manual [13], using an orthogonal con-
struction of the search directions instead of a conjugate
construction in the first few cycles of the CPR run may help
to converge to better initial guesses for the path.

Once a first complete CPR path is found, potential stable
intermediates should be identified and further minimized.
Then the path can be split into discrete mechanistic steps
connecting the minima, which can be refined separately to
optimize different path regions in parallel. In general, it is
easier to get transition states between two intermediates rep-
resenting discrete mechanistic steps than trying to search

the whole mechanism between two stable states de novo. In
order to refine the reaction path, one can also benefit from
a combination of CPR with different methods like NEB,
which usually relaxes the chain-of-states nicely to the MEP,
but tends to miss the transition states. CPR instead is transi-
tion state oriented. Thus the transition states found by CPR
can be used as input for NEB. In the NEB runs, the transition
states and the minima need to be kept fixed. This identi-
fied reaction path can then be a useful input for sampling
methods such as umbrella sampling.

Conclusions

CPR [14] is a powerful method for finding transition states
starting from a preliminary path, that was guessed initially
by chemical intuition. The method is ideal for finding tran-
sition states even if the initial path points are far from the
transition state. The strength of the method is that the the-
ory developed by Sinclair & Fletcher [42] to find first order
saddle points of multidimensional functions is applied in an
approximate way to approach closer and closer to real first
order saddle points. We implemented PyCPR as a part of
the pDynamo framework [12], a versatile program designed
for the simulation of molecular systems using quantum
mechanical, molecular mechanical and hybrid QM/MM
potential energy functions. As such, PyCPR can be used
in a pure MM setup with various force fields, or in a pure
QM setup using either pDynamo’s own QM implemen-
tation or its interface to the program ORCA [31], which
is more efficient for usage of higher QM methods like
DFT. The biggest merit of pDynamo lies, however, in the
hybrid QM/MM approach. Thus, PyCPR can be applied
for exploring enzymatic mechanisms in combination with
a wide variety of theoretical methods. Initial guesses of
the mechanism guided by chemical intuition or by other
theoretical methods are a useful starting point of the mecha-
nistic explorations. While the outcome of CPR is transition
state oriented, NEB can relax the path as a whole to the
MEP using the transition states identified by CPR as fixed
points.

CPR is a conceptual different path search method com-
pared to existing approaches within the pDynamo frame-
work, since it focuses on saddle point refinement. PyCPR
supplements the available approaches in pDynamo and in
return benefits from the python-based environment. Struc-
tured in three Python modules, which contain the three
major parts of the algorithm, the code can be accessed and
modified easily. We hope that with this CPR implementa-
tion in pDynamo, we provide a valuable reaction path search
tool to the computational chemistry community which can
serve as a powerful alternative and complement to other
established methods.
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ABSTRACT: Phytochelatins (PCs) are nonribosomal thiol-rich oligopeptides synthetized from glutathione (GSH) in a γ-
glutamylcysteinyl transpeptidation reaction catalyzed by PC synthases (PCSs). Ubiquitous in plant and present in some
invertebrates, PCSs are involved in metal detoxification and homeostasis. The PCS-like enzyme from the cyanobacterium Nostoc sp.
(NsPCS) is considered to be an evolutionary precursor enzyme of genuine PCSs because it shows sufficient sequence similarity for
homology to the catalytic domain of the eukaryotic PCSs and shares the peptidase activity consisting in the deglycination of GSH. In
this work, we investigate the catalytic mechanism of NsPCS by combining structural, spectroscopic, thermodynamic, and theoretical
techniques. We report several crystal structures of NsPCS capturing different states of the catalyzed chemical reaction: (i) the
structure of the wild-type enzyme (wt-NsPCS); (ii) the high-resolution structure of the γ-glutamyl-cysteine acyl-enzyme
intermediate (acyl-NsPCS); and (iii) the structure of an inactive variant of NsPCS, with the catalytic cysteine mutated into serine
(C70S-NsPCS). We characterize NsPCS as a relatively slow enzyme whose activity is sensitive to the redox state of the substrate.
Namely, NsPCS is active with reduced glutathione (GSH), but is inhibited by oxidized glutathione (GSSG) because the cleavage
product is not released from the enzyme. Our biophysical analysis led us to suggest that the biological function of NsPCS is being a
part of a redox sensing system. In addition, we propose a mechanism how PCS-like enzymes may have evolved toward genuine PCS
enzymes.

■ INTRODUCTION

Phytochelatins (PCs) are cysteine-rich nonribosomal peptides
involved in metal homeostasis and detoxification with the
typical structure (γ-GluCys)nGly (n between 2 and 4).1 PCs
are synthesized by the enzyme PC synthase (PCS) by linking
glutathione under the release of glycine. At the first glance, this
enzyme shows high resemblance to cysteine proteases.
However, the catalytic repertoire of PCS goes beyond the
hydrolytic cleavage of peptides because it can also work as a
transpeptidase under physiological conditions and thus forms
peptide bonds without the use of ATP. In eukaryotes, PCS
appears to be ubiquitous in the plant kingdom.2,3 It is also
present in many invertebrates such as protozoa and
nematodes,4−6 but it has not been found in vertebrates. This

peculiar distribution makes PCS an interesting drug target
against parasitic representatives of these animal groups.7 In
prokaryotes, a number of cyanobacteria and proteobacteria8

possess genes that encode for proteins that show approx-
imately 30% similarity to the PCS consensus Pfam domain
050239 but no significant similarity to any other group of
proteins. Thus, these bacterial proteins have been assigned as
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being PCS-like. Similar to PCS, PCS-like proteins use GSH as
the substrate. However, while they are able to cleave off the
glycine residue to form γ-Glu-Cys (γEC), the formation of PC
in PCS-like proteins was detected only in low amounts and
thus the transpeptidase activity of these proteins is still
debated.10−13

Several features allow us to assign PCS and its prokaryotic
homologue to clan CA of cysteine peptidases, whose archetype
is papain according to the peptidase database MEROPS
(https://www.ebi.ac.uk/merops/, release 12.4).14,15 The strik-
ing feature of clan CA is the presence of a catalytic triad with a
catalytic cysteine assisted by a histidine and an asparagine (as
in papain) or an aspartic acid (as in PCS), which seems to be a
permissible substitution from a catalytic viewpoint.16 More-
over, these key residues in clan CA peptidases are not only the
same but they also follow the same order in the sequence, as
would be expected for divergent evolution from a common
ancestor rather than convergent evolution from unrelated
progenitors.17,18 The catalytic triad of the PC synthase of
Nostoc sp. (NsPCS) is Cys70-His183-Asp201, as confirmed by
crystal structures19 and is in line with the catalytic triad Cys25-
His162-Asn175 in papain.20,21 The catalytic cysteine (Cys70 in
NsPCS) is conserved with no exception within all eukaryotic
and prokaryotic PCS enzymes, supporting its essential role in
catalysis. The substitution of only one of the residues of the
catalytic triad abolishes the enzymatic activity.22 In particular,
the mutation of Cys70 to Ser in NsPCS was shown to
inactivate the enzyme.23

The eukaryotic PCS consists of two domains: the N-
terminal conserved catalytic domain and the more variable C-
terminal domain.24 Prokaryotic PCSs are homologous to the
N-terminal domain but miss the C-terminal domain. A
sequence alignment shows that NsPCS possesses 34.5%
identity and 53.0% similarity with the N-terminal domain of
PCS from Arabidopsis thaliana (AtPCS1). Notably, the
truncated N-terminal domain of AtPCS1 is sufficient for
catalysis, that is, it cleaves GSH into γ-Glu-Cys and Gly, and it
is even able to synthetize PCs from GSH in media containing
Cd2+.25 It is therefore not surprising that the ability to cleave
GSH is shared by the prokaryotic PCS.
Although extensively studied, the spectrum of functions of

PCS is still a matter of debate.13,17,26 The sole role in heavy
metal detoxification seems not sufficient to explain the ubiquity
of this protein in the plant kingdom as well as in yeast and
nematodes. Amounting evidence supports the hypothesis that
PCS serves functions besides cadmium and arsenic detox-
ification, for example, through roles in essential metal
homeostasis3 and in innate immunity.27 The role of the
PCS-like proteins is even less clear because they are seemingly
not able to produce larger amounts of PC. In order to better
identify the tasks of PCS-like proteins, their detailed
mechanistic characterization is a priority.
In this work, we focus on the alr0975 protein from Nostoc sp.

strain PCC 7120 (syn. Anabaena sp. strain PCC 7120),28

which is a PCS-like protein10 that we name NsPCS. We report
several crystal structures of the NsPCS: (i) the structure of
wild-type enzyme (wt-NsPCS); (ii) the high-resolution
structure of the γ-glutamyl-cysteine acyl-enzyme intermediate
(acyl-NsPCS); and (iii) the structure of an inactive variant of
NsPCS, with the catalytic cysteine mutated into serine (C70S-
NsPCS). Furthermore, we analyze the affinity of the enzyme
for the substrate and the catalytic activity experimentally and
support this work by theoretical calculations. This investigation

provides the first quantitative analysis of the enzymatic
mechanism of a PCS-like protein, with some implications for
possible roles of such enzymes in prokaryotes.

■ RESULTS

Our goal is to dissect the mechanism of the peptidase reaction
catalyzed by NsPCS and to identify its biological implications.
To reach a deep understanding of the enzymatic mechanism, it
is necessary to relate the thermodynamic and kinetic data to
the structural features of the enzyme. In order to merge all
these different aspects, it is important to approach the
enzymatic mechanism also from a theoretical point of view.
With electrostatic and quantum chemical calculations, it is
possible to gain insights into enzymatic mechanisms.29 To this
purpose, the knowledge of the 3D structure of the enzyme
capturing different states of the chemical reaction is a
prerequisite.

Crystal Structure of NsPCS with and without the
Substrate. We cloned the gene of alr0975 from Nostoc sp.
strain PCC 7120 excluding the previously predicted signal
sequence responsible for the periplasmic secretion of the
protein,10 see the Supporting Information. Additionally, we
introduced the mutation Cys70 to Ser (C70S-NsPCS) in order
to analyze the reasons of its inactivity23 at the atomic level and
to investigate binding independent from catalysis. The
structure of both variants, wt-NsPCS and C70S-NsPCS have
been determined by X-ray crystallography. In addition, we
crystallized an acyl-form of NsPCS (acyl-NsPCS), which has
the γEC moiety covalently bound. At variance to previous
work,19 in which the acyl-enzyme was crystallized at an
extremely acidic pH (pH 2.6−3.4), we obtained these crystals
at a significantly higher pH (pH 5.5). Moreover, the higher
resolution of our acyl-enzyme structure allows us to obtain
more details about the bound ligand. We could not only
confirm the oxidation at the sulfur atom of the cysteine of the
covalently bound γEC moiety that was previously reported19

but we could also resolve a second glutathione bound via a
disulfide bond to the acylated γEC moiety. The most relevant
features of the reported crystal structures are represented in
Figure 1.
The structure of the native protein (PDB ID: 6TH5) has a

resolution of 1.99 Å with Rwork = 19.9% and Rfree = 23.8% and
is very similar to the one previously resolved (PDB ID:
2BTW).19 The structure of the acyl-form (PDB ID: 6THO)
has a higher resolution, 1.09 Å (Rwork = 11.8%; Rfree = 14.8%)
than the one previously resolved (PDB ID: 2BU3).19 The
structure of the serine mutant C70S-NsPCS (PDB ID: 6TJL)
was refined to a resolution of 1.87 Å (Rwork = 20.5%, Rfree =
26.8%). Data collection statistics are summarized in Table 1.
All the three NsPCS structures are homodimers, displaying

root-mean-square deviations (RMSDs) lower than 0.25 Å
between the two chains [RMSD(C70S-NsPCS) = 0.19 Å,
RMSD(wt-NsPCS) = 0.19 Å, RMSD(acyl-NsPCS) = 0.23 Å].
The structure of the mutated protein C70S-NsPCS is nearly

identical to that of the native enzyme, indicating that rather
than structural changes, the substitution of the sulfur atom of
the cysteine by the oxygen of a serine is the key point for the
loss of the activity.
Unexpectedly, we observed electron density for one

molecule of glutathione (GSH) in the active site of C70S-
NsPCS, even if GSH was not added during crystallization. The
ligand therefore seems to have been co-purified after
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overexpression in E. coli and remained tightly bound during
purification and crystallization of the protein.
Investigation of Binding of GSH and GSSG to the

Active Site. In order to measure the affinity of an enzyme for
its substrate, the catalytic activity has to be separated from
binding. Therefore, in our case, C70S-NsPCS represents the
variant of choice to focus on the binding process. The fact that
the uncleaved substrate is stably captured by C70S-NsPCS
confirms that this mutation abolishes the activity of the enzyme
without precluding binding. On the other hand, the presence
of GSH in the binding pocket of the recombinant protein
hampers binding studies, and removal of the ligand is an
unavoidable prerequisite for such experiments.
In order to eliminate the substrate from the binding pocket,

the protein was unfolded, and then dialyzed to remove the
substrate from the solution and finally refolded. To check if the
native fold is reached, a spectroscopic analysis of the non-
refolded (i.e., before unfolding) and refolded proteins was
performed.
We recorded the CD spectrum of the C70S-NsPCS during

the unfolding/refolding process. As shown in Figure 2, the
evolution of the CD signature indicates the loss of the
secondary structure during unfolding and its restoration after
refolding. An additional confirmation of the occurrence of the
unfolding and refolding process was provided by the analysis of
the fluorescence signal. Due to the presence of eight tyrosines,
an excitation wavelength of 295 nm was chosen in order to
selectively excite the tryptophan residues. The emission
spectrum of the non-refolded C70S-NsPCS presents a
maximum at 336 nm, which indicates a clear hypsochromic
shift when compared to the emission of a tryptophan residue in
aqueous solution whose maximum is at 350 nm (Figure 2B).
Emission at a lower wavelength is typical of nonsolvent

exposed tryptophan residues in line with the buried location of
both tryptophan residues in NsPCS. During the unfolding
process we observe the shift of the emission band toward
higher wavelengths until reaching the profile of the typical
spectrum of fully water-exposed tryptophan residues. This
hyperchromic shift reports the loss of structural features
leading to the disruption of the hydrophobic core and the
consequent exposure of the tryptophan residues to the aqueous
solution (Figure 2B). The shift of the emission band was
reversed during the refolding process until the emission
spectrum regained the original profile, indicating the
restoration of the original structure.
The spectroscopic analysis of the refolded protein made us

confident that the protein refolds to the native conformation.
Nevertheless, we desired to test if the refolded protein is also
functional. Because the C70S mutant is inactive, we unfolded
and refolded the wild-type enzyme following the same protocol
and checked the quality of the procedure with CD and
fluorescence spectroscopy, obtaining the confirmation of the
restoration of the original structure as for C70S-NsPCS. We
performed a real-time 1H NMR experiment to monitor the
time course of the production of free glycine at pH 8. The
activity of the refolded wt-NsPCS was compared to the activity
of the non-refolded wt-NsPCS from the same batch.
The activity assay shows that the refolded protein is active.

However, although the refolded protein is able to cleave the

Figure 1. (A) Binding pocket of acyl-NsPCS (PDB ID: 6THO).
Active site residues are shown as magenta sticks. The electron density
of the mono-deglycinated oxidized form of glutathione (γEC-SG) is
shown. (B) Superimposition of wt-NsPCS (PDB ID: 6TH5) and
C70S-NsPCS (PDB ID: 6TJL). The ligand GSH is present in the
mutant structure C70S-NsPCS and is represented with its electron
density. For all structures, the Fo − Fc electron density before
incorporation of the substrate (omit map) is represented as a mesh
with a sigma-level of 3.

Table 1. Data Collection and Refinement Statistics

wt-NsPCS acyl-NsPCS C70S-NsPCS

PDB ID 6TH5 6THO 6TJL
Data Collection

Space group P21 P212121 P21
a, b, c (Å) 61.36, 46.67,

68.58
49.28, 57.96,
139.47

61.39, 47.83, 67.9

α, β, γ (deg) 90.00, 92.26,
90.00

90.00, 90.00,
90.00

90.00, 91.80,
90.00

resolution (Å) 34.26−1.99
(2.07−1.99)a

29.21−1.09
(1.10−1.09)a

46.25−1.87
(1.92−1.87)a

Rmerge (%) 11.5 (66.5)a 5.6 (42.7)a 8.4 (84.1)a

Rpim (%) 9.8 (57.0)a 3.4 (26.2)a 5.3 (53.3)a

I/σ(I) 6.6 (1.3)a 12.1 (2.7)a 10.2 (1.34)a

completeness
(%)

97.4 (98.5)a 98.6 (99.3)a 99.3 (99.5)a

redundancy 2.2 (1.9)a 3.6 (3.4)a 3.3 (3.3)a

CC1/2 0.987 (0.845)a 0.998 (0.815)a 0.997 (0.621)a

Refinement
number of
reflections

26210 (2924)a 164587 (5490)a 32749 (2683)a

Rwork/Rfree 0.199 (0.282)a

/0.238
(0.313)a

0.118 (0.200)a

/0.148
(0.205)a

0.205 (0.311)a

/0.268
(0.323)a

Number of Atoms
protein 6790 8451 7027
ligand/ion 5 124 74
water 318 768 118

B-Factors (Å2)
protein 26.8 14.3 48.5
ligand/ion 27.8 28.4 43.9
water 28.8 32.0 33.1

RMSD
bond length (Å) 0.006 0.007 0.016
bond angles
(deg)

0.554 1.042 1.413

aValues in parentheses are for the highest-resolution shell.
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entire amount of the substrate, it appears to work much more
slowly than the non-refolded protein. The time dependence of
free glycine release (Figure 3) indicates that in the time during
which the non-refolded enzyme has processed all the substrate
(after about 1600 s), the refolded enzyme processed only
about 10% of it. However, both the refolded and the non-
refolded enzymes are able to process the entire amount of the
substrate.
To characterize the binding pocket, we analyzed the

hydrogen bond network (Figure 4). The experimental binding
study was performed with isothermal titration calorimetry
(ITC). First of all, we measured the binding of GSH to the
purified recombinant non-refolded C70S-NsPCS, that is, the
protein that retained the substrate in the binding site. The
thermogram shows only the effect of dilution, confirming that
the mutated enzyme is saturated with GSH. Because GSH is
often oxidized to GSSG, we decided to determine the affinity
of the C70S-NsPCS to both molecules, GSH and GSSG. The
binding experiments have been performed under an argon
atmosphere to prevent the oxidation of the thiol groups.
Because the protein is a homodimer, we initially fitted the
experimental data to a two-site model. No significant
interaction between the two binding sites has been detected
in line with the fact that the two binding pockets are far apart
from each other. Therefore, the data have been further
analyzed with a one-site model (Table 2).

The affinities of C70S-NsPCS for GSH (5 × 105 M−1) and
GSSG (1 × 105 M−1) are similar. The fit of the experimental
data indicates that only 10 to 20% of the protein is able to bind
the substrate (see parameter p in Table 2). Notably, also the
activity assay by NMR showed that a similar small amount of
refolded protein retained activity. This similarity between the
percentages of active and binding protein was replicated with
different batches of protein indicating the significance of this
finding.
In order to consolidate the result of ITC we measured the

affinity of the refolded C70S-NsPCS for GSH with microscale
thermophoresis. First of all, we tested the binding of GSH to
the purified recombinant non-refolded C70S-NsPCS which is
expected to retain the substrate in the binding pocket. As
expected, no binding could be detected because the binding
pocket is occupied. Afterward, we measured the binding of
GSH to the refolded C70S-NsPCS and obtained a binding
constant of Ka = (8 ± 4) × 105 M−1. Noticeably, the binding
constant measured by microscale thermophoresis is fully in line
with the binding constant measured by ITC (Table 2).
The affinity of the enzyme for the reduced (GSH) and

oxidized (GSSG) forms of glutathione is similar within 1 order
of magnitude, suggesting that the oxidation of glutathione does
not substantially affect binding. This observation prompted us
to test if GSSG can be a substrate for the enzyme. We
performed a real-time 1H NMR experiment to monitor and
compare the time course of the production of free glycine at
pH 8 using GSSG and GSH as substrates, respectively. Only a
very small amount of free glycine was detected when GSSG
was added in the reaction tube containing the enzyme (Figure
5), indicating that GSSG is not an optimal substrate for
NsPCS. Additionally, the quantification of the free glycine
which is present when the reaction is terminated (plateau of
the time trace) reveals that the concentration of the free
glycine is similar to the concentration of active sites of the
enzyme present in the reaction tube. This result indicates that
the free glycine was produced in a stoichiometric amount and
leads us to suggest that each monomer of the enzyme interacts
with one molecule of GSSG and is able to cleave one of its two

Figure 2. (A) CD spectra of C70S-NsPCS: non-refolded (black),
unfolded in 3 M GdmCl (red), and refolded by elimination of GdmCl
(green). The spectrum in 3 M GdmCl was cut at λ = 210 nm because
the high salt concentration causes a high noise at shorter wavelengths.
(B) Normalized fluorescence spectra (λEx. = 295 nm) of non-refolded
(black), unfolded (red), and refolded (green) C70S-NsPCS. Temper-
ature was set at 25 °C.

Figure 3. Time-dependent production of free glycine resulting from
GSH cleavage mediated by NsPCS. The concentration of free glycine
was measured by 1H NMR and quantified by comparison with sodium
trimethylsilylpropanesulfonate (DSS) as the internal NMR standard.
Because the used GSH concentration has been 1 mM, the final
concentration of detected glycine was normalized to 1 mM.
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glycine residues, without the subsequent release of the γEC-SG
moiety. This hypothesis is supported by the crystal structure of

acyl-NsPCS which reveals that γEC-SG and not γEC is bound
in the acyl-enzyme.

Electrostatic Analysis of the Substrate Binding. Our
experimental observations indicate that NsPCS catalyzes the
cleavage of GSH but is trapped in the acylated state when
GSSG is used as the substrate. In order to understand the
different reactivities of the enzyme, we performed electrostatic
calculations. These calculations are particularly suited to this
purpose because, due to the charges present on both GSH and
GSSG, the binding of both molecules to the enzyme has an
exquisite electrostatic character. For our calculations, we used
the crystal structures C70S-NsPCS and acyl-NsPCS to create
models of the complexes with GSH, GSSG, and their cleaved
forms γEC and γEC-SG, respectively. All the molecules have
been modeled as noncovalently bound in the binding pocket of
the enzyme (see Material and Methods for a detailed
description of the procedure).
We calculated the electrostatic interaction energies between

the enzyme and the analyzed ligands using the Poisson−
Boltzmann equation (see Table 3). The so-calculated energies
contribute mainly to the enthalpic part of the binding energy.
The electrostatic interactions stabilize the binding of GSSG

and γEC-SG by more than 20 kcal mol−1, whereas only −16.5
and −14.1 kcal mol−1 are the electrostatic energies for the
binding of the reduced forms GSH and γEC, respectively. The
complex NsPCS + γEC was modeled in two ways and slightly
different electrostatic interaction energies have been obtained:

Figure 4. Hydrogen bond network of GSH in the binding pocket of
NsPCS. (A) Possible hydrogen bond interactions of GSH with
NsPCS in the structure C70S-NsPCS (PDB ID: 6TJL), subunit A.
Interaction possibilities were obtained with the in-house program
Hbond. (B) Binding site representation of GSH in the binding pocket
of NsPCS, subunit A calculated with LigPlot+ (https://www.ebi.ac.
uk/thornton-srv/software/LigPlus/, Version1.4).30

Table 2. Thermodynamic Quantities Obtained from ITCa

C70S-NsPCS + GSH C70S-NsPCS + GSSG

ΔH [kcal mol−1] −12 ± 1 −11.6 ± 0.4
Ka [M

−1] (5 ± 3) × 105 (1.0 ± 0.2) × 105

ΔS [kcal mol−1 K−1] −0.014 −0.016
ΔG [kcal mol−1] −7.9 −6.9
R2 0.935 0.990
p 0.20 ± 0.01 0.118 ± 0.003

aThe correction parameter p corresponds to the fraction of binding
protein (see Material and Methods). ΔH and Ka are experimentally
determined. ΔS and ΔG are calculated from ΔG = −RT ln Ka and ΔG
= ΔH − TΔS.

Figure 5. Time-dependence of the production of free glycine resulting
from the substrate cleavage, GSH (red dots), and its oxidized form
GSSG (black dots). The concentration of free glycine was measured
under the anoxic condition by 1H NMR and quantified by comparison
with DSS as an internal NMR standard.

Table 3. Electrostatic Contribution to the Interaction
Energy between NsPCS and Different Variants of Its
Substrate

crystal structure structural model
electrostatic contribution

(kcal mol−1)

C70S-NsPCS (GSH
bound)

NsPCS + GSH −16.5

NsPCS + γEC −14.1
NsPCS + GSSG −22.4
C70S-NsPCS + GSH −16.3

acyl-NsPCS (γEC
bound)

NsPCS + γEC −18.2

NsPCS + γEC-SG −22.2
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−14.1 kcal mol−1 for the complex based on the crystal
structure of C70S-NsPCS and −18.2 kcal mol−1 for the
complex based on the crystal structure of the acyl-NsPCS
(Table 3). The difference between the interaction energy
calculated for the complex NsPCS + GSH (−16.5 kcal mol−1)
and the one calculated for the complex NsPCS + γEC (−14.1
kcal mol−1) can be considered as the interaction of the glycine
moiety of GSH with PCS showing that γEC when hydrolyti-
cally cleaved from C70 interacts less strongly with the enzyme
than GSH.
In addition, we have simulated the encounter of GSH with

NsPCS using a Monte Carlo technique.31 We considered three
forms of NsPCS differing in the occupancy of the binding
pocket: (i) NsPCS bearing empty binding pockets, (ii) NsPCS
with bound GSH in the binding pockets, and (iii) NsPCS with
one acylated binding pocket and GSH bound in the other (see
Figure 6). In NsPCS with empty binding pockets, we could
observe the formation of the encounter complex in the area
around the active site (Figure 6A). In contrast, NsPCS with
GSH bound in both binding pockets shows no specific
encounter complex formation (Figure 6B), indicating that the
binding of GSH prevents another GSH molecule from
approaching the active site region. Finally, Figure 6C shows
the results of the calculation in which γEC is covalently bound
in one pocket of the homodimer and GSH is noncovalently
bound in the other pocket. In line with the finding for NsPCS
with GSH bound to both binding pockets, at the pocket with
bound GSH, no encounter complex formation is observed.
Instead the pocket with bound γEC, representing the acyl-
enzyme state, shows an encounter complex formation.
Michaelis−Menten Analysis of the Catalytic Reaction.

In order to measure the catalytic activity, we used the wild-type
enzyme. We focused on the peptidase activity that is the only
activity that is doubtlessly recognized to be performed by
NsPCS. The reaction consists in the cleavage of glycine from
the substrate (GSH) concomitant to the formation of the acyl-
enzyme intermediate, followed by the hydrolysis of the acyl-
adduct.
We designed a new test to quantify the peptidase activity of

NsPCS based on real-time 1H NMR under anoxic conditions.
Due to the fast oxidation of the substrate GSH, the catalytic
activity of NsPCS at pH 8 was highly sensitive to oxygen
exposure. Therefore, we elaborated a protocol to eliminate the
presence of oxygen in the reaction mixture (see Materials and
Methods for details).
The deglycination of GSH was monitored and a Michaelis−

Menten analysis was performed. For comparison, the reference
spectra of the substrate GSH, its oxidized form GSSG, and the
expected products γEC and free glycine have been measured.
During the reaction, the newly appearing resonances can be
attributed to free glycine and γEC and the disappearing
resonance corresponds to GSH. No resonance indicating
oxidation of GSH was detectable during the 4 h of the
experiment, indicating that the protocol to maintain the anoxic
condition was successful. The time-dependence of the
accumulation of free glycine is used to estimate the initial
velocities of the reaction. A plot of the initial velocity versus
the substrate concentration displays the typical Michaelis−
Menten behavior (Figure 7), with a Michaelis−Menten
constant KM of 0.2 mM and a turnover number kcat of 3.5 s−1.
QM/MM Analysis of the Reaction Mechanism. NsPCS

belongs to the superfamily of papain-like cysteine peptidases.
Hence, it is expected to cleave its natural substrate GSH

according to a mechanism similar to the one of papain. To test
this assumption, we performed quantum mechanics/molecular
mechanics (QM/MM) calculations on both enzymes, NsPCS
and papain. In the case of papain, we chose the substrate Phe-
Ser-Ile with an acetylated N-terminus and N-methylated C-
terminus based on previous mechanistic studies and exper-
imental binding data.32

The peptidase reaction performed by both enzymes can be
divided into two steps: the acylation reaction and the
hydrolytic cleavage. In NsPCS, the acylation reaction consists
in the cleavage of the substrate resulting in glycine and γEC.
The latter remains covalently linked to the enzyme as so-called
acyl-adduct. In papain, the investigated acylation reaction

Figure 6. Comparative representation of encounter complex densities
(shown in green) of GSH around NsPCS. NsPCS is shown in the
surface representation, colored by electrostatic potential on the
solvent accessible surface. One subunit of each homodimer is opaque,
and the other is transparent, with a translucent cartoon representation
of the protein. The electrostatic potential was calculated with 0.1 M
ionic strength. (A) NsPCS with empty binding pockets. Encounter
complexes form at both binding pockets. (B) GSH bound to both
binding pockets. No encounter complexes form near the binding
pockets indicating that a second GSH molecule is not able to
approach the active site when a GSH is already bound in the binding
pocket. (C) GSH bound to subunit A and γEC bound covalently to
subunit B. The simulation shows that after deglycination, a second
GSH molecule can approach the active pocket in subunit B. All the
simulations were performed with 100,000 runs and 1,000,000 Monte
Carlo steps each. The isovalue is set to 5500 and describes the
minimal number of encounters which occurred as a visible green
surface.
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consists in the cleavage of the substrate between serine and
isoleucine. Similarly, the latter remains covalently linked to the
enzyme. In both enzymes, a subsequent hydrolytic reaction
leads to the cleavage of the acyl-adduct. The calculations for
the acylation reaction are performed on the crystal structure of
C70S-NsPCS, which has the full substrate GSH bound to its

active site and therefore represents the ideal starting point to
study the cleavage reaction. In order to simulate the enzymatic
activity, the serine was converted computationally into the
native cysteine. The calculations for the deacylation have been
performed on the crystal structure of the acyl-enzyme. We
compared the obtained energy profiles with the energy profile
of the corresponding reaction steps in papain (Figure 8).
The acylation reaction can be divided into two steps: (i) the

activation of the nucleophile by proton transfer from cysteine
to the catalytic histidine resulting in the ion-pair state (Figure
8, reaction coordinates 1−3) and (ii) the nucleophilic attack
and cleavage of the substrate via a tetrahedral state (Figure 8,
reaction coordinates 3−7). The comparison of the reaction
profiles of the two enzymes shows that the energy barrier for
the activation of the nucleophile in NsPCS (6.1 kcal mol−1) is
higher than in papain (0.9 kcal mol−1). Additionally, the ion-
pair state is less stable in NsPCS than in papain, as the less
pronounced minimum in the energy profile of NsPCS indicates
(reaction coordinate 3). In papain, the catalysis proceeds via
the formation of a stable tetrahedral intermediate state
(reaction coordinate 5). The values of the classical potential
energy suggest that also the reaction path for NsPCS displays a
tetrahedral intermediate, which reacts further to form the acyl-
enzyme state; nevertheless, the occurrence of a stable
tetrahedral intermediate for NsPCS is not observed after
zero-point-energy correction. The zero point energy of a
quantum mechanical system accounts for the ground-state
fluctuations according to the Heisenberg uncertainty principle;
therefore, after the zero-point-energy correction, the energy of

Figure 7. Plot of the initial velocities of the peptidase reaction
catalyzed by NsPCS as a function of the concentration of the
substrate GSH. For each substrate concentration, the accumulation of
free glycine is monitored and the initial velocity of the reaction is
determined and plotted against the concentration of the substrate.
The solid line represents the fit of the experimental data according to
the Michaelis−Menten equation.

Figure 8. Comparison of the enzymatic mechanism of NsPCS (cyan) and papain (orange). Comparable states along the reaction coordinate are
shown in the energy diagrams and structurally represented with the corresponding numbers. States 4 and 5 have been identified only for papain and
not for NsPCS. The energies were calculated with a QM/MM approach and zero-point energy corrected. The reaction coordinate corresponds to
the number of the states.
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the system is higher than its energy in the classical limit, which
is the mathematical minimum of the potential well. Because
different states may have different zero point energies,
energetically close states in the reaction path may appear
indistinguishable, when zero-point-energy correction is ap-
plied. According to the Eyring equation, the rate constants at
303.15 K for the rate-limiting step in the acylation reaction of
NsPCS and papain are 9.2 × 104 and 4.6 × 107 s−1,
respectively, suggesting a faster process in papain. The
calculated rate constants represent the actual cleavage reaction
without binding of the substrate GSH and release of the
cleaved-off glycine. However, substrate binding and product
release contribute to the measured rate constants. Thus, only a
qualitative comparison with the experimentally obtained rate
constants is meaningful, also because we consider only the
enthalpic and not the entropic contribution to the energy
barrier.
During the hydrolytic cleavage of the acyl-enzyme, a water

molecule in the active site attacks and cleaves the thioester
bond of the acyl-enzyme, leading to the release of γEC in
NsPCS and Phe-Ser in papain. The hydrolytic cleavage can be
divided into two steps: (i) the formation of a tetrahedral state
(Figure 8, reaction coordinates 8−10) and (ii) the cleavage of
the covalent enzyme substrate complex and re-protonation of
the catalytic nucleophile (Figure 8, reaction coordinates 10−
12). The energy profiles of NsPCS and papain look similar.
The two identified transition states and the intermediate of the
reaction catalyzed by NsPCS are roughly 3−6 kcal mol−1

higher than the corresponding state in the reaction catalyzed
by papain. For the hydrolytic cleavage, the rates of NsPCS and
papain calculated according to the Eyring equation at 303.15 K
are 6.3 × 101 and 1.3 × 104 s−1, respectively.

■ DISCUSSION
The function of an enzyme is interconnected to its catalytic
behavior, which has its rationale in the conformational and
chemical features of the enzyme at the atomic level. Therefore,
in our attempt to understand the mechanism of NsPCS and to
identify its biological functions, we started by determining the
crystal structure of three relevant forms of the enzyme: the
ligand-free enzyme, the acyl-enzyme, and a mutant enzyme
with the substrate bound noncovalently.
New Structural Features in NsPCS and the Acyl-

Enzyme. The structure of the native protein (NsPCS)
resolved in this study is similar to the one in the literature19

(RMSD of 0.28 Å). However, a careful optimization of the
hydrogen-bond network led to the re-orientation of several
sidechains in comparison to the previous work, in particular for
amino acids close to the active site, such as Asn170 or Gln67.
The structure of the acyl-enzyme is very well superimposable
to the structure of the native enzyme. We could resolve all loop
regions, including the loop comprising the residues 83−106,
which was partly undefined in the previous structure19 (PDB
ID: 2BU3). Because of its vicinity to the active site of the other
monomer, this loop was previously called “protruding loop”
and its incompleteness was attributed to the flexibility required
by the catalytic reaction. However, the lack of unresolved
regions in our structure together with the absence of a
significant structural difference between the acylated and the
ligand-free forms of the enzyme indicates that the catalytic
reaction does not require much flexibility in the active site and
the active site of NsPCS is rather preshaped to accommodate
the substrate. Additionally, because we do not detect

significant structural differences between the protruding loop
regions in both monomers, we have no reason to invoke
mechanistic differences between the two monomers.
Based on our binding study, we exclude a cooperative

behavior between the two monomers at variance to suggestions
of Vivares et al.19 This conclusion is supported by our
structural study. In fact, the two binding pockets are far apart
from each other and the apparent absence of mechanistic
differences between the two monomers pleads for their
independence.
We succeeded to crystallize the acyl-enzyme at pH 5.5,

which is significantly higher than the pH at which the acyl-
enzyme was previously trapped.19 Therefore, we think that the
acidic pH and the consequent protonation of the catalytic
histidine is not the reason for the stabilization of the acyl-
enzyme, as previously suggested. In fact, the electrostatic
calculations indicate that His183 titrates at extremely low pH
(see the Supporting Information). Moreover, in our high-
resolution structure, we could detect a second molecule of
GSH bound via a disulfide bond to the acylated γEC moiety.
Therefore, we suggest that the reason of the stabilization of the
acyl-enzyme resides in the larger size of the ligand (γEC-SG
instead of γEC) and thus in the larger number of interactions.
The hydrolytic cleavage reaction occurs through the formation
of a tetrahedral complex due to the arrival of a water molecule
attacking the thioester bond. In contrast to the structure of
Vivares et al.,19 where a water molecule was found only in one
monomer, we see this water molecule ideally placed in both
monomers.
The substrate is retained in the binding pocket of the

inactive mutant C70S-NsPCS.
Unexpectedly in the crystal structure of the catalytically

inactive C70S-NsPCS, the active site is occupied by a molecule
of GSH. Considering that GSH was not added during
crystallization, we assume that the protein has been exposed
to GSH during expression in E. coli. Because the mutation
impairs activity, the substrate is not processed. Surprisingly, it
is also not released during purification. This finding suggests a
tight complex between the enzyme and the substrate, in
contrast to what was previously insinuated on the basis of the
Michaelis−Menten analysis of the catalytic mechanism of PCS
from Silene cucubalus.33 However, in order to quantify the
affinity of an enzyme for its substrate, it is required to separate
binding from catalysis. For this purpose, the C70-NsPCS was
taken as the variant of choice to focus on binding. However,
the ideality of this variant is partly downscaled by the necessity
to remove the substrate from the binding pocket through the
invasive procedure of unfolding/refolding. Although successful
in regaining the original conformation, the unfolding/refolding
procedure showed one drawback: when applied to the wild-
type, the enzymatic activity slowed down significantly. The
hampered catalysis indicates that the features responsible for
the enzymatic activity were not properly restored during the
refolding process, at least not in all molecules. However,
because no difference in the spectroscopic properties of the
refolded and non-refolded proteins emerged, these unrestored
features are such to be unable to affect the spectroscopic
properties. We can explain the reduced velocity of cleavage in
two ways: (i) the entire amount of the refolded enzyme is able
to process the substrate at a lower speed or (ii) the kinetics of
the catalytic reaction is not modified, but only a small amount
of the refolded protein is active. We consider the second
hypothesis more likely because the percentage of refolded
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enzyme able to bind the substrate (as shown by the binding
study) correlates well with the amount of refolded enzyme for
which activity was restored. We conclude that the refolding
protocol is able to generate a small amount of enzyme which is
fully functional and suitable for further analysis.
Oxidation of GSH Does Not Substantially Affect

Binding but It Drastically Affects Activity. The affinity of
GSH to C70S-NsPCS is 5 × 105 M−1 and no cooperative
behavior was observed between the two monomers. This
finding is not surprising because the two binding pockets are
far apart from each other. The binding constant is higher than
believed in earlier studies.33 A relatively high binding constant
is important because NsPCS is found in the periplasm where
the concentration of GSH is not as high as in the
cytoplasm.34,35 However, the binding constant is not as high
as expected, considering that the substrate GSH remains in the
binding pocket during purification.
The enthalpic contribution to the binding interaction is very

high (−12 kcal mol−1 for GSH binding, see Table 2), pleading
for a strong interaction. Accordingly, the entropic component
of the binding energy is small, which can be explained with a
compensation between favorable and unfavorable contribu-
tions. On the one hand, the binding pocket is largely solvent
exposed which minimizes the favorable entropic contribution
due to water release. On the other hand, the binding pocket
with the ligand bound in the C70S-NsPCS structure is
superimposable to the empty binding pocket in the wild-type
structure, indicating that the binding pocket is prepared to
accommodate the substrate; hence, the unfavorable entropic
contribution due to the loss of conformational degrees of
freedom upon binding is also expected to be marginal.
However, thermodynamic reasons are not sufficient to justify
the persistence of GSH in the binding pocket during
purification steps and kinetic arguments have to be evoked.
In fact, if the substrate is not released, it means that the
dissociation is sufficiently slow not to occur during the time of
the purification. Normally, a very low dissociation rate is
associated with a high affinity constant. This statement,
however, is not exclusive. In fact, reminding that the
association equilibrium constant can be expressed as the
ratio of the association and dissociation rates as follows, K =
kon/koff, the dissociation process can be slow also with a
moderate equilibrium constant, provided the association
process is likewise slow. According to the affinity constant of
NsPCS for its substrate, the overall dissociation rate, koff, will
be about 6 orders of magnitude slower than the overall
association rate, kon. Therefore, if kon is sufficiently slow, koff
can potentially compete with the time of the purification
process.
In our case, the purification process lasts about 3 days, that

is, 2.6 × 105 s. Therefore, strictly speaking, the dissociation rate
has to be lower than about 4 × 10−6 s−1 to ensure the
persistence of the substrate in the binding pocket during these
3 days. To allow this happening and according to an affinity
constant of 5 × 105 M−1, the association process needs to be in
the order of a second.
Such a slow association can be explained with the necessity

of releasing the solvation water prior to binding. In general,
water molecules solvating the binding pocket act as a
significant obstacle to ligand binding.36 In our system, this
effect is enhanced by the presence of numerous charges in both
the substrate and the binding pocket, which render the surface
of contact highly polar and therefore strengthen the interaction

between the molecular surface and the water of solvation.
However, in order to accommodate GSH in the binding
pocket in view of acylation, both the substrate and the binding
pocket have to be fully desolvated. The encounter of solvated
molecules is a fast process; in contrast, the release of the water
of solvation is a slow process,36 which can be particularly slow
when the water molecules are retained in a polar environment,
as in NsPCS. The combination of all such processes may result
in a very low overall association rate, kon. Additionally, once the
molecular partners are desolvated, they will interact strongly,
due to their charged profile no more shielded by the solvation
shell, reducing the probability of dissociation even more. The
strong stabilization of the GSH in the binding pocket is
confirmed by the large enthalpy of association measured by
ITC (Table 2) and by the interaction energy obtained by the
electrostatic calculation (Table 3). These considerations about
the kinetic behavior of NsPCS will be tested in further studies.
The affinity of the enzyme for the reduced and oxidized

forms of glutathione is similar within 1 order of magnitude.
Moreover, the binding of both substrates to the enzyme has a
similar enthalpic character, in line with the extended network
of hydrogen bonds that is found between protein residues and
the substrate (see Figure 4). Our results indicate that the
oxidation of GSH does not substantially affect binding,
although it drastically affects activity because GSSG acts as
suicide inhibitor. We can conclude that γEC-SG stabilizes the
acyl-enzyme and inhibits the catalytic turnover. This
hypothesis is confirmed by our success to trap the acyl-
enzyme with γEC-SG, without applying the extreme acidic
conditions that had previously been assumed as necessary for
the stabilization of the acyl-enzyme.19

Mechanistic Aspects of the Catalytic Reaction. To our
knowledge, the only quantitative analysis of the catalytic
reaction of a PCS protein up to date is the study of the
catalytic mechanism of PCS from S. cucubalus33 in which the
dependence of the rate of PC formation on glutathione
concentration yielded a KM value of 6.7 mM and kcat = 0.2 s−1

in the presence of 0.1 mM Cd2+. The study of Grill et al.33 was
performed on a eukaryotic PCS and the Michaelis−Menten
analysis concerns the production of PC, that is, it is applied to
a reaction that includes both peptidase and transpeptidase
reactions. Instead, our study is performed on a prokaryotic
PCS and concerns the deglycination of GSH, that is, in our
case, the reaction consists only in the peptidase activity.
Moreover, the effect of oxygen on catalysis was not considered
in the study of Grill et al.,33 and we show here that oxygen
plays an important role for the activity of NsPCS.
Despite the catalytic process monitored in this earlier study

is different from ours, the Michaelis−Menten parameters are
similar. In fact, our analysis of the catalytic reaction of NsPCS
leads to a Michaelis−Menten constant KM of 0.2 mM and a
turnover number kcat of 3.5 s

−1, which are 1 order of magnitude
lower and 1 order of magnitude higher than the respective
values reported in the study of the catalytic mechanism of PCS
from S. cucubalus.33 This similarity can be rationalized by our
finding that the rate-limiting step is most likely the deacylation
reaction, which is common to both catalytic processes.
We performed QM/MM calculations to dissect the

enzymatic mechanism and to identify the transition states.
The comparison between the energy barriers obtained for the
acylation and the deacylation leads us to conclude that the
deacylation is the slowest chemical step. In the literature, the
experimental rate measured for the cleavage of peptidic
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substrates by papain37 is about 2 × 103 s−1 which is within a
factor of six in agreement with our calculated rate 1.3 ×
104 s−1. Also in the case of NsPCS, the catalytic rate kcat of 3.5
s−1, resulting from our Michaelis−Menten analysis of the
peptidase reaction, is in good agreement with our calculated
rate for the deacylation of 6.3 s−1. Because the measured rate
reflects the rate-limiting step, the good agreement between the
experimental and the calculated rate suggests that deacylation
is the rate-limiting step of the peptidase reaction catalyzed by
NsPCS.
Our findings indicate that the binding of the substrate to the

active site is a high-energy-barrier process, both in association
and in dissociation. In fact, the binding of the substrate implies
the energy-costly disruption of an extended and well-ordered
network of water molecules solvating the binding site. On the
other side, the binding of the substrate is stabilized by strong
electrostatic interactions as confirmed by the high enthalpy,
which implies a high energy barrier also for the complex
dissociation. The kinetic consequences of such an energetic
profile consist in a slow dissociation rate and a comparatively
slow association rate, consistent with the moderate binding
constant that was measured.
NsPCS Activity is Sensitive to the Redox State of the

Substrate, Suggesting a Potential Function of NsPCS in
Cyanobacteria. Our electrostatic calculations contribute to
rationalize the catalytic reaction. In fact, on the one hand, we
could show that the deglycination of GSH leads to a product
(γEC), which binds less strongly than the substrate and
therefore can more easily leave the catalytic site to be replaced
by a new unprocessed substrate. The cleavage disrupts a
covalent bond in the substrate, leading to the destabilization of
the complex. Moreover, the cleavage induces an amino group
in the cleaved-off glycine which tends to be positively charged,
leading to the repulsion of the glycine from the positively
charged binding pocket. On the other hand, the tighter
complex of NsPCS with GSH compared to the one with the
cleaved form γEC appears to be stable enough to allow
efficient cleavage also at low concentrations of GSH. A tight
complex is in line with the location of NsPCS in the periplasm,
where the concentration of GSH is not as high as in the
cytoplasm.34,35

Our binding study shows that GSH binds the enzyme also
when the catalytic cysteine is mutated into serine, as indicated
by the presence of the uncleaved substrate GSH in the binding
pocket of C70S-NsPCS, revealed by crystallography. The
outcome of the electrostatic calculations further explains this
finding. In fact, because no deglycination occurs in the inactive
serine mutant, the complex will not be destabilized by the loss
of glycine and GSH remains trapped.
Our docking simulations show two interesting features.

Particularly inspiring is the simulation in which one active site
is occupied by GSH, that is, the intact substrate, and the other
with γEC covalently bound to Cys70, that is, the state in which
the glycine moiety is cleaved off. At the active site with bound
GSH, a second GSH molecule is prevented from approaching
the active site and thus oxidation of GSH to GSSG cannot
occur. At the active site with γEC bound, a second GSH
molecule is able to approach the pocket and thus the disulfide
bond formation between the second GSH molecule and the
bound γEC to form γEC-SG may occur. Accordingly, in the
crystal structure of acyl-NsPCS, γEC-SG is found and not γEC.
These observations explain also why in the binding site of the
crystal structure of C70S-NsPCS, where the substrate cannot

be cleaved and the acyl-enzyme is not formed, the reduced
GSH and not the oxidized form GSSG is found. Furthermore,
the different reactivity of NsPCS for the reduced and the
oxidized forms of glutathione indicates that NsPCS is sensitive
to the redox state of the substrate leading to the conclusion
that the activity of NsPCS depends on the redox potential of
the solution. Namely, under reducing conditions, glutathione is
present in its reduced form GSH. GSH can bind to NsPCS and
is cleaved into γEC and glycine. Thus, under reducing
conditions, free glycine is continuously produced. If the
conditions are getting more oxidizing, the oxidized form of
glutathione GSSG builds up. GSSG binds to NsPCS and one
of its two glycines is cleaved off. The so-generated γEC-SG
remains covalently bound to the enzyme and inhibits the
enzyme as we have shown by kinetic NMR experiments
(Figure 5). Alternatively, GSH can bind to the acyl-enzyme via
a disulfide bond forming γEC-SG. The result would be the
same: NsPCS is inhibited by γEC-SG and no further
production of free glycine occurs. Therefore, because NsPCS
is not active anymore under oxidizing conditions, GSSG
accumulates in the periplasm. In other words, if the redox
conditions are sufficiently reducing to maintain glutathione in
the reduced form (GSH), the cleavage reaction occurs and
glycine is produced by the activity of PCS; instead, in oxidizing
conditions, when GSSG is formed, the enzyme is blocked. This
scenario suggests that NsPCS may be involved in redox
sensing, opening a new hypothesis in the search of the
physiological role of the PCS-like enzyme.
These considerations allow further speculation about the

physiological role of NsPCS. The analysis of the sequence of
NsPCS using SignalP (https://services.healthtech.dtu.dk/
service.php?SignalP-5.0)38 shows that the enzyme has an N-
terminal Sec signal peptide, indicating that the enzyme is
secreted into the periplasm. The genome of Nostoc sp. PCC
7120 is sequenced and annotated (NCBI Accession code:
NC_00327228). The gene for NsPCS is located in an operon
together with the genes for a potential ABC transporter and a
hypothetical protein, which seems to be a membrane protein
with homology to ABC transporters (see analysis in the
Supporting Information). Thus, the following scenario seems
possible: one ABC transporter exports GSH to the periplasm,
and the other ABC transporter imports the glycine that results
from the NsPCS activity to the cytoplasm. If the conditions in
the periplasm get oxidizing, the flux of glycine into the cell will
stop, providing a signal inside the cell, for example, to switch
between oxic and anoxic metabolism. Alternatively, the
hypothetical protein may function as a receptor sensing the
glycine level directly. Another option would be that GSSG
would be the signaling molecule, which might be sensed
directly in the periplasm or after being imported into the
cytoplasm. The idea that NsPCS is a part of a redox signaling
chain could be tested experimentally and may solve the
mystery of the function of PCS-like enzymes. This hypothesis
may also explain why PCS is not found in insects or vertebrates
which are strictly aerobic, but can be found in protozoa or
nematodes, which are also able to survive under anoxic
conditions.
Furthermore, the rationalization of the binding mode of the

substrate with NsPCS allows also speculation about the
evolution of genuine PCS in higher organisms because the
approach of a second GSH molecule and the formation of a
γEC-SG may sporadically lead to transpeptidation and thus to
the formation of phytochelatin, which was found as a low-yield
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product of NsPCS.10,12,23 If this hypothesis is correct, the
potential function of PCS-like enzymes as a redox-sensor may
have led to a transpeptidase activity in the genuine PCS and
the formation of longer PCs during evolution.

■ CONCLUSIONS
The enzyme PCS in plants is known to synthesize the metal
chelating peptide PC and thus is involved in metal homeostasis
and detoxification. The bacterial homologues of this enzyme,
so-called PCS-like enzymes, can serve as a structural model for
PCS. However, the function of these PCS-like enzymes in
bacteria is not known. In this work, we combined structural,
spectroscopical, thermodynamic, and theoretical techniques to
investigate the mechanism of the PCS-like enzyme NsPCS
from Nostoc sp. We delineated the energetic profile of the
catalytic reaction whose rate-limiting step appears to be the
deacylation. The high energy barriers are compatible with the
low reaction rate. Several interesting features have been
uncovered by our study. When the active-site cysteine is
mutated into serine, the substrate GSH binds to the protein
such that GSH was co-purified with the mutant enzyme and
crystallized. Our analysis indicates that the substrate binds
tightly and shows a slow exchange. Interestingly, in the crystal,
no indication of oxidation of the substrate GSH bound to the
mutant enzyme is found (i.e., no GSSG formation), even
though the crystal was grown under aerobic conditions. In
contrast, in the crystal structure of the acyl-enzyme (an
intermediate of the catalytic cycle), γEC-SG is bound. We
explained this behavior by the differences in the electrostatics
between GSH and γEC as corroborated by Monte Carlo
simulations. These findings prompted us to test whether GSH
and GSSG can both serve as a substrate for NsPCS. Our results
were unexpected. In fact, we found that GSH is cleaved into
γEC and glycine under an enzymatic turnover. Instead when
GSSG binds to the enzyme, one glycine is cleaved off resulting
in γEC-SG covalently bound to the enzyme and the reaction
stops. From this finding, we conclude that NsPCS is active
under reducing conditions, but gets inhibited under oxidizing
conditions. Our observation together with the analysis of the
genetic context of the NsPCS gene and the fact that NsPCS
has a signal peptide directing the enzyme to the periplasm lead
us to suggest that NsPCS may be a part of a signaling system
that senses the redox state of the periplasm.
From an evolutionary point of view, PCS-like enzymes may

be considered as precursors of the genuine PCSs found in
plants, that is, the enzymes that form PC by transpeptidation.
Our finding that γEC-SG is bound stably to NsPCS and
basically inhibits the enzyme is also interesting in this
evolutionary context. In fact, one could imagine that the
close proximity between the covalently bound γEC and a
second glutathione molecule in γEC-SG may have sporadically
led to transpeptidation, which eventually became a new
function.
Taken together, our biophysical analysis allows us to

characterize NsPCS as a relatively slow enzyme which may
work as a part of a redox sensing system in cyanobacteria.
Moreover, we propose a mechanism how PCS-like enzymes
may have gained the function of transpeptidation.

■ MATERIALS AND METHODS
Cloning. Wild-type NsPCS gene (alr0975) lacking the natural

signal sequence (ΔssNsPCS) was amplified using the primer pair
NsPCS_for 5′-TTA TTA CAT ATG CAA ACT TTG ACA CTT

TCA CC-3′ and NsPCS_rev 5′-TAA TAA CTC GAG CTA ATC
TTG TGT TTT ACT TAC-3′. The purified PCR product was ligated
with the plasmid p10$39 using NdeI and XhoI insertion sides,
generating a plasmid coding for an N-terminally His6-lysozyme-
tagged fusion protein. The plasmid carrying the wild-type gene served
as a template for standard QuikChange (Strategene) mutagenesis
using the complementary primer set C70S_NsPSC_for 5′-GTT AAT
CAA GCT TAC TCT GGT GTA GCT AGT ATA ATT ATG-3′ and
C70S_NsPCS_rev 5′-CAT AAT TAT ACT AGC TAC ACC AGA
GTA AGC TTG ATT AAC-3′ to generate a variant of NsPCS in
which the catalytic Cys is mutated into a Ser. The correct integrity of
the gene fragment and the introduction of the mutation were
confirmed by DNA sequencing.

Protein Expression and Purification. Proteins were recombi-
nantly expressed in Rosetta 2 (DE3) plysS cells harboring the
respective plasmids. Ampicillin-supplemented (100 μg mL−1) LB
broth was inoculated with an overnight culture at an OD600 of 0.02.
Cells were grown until the mid-log phase at 310 K before the
temperature was lowered to 293 K and gene expression was induced
with 0.5 mM IPTG overnight. Harvested cells were resuspended in
150 mM phosphate buffer pH 8.0, 300 mM NaCl (buffer A)
supplemented with 100 μM phenylmethylsulfonylfluoride and
disrupted with a microfluidizer (Microfluidics). Cleared lysate
(100,000 g, 30 min) was passed over a HiTrap chelating column
(GE Healthcare) charged with NiSO4 using an ÄKTA prime system
(GE Healthcare). The column was developed with a gradient to buffer
B (buffer A containing 500 mM imidazole), and fractions were
analyzed by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis. NsPCS-containing fractions were pooled in a dialysis bag
to which His-tagged human rhinovirus 3C peptidase (in house
production) was added in a ratio of 1:40. Dialysis against 50 mM 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 8.0,
150 mM NaCl was carried out overnight at 277 K. After the dialysis,
the recovered protein was again passed over a Ni-charged HiTrap
chelating column to remove uncleaved protein and peptidase. The
flow-through was concentrated and applied to size-exclusion
chromatography using a Superdex 75 column (GE Healthcare) in
the same buffer. Fractions containing pure protein were concentrated
to 25 mg mL−1 and either flash frozen in liquid nitrogen prior to
storage at −80 °C or used immediately.

Protein Crystallization. Initial crystallization conditions were
identified using commercial screens (Qiagen) and a Phoenix robot
(Art Robbins Instruments). Initial hits were optimized using a
hanging drop vapor diffusion setup with a 500 μL reservoir and drops
consisting of 1 μL of protein (12 mg mL−1) and 1 μL of reservoir
solution. Large rod-shaped crystals were obtained using 17% PEG
8000, 0.1 M MES pH 5.5, and 0.2 M calcium acetate as mother liquor.
The acyl-enzyme was obtained by co-crystallization of wild-type
NsPCS protein (12 mg mL−1) preincubated with glutathione at a final
concentration of 5 mM using the same mother liquor composition. All
crystals grew within 2 days to an approximate size of 150 × 150 × 600
μm. Prior to data collection, crystals were washed briefly with cryo-
protectant containing mother liquor supplemented with 20% glycerol
before plunging into liquid nitrogen.

Data Collection. Diffraction data have been collected on BL14.1
of the BESSY II electron storage ring (Berlin-Adlershof, Germany) on
a Rayonix MX-225 CCD and Pilatus 6M detector.40 C70S-NsPCS
mutant data were collected in nonoverlapping 1° (Rayonix MX-225
CCD) and the acyl-enzyme in nonoverlapping 0.1° (Pilatus 6M)
oscillation images, respectively.

Data were integrated with XDS,41 scaled with AIMLESS from
CCP4 suite.42 A value of 0.5 of CC1/243 in the highest shell was
chosen as the cutoff criterion in respect to completeness of data. Data
collection statistics are summarized in Table 1.

Structure Determination and Refinement. The crystal
structure of C70S-NsPCS was determined by molecular replacement
with phenix.phaser44 searching with a monomer of NsPCS (PDB ID:
2BTW)19 as a model. Initial phases for the acyl-enzyme structure were
obtained by molecular replacement searching with a monomer of the
C70S mutant. Iterative refinement was carried out with phenix.re-
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fine44 and manual adjustments by hand were done in Coot.45

Coordinates and structure factor amplitudes have been deposited in
the Protein Data Bank46 with access codes indicated in Table 1.
Protein Unfolding and Refolding. NsPCS variants were

unfolded at room temperature in buffer containing 6 M guanidinium
chloride (GdmCl), 50 mM Na3PO4, and 10% glycerol at pH 8. As the
final protein concentration, 100 μg mL−1 was obtained. For refolding,
the obtained solution was dialyzed at 277 K overnight against a buffer
containing 3 M GdmCl and then for at least 4 h against buffers
containing 1 M GdmCl and no GdmCl, respectively.
ITC Measurement. ITC measurements were performed using a

Nano-ITC instrument (TA instruments). Prior to measurements, the
buffer for sample preparation (50 mM Na3PO4 at pH 8, and 300 mM
NaCl) was degassed in an ultrasonic bath for 5 min and kept under an
argon atmosphere. The concentrations of refolded proteins were
adjusted to 1 mM (C70S-NsPCS) and 0.1 mM (wt-NsPCS) with
respective concentrations for ligand solutions of 1 mM GSSG and 0.5
mM GSH prepared in buffer. Measurements were performed at
303.15 K without stirring to prevent protein aggregation. The time
interval between two successive ligand injections was extended to
ensure equilibration. Each 500 s 2.01 μL injections were made for
C70S-NsPCS and injections with varied volumes were made for wt-
NsPCS (injections 1−2: 0.17 μL, injections 3−8: 0.52 μL, injections
9−10: 0.75 μL, injections 11−13: 0.98 μL, and injections 15−16: 2.01
μL). The syringe and the instrument cell were purged with argon to
prevent any trace of oxygen. The data were processed using
NanoAnalyze (TA instruments) and corrected by subtracting the
enthalpy of dilution of the ligand in buffer. The measured differential
heat per mole, dH, was analyzed according to the one-site-differential
binding model47 and fitted to the equation
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where ΔH is the enthalpy change upon binding, Ka is the association
equilibrium constant, and Δhdil is the enthalpy of dilution of the
binding species.
The free ligand concentration [X] is calculated as follows
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where MT and XT are the total receptor concentration and the total
ligand concentration, respectively, given by
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where Mt0 and Xt0 are the respective concentrations before injections,
dVinjected is the injection volume at a time, and V0 is the initial volume
within the measured cell. The model allows the correction of the total
receptor concentration MT to estimate the concentration of the
receptor that is truly able to bind the ligand (parameter p).
Thermophoresis. The microscale thermophoresis experiments

have been performed with the Monolith NT.LabelFree (Nanotemper
Technologies). The assay buffer was 50 mM HEPES pH 8 with 100
mM NaCl.
The samples were left to incubate for 5 min being loaded into the

standard treated capillaries (Nanotemper Technologies). Data
collection was carried out at 25 °C. The solution inside the capillary
is locally heated with a focused IR-laser, which is coupled into the
path of exciting light using a hot mirror, at 20, 30, and 40% power.
The sample is excited at 270 nm. The resulting fluorescence from

the aromatic residues of the protein is detected with a photodiode at
370 nm. The IR-laser is switched on after 5 s from the beginning of
the detection and let on for 30 s. The fluorescence intensity detected

at the beginning of the heating procedure is called Fcold and the
fluorescence detected during the heating procedure is called Fhot. The
normalized fluorescence Fnorm = Fhot/Fcold was plotted against the
ligand concentration. Data analysis was carried out using MO.Affinity
Analysis v2.3 (Nanotemper Technologies).

NMR Spectroscopy. NMR measurements were carried out on a
Bruker AVANCE III 600 MHz spectrometer with a sample volume of
600 μL. Spectra were recorded at 600.2 MHz 1H frequency and a
calibrated temperature of 303.15 K. Data processing was performed
with NMRPipe.48 Buffer conditions were 50 mM phosphate buffer pH
8.0. The NMR buffer was degassed in an ultrasonic bath under
vacuum for 5 min. All solutions were prepared and stored under an
argon atmosphere, and all experimental steps were performed under
an argon atmosphere to prevent the oxidation of glutathione. To
compare the activity of NsPCS with different substrates, the
concentration of GSH and GSSG was 600 μM. For the Michaelis−
Menten kinetics, different samples of GSH were prepared with
concentrations of 500 μM, 600 μM, 700 μM, 800 μM, 900 μM, 1
mM, 1.5 mM, and 3 mM of GSH. To compare the activity of wt-
NsPCS and refolded wt-NsPCS, the concentration of GSH was 1
mM, and 300 mM NaCl was added to the buffer. All samples
contained 0.1 mM sodium trimethylsilylpropanesulfonate (DSS) and
10% D2O. In all cases, the reaction was started by adding 30 nM
enzyme to the substrate solution. Each sample was rapidly collected
and poured in a NMR tube purged with argon using a syringe purged
with argon as well. An NMR spectrum was taken roughly every 110 s.
The progress of the observed reaction was monitored using the
increasing glycine signal. The DSS signal was used as reference for the
glycine concentration. 1D spectra were normalized by the DSS
concentration, number of scans, and length of the 90° proton pulse.
To perform the Michaelis−Menten analysis, the time traces
describing the accumulation of free glycine have been fitted with
one exponential term for each substrate concentration. The initial
increase of the exponential curve could be approximated with a
straight line whose slope gives the initial velocity of the reaction in the
presence of a given concentration of substrate. The initial velocities
were then plotted versus the corresponding substrate concentrations.

Computational Preparation of Protein Structures. Protein
structures for all simulations were prepared with the program
CHARMM49 using the CHARMM2750 force field. Present disulfide
bonds were set. The protein was surrounded by a 6 Å explicit water
layer, whereas available water molecules from the crystal structure
were included. All hydrogen atoms were added with the HBUILD
routine in CHARMM. An optimization of all water molecules was
performed to adapt to the protein, followed by an optimization of all
hydrogen atoms. Protonation probabilities of prepared structures were
calculated using MEAD51,52 and GMCT.53 Thereby, a Metropolis
Monte Carlo titration algorithm54,55 is applied on a Poisson−
Boltzmann continuum electrostatic model. Protonation probabilities
are dependent on pH and were calculated in steps of 0.25 in the pH
range 0−14. 200 equilibration scans and 100,000 production scans
were performed at 300 K, with 0.1 M ionic strength and permittivity 4
for protein and 80 for solvent. The protonation states of titratable
groups were set according to this calculation (see Table S2 in the
Supporting Information). For investigation of NsPCS, the crystal
structure of C70S-NsPCS and acyl-NsPCS were used. For the
simulations, the active site serine of C70S-NsPCS was mutated to
cysteine with PyMOL (The PyMOL Molecular Graphics System,
Version 2.4.0a0 Schrödinger, LLC). Simulations for papain were
performed on a crystal structure with synthetic inhibitor E-64-c (2.1
Å, PDB ID: 1PE6).56 Analogously to other studies, the substrate Phe-
Ser-Ile with acetylated N-terminus and N-methylated C-terminus was
used.32,57 The substrate in the crystal structure 1PE6 is attached
covalently to papain. For modeling of the noncleaved substrate, a
structure with a substrate analogue (2.8 Å, PDB ID: 1PAD)20 was
superimposed. The modeled substrate was optimized with
CHARMM.

Ligand Binding Calculations. Docking of the ligand GSH to
NsPCS variants was performed with MCMap,31 which applies Monte
Carlo sampling of ligand movements within the electrostatic field of a
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receptor. For each simulation, 100,000 runs were performed with
1,000,000 Monte Carlo steps at 300 K. The initial center of mass
separation of the protein and the ligand was set to 130 Å, the
maximum separation was set to 180 Å. The Monte Carlo run was
reset after 50 rejected steps in a row. The maximal displacement was
set to 3 Å, the maximal rotation was set to 5 rad. Electrostatic
potential maps with 2 Å grid spacing for the outer potential grid and
with 1 Å for the inner potential grid were used. APBS58 was used for
electrostatic potential map calculations, with permittivity 4 for protein
and 80 for solvent at 300 K. An ion concentration of 0.1 M was
adjusted, with a single positive or a single negative charge and radius
2.0 Å. The solvent radius was set to 1.4 Å. For calculating the density
of GSH around PCS, the center of mass of GSH was recorded every
100th Monte Carlo step. The interaction energies between PCS and
the various ligands were calculated with the program solinprot from
the MEAD package. The dielectric constants of the protein and the
water were set at 4 and 80, respectively. The ionic strength was set to
0.1 M.
Reaction Path Search Simulation. The reaction path search was

performed with a QM/MM model within pDynamo59 and the
CHARMM2750 force field in combination with ORCA60,61 on the
B3LYP:6-31+G** level.62−65

The protein structures, which were prepared with CHARMM, were
treated with MM, whereas a small relevant region for the catalysis was
treated with QM. The QM/MM boundary was treated with a link-
atom scheme and electrostatic embedding, as implemented in
pDynamo. All atoms in the QM region and within an 8 Å MM
layer around the QM region were set flexible. Beyond that, a linearly
increasing force constant from 0 to 12 kcal mol−1 Å−1 was applied for
further 8 Å on the atoms. All other atoms were restraint with 12 kcal
mol−1 Å−1. The sidechains included in the QM region were truncated
between Cα and Cβ. Exceptions are mentioned explicitly. For NsPCS,
the QM region consisted of the catalytic triad residues Cys70, His183
(protonated at position ε), and Asp201. Furthermore, Gln64
(truncated between Cβ and Cγ) for the oxyanion hole and Arg173
(truncated between Cγ and Cδ) were included. The complete
residues Gly (only present for the acylation reaction), and Cys of the
substrate GSH were included into the QM region, with addition of
the atoms Cδ, Oε, and Cγ with both hydrogen atoms of residue γGlu.
For the acylation reaction, an interacting water molecule near the
carboxyl group of the substrate was included. For the deacylation
reaction two interacting water molecules were included. All remaining
parts belong to the MM region.
For papain, the QM region contained the catalytic triad resides

Cys25, His159 (protonated on position ε), and Asn175. Furthermore,
Gln19 (truncated between Cβ and Cγ) for the oxyanion hole was
included. The complete residue Ser of the substrate together with
backbone atoms O and C of residue Phe (only present for the
acylation reaction), and atoms N, H, Cα, and Hα of residue Ile were
included into the QM region. For the deacylation reaction, two
interacting water molecules were included.
Reaction path search was performed with PyCPR.29,66 Reaction

path exploration was performed by adiabatic surface scans with an
root-mean-square gradient criterion of 0.002 kcal mol−1 Å−1, and
structures of stable states were optimized by a conjugate gradient
minimizer with the root-mean-square gradient threshold set to 0.002
kcal mol−1 Å−1. As collective variables for the adiabatic scans, the
proton transfer from the cysteine or serine nucleophile to the catalytic
histidine and the nucleophilic attack of the cysteine or serine
nucleophile on the substrate were used. Initial path estimates between
the stable states were obtained by a growing string method,67 as
implemented in pDynamo. Transition paths were obtained by
PyCPR. States were characterized by vibrational frequency calcu-
lations.
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I. Sequence alignment of AtPCS1 (AAD16046.1) and NsPCS 

(WP_044520790.1) 

Full alignment using Needle EMBOSS:6.6.0.0 (https://www.ebi.ac.uk/Tools/psa/emboss_needle/)1 
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Alignment of the N-Terminal Domain of AtPCS1 (AAD16046.1) and NsPCS (WP_044520790.1) 

without the signal peptide, truncated at the amino acid 221 to match with the sequence length of 

the bacterial protein. 

 

 

Using the SignalP 5.0 server 2, we confirmed the prediction of a signal sequence of 24 amino 

acids (cleavage site VLA-QT) see below. 

Because of the absence of the signal sequence, the number of amino acids differs from the one of 

the original gene product. In this sequence alignment (without the signal sequence) the catalytic 

cysteine is numbered with 46. However, along our investigation we kept the counting of the original 

gene product, i.e. the catalytic cysteine is still numbered with 70.  
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II. Sequence analysis of the NsPCS operon 

 

NsPCS-Operon 

The genome of Nostoc sp. PCC 7120 is completely sequenced and annotated (NCBI Accession 

Code: NC_003272). The genes for the following proteins are located on this operon: 

Protein ID Annotation Length SignalP TMHMM 

WP_010995144.1 ABC transporter ATP-binding protein 316 AA no signal no TM 

WP_044520788.1 hypothetical protein 562 AA no signal 12 TM 

WP_010995146.1 
ATP-binding cassette domain-

containing protein 
251 AA no signal no TM 

WP_010995147.1 ABC transporter permease 210 AA no signal  5 TM 

WP_011319704.1 
ABC transporter substrate-binding 

protein 
302 AA Sec/SPII  0 TM 

WP_044520790.1 
glutathione gamma-

glutamylcysteinyltransferase (NsPCS) 
239 AA Sec/SPI  0 TM 

Table S1: Information on the NsPCS Operon. The 3rd column gives the total length of the gene 

product in number of amino acids (AA) including signal peptides. The 4th column shows the results 

from a SignalP analysis. The 5th column shows the number of transmembrane helices (TM) found 

with TMHMM 3,4. 

 

The protein annotated as [hypothetical protein] (WP_044520788.1) is a transmembrane protein 

as the analysis using the TMHMM server suggests (see below). 

An analysis using SignalP indicates that the [ABC transporter substrate-binding protein] 

(WP_011319704.1) is a lipoprotein protein (i.e. with lipid covalently linked to the cysteine at position 

21; see below for the data). The protein is located in the periplasm (see Juncker et al.5 for a more 

detailed discussion of the signal peptide). 

From BLAST searches, we find the following interesting connections: 
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 [ABC transporter substrate-binding protein] (WP_011319704.1) shows a very high 

similarity to a protein annotated as [glycine/betaine ABC transporter substrate-binding 

protein] from Nostoc sp. ATCC 29411 (WP_015137004) suggesting that a binding of glycine 

to this substrate-binding protein is likely 

 The protein annotated as [hypothetical protein] (WP_044520788.1) shows similarities to 

proteins annotated as [ABC transporter permease] (for instance WP_026734415.1 -- E-

value 810-169, HAZ49862.1 – E-value 10-142) suggesting that this protein may also function 

as a transporter. 

From these findings we hypothesize that the NsPCS-operon may contain two transport systems: 

an import system that might be responsible for the import of glycine involving the periplasmatic 

ABC transporter substrate-binding protein( WP_011319704.1) and as well as the other ABC-

transporter related proteins (WP_010995144.1, WP_010995146.1, WP_010995147.1) and a 

second transporter system involving the protein annotated as hypothetical protein 

(WP_044520788.1) which is of unknown function, but we suggest is responsible for the export of 

glutathione. 

  

Manuscript C 131



S6 
 

SignalP analysis of the ABC transporter substrate-binding protein (WP_011319704.1) 

SignalP (https://services.healthtech.dtu.dk/service.php?SignalP-5.0) 

This result indicates that this protein is a lipoprotein (i.e. with diacylglyceride linked to the cysteine 

at position 21) that is located in the periplasm 5. 

 

 

SignalP-analysis of the Protein Sequence of NsPCS 

This result indicates that NsPCS is exported to the periplasm. 
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TMHMM results of the hypothetical protein (WP_044520788.1) 

TMHMM (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0) 
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TMHMM results of the ABC transporter permease (WP_010995147.1)
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III. Protonation probability of the catalytic histidine (His183) 

 

 

Figure S1: Calculated protonation probability for the protonated state of the catalytic histidine 

His183 for both subunits of the NsPCS in the acylated form. 

 

We calculated the protonation probability of the catalytic histidine (His183) in the acylated form of 

the enzyme (Figure S1). The structures were prepared with CHARMM 6, using the CHARMM27 7 

force field. Protonation probabilities were calculated using MEAD 8,9 and GMCT 10. A Poisson-

Boltzmann continuum electrostatic model has been used applying a Metropolis Monte Carlo 

titration algorithm 11,12. Protonation probabilities were calculated in steps of 0.25 in the pH range 0 

to 14. 200 equilibration scans and 100000 production scans were performed at 300 K, with 0.1 M 

ionic strength and relative permittivity 4 for the protein and 80 for the solvent. 

The probability for His183 changes from fully protonated to single protonated at around pH 2.2 in 

both subunits of the homodimer NsPCS in its acylated form. The pH at which the structure has 

been crystallized is pH 5.5. Our protonation probability calculations show that the His183 is single 

protonated, which shows that His 183 can act as proton acceptor at this pH. This finding supports 

our hypothesis that the arrest of the enzyme in the acylated form is not caused by the low pH but 

rather by the oxidized form of the substrate, EC-SG. 
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IV. Protonation states of all the titratable residues 

We have calculated the protonation state of all the titratable residues for the protein models 

described in Table S2. The reference pH was pH 8 for NsPCS and pH 7 for papain. 

Table S2: List of models used for the simulations 

Model Description 

NsPCS+GSH 

Crystal structure of C70S-NsPCS with noncovalently bound substrate 
GSH in the binding pocket (PDB ID: 6TJL). For the simulations the 
active site serine was mutated to cysteine to model the active wildtype 
enzyme. 

acyl-NsPCS 
Crystal structure of acyl-NsPCS with covalently bound EC-SG (PDB 

ID: 6THO). For the simulations only the EC portion was used. 

Papain + Phe-Ser-Ile 

Crystal structure with the synthetic inhibitor E-64-c (PDB ID: 1PE6). 
Based on the covalently attached inhibitor and the noncovalently 
attached substrate analogue of another crystal structure of papain 
(PDB ID: 1PAD), we modeled the substrate Phe-Ser-Ile. 

acyl-papain 
Crystal structure with the synthetic inhibitor E-64-c (PDB ID: 1PE6). 
Based on the covalently attached inhibitor, we modeled the covalently 
attached Phe-Ser. 

 

 

 

 

 

 

 

 

Abbreviations used in the following tables, 

1 = protonated 

0 = deprotonated 

HSE = neutral histidine with N protonated and N deprotonated 

HSP = protonated histidine with both N and N protonated 
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Model: NsPCS+GSH 

Subunit A  Subunit B 

Residue Protonation state   Residue Protonation state 

Glu40 0  Glu40 0 
Glu42 0  Glu42 0 
Lys43 1  Lys43 1 
Arg49 1  Arg49 1 
Arg51 1  Arg51 1 
Glu52 0  Glu52 0 
Asp53 1  Asp53 1 
Tyr69 1  Tyr69 1 
Cys70 1  Cys70 1 
Glu88 0  Glu88 0 
Tyr92 1  Tyr92 1 
Tyr95 1  Tyr95 1 
Arg96 1  Arg96 1 
Asp101 0  Asp101 0 
Glu107 0  Glu107 0 
Lys108 1  Lys108 1 
Lys110 1  Lys110 1 
Glu116 0  Glu116 0 
Arg120 1  Arg120 1 
Asp126 0  Asp126 0 
Glu127 0  Glu127 0 
Arg130 1  Arg130 1 
Tyr135 1  Tyr135 1 
Lys138 1  Lys138 1 
Lys140 1  Lys140 1 
His143 HSP  His143 HSP 
Asp146 0  Asp146 0 
Glu150 0  Glu150 0 
Asp151 0  Asp151 0 
Arg153 1  Arg153 1 
Lys154 1  Lys154 1 
Glu158 0  Glu158 0 
Lys161 1  Lys161 1 
Asp163 0  Asp163 0 
Tyr171 1  Tyr171 1 
Arg173 1  Arg173 1 
Lys174 1  Lys174 1 
Glu175 0  Glu175 0 
Glu179 0  Glu179 0 
Arg180 1  Arg180 1 
His183 HSE  His183 HSE 
Tyr190 1  Tyr190 1 
Glu192 0  Glu192 0 
Asp195 0  Asp195 0 
Arg196 1  Arg196 1 
Asp201 0  Asp201 0 
Arg204 1  Arg204 1 
Tyr205 1  Tyr205 1 
Lys206 1  Lys206 1 
Tyr207 1  Tyr207 1 
Lys213 1  Lys213 1 
Asp216 0  Asp216 0 
Lys219 1  Lys219 1 
Asp225 0  Asp225 0 
Lys230 1  Lys230 1 
Asp232 1  Asp232 1 
Gly-C-terminus (GSH) 0  Gly-C-terminus (GSH) 0 
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Model: acyl-NsPCS 

Subunit A  Subunit B 

Residue Protonation state   Residue Protonation state 

His23 HSE  Glu40 0 
Glu40 0  Glu42 0 
Glu42 0  Lys43 1 
Lys43 1  Arg49 1 
Arg49 1  Arg51 1 
Arg51 1  Glu52 0 
Glu52 0  Asp53 1 
Asp53 1  Tyr69 1 
Tyr69 1  Glu88 0 
Glu88 0  Tyr92 1 
Tyr92 1  Tyr95 1 
Tyr95 1  Arg96 1 
Arg96 1  Asp101 0 
Asp101 0  Glu107 0 
Glu107 0  Lys108 1 
Lys108 1  Lys110 1 
Lys110 1  Glu116 0 
Glu116 0  Arg120 1 
Arg120 1  Asp126 0 
Asp126 0  Glu127 0 
Glu127 0  Arg130 1 
Arg130 1  Tyr135 1 
Tyr135 1  Lys138 1 
Lys138 1  Lys140 1 
Lys140 1  His143 HSP 
His143 HSE  Asp146 0 
Asp146 0  Glu150 0 
Glu150 0  Asp151 0 
Asp151 0  Arg153 1 
Arg153 1  Lys154 1 
Lys154 1  Glu158 0 
Glu158 0  Lys161 1 
Lys161 1  Asp163 0 
Asp163 0  Tyr171 1 
Tyr171 1  Arg173 1 
Arg173 1  Lys174 1 
Lys174 1  Glu175 0 
Glu175 0  Glu179 0 
Glu179 0  Arg180 1 
Arg180 1  His183 HSE 
His183 HSE  Tyr190 1 
Tyr190 1  Glu192 0 
Glu192 0  Asp195 0 
Asp195 0  Arg196 1 
Arg196 1  Asp201 0 
Asp201 0  Arg204 1 
Arg204 1  Tyr205 1 
Tyr205 1  Lys206 1 
Lys206 1  Tyr207 1 
Tyr207 1  Lys213 1 
Lys213 1  Asp216 0 
Asp216 0  Lys219 1 
Lys219 1  Asp225 0 
Asp225 0  Lys230 1 
Lys230 1  Asp232 1 
Asp232 1  Lys239 1 

   Asp242 0 
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Model: papain + Phe-Ser-Ile 
  

Residue Protonation state 

Glu3 0 
Tyr4 1 
Asp6 0 
Arg8 1 
Lys10 1 
Lys17 1 
Cys25 1 
Glu35 0 
Lys39 1 
Arg41 1 
Tyr48 1 
Glu50 0 
Glu52 0 
Asp55 0 
Asp57 0 
Arg58 1 
Arg59 1 
Tyr61 1 
Tyr67 1 
Tyr78 1 
His81 HSP 
Tyr82 1 
Arg83 1 
Tyr86 1 
Tyr88 1 
Glu89 0 
Arg93 1 
Tyr94 1 
Arg96 1 
Arg98 1 
Glu99 0 
Lys100 1 
Tyr103 1 
Lys106 1 
Asp108 0 
Arg111 1 
Tyr116 1 
Tyr123 1 
Lys139 1 
Asp140 0 
Tyr144 1 
Arg145 1 
Lys156 1 
Asp158 0 
His159 HSE 
Tyr166 1 
Tyr170 1 
Lys174 1 
Glu183 0 
Tyr186 1 
Arg188 1 
Lys190 1 
Arg191 1 
Tyr197 1 
Tyr203 1 
Tyr208 1 
Lys211 1 
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Model: acyl-papain 
  

Residue Protonation state 

Glu3 0 
Tyr4 1 
Asp6 0 
Arg8 1 
Lys10 1 
Lys17 1 
Glu35 0 
Lys39 1 
Arg41 1 
Tyr48 1 
Glu50 0 
Glu52 0 
Asp55 0 
Asp57 0 
Arg58 1 
Arg59 1 
Tyr61 1 
Tyr67 1 
Tyr78 1 
His81 HSP 
Tyr82 1 
Arg83 1 
Tyr86 1 
Tyr88 1 
Glu89 0 
Arg93 1 
Tyr94 1 
Arg96 1 
Arg98 1 
Glu99 0 
Lys100 1 
Tyr103 1 
Lys106 1 
Asp108 0 
Arg111 1 
Tyr116 1 
Tyr123 1 
Lys139 1 
Asp140 0 
Tyr144 1 
Arg145 1 
Lys156 1 
Asp158 0 
His159 HSE 
Tyr166 1 
Tyr170 1 
Lys174 1 
Glu183 0 
Tyr186 1 
Arg188 1 
Lys190 1 
Arg191 1 
Tyr197 1 
Tyr203 1 
Tyr208 1 
Lys211 1 
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ABSTRACT: The catalytic mechanisms of serine and cysteine
peptidases are similar: the proton of the nucleophile (serine or
cysteine) is transferred to the catalytic histidine, and the
nucleophile attacks the substrate for cleavage. However, they
differ in an important aspect: cysteine peptidases form a stable ion-
pair intermediate in a stepwise mechanism, while serine peptidases
follow a concerted mechanism. While it is known that a positive
electrostatic potential at the active site of cysteine peptidases
stabilizes the cysteine anion in the ion-pair state, the physical basis
of the concerted mechanism of serine peptidases is poorly
understood. In this work, we use continuum electrostatic analysis
and quantum mechanical/molecular mechanical (QM/MM)
simulations to demonstrate that a destabilization of an anionic
serine by a negative electrostatic potential in combination with a compact active site geometry facilitates a concerted mechanism in
serine peptidases. Moreover, we show that an anionic serine would destabilize the protein significantly compared to an anionic
cysteine in cysteine peptidases, which underlines the necessity of a concerted mechanism for serine peptidases. On the basis of our
calculations on an inactive serine mutant of a natural cysteine peptidase, we show that the energy barrier for the catalytic mechanism
can be substantially decreased by introducing a negative electrostatic potential and by reducing the relevant distances indicating that
these parameters are essential for the activity of serine peptidases. Our work demonstrates that the concerted mechanism of serine
peptidases represents an evolutionary innovative way to perform catalysis without the energetically expensive need to stabilize the
anionic serine. In contrast in cysteine peptidases, the anionic cysteine is energetically easily accessible and it is a very efficient
nucleophile, making these peptidases mechanistically simple. However, a cysteine is highly oxygen sensitive, which is problematic in
an aerobic environment. On the basis of the analysis in this work, we suggest that serine peptidases represent an oxygen-insensitive
alternative to cysteine peptidases.

■ INTRODUCTION

Cysteine and serine hydrolases are specific enzymes that serve
the same basic purpose: the hydrolytic cleavage of polar bonds.
The functions of these hydrolases in the cell span from peptide
degradation over specific regulation in cellular pathways and the
defense against pathogens up to the degradation of substance
used as energy source.1 These different tasks require a broad
range of substrate specificities for the different enzymes.
However, aside from substrate recognition, the basic features
of substrate cleavage appear to be the same for serine and
cysteine hydrolases. Both enzyme families contain a catalytic
triad or dyad and function through a catalytic mechanism, which
appears very similar at first sight (Figure 1). In what follows, we
mainly concentrate on peptidases, although most of the
statements are valid for cysteine and serine hydrolases in general.

Cysteine and serine pepdidases differ from each other in their
nucleophile, which affects the catalytic process. The cleavage in
cysteine peptidases proceeds in a stepwise manner; namely, an
ion-pair intermediate forms, in which the catalytic histidine has
accepted the proton of the thiol group and the thiolate anion acts
as activated nucleophile.2 In serine peptidases instead, the
cleavage is a concerted process with nucleophilic attack of the
substrate and proton transfer to the catalytic histidine occurring
simultaneously.3 The very similar amino acids cysteine and
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serine differ only slightly in geometry because of the different
atomic radii of sulfur and oxygen. However, their side-chain pKa
values differ substantially, namely, around 9.5 for the thiol
group4,5 and 15.9 for the hydroxyl group.6 Consequently,
deprotonation of the catalytic cysteine is easier and makes the
thiol group an effective nucleophile at physiological pH.7,8 The
formation of a reactive thiolate anion is stabilized by hydrogen
bonds and a positive electrostatic environment around the
catalytic cysteine.2,7,9 In serine peptidases, it was found that a
negative electrostatic potential from the catalytic aspartate
contributes to the transition state stabilization.10 It was further
suggested that the ionized aspartate would provide a stabilizing
effect to the concerted mechanism.10 An interesting finding was
reported by a recent study,11 which compares soluble serine
peptidases with membrane peptidases, which only possess a
catalytic dyad consisting of serine and histidine. This study
points out that serine peptidases with a catalytic dyad lack the
electrostatic stabilization of the transition state due to the
aspartate, which can be correlated with the observed slower
reaction rate. Thus, it seems that the electrostatic contribution
from the catalytic aspartate is not essential for the activity of
serine peptidases. Nevertheless, it is not clear which conditions
for the catalytic serine at the active site are important for efficient
serine peptidase catalysis.
The effect of different active site environments on cysteine

and serine peptidase catalysis can be studied by changing the
electrostatics of the binding pocket. A complementary approach
is to maintain the electrostatics of the binding pocket, which
differs in cysteine peptidases and serine peptidases, and
exchange the nucleophile. It was found that the cysteine
peptidase papain shows no activity toward natural substrates
after mutating its nucleophile to serine.12 Similarly, the cysteine
mutant of the serine peptidases subtilisin loses activity toward

natural substrates,13 and thiol−trypsin, the cysteine mutant of
the serine peptidase trypsin, shows reduced substrate turnover
by 6 orders of magnitude.14 Nevertheless in both cases, a
perceptible activity has been observed with activated ester
substrates. Recently, an adapted cysteine−lipase mutant was
presented with increased activity compared to the wild-type
protein with serine.15 In this case, however, the characterization
was done using a bulky activated ester substrate, which is more
easily cleaved compared to natural substrates and has difficulties
binding to the wild-type enzyme. Thus, the increased activity of
this cysteine−lipase mutant arose most likely from improved
enzyme−substrate interactions and not from changes of the
active site environment.
A computational study compared the mechanism of thiol−

trypsin with that of the cysteine peptidase papain using various
quantum chemical calculations on cluster models.7 The results
of this study suggest that thiol−trypsin does not possess a
positive electrostatic potential at the active site, which could
stabilize the negatively charged thiolate intermediate as in
papain. Therefore, in thiol−trypsin, the formation of an ion-pair
intermediate is difficult, and thus the nucleophilic attack occurs
most likely by a protonated thiol. But the thiol group is a less
efficient nucleophile compared to the hydroxyl group of a serine
in line with the lower efficiency of thiol−trypsin compared to its
wild type with serine. This reduced activity can be attributed to
the low nucleophilic character of the thiol group compared to
the hydroxyl group,14 which is explained by the lower
electronegativity of sulfur (electronegativity of 2.4) compared
to oxygen (electronegativity of 3.5). These results indicate that it
is not only the pKa of the catalytic side chain that determines the
efficiency of the reaction.
In this paper, we investigate the geometry and the electrostatic

properties of the active site of cysteine and serine peptidases and

Figure 1. General catalytic mechanism of cysteine and serine peptidases. During acylation the substrate (green) is attacked by the respective
nucleophile, cysteine or serine, and its proton is accepted by the catalytic histidine resulting in a tetrahedral state. Subsequently, the substrate is cleaved
and the C-terminal part of it leaves the active site while the N-terminal part forms an ester bond with the enzyme (acyl−enzyme). After release of the C-
terminal part of the substrate, a water molecule initiates the hydrolytic cleavage in the deacylation reaction, which again results in a tetrahedral state.
The acyl−enzyme ester bond is cleaved (enzyme product complex), and also the N-terminal part of the substrate is released.
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correlate our findings with a QM/MM analysis of the
mechanism. We analyze the catalytic mechanisms of a cysteine
peptidase (phytochelatin synthase from Nostoc sp., NsPCS), its
inactive serine mutant C70S-NsPCS, and the serine peptidase
trypsin. Starting from the inactive serine mutant, where the
concerted step of the acylation reaction shows the highest
energy barrier, we computationally introduced additional
mutations in order to lower the transition state energy of this
rate-determining step. This analysis provides a better under-
standing of the active site of trypsin-like serine peptidases. It is
suggested that the main difference in the catalytic cycle between
cysteine and serine peptidases is a stepwise versus a concerted
mechanism. We have found that this difference is a consequence
of the electrostatic nature of the active sites, which is necessary
to support the different character of the respective nucleophiles.
We conclude that the concerted mechanism of trypsin-like
serine peptidases is an evolutionary requirement for their
enzymatic activity.

■ COMPUTATIONAL METHODS AND SETTINGS
Preparation of Protein Structures. For all studies in this

work, protein structures were prepared using the program
CHARMM16 with the CHARMM2717 force field parameters. If
present, disulfide bonds were built using CHARMM. Missing
hydrogen atoms were added with CHARMM using HBUILD.
Protonation states of titratable groups were adjusted according
to protonation probabilities, which were obtained by continu-
um-electrostatic calculations described below. The catalytic
histidine was always set to the active form, i.e., in the neutral
form to accept the proton from the nucleophile. A water layer of
6 Å was added around the protein, and all water molecules
available from the crystal structure were kept. Positions of all
water molecules were optimized. In silico mutations were
introduced using the mutagenesis wizard of PyMOL.18 For the
mutated structures, hydrogen atoms and water molecules
together with the mutated residues were optimized with
CHARMM, while all other atoms were kept fixed.
For studies on the serine peptidase trypsin, the X-ray crystal

structure with the PDB code 1MCT was used as a starting
structure.19 Similar to other studies,3,20 the dipeptide Arg-Ile
with acetylated N-terminus and N-methylated C-terminus was
used as substrate. This substrate was modeled in the active site
on the basis of the inhibiting peptide MCTI-A present in the
structure 1MCT. Six disulfide bonds were taken into account
connecting Cys22−Cys152, Cys40−Cys56, Cys124−Cys225,
Cys131−Cys198, Cys163−Cys177, and Cys188−Cys212.
For studies on the cysteine peptidase papain, PDB code 1PE6

was used as a starting structure.21 As in other studies,22,23 we use
the substrate Phe-Ser-Ile with acetylated N-terminus and N-
methylated C-terminus. The coordinates of the substrate were
modeled on the basis of the substrate analog from the structure
with PDB code 1PAD.24 The modeled substrate was optimized
with CHARMM. Three disulfide bonds were taken into account
connecting Cys56−Cys95, Cys22−Cys63, and Cys200−
Cys153.
For studies on the cysteine peptidase NsPCS, the crystal

structure of the serine mutant of NsPCS (C70S-NsPCS,25 PDB
code 6TJL) was used as a starting structure. The substrate
glutathione (GSH) is bound noncovalently in the binding
pocket. For computational studies on wild-type NsPCS, the
active site serine in 6TJL was mutated to cysteine with PyMOL.
Continuum-Electrostatic Calculations. The contiuum

electrostatic calculations are based on the Poisson−Boltzmann

continuum electrostatic model.26 In all calculations, the
dielectric permittivity was set to 4 for the protein and to 80
for the solvent using a probe sphere radius of 1.4 Å. The ionic
strength was set to 0.1 M, and the ionic radius was set to 2.0 Å.
The temperature was set to 300 K. Electrostatic potential maps
were calculated with the program APBS.27

Protonation probabilities of titratable residues were calculated
usingMEAD28,29 and GMCT.30 These calculations are based on
a Poisson−Boltzmann continuum electrostatic model with
Monte Carlo titration31 using a Metropolis Monte Carlo
algorithm.32 Protonation probabilities were calculated in the
pH range from 0 to 14 in steps of 0.25 pH units. Calculations for
every pH step included 200 equilibration scans and 100 000
production scans at 300 K.
Protonation energies were calculated based on the Tanford−

Roxby pKa value (pKTR)
33 using the protonation probabilities

obtained from theMonte Carlo calculations.34 pKTR values were
calculated using multiflex from theMEAD package35 to perform
the Poisson−Boltzmann calculations and using cmct36 to
perform Monte Carlo titration. Titrations were performed in
pH range 0−14 with a step size of 0.01 pH units. For every pH
step, 100 equilibration scans and 500 000 production scans were
performed at 300 K. The states of catalytic histidines were set to
their reactive neutral state so that only the pKTR value of that
histidine site accepting the proton during catalysis was
calculated.

Setup of QM/MM Models. The protein structures, which
were prepared with CHARMM, were divided into a quantum-
mechanical (QM) and a surrounding molecular-mechanical
(MM) region. QM/MM calculations were performed with
pDynamo37 in combination with ORCA.38 A link-atom scheme
was used for the QM/MM boundary, and the influence of the
MM part on the QM part was treated with electrostatic
embedding as implemented in pDynamo. The QM region was
surrounded by flexible MM atoms, while a harmonic restraint
was applied on atoms beyond 8 Å from anyQMatom. Restraints
of MM atoms within 8−16 Å around any QM atomwere treated
with linearly increasing force constants from 0 kcal·mol−1·Å−1 to
12 kcal·mol−1·Å−1. Restraint force constants for MM atoms
further away were set to 12 kcal·mol−1·Å−1. For QM
calculations, the B3LYP39 functional with def2-TZVP40,41

basis set and RIJCOSX approximation42,43 was used, and for
MM calculations, the CHARMM2717 force field was used. All
side chains included in the QM region were truncated between
Cα and Cβ unless mentioned differently. The QM regions of
trypsin, papain, and NsPCS are illustrated in Figure S1 of the
Supporting Information. The QM region of trypsin comprises
the catalytic triad residues Ser192 (with atoms N, H, Cα, and
Hα), His55 (protonated on δ position), Asp99, and the
backbone of Asp191 and Gly190, which form the oxyanion
hole, without side chains (truncated between Cα and Cβ),
together with backbone atoms C and O of residue Gln189. For
the substrate Arg-Ile, the backbone with N-terminal acetylation
of the residue Arg together with the atoms N, H, Cα, and Hα of
the residue Ile was included into theQM region. TheQM region
of papain comprised the catalytic triad residues Cys25, His159
(protonated on ε position), and Asn175, as well as Gln19
(truncated between Cβ and Cγ), which forms the oxyanion hole.
For the substrate Phe-Ser-Ile, the residue Ser with backbone,
together with atomsO and C of the residue Phe and atomsN, H,
Cα, and Hα of the residue Ile, belongs to the QM region. For the
NsPCS homodimer, QM/MM calculations were performed on
the active site of subunit B. The QM region of NsPCS and its
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mutants comprised the catalytic triad residues Cys70/Ser70,
His183 (protonated on ε position), and Asp201, as well as
Gln64 (truncated between Cβ and Cγ), which forms the
oxyanion hole. Due to its interactions with the catalytic
aspartate, Arg173 (truncated between Cγ and Cδ) was included
in the QM region. The complete residues Gly and Cys of the
substrate GSH together with the atoms Cδ, Oε, and Cγ (with
both its hydrogens) of the residue γGlu belong to the QM
region. Further, one water molecule, which interacts with the
carboxyl group of the substrate, was included in the QM region.
For all models, the parts of the system, which are not part of the
QM region, form the MM region.
Reaction Path Search. Initial structures for searches of the

reaction paths were obtained by optimizing the prepared protein
structures, which were set up as a QM/MM model with
pDynamo. Optimization was performed by a conjugate gradient
minimizer with RMS gradient threshold set to 0.005 kcal·mol−1·
Å−1. Mayer bond orders44 were obtained directly from QM/
MM optimizations. Adiabatic surface scans were performed to
find a reaction path estimate. For this scan, one distance
constraint was applied between the proton of the nucleophile
and the nitrogen of the catalytic histidine that accepts the
proton. A second distance constraint was applied between the
catalytic nucleophile and the carbonyl carbon of the cleavable
bond of the substrate. The RMS gradient for surface scans was
set to 0.02 kcal·mol−1·Å−1. Found intermediate states were
optimized by a conjugate gradient minimizer. Reaction path
estimates, which connect stable states, were obtained from a
growing string method,45 as it is implemented in pDynamo.
Stable intermediates and reaction path estimates were used as
input for PyCPR,46 an implementation of the conjugate peak
refinement47,48 (CPR) algorithm for pDynamo, to obtain
transition states. Transition states were characterized by
vibrational frequency analysis. For all stationary points of the
reaction path, the commonly used zero point energy correction
was applied.49 The Supporting Information provides tables,
which supplement the reaction path energy profiles with
absolute energies, zero point energy corrections, and informa-
tion about imaginary frequencies (Tables S3−S13).

■ RESULTS AND DISCUSSION

Computational Analysis of Mechanisms of Cysteine
and Serine Peptidases. As explained above (see Figure 1) the
mechanism of cysteine and serine peptidases consists of two
parts, the acylation and the deacylation. Because we are
interested in the properties of the active-site nucleophiles, i.e.,
cysteine and serine, we focus on the acylation reaction, i.e., the
step in which the nucleophile is essential. The deacylation step
consisting in the hydrolytic cleavage of the enzyme−substrate
ester is instead initiated by a water molecule. For the
comparative investigation, we analyze the mechanisms of papain
and trypsin, whose catalytic triads are Cys-His-Asn and Ser-His-
Asp, respectively. Moreover, we analyze NsPCS, a member of
the papain superfamily, whose catalytic triad Cys-His-Asp
includes an aspartate in analogy to trypsin (Table S1). The
comparison of the active sites of cysteine peptidases and serine
peptidases reveals different properties of the surroundings of the
respective nucleophiles. We investigated the differences in
geometry and electrostatics, and we analyzed our findings by
comparing QM/MM reaction paths. We consider that the
acylation reaction follows a stepwise mechanism if the reaction
path includes an ion-pair intermediate, i.e., an additional energy
minimum in which the proton is transferred from the
nucleophile to the histidine. Otherwise we consider the reaction
to be concerted. Reaction paths for trypsin, papain, and NsPCS
obtained from QM/MM calculations are shown in supple-
mentary movies.

Trypsin. Our calculations on the serine peptidase trypsin
show that the nucleophilic attack of the substrate and the proton
transfer from the active-site nucleophile to the catalytic histidine
proceeds in a concerted manner with an energy barrier of 11.7
kcal·mol−1 (Figure 2). The resulting tetrahedral intermediate is
metastable and only 0.4 kcal·mol−1 lower than the preceding
transition state. In the next step, the acyl−enzyme is formed by
proton transfer from the catalytic histidine to the substrate,
which is subsequently cleaved with an overall activation barrier
of 18.0 kcal·mol−1. This activation barrier is in the range of
values estimated from experimental data50 and is in good
agreement with values of other computational studies.3,11,20 The

Figure 2. (A) Concerted catalytic mechanism of the acylation reaction in the serine peptidase trypsin. Nucleophilic attack of the substrate (green) in
the enzyme substrate complex (ES) is facilitated by concerted proton transfer to the catalytic histidine in the tetrahedral transition state (TH-TS),
which results in a metastable tetrahedral intermediate state (TH-Int). In the second transition state (EP-TS), the protonated histidine has reoriented
toward the substrate and proton transfer to the substrate occurs. Upon protonation, the substrate gets cleaved, which results in the acylated enzyme
product complex (EP). (B) QM/MM energy profile of the acylation reaction of trypsin.
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N-terminal part of the substrate remains bound covalently to the
enzyme via an ester bond.
The occurrence of a stable tetrahedral intermediate, which

corresponds to a minimum in the energy landscape, is still
debated.51 In our reaction path, we observed a metastable
tetrahedral intermediate state. However, after zero point energy
correction, the energy difference between the tetrahedral
intermediate and the preceding transition state is just 0.4 kcal·
mol−1 as illustrated in Figure 2B. Thus, a minimum can be found
but it is not very pronounced. A recent QM/MM molecular
dynamics study identifies also a metastable intermediate as local
minimum on the energy surface with a subsequent barrier of
about 1.2 kcal·mol−1.20 However, it should be kept in mind that
in QM/MM simulations, nuclei are treated classically and thus
zero point energy correction is not taken into account.
According to the Heisenberg uncertainty principle, a quantum
mechanical system fluctuates in the ground state, which leads to
an increase of the energy compared to a classical system (zero
point energy correction). Therefore, the minimum of a state
found on a Born−Oppenheimer surface is lower than its real
quantum mechanical energy and has to be corrected. As a
consequence, reaction path states, which are close in energy,
may change their relative energy when zero point energy
correction is applied. In our work after zero point energy
correction, the first transition state (TH-TS) becomes almost
equal in energy compared to the metastable intermediate (TH-
Int) (see Figure 3). We conclude that an additional tetrahedral

intermediate is not always present, and in case a tetrahedral
intermediate is found, its energy minimum might be very
shallow after zero point energy correction.
Papain. In contrast to the concertedmechanism of the serine

peptidase trypsin, the cysteine peptidase papain shows a
stepwise mechanism (Figure 4). In the first step, the proton
transfer from cysteine to histidine leads to the formation of the
ion-pair state. In the second step, the cysteine anion attacks the
substrate and the histidine reorients to allow a proton transfer to
the substrate.
In agreement with previous computational studies,23,52 we

observe a low energy barrier of 1.9 kcal·mol−1 for the formation
of the ion pair (IP-TS and IP-Int in Figure 4B). In our
calculations, the resulting ion-pair intermediate has an energy of
1.8 kcal·mol−1 after zero point energy correction. After the
formation of this ion-pair intermediate, the cysteine anion
attacks the substrate. For this step, some studies of peptidase
mechanism mention that the attack of the substrate occurs via a

tetrahedral intermediate,53−55 while other studies do not
confirm it.52,56,57 Our calculations indicate a metastable
tetrahedral intermediate, which remains energetically distin-
guishable after zero point energy correction (TH-Int in Figure
4B), even if this minimum is not very pronounced. Since this
minimum is not very pronounced, we think that both
possibilities can be found, i.e., a tetrahedral intermediate with
subsequent proton transfer from the catalytic histidine to the
substrate or the path in which both steps occur at once in a
tetrahedral transition state. However, while the occurrence of a
tetrahedral intermediate is debated, the occurrence of an ion-
pair intermediate seems to bemandatory for cysteine peptidases.

NsPCS. The peptidases papain and trypsin differ not only in
the nature of their nucleophile (cysteine vs serine) but also in the
nature of the third residue in the catalytic triad. While trypsin
possesses a negatively charged aspartate in this position, papain
has a neutral asparagine. Mutation of asparagine in papain to
aspartate introduces a negative charge, which stabilizes the
positively charged state of histidine.7,10,22 The formation of the
ion-pair state would then be promoted, however with the
consequence that the proton transfer from the histidine to the
substrate becomes more difficult. Since this proton transfer step
is essential,7,22 this mutation would have negative effects for
catalysis. To avoid such problems, we used NsPCS for further
studies. NsPCS is another member of the papain superfamily,
which contains an aspartate in the catalytic triad and is thus
directly comparable to trypsin (Table S1). Analogously to
papain, the mechanism of NsPCS proceeds stepwise: first the
formation of an ion pair and second the nucleophilic attack
resulting in the acyl−enzyme. The formation of the ion pair in
NsPCS has an energy barrier, which is about 4.5 kcal·mol−1

higher than in papain (Figure 4B). Consequently, NsPCS needs
slightly more energy to reach the ion-pair state, but the overall
barrier of the reaction (9.7 kcal·mol−1) is comparable to that of
papain. In contrast to papain, the mechanism of NsPCS
proceeds in one step from the ion-pair state to the acyl enzyme.
As in trypsin, the path search indicates a metastable tetrahedral
intermediate. However, this intermediate appears to be
energetically indistinguishable after zero point energy correc-
tion. Because of the stepwise mechanism, both papain and
NsPCS can be considered as typical representatives of
peptidases that use cysteine as nucleophile. In the following
discussion we concentrate on NsPCS and trypsin as model
enzymes for cysteine peptidases and serine peptidases,
respectively, because of the similarity of their catalytic triad.
For NsPCS, a cysteine to serine mutant exists (C70S-

NsPCS), which is catalytically inactive.25 In fact, our calculations
showed that the energy barrier of the acylation reaction in C70S-
NsPCS is 31.5 kcal·mol−1, rendering this reaction unfeasible.
Nevertheless, this reaction path can be analyzed in terms of a
reaction mechanism. The energy barrier in C70S-NsPCS is
about 22 kcal·mol−1 higher than the barrier in the wild type. This
energy difference is large considering that the pKa values of
serine and cysteine in aqueous solution differ only by about 6−7
pKa units, which corresponds to about 8−11 kcal·mol−1. Thus,
the large barrier cannot be attributed only to the pKa value of the
nucleophile. Nevertheless, C70S-NsPCS shows the typical
concerted mechanism of serine peptidases in which the proton
transfer from the catalytic serine to the catalytic histidine and the
attack of the substrate occur simultaneously. We therefore
conclude that the exchange of the nucleophile from a cysteine to
a serine is already sufficient to convert the mechanism of the
reaction from stepwise to concerted. However, in order to make

Figure 3. QM/MM energy profile of the acylation reaction of trypsin
with (gray) and without (blue) zero point energy (ZPE) correction.
The values with the ZPE correction are the same as in Figure 2B.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c01484
J. Phys. Chem. B 2022, 126, 4035−4048

4039

148 Manuscripts



the reaction possible, the energy barrier needs to be lowered,
which can be achieved by adapting the environment of the active
site.
Comparison of the Active Site of NsPCS and Trypsin.

The catalytic mechanism of cysteine and serine peptidases is
based on a nucleophilic attack which is connected to a proton
transfer from the nucleophile to the catalytic histidine. The
major difference is that in the catalytic mechanism of cysteine
peptidases the proton transfer occurs via an ion-pair
intermediate in a stepwisemechanism, while in serine peptidases
the proton transfer from the serine to histidine and the
nucleophilic attack of the substrate occur in a concerted fashion.
We try to find the reason for this mechanistic difference.
Mutation studies of cysteine and serine peptidases in which the
nucloephile is mutated into the other type report a substantial
loss of activity.12,14 Also in NsPCS, the mutation of the catalytic
cysteine to serine causes an inactive enzyme.25 Our computa-
tional analysis of a potential reaction path of the acylation
reaction of C70S-NsPCS showed a concerted mechanism as it is
characteristic for serine peptidases with an energy barrier of 31.5
kcal·mol−1. This transition state energy corresponds to a
reaction rate constant of 1.2 × 10−10 s−1 according to the
Eyring−Polanyi equation. Such a low reaction rate constant
represents the loss of enzyme activity for C70S-NsPCS, in
agreement with experimental findings.25 This high barrier
suggests that while the mutation of the nucleophile is sufficient

to induce the conversion between a concerted and a stepwise
mechanism, it is the environment of each nucleophile that is
affecting the catalytic efficiency of the enzymes.

Active Site Geometries. The active site of the serine
peptidases trypsin has a compact conformation. From our QM/
MM calculations, we find that the hydroxyl hydrogen of the
serine is 0.4 Å closer to the hydrogen-bond accepting nitrogen of
the catalytic histidine in trypsin (distance 1.8 Å), compared to
that in the serine mutant C70S-NsPCS (distance 2.2 Å) (Figure
5A,C). In the cysteine peptidase NsPCS, the thiolyl hydrogen of
the cysteine is 2.3 Å apart from the nitrogen of the catalytic
histidine. In the serine mutant C70S-NsPCS, the corresponding
distance of the hydroxyl hydrogen decreased to 2.2 Å. This
finding is counterintuitive, since the introduced serine has
shorter bond distances compared to cysteine (Figure 5B,C,F).
Namely, according to the CHARMM parameter set,17 the bond
distances Cβ−Oγ and Oγ−Hγ in serine are 1.42 Å and 0.96 Å,
respectively, while the analogous distances in cysteine (Cβ−Sγ
and Sγ−Hγ) are 1.81 Å and 1.32 Å, respectively. Thus, the
surrounding enzyme must possess some ability to adapt to the
introduced serine mutation by orientation of the active site
histidine closer to the smaller serine nucleophile. Moreover, we
observe also a reorientation of the substrate in C70S-NsPCS
toward the nucleophile, which reduces the distance for the
nucleophilic attack from 3.2 Å to 3.0 Å.

Figure 4. (A) Stepwise catalytic mechanism of the acylation reaction of cysteine peptidases. Since the third residue of the catalytic triad is Asn in papain
and Asp in NsPCS, atom label X denotes NH2 or O

−, respectively. The nucleophilic attack of the substrate (green) in the enzyme substrate complex
(ES) occurs stepwise. The first step is the proton transfer from the nucleophile to the catalytic histidine via an ion-pair transition state (IP-TS). The
resulting intermediate state IP-Int is the ion pair, which facilitates nucleophilic attack of the substrate. Afterward, the reaction proceeds differently in
papain and NsPCS. Papain forms a tetrahedral intermediate TH-Int via a tetrahedral transition state TH-TS and cleaves the substrate via a third
transition state EP-TS (states collected in black frame (B)), which results in the enzyme product complex (EP). In NsPCS, the steps, in which the
protonated histidine has reoriented toward the substrate and the proton transfer to the substrate occurs, proceed within one step via a tetrahedral
transition state TH-TS′ (gray-shaded area in (A) and (C)). The QM/MM energy profiles of papain (B) and NsPCS (C) reflect the states sketched in
(A).
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In addition, we analyze Mayer bond orders, which are a
measure of the degree of covalency for the interaction between
two atoms (i.e., 0, no covalency; 1, single bond; 2, double bond;
etc.). In trypsin, the interaction between one carboxylate oxygen
of the catalytic aspartate and the δ-hydrogen of the catalytic

histidine has a bond order of 0.23 in the hydrogen bond. This
result indicates that the δ-hydrogen is drawn to the aspartate,
making the ε-nitrogen available to accept the proton from the
catalytic serine during catalysis. The interaction between the γ-
hydrogen of the serine hydroxyl group and the ε-nitrogen of the

Figure 5.QM/MMoptimized active site structures of (A) trypsin (yellow), (B)NsPCS (green), and (C) C70S-NsPCS (cyan), with relevant distances
(black numbers) and Mayer bond orders (orange numbers). (D) Superposition of active sites of trypsin and of NsPCS to compare the catalytic triad
structures of cysteine and serine peptidases. (E) QM/MM optimized active site structure of the ion-pair intermediate state of NsPCS. (F)
Superposition of NsPCS and C70S-NsPCS active sites for catalytic triad structure comparison.

Figure 6. Representations of (A) the serine peptidase trypsin (yellow) and (B) the cysteine peptidase NsPCS (green) with the respective electrostatic
potentials (C, D). The electrostatic potential is represented as a slice through the protein along the plane, which contains the catalytic triad residues.
The active site region for comparison is encircled. The orientation of the proteins in (C) and (D) is the same as in (A) and (B), respectively.
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histidine has a bond character of 0.15. Since in serine peptidases,
the proton transfer from the catalytic serine to the catalytic
histidine does not occur as one separate step of the catalysis, the
catalytic histidine has to be able to accept the proton from the
serine during the nucleophilic attack (concerted mechanism).
Accordingly, our findings show that all atoms in the hydrogen
bond network of the catalytic triad are strongly interacting in the
reactant state (Figure 5A) so that the catalytic system in trypsin
is well-prepared to transfer the proton from the serine to the
histidine once the nucleophilic attack proceeds.
The situation is different in cysteine peptidases, where the

proton transfer from the catalytic cysteine to the catalytic
histidine occurs prior to the nucleophilic attack resulting in the
formation of a stable ion-pair intermediate. The thiol orients
toward the imidazole to reduce the distance for proton transfer.
Afterward the thiolate orients toward the substrate for the
nucleophilic attack (stepwise mechanism). Therefore, the
catalytic system does not have to be prepared to accept the
proton during the nucleophilic attack. This circumstance is
reflected in a larger distance and a lower bond order value
between the respective imidazole nitrogen and the proton of the
nucleophile in NsPCS (Figure 5B) compared to those in trypsin
(Figure 5A). Also in the inactive serine mutant C70S-NsPCS,
the respective distance is large compared to that in the active
trypsin and result in a low bond order (Figure 5C). Thus, shorter
distances between the catalytic residues seem beneficial in order
to have a lower transition state for an energetically accessible
concerted mechanism. To obtain further insights into the ability
of the catalytic residues to donate or accept protons, we analyzed
the electrostatic potential and the protonation energetics at the
active site.
Electrostatic Potentials at the Catalytically Active Site.

In order to be able to populate the characteristic ion-pair state,
the catalytic site environment in cysteine peptidases has to
ensure stabilization of the ion pair. This stabilization is achieved
by a positive electrostatic potential around the catalytic
cysteine.2,7,9 Accordingly, we observed a positive electrostatic
potential in the surroundings of the nucleophile in NsPCS
(Figure 6D). In the whole active site of NsPCS, the electrostatic
potential shows positive and negative contributions. In contrast,
the active site of trypsin is dominated by a negative electrostatic
potential (Figure 6C). In both proteins, the aspartate
contributes a negative potential, which enables the stabilization
of a protonated histidine in the catalytic cycle. The positive
electrostatic contribution in the active site of NsPCS stabilizes
the cysteine anion in the ion-pair state as required for the

stepwise mechanism. In contrast, the negative electrostatic
potential in trypsin prevents the formation of a serine anion as
required for the concerted mechanism. Furthermore, the
negative potential in the active site makes the histidine a better
proton acceptor during the catalytic cycle, enabling serine to act
as a strong nucleophile.

Protonation Characteristics of the Residues of the
Catalytic Triad. The proton transfer from cysteine or serine to
the catalytic histidine is crucial for the mechanism in cysteine
and serine peptidases, respectively. Since the nature of this
proton transfer is different in the two peptidases, as discussed
above, its energetics is important for understanding the
mechanism of these enzymes. For this discussion, we need
some theoretical considerations. The energy of the proton
transfer from residue i to residue j can be estimated using the
Tanford−Roxby approximation (eq 1), which assumes that all
other titratable residues k remain in their equilibrium
protonation.34

G RT K K

W x x W

(pH) ln 10(p p )

( )

i j j i

ij j i i j

pt,
TR

int, int,

o o
sum,

Δ = − −

+ − +

→

→ (1)

The symbols in eq 1 have the following meaning: R is the gas
constant,T is the absolute temperature, pKint,i is the intrinsic pKa

of residue i, xi
o is the reference protonation state of site i, Wij is

the interaction energy of sites i and j, and Wsum,i→j (eq 2) is the
pH-dependent interaction energy with the remaining titratable
sites, i.e.,

W x x W W( (pH) )( )i j
k k j i

N

k k jk iksum,
1; ,

o∑= ⟨ ⟩ − −→
= ≠ (2)

where ⟨xk(pH)⟩ is the average protonation probability of site k
at certain pH (see Supporting Information for derivation). Since
we are interested in the energies for the transfer of the proton
from the nucleophile to the catalytic histidine in trypsin and
NsPCS, i is the respective nucleophile cysteine or serine (Cys/
Ser) and j is the catalytic histidine (His). These energies

G( pt,Cys/Ser His
TRΔ → ), together with the interaction energies

WCys/Ser,His and Wsum,Cys/Ser→His, and pKint values of the relevant
residues are listed in Table 1.
At pH 8 at which both trypsin and NsPCS are active, the

calculated proton transfer energy G( )pt,Cys/Ser His
TRΔ → for trypsin is

higher by only 3.3 kcal·mol−1 compared to that in NsPCS. This
difference in the proton transfer energies is surprisingly small,

Table 1. Proton Transfer Energies G( )pt,Cys/Ser His
TRΔ → , Interaction Energies WCys/Ser,His and Wsum,Cys/Ser→His,

a and Intrinsic pKa

Values (pKint) at pH 8. All Energies Are Given in pK Unitsb

protein (nucleophile) trypsin (Ser) NsPCS (Cys) C70S-NsPCS (Ser) NsPCS-mut1 (Ser) NsPCS-mut4 (Ser)

Gpt,Cys/Ser His
TRΔ →

10.7 8.3 13.7 12.0 12.5

WCys/Ser,His −11.0 −9.5 −9.7 −10.2 −11.3
Wsum,Cys/Ser→His

a −2.9 −2.7 −3.0 −4.4 −3.5
pKint

Cys/Ser 27.2 20.1 26.2 27.0 30.4
His 2.7 −0.4 −0.1 0.4 3.1
Asp 2.0 11.6 11.4 10.2 9.7

aW x x W W( (pH) )( )i j k k j i
N

k k ik jksum, 1; ,
o= ∑ ⟨ ⟩ − −→ = ≠ , where ⟨x(pH)⟩ is the average protonation probability of a site at certain pH (see also eq 1).

bConversion factor for pK units to kcal·mol−1: RT ln 10 ≈ 1.37, with gas constant R and T = 300 K.
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considering that the pKa values of free cysteine and free serine in
solution differ by about 7 pKa units, which would correspond to
9.6 kcal·mol−1. Since also the pKa values of cysteine and serine in
NsPCS and trypsine respectively differ by about 7 pKa units
(Table 1), the reason for this relatively low protonation transfer
energy in trypsin has to be found elsewhere. The intrinsic pKa
value of the active site histidine in trypsin compared to NsPCS is
lower by about 3 pKa units, which corresponds to a lower
protonation energy of about 4.2 kcal·mol−1, making the histidine
a better proton acceptor in trypsin. In addition, the interaction
between the catalytic residues is stronger in trypsin than in
NsPCS (Table 1, WCys/Ser,His). The interaction of the catalytic
residues with other titratable residues does not play a major role
(seeWsum,Cys/Ser→His in Table 1). In conclusion, the major reason
why this proton transfer energy for trypsin is so surprisingly low
is that the histidine in trypsin is a better proton acceptor.
The pKint of serine in the serine mutant C70S-NsPCS is about

6 pKa units higher than that of cysteine in the wild type,
reflecting the difference between the respective solution pKa
values. All other energetic parameters remain about the same.
Thus, the mutation of cysteine into serine leads to a significantly
higher proton transfer energy. This increased proton transfer
energy is also reflected in the high energy barrier of 31.5 kcal·
mol−1 for C70S-NsPCS obtained from our QM/MM calcu-
lations.
The catalytic mechanism of cysteine peptidases relies on the

formation of an ion pair, which is stabilized within the active site.
Serine peptidases, however, developed a mechanism without the
formation of an ion pair, since the deprotonation of serine needs
a significantly higher energy compared to cysteine. To maintain
an ion-pair state in serine peptidases, the higher energy required
to deprotonate the nucleophile would have to be compensated
by an increase in protein stability.
Deprotonation and Protein Stability. The mechanism of

serine peptidases proceeds concertedly without the formation of
an ion pair. In order to have an ion pair in serine peptidases, it
would be required to deprotonate the catalytic serine. However,
the deprotonation of residues within a protein affects protein
stability. To describe the pH dependence of protein stability, we
use the following model. We consider a protein with only one
titratable site. In the unfolded state, this titratable residue has a
very high pKa value in comparison to physiological pH and it is
thus protonated when the protein is unfolded. In the folded
state, the pKa value decreases and the residue deprotonates. The
folding energy ΔGfold is given by eq 3,

G G RT ln
1 e

1 e

K K

Kfold conf

ln 10(p p pH)

ln 10(p pH)

a a

a
Δ = Δ − +

+

+Δ −

− (3)

whereΔGconf is the energy difference between the folded and the
unfolded state, if the folding would not be coupled to a
protonation event, and ΔpKa is the difference between the pKa
values in the folded and the unfolded state.
We apply this model in order to investigate which stabilization

energy would be required to accommodate a deprotonated
cysteine or serine in a protein. It is generally accepted that the
pKa value of an amino acid in the unfolded state is about the
same as the pKa value of the free amino acid. To facilitate the
deprotonation of serine in the folded state, the high pKa value of
serine in the unfolded state would have to be drastically lowered
by the protein upon folding. In order to keep the protein folded,
the conformational energy ΔGconf needs to compensate for the
difference in pKa between the folded and the unfolded state as

can be seen in eq 3 (derivation in Supporting Information). To
deprotonate a residue at pH 8 with an appreciable probability,
the pKa should not be higher than 10. For cysteine in the
unfolded state, the pKa is about 10. Thus no pKa shift would be
required upon folding in order to deprotonate in the folded state
at pH 8, i.e., ΔpKa = 0 and ΔGfold equals ΔGconf. In contrast, for
serine in the unfolded state, the pKa is about 16. Therefore, in
order to deprotonate serine with an appreciable probability in
the folded state at pH 8, the pKa needs to be shifted to about 10,
i.e., ΔpKa = −6, which corresponds to 8.2 kcal·mol−1.
Consequently, to stabilize a deprotonated serine in the folded
state, ΔGconf would have to be more negative by that amount.
Such a large stabilization energy is very difficult to obtain making
an ion-pair intermediate unfavorable in serine peptidases.
A recent study8 pointed out that a stepwise mechanism as it is

found in cysteine peptidases is energetically more favorable
compared to a concerted mechanism as it is found in serine
peptidases. Nevertheless, serine peptidases follow a concerted
mechanism, where the environment of the active site favors the
uncharged state of the catalytic serine avoiding the explicit
formation of an ion pair. Due to the concerted mechanism of
serine peptidases, no conformational stabilization of a
deprotonated serine is required. It is thus likely that serine
peptidases evolved a concerted mechanism to avoid the
evolutionary pressure to maintain a large conformational
stabilization.

Computational Modification of C70S-NsPCS to Adapt
to a Serine−Peptidase-like Active Site.We have observed,
in agreement with other studies,2,54 that cysteine peptidases
perform a stepwise mechanism, which involves an ion-pair
intermediate (Figure 4). This intermediate state is populated
because the cysteine anion is stabilized by a positive electrostatic
potential (Figure 6D). Instead in the concerted mechanism of
serine peptidases, the uncharged state of the catalytic serine is
favored. Accordingly, the nucleophilic attack in serine peptidases
occurs in a concerted manner with the proton transfer to the
catalytic histidine.
In the following paragraphs, we attempt to mimic a suitable

environment around the catalytic triad for serine-based catalysis
within the cysteine peptidase NsPCS to computationally restore
peptidase activity for its serine mutant C70S-NsPCS.
Adaptations are realized for the electrostatic environment of
the active site and for the active site distances. The spatial
arrangements of the active site residues are shown in Figures
S4−S6 in the Supporting Information. An overview of the
introduced mutations for the discussed NsPCS mutants is
provided in Table 2.

Requirements for an Active Variant of the Cysteine to
Serine Mutant C70S-NsPCS. In order to reactivate the serine
mutant C70S-NsPCS, we have to reduce the energy barrier of its
concerted reaction, where the proton transfer from the

Table 2. Overview of Presented NsPCS Mutant Structures
with Introduced Mutations

name mutation

C70S-NsPCS C70S
NsPCS-mut1 C70S-S185D-D201S
NsPCS-mut2 C70S-I184P
NsPCS-mut3 C70S-S74P
NsPCS-mut4 C70S-S185D-D201S-I184P-S74P
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nucleophile to the catalytic histidine is crucial. Therefore, our
strategy is to reduce this proton transfer energy.
On the basis of our findings, a decrease of the proton transfer

energy Gpt,Ser His
TRΔ → might be obtained in several ways (or a

combination of them): (1) decrease of pKint of the catalytic
serine, (2) increase of pKint of the catalytic histidine, (3) stronger
interaction between the catalytic serine and the catalytic
histidine, or (4) stronger interaction between the catalytic
serine and all other sites. The shift of the pKint values can be
achieved by modification of the electrostatic potentials at the
catalytically active site as analyzed before. Stronger interactions
can be obtained also with structural modifications.
Adaptation of the Electrostatic Environment of the

Catalytic Triad. The positive electrostatic potential in the
cysteine peptidase NsPCS favors ion-pair formation by
stabilizing the thiolate. For serine-based catalysis, the predom-
inant electrostatic potential at the active site has to be negative.
To achieve a negative potential around the nucleophile in C70S-
NsPCS, we change the position of the catalytic aspartate.
Namely, the nearby Ser185 is mutated to aspartate, and as a
counteracting mutation to maintain the same overall charge
within that region, the former catalytic Asp201 is mutated to
serine (NsPCS-mut1). By this modification, the electrostatic
potential around the catalytic histidine and the nucleophile
becomes more negative (Figure 7) as required for a serine-
peptidase-like mechanism. Interestingly, the resulting spatial
arrangement of the catalytic triad becomes comparable to that of
trypsin. Our QM/MM calculations indicate that also the Mayer
bond order of the hydrogen bond between the introduced
Asp185 and the catalytic histidine is comparable to that in
trypsin and higher compared to that in wild-type NsPCS. The
mutations introduced in NsPCS-mut1 reduces Gpt,Ser His

TRΔ →

compared to C70S-NsPCS by 1.7 pKa units (2.3 kcal·mol−1)
(Table 1). However, the calculated QM/MM energy for the
reaction of NsPCS-mut1 decreases just by 0.5 kcal·mol−1

compared to C70S-NsPCS, which indicates that the adaptation
of the electrostatic environment of the catalytic triad alone is not
sufficient.

Adaptation of the Active Site Geometry. To facilitate
the concerted mechanism, which is characteristic for serine
peptidases, the serine has to come close to both the catalytic
histidine and the substrate. In NsPCS, the amide hydrogen of
the peptide bond of Ile184 is oriented toward the catalytic
cysteine and contributes to the stabilization of the cysteine−
histidine ion pair (Figure 5B). By mutating Ile184 to proline
(NsPCS-mut2), this interaction is eliminated, which allows the
serine to orient toward the substrate for nucleophilic attack. In
addition the Cδ of the side chain of prolin pushes the serine
closer to the substrate. The distances of the catalytic serine to the
catalytic histidine and of the catalytic serine to the substrate are
decreased. Namely, the distance between Hγ of the catalytic
serine and Nε of the catalytic histidine is decreased by 0.2 Å and
the distance of Oγ of the catalytic serine and C of the substrate is
decreased by 0.1 Å. The calculated QM/MM energy for the
reaction in NsPCS-mut2 decreases by almost 4 kcal·mol−1

compared to that in C70S-NsPCS, indicating that this mutation
is more effective than that in NsPCS-mut1 but still not sufficient.
To decrease the relevant distances in the active site of C70S-

NsPCS even further, we modified the α-helix, which has the
catalytic Cys70→ Ser on its N-terminal side. This modification
was inspired by the serine peptidase subtilisin.58,59 Themutation
of the catalytic serine to cysteine in subtilisin changes the
catalytic activity from a peptidase to a ligase. This change in
activity was attributed to the fact that the larger cysteine

Figure 7.Analysis of the electrostatic potential of NsPCS-mut1 (orange) andC70S-NsPCS (cyan). The active site region is encircled. The electrostatic
potential is represented as a slice through the protein. In the upper panels, the residues with the numbers 70, 183, and 201 were used to define the plane
(plane I, which is the plane of the catalytic triad residues in NsPCS), and in the lower panels, the residues with the numbers 70, 183, and 185 were used
to define the plane (plane II, which is the plane of the new catalytic triad in NsPCS-mut1). (A) Electrostatic potential in NsPCS-mut1 in plane I. (B)
Difference of the electrostatic potentials of NsPCS-mut1 and C70S-NsPCS in plane I. (C) Electrostatic potential in NsPCS-mut1 in plane II. (D)
Difference of the electrostatic potentials of NsPCS-mut1 and C70S-NsPCS in plane II.
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nucleophile is too close to the substrate to allow proper substrate
orientation as compared to the smaller serine nucleophile.
Subtilisin possesses a proline within its active site helix.Mutation

of this proline to alanine brought the helix turns closer together
and increased the distance between the nucleophile at the end of
the helix and the substrate. We need to achieve the opposite

Figure 8. (A) Slice through the electrostatic potential of NsPCS-mut4 in which the protein has the same orientation as in (B). The active site region is
encircled. The represented slice through the electrostatic potential map shows the plane, which contains the catalytic triad residues. (C) QM/MM
optimized structure of NsPCS-mut4, with relevant distances (black numbers) and Mayer bond orders (orange numbers). (D) Geometrical
comparison between the serine mutant C70S-NsPCS (cyan) and NsPCS-mut4.

Figure 9. (A) Catalytic mechanism of the acylation reaction of the serine mutant NsPCS-mut4. The nucleophilic attack of the substrate (green) in the
enzyme substrate complex (ES) occurs concerted with the proton transfer to the catalytic histidine in the tetrahedral transition state (TH-TS) leading
to a tetrahedral intermediate state (TH-Int). In the second transition state (EP-TS), the substrate receives a proton from the catalytic histidine. This
proton transfer initiates substrate cleavage, which results in the enzyme product complex (EP). (B)QM/MMenergy profile of the acylation reaction of
NsPCS-mut4.
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effect, i.e., to decrease the distance between the catalytic serine
and the substrate. Therefore, we replaced Ser74 in the helix of
the active site of C70S-NsPCS by proline (NsPCS-mut3), which
is at the same position in the helix as the proline in subtilisin. The
distance betweenOγ of the catalytic serine and C of the substrate
is decreased by 0.1 Å. Additionally, also the distance between Hγ

of the catalytic serine and Nε of the catalytic histidine is
decreased by 0.1 Å. However, the calculated QM/MM barrier
for the reaction of NsPCS-mut3 increases by almost 1 kcal·
mol−1 compared to C70S-NsPCS, showing that this single
mutation is reducing the relevant distances in the active site but
not the energy barrier.
Combining All Four Adaptations for the Active Site

Environment.The introduction of all four mutations discussed
above into the serine mutant C70S-NsPCS leads to NsPCS-
mut4. This mutant has a negative electrostatic environment
around the catalytic histidine and the catalytic serine, which is
suitable for serine-based catalysis (Figure 8A). Further, NsPCS-
mut4 has a compact active site geometry, which increases the
interactions among the active site residues compared to those in
C70S-NsPCS (Figure 5 and Figure 8C). In fact the distance
between the catalytic serine and the substrate, and the proton
transfer distance between the catalytic serine and the catalytic
histidine decrease from 3.0 Å and 2.2 Å in C70S-NsPCS to 2.7 Å
and 2.0 Å in NsPCS-mut4, respectively, as shown in the
superposition of C70S-NsPCS with NsPCS-mut4 (Figure
8D). As a consequence of these modifications, the QM/MM
barrier for the reaction of NsPCS-mut4 decreases considerably
by about 11 kcal·mol−1, i.e., from 31.5 kcal·mol−1 for C70S-
NsPCS to 20.2 kcal·mol−1 for NsPCS-mut4 (Figure 9), which is
close to the barrier of active enzymes (for instance we obtained
18.0 kcal·mol−1 for trypsin, Figure 2).
All introduced mutations were evaluated by reaction path

searches using QM/MM. Each single effect, which we
introduced in the mutants NsPCS-mut1, NsPCS-mut2, and
NsPCS-mut3, did not significantly reduce the QM/MM energy
for catalysis, and also combinations were not sufficient (see
Supporting Information, NsPCS-mut5 to NsPCS-mut7). For
some combinations, the calculated QM/MM reaction path
energy is even higher compared to C70S-NsPCS. Instead, the
combination of all presented adaptations leads to a transition
state energy of 20.2 kcal·mol−1 for NsPCS-mut4 (Figure 9),
which is a reasonable barrier for an enzymatic reaction. Thus, the
contribution of all four mutations leads to an enzyme that could
be active. Taken together, these results show that cysteine and
serine peptidases need specifically adapted active site environ-
ments, which are essentially different in how they support
catalysis. The difference between the two kinds of peptidases is
larger than one might think from the many similarities between
the two groups of enzymes and shows that a conversion between
the two enzyme families is not easily possible.

■ CONCLUSIONS
In this work, we have analyzed the essential differences of the
catalytic mechanisms of cysteine and serine peptidases. At the
first sight, the nature of the peptide bond cleavage in cysteine
and serine peptidases appears to be very similar. However,
catalysis proceeds substantially differently. Cysteine peptidases
show a stepwise mechanism with an ion-pair intermediate. In
contrast, serine peptidases work through a concerted mecha-
nism avoiding the formation of a deprotonated serine that would
significantly destabilize the folded protein. Consequently, the
concerted mechanism of serine peptidases leads to an

evolutionary advantage, since it does not require a large
conformational stabilization. In line with the literature,10,11 we
have shown that a negative electrostatic potential is crucial in the
active site of trypsin-like serine peptidases. In fact, a negative
electrostatic potential stabilizes the histidine cation in the
tetrahedral intermediate. Additionally, we pointed out that also a
negative potential around the catalytic serine is important to
destabilize the serine anion and enhance the nucleophilicity of
the serine toward the substrate in a concerted mechanism
without the need of an ion pair.
Our findings can provide an insight also into the nature and

the occurrence of cysteine and serine hydrolases in general. The
nature of the nucleophile in these two types of enzymes are very
different. They differ not only in their protonation properties but
also in their redox properties. Namely, cysteine can easily be
oxidized, while serine can not. Thus, it is advantageous to use
serine as a nucleophile in an aerobic environment. That is
probably why serine hydrolases are so widespread in nature. Our
results show that the change of the nucleophile from a cysteine
to a serine is only possible by adapting the active-site
environment to enable a concerted mechanism, which avoids
the formation of an ion pair. Namely, the active-site environ-
ment has to be changed from “stabilizing the cysteine anion” to
“destabilizing the serine anion”. The destabilization of a
deprotonated serine appears to be counterintuitive, since the
catalytic mechanism of peptidases requires a proton transfer
from the nucleophile to the catalytic histidine. However, a
negative electrostatic potential enhances the nucleophilicity of
the protonated serine and allows the attack of the substrate with
a simultaneous proton transfer from serine to the catalytic
histidine. Moreover, avoiding the appearance of an anionic
serine in the concerted mechanism eliminates the need to
stabilize the protein harboring the deprotonated nucleophile.
Finally, although cysteine and serine peptidases appear to be so
similar, the nature of their nucleophiles requires qualitatively
different mechanisms.
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S1 Supplementary Derivations

Protonation Properties of the Residues of the Catalytic Triad. For the description of pro-

ton transfer processes as they occur in peptidases, knowledge about the protonation energetics

is required. The pKa of a titratable site is influenced by the protein environment and by other

titratable sites. The pKa value of a titratable site i, if all other sites j 6= i are in their reference

state, is described by the intrinsic pKa,i (pKint,i). However, depending on pH and the environ-

ment, titratable sites do not necessarily occupy their reference state. One way to characterize

the individual protonation behavior of site i is the use of the Tanford-Roxby pKa value (pKTR,i),

which represents an average microscopic pKa of a titratable site.1 The Tanford-Roxby pKTR,i

of site i can be calculated as

pKTR,i(pH) = pKint,i −
∑

j 6=i
(〈xj(pH)〉 − xoj)Wij (1)

where 〈xj(pH)〉 is the average protonation probability of site j at certain pH, xoj is the reference

protonation state of site j, and Wij is the interaction energy of site i with site j. Thus, the pKTR

of one site depends on the pKint and on the interactions with all other titratable residues. Such

interactions are weighted by the proton probability of the involved residues and are therefore

pH-dependent. The protonation energy can be approximated from

∆Gprot,i = RT ln 10(pH− pKTR,i(pH)) (2)

where R is the gas constant and T is the absolute temperature, assuming that only residue i

changes its protonation from deprotonated (xi = 0) to protonated (xi = 1) and all the other

residues remain at the equilibrium protonation 〈xj(pH)〉 at this pH. Analogously, the proton

transfer energy from residue i to residue j can be approximated using the Tanford-Roxby ap-

proximation, assuming that only residue i changes its protonation from protonated (xbegin
i = 1)

to deprotonated (xend
i = 0) and residue j changes its protonation from deprotonated (xbegin

j = 0)
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to protonated (xend
j = 1) and all the other residues remain at the equilibrium protonation

〈xk(pH)〉 at this pH.

∆GTR
pt,i→j(pH) = GTR

(xendi ,xendj )(pH)−GTR

(xbegini ,xbeginj )
(pH)

= (xend
i − xo

i )RT ln 10(pH− pKint,i) + (xend
j − xo

j)RT ln 10(pH− pKint,j)

− (xbegin
i − xo

i )RT ln 10(pH− pKint,i)− (xbegin
j − xo

j)RT ln 10(pH− pKint,j)

+ (xend
i − xo

i )(x
end
j − xo

j)Wij − (xbegin
i − xo

i )(x
begin
j − xo

j)Wij

+
N∑

k=1;k 6=j,i
(xend

i − xo
i )(〈xk(pH)〉 − xo

k)Wik +
N∑

k=1;k 6=j,i
(xend

j − xo
j)(〈xk(pH)〉 − xo

k)Wjk

−
N∑

k=1;k 6=j,i
(xbegin

i − xo
i )(〈xk(pH)〉 − xo

k)Wik −
N∑

k=1;k 6=j,i
(xbegin

j − xo
j)(〈xk(pH)〉 − xo

k)Wjk

= ((xend
i − xo

i )− (xbegin
i − xo

i ))RT ln 10(pH− pKint,i)

+ ((xend
j − xo

j)− (xbegin
j − xo

j))RT ln 10(pH− pKint,j)

+ ((xend
i − xo

i )(x
end
j − xo

j)− (xbegin
i − xo

i )(x
begin
j − xo

j))Wij

+
N∑

k=1;k 6=j,i
((xend

i − xo
i )(〈xk(pH)〉 − xo

k)− (xbegin
i − xo

i )(〈xk(pH)〉 − xo
k))Wik

+
N∑

k=1;k 6=j,i
((xend

j − xo
j)(〈xk(pH)〉 − xo

k)− (xbegin
j − xo

j)(〈xk(pH)〉 − xo
k))Wjk (3)

With xbegin
i = 1, xend

i = 0, xbegin
j = 0, and xend

j = 1 we obtain eq. 4, again assuming that the

only event is the transfer of a proton from residue i to residue j while all the other titratable
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residues k remain at the equilibrium protonation at that pH.

∆GTR
pt,i→j(pH) = ((0− xo

i )− (1− xo
i ))RT ln 10(pH− pKint,i)

+ ((1− xo
j)− (0− xo

j))RT ln 10(pH− pKint,j)

+ (0− xo
i )(1− xo

j)− (1− xo
i )(0− xo

j))Wij

+
N∑

k=1;k 6=j,i
((0− xo

i )(〈xk(pH)〉 − xo
k)− (1− xo

i )(〈xk(pH)〉 − xo
k))Wik

+
N∑

k=1;k 6=j,i
((1− xo

j)(〈xk(pH)〉 − xo
k)− (0− xo

j)(〈xk(pH)〉 − xo
k))Wjk

= −RT ln 10(pH− pKint,i) +RT ln 10(pH− pKint,j)

+ (xo
j − xo

i ))Wij

+
N∑

k=1;k 6=j,i
−(〈xk(pH)〉 − xo

k))Wik +
N∑

k=1;k 6=j,i
(〈xk(pH)〉 − xo

k))Wjk

= − RT ln 10(pKint,j − pKint,i)

+ Wij(x
o
j − xo

i ) +
N∑

k=1;k 6=j,i
(〈xk(pH)〉 − xo

k)(Wjk −Wik) (4)

Protein Stability and Deprotonation. We assume to have a protein that has only one titrat-

able site, which is uncharged in the protonated state. We now want to analyze how the protein

stability depends on pH. We can define four states of this protein, namely unfolded-deprotonated

(ud), unfolded-protonated (up), folded-deprotonated (fd), and folded-protonated (fp). We de-

fine the energy of the protein in these four states in general as

Gi = δconf∆Gconf +RT ln 10(x− x◦)(pKa + δconf∆pKa − pH) (5)

where δconf is 1 if the protein is in the folded state and 0 if the protein is in the unfolded state; x

is the protonation state and x◦ is the reference state (x◦ = 1 for this example), pKa is the pKa of

the titratable group in the unfolded state (usually this value is more or less identical to the pKa

value of the titratable group in solution), ∆pKa is the shift of the pKa value from the unfolded to

the folded state (due to desolvation and interactions with other charges of the protein), ∆Gconf
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is the energy, which stabilizes the folded state in comparison to the unfolded state. Thus for the

four states defined above, we obtain the following energies:

Gup = Gu(x = 1) = 0 (6)

Gud = Gu(x = 0) = −RT ln 10 (pKa − pH) (7)

Gfp = Gf (x = 1) = ∆Gconf (8)

Gfd = Gf (x = 0) = ∆Gconf −RT ln 10 (pKa + ∆pKa − pH) (9)

If we now want to calculate the free energy of stabilization of the folded state, we can define

the partition function of the folded and the unfolded state and obtain as free energy change

∆Gfold = −RT
(

lnZf − lnZu

)
(10)

= −RT ln
Zf
Zu

(11)

= −RT ln
e−(RT )−1∆Gconf + e−(RT )−1(∆Gconf−RT ln 10(pKa+∆pKa−pH))

1 + e−(RT )−1(−RT ln 10 (pKa−pH))
(12)

= ∆Gconf −RT ln
1 + eln 10(pKa+∆pKa−pH)

1 + eln 10 (pKa−pH)
(13)

Suppose we have now an enzyme that needs to have its titratable site residue deprotonated in

order to be active, it becomes already obvious from eq. 9, that the conformational stability needs

to compensate for the pKa shift. Namely, lets rewrite eq. 9

Gfd = ∆Gconf −RT ln 10∆pKa −RT ln 10(pKa − pH) (14)

For a residue where the pKa shifts from 16 in the unfolded state to 10 in the folded state,

∆pKa = −6, thus the second term in eq. 14 becomes positive and increases the energy of the

folded and deprotonated (fd) state.
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S2 Supplementary Tables
The catalytic triads of trypsin, papain and NsPCS differ in the nucleophile or in the third cat-

alytic triad residue or in both, instead C70S-NsPCS and trypsin have identical catalytic triad

residues (Table S1).

Table S1: Catalytic triad residues of papain, NsPCS and C70S-NsPCS, and trypsin.

Protein Catalytic Triad Residues

Papain Cys25 His159 Asn175

NsPCS Cys70 His183 Asp201

C70S-NsPCS Ser70 His183 Asp201

Trypsin Ser192 His55 Asp99
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Table S2 provides an overview of all mutant variants of C70S-NsPCS, for which QM/MM

reaction paths are calculated. The Tables S3-S13 supplement the presented reaction path energy

profiles and show the relevant energies and imaginary frequencies for all combinations of the

mutations for NsPCS. The listed energies correspond to the provided coordinates in the PDB

format of all stationary points, which are named according to the names in the respective table.

Additional reaction path energy profiles are shown in Figure S2.

Table S2: Overview of the NsPCS mutant structures with introduced mutations.

Name Mutation

C70S-NsPCS C70S

NsPCS-mut1 C70S-S185D-D201S

NsPCS-mut2 C70S-I184P

NsPCS-mut3 C70S-S74P

NsPCS-mut4 C70S-S185D-D201S-I184P-S74P

NsPCS-mut5 C70S-S185D-D201S-I184P

NsPCS-mut6 C70S-S185D-D201S-S74P

NsPCS-mut7 C70S-I184P-S74P
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Table S3: QM/MM energies for the acylation reaction of the cysteine peptidase papain, with
zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

papain-1 0.0 257.2 0.0 -

papain-2 3.7 255.4 1.9 -856.7

papain-3 0.5 258.5 1.8 -

papain-4 7.3 259.1 9.2 -61.1

papain-5 5.9 259.5 8.1 -

papain-6 11.6 256.7 11.1 -1139.1

papain-7 -1.2 258.9 0.5 -

Table S4: QM/MM energies for the acylation reaction of the cysteine peptidase NsPCS, with
zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-1 0.0 358.6 0.0 -

nspcs-2 8.0 356.9 6.3 -882.2

nspcs-3 5.0 359.4 5.8 -12.7a

nspcs-4 10.7 357.5 9.7 -1003.5

nspcs-5 3.1 360.1 4.6 -

a The small imaginary frequency for this intermediate state was ascribed to numerical noise
from integration.
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Table S5: QM/MM energies for the acylation reaction of the serine mutant peptidase C70S-
NsPCS, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

c70s-nspcs-1 0.0 362.1 0.0 -

c70s-nspcs-2 32.3 361.3 31.5 -220.7

c70s-nspcs-3 5.5 362.5 5.9 -

Table S6: QM/MM energies for the acylation reaction of the adapted serine mutant peptidase
NsPCS-mut1, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-mut1-1 0.0 362.2 0.0 -

nspcs-mut1-2 32.3 360.8 31.0 -164.0

nspcs-mut1-3 19.3 361.5 18.6 -

nspcs-mut1-4 20.2 359.9 17.9 -926.1

nspcs-mut1-5 7.4 362.6 7.8 -
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Table S7: QM/MM energies for the acylation reaction of the adapted serine mutant peptidase
NsPCS-mut2, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-mut2-1 0.0 361.8 0.0 -

nspcs-mut2-2 27.5 360.8 26.6 -224.5

-49.1a

nspcs-mut2-3 4.3 362.3 4.7 -

a The small imaginary frequency for this intermediate state was ascribed to numerical noise
from integration.

Table S8: QM/MM energies for the acylation reaction of the adapted serine mutant peptidase
NsPCS-mut3, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-mut3-1 0.0 361.5 0.0 -

nspcs-mut3-2 30.1 360.6 32.1 -245.0

nspcs-mut3-3 4.1 361.9 4.5 -
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Table S9: QM/MM energies for the acylation reaction of the adapted serine mutant peptidase
NsPCS-mut4, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-mut4-1 0.0 362.8 0.0 -

nspcs-mut4-2 21.9 361.1 20.2 -120.2

nspcs-mut4-3 8.3 362.7 8.2 -

nspcs-mut4-4 10.4 360.7 8.3 -1054.2

nspcs-mut4-5 -1.3 363.2 -1.0 -

Table S10: QM/MM energies for the acylation reaction of the adapted serine mutant peptidase
NsPCS-mut5, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-mut5-1 0.0 362.7 0.0 -

nspcs-mut5-2 27.1 361.1 25.6 -109.4

nspcs-mut5-3 13.0 361.6 12.0 -

nspcs-mut5-4 15.4 359.6 12.3 -1013.0

nspcs-mut5-5 4.7 362.7 4.8 -
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Table S11: QM/MM energies for the acylation reaction of the adapted serine mutant peptidase
NsPCS-mut6, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-mut6-1 0.0 362.6 0.0 -32.3a

nspcs-mut6-2 30.6 361.5 29.4 -238.2

nspcs-mut6-3 0.9 363.2 1.4 -

a The small imaginary frequency for this intermediate state was ascribed to numerical noise
from integration.

Table S12: QM/MM energies for the acylation reaction of the adapted serine mutant peptidase
NsPCS-mut7, with zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

nspcs-mut7-1 0.0 362.2 0.0 -

nspcs-mut7-2 32.3 361.0 31.2 -237.3

nspcs-mut7-3 4.6 362.4 4.8 -
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Table S13: QM/MM energies for the acylation reaction of the serine peptidase trypsin, with
zero point energy (ZPE) contribution and imaginary frequencies.

Relative

Name Relative Absolute Energy (ZPE Imaginary

Energy ZPE corrected) Frequencies

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1) (cm−1)

trypsin-1 0.0 292.4 0.0 -

trypsin-2 14.2 289.9 11.7 -193.2

trypsin-3 13.7 290.0 11.3 -

trypsin-4 20.8 289.7 18.0 -1094.5

trypsin-5 12.8 292.7 13.1 -
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S3 Supplementary Figures

B

Asn175

His159

Cys25

Gln19

substrate

C

Asp201

Gln64

Cys70

His183

Arg173

HOH

substrate

A

Asp99

His55

Ser192

Asp191

Gly190

substrate

Gln189

Figure S1: Representation of the QM regions of (A) trypsin, (B) papain, and (C) NsPCS. The
QM treated atoms are shown as colored sticks. MM treated atoms are characterized with a
gradient from gray to magenta, which indicates zero constraints to full constraints, respectively
(see main text for details).
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Figure S2: Calculated QM/MM energy diagrams of modeled NsPCS mutant structures.
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B

Figure S3: Representation of the cysteine peptidase papain without (A) and with (B) the electro-
static potential. The electrostatic potential is represented as a slice through the protein along the
plane, which contains the catalytic triad residues. The active site region is encirled. The orien-
tation of the protein in (A) is the same as in (B). The electrostatic potential map was calculated
with APBS based on the protein structure, which was prepared with CHARMM.
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C70S-NsPCS
NsPCS-mut1
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S70
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NsPCS-mut1 and trypsin
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Figure S4: (A) Superposition of the QM/MM optimized structures of NsPCS-mut1 (orange)
and trypsin (yellow), which show the geometrical similarities of the catalytic triad in trypsin
with the adapted catalytic triad in NsPCS-mut1. (B) QM/MM optimized structure of NsPCS-
mut1, showing relevant distances (black numbers) and Mayer bond orders (orange numbers).
(C) Structural comparison of NsPCS-mut1 with C70S-NsPCS (cyan), showing the positional
interchange mutations S185D and D201S.
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Figure S5: (A) QM/MM optimized active site structure of the NsPCS-mut2 mutant (pink),
with relevant distances (black numbers) and Mayer bond orders (orange numbers). (B) Struc-
tural comparison of NsPCS-mut2 with the serine mutant C70S-NsPCS (cyan). The mutation of
Ile184 to proline eliminates the interaction of the amide hydrogen of the peptide bond of Ile184
and the nucleophile. In addition the Cδ of the sidechain of prolin pushes the serine closer to the
substrate.
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Figure S6: (A) Superposition of the QM/MM optimized structure of NsPCS-mut3 (violet blue)
and crystal structure of subtilisin (white) (PDB-ID 1SBC). Subtilisin naturally contains a proline
inside its active site α-helix. At the same geometrical position a prolin is introduced in NsPCS
to decrease the active site distances. (B) QM/MM optimized structure of NsPCS-mut3, with
relevant distances (black numbers) and Mayer bond orders (orange numbers). (C) Geometrical
comparison with the serine mutant C70S-NsPCS (cyan), showing the spacial effect of the S74P
mutation.
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S4 Supplementary Movies
Supplementary movies are provided showing the catalytic mechanisms of trypsin, papain and

NsPCS.
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