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Abstract: Supply risk assessments are an integral part of raw material criticality assessments fre-
quently used at the country or company level to identify raw materials of concern. However, the
indicators used in supply risk assessments to estimate the likelihood of supply disruptions vary
substantially. Here, we summarize and evaluate the use of supply risk indicators and their normal-
ization to supply risk scores in 88 methods published until 2020. In total, we find 618 individual
applications of supply risk criteria with 98 unique criteria belonging to one of ten indicator categories.
The most often used categories of supply risk indicators are concentration, scarcity, and political
instability. The most frequently used criteria are the country concentration of production, depletion
time of reserves, and geopolitical risk. Indicator measurements and normalizations vary substantially
between different methods for the same criterion. Our results can be used for future raw material
criticality assessments to screen for suitable supply risk indicators and generally accepted indicator
normalizations. We also find a further need for stronger empirical evidence of widely used indicators.

Keywords: criticality assessments; supply risk; raw material; concentration; scarcity; political insta-
bility; mineral resources

1. Introduction

Raw material criticality assessments are carried out to identify materials of concern [1].
Their goals range from risk mitigation to hotspot analysis. The actors can be governments
and companies alike. The scope of risk consideration ranges from physical accessibility to
reputation damage. Even the material scope can differ from chemical elements to whole
supply chains [2]. It is good practice to follow four phases for the design and communi-
cation of a criticality assessment, consisting of (i) goal and scope definition, (ii) indicator
selection and evaluation, (iii) aggregation, (iv) interpretation and communication [2]. Most
criticality assessments consider indicators in the two dimensions “supply risk” [3] and
“vulnerability” [4]. Several different indicator categories are used for both, as identified by
Schrijvers et al. [1]. However, there is little evidence for the general significance of individ-
ual risk aspects for raw material criticality [5]. Commodity prices are linked to changes in
supply risk aspects, but the scale and significance level of this empirical evidence depends
strongly on the specific raw material [6].

The present article is an update to an earlier review by Achzet and Helbig [3]. When
that review was published, only 15 criticality assessments were available for a systematic
review. In the past eight years, raw material criticality assessments have increased sub-
stantially in quantity, impact, and scope [7]. The International Round Table on Materials
Criticality (IRTC) held a series of expert workshops and conducted a broad review of
various criticality assessments, focusing on risk types, geographical scope, time horizons,
and objectives of the methods [1]. However, their study did not cover the details of each cri-
terion and the normalization and interpretation of each of the supply risk and vulnerability
indicators [1].
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Nevertheless, looking at such information is essential to guide future method devel-
opers and users in applying assessments. Such detailed information helps in the second
criticality assessment phase, indicator selection, and evaluation [2]. Therefore, the present
review focuses on indicator usage instead of the general goals of the methods or aggrega-
tion procedures. We provide an overview on supply risk indicator usage in all relevant
criticality assessment schemes.

For this purpose, we distinguish indicator categories, criteria, measurements, and
normalizations. Indicator categories are general supply risk aspects considered in assess-
ments and may have multiple evaluation criteria. We identify frequently used indicator
categories and, for each category, the most relevant supply risk criteria. The criteria need
to be measured and consequentially normalized. We want to provide an overview on
possible measurements and normalizations. Due to a lack of empirical evidence, we cannot
provide a recommendation for best practice on each criterion. Normalization can happen
with a continuous formula, stepwise normalization, or point-wise evaluation. For exam-
ple, Graedel et al. [8] consider the country concentration of production in the criterion
for concentration, measured with the Herfindahl–Hirschman Index (HHI), and apply a
logarithmic normalization formula to evaluate this criterion on a shared supply risk score.
Using such a procedure transparently and in a reproducible manner helps improve crit-
icality assessments and follows good practice [2]. Our review fosters this transparency
and reproducibility.

2. Method

Our review includes 88 supply risk assessment methods published from 1977 to 2020.
The methods are published in peer-reviewed literature, research reports, working papers,
books, book sections, or corporate or institutional websites. The previous reviews by
Achzet and Helbig [3] and Schrijvers et al. [1] contributed to this collection. The list of
studies was extended with citation chaining, considering only publications in English or
German. The complete list of studies is included in Appendix A.

Most of the 88 methods are full criticality or supply risk assessments that follow
the four good practice steps in criticality assessment [2]. Others are either a collection of
indicators, which do not aggregate the results, or methods consisting of only a single supply
risk indicator. The Supplementary Material spreadsheets additionally list publications that
we did not include in our review because they were reviews, obsolete publications (which
have been updated by the same authors or institutions by now), or applications of supply
risk assessment methods without any methodological change. All of these exclusions avoid
double-counting.

All methods included in the review were reviewed concerning their supply risk indi-
cators. If the method additionally had a vulnerability or economic importance dimension,
those indicators were not considered. For each of the 618 indicators used in the various
supply risk assessments, we identify the overarching indicator category, the measurement
(with minimum and maximum values) and the normalization type (normalization formula,
stepwise supply risk levels, point-wise evaluation, or no normalization). The list of all
indicators, including the normalization formula, supply risk levels, or evaluation points,
can be found in Supplementary Material spreadsheets. Table 1 shows a glossary for the
relevant terms contained in this data sheet.

The review process also included an attempt for the harmonization of terminology in
supply risk assessments. For reasons of transparency, the spreadsheet in the Supplementary
Material therefore also contains the original criterion name. However, in our review,
harmonized criterion names are used. For example, one method may call its indicator
“producer diversity”, while another calls its indicator “company concentration”, and both
may be measured with the HHI. Therefore, company concentration is used in this case as
the harmonized criterion name for both cases.

Category names are also harmonized always to indicate risk or problem, as shown
in Figure 1. For example, many supply risk assessments consider some form of recycling
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in their method, but recycling itself is not a problem for supply risk—the contrary is the
case. The lack of secondary production increases the dependence on primary production to
maintain global material flows and supply chains. Therefore, all categories have received a
name indicating that “more” in this indicator equals higher supply risk and criticality, even
for those studies that initially assessed supply security or supply chain resilience rather
than supply risks.
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Figure 1. Overview of supply risk categories identified in the review. Sector width is not proportional
to indicator frequency.

Table 1. Glossary of Supplementary Material spreadsheet.

Column Name Explanation

Method Scientific publication (peer-reviewed, technical report, book, book section, or website) with a novel
approach to assess supply risk

Original criterion name Name of indicator as it appeared in the publication
Criterion harmonized The overarching term for indicators expressing the same risk
Category harmonized The overarching term for indictors used to express similar risks

Year Year of publication

Type
Assessment: Indicators aggregated to an overall supply risk
Collection of indicators: Indicators assessing supply risk without aggregation
Single indicator: Only one indicator presented

Measurement Determination approach of an indicator
Unit Unit of measurement

Norm. type

Level: Subdivision of indicator values into supply risk levels
Points: Assignment of discrete indicator values or qualitative descriptions of indicator values to
supply risk point
Normalization: Formula to transform indicator values into a supply risk score

3. Results

The review of all 88 supply risk assessments results in a list of 618 individual indicators.
These indicators can be grouped into ten indicator categories with a varying number of
criterions each. Risks and criterion labeling follow a single Latin letter and a two-digit
numerical code, e.g., A01 for country concentration production.

The categories are (A) concentration, (B) scarcity, (C) political instability, (D) regula-
tions, (E) by-product dependence, (F) dependence on primary production, (G) demand
growth, (H) lack of substitution options, (I) price volatility, and (J) import dependence. A
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total of 53 additional indicators did not fit these ten categories and therefore have been allo-
cated to the group of other indicators (X). The review results in each of these categories are
described in the following subsections one by one. Table 2 shows the indicator categories
and their frequency.

Table 2. List of supply risk categories identified in the review. Categories define the leading letter
(A-J, X) by order of frequency of their indicators.

Criterion Codes Category Name Frequency

A01–A18 Concentration 137
B01–B25 Scarcity 93
C01–C09 Political instability 75
D01–D15 Regulations 68
E01–E02 By-product dependence 44
F01–F08 Dependence on primary production 43
G01–G11 Demand growth 32
H01–H03 Lack of substitution options 26

I01 Price volatility 17
J01–J04 Import dependence 16

X01–X53 Other indicators 67

Figure 2 summarizes the use of all criteria used at least three times. It shows almost all
criteria are still used nowadays, with the prominent exception of criterion B07, depletion
time reserve base, which is not used anymore because most data providers discontinue
reserve base data.

For each of the indicator categories, we show a graphical representation of relevant
normalizations. To allow a better comparison, the original formulas are rescaled to a
common “normalized supply risk score” between 0 and 100 for all categories.

3.1. Concentration (A)

The market concentration (A) is the most frequently used indicator category making
up 137 of the 618 indicators (22%). The associated indicators can be grouped into a total
of 18 harmonized criteria, of which the five most frequently used criteria are country
concentration production (A01), company concentration (A02), country concentration
reserves (A03), and country concentration import (A04). In total, these four criteria are
used in 118 of 137 indicators (86%) of the concentration category.

The first appearance of concentration as a supply risk indicator dates back to 1977
when Grebe et al. [9] considered the number of countries accounting for 40%, 60%, or
80% of the global production or global reserves as a measurement of A01 and A03. These
measurements were converted for both indicators into a scale from 1 to 5, indicating the
extent of supply risk, whereby the exact transformation routine is not given [9]. The so-
called Herfindahl–Hirschman Index (HHI) [10,11] is a much more frequent concentration
measurement for criteria A01 to A04. Some publications proposed a combined indicator
composed of the HHI and an indicator from another category as a weighting factor, for
example, the political instability category. Another frequently used measurement is the
accumulated share gathered from top countries of production or reserves, as presented by
Grebe et al. [9]. Normalization approaches using the HHI measurement for A01 to A04 are
presented in Figure 3. Information about the remaining harmonized criteria can be found
in the Supplementary Material spreadsheets.

In the case of country concentration production (A01), the logarithmic transformation
of the HHI (ranging from 0 to 10,000) into a normalized supply risk scale (ranging from 0
to 100) was applied by Graedel et al. [8] and other methods (cf. Equation (1)).

HHInormalized = 17.5 · ln(HHI)− 61.18 (1)
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The values 17.5 and 61.18 in Equation (1) have been set by Graedel et al. [8] to fit the
normalization so that an HHI value of 1800 results in a normalized score of 70 and an HHI
value of 10,000 marks a normalized score of 100. Helbig et al. [12] adopted this approach
with other fitting parameters, resulting in a slightly different normalization applied by
three other publications.

Nassar et al. [13] and four other methods do not explicitly mention a normalization
procedure for the HHI. We conclude that a simple linear transformation of the HHI into
a score from 0 to 100 represents their interpretation of the country concentration best.
Zhou et al. [14] also determine normalized scores by scaling the HHI values linearly, but
they use the extreme values observed in their data set as thresholds.
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Schneider et al. [15] define a threshold of 1500 for the HHI. Below this threshold, the
normalized supply risk score is 0. Above 1500, the HHI is normalized by the squared
ratio of the HHI value, which is also called a distance-to-target method [16]. Three other
methods applied this parabolic approach. A similar approach is proposed by Pell et al. [17],
but we could not fully reconstruct the normalization approach. We interpret that the HHI
values were first scaled from 0 to 1 by the minimum and maximum values of the observed
raw material and consequently normalized by the distance-to-target method. Based on the
results, the normalization formula of Equation (2) was applied.

HHInormalized =

(
HHI − HHImin

HHImax − HHImin

)2
·100 (2)

The remaining normalization schemes for A01 uses various stepwise functions with
two [18] to seven levels [19]. Except for Habib et al. [20], the stepwise procedure only has
single appearances.

For A02, we identified less variety in terms of measurements and normalization
schemes. The most frequently used is the method of Schneider et al. [15] which was already
explained for A01. The threshold of 1500 is once again used, which results in an identi-
cal normalization curve. Three other publications applied this approach. Pell et al. [17]
applied the same normalization scheme with extreme values of HHI observed for A02
and the distance-to-target approach. Helbig et al. [12] adopted their normalization for-
mula from A01 for A02 with different key points, leading to a slightly different formula
(cf. Equation (3)).

HHInormalized = 15.81· ln(HHI)− 45.62 (3)

The same formula is also applied in two other publications. Kolotzek et al. [21] stuck
to the key points used by Helbig et al. [12] for A01 and applied a logarithmic transformation
for A02. The work from Rosenau-Tornow et al. [22] is the only study involving a level-based
normalization on the HHI for A02.

A03 is also dominated by normalizations based on normalization formulas. Habib
and Wentzel [23] and Nassar et al. [13] applied no transformation. Therefore, we assigned
an HHI of 0 to the normalized supply risk score of 0 and an HHI of 10,000 to a score of
100. Helbig et al. [24] applied the same logarithmic transformation as Helbig et al. [12] for
A01. Schneider et al. [15] also used the distance-to-target method with an HHI threshold
of 1500 as for A01 and A02. Each of the three approaches is applied in one other pub-
lication. Pell et al. [17] proceeded as in A01, A02 scaling the HHI values according to
the observed minimum and maximum values for A03 followed by the distance-to-target
method. Eggert et al. [19] also use the same levels as in A01 to assign HHI values to supply
risk levels.

For A04, only two different normalization approaches for the HHI are identified.
Zhou et al. [14] applied the same curve to A04 as for A01. Li et al. [25] decreased the
number of levels from four for A01 to three for A04, using thresholds of HHI 1500 and
2500. The limits of the levels applied in this approach are identical to those from Rosenau-
Tornow et al. [22] for A01 and A02.

3.2. Scarcity (B)

The second-most frequently occurring indicator category is scarcity (B), for which we
identified 25 different harmonized criteria. The four most common criteria are the depletion
time of reserves (B01) and resources (B02), the sufficiency of reserves (B03), and the crustal
content (B04). Figure 4 visualizes the normalization approaches for B01, B02, and B04.
Information about the remaining harmonized criteria can be found in the Supplementary
Material spreadsheets.
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crustal content in parts per million (ppm). The criterion B03, the sufficiency of reserves, is not shown
due to a lack of evident normalization and measurement in the respective assessments.

Both depletion time of reserves (B01) and depletion time of resources (B02) first
appeared in the work of Grebe et al. [9]. The ratio between the available deposits and the
current (primary) production rate determines the depletion time. Some authors also use
terms such as the static reach for these criteria. No matter the name, the ratio is typically
expressed in years. For B01, the considered deposits are available reserves, meaning the
deposits are identified, and extraction is techno-economically viable. Graedel et al. [8]
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presented the most frequently used normalization scheme adopted by 11 other methods
(cf. Equation (4)).

DTnormalized = 100 − 0.2·DT − 0.008·DT2 (4)

A parabolic function is used to assign high depletion time (DT) to low supply risk
scores. Three key points are used to determine the shape of the parabola in Equation (4): A
DT of 0 years leads to a normalized supply risk score of 100, whereas a value of 50 years
is assigned to a score of 70 and a DT of 100 years results in a score of 0. Depletion times
above 100 years are interpreted with no supply risk by Graedel et al. [8].

Pell et al. [17] applied their approach already presented for concentration criteria A01
to A03 by rescaling the inverted DT to a score from 0 to 1 with the observed minimum and
maximum values and applying the distance-to-target method. The remaining publications
presented for B01 in Figure 4 developed individual level-based normalization approaches.
The number of levels varies from just two proposed by Behrendt et al. [26] to five in the
work of Grebe et al. [9].

The depletion time of resources (B02) shows more consensus in the normalization
approach. Resources, in contrast to reserves, also include inferred and sub-economic
deposits; therefore, the depletion time of resources is larger than the depletion time of
reserves. In most cases, the normalization of B02 is similar to that of B01. Helbig et al. [12]
proposed a parabolic transformation comparable to the approach of Graedel et al. [8]
for B01. For the DT of the resources, they suggest different key points by doubling the
periods: A DT value of 200 years is considered as causing no supply risk at all, resulting
in a supply risk score of 0, and a value of 100 years results in a score of 70. Four other
publications followed this approach. The only different normalization approach found
was the level-based normalization by Grebe et al. [9], consisting of five levels. Here, a DT
exceeding 1000 years yields a supply risk score of 0. However, this method has never been
applied by another study in our review.

For the crustal content (B04), the “abundance in earth’s crust” was identified as the
mainly used indicator. Two different approaches were found for normalization. Ashby [27]
considers a high supply risk for materials with rare abundance in the earth’s crust, but it
does not propose a specific transformation into a normalized supply risk score. Never-
theless, we want to display Ashby’s intention of assigning a high supply risk score to a
low abundance [27]. Therefore, we conducted a simple linear transformation considering
a value of 106 ppm as no supply risk and a value of 0 ppm as a normalized score of 100.
An alternative method of normalization was applied by Duclos et al. [28] and one other
method subdividing abundance values into five levels of supply risk.

3.3. Political Instability (C)

The third most used supply risk category is political instability (C), which is dominated
by two harmonized criteria, namely geopolitical risk (C01) and political instability (C02).
These two criteria make up 67 out of 75 cases (89%) for this category. Each of the eight
remaining criteria identified is applied only once.

C01 appeared for the first time in the work of Eggert et al. [19] in 2000. To evaluate
the geopolitical risk, they used the political country risk evaluation of Hermes/BMWi
classification on a scale from 1 to 7. They use this classification three times for indicators
in this category, each with a different weighting: the production shares, the export shares,
and the reserve shares of the countries, respectively.

In contrast, C02 appeared first in the method of Morley and Eatherley [29] in 2008.
They classified the percentile rank of the Worldwide Governance Indicator “Political
Stability and Absence of Violence/Terrorism” (WGIPR

PV) [30] of the largest producer into
a supply risk score using a three-level normalization function. In addition, the World
Bank developed five other Worldwide Governance Indicators, which are updated yearly:
Government Effectiveness (WGIGE), Voice and Accountability, Control of Corruption,
Regulatory Quality, and Rule of Law. They are available as WGI score and WGI percentile
rank [30].
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The classification displays the normalization schemes used for the criteria of po-
litical instability according to their measurement: WGI score and WGI percentile rank
(cf. Figure 5). In most cases, the WGI scores or ranks are weighted by production share.
Other weighing factors are import shares [31] or the consideration of the largest produc-
ers [32]. The composition of a WGI dimension in combination with the HHI is described in
Section 3.1. Other schemes are expressed in the Supplementary Material.
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The WGI indicators in the default unit usually range from −2.5 to 2.5 [30], where a low
value indicates bad governance. Consequently, the most frequently used normalization
approach for both C01 and C02 is the linear transformation of WGI scores based on a
hypothetical lower bound of −2.5 and upper bound of 2.5, as presented in Equation (5).
After the conversion, values of −2.5 in WGI units and lower yield the highest supply risk
score. Twelve other methods have adopted this transformation.

WGInormalized = 20·(2.5 − WGI) (5)

Diverging from this are Nassar et al. [33], who instead assume a range from −3.5 to
3.5 (cf. Figure 5). Three methods use the observed minimum and maximum WGI scores
for normalizing them to supply risk scores: Blagoeva et al. [34] and Zhou et al. [14] based
on the arithmetic mean of all six WGI dimensions, and Nassar et al. [13] based on the
geometric mean of all six WGI dimensions. DERA [35] and Jasinski et al. [36] presented
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a level-based normalization with three and four levels, respectively. In addition to the
approach of Erdmann et al. [32], none of the above-presented methods has been taken up
so far. Sun et al. [37] used the function presented in Equation (6) to normalize the weighted
arithmetic mean of the WGI-dimensions.

WGInormalized = −1.9841·WGIarith.mean+5.7001 (6)

For the normalization of the percentile rank of the WGI dimensions, four different
methods were identified. Graedel et al. [8] simply inverted the percentile rank (on a scale
from 0 to 100) by assigning the highest political stability with the lowest supply risk (cf.
Equation (7)). This approach was adopted by five other methods, whereas other methods
did not take up the remaining approaches for the normalization of WGI percentile ranks.

WGInormalized = 100 − WGIPR (7)

Eheliyagoda et al. [38] developed a proceeding for both C01 and C02 using Equation (8) to
invert and rescale the weighted WGIPR

PV respectively WGIPR
GE (Governance and Effectiveness).

WGInormalized =
√
(100 − WGIPV/GE)·100 (8)

3.4. Regulations (D)

The fourth most often mentioned category is regulations (D), which is used in 68
out of 618 indicators (11%). We identify policy perception (D01), human development
(D02), trade barriers (D03), and environmental performance (D04) as the most prominent
harmonized criteria. In contrast to most other categories, the risk from regulations has
emerged more recently in the work of Thomason et al. [39] in 2010. They determined the
percentage of produced goods expressed in U.S. market shares that a country intends to
supply to the U.S. as a measurement of D03. In 2012, Graedel et al. [8] developed a measure
to determine D01 and D02 for the first time.

It is worth mentioning that three dominant measurements of regulations have been
developed within the criteria: The Policy Perception Index (PPI) in D01 is provided by the
Fraser Institute and captures the influence of policies on mining activities in a country [40].
The Human Development Indicator (HDI) in D02 has been developed by the UNDP and
evaluates the living conditions of a country [41]. The Environmental Performance Index
(EPI) in D04 is provided by Yale University and rates the ability of a country to cope
with environmental challenges [42]. All three measurements are updated annually. The
associated normalization schemes are displayed in Figure 6.

Graedel et al. [8] weighted the PPI of mining regions by the respective production
share. They normalized this measurement by a simple inversion subtracting the PPI from
100 according to Equation (9). The PPI ranges from 0, indicating low policy attractiveness,
to 100, displaying high policy attractiveness for mining activities. Ten other methods
adopted this approach in the same way.

PPInormalized = 100 − PPI (9)

Bach et al. [43] applied the distance-to-target method as described in Section 3.1 on the
inverted and weighted PPI values using a threshold of 55. Eheliyagoda et al. [38] applied
the same approach for the WGI percentile ranks of D01 and D02 (cf. Equation (8)) on the
weighted PPI values. Both Zhou et al. [14] and Pell et al. [17] adopted their previously
presented approaches. Zhou et al. [14] applied the normalization based on the minimum
and maximum observed values of the PPI, whereas Pell et al. [17] first applied a rescaling
from 0 to 1 according to the minimum and maximum observed values followed by the
distance-to-target approach.



Resources 2021, 10, 79 12 of 26
Resources 2021, 10, x FOR PEER REVIEW 14 of 28 
 

 

 
Figure 6. Selected normalization schemes of regulations criteria: (D01) policy perception, (D02) hu-
man development, and (D04) environmental performance. Policy perception is measured with the 
Policy Perception Index (PPI), human development with the Human Development Indicator (HDI), 
and environmental performance with the Environmental Performance Index (EPI). 

3.5. By-Product Dependence (E) 
The fifth most often occurred category is by-product dependence (E), which is used 

in 44 out of 618 indicators (7%). We have found one dominant criterion giving the same 
name as the category by-product dependence (E01), which first appeared in the work of 
Grebe et al. [9]. A qualitative approach was used to assign the observed raw materials to 
a supply risk score ranging from 1 to 5. More information about the classification can be 

Figure 6. Selected normalization schemes of regulations criteria: (D01) policy perception, (D02)
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For D02, the HDI weighted by production shares of mining countries was the most
often used measurement. The HDI evaluates the three dimensions of life expectancy,
educational standard, and standard of living on a scale from 0 to 1 [44]. Ciacci et al. [45]
rescaled the weighted HDI values as presented in Equation (10) by a scaling factor of 100,
which was followed by eight other methods.

HDInormalized = 100·HDI (10)
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Eheliyagoda et al. [38], Zhou et al. [14], as well as Pell et al. [17] applied their ap-
proaches on the HDI as conducted for previous criteria: Eheliyagoda et al. [38] applied the
normalization formula shown in Equation (8) on HDI values, Zhou et al. [14] normalized
according to the observed minimum and maximum values, Pell et al. [17] applied their
combination of a normalization to a scale from 0 to 1 based on minimum and maximum
values and the distance-to-target method. Schneider et al. [15] also stuck to their distance-
to-target method already performed for A01–A03 with a threshold for the weighted HDI
of 0.12. Helbig et al. [46] applied the formula presented in Equation (11) to normalize the
weighted HDI values, resulting in 0 to 100. All of the previously mentioned studies deem
high values of the HDI as high supply risk.

HDInormalized = 100· HDI − 0.352
0.949 − 0.352

(11)

An opposite interpretation of the HDI was proposed by Jasinski et al. [36], resulting
in an alternative normalization. They consider countries with low human development
as critical because of the high probability of improving social conditions by introducing
policies that disrupt mining activities. In other words, high weighted HDI values lead to a
low supply risk in their study. Therefore, a stepwise normalization consisting of four levels
is conducted.

The discrepancy in the interpretation of indicators continues for D04 with the EPI as a
single measurement. Roelich et al. [47] used the production-weighted EPI as a measurement
of D04 for the first time to describe the risk that a country has or introduces environmental
policies that might restrict mining activities. Thus, an EPI value of 100 yields a high
potential for restrictions in mining activities due to environmental policies. Since an EPI of
100 indicates high supply risk, no further normalization needs to be applied.

In contrast, Zhou et al. [14] and Jasinski et al. [36] oppositely interpreted the EPI.
According to their normalization approaches, a higher EPI value leads to lower supply
risk scores. They are less vulnerable to incidents and related supply failures because
of their environmental standards [36]. While Zhou et al. [14] applied the same method
as previously used for A by scaling the weighted EPI according to the minimum and
maximum values observed, Jasinski et al. [36] used a four-level normalization applied for
D02 with slightly different limits.

3.5. By-Product Dependence (E)

The fifth most often occurred category is by-product dependence (E), which is used
in 44 out of 618 indicators (7%). We have found one dominant criterion giving the same
name as the category by-product dependence (E01), which first appeared in the work of
Grebe et al. [9]. A qualitative approach was used to assign the observed raw materials
to a supply risk score ranging from 1 to 5. More information about the classification can
be found in the Supplementary Material spreadsheets. However, the most commonly
used measurement for E01 is companionality developed by Nassar et al. [13] and the
companion metal fraction (CMF), which is the percentage share of a raw material produced
as a by-product. Companionality (CP) evaluates the contribution of raw material to the
profitability of a mine in contrast to other raw materials sourced from the same mine for
all sourcing locations. The CP values are usually rescaled by a factor of 100, as shown
in Equation (12) to result in a supply risk score from 0 for no risk by independent raw
materials to 100 for high supply risk posed by full dependence of raw materials from other
mined materials.

CPi =
∑j

((
100·

(
1 − min

(
Revenueij

Cost of salesj
, 1
)))

·Sales volumeij

)
Sales volumei

(12)

The normalization schemes of CMF are displayed in Figure 7. Same as for companion-
ality, the most common approach is a multiplication by 100 to create a supply risk score
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ranging from 0, indicating a raw material is not produced as a by-product to 100, meaning
a raw material is entirely made as a by-product. This method is used by Graedel et al. [8],
followed by six other methods. Schneider et al. [15] applied the same distance-to-target
approach for the categories above using a threshold of 0.2. BGS [48] and Jasinski et al. [36]
proposed a stepwise three-level respectively four-level normalization. Other methods have
not adopted either approach.
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3.6. Dependence on Primary Production (F)

The sixth supply risk indicator category is the dependence on primary production.
This terminology inverts the typically used original category name of recycling or recycla-
bility. The inversion reflects that it is precisely the lack of recycling that increases the supply
risk. The two most often used criteria in this category are the end-of-life recycling rate (F01)
and the recycled content ratio (F02). The UNEP report on recycling of metals a decade ago
has given a good overview on the terminology on metal cycles, including differentiation
between old scrap and new scrap, and the importance of collection rates, remelting yields,
and growing material demands for the measurements of recycling in global cycles [49].
The report is still often used as the data source for various supply risk assessments.

The argument for why dependence on primary production and thus a lack of sec-
ondary production, i.e., recycling, causes higher supply risk is the following: Secondary
raw materials are a raw material source independent of the primary production route,
in particular mining; it is available without geological exploration, with its availability
depending predominantly on past material use, and it is known locally in the countries
of utilization. Therefore, the availability of secondary raw materials makes shortages of
primary raw materials and high market concentrations less likely.

In general, there are two schools of thought on how recycling should be measured
as a criterion for dependence on primary production: Either method uses the end-of-life
recycling rate (EoLRR) as the measurement or they use the recycling content ratio (RCR).
Figure 8 shows the normalization schemes applied in these two measurements.

The EoLRR measures the share of end-of-life wastes collected and recycled so that
the material can enter a new fabrication or manufacturing stage. Since there will always
be waste flows that are not collected and thermodynamic limits to remelting yields, this
EoLRR will always be smaller than 100%. The predominant normalization formula applied
to the EoLRR is the naïve approach to linearly rescale the values of 0% to 100% to scores of
100 to 0 points.
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In contrast, the RCR measures the share of recycled content in fabricated or manufac-
tured goods. Since these goods can only consist of primary or secondary materials, this
ratio will also be between 0% and 100%. However, because raw material markets have been
growing for most materials over the past decades, the RCR will often be lower than the
EoLRR. Therefore, methods already attribute no supply risk scores for any RCR over 50%.

Both EoLRR and RCR have their flaws as measurements for primary production
dependence. For the EoLRR, there may be high recycling rates at end-of-life; however,
these are irrelevant if the supply risks are emerging from rapidly growing future technology
demand. As the EoLRR considers only recycling from old scrap, which is only formed
after the use phase, there is a natural time lag between demand growth and growth of
end-of-life wastes. For the RCR measurement, the ratio of recycled content may be high in
a fabricated product. Still, if this all came from new scrap recycling, recycling before the
use phase does not alter the primary material demand. One should be cautious that high
prompt scrap formation rates with high recycling rates for prompt scrap might artificially
increase the RCR without providing any risk-reducing alternative raw material source.

3.7. Demand Growth (G)

The seventh supply risk category is that of expected demand growth, in particular
from future technologies. The most common approach is to relate the expected additional
demand in the future and relate it to current production volumes. Angerer et al. [50] have
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first utilized this approach, which is a study that has been excluded from our dataset
because it has been updated by Marscheider-Weidemann et al. [51].

This approach to calculate the future technology demand as a ratio between additional
demand growth and current production typically needs a base year (for current production)
and reference year (for future technology demand). For example, Angerer et al. originally
calculated the raw material demand for various future technologies for 2030 and used
2006 as the base year. Using the ratio rather than, e.g., the quantity or value of future
technology demand also allows comparing different raw materials produced in orders
of varying magnitude. Not the absolute amount of material production is problematic,
but rather the required relative demand growth. Since base years and reference years
differ between supply risk assessments naturally, depending on their publication date and
goal and scope of the evaluations, normalizations can only be compared based on the
annualized additional demand growth, given in percentages (cf. Figure 9).

Resources 2021, 10, x FOR PEER REVIEW 17 of 28 
 

 

ratio will also be between 0% and 100%. However, because raw material markets have 
been growing for most materials over the past decades, the RCR will often be lower than 
the EoLRR. Therefore, methods already attribute no supply risk scores for any RCR over 
50%. 

Both EoLRR and RCR have their flaws as measurements for primary production de-
pendence. For the EoLRR, there may be high recycling rates at end-of-life; however, these 
are irrelevant if the supply risks are emerging from rapidly growing future technology 
demand. As the EoLRR considers only recycling from old scrap, which is only formed 
after the use phase, there is a natural time lag between demand growth and growth of 
end-of-life wastes. For the RCR measurement, the ratio of recycled content may be high 
in a fabricated product. Still, if this all came from new scrap recycling, recycling before the 
use phase does not alter the primary material demand. One should be cautious that high 
prompt scrap formation rates with high recycling rates for prompt scrap might artificially 
increase the RCR without providing any risk-reducing alternative raw material source. 

3.7. Demand Growth (G) 
The seventh supply risk category is that of expected demand growth, in particular 

from future technologies. The most common approach is to relate the expected additional 
demand in the future and relate it to current production volumes. Angerer et al. [50] have 
first utilized this approach, which is a study that has been excluded from our dataset be-
cause it has been updated by Marscheider-Weidemann et al. [51]. 

This approach to calculate the future technology demand as a ratio between addi-
tional demand growth and current production typically needs a base year (for current 
production) and reference year (for future technology demand). For example, Angerer et 
al. originally calculated the raw material demand for various future technologies for 2030 
and used 2006 as the base year. Using the ratio rather than, e.g., the quantity or value of 
future technology demand also allows comparing different raw materials produced in or-
ders of varying magnitude. Not the absolute amount of material production is problem-
atic, but rather the required relative demand growth. Since base years and reference years 
differ between supply risk assessments naturally, depending on their publication date and 
goal and scope of the evaluations, normalizations can only be compared based on the an-
nualized additional demand growth, given in percentages (cf. Figure 9). 

 
Figure 9. Normalization schemes for the future technology demand criterion (G01). Underlying 
measurements are annualized in future technology demand (FTD) growth per year (% p.a.). 

  

Figure 9. Normalization schemes for the future technology demand criterion (G01). Underlying
measurements are annualized in future technology demand (FTD) growth per year (% p.a.).

3.8. Lack of Substitution Options (H)

The eighth indicator category for supply risk is that of lack of substitution options.
A lack of viable substitutes for a material or product creates a dependency in the supply
chains, reducing the system’s resilience. In 22 out of 26 cases (84 %), the substitutability
of raw material is used as a criterion in this category. Substitutability can happen on a
material, component, assembly, or conceptual level as described by Habib and Wenzel [23]
at the example of wind turbines. In particular, for high-tech applications, the substitution
of materials is often limited, as developed by Nassar [52] for platinum-group metals. The
most prominent evaluation of substitutability for a large set of raw materials has been
published by Graedel et al. [53], who set out to identify the main applications of each
element, identify possible substitute materials in each of these applications, and then
evaluate the performance of that substitute. As a result of the heterogeneity of applications,
these are difficult to quantify. Therefore, experts’ judgment on a multi-point scale is used
to conclude the substitutability score. Application shares are afterwards used to calculate a
weighted average of the scores [53]. Graedel et al. were not the first and not the only ones to
use such an approach for evaluating the lack of substitution options. The first to use the lack
of substitution options as an indicator for supply risk was again Grebe et al. [9], however
only with the straightforward classification of raw materials with “no substitution”, “hardly
any substitution”, and “substitution” and no differentiation of application shares. The
European Commission [54] and Erdmann et al. [32] also applied this concept of a weighted
average of expert assessment for the main applications of the raw material. A shift from
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substitutability to substitution has been used for the later updates of the EU Critical Raw
Materials list [55]. While this may seem to be quibbling, the difference is substantial, as
substitution only considers proven and readily available substitutes. Consequentially, the
supply risk scores of many raw materials in the EU criticality study increased due to this
change [56,57].

The normalization scheme for lack of substitution options is trivial: typically, a
linear scale is used, with no further rescaling. Therefore, no figure is shown for this
indicator category.

3.9. Price Volatility (I)

The ninth indicator category for supply risk is price volatility. It was impossible
to identify different criteria for this category, so all 17 cases are assigned to the same
criterion I01. In detail, the measurements vary between the price volatility, the variation
coefficient, and the relative price change within a specific period. All methods use a
stepwise normalization of price volatility measurements to supply risk scores. Most studies
use four-level to five-level normalization functions in which higher price volatility leads
to higher supply risks. The only exception is the method by Eggert et al. [19], who use a
seven-level decreasing normalization function. The authors were among the early supply
risk assessments, and they did not explain why they evaluated low price volatility with
high supply risk. Figure 10 shows the different level choices of the four methods. Other
methods’ schemes are shown in the Supplementary Material spreadsheets.
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According to economic theory, the interpretation of the criterion price volatility is
ambiguous, because a price increase should result from a supply–demand gap, not the
reason. It is also questionable if one can anticipate future supply risks by the analysis of
historical price development. Therefore, it is not surprising that this indicator category has
only been used in very selected supply risk assessments and not been used consecutively
by a series of methods.

3.10. Import Dependency (J)

The tenth indicator category for supply risks is import dependency. This indicator
category is specifically designed for a national perspective. This category is measured with
the net import reliance criterion in eight out of 16 cases (50%) (J01). The net import reliance



Resources 2021, 10, 79 18 of 26

(NIR) is calculated as the ratio between net imports and apparent consumption, as shown
in Equation (13).

NIR =
Net imports

Apparent consumption
=

Imports − Exports
Domestic Production + Imports − Exports

(13)

The rationale behind using this indicator for supply risk assessments is to identify
materials for which the upstream supply chain is out of the hands of domestic policy
and trade. If a country has to rely on foreign exploration, extraction, or processing, it
can consider their continuous operation, or the access to the materials, as less reliable.
Therefore, higher net import reliance is considered with higher supply risks.

Most methods, starting with Goe and Gaustad [58], use the simple linear normalization
approach where no net imports result in no supply risk, and 100% NIR results in a supply
risk score of 100. Only Li et al. [59] define the steps at 40% and 70% NIR as thresholds for
their three-level normalization function. Figure 11 shows the normalization functions for
J01. Other criteria are shown in the Supplementary Material spreadsheets.
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3.11. Other Indicators

Our review found an additional 67 cases of indicator uses that could not be grouped
into indicator categories. Therefore, these “other” indicators are a collection of 53 widely
differing criteria, none of them used more than four times in total. Those that are at
least used twice are the current market balance (X01), stock keeping (X02), purchasing
potential (X03), supply adequacy (X04), natural disasters (X05), economic importance (X06),
the Sector Competition Index (X07), the economy of storage and transport (X08), storage
complexity (X09), investment potential (X10), material cost impact (X11), and material
dependency (X12).

If one wants to find patterns in this loose collection of indicators, three areas of interest
may occur: stocks and storage patterns, price and cost aspects, as well as total demand and
market size. However, due to the high variation in indicator application and measurements
and a lack of repeated implementation in supply risk assessments, we will refrain from dis-
cussing these indicators in detail. All individual indicators are listed with their respective
measurement and normalization scheme in the Supplementary Material spreadsheets.
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4. Discussion and Conclusions

The variety in supply risk indicator usage is impressive. It is understandable because
of the different goals and scopes of studies in our review. For example, omitting physical
scarcity as a risk factor makes sense when the assessment is focused on short-term risks.
Likewise, companies will be much less concerned about import dependence than nations.
Therefore, even after another “five years of criticality assessments”, the harmonization that
Graedel and Reck asked for has not taken place [7]. However, many of Graedel and Reck’s
other “desirable aspects” are covered nowadays by the methods in this review.

The material scope often includes various chemical elements and biotic raw materials
and minerals [60,61]. The risk factors also include geology (scarcity, by-product depen-
dence), regulations, and geopolitics (political instability, import dependence). For example,
even cultural aspects are used, the “conformity of ideological values” by Nassar et al. [62].
The substitutability or the lack thereof, the dependence on primary production, and the
by-product dependence are three of the ten indicator categories. However, these categories
often rely on previous assessments such as Graedel et al. [49,53] or Nassar et al. [13]. In
contrast to the studies reviewed by Achzet and Helbig [3], in 2013, most of the methods in
this review are now published in peer-reviewed journals, not as technical reports. Similar
to the European Commission or the United States, some governmental reports undertake
the split path of publishing the technical report and a peer-reviewed methodological paper
in parallel [62,63].

However, the periodical update that Graedel and Reck [7] also asked for is a rare
feature. Many studies are carried out by researchers at universities or other academic
institutes without permanent funding for such updates. The EU and US criticality lists,
updated every three to four years, are exceptions [60,64].

The transparency of some methods is hampered by the non-disclosure of data [15,65–68].
While we understand the importance of confidentiality, particularly for company reports,
from a scientific perspective, this reduces the transparency and accessibility of corporate
supply risk assessment reports [28,69]. Some other methods used sophisticated inter-
mediate scores, thresholds, and renormalizations up to the point that results turned out
to be irreproducible or the quantitative results simply contradict the textual explana-
tions [17,34,62,70].

Some methods such as Zhou et al. [14], Pell et al. [17], and Bach et al. [71] use normal-
izations based on the specific material scope, for example setting the bounds by looking at
the minimum and maximum observed measurement, leading to a distortion of the supply
risk score since the score is dependent on the raw materials selected for the assessment. In
other words, the supply risk score of the observed raw materials varies depending on the
investigated raw materials. The integration of individual bounds depending on the values
in the normalization function leads to different supply risk scores for the same indicator
value. Therefore, results in between studies are not comparable, and the overall results
are weakened. Adjusting indicator calculation or normalization schemes may be viable
for specific purposes of custom methods. However, in these cases, full transparency and
reproducibility are even more important.

The supply risk assessments in the review still often do not adequately report data
uncertainties and sensitivity to methodological choices. Only very few authors undertake
the effort of doing Monte Carlo simulation or other error propagation methods [8,12,31,72].
Variations of indicator choices and normalizations, which have been discussed by Erdmann
and Graedel [73], are also rare.

Concluding, we want to highlight two efforts by individual researchers and one gen-
eral recommendation which, in our view, would improve future supply risk assessments.
Firstly, the effort from Mayer and Gleich [6] (and in many other publications from this
working group) to link commonly used supply risk indicators with price variations, as the
theoretical result of supply shortages through multiple regression analysis is a practical ap-
proach. One of their results was that impacts of supply risk aspects vary between chemical
elements and, therefore, no universal indicator set will be found. Secondly, Hatayama and
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Tahara [5] established a list of supply disruption events, which, if continued, extended to
global coverage, and further evaluated could be an excellent basis for event studies. Such
event studies could be used to statistically assess the likelihood of supply disruptions at
various levels of supply risk indicators. For example, this would eventually allow identify-
ing a non-linear normalization formula instead of naïve approaches or single threshold
values. However, the normalization formula and thresholds are still better than the semi-
quantitative approach of point-wise or step-wise normalizations used in many assessments.
Supply risk indicators can be measured and should be interpreted quantitatively.

We strongly recommend updating some of the data sources commonly used in supply
risk assessments. While the USGS provides annual updates to production and reserves
data, and while the various political and regulatory indices are also updated annually, the
data sources for by-product dependence, dependence on primary production, and lack of
substitution options by now are up to a decade old. Given increasing efforts to implement
a circular economy, ongoing technological development, and rapid material extraction
growth, the values of these data sources are at risk of becoming outdated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/resources10080079/s1, Table S1: List of studies, Table S2: Indicators summary, Table S3:
Normalization and Thresholds, Tables S4–S7: Data for Figure 2, Tables S8–S10: Data for Figure 3,
Tables S11 and S12: Data for Figure 4, Tables S13–S15: Data for Figure 5, Table S16: Data for Figure 6,
Tables S17 and S18: Data for Figure 7, Table S19: Data for Figure 8, Table S20: Data for Figure 9,
Table S21: Data for Figure 10.
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Appendix A

Table A1. List of studies. Additional information is provided in the Supplementary Material spreadsheet.

Short Name Year Type Ref.

Adibi et al. 2017 2017 assessment [74]

Alonso et al. 2007 2007 collection of indicators [75]

Althaf and Babbit 2020 2020 assessment [70]

Apple 2019 2019 collection of indicators [69]

Ashby 2016 2016 collection of indicators [27]

Bach et al. 2016 2016 assessment [43]

Bach et al. 2017 RESPOL 2017 assessment [71]

Bach et al. 2017 Sustainability 2017 assessment [76]

Bach et al. 2018 2018 assessment [61]

Bastein and Rietveld 2015 2015 assessment [77]

https://www.mdpi.com/article/10.3390/resources10080079/s1
https://www.mdpi.com/article/10.3390/resources10080079/s1
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Table A1. Cont.

Short Name Year Type Ref.
Bauer et al. 2011 2011 assessment [78]

Behrendt et al. 2007 2007 assessment [26]

Beylot and Villeneuve 2015 2015 assessment [79]

BGS 2015 2015 assessment [48]

Blagoeva et al. 2016 2016 assessment [34]

Blengini et al. 2017 RESPOL 2017 assessment [55]

Brown 2018 2018 assessment [80]

Buchert et al. 2009 2009 assessment [81]

Calvo et al. 2018 2018 assessment [82]

Ciacci et al. 2016 2016 assessment [45]

Cimprich et al. 2017 2017 assessment [83]

Cimprich et al. 2018 2018 assessment [84]

Coulomb et al. 2015 2015 assessment [85]

Daw 2017 2017 assessment [86]

DERA 2019 2019 assessment [35]

Duclos et al. 2010 2010 assessment [28]

European Commission 2014 2014 assessment [56]

Eggert et al. 2000 2000 assessment [19]

Eheliyagoda et al. 2020 2020 assessment [38]

Erdmann et al. 2011 2011 assessment [32]

Frenzel et al. 2017 RESPOL 2017 assessment [87]

Frondel et al. 2006 2006 single indicator [18]

Fu et al. 2019 2019 assessment [88]

Gemechu et al. 2016 2016 assessment [31]

Glöser-Chahoud et al. 2016 2016 assessment [89]

Goddin 2019 2019 assessment [90]

Goe and Gaustad 2014 2014 assessment [58]

Graedel et al. 2012 2012 assessment [8]

Graedel et al. 2015 2015 assessment [91]

Grebe et al. 1977 1977 assessment [9]

Habib and Wenzel 2016 2016 assessment [23]

Habib et al. 2016 2016 single indicator [20]

Hatayama and Tahara 2015 2015 assessment [92]

Helbig et al. 2016 2016 assessment [12]

Helbig et al. 2017 2017 assessment [24]

Helbig et al. 2018 2018 assessment [72]

Helbig et al. 2020 2020 assessment [46]

Ioannidou et al. 2019 2019 assessment [93]

Jasinski et al. 2018 2018 assessment [36]

Kim et al. 2019 2019 assessment [94]
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Table A1. Cont.

Short Name Year Type Ref.
Kolotzek et al. 2018 2018 assessment [21]

Kosmol et al. 2018 2018 assessment [95]

Li et al. 2019 2019 assessment [59]

Malinauskiene et al. 2018 2018 assessment [65]

Marscheider-Weidemann et al.
2016 2016 single indicator [51]

Martins and Castro 2019 2019 assessment [96]

Mayer and Gleich 2015 2015 assessment [6]

Miyamoto et al. 2019 2019 assessment [97]

Morley and Eatherley 2008 2008 assessment [29]

Moss et al. 2013 2013 assessment [98]

Nansai et al. 2015 2015 assessment [99]

Nansai et al. 2017 2017 assessment [100]

Nassar et al. 2015 2015 collection of indicators [13]

Nassar et al. 2016 2016 assessment [33]

Nassar et al. 2020 2020 assessment [62]

NRC 2008 2008 assessment [101]

Parthemore 2011 2011 assessment [102]

Pell et al. 2019 2019 assessment [17]

Pfleger et al. 2015 2015 assessment [68]

Roelich et al. 2014 2014 assessment [47]

Rosenau-Tornow et al. 2009 2009 assessment [22]

Schneider et al. 2014 2014 assessment [15]

Shammugam et al. 2019 2019 assessment [103]

Simon et al. 2014 2014 assessment [104]

Spörri et al. 2017 2017 assessment [105]

Sun et al. 2019 2019 assessment [37]

Thomason et al. 2010 2010 assessment [39]

Tuma et al. 2014 2014 assessment [106]

van den Brink 2020 2020 assessment [107]

Viebahn et al. 2015 2015 assessment [108]

Wentker et al. 2019 2019 assessment [109]

Yan et al. 2020 2020 assessment [110]

Yuan et al. 2019 2019 assessment [111]

Zepf et al. 2014 2014 assessment [112]

Zhou et al. 2019 2019 assessment [66]

Zhou et al. 2020 JCLEPRO 2020 assessment [67]

Zhou et al. 2020 RESPOL 2020 assessment [14]
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