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Abstract. The first part of this paper is concerned with various definitions of a k-dimensional
Lipschitz manifold M* and a discussion of the equivalence of these definitions. The second
part is then devoted to the geometrically intrinsic construction of a o-algebra L(MF) of
subsets of M* and a measure y;, on £(MF).
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Measure and Integration on Lipschitz-Manifolds

Joachim Naumann and Christian G. Simader

1 Introduction

In the case of k-dimensional manifolds of class C™ (m > 1) in RY there is a variety of equiv-
alent definitions. If we replace the assumption of continuous differentiability by Lipschitz
resp. bi-Lipschitz properties of certain maps we find several different possibilities to define
k-dimensional Lipschitz manifolds (see Definitions 2.3, 2.6-2.9). The natural question arises
if these definitions are equivalent. Here a certain hint is given by another consideration. If
we consider a k-dimensional manifold M* C RY of class C™ and if an open neighborhood
U of M* is mapped by a diffeomorphism ¢ of class C™ on an open set U* C RY, then
d(MF) Cc U* € RY is clearly again a k-dimensional manifold of class C™ in RY. As spe-
cial (N — 1) - dimensional Lipschitz-manifolds Grisvard [4] considered boundaries of open
subsets in RY. He gave two definitions. His Definition 1.2.1.1 (see [4, p.5]) coincides with
our Definition 2.6 of a (/N — 1)-dimensional Lipschitz manifold in graph representation. The
second definition of Grisvard (see [4, Definition 1.2.1.2, p. 6/7]) coincides with our Defini-
tion 2.3. Then Grisvard ([4, Lemma 1.2.1.3, p. 7]) pointed out that his Definition 1.2.1.2 is
invariant under bi-Lipschitz homeomorphisms of a neighborhood of the manifold. But with
the help of a very interesting counterexample (see [4, Lemma 1.2.1.4, p. 8/9]) he succeeded
in proving that the graph representation needs not to be invariant under bi-Lipschitz home-
omorphisms. We prove in Theorem 2.13 that our Definitions 2.3 and 2.8 are invariant under
bi-Lipschitz homeomorphisms. In Theorem 2.11 we prove the equivalence of the definitions
of a k-dimensional Lipschitz-manifold M} in graph representation, in regular parametric
representation and in implicit representation. Further, in Theorem 2.10 we prove that a k-
dimensional Lipschitz-manifold in graph representation is a k-dimensional Lipschitz-manifold
in the sense of Definition 2.3. Finally, Theorem 2.12 states that a k-dimensional Lipschitz-
manifold in the sense of Definition 2.3 is a k-dimensional Lipschitz-manifold in parametric
representation. We derive the following diagram:



implicit representation
Def. 2.7

k-dim. ,
Lipschitz-manifold < | graph representation

Def. 2 3 Def. 2.6

parametric regular parametric representation
representation ‘ Def. 2.9

Def. 2.8

For the definition of the measure space (M*, L(M¥), ;) we use the parametric representation
(Definition 2.8). As a justification for Definition 2.16 we prove in Theorem 2.15 that it
suffices to consider parametric representations consisting in at most countable many charts.
Contrary to the case of C"-manifolds the Definition 2.6, 2.7 and 2.9 depend on the choice of a
local Euclidean coordinate system (compare Definition 2.5). This fact is reflected by Example
1. Until now we not had been able to prove that the parametric representation implies
Definition 2.3. In the case of "classical continuous differentiability” we replace property 1 of
Definition 2.8 by

v € C*(0) and rank ¢'(z) = k for x € N

where

i(t) -+ Onyu(t)
Y(t) = :
O1r(t) -+ Onn(t)

Let t, := ¥ Yz,) € O. After eventually renumbering coordinates in RN for i(t) :=
(1(t), ..., Ux(t)) we get dety 1&’(250) # 0. Then there exists an open neighborhood V' C O
of t, and an open neighborhood V' of zﬂ(to) such that ly: V. — V’ is a homeomorphism
with ¢! € CH(V"). After choosing eventually a smaller neighborhood W C V of t, we see
that @/A) lw: W — @Z;(w) is bi-Lipschitz, hence we have a regular parametric representation
in the sense of Definition 2.8. Therefore the decisive assumption in the classical procedure
is the continuity of the derivatives. In Example 2 we construct a 1-dimensional Lipschitz
manifold f in R2, that is a bi-Lipschitz curve (see figure 2), which is never a graph or in
regular parametric representation. But until now it is an open question if this map could be
extended at least in a neigborhood of zero to a bi-Lipschitz map defined in a neighborhood
U C R? of (0,0). Clearly, by a famous theorem of Kirszbraun [5], f as well as f~! can be

extended to R? such that the Lipschitz constants are preserved. But the extension needs not



to be bi-Lipschitz. Therefore the equivalence of Definitions 2.3 and 2.8 is an open problem.

In the third section we construct the measure space (./\/lk, L(MF), ,uk). In section 3.1 the
o-algebra of measurable subsets of MP* is constructed and the measurability of a function
f: M* — R is defined. Here one has to prove that both definitions are independent of the
special parametric representation. After several preparations in section 3.2 the measure
can be defined on the o-Algebra £(M*) (Definition 3.6 and Theorem 3.7). Finally, equiv-
alent characterizations of sets of measure zero (Theorem 3.8) are given. Once a measure
space is constructed, the integral is defined at least for non-negative measurable functions.
In section 3.3 we prove some elementary properties of this integral. First, a relation between
this integral and integrals using the parametric representation is studied (Theorem 3.9 and
Corollary 3.10). For the remaining part of section 3.3 it is assumed that M* has a finite
parametric representation. Then estimates for the integral of nonnegative integrable func-
tions are derived (Theorem 3.11 and Corollary 3.12) and a formula for the calculation of the
integral with the help of a partition of unity is derived (Theorem 3.13). Finally, in section
3.4 we introduce the space LP(M* L(MF), ).

Acknowledgements. The authors thank the DFG for supporting this research via the
grant (SI 333/4-1). Moreover, they are greatly indepted to Dr. Matthias Stark for many
valuable discussions and remarks.

2 k-dimensional Lipschitz manifolds

2.1 Definitions. Equivalent characterizations

Definition 2.1 Let G C R" be an open set. A mapping u : G — R™ (m,n € N) is called
bi-Lipschitz in G if there are constants 0 < L < Lo such that

(2.1) Lillz = a'lln < Jlu(z) = w(@)[lm < Leo|lz — 2|l Vo,2" € G
We summarize the following properties of bi-Lipschitz mappings.
Theorem 2.2 Let G C R" be open and let uw: G — R™ (m,n € N) satisfy (2.1).

1. Thereis a subset N C G, |N| =0, such that u is totally differentiable at each x € G\N.
For the total derivative

u'(x) = (Dyug(x)) € M(m X n), reG\N

we have the estimate

(2.2) Lallnlln < W/ (@)nllm < Lollnll. Vo € G\ N,VneR"

Therefore m > n and rank v'(x) =n Vr € G\ N.



2. Let m =n. Then u is open, i.e. for every open V- C G the image u(V') is open too.

For the proof we refer e.g. to [7, Theorems 1.6 and 4.5]. In the sequel, let N,k € N, N > 2
and let 1 <k < N —1.

Definition 2.3 A subset M* C RY is called a k-dimensional Lipschitz-manifold if for every
19 € MP* there exists an open set U C RN and a bi-Lipschitz mapping ¢ : U — ¢(U) C RY
such that z, € U and (M*F NU) = RY* N o(U) where RYF = {x e RN 1 1y = ... =
IN = 0}

Sometimes the following equivalent characterization is more convenient.

Theorem 2.4 Forx = (x1,...,7,) € RN wewritex’ := (z1,...,2;) € R*, 2" := (p41,...,2n) €
RNF oz = (2, 2"). A subset M* C RY is a k-dimensional Lipschitz-manifold if and only
if for every x, € M*, x, = (2!, 2!), there exist open subsets V' C R¥ and V" C RN=* such

o0’)* o

that with V .= V' x V" € RVN=F holds true:
1.z, eV, ahe V" x,=(z),2)) € V.

2. There exists a bi-Lipschitz mapping H : V- — H(V') such that

HMNV)={(2/,2") e H(V): 2" =0}
Proof

1. Let M* be a k-dimensional Lipschitz manifold. Let z, € M* and &4 C RY and
¢ : U — ¢(U) be according Definition 2.3. Since U is open and x, € U there exists
e > 0 such that B.(z) CU. Let V' := B’%(xg) CRF V"= B”% (z) € R¥=*. Then
2 2
V=V xV"C B.(z). Let H:=¢ |y.

2. Clearly the converse statement holds true with &/ :=V and ¢ := H. [ |

Definition 2.5 Let ¢; :== (814,...,0n3), @ = 1,..., N, denote the canonical basis in RN
and let v, € RY. We say that [O,,, f1,..., fn] is a local Euclidean coordinate system with
origin at x, if there exists an orthogonal matriz S such that f; = Se;, i = 1,...,N. For

N
r=> xie; € RN [et

y=Te=8x—x,) =059 (Z(ml - x'Oi)ei) = z:(xZ — o) fi

and conversely

T_ly

N
Sty +x, = St (Z(xz - Ioi)fi) +x, =
i=1
N N
= Z(ml —2)S' fi + 2y = Z(fﬂz —Xpi)€i+To =T — Ty + T =2

=1 i=1



Definition 2.6 A subset M* C RY s called a k-dimensional Lipschitz-manifold in graph
representation if for every x, € MP* there exists a local Euclidean coordinate system
[Ovs,, f1,- -, fn] with origin in x, and

1. there are open subsets V' € R¥ and V' C RN* V.=V’ ' x V" and O,, € V.

2. there exists a Lipschitz mapping h : V' — V" with

MV = {2, h(z)) : 2" € V'}

Definition 2.7 A subset M* C RY s called a k-dimensional Lipschitz-manifold in im-
plicit representation if for every x, € M* there exists a local Euclidean coordinate system
[Os,, f1,- -, fn] with origin O,, in z, such that

1. there are open subsets V' CRF V" CRN* V.=V’ x V" and O,, € V

2. there exists a mapping F : V — RN=* with F(O,,) = 0 and there are two constants
Lr >0, Krp >0 such that

(2.3) [[F(@,2") = F(y',y")Iv-r < Le(llz" = ¢ llx + 12" = 3" || v-+)
Vo = (o', 2"), Vy = (y,y") eV

and

(2.4) |F (2", y") — F(2',2") |-k = Krlly" — 2"||vop V2 € V') W', 2" e V.
3 MNV ={xeV:F(x)=0}

Definition 2.8 A subset M* C RY s called a k-dimensional Lipschitz-manifold in para-
metric representation if for every x, € MF¥ there exists an open set Y C RN and an open
set O C R and a mapping v : O — RN such that

1. ¢ : O — (0O) is bi-Lipschitz
2. x, €U
3. Y(O)=MNU

Definition 2.9 A subset M* C RY is called a k-dimensional Lipschitz-manifold in regular
parametric representation if for every x, € MF there exists a local Euclidean coordinate
system [Oy,, f1, ..., fn] with origin O,, in z, such that

1. there is an open set U C RN with O,, € U and an open set O C R* and a mapping
Y : O — RN such that

(a) ¥ : O — (O) is bi-Lipschitz



(b) P(O) = MFNU
(¢) with

~

Bt) = (WD), () €O
the mapping 1 : © — zﬁ((’)) C RF¥ is bi-Lipschitz.

Theorem 2.10 A k-dimensional Lipschitz-manifold MF in graph representation (Definition
2.6) is a k-dimensional Lipschitz-manifold in the sense of Definition 2.3.

Proof Let 7, € M* and let [O,,, fi,..., fn] be a local Euclidean coordinate system with
origin at z,, fi = Se;, i = 1,..., N with an orthogonal matrix S. Let the points y € RY
be described with respect to the [O,,, fi,..., fn] frame. Let V' C R¥, V" € RY¥=* be open,
O,, €V :=V'xV"and let h: V' — V" be a Lipschitz mapping with

MEAV ={(/,h(y)) Y € V'}.

Let U := {T 'y = S'y+ 2, : y € V} (where T is defined according Definition 2.5). For
r € U we write y := Ta = ((Tz)’, (Tz)") € V' x V". Let now ¢ : Y — R™ be defined by
o(z) = ((Tx), h((Tz)") — (Tx)"). Then for x € U

¢(r) € R, & (Ta)" = h((Tz)) &
((Ta), h((T2)) € {(y/,h(y)) 1y €V} = M OV

We prove that ¢ is bi-Lipschitz. Let L; > 0 such that

1A(y') = My NIv-r < Lully — y"|l&-
Then, for z,z € U

l6(x) — ¢(2) v = (Tz)" = (T2)'[l; + A ((T2)") = h ((T2)") + (T2)" — (Tz)"|[§ ), <
< (T2)' = (T2) | + (Lall(T2)" = (T2)|lx + [(T2)" = (Tz)"||n-1)" <
< (L+2L3)(T2)" — (T2)'[l + 2[(T2)" — (T2)" 1§ &

With C := (1 4+ 2max(1, L%L))% > 0 we see

lo() = o()ly < C*(I(Tz) — (T2)|lz + I(T2)" — (T2)"[[x-s) =
= O Tz — T2}y = C*||Sz — S2|} = C*|lz — z||%
Let now x € U and ¢(z) = z € ¢(U). Then
(Tx) =2 and h((Tz)") — (Tx)" =2"

whence h(z') — 2" = (Tz)". Therefore



Tz = ((Tz), (Tx)") = (2, h(z") — 2")
and

r=S"((¢,h()—2")) +x,=0" (¢, h(Z) - 2.
Then for z,w € ¢p(U)

67t (2, A=) — 2") — &~ H (W', h(w') — w"))|[3 =
= [I(z/,h(2) = 2") = (W', h(w) — ")y =
= || —w'|} + [|h(2)) — h(w') + " — 2"|[3_,,
As above, we see
|67 (2) — ¢ (w)]|y < Cllw — 2|,

whence u for x,z € U

CHlz —zlly < ll6(z) — ¢(2)lly < Cllz — z]lw

Theorem 2.11 Let M* C RY. Then there are equivalent: M* is a k-dimensional Lipschitz-

manifold

1. in graph representation (Definition 2.6)
2. in regular parametric representation (Definition 2.9)

3. in implicit representation (Definition 2.7)

Proof Througout this proof let z, € M* and let [O,,, fi,..., fn] be a local Euclidean

coordinate system with origin in z, such that the respective representations hold true.

1. 71°= 2" : Let O := V' C R¥ and let ¢ : O — R" be defined by

i) =x, i=1,...k
(@) = hi gy (o), i=k+1,...,N

(' € O). Then for 2/,y € O

(") = (@)l = ll2" = y'llk + 1h(2) = RN s < A+ Li)ll2" = yllk

where Lj denotes the Lipschitz constant of h. Clearly

k
I’y =)y = Y Ila(a’) = @)l = ll2" =/ I;
i=1

and with (2) = (¥1(2'),...,¥p(a')) = @’ we see that ¢ is a regular parametric

representation.



2. 72° = 3°7: Assume

(2.5) Lifla’ =y [k < (") = Ol < Lolla’ = ¢/Ix ¥V 2,/ €O,
where 0 < L; < Ly. Let

~
~

(@) = (Y (2), ..., ¥n () for 2’ € O

Since ¢ : @ — RY is Lipschitz, ¢ : @ — RN¥~* is Lipschitz too, and there is K > 0
such that

(2.6) 19") = d()lIn-k < Kl =yl Va'oy' € O.

Since ¢ : O — 1&((’)) C R* is bi-Lipschitz, V' := zﬁ((’)) C R* is open ([7, Theorem
4.7)). Let V" :=RN"* and V := V' x V" C RY. We define F : V — RV=F by

~
~

F(Z/,Z”) =) (77;—1(2,/)) _ Z”, (217211) eV x V"

z=(7,2") e M*NU & F12’ € O such that

w(l‘/) _ (@E(xl),Qﬁ(l'”)) _ (2,72”) = 772)(1,/) = e V,,
2= 1/:1(m") = 1/:1 (1&‘1(21)> ERV* o (22)eVand F(,2") =0

~ ~

For z = (¢/,2"), w = (w',w") € V and 2’ = ¢~ 1(2'), v := ¢~ (w'), by (2.5)

I = 3/llx < Ly 12— w'lle

and by (2.6)

(7)) = & (371 @) e < KL =

Therefore

17z, 2") = Fw', ")l vk <

~
~

b (671) = o (67 @)

< KLl = w'lle + 112" = w”llv—k < Lr (12" = w'll + 12" — 0"l x—)

<

+ HZII _ w/IH]\]fk S

o

where Lp := max (1, KLl_l). Furthermore, for t' € V', 2", w" € V"
IE({,2") = P, w")lly_y, = 2" — w"|| v

10



3. 73° = 1°”: By the Lipschitz variant of the implicit function theorem (compare e.g. [7,
Theorem 4.8, p. 41/42]) there exists an open set W’ C V/ C R and a Lipschitz map
g: W' — R¥=F such that (0,,) € W and

(a) (2/,g(2")) € V Vo' e W'
(b) F(2,g(z')) =0Va € W’
(c) {(z/,2") e W x V" F(a,2") =0} = {(a/, g(2)) : ' € W'}

Therefore with W := W’ x V" we see

MOAW ={zeW: F(z) =0}.
|

Theorem 2.12 Let M* C RY be a k-dimensional Lipschitz-manifold in the sense of Defi-
nition 2.3. Then it is a k-dimensional Lipschitz-manifold in parametric representation too.

Proof Let x, € M* and let U C RY be open, ¢ : U — ¢(U) C RY be bi-Lipschitz such that
1, €U and p(M* NU) = RY=* N ¢U). By [7, Theorem 4.6, ¢(U) is open. Let

O:={2' eRF: (/,0) e RY " nopUh) = (M NU)}.

We prove that O is open. Let (z/,0) € RY=* N ¢(U). Since ¢p(U) C RY is open, there is
e > 0 such that {y € RN : |ly — (/,0)| y <&} C ¢(U). Let

Bl(z') ={y eR": ||y — 2|l <¢e}.

For ' € BL(z') we see ||(y/,0) — (2, 0)||x = ||y’ —2'||x < € and therefore (y.0) € ¢p(U)NRY
that is B.(z') C O. Let ¢ : O — RY (') := ¢ ((«/,0)), 2’ € O. Then ¢(0) = MFNU
and because ¢ is bi-Lipschitz, v is bi-Lipschitz too. [ |

In the case of k-dimensional C'*-manifolds it is easy to see that the parametric map ¢ : O —
M* N U can be locally extended to a diffeomorphism of an open set @ € RY to an open
set U C U such that ¢ ((2/,0)) = ¥ (z') for 2’ € O. In the underlying case we had not been
able to prove that a k-dimensional Lipschitz manifold in parametric representation is a k
dimensional Lipschitz manifold in the sense of Definition 2.3. Conversely until now we could
not find a counterexample too.

Theorem 2.13 Let M* C RY be a k-dimensional Lipschitz manifold in the sense of Defi-
nition 2.8 (resp. in parametric representation). Let W C RN be open and f: W — RY be
bi-Lipschitz. Let M* € W. Then M* := f(M") is a k-dimensional Lipschitz manifold in
the sense of Definition 2.3 (resp. in parametric representation).

Proof

1. Let MNk be a k-dimensional Lipschitz manifold in the sense of Definition 2.3. Let
%, € MF. Then there exists a unique z, € MF¥ such that z, = f(z,). By Definition
2.3, there exists an open set 4 C RY and a bi-Lipschitz mapping ¢ : U — ¢(U) C RY

11



such that z, € U and ¢(M"NU) = RY "N e(U). Let U = f(U). Then U is open (see
Theorem 2.2). Further, ¢ := ¢ o f~1 : U — RY is bi-Lipschitz and by injectivity of f

oMUY = o(fHMENU)) =6 (fHFMP) N FU))) =
=M "NU) =R "noU) =R Fno(ffU)) =
=R no(f1U) =R n o).

2. Let M* C RY be a k-dimensional Lipschitz-manifold in parametric form. Let &, € MF.
Then there is a unique =, € MF¥ such that z, = f (x,). By Definition 2.8 there is an
open set U C RY an open set O C R* and a bi-Lipschitz mapping ¢ : O — (0) C RY
such that z, € U and ¥(O) = M*NU. Let U := fU) and let ¢ : O — RN ) := foup.
Then ¢ : @ — )(O) is bi-Lipschitz and

H(0) = f(¥(0)) = fFIMFNU) = fF(IMF) N FU) = MEnid.

Obviously the definition of a k-dimensional Lipschitz manifold M* in parametric repre-
sentation is the most general one and it is invariant under bi-Lipschitz transforms of a
neighborhood W of M¥. So we use Definition 2.8 for the remaining part of the paper. For
the sake of brevity, in the sequel we call M* C R¥ a k-dimensional Lipschitz-manifold if
Definition 2.8 applies to MF¥. As a preparation we need

Lemma 2.14 Let M* C RY be a k-dimensional Lipschitz-manifold. Then there exists a
sequence (K,)nen C MF such that

1. K, is compact ¥n € N
2. Kn CKpy1 VneN

3. M= ) K
n=1

Proof

1. Let 2, € QY, g € Q and

By(zo) == {z € RN : ||z — 2|y < ¢}.

Then B := {Bq(q:o) q€eQ,x, € QN} forms a countable basis of the topology of R¥.
We choose an arbitrary but fixed numeration of B and write B = {U; : ¢ € N}. Then
BF :={V; := My NU; : i € N} is a countable basis of the topology of M*.

2. We prove now that for each z, € MP* there exists j, € N such that z, € Vi X_/jo is
compact and V;, € M*. Let v, € M*. Then there is an open O C R¥ an open
UC RN x, €U, and a bi-Lipschitz mapping ¢ : O — 1(0) such that (0) = M NU.
There exists a unique y, € O such that x, = 1¥(y,). Since O is open there exists ¢ > 0

12



such that B.(y,) C B.(y,) C O. Since B.(y,) is compact, ¥ (B.(y,)) € M*NU is
compact too. Because of the continuity of ¢~! and ¥(B.(y,)) = (¥ ~1)"Y(B:(y,)) C
MF N U the set 1(B.(y,)) is open in M* N U. Since (V;);en is a basis of the topology
of M* NU there exists j, € N, V;, C B* such that z, € V;, C ¥(B:(y,)). Then
V,, C¥(B.(v,)) € M*NU and Vj, is compact.

3. The set W := {V, € B : V; compact, V; C MF¥} is either finite or at most countable
infinite. Let

Then K, is compact, K,, C MF* and K,, C K,,.1. Therefore U K. C MPF . If conversely

n=1

z, € MF, then by part 2 of proof there exists V;, € W such that z, € V;, C V,, C
U K., whence M* C | K,.. u

n=1 n=1

Theorem 2.15 Let M* C RY be a k-dimensional Lipschitz-manifold. Then there is an at
most countable set A C N such that

1. for eachi € A there exists an open set O; C R*, an open setU; C RN and a bi-Lipschitz
mapping ¥; : Oy — ¥;(0;) such that ¥;(0;) = M* NU;

1EA €A

Proof Let the sequence (K, )nen € MPF be according Lemma 2.14. For each z, € K, there
exists an open O,, C R* an open U,, C RY and a bi-Lipschitz 1, : O,, — ¥(0O,,) such
that ,,(0,,) = M* NU,,. Then for each n € N

(MENU,, :x, € K}

is an open covering of the compact set IC,,. Therefore there exists p, € N and xgn) e K,
7 =1,...,pp, such that

Pn
J

j=1
Then
[e’e] oo Pn
M=K, = UM 0.
n=1 n=1j=1 ’

The set {x(.n) neNj=1,... ,pn} is at most countable infinite. Let the set of corre-

J
sponding pairs of indizes be numbered consecutively which gives A. If 1 € A, z; = xén),

J €L ... pn}, then let Ui :=U ), Vi =t ), O5 := O ). [ |
Theorem 2.15 justifies the following definition. ’

13



Definition 2.16 Let M* C RY be a k-dimensional Lipschitz manifold.

1. A pair (O,%) with an open set O C R* and a bi-Lipschitz mapping v : O — %(O)
such that there exists an open set U C RY with the property (O) = M*NU is called
a (local) parametric representation of M* or chart of M*NU.

2. Let either A ={1,...,s} (s € N) or A =N. A system {(O;,1;) : i € A}, each (O;, ;)
being a chart of M*, is called a parametric representation or atlas of MF.

Remark 2.17 Let MF* be a k-dimensional Lipschitz manifold. Fori = 1,2 let O; C R¥ and
U; C RY be open, let ; : Oy — (O;) be bi-Lipschitz such that

V:(0) = MY, (i=1,2).
Then U = 11 (01) Nhy(Os) is a relatively open subset of M*. Then the sets ;' (U) C R*
are open (i = 1,2). The mapping 15" o 1y is a bi-Lipschitz mapping from 7 (U) onto
Uy '(U) (as a mapping from a subset of RF into R¥).
2.2 Examples
Example 1

For k € Z let

[1(k) =] 2k=2 9-2k—1]
[2(16) ::]27%71, 27219]’
10 =1y

?

Let g;: Ry - R (Ry :={t€R:t>0},i=1,2) be defined by

ift=20
if t e I!

0
0 £
1 ifter
0
1
0

(E.1) g(t) =

if t =0
if t eI
if t € ISP

(E.2) g2(t) = K

Then g; are measurable and bounded. Let for t € R

t

(E.3) fmy:/%@@,isz

0

Then f; is differentiable in [1(k) and Iz(k) (at the right endpoint of I ](k) from the left side,
j=12)

14



Denote by g, the mollification of g;(¢ > 0) and define

t

190 = [ gu(s)as

0

Then £ € C*(R.), £ (t) = gie(1)

(2

() - 1900 < / 106(5) — ge(s)|ds — 0 (¢ —0)

and for all £ € R. Furthermore, for R > 0
/!gz gt —0 (= —0)
Let ¢ € C§°(R,) and choose R > 0 such that supp ¢ C [0, R]. Then
R

R R
[ s = [ s o=t [ 10000 0=t [ g.0p0d -

_ / gi(t)p(t)dt

whence g; is the weak derivative of f;, f;, f/ = g; € L'([0, R]) for all R > 0, i = 1,2. Let
t,t/ € R+. Then

(£ 10~ 1)1 < | [ las)ds| < e~ ]

We write f(t) := (f1(t), fo(t)). Then f: R, — R% For z = (x1,22) € R? we denote by

N

]l = (27 + 23)
the Euclidean norm of z. By (E.4) we see

(E.5) IF@) = FE < V2l =t Vit €Rs.

If t € Ry, t > 0 then there is a unique k, € Z such that ¢t € I**). From the definition (E.3)
we calculate easily f;. Let i =1and t € Il(k"). Observing (E.1) we see

2—2k0—2 2—2k
fit) = / Z / ds = 2 o1
0 k=kot1y 5 1

15



Let ¢ € IS Then

1 1
filt) = s27%R7t 4 / ds =t — 52—2’%

3
2—2k0—1
Similarly we calculate f,. The result is
0 ift=0
(E-6) F(6) = (A1), (1) = § (32721t = Jom21) g g e 1)
(t — 1272k 1o-2k) itt e 15"

Let for t € Ry y = (y1,92) := (f1(t), f2(t)). Then we see from (E.6)

(E7) t=vy1+1y2 = f1<t) + fz(t) vVt € Ry,

whence

t—t'= fi(t) + folt) — A1) — f2(t)

and

[t =t < |fi(t) = FE)] + | fa(t) = folt)
< V2 (filt) = L))+ (fo(t) = F(E)°|" = V2II£(E) = F(E)].

Because of (E.5) we finally see

(E8) %w <@ - O < V-1 VL ER,

We extend now f to R. Let

N () if t >0
(E.9) 1) '_{—f(—t) if t <0

Because of (E.6), (E.7) we immediately see that f |r, and f |(zer,z<0} are bi-Lipschitz.

By (E.9) we see that (E.7) continues to hold for ¢t < 0 and f; replaced by f;, whence the first
inequality in (E.8) holds true for all ¢, € R. Let ¢ > 0 > ¢’. Then by (E.5)

17 (&) = FE = 1LF@) + F=O < M@+ (=] < V2(E+ (1) =
= V2|t — 1]

16



Therefore (E.8) is satisfied with f in place of f and for all ¢,#’ € R.

It follows immediately from (E.65) that f is not a graph of a map h : R — R% This can
also be seen from the continuous line in figure 1. Further for every € > 0 the interval | — e, €|

contains infinitely many intervals Ii(k) of constancy of f; (k> k,(¢) € N) whence f is not in
regular parametrization in a neighborhood of zero. Then, because of Theorem 2.10 it can’t
be in implicit representation too.

But let now a := Coszl—r = \/Li and we set

S = ( “ a)
—a a
Then S is an orthogonal matrix. Let

he) = (hl(t)) _ S(@(t)) B (a (i) +fz(t)))

ha(t) L0 Na (Rt - i)
Because of (E.7) we see hy(t) = at for t € R. Further by (E.6) for ¢t > 0.

a(t—1272%)  ifteV
E.10 ho(t) = 5  ,t>0
(E-10) 2(f) {a (1272641 —4) ift e 1))
If t < 0 because of f;(t) = —fi(—t)

a(t+ 1272) it —ter
E.11 ho(t) = 3 s = —ha(—t
(E.11) 2(f) {a (=t — L2724y if — g e M (=)

Let s := at. Then

t| € I{k) & s € Jl(k:) = Ja2~2-2 2 %-1]
] € I & |s| € Y = Ja27%! a27?]
0 ifs=0
Bls)=he () =qs—s2% ifses”
%Q—Qk—&-l — s ifse JQ(k)

We set

) o(s) for s >0
pls) = {—gb(—s) for s <0

For t,t' € R by (E.8) we see

17



[ha(t) — ha(t)] < [IR(t) — ()| = IS (F(t) = F(E) | < V2t~

Therefore (s = at, s’ = at’)

2
(£.12) o(s) = o) < Lls = o)
and ¢ : R — R is Lipschitz. Further

H:={h(t):t e R} ={(s,0(s)) : s € R}

and H is the graph of the function ¢. See in addition the interrupted line in figure 1. Clearly,
H is in regular parametric representation too. Let ' : R?> — R be defined by

F(xq1,22) := p(x1) — 2.
Then (z1,29) € H if and only if F(x;,22) = 0. Let V' = V” = R. Then (0,0) € V,

F(0,0) = 0. Further
|F(z1, 22) — F(y1, y2)| < lo(r1) — o(yr)] + (22 — 2) <
V2
< max <7> | (Jzy — o] + |72 — 92])
and

|F(9317y2) - F(ﬂfl,zz)| = \92 - 22|

that is, (2.1) and (2.2) of Definition 2.6 are satisfied too, and H is given in implicit repre-
sentation.
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Example 2

We want now to construct a bi-Lipschitz curve f : R — R? passing through z, = 0 € R2
such that there doesn’t exist a local Euclidean coordinate system with origin at x, = 0 such
that f could be represented as a graph.

Let a := 2% Then

(E.13) —217T21nak:2k:7r for ke Z
n
For t > 0 let
—Tr . T
(E.14) F(O) = (A1), fo(t) =t (Cos (QM lnt) ,sin (—2ln2 lnt>>

Because of (E.13), (E.14) we see immediately the following scaling property

(E.15) fla*fy=d"f(t) Vt>0, VkeZ

We prove now that f: R, — f(Ry) (where Ry :={zx e R:x (>) 0} ) is bi-Lipschitz. From
<
the definition (E.14) of f it follows

(E.16) If@) =tfor 0<teR

Let now ¢, > 0. Then

(E.17) it =1 =IO = LN < (1) — £E)]]
Further

1
‘(1) = (—W1t>t'(—ﬂlt)-7r-—
filt) =cos =gy 5t ) +isin(—og ot ) - o -5

whence

™
<14+ ——=
AW <14+ 5 =

The same estimate holds true for f5(¢). If t > ¢ > 0 then for i = 1,2

() — 1t = / fi(s)ds| < Clt 1
and therefore
1F(®) = FEO = (14(6) = AR + 1folt) — LEP) < V2CIE— 1)
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Because of (E.17) we see

(E.18) [t =t < () = FE) < V200 —#] Vit >0
Let now f : R — R2? be defined by

f(t) ift>0
(E.19) ft)y:=<0 ift =0
sf(=t) ift<0

Trivially f | . and f |z are both bi-Lipschitz and

1 " " 9
(E.20) SlE= 21 < 1F@) - Fll < gu —Vfor t,¢ €R_.

It remains to consider the case s > 0 > ¢. Let o := —21”?. Then

17(s) = F(0)]12 = [3 cos(alns) + 5t cos(a ln(—t))] "

+ [s sin(arlns) + %tsin(aln(—t))} T

=5+ tZ + st [cos(aIn s) cos(aln(—t)) + sin(aIn s) sin(a In(—t))] =

, 17 t
=s“+—+stcos|aln| —- =
4 S

3 t
= s> — 25t + 2 + 25t — ZtQ + st cos <aln (——))
s

= (s—t)? + st [2+cos (aln (_§>>] _ ztg

Since 2 + cos (aln (—%)) > 1, s > 0 and ¢ < 0 we see

1F(s) = FOI” < (s —1)?

whence

(E.21) 1f(s) = F@)II < |s — 1

For the estimate from below we observe

(E.22) 1F(s) = F@)I? . st [24 cos (aln (—1))] — 3¢ )

|s — t|? 52 — 2st + 12

% [2 + cos (aln (—

t
=1+ s
1—2L 4 (
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Let z := —é > 0 and let

(1+2)?

fz[2+cos(alnz)]7%z2 if 2> 0
h(z) :=
0 if 2z=0

We prove now that there exists a constant C, > —1 such that

(E.23) h(z) > C, > —1 Vz>0
For z > 0 we see

2 =3(z+32%)

2 (14 2)2 = w(z)

and

3(%2—1)
WforzZO

w'(z) =
<0 for0<z<2
w'(z)d =0 forz=2
>0 for z > 2.

Therefore w has at z = 2 an isolated minimum, w(2) = —1. On the other hand

—2[2+COSE}—3 7
h(2) = R |

(2) P 5

Since h is continuous and h(z) > w(z) > —1 for z # 2, h attains its minimum at a point
2, € [0,3], h(z,) > —1. By strong monotonicity of w in [3, 0o],

h(z) > w(z) > w(3) = —2—i .Y

With C, := min (h(z,), —2) > —1 we see h(z) > C, for 0 < z < co and by (E.22)

1f(s) = FOI”

E.24
(E.24) e

>14+C,>0

With L; := min (%, Vv1+ Co) > 0 and Ly := max (1, \/§C) > 0 we get from (E.18), (E.20)
and (E.23)

(E.25) Li|s —t| < ||f(s) = f(t)|| < La|s —t| for all s, € R.

Clearly every straight line starting from 0 € R? cuts the curve f at infinitely many points,
whence f is not a graph of a function (see figure 2).
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Because of the equivalences proved in Theorem 2.10, this two dimensional manifold can’t
be in regular parametric representation too. But this can be seen directly. Any orthogonal
matrix is either of type (5 € [0, 27()

cos(3 —sinf

A@) = (o o) deras) =1
or of type

cos3 sinf
B(p) = (sinﬂ —cosﬁ) ,det B(f8) = —1.

We consider e.g.

(1) = (i fiemes) = (o)

If we assume that g, is bi-Lipschitz in a neighborhood of zero, then there exists ¢ > 0 and
C > 0 such that

(E.26) Clt =] < 1g2(t) — g2(t)]

for all ¢,¢" with [¢|, |t'| < e. Since (a = _21”?>

ga(t) — go(t') = tsin fcosat + tcos Bsinat — t'sin f cos at’ — t' cos fsinat’ =
=tsin(B+ alnt) — ¢'sin(f + alnt').

We choose k, € N such that 274 < cand j >k, + 1, r = j + k with k¥ € N. Let
;o 2—4j+¥ f— 2—4r—1+¥
Then t,t' <e,
7 20

sin(f + alnt) sm(ﬂ—l—mnz(j 7T)n) sin27j =0

sin(f + alnt’) = sin (ﬁ—i— 217;2 <4r+ 1-— %) ln2) = sing =1
and by (E.25)
927 [9—4i _ 274%1‘ <C gt =0 = 9257 9—dr—1
whence
|27V 1] <1

Since —4j +4r + 1 =4k +1 (k € N) and 2***! — oo (k — o0) we get a contradiction. The
other cases can be handled similarly.
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3 The measure space (M", L(MF), )

Throughout this section, we use the following notations:

L(R*) = o-algebra of Lebesgue-measurable subsets of R,

M = Lebesgue-measure on L(R).

3.1 The o-algebra £(MF)
We begin by proving

Proposition 3.1 Let M* C RN be a k-dimensional Lipschitz manifold. Let

(Onw)iedy,  {(0,4):5€ ]

be two parametric representations of MF. For & C MP¥, the following statements 1. and 2.
are equivalent:

2. 47! (5 N zﬁj(@j)) e L(R¥) Vj € A.

Proof 1. = 2. Observing that M* = |J 4;(O;) we obtain for any j € A
1EA

EN5(05) = (€0 M) n5(05) = [ (£n:(0) n14(0y)) = | (€ nea(00) Ny,

1EA €A

where

i = 1i(0;) N1;(0;).
It follows

vt (En6500) = U (€N w0) ndg) = [ J o7 (€ Nuil0) Ny (Uy)

1EA 1EA
[for Pt s injective} ,
and therefore
(3.1) 4 (e N95(05)) = (6 o wr) [67 (£n45(0)))]

O;
{( O@z)l) ;! (50%(@-))]}m (@/)j 01/%) [0 (Usg)]

[for 1%_1 o; is injective] .
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By 1., ¢; ' (£ N ;(O;)) is a measurable subset of R* which is contained in O;. The mapping
;! o 1p; being bi-Lipschitz from O;(C R*) into R¥, it follows that

(%_1 o @/)z-) (07 (ENi(0;))] € L(RY) Vi€ A.
Finally, by construction, for every i € A, the set
@fl ° wl’) [ (Uy)] = 05 (Uyy)
is open in R*. Now (3.1) implies
07 (£016,(0))) € LrY.

Whence the claim.

The implication 2. = 1. is established by changing the roles of {(O;¢;):i € A} and
{(@j,zﬂj) 1j € A} in the proof above. [ |

Definition 3.2 Let M* C R" be a k-dimensional Lipschitz-manifold. Let {(O;, 1) : i € A}
be any parametric representation of MF.

Define
LMF) = {& C My H(ENY(O0;) € L(RY) VieA}.

By Proposition 3.1, the system £(M?) of subsets of M* is intrinsically defined, i.e. £(M?*) is
independent of the parametric representation of M* under consideration. Thus, (M*, L(MF))
1s a measurable space.

Remark 3.3 An analogous Definition is given in [1].

Theorem 3.4 L(MPF) is a o-algebra of subsets of M*.

Proof Clearly, the empty set is in £(MP¥). Next, given [ € A, for every i € A the set
w;l (wz(Ol) N w’t(O’L)) is open in Rk Thus

(3.2) (O € LIMF)  VI€A.

Let £ € L(MF). Define £¢ := M*\ €: We prove ¢ € L(MPF). Indeed, for any i € A,

Vi(0;) = (ENY(0;)) U (E9 Ny(Or))

and therefore

O = [ (ENY(O)] U [97 (€9 Nwi(0:)] -

Here the two sets in brackets on the right hand side are disjoint (for ¥; ' is injective). Hence
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V7 (ECNY(0;) = O\ [ (ENi(0y))] € L(RF),
ie. £C € L(MP).

Let & € L(M*) (1=1,2,...). Define £ := |J &. Then, for any i € A,

=1

ENi(0:) = (& ni(0)).
=1
It follows

U7 ENY(0:) = U (ENYi(0)) € L(RY),

=1

ie. &€ L(MF). [ |
Representation of M* by a disjoint union of sets of £(M¥)

Let M* C RY be a k-dimensional Lipschitz-manifold, and let {(O;,¢;) : i € A} be a
parametric representation of M*. We pass from the sets 1;(0;) € L(MP*) to a disjoint
system of sets in £(MF*) with union MP*. Define

{Ul = 1(01),
(3.3)

i1
UZ' = 1/)1(01) \ lyl 1#[(0[) (Z = 2, 3, .. )
By (3.2), U; € L(MPF) for all i € A. On the other hand, the following properties of the
system {U; : i € A} are readily seen:
1. Z/{z ﬂZ/{Z/ = ¢ for ’i,i/ S A, 7 §£ 7,/,

2. JU= U wi(O) Viel;
=1 =1
3. M= U;.

(IS

Thus, for every & € L(MF*) we have the disjoint union

(3.4) e=JEnu), (Enu) e LMb).

1€EA

Measurable functions

Let M* C RY be a k-dimensional Lipschitz manifold. A function f : M* — R is called
measurable (with respect to the measure space (M*, L(MF))) if
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VaeR: {£e MF:f(&)>a} e L(MF).
|

Let {(O;,1;) : i € A} be a parametric representation of M¥*. Observing that, for any i € A
and any a € R,

Uit ({€ e MP L f(€) = a} Ni(0))) = {z € Oi: f (Yi(x)) > a},

we obtain:

f: M* = R is measurable <
VieA, YaceR: {z€0;:f({iz))>a} € LR

u
3.2 The measure [y
Preliminaries (I)
Let 1 <k < N. We consider the matrix
any - Qug
A=
any -+ QnNg

Define

a1y

ar —= (T — 17 . ,k),

any
and

N

(ar,as) N ::Zalrals (r,s=1,...,k).

I=1

Then
(ar,a1)n -+ (a4, ap)n
G(ay,...,a;) = det(ATA) = det
(ag,ar)n - {ag,ap)n

is called Gram’s determinant of {ai,...,ar}. The following properties of G(ay,...,ax) are

well-known.
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1. Let {a1,...,ax} and {by,...,b;} be related by the (k x k)-matrix M = (mys)rs=1,.

1.e.

k
ar:Zmrlbl (r=1,...,k).
=1
Then

G(ai,...,ar) = (det M)>G(by, ..., by).
2. Let A be an (IV x k)-matrix as above. For any k-tuple {iy,...,i,} C {1,..., N} with
1§i1<i2<...<ik§N,deﬁne

Qi1 - Qi k

Qi1 w0 Qi

Then

Gla, ... a,) = >, (det Aiy,.i)"

1<i1<i9<...<ip, <N

Let O C R* be open. Let

(0
Y= : 0 — RN
(DN

be Lipschitzian. This is equivalent to the Lipschitz-continuity of each component ¢, : O — R
(Il =1,...,N). By a theorem of Rademacher, ¢, is differentiable a.e. in O. The par-

tial derivatives gq’bl (l=1,...,N;r = 1,...,k) are bounded measurable functions in O;
T
%(x), ce %(x) represent the tangential vectors to M* at x € O.
8[)31 al‘k
Next, define
) O
B, (x) B (z)
W (2) = aw aw
N N
B, (z) e (z)

for a.e. x € O, and

Gy = Gylx) = det (/@) /()

for a.e. x € O. The function Gy, is bounded and measurable in O. n
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Preliminaries (II)

Let O C R”* be open. Let 1 : O — RY be bi-Lipschitz, i.e. there exists L; = const > 0
(¢ =1,2) such that

Liflz =yl < [9(2) = W)lx < Loflz = yllx Yo,y € O.

As above, by a theorem of Rademacher, there exists N' C O with A\;(N') = 0 such that 1) is
differentiable at every x € O \ N. The matrix ¢'(z) satisfies

Lillélle < W' (@)llw < Lallélls VEERF, Vo e O\N
(see [7]).

Next, fix any © € O \ V. There exist

o 0 - 0
Do 0 oy --- 0
0 0 - o

and S € O(R¥) (= set of orthogonal k-matrices) such that
W/(2) b(x) = STDS.
Thus, given 7 € R¥ there exists ¢ € R* with S¢ = 7, and therefore
k
(W (2) ()€, ) = (DSE, S = > o
=1

It follows that

k
Ll <Y om? < L3|In]iz.
=1

Hence
Li<o < L3 l=1,.... k.
Observing that

k
Gy(x) = det (¢/() "¢/ (2)) = (det §)*det D = [ [ o,
=1
we obtain

(3.5) L2 < Gy(x) < L3F, reO\N.

The following result forms the basis for the definition of the measure on £(M?*).
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Theorem 3.5 Let M* C RY be a k-dimensional Lipschitz-manifold. Let {(O;,1;) : i € A}
and {(@j, 1@) 1€ A} be two parametric representations of M*, and let {U; : i € A} resp.

Z;lj RS A} denote the system of disjoint sets associated with the parametric representation
according to (3.3).

Then, for every £ € L(MF),

(3.6) 3 / VGndhi =Y / \/7&,6,

A
R 1 ) JG% (Entty)

i.e. if the left (resp. right) hand side of (3.6) is finite then the other side does and there
holds equality, or if the left (resp. right) hand side of (3.6) is equal to +o00 then the other
does.

Proof We divide the proof into two parts.

For any ¢ € A and any j € A, we have

(3.7) / VGod\, = / @ )y

Y (ENUNU;) o (EnUNUy)
Indeed, define
Ty =t o4y,
Then T; : ¢! (1/11-((’)1-) N ;@(@)) ol (w,»(oi) N z&j(@j)) is bi Lipschitz. Observing that
Pt (5 NU; N LL-) = T}, (&;1(5 NU; N LL-)) :

the change of variables formula reads

(38) / \/ Gwld)\k == / \/ Gwi o} Tl]‘ det Tl/]‘d)\k

Py (ENUNU) b ENUN;)

(see [6], [7] for a detailed discussion of the transformation of Lebensgue measure and integral
under bi-Lipschitz mappings; these works contain also many references to this topic).

On the other hand, the definition of T}; is equivalent to @@j = 1; o T;;. Hence, by the chain
rule,

Uj(x) = &i(Ti;(2))Ti5(x)  for ae. x €V

[or, in coordinate form,
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Oim ) = 3 2bm 1 (o) 2

(3.9) Gy, = (det T))2G, (T ().
Taking the square root on both sides of this equality and inserting this into (3.8) implies (3.7).
Let i € A and j € A be arbitrary. We have

jeA iEA
Therefore

Yo ENU) = (e (Enunthy),

jeA
SilEnUy) = o EnUunUy).
JEA

Here both unions on the right hand side are disjoint (for v; ' and 1@;1 are injective). Ob-
serving the countable additivity of the integral, we obtain

VG d\ = VGod\, =
/ >/

G (ENUs) Iy erunray)

=Y [ Jesan by

JeAz/; (ENUNU;)

<ZZ / FdAk_ZZ / rdAk_

leA l
< JEA LEenuntdy) jeh teA “HeEmunit;)
/G d/\k

An analogous reverse inequality is readily obtained by the same reasoning.

JeAw (E&nty)

The assertion of the theorem is now easily seen by a standard argument. [ |

Definition of the measure py

We now introduce
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Definition 3.6 Let M* C RY be an k-dimensional Lipschitz-manifold. Let {(O;, ;) 1 i €
A} be a parametric representation of M*, and let {U; : i € A} be the associated system of
disjoint subsets of L(MPF) according to (3.3) Define

px(0) :== 0
=) / Gy dN,, €€ L(MF).
€A

(et

By Theorem 3.5, for £ € L(M?*) the number py,(€) is intrinsically defined for the measurable
space (MF L(MF)), ie. up(E) does not depend on the parametric representation of MF
under consideration.

Theorem 3.7 ju, is a measure on the o-algebra L(MF).

Proof By definition, () > 0 for all £ € L(MF*). Now, fix any parametric representation
{(Oi, ;) i € A}, Let {U; : i € A} denote the associated system of disjoint subsets of
L(MPF) according to (3.3).

Let & € L(MP") (I € N) be a family of disjoint sets. Define £ := |J &. Then, for every i € A
=1

E ﬂZ/li = U(Sl ﬂl/{l) diSjOiIlt.

Hence

YN ENU) = U (& Ni;) disjoint,
=1
and therefore

=> / \/@del_ZZ / VG d\y 1 =

A, A =1
A L ey AL )

—ZZ / VG dAy- 1—2% &)

=1 i€A _I(SZOZ/I)

Combining Theorems 3.5 and 3.7 we obtain:

(MFEL(MP), ux) is a measure space (for general notation see e.g. [2], [3]). This measure
space is a well-defined intrinsic object associated with the manifold M*. It follows that for
any iz-integrable function f: M* — R the real number

/ fdpk
v
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is well defined in the sense of the theory of the integral.

We have:

. /fduk = /szduk, £ € LMF);
Mk

&

o if MF = (U 51) UN, with & disjoint and i (N) = 0, then
=1

[ s~ 3 [ fu
P

=1 &

l

Sets of measure zero

Theorem 3.8 Let M* C RY be an k-dimensional Lipschitz-manifold. Let {(O;, ;) =i € A}
be a parametric representation of MF¥, and let {U; : i € A} be the associated system of dis-
joint subsets of L(MPF) according to (3.3).

Then, for a set & C L(MF) the following statements 1., 2., 3. are equivalent:
1M (U ENYi(0))) =0 Vi € A;
2. M (W7H(ENU)) =0 Vi€ A;
3. up(€) =0.
Proof 1. <= 2. The implication 1. = 2. is obvious, since U; C O;, U; € L(M?*) for all

1€ A

To prove 2. = 1., note that for every ¢ € A

ENi(0:) = JENUNY(0;)  [see (3.4)].

leA

Hence

U ENY(0:) = (7 o) o (ENUNEi(O))).

leA

Now o, ' (ENU N (O;)) < w7t (ENU,), and 2. implies:

U (ENU NP (0;)) is Lebesgue-measurable,
e (U7 (ENUNY(0;)) =0
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Therefore

e (0 o) Y (ENUNE(0:)] =0, L€ A
Whence the implication 2. = 1.

2. <= 3. The implication 2. = 3. is an immediate consequence of the definition of 14 (&).

We prove 3. = 2. From

Lallélle < 19/ (2)€llw < LallEle V€ € RY, for ae. z € O;

(Li1, Lio = const > 0; ¢ € A; see Preliminaries (II)) it follows

L < Gy, (v) < LE forae. z € O;
(see (3.6)). Thus

(€)= Lihe (i "(ENU)), i€ A
Now 2. follows. [ ]

With the above notations (see Preliminaries (II)), define
oy =1inf LY, ay :=sup LD,
€A icA

Assume a; > 0, ay < +0o. Then, for every £ € L(MF),

o Z e (W7 HENU)) <€) < Z e (W7 ENU)) .
|

We note that the measure uy is complete, i.e. for & € LIMF), () = 0 and F C £ it
follows F € L(MPF). Indeed, we have

V7 (F N (O0;) U (ENi(0))) Vi e A

The Lebesgue measure )\, on L(R¥) being complete, we obtain v, (F N;(0;)) € L(RF)
for all 7 € A. [ |

3.3 Integration

Theorem 3.9 Let M* C RY be a k-dimensional Lipschitzmanifold. Let {(O;, ;) : i € A}
be a parametric representation of M*, and let {U; : i € A} be the associated system of
disjoint subsets of LIMF) according to (5.3).

Then, for any L(M*)-measurable function f : MF — [0,4+00] and any & € L(MF) the

following statements 1. and 2. are equivalent:
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1. /fd,u;C < 400y
£

2. 4 Cy = const:

Z / foi/Gyd\y < Cy  YmeN.

¢ (Entd;)

In either case,

(3.10) / fim =Y [ Fevi/Gudn.

zGAw (et

Proof Let £ € £L(MPF). We divide the proof into two parts.

Assume there exists 7 € A such that £ C U;.

Assume f : MF — [0,+0cc] a step function, i.e. f = Y axz, where q; € R,
=1
Fi € L(MF). We obtain

m

/fd/tk / Fxedu, =) ayp(EN F).

=1

By the definition of puy,

ue(ENF) = / Gy d\, [ for ENU; = ¢ Vg # 1]

o7 HEN Finis;)
[ VEain= [ v @)y G @)in -
¥y (ENFY) H(E)

_ / VA (i) G (2) A,

for

Xy1enmy (V1) = XA Wi(x) Vo € ¢ (€).
It follows that

Zazﬂk (ENF) = / Zalel Yi(x))\/ Gy, (x)dN = / J ot/ Gy, d\.

Wy e ! ¥, H(E)
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Thus,

(3.11) /fol,u;C < +00 = / Join/GydX < o0,
3

;1 (E)

(3.12) /fduk =4oo<=3Jle{l,...,m}: / X7 © Yin/ Gy, d\ = +00.
£ i H(€)

Assume f : MF — [0, +o0] is £L(MPF)-measurable. Then there exist step functions
fs: MF —[0,400] (s =1,2,...) such that

fs(f) < fs+1<£>7 SILIEO fs(g) = f(g) Vg € Mk
We obtain

[s(@hi(2)\) G (2) < fonr (i) Gy, () for ae. 2z € O,
liny £ () Ge) = [, (0) Tor a2 €0,
By part [1.1], (3.11) and (3.12) hold with f, in place of f, and
| fwany/Gu@ire= [ fdm s=12..)

D)) €

The claim now follows from the monotone convergence theorem.

For any & € L(MF),

£ = JEnu) disjoint, (£NU) € LIM")
1EA

(see (3.4)). Let f: M*F — [0, +0c] be any £(MP*)-measurable function. By part [1], for
every m € N|

| ttw=Y [ taw=Y [ rouGian
U (ent;) ety 1:111’;1(5“”1)
i=1
Thus
/fduk > [ owin/ Gy, dA,
€ =yt
resp.
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[ sy [ reunvGiin

leA
u (entd;) v (Enu)

=1

Whence the claim. [ ]

Corollary 3.10 Notations as in Theorem 3.9.

Let £ € LIMF), and let f : €& — R be py-integrable. Then

/fduk =Y [ rewvGuan.

zeAlp (et

Proof By a standard argument, we write f = f* — f~ and apply Theorem 3.9 to both f
and f~ to obtain the claim. [ |

Let M* C RY be a k-dimensional Lipschitz-manifold. Let {(O;, ;) : i € A} be a parametric
representation of M¥, an let {U; : i € A} be the associated system of disjoint subsets of
L(MF) according to (3.3). Let f: M* — R be ug-integrable. Then, by Theorem 3.9,

/fuk—z JRER

ZeAw,_l u)

For what follows, assume

A={1,...,s}]|.

Estimates of / fdu, from below and above for nonnegative f.

Mk
Theorem 3.11 Let M* C RY be a k-dimensional Lipschitz-manifold with parametric rep-
resentation {(O;, ;) i =1,...,s}. Let {U; :i =1,...,s} denote the associated system of
disjoint subsets of L(MF) according to (3.3).
Then, there ezists ¢, = const > 0 (depending on {(O;,¢;) : i = 1,...,s}) such that, for
every pg-integrable f: M¥ — [0, +00],

(3.13) COZ/fo;z},«/Gw d)\k<z / fowin/Gy, d)\k<2/fo¢“/Gwzd>\k

L)

Proof To begin with, we note



It follows that

/f o % V Gdzld/\k Z / O 1/11'\/ Gwszk
Ui (05))

Next, as above define

Tilzzwi_lo@bl, l=1,...,s.

Then Ty is a bi-Lipschitz-mapping of 1, ! (1,(O;) N 1;(O;)) onto ;™ (1(O;) N ;(O;)). Ob-
serving that v; o T;; = 1;, we obtain

/ fotin/Gyd\ = / f o/ Gy, o Ty| det T;|dAy,

D7 Ui (05)) W7 U (O5))
[by change of variables]
< Lk esssup |detT}| / fodAy (L%, from (3.6)]
P Ui (05)) 7
wl (Z’{l)
3 /
< 7k Csssup | det 77| / f ot/ Gy dAy
1Ly UM (0)) i)
1

(see Preliminaries (I1)).

Thus,

/f 0 i/ Gy, dNe < L M; Z / foi/GydA,
@i e

where
1 /
M; == max —— esssup |detT}]|.
JLs Ui (05))
Then the first inequality (3.11) follows with

C—lo = Z LM
i=1

The second inequality is obvious. [ ]

From Theorem 3.11 we obtain

Corollary 3.12 Notations as in Theorem 3.11. Then
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(3.14) COZ/fow“/GwidAk < /fduk < Z/fozﬁm/c;widxk
=14 v =14
(co = const as in (3.11)), and

3 ¢, o = const > 0 such that

(3.15) e zs: fodh, < [ fdus < cs i fodAy.
iy

Proof Inequality (3.13) is identical to (3.12). To prove the first inequality in (3.14) we note

that, fort=1,...,s,

/fowld)\k<— fowl\/Gw d)\k by 36)]

L M; M
< Tk Z | reuvGuan =22 [ fa
il 71

Mk

d’l l(ul

The first inequality in (3.14) follows with

1 - LhM;

1=1

Calculation of / fdu, by a partition of unity
ME

Let {(O;,¢;) :i=1,...,s} be a parametric representation of M*. Then

Vi(0) = MU, U cRY open (i =1,...,5).

Let M* be compact. Then there exists a partition of unity subordinated to {Uy, ...

i.e. there exist (; € C°(U;) (1 =1,...,s), such that

GO =0 VEeU; (i=1,....5), > G&=1 YEeM"
=1

With these notations we have
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Theorem 3.13 Let f: MF — R be ju-integrable. Then
[ 14 =3 [0 w0 v)/Gudn.
ME i=1 O;

Proof First, we have

By Corollary 3.10,

/ f@duk—z / (f 0 P1)(Gi 0 9hr) /Gy dAs.
=1

¢Z(O ) wl (¢1 O )mul)

The mapping Ty; := 1; ' ot); is bi-Lipschitz continuous of ¢, (1;(O;) Ny (O;)) onto ¥, ' (¥:(O;) Ny (O))).
We obtain

[ GeunGomyGuan
b (Wi (09U
= / (f o) (G 0 i)/ Gy (Tii)| det T};|dN\,  [by change of variables]
i (@i (00)NUy)
= / (f 0i)(Gi 0 1i)\/Gy,d\p  [by the chain rule, and (3.9)].
i (Wi (0L
Observing that

s

O; = Ju! (i(0:) Ny disjoint,

=1

we obtain
fGduy, = Z / fo %‘)(Q © %’)\/ Gwid)\k =
(0 St wionnu)
_ / 0 5)(Gs 0 1) /G .
O;
The claim follows. u
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3.4 The space LP(MF L(MP), up)

Let M* C RY be a k-dimensional Lipschitz-manifold, and let {(O;,1;) : i € A} be a
parametric representation of M*. Let 1 < p < +oo. As usual, define

LP(ME, L(MP), ) := vector space of all equivalence classes of

L(MP")-measurable functions

f: M* — R such that / | fIPduy, < 400

ME
[recall that a function f: M* — R is £(MP*)-measurable if

Vie A YaeR: ¢ ({€: f(6) > a} N(0:)) € L(RY)].

Further, two measurable functions f, g : M* — R are called equivalent if there is N C M¥,
pr(N) = 0 and f(z) = g(z) Vo € MF\ N]. LP(M* L(MPF), i) is a normed vector space

with respect to
1
P
17l = (M/ P |
k

By (3.9),
[Uran =3 [ 1reurvGain.
Mk ieAzﬁ;l(Ui)
We have: LP(M* L(MF), ) is complete (see [2], [3]). u

Let A ={1,...,s}. Then from Corollary 3.12 it follows that

316 oY [IfoulvVaudns [IPdn< [1fouryEii,
i=1 4. g i=1 4.

and

s

(3.17) [fowilPdhe < [ |f|Pdux < | f o ilPdA
01;/ k M/k ok CZ;Z k

O;

(with ¢,, 1, ¢2 as in Corollary 3.12). n
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