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Summary 

 
 
 
 

The picture of Earth’s deep interior is rapidly improving from the seismic 

tomography data and indicates more complexity than previously thought. The 

presence of Earth’s seismic anisotropy requires the knowledge of fully anisotropic 

elasticity data for mineral phases. The single-crystal elastic constants of minerals, Cij, 

are elements of the fourth-rank elasticity tensor, which relates stress to strain. The fact 

that elastic strain also defines seismic wave propagation, the elastic tensor of minerals 

can be applied to interpret the bulk mineralogy of the interior from seismological 

observation. Knowledge of the elasticity of crystalline materials as a function of 

pressures and temperature is also of primary interest for solid state physics because 

elastic tensors reveal the nature of interatomic interactions. 

In order to determine the full elastic tensor of minerals under high pressure 

and temperature, several techniques are available, including ultrasonic interferometry 

and inelastic x-ray scattering methods. One of the most accurate techniques is high-

frequency acoustic interferometry, which is capable for measuring sound wave 

velocities in very small samples under high pressures. The ultrasonic interferometry 

system operating at 0.5-2.0 gigahertz (GHz) frequencies was developed in the 

Bavarian Geoinstitut of the University of Bayreuth for in situ high pressure and 

temperature experiments. Here, GHz-ultrasonic interferometry has been used to study 
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the elastic properties of monoxide minerals such as FeO, liquids and nanocrystalline 

samples, each with particular importance to Earth or material sciences.  

FexO, wüstite, is the end-member phase of the (Mg,Fe)O solid solution, 

thought to be the most abundant non-silicate oxide in the mantle. The full elastic 

tensor of wüstite is determined by three elastic constants (C11, C12, C44), which have 

been probed at high-pressures. At about 17-20 GPa, FeO is known to undergo a 

displacive cubic-to-rhomobhedral phase transformation. Prior to this transformation, 

we observe a pressure-induced mode softening of the C44 elastic constant. In addition, 

previously undetected discontinuities in the pressure derivatives of C11 and C12 at 4.7 

± 0.2 GPa were observed. This pressure is consistent with that of the magnetic 

ordering commencement, as was observed by high-pressure Mössbauer spectroscopy 

in a 57Fe-enriched sample of FeO. The results indicate that an intermediate, partially 

magnetic but still cubic phase of FeO probably exists at room temperature and in 

pressure range from ~5 GPa to ~17 GPa. 

In order to provide deeper knowledge of the magneto-elastic coupling in the 

material, neutron diffraction experiments were performed under ambient pressure and 

low temperatures. The results indicate that the magnetically ordered cubic phase of 

FexO that was observed at high pressures also exists at ambient pressure at 

temperatures between 160 and 201 K. 

Combined inelastic x-ray scattering and x-ray diffraction studies on a single 

crystal of Fe0.95O were performed up to 20 GPa at room temperature. The results show 

strong anelastic behaviour of wüstite, which should be accounted for at high pressure. 

Transition-metal oxides, non-stoichiometric compounds, and materials with complex 

mesostructure have some internal degree of freedom, and could therefore experience 

internal relaxation and show deviations from normal elastic behaviour. 



 IX

A methodology to measure inelastic x-ray scattering in externally heated 

diamond anvil cells have also been developed. This technique was used to study 

polycrystalline fcc-Fe0.78Ni0.22 alloy at high pressures (up to 72 GPa) and temperature 

(up to 715 K). The bulk elasticity and its P and T derivatives were obtained for the 

material. No significant deviation of the elastic properties from those of pure ε−iron 

was observed and furthermore no deviation from Birch’s law. Although the bulk 

elasticity of fcc Fe-Ni alloy and ε−Fe seem to be very similar, the elastic anisotropy of 

hexagonal and cubic phases should be quite different. If the metal phase in the inner 

core is not hexagonal, but cubic (or a mixture of the two phases exists), seismic 

anisotropy may provide a better way to discriminate between them two. 
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Zusammenfassung 

 

 

 

Das Bild des Erdinneren, das in den letzten Dekaden mittels der seismischen 

Tomographie gewonnen wurde, deutet auf eine größere Komplexität hin als ursprünglich 

angenommen. Das Vorkommen von seismischer Anisotropie im oberen Erdmantel, in der 

Übergangszone und im unteren Mantel unterstreicht die Bedeutung der Anisotropie in der 

Mineralphysik bzw. in den  Geowissenschaften. Die Einkristallkonstanten Cij sind Elemente 

eines Tensors vierter Stufe, der eine infinitesimale Spannung mit einer infinitesimalen 

Deformation verbindet, welche wiederum Tensoren zweiter Stufe sind. Da die elastische 

Deformation von großer Bedeutung für die seismische Schallwellenausbreitung ist, kann der 

elastische Tensor von Mineralen ebenfalls für die Interpretation der mineralogischen 

Zusammensetzung des Erdinneren sowie für das Verständnis von Texturen und Strukturen, 

die von der Erdmantelbewegung herrühren, angewendet werden. Die Kenntnis des elastischen 

Verhaltens von Kristallen als Funktion von Druck und Temperatur ist zudem von großem 

Interesse für die Festkörperphysik/Materialwissenschaft, da der elastische Tensor Aufschluss 

über die inneratomaren Wechselwirkungen geben kann. 

Mehrere Verfahren können angewendet werden, um alle Elemente des elastischen 

Tensors von Mineralen bei hohen Drücken und Temperaturen zu ermitteln. Zwei dieser 

Methoden sind die Ultraschallverfahren und die inelastische Photon - Phononstreuung. Eine 
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der genauesten Methode ist die akustische Hochfrequenzinterferometrie, mittels derer man die 

Schallwellengeschwindigkeiten von sehr dünnen Proben bis zu hohen Drücken bestimmen 

kann. Ein  Ultraschall – Interferometriemeßstand, der in einem Frequenzbereich von 0,6 bis 

2,1 GHz arbeitet,  wurde am Bayerischen Geoinstitut, Universität Bayreuth für in situ  

Hochdruck– und Hochtemperaturexperimente entwickelt. Diese Methode wurde hier 

angewendet, um die elastischen Eigenschaften von Monoxiden wie FeO, Flüssigkeiten oder 

nanokristallinen Proben zu untersuchen; Materialien, die von besonderer Bedeutung für die 

Geo- bzw. Materialwissenschaften sind. 

FexO, Wüstit, das Endglied der (Mg,Fe)O Mischkristallreihe, ist wahrscheinlich das am 

häufigsten vorkommende nichtsilikatische Oxid im Erdmantel. Die drei unabhängigen  Kon-

stanten des elastischen Tensors (C11, C12, C44) wurden bis zu einem Druck von 10 GPa mittels 

GHz – Interferometrie bestimmt. Es ist bekannt, dass FeO zwischen 17-20 GPa eine 

displazive, kubische → rhomboedrische Phasentransformation durchläuft. Bevor dieser 

Phasenübergang stattfindet, beobachten wir ein druckinduziertes ‚Aufweichen’ (mode 

softening) der elastischen Konstante C44 um 20% bei 10 GPa. Darüber hinaus wurde eine 

bislang unbekannte Diskontinuität in den Druckableitungen von C11 und C12 bei 4,7 ± 0,2 GPa 

beobachtet. Das ist der Druckbereich bei dem die magnetische Ordnung einsetzt, wie mittels 

Hochdruck – Mössbauerspektroskopie an einer 57Fe – angereicherten FeO - Probe festgestellt 

wurde. Dieses Ergebnis deutet darauf hin, dass vermutlich eine intermediäre, teilweise 

magnetische aber immer noch kubische Phase von FeO bei Zimmertemperatur im 

Druckbereich von ca. 5 bis 17 GPa existiert. 

Um die die magneto-elastische Kopplung in Wüstit besser zu verstehen, wurden Neutro-

nenstreuexperimente bei Atmosphärendruck und niedrigen Temperaturen durchgeführt. Die 

Ergebnisse lassen darauf schließen, dass die magnetisch geordnete kubische Phase von FexO, 

die bei hohen Drücken beobachtet wurde, auch bei Normaldruck und bei Temperaturen 

zwischen 160  und 201 K existiert. 
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Inelastische Röntgenstreuexperimente zusammen mit Röntgenbeugung wurden an 

einem Fe0,95O Einkristall bei Drücken bis zu 20 GPa bei Zimmertemperatur durchgeführt. 

Diese Resultate deuten auf ein starkes anelastisches Verhalten von Wüstit hin, das bei hohen 

Drücken berücksichtigt werden muss. Übergangsmetalloxide, nicht - stöchiometrische 

Verbindungen sowie Materialien mit einer komplexen Mesostruktur besitzen interne 

Freiheitsgrade und könnten somit interne Relaxationsprozesse und Abweichungen vom 

normalen elastischen Verhalten aufweisen.  

Wir haben ebenfalls eine Methode entwickelt, um inelastische Röntgenstreuexperimente 

in extern beheizten Diamantzellen durchzuführen. Mit dieser Technik wurde eine 

polykristalline fcc – Fe0,78Ni0,22 Legierung bei hohen Drücken (bis zu 72 GPa) und 

Temperaturen (bis zu 715 K) untersucht. Die Kompressions- und Schermoduli sowie deren  P 

- und T - Ableitungen wurden bestimmt. Keine signifikante Abweichung von den elastischen 

Eigenschaften des reinen ε-Eisens wurde beobachtet, ebenso wenig eine Abweichung vom 

Birch – Gesetz. 
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Chapter 1 

Introduction 

 

The subject of this thesis is the experimental approach to the elastic properties of 

minerals at high pressure and temperature. Since elasticity of a crystal is a tensor 

value, a short explanation regarding different types of physical properties is necessary. 

The physical properties are defined by relations between measurable quantities. 

Density, for example, is defined from a relation between mass and volume. Now both 

mass and volume may be measured without reference to direction, and, accordingly, 

density is a property that does not depend on direction. With the usual definitions of 

density and temperature it is meaningless to speak of measuring these quantities in 

any particular direction. Such non-directional physical quantities are called scalars, 

and the value of a scalar is completely specified by giving a single number. On the 

other hand, there are physical quantities of a different type, called vectors, which can 

only be defined with reference to directions. Mechanical force, velocity are well-

known examples.  

For a few properties, such as density, all crystals are isotropic. Cubic crystals 

happen to be isotropic for certain other properties as well, such as conductivity and 

refractive index, and this sometimes leads to the misconception that they are isotropic 

for all properties. Nevertheless, the symmetry elements of a cubic crystal are not the 



Chapter 1   

3 

same as those of a completely isotropic body, and, in fact, cubic crystals are 

anisotropic, often markedly so, for elasticity and some other properties. Cubic crystals 

must therefore be regarded as potentially anisotropic, and then it can be proved that, 

for certain properties, they are isotropic. All crystals are anisotropic for some of their 

properties. As an experimental fact, the electrical conductivity, for example, of many 

crystals does indeed vary with direction (Grimvall, 1999). In such cases the crystals 

are said to be anisotropic for the property in question. 

In general, any vector may be conveniently represented by an arrow of definite 

length and direction. As an alternative to specifying a vector by giving its magnitude 

and direction one may, instead, choose three mutually perpendicular axes Ox1, Ox2, 

Ox3 and give the components of the vector along them. The components are simply 

the projections of the vector on the axes. If the components of E are E1, E2, E3, one 

can write 

E = [E1, E2, E3]     (1.1) 

Thus, when the axes of reference have been chosen, a vector is completely 

specified by giving the values of its three components along the axes. A vector is also 

could be considered as a tensor of the first rank. 

All physical quantities could be considered as tensors, such as (1) A tensor of 

zero rank (a scalar) is specified by a single number unrelated to any axes of reference; 

(2) A tensor of the first rank (a vector) is specified by three numbers, or components, 

each of which is associated with one of the axes of reference. And going ahead a 

tensor of the second rank is specified by nine numbers, or components, each of which 

is associated with a pair of axes (taken in a particular order). For example in order to 

specify the conductivity of a crystal, then, we have to specify the nine coefficients σ11, 

σ12,.... They can be conveniently written down in a square array, thus: 
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















333231

232221

131211

σσσ
σσσ
σσσ

     (1.2) 

The first suffix gives the row and the second the column in which the 

component appears. σ11, σ22, σ33 are the components on the leading diagonal (Nye, 

1987). 

A scalar such as density is written without subscripts (for example, density ρ); 

the components of a vector have one subscript (for example, E2); and the components 

of a second-rank tensor have two subscripts (for example, σ12). The number of 

subscripts equals the rank of the tensor. The number of components is equal to dn, 

where d is the number of dimensions and n is the rank of a tensor. 

 

1.1  Elastic properties of solids 

 

Central to the subject of elasticity are the strain and stress tensors and their 

relationship. 

 

1.1.1  Macroscopic theory  

 

Elastic strain 

 

If a solid body undergoes an elastic distortion from an initial undistorted 

equilibrium state, then in order to describe this distortion, one should first identify 

each particle of the body in the equilibrium state by its location x = (x1, x2, x3) with 

respect to a Cartesian coordinate system. After the distortion has taken place, the 
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particle that was originally at x is located at a new position X, and to get there has 

undergone a displacement u(x) = X(x) - x. The existence of a displacement field u 

does not in itself imply distortion of the body, since it could correspond to a pure 

translation or pure rotation. If there is to be a local distortion, then the absolute 

distance between neighbouring particles must change. Two arbitrarily chosen particles 

at points x and x+δx, after the displacement has taken place, will be at X(x) and 

X(x+δx). The original distance between the particles, δl, is given by 

2
3

2
2

2
1

2 xxxxl δδδδδ ++==      (1.3) 

The separation of the particles after the displacement has taken place, δL, assuming 

that X(x+δx) can be expanded in a Taylor series in δxi, is given by 

ji
j

k

i

k
kk xx

x
X

x
XXXxXxxXL δδδδδδ

∂
∂

∂
∂

==−+= )()(2
             (1.4) 

The change in the square of the separation is given by 

 jiij xxlL δδηδδ 222 =−  ,    (1.5) 

where  

   









−

∂
∂

∂
∂

= ij
j

k

i

k
ij x

X
x
X δη 5.0     (1.6) 

is called the Lagrangian strain, and δjk is the Kronecker delta function. Equivalently, 

the strain in terms of the displacement field gradients could be expressed by 












∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
j

k

i

k

i

j

j

i
ij x

u
x
u

x
u

x
u5.0η     (1.7) 

For infinitesimal displacements, the product term in Eq. 1.7 can be dropped, 

leading to the definition of the infinitesimal strain 












∂
∂

+
∂
∂

=
i

j

j

i
ij x

u
x
u5.0ε      (1.8) 
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The nine components of strain εij, i, j = 1, 2, 3 collectively constitute a second-

rank tensor, the strain tensor {εij}. 

 

Stress 

 

Figure 1.1 depicts an “infinitesimal” cube centred on the point x in a medium. 

The state of stress in the medium at point x is characterized by the forces per unit area 

acting across the faces of the cube. Only the three faces shown should be considered, 

since the forces across opposite faces are equal and opposite, for a uniform stress.  

 

Fig. 1.1.1. The forces on the faces of a unit 

cube in a homogeneously stressed body. 

 

The nine quantities 

A
F j

i
Aij δ

δσ δ 0lim= ; i, j =1, 2, 3,     (1.9) 

where δFi
j, is the i'th component of the force acting across the surface facing outwards 

along the xj direction and δA is the area of that face, constitute the Cauchy stress 

tensor {σij}. The three diagonal components σij are called the normal components of 
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stress, and the remaining six off-diagonal components σij, i ≠ j are the shear 

components. 

In order for the moment of forces acting on the cube to tend to zero sufficiently 

rapidly when the size of the cube is reduced to zero (to avoid infinite angular 

acceleration), the stress tensor must be symmetric with respect to interchange of 

indices, i.e.,  

σij = σji      (1.10) 

Thereby the torques produced by pairs of forces such as δFi
j and δFj

i cancel. Thus 

there are only six independent stress components. The relation (1.10) continues to 

hold even when the stress is inhomogeneous, when the body is not in a static 

equilibrium, and when body-forces (but not body-torques) are present. 

 One can describe any general stress, by a suitable choice of axes, as the sum of 

(1) a hydrostatic stress and (2) a shear stress (i.e. a stress whose normal components 

are all zero). The first could be expressed by matrix 

















−
−

−

p
p

p

00
00
00

. 

Pure shear stress is a special case of biaxial stress and could be expressed as 















−

000
00
00

σ
σ

. 

Stress is a second-rank tensor, but there is an important distinction between the 

stress tensor and all the other second-rank tensors. Tensors, which measure crystal 

properties (such as the permittivity and the magnetic susceptibility, represented by 

quadrics), have definite orientations within a crystal, and they must conform to the 

crystal symmetry. They are called matter tensors. The stress tensor, on the other hand, 

in common with the strain tensor, can have any orientation within a crystal, and it can 
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exist just as well in isotropic bodies like glass as in anisotropic crystals. The stress 

tensor does not represent a crystal property but is akin to a “force” impressed on the 

crystal; in this respect it is like an electric field, which can, of course, have an 

arbitrary direction in a crystal. Such tensors are called field tensors (Nye, 1987). 

 

Hooke’s law 

 

An ideal elastic body becomes strained when subjected to stress, and when the 

stresses are removed, the strains disappear. Moreover, in the limit of small stresses 

and strains, these two quantities are linearly related. Linear relations between the 

components of stress and the components of strain are known generally as Hooke's 

law.  

Each stress component, in general, depends on all the strain components, and 

vice versa. The materials or constitutive relationship can be written in two ways, 

klijklij c εσ =       (1.11) 

and its inverse 

klijklij s σε = .      (1.12) 

The 34 = 81 coefficients cijkl are called the elastic stiffnesses of the material and are a 

measure of the resistance of the material to elastic deformation, and the 81 

coefficients sijkl are called the elastic compliances and are a measure of the ease of 

deformation. The elastic stiffnesses and compliances form fourth-rank Cartesian 

tensors that are reciprocally related, i.e., 

jnimklmnijklcs δδ=      (1.13) 
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Stress and strain are field quantities, i.e., they can vary from point to point in a 

body and also depend on time, whereas the compliances and stiffnesses are materials 

properties, being constants for a particular homogeneous solid. 

Index symmetries 

Both the strain and stress tensors are symmetrical with respect to interchange 

of indices i and j, and there are thus only six independent components of stress and 

strain. In consequence there are only 62 = 36 independent stiffnesses and compliances. 

Using only tow suffixes makes it possible to use the matrix notation. Both the stress 

and strain components are written with a single suffix running from 1 to 6 simply by 

replacing each pair of indices i j with a single index α = 1, 2, 3.... 6 as follows: 

  

Tensor notation 11 22 33 23, 32 31, 13 12, 21 

Matrix notation 1 2 3 4 5 6 

  

In the sijkl and the cijk the first two suffixes are abbreviated into a single one, and 

the last two are abbreviated in the same way, according to the same scheme.   

At the same time factors of 2 and 4 are introduced as follows: 

sijkl = Smn when m and n are 1, 2 or 3, 

2 sijkl = Smn when either m or n are 4, 5 or 6, 

4 sijkl = Smn when both m and n are 4, 5 or 6. 

 The arrays of Sij and Cij written out in squares, thus: 



























666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

SSSSSS
SSSSSS
SSSSSS
SSSSSS
SSSSSS
SSSSSS

and 



























666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

(1.14) 
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are matrices, (Sij) and (Cij). As with the piezoelectric moduli one should remember 

that, in spite of their appearance with two suffixes, the Sij and Cij are not the 

components, and so do not transform like the components, of a second-rank tensor 

(Nye, 1987). To transform them to other axes it is necessary to go back to the full 

tensor notation, cijkl and sijkl. 

The energy of a strained crystal 

Consider a body, which in the unstrained state has the form of a unit cube, and 

suppose it is subjected to a small homogeneous strain with components εi. Now let the 

strain components all be changed to εi + dεi. Then the work done by the stress 

components of acting on the cube faces is 

dW = σidεi (i = 1, 2,..., 6)    (1.15) 

First suppose that the strain component εi is increased to εi + dεi, while the other 

strain components, and the position of the centre of the cube, remain unaltered. The 

two faces perpendicular to Ox1, will move outwards by amounts ½dεi the other four 

faces will simply increase in area, but the positions of their centres will be unchanged. 

The work done by the forces on these last four faces is therefore zero. The work done 

on the faces perpendicular to Ox1, equals their displacement multiplied by the normal 

component of the force on them; it is therefore 2σ1½dε1 = σ1dε1. This is the term with 

i = 1 in (1.15); the terms with i = 2 and i = 3 are obtained in a similar way. 

Now let the cube be sheared by making the two faces perpendicular to Ox2, 

move in opposite directions parallel to Ox3, so as to increase the strain component ε4 

to ε4 + dε4. In this deformation (simple shear) the mid-points of the faces 

perpendicular to Ox2, each move a distance ½dε4. The component of force on the 

faces in this direction is ε4. The work done by the forces is therefore 2σ4½dε4 = σ4dε4. 

The terms with i = 5 and i = 6 in (1.15) are obtained in a similar way (Nye, 1987). 
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It is readily shown that the corresponding equation to (1.15) in tensor notation is 

 dW = σijdεij (i, j = 1, 2,..., 6)   (1.16) 

When the change is isothermal and reversible dW may be equated with the 

increase in free energy dΨ. The fact that dΨ is a perfect differential gives that 

Cij = Cji,  Sij = Sji;    (1.17) (1.18) 

and the strain energy per unit volume is 

½ Cijεiεj      (1.19) 

(1.17) and (1.18) reduce the number of independent compliances and stiffnesses from 

36 to 21, and the number is further reduced by the material’s symmetry.  

Anisotropic solids 

There are many types of materials that are not isotropic: single crystals, 

various types of superlattices, fiber-reinforced composites, etc. However, most 

anisotropic solids do have some degree of symmetry, although it is not full rotational 

symmetry. There are a limited number of symmetry types. Since the stress-strain 

relationship is invariant under inversion, the appropriate symmetry classification is by 

Laue groups. For crystals this means adding inversion where there is none, and this 

collapses the 32 crystal point symmetry groups into 11 Laue groups. The forms of the 

elastic constant matrices for the different symmetries are shown in Table 1-1. In each 

case the Laue group (or groups) is given, followed by the corresponding point groups 

in brackets. 

Triclinic. N [1, -1]. This is the absence of any material symmetry other 

than inversion. There are no relationships between the 21 elastic constants, and none 

are zero. 

Monoclinic. M [2, m, 2/m]. There is a single mirror symmetry plane with a 

twofold rotational symmetry axis perpendicular to it. The elastic stiffness matrix for 
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monoclinic symmetry has only 13 independent components, and the same is true for 

the compliance matrix Smn. 

Orthorhombic. O [222, mm2, mmm]. This symmetry is characterized by 

three mutually perpendicular mirror symmetry planes and twofold rotational 

symmetry axes perpendicular to these planes. The elastic constant matrix in 

orthorhombic symmetry has nine independent nonzero components. Examples: 

crystals such as aragonite (CaCO3), uranium, and the olivines (a major component of 

the Earth's upper mantle). 

Hexagonal. H I [622, 6mm, -6m2, 6/mmm] and H II [6, -6, 6/m]. There are 

five independent elastic constants for these groups. Whereas the forms of the second-

order elastic constants for the Laue groups H I and H II are the same, this is not true 

of the third- and higher-order elastic constants. 

Tetragonal. T I [422, 4mm, -42m, 4/mmm]. This can be regarded as 

orthorhombic with the addition of a fourfold rotational symmetry axis along one of 

the crystallographic axis and mirror symmetry planes containing this axis (x3) and 

bisecting the angles between two other axes (x1 and x2). The equivalence of the x1 and 

x2 axes has the effect of reducing the number of independent elastic constants from the 

nine of orthorhombic symmetry to six, through the equalities C11 = C22, C23 = C13, and 

C44 = C55. Examples: crystals such as BaTiO3, rutile (TiO2), and zircon (ZrSiO4). 

T II [4, -4, 4/m]. These crystals lack the vertical symmetry planes, and as a 

result have a seventh elastic constant C16 = - C26, S16 = -S26. Since the special direction 

for the x1 axis does not coincide with any crystallographic direction, the number of 

parameters characterizing the elastic constant matrix is still seven. The higher-order 

elastic constants are also different for Laue groups T I and T II. 
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Trigonal. R I [32, 3m, -3m]. This is characterized by the presence of a 

threefold symmetry axis, taken to be along the x3 direction, three equivalent mirror 

planes containing this axis, and three twofold axes normal to these planes, with the x1 

axis being parallel to one of these diad axes. The elastic constant matrix is that of a 

hexagonal solid, but with a sixth independent elastic constant C14 = - C24 = C56 and S14 

= - S24 = 0.5 S56. Examples: common crystals such as quartz, sapphire, and calcite.   

R II [3, -3]. These crystals lack the vertical symmetry planes, and as a result have a 

seventh elastic constant C15 = - C25 = - C46, S15 = - S25 = -0.5 S46. 

Cubic. C I [432, -43m, m3m] and C II [23, m3]. Three independent 

elastic constants: C11 = C22 = C33, C12 = C23 = C13, and C44 = C55 = C66. The crystals of 

many elements (e.g., Si, Ge, diamond, etc.), alloys, and compounds are cubic and 

have had their elastic constants measured. The forms of the third- and higher-order 

elastic constants differ for the Laue groups C I and C II. 

Isotropic solids 

An isotropic solid is one in which the properties are the same in all 

directions. Examples of isotropic solids are amorphous materials (glasses), 

polycrystalline materials with no texture, ceramics, and so on. For isotropic solids 

engineering constants E, G, K, and ν or the Lamé constants λ and µ are favoured. For 

an isotropic solid the following is true: 

(1) A pure shear strain, say ε4, is accompanied by the single shear stress σ4, 

and vice versa. All components of Smn and Cmn, for m = 4, 5, 6 and m ≠ n, are 

therefore identically zero. 

(2) Any permutation of the x1, x2, and x3 axes leaves the stiffness and 

compliance tensors unchanged, so C11 = C22 = C33, C44 = C55 = C66, and C12 = 

C23 = C13. 
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(3) The fact that the stiffness and compliance matrices must be unchanged by 

any rotation of the axes imposes the additional constraint C11 = C12 + 2C44, or 

equivalently S11 = S12 + 0.5 S44. 

 

There are thus only two independent elastic constants. The form of the elastic 

constant matrix for isotropy (and the other material symmetries) is shown in Table 1-

1. There the independent constants have been taken to be C11 and C12. There are two 

other widely used choices of elastic constants for isotropic solids. 

Lame Constants are represented by the Greek letters λ and µ, and in terms 

of them 

,12 λ=C  µ=44C , and ,211 µλ +=C   (1.20) 

and 

( )jkiljlikklijijklc δδδδµδλδ ++=    (1.21) 

Engineering Constants. In a pure shear test one obtains the shear or 

rigidity modulus G as the applied shear stress divided by the resulting shear strain, 

and hence 

µ==
44

1
S

G       (1.22) 

Similarly, in a simple tensile test, a known uniform tensile stress is applied to a 

rod and the resulting longitudinal and transverse strains are measured. Young's 

modulus E is defined as the normal (tensile) stress divided by the longitudinal strain: 

( )
( ) ,231

11 µλ
µλµ

+
+

==
S

E     (1.23) 
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Table 1-1. Forms of the [Cmn] matrix (C’ = 0.5 (C11- C12); C mn = - Cmn). 
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and Poisson's ratio ν is the negative of the ratio of the transverse strain to the 

longitudinal strain, i.e, 

( ).
212

11

12

µλ
λν
+

=⋅−=−= SE
S
S    (1.24) 

The bulk modulus is the negative of pressure divided by the relative change in 

volume, and hence 

( ) ( ).
2133

1

1211 ν−
=

+
=

E
SS

K     (1.25) 

Rocks in most cases can be considered as isotropic solids. Although rocks 

consist of anisotropic crystals, their size is negligibly small compared to the sampling 

scale and relative orientation is nearly random in many cases. In geophysics 

engineering constants K and G are used to characterize bulk elasticity in the Earth. 

Recent developments of seismic tomography (Zhao, 2000; Romanowicz, 2003) reveal 

the existence of some elastic anisotropy in the Earth’s interior that could not be 

described in isotropic assumption. 

 

Thermodynamic considerations 

 

As a broad generalization, static methods of measurement, if executed 

sufficiently slowly so that thermal equilibrium with the environment is maintained, 

yield isothermal values of the elastic constants, whereas dynamic methods, in which 

there is little heat conduction per cycle, yield adiabatic values. The adiabatic 

stiffnesses are derived from the internal energy per unit mass U (η, S), and the 

isothermal stiffnesses are derived from the Helmholz free energy per unit mass F (h, 

T), (S = entropy, T = absolute temperature, η = Lagrangian strain): 
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Sklij

S
ijkl

Uc 










∂∂
∂

=
ηη

ρ
2

,  
Tklij

T
ijkl

Fc 










∂∂
∂

=
ηη

ρ
2

  (1.26) 

Some situations cannot be categorized in this simple way. At the very high 

frequencies explored by neutron scattering, for example, the thermal phonon 

population is not able to relax to the rapidly changing strain field, and it is the zero 

sound elastic constants that are measured. At the other extreme, e.g., in the infrasonic 

measurement of the shear modulus of a fiber with the torsion pendulum method, one 

is justified in asking whether it is the adiabatic or isothermal elastic constants that are 

measured, or perhaps something in between. In most cases the differences between 

these various moduli are of the order of 1% or less, which is comparable to the 

experimental error in absolute measurements, and the distinction is ignored. It is only 

in solids with exceptionally large thermal expansion coefficients, such as certain 

polymers and composites, that the differences are appreciable.  

Viscoelasticity 

In all real materials there is some degree of attenuation of an acoustic wave 

as it propagates through the medium. Often this attenuation is ascribed to a frequency-

dependent viscoelasticity of the material (which is an assumption, however, that 

overlooks scattering and other mechanisms that can complicate the attenuation 

process). In viscous fluids the stress is proportional, not to the strain, but to the time 

rate of change of strain. One therefore thinks of a viscoelastic solid as one in which 

the relationship between stress and strain takes the form: 

t
kl

ijklijklij ∂
∂

=
εεχσ     (1.27) 

The viscosity coefficients χijkl form a fourth-rank tensor, which is positive 

definite and has the same symmetry properties as cijkl (Nowick and Berry, 1972). 
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Dispersion and anelastic relaxation 

When there are relaxation processes in a system with a characteristic lifetime 

τ, then the velocities and elastic constants measured at low frequencies, ωτ << 1, and 

at high frequencies, ωτ >> 1, differ to some degree, since in the former case relaxation 

takes place within a cycle of the motion and in the latter case it does not. Another 

major source of dispersion is the microstructure of a solid, whether this happens to be 

the layers of a composite or the crystal lattice of a single crystal. If the microstructure 

is periodic, then this introduces a characteristic system of dispersion curves/surface 

and pass- and stop-bands. Starting from the long wavelength low-frequency limit, the 

dispersion relation ω(k) tends to flatten out with increasing frequency, corresponding 

to a decrease in velocity. For crystals, in most cases this effect only becomes evident 

in the high-gigahertz frequency range as the wave vector starts approaching the 

Brillouin zone boundary. A lattice dynamics approach is then usually adopted in 

interpreting the observations. In crystals that lack a centre of inversion in their 

structure, there is a dispersive effect, called acoustic gyrotropy, which is observable 

even at low-megahertz frequency. This causes a splitting between the velocities of 

right and left circularly polarized waves in directions where they would otherwise be 

degenerate, except where they lie at the intersection of symmetry planes. This effect 

of gyrotropy is well described by a complex wave-vector-dependent elastic constant 

matrix: 

( ) ...++= mijklmijklijkl kidckc ,    (1.28) 

where dijklm is a gyrotropic coefficient (Every, 1987a). 

Piezoelectric stiffening of elastic constants 

Crystals that lack a centre of inversion in their crystal structure, with the 

exception of point symmetry group 432, are piezoelectric. As a consequence, an 
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acoustic wave in such a medium is accompanied by an oscillating electric field, which 

in turn, through the piezoelectric coupling, modifies the stress field. The medium as a 

result appears elastically stiffer, with effective piezoelectrically stiffened elastic 

constants 

  
qppq

srklsijrE
ijklijkl nn

nnee
cc εε

+= ,     (1.29) 

where E
ijklc , are the elastic stiffnesses measured at constant electric field, eijr is the 

piezoelectric stress tensor, and εε pq  is the permittivity tensor at constant strain. These 

effective elastic constants are used rather than the normal elastic stiffnesses in 

calculating acoustic velocities. In some crystals, such as lithium niobate and Rochelle 

salt, piezoelectric stiffening has a pronounced effect on acoustic velocities, causing 

changes of more than 20% in some directions, whereas in others the coupling is very 

small and the stiffening effect can be ignored (Every, 1987b). 

 

Equation of state (EoS) 

 

An equation of state ( ( ) 0,, =TVPf ) is one of the most important characteristics 

of the Earth’s materials. Generally, thermodynamics gives: 

TV
FP 








∂
∂

−=  and  
TP

GV 







∂
∂

=   isothermal EoS 

PS
HT 








∂
∂

=   and  
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





∂
∂

−=   isobaric EoS 

SV
EP 








∂
∂

−=  and  
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



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∂
∂
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An explicit analytical EoS can only be written for an ideal gas, where 

interatomic interactions are absent: in this case there are no problems in the analytical 

representation of the interatomic potential, and entropy can be easily and exactly 

calculated using the Sackur-Tetrode relation. The classical ideal gas EoS is: PVm = 

RT, where Vm is the molar volume. For solids and liquids interatomic interactions are 

essential, and all existing analytical EoSs are by necessity approximate. 

Elasticity theory is used to construct the simplest EoSs. The simplest EoS is just 

the definition of the bulk modulus: KT = -V(∂P/∂V)T. However, at certain point strains 

cannot be considered as being infinitesimal and the Hook’s low is no more valid. That 

is why this EoS is valid only in a very narrow pressure range: because the bulk 

modulus K in fact changes rapidly with pressure. The pressure variation of K is 

determined by the interatomic forces acting within the solid – these forces must be 

accounted for by accurate EoS formulations. 

Assuming that K varies linearly with pressure and denoting ( ) 0,
'
0 / =∂∂= PTPKK , 

the Murnaghan EoS is obtained: 

( )[ ]1//
'
0

0
'
00 −= −KVVKKP     (1.30) 

This simple EoS works well in the compression range ( ) 2.01.0/ 00 −<− VVV . 

At larger compressions higher-order derivatives of K become important. Of course, 

these nonlinearities can be formally incorporated as well, resulting in a more 

complicated EoS. Better convergence is obtained if, instead of K as a function of 

pressure, an approximate model for the energy as a function of x = V0/V or some other 

measure of strain is used. Using this method, some of the most commonly used EoSs 

are obtained.  

Birch-Murnaghan EoSs (Poirier, 2000).  

These EoSs are based on the polynomial expansion of the energy: 
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...432
0 ++++= cfbfafEE    (1.31) 

in powers of the Eulerian strain fE: 

 ( )[ ]1/2
1 3

2
0 −= VVfE     (1.32) 

It is advantageous to use the Eulerian finite strain rather than the Lagrangian 

strain: 

 ( )[ ]3
2

0/12
1 VV−=η ,     (1.33) 

because Eulerian strain leads to a better description of the correct E(V) dependence 

with fewer terms in the expansion (1.31). At infinite pressure, Eulerian strain is 

infinite, whereas Lagrangian strain remains finite. However, for infinitesimal strains 

both definitions become equivalent, and 

( ) 00 /3
1/ VdVadaddfE −=== η    (1.34) 

It can be shown that generally 

 
Tf

E
fKV 







∂
∂





= 19 00     (1.35) 

Truncating (1.31) on the second-order term: 

2
0 afEE += ,      (1.36) 

and, noting that 

 ( ) oVKa 02
9= ,      (1.37) 

it is easy to obtain (see Poirier, 2000) the second-order Birch-Murnaghan EoS: 

( ) 2
5

0 213 ffKP +=      (1.38) 

Or, in a different form: 

( ) ( ) ( )[ ]3
5

0
3

7
00 //2

3 VVVVKP −=     (1.39) 

    ( ) ( )[ ]23
2

0000 1/8
9 −+= VVVKEE    (1.40) 
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Third-order BM EoS is 

 ( ) ( ) ( )[ ] ( )[ ]{ }1/1//2
3 3

2
0

3
5

0
3

7
00 −+−= VVVVVVKVP ξ  ,  (1.41) 

( ) ( )

( )( ) ( )( ) ( ) ( )[ ]4/32/2
1/214

3/12
3

2
3

3
6

0
3

4
0

3
2

0

000

−−+−+−×

×+=

ξξξξ VVVVVV

VKVEVE
  (1.42) 

where ( )44
3 '

0 −= Kξ . 

Note that when 4'
0 =K , the third-order Birch-Murnaghan EoS (BM3) 

automatically reduces to the second-order one (BM2). In other words, BM2 EoS 

implicitly assumes 4'
0 =K . It is remarkable that this estimate of the lowest order of 

the finite strain theory is often very close to experimental values of '
0K  of many 

crystals (especially with close-packed structures). This is why BM2 EoS, although 

very simple, works well in many cases. The main problem of all BM EoSs is rather 

poor convergence with respect to the number of terms beyond the second order for 

large strains: it turns out that the fourth-order energy term in (1.31) is often larger than 

the third-order one. The third-order BM EoS is very accurate when '
0K  is close to 4; 

when it is significantly different, this EoS gives poor results at high compressions. For 

4'
0 <K  at large compressions (e.g., for 5.0/ 0 ≅VV  and 2'

0 =K ) BM3 can give even 

negative pressures (Poirier and Tarantola, 1998) Being based on a polynomial 

expansion of the interatomic potential (of the type ∑
=

−

...3,2,1

2

n

n
nRa ), this EoS must be 

used with caution when extrapolations are needed – outside the range of fitting the 

truncated polynomial expansion (1.31) may become invalid (Cohen et al., 2000).  

It is possible to derive systematically higher-order BM EoS, but this appears to 

be of little use since the number of parameters involved will be too large; only fourth 

order BM EoS: 



Chapter 1   

23 

( ) ( ) ( )( )( ){ }2'
0

'
0

''
00

'
0

2
5

0 9
35342

342
31213 EEEE fKKKKfKffKP +−−++−++=   (1.43) 

is sometimes used when ultra-high pressures are studied. This EoS is equivalent to the 

BM3 EoS when ( )( ){ }9
3543/1 '

0
'
00

''
0 +−−−= KKKK  – the value implied by the BM3 

EoS.  

Logarithmic EoSs.  

Drawbacks of the Birch-Murnaghan EoSs leave much room for other possible 

EoSs. Poirier and Tarantola (1998) have derived the logarithmic EoS, based on the 

polynomial expansion (1.31) in terms of natural, or logarithmic (also called Hencky) 

strain: 

 ( ) ( )00 /ln3
1/ln VVllfH ==  ,   (1.44) 

where l is the length of the sample (l0 in the unstrained sample). The second-order 

logarithmic EoS is: 

 ( ) ( )VVVVKP /ln/ 000=  ,    (1.45) 

implicitly assuming 2'
0 =K . The third-order logarithmic EoS is: 

( ) ( ) ( ) ( )( )[ ]2
0

'
0000 /ln22

1/ln/ VVKVVVVKP −+=  ,  (1.46) 

which implicitly takes ( ) ( ) ( )[ ]2'
0

'
00

''
0 221/1 −+−+−= KKKK . In the fourth order, the 

logarithmic EoS is: 

( ) ( )
( ) ( ) ( ) ( ){ } ( )[ ]VVKKKKVVK

VVVVKP

/ln2216
1/ln25.01

/ln/

0
22'

0
'
0

''
000

'
0

000

−+−+++−+×

×=
      (1.47) 

Fourth-order logarithmic EoS is superior to BM3, but involves more parameters. 

Like the BM3 EoS, the logarithmic EoS has an unphysical behaviour on expansion 

(V/V0 > 1): the potential corresponding to BM3 behaves nonmonotonically, and the 

one corresponding to the logarithmic EoS diverges.  
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Vinet EoS (Vinet et al., 1986, 1989).  

In fact, just like BM and logarithmic EoSs, Vinet EoS is a whole family of EoSs 

of different orders. The most remarkable feature is very fast convergence with respect 

to the order of EoS – one seldom needs to use higher than third order Vinet EoS. 

The third-order Vinet EoS is: 

 ( )
( )

( ) ( )( )[ ]3
1

0
'

0
3

2
0

3
1

0
0 /112

3exp
/

/13 VVK
VV

VVKP −−
−

=  ,  (1.48) 
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( ){ } ( )( ) ( ) ( ){ }( )1/12
3exp/31/35

12
1

4

3
1

0
'
0

3
1

0
3

1
0

'
0

2'
0002'

0

00
0

−−−−−+×

×−−
−

+=
−

VVKVVVVK

KKV
K

VKVEVE
      (1.49) 

The value of ( ) ( )[ ]36192/2//1 '
0

2'
00

''
0 −+−= KKKK  (Vinet et al., 1989). The bulk 

modulus can be expressed as (Vinet et al., 1989): 

( )( ) ( ) ( ) ( ) ( ){ }[ ]
( ) ( ){ }( )3

1
0

'
0

'
0

3
2

0
3

1
0

3
1

0
3

2
00

/112
3exp

1/2
3//2//

VVK

KVVVVVVVVKK

−−×

×−−+−=
 (1.50) 

This EOS is based on a universal scaled binding curve: 

 ( ) ( )aaEE −+= exp10 ,     (1.51) 

where E0 is the bond energy at equilibrium, ( ) lRRa /0−= , 







∂
∂

= 2

2

0 /
R
EEl being a 

scaling length roughly measuring the width of the potential well, and R the Wigner- 

Seitz radius (the average radius of a sphere in the solid containing 1 atom). The 

potential (1.48) was first used in 1930s by Rydberg for fitting potential curves of 

molecules and obtaining their anharmonic coefficients; it turned out (see Sutton, 

1993) that it describes very accurately systems with different types of chemical 

bonding in solids, molecules, adsorbates, etc. The universal binding curve (1.50), 

however, does not describe long-range forces in ionic and van der Waals crystals. 
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This means that for such material Vinet EoS will not give accurate description of 

expansion (V0/V<1). For compression, however, it should be sufficiently accurate, 

since compression behaviour is dominated by interatomic repulsion, well accounted 

for by (1.50). 

In very rare cases a higher-order Vinet EoS may be needed; such higher-order 

versions of the Vinet EoS already exist (Vinet et al., 1989). At extreme compressions 

(V/V0 < 0.1), where solids approach the free electron regime, other EoSs are required 

(Cohen et al., 2000).  

As is shown above, in order to define the equation of state, one should know 

either free energy as a function of strain (volume), or its derivatives that are pressure 

and bulk modulus. Free energy cannot be measured directly in experiment, but is the 

first result of simulation studies. Theoretical studies, including ab-initio simulations, 

usually determine EoS from energy-volume relations. Static compressibility studies 

allow determining EoS from pressure-volume relation, but require independent 

pressure calibration. The problem of defining pressure markers and etalon materials 

EoSs remains quite important for the high-pressure community. Dynamic methods 

(see section 1.2) allow determining bulk modulus at different pressure. If strain 

(volume) can be measured simultaneously, EoS can be obtained from bulk modulus-

volume relations without any reference to pressure, making possible the primary 

pressure calibration. 

In all the abovementioned EoSs the hydrostatic pressure is used to define the 

stress tensor, and volume change is the only measure of the strain. The only important 

elastic constant in this case is the bulk modulus K. This consideration allows making 

quite simple EoSs with small number of parameters. However, it is true only for 

isotropic solids under hydrostatic pressure. Birch (1952) demonstrated that such 



  Introduction 

26 

approach is also valid for crystals with cubic symmetry. In all other cases individual 

higher order elastic constants are necessary to describe elastic response of the crystal 

to the finite strain. 

For large stresses, the strains are no longer infinitesimal, the stress-strain 

relation contains terms that are quadratic and higher order in the strains and the strain-

energy relationship contains cubic and higher-order terms. The coefficients of these 

additional terms are the higher-order elastic constants. 

Thus, for example, the third-order adiabatic elastic constants can be defined as: 

Smnklij

S
ijklmn

Uc 










∂∂∂
∂

=
ηηη

ρ
3

    (1.52) 

and so on (Grimvall, 1999). 

Even when higher-order elastic constants can be measured experimentally, the 

EoS formalism that would incorporate cijklmn is enormously complicated and thus 

useless. A large number of experimental studies show that the abovementioned EoS 

formalism (e.g., Birch-Murnaghan EoS) can be successfully applied to the lower-

symmetry crystals. In practice, higher-order elastic constants are quite rarely used; 

instead, pressure and temperature derivatives of second-order elastic constants are 

used. 

 

1.1.2  Microscopic approach: Lattice dynamics 

 

At every temperature, at the absolute zero (as a result of zero-point 

motion) and at finite temperatures (as a result of thermal fluctuations), the atoms in a 

crystalline solid execute small oscillations about their equilibrium positions. The 

influence of these lattice vibrations on the thermodynamic properties of solids 
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together with the masses of the constituent atoms, determine lattice vibrations at a 

given temperature. 

The subject of lattice dynamics is the study of the properties of crystalline solids 

that are determined or affected by the vibrational motion of the nuclei. The 

displacement of one or more atoms from their equilibrium positions will give rise to a 

set of vibration waves propagating through the crystal. In a crystalline solid, the 

equilibrium atomic configuration can be generated by the repetition of smaller units or 

cells, the smallest being referred to as the primitive cell. Denoting by 1a , 2a  and 3a , 

the three vectors along the edges of a primitive cell that share a corner, the 

equilibrium position of this cell relative to an origin located at some atom is 

  332211 alalall ++=      (1.53) 

where l1, l2, and l3 are integers. The lattice generated by Eq. 1.53 is called the direct 

lattice of the crystalline solid. The equilibrium position of the dth atom in the lth cell is 

then 

dl + ,      (1.54) 

where d  is the position of the dth atom relative to the corner of the cell as defined by 

Eq. 1.53.  

The basic problem of lattice dynamics is to determine the potential seen by the 

nuclei of the solid. Once this potential is known, the problem is reduced to the study 

of the small oscillations of a system of particles around their equilibrium positions in 

this potential, a well-known problem in mechanics. For a given potential, the motion 

of the nuclei can be immediately determined assuming that the displacements of the 

nuclei from their equilibrium positions are small compared to their separation (the 

quasi-harmonic approximation). This is a very good approximation, except for solids 

consisting of light nuclei. If the quasi-harmonic approximation is valid, any nuclear 
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motion can be considered as a superposition of a number of monochromatic waves, 

the normal vibrational modes or characteristic vibrations of the system. The 

translational symmetry of crystalline solids simplifies considerably the determination 

of the frequencies of their normal modes. In this case, the problem is reduced to the 

determination of the motion of the atoms contained in a unit cell. The normal modes 

are propagating vibrational waves with propagation wavevector q  determined by the 

crystal geometry. If the unit cell contains r nuclei, their frequencies ( )qjω  are 

obtained by diagonalizing a 3r × 3r force-constant matrix. The relation 

( )qjωω =  (j = 1,2...3r)   (1.55) 

between the frequency and wavevector is called the dispersion relation. It consists of 

3r branches labelled by the index j. Among these branches there are three acoustic 

branches whose frequencies approach zero at the long-wavelength limit ( 0→q ) 

(some branches could be degenerated due to the crystal symmetry). In this limit the 

dispersion of the acoustic branches is linear, qjυω =  where jυ  is the appropriate 

sound velocity in the solid, and the propagating vibrational waves in the solid are 

simply sound waves. The remaining (3r-3) branches tend to a finite frequency as 

0→q , and they are called optic branches, since these vibrational modes could 

interact with light. For each wavevector of a branch, the motion of the nuclei in the 

cell is determined by solving the equations of motion. The pattern of motion in the 

cell is specified by the polarization vectors ( )( )rdqe
j
d ,...2,1= , which provide the 

direction of motion of the nuclei in the cell. A vibrational mode is called longitudinal 

and transverse if the polarization vectors are parallel and perpendicular to the 

propagation vector, respectively. The allowed values of the propagation vector q  are 

determined by the boundary conditions on the surface of the crystal. The bulk 
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properties of the crystal are not influenced by the specific form of the boundary 

conditions. For convenience, periodic boundary conditions are usually adopted. 

Because of the periodicity of the crystal, all physically distinct values of q  can be 

obtained by restricting the allowed values of q  in one of the primitive cells of the 

reciprocal lattice. Actually, instead of the primitive cell of the reciprocal lattice, it is 

more convenient to use the first Brillouin zone, which is the volume enclosed by 

planes that are the perpendicular bisectors of the lines joining a reciprocal lattice point 

to its neighbouring points. Figure 1.1.2-a shows an example of the first Brillouin zone 

of fcc-lattice.  

The importance of the Brillouin zone comes from a description of waves in a 

periodic medium, which can be completely characterized by their behaviour in a 

single Brillouin zone. There are also second, third, etc., Brillouin zones, 

corresponding to a sequence of disjoint regions (all with the same volume) at 

increasing distances from the origin, but these are used more rarely. As a result, the 

first Brillouin zone is often called simply the Brillouin zone. A related concept is that 

of the irreducible Brillouin zone, which is the first Brillouin zone reduced by all of the 

symmetries in the point group of the lattice (Dorner et al., 1987; Alfe et al., 2001). 

In the classical description any nuclear motion can be considered as the 

superposition of propagating waves with various propagation vectors and 

polarizations. In the harmonic approximation, the motions of the nuclei can be 

decoupled by a canonical transformation to normal coordinates. By this 

transformation the nuclear Hamiltonian is reduced to a sum of Hamiltonians 

corresponding to independent harmonic oscillators, and the quantization of the 

vibrational field is reduced to that of the harmonic oscillators. Thus, instead of the 

classical wave description, it turns to the quantum description in terms of quanta, 
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called phonons, which propagate through the lattice with definite energy and 

momentum. The energy ( )qE j  and momentum p  of the phonon are related to the 

frequency and wavevector of the corresponding vibrational wave by the relations: 

( ) ( )qqE jj ωh=   qp h=    (1.56) 

The free motion of noninteracting phonons corresponds to the free propagation 

of the monochromatic waves in the harmonic approximation. The phonons have, 

however, finite lifetimes, since anharmonic interaction as well as interaction with 

other elementary excitations in the solid is always present. At thermal equilibrium, 

brought about by the previously mentioned interactions, the average number of 

phonons, nj is given by the Bose-Einstein relation 

( ) 1exp
1

−
=

TkE
n

Bj
j ,    (1.57) 

where kB is Boltzmann's constant, and T is the temperature. Notice that at high 

temperatures ( 1<<TkE Bj ) the number of phonons is proportional to the temperature 

and inversely proportional to their energy (Maradudin et al., 1963). 

Total number of phonons is 3n, where n is the number of atoms in the 

irreducible unit cell, and three of them are called acoustic. "Acoustic phonons" have 

frequencies that become small at the long wavelengths (and tend to zero when 

wavelength approach infinity), and correspond to sound waves in the lattice. 

Longitudinal and transverse acoustic phonons are often abbreviated as LA and TA 

phonons, respectively. 

"Optical phonons," which arise in crystals that have more than one atom in the 

irreducible unit cell, always have some minimum frequency of vibration, even when 

their wavelength is large. They are called "optical" because in ionic crystals (like 

sodium chloride) they are excited very easily by light (in fact, infrared radiation). This 



Chapter 1   

31 

is because they correspond to a mode of vibration where positive and negative ions at 

adjacent lattice sites swing against each other, creating a time-varying electrical 

dipole moment. Optical phonons that interact in this way with light are called infrared 

active. Optical phonons, which are Raman active, can also interact indirectly with 

light, through Raman scattering. Optical phonons are often abbreviated as LO and TO 

phonons, for the longitudinal and transverse varieties respectively. 

 

Fig. 1.1.2. a) The Brillouin zone of fcc-lattice. The shown critical 

points of the zone (the points of high symmetry) are: Γ - centre 

of the Brillouin zone, K – middle of an edge joining two 

hexagonal faces, L – centre of a hexagonal face, U – middle of 

an edge joining a hexagonal and a square face, W – corner point, 

X – centre of a square face; and b) an example of phonon 

dispersion curves and phonon density of states of diamond (Ibach 

and Lüth, 1996).  
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Some of the phonon branches could be degenerated due to symmetry elements; 

for example, along Г-K direction in diamond all six phonons are different, while only 

four branches are observed along Г-X direction due to degeneracy of two TA and two 

TO phonon branched (see Fig. 1.1.2-b). 

Information about the phonon dispersion curves of crystalline solids can be 

obtained by a variety of experimental techniques. The most direct methods involve the 

scattering (or absorption) of electromagnetic radiation by the solid. In order to obtain 

elastic constants of solid, only acoustic phonons dispersion branches are necessary. 

 

1.2  Measuring elastic properties 

 

Experimental techniques for determining elastic moduli at high pressures 

and temperatures are based on the combination of several principles. Pressure apparati 

that have been modified for such measurements include gas pressure chambers, the 

piston-cylinder apparatus, multianvil devices, and diamond anvil cells. Measurements 

of elastic properties in these devices include x-ray diffraction, ultrasonic 

interferometry, Brillouin scattering, diffraction of light by sound waves, and inelastic 

x-ray scattering. Each technique offers unique advantages. In some cases, combined 

techniques provide data that have the potential to become a basis for construction an 

independent pressure scale. 

There are two different ways of measuring elasticity of materials: static and 

dynamic experiments. Both static and dynamic measurements of elastic moduli at 

high pressures and temperatures are providing data that are vital to the complete 

understanding of the elastic properties of materials.  
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1.2.1  Static measurements 

 

First group of techniques utilize the Hook’s law directly and measure elastic 

response (strain) to the applied stress. Static determinations of elastic properties are 

among the earliest measurements made with high-pressure devices. Dilatometry, one 

of the most direct methods of measuring compressibility, was pioneered by P.W. 

Bridgman (1923, 1958). In 1923 he made the most accurate measurements to date on 

iron and other metals by placing a rod of the metal under hydrostatic pressure in a 

fluid pressure medium inside a cylinder. He then measured the effect of pressure on 

the length of the rod by the electrical resistance of a wire attached to the end of the 

rod. To do this, he had to make a correction for the stretching of the cylinder. The 

technique is described in details by Bridgman (1958). 

In following years, x-ray diffraction was substituted for dilatometry for solid 

samples. Although there had been some earlier measurements, it was not until the 

1960s that x-ray techniques for studying samples under pressure were developed to 

the level that accurate compressibility measurements could be made (Jamieson, 1961; 

Piermarini and Weir, 1962; Barnet and Hall, 1964; Vereschagin, 1965; Basset et al., 

1967). X-ray diffraction provided measurements that depended more directly on the 

response of the sample and less on the response of the apparatus. Since the 1960s, this 

method has been an important source of equation-of-state measurements of solid 

samples at high pressures and temperatures. With few exceptions (Kinsland and 

Basset, 1976 and 1977; Meade and Jeanloz, 1988), these measurements yielded 

information only on molar volume and its pressure and temperature derivatives (bulk 

modulus and thermal expansion). 
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It has only been within recent years that static measurements have yielded 

quantitative information about other elastic moduli. Mao with co-authors (1998) and 

Singh with co-authors (1998) made x-ray diffraction measurements on polycrystalline 

samples of FeO, α-Fe, and ε-Fe, intentionally subjecting them to nonhydrostatic 

compression in a diamond anvil cell. Directing an x-ray beam through the sample 

perpendicular to the load axis yielded diffraction data from which they were able to 

derive an estimate of the single-crystal elasticity tensor using appropriate equations 

and incorporating the aggregate shear modulus from independent sources. The major 

advantage of this technique is that it has yielded quantitative information about the 

elastic moduli, Cij, to higher pressures than any of the dynamic methods described in 

following text. It can also be applied as easily to opaque samples as to transparent 

samples. The result's reported by Mao et al. (1998), and Singh et al. (1998) have very 

important significance for the understanding of the elastic anisotropy of the solid 

inner core of the Earth that has been detected by seismologic observations. 

The major source of uncertainty in such measurements is unknown degree of 

stress/strain continuity in the sample. The detailed discussion of this subject together 

with the full elasticity tensor of pyrite measured up to 45 GPa can be found in the 

work of Merkel et al. (2002). Elastic constants estimations based on non-hydrostatic 

powder angle-dispersion diffraction was also performed for Re and Au (Duffy et al., 

1999) and FeO (Dubrovinsky et al., 2000a). 

 

1.2.2  Shock waves 

 

Shock wave techniques have been another important source of equation-

of-state measurements at high pressures and temperatures (McQueen and Marsch, 
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1960). Shock wave techniques allow calculating the change of a sample density as 

pressure and temperature are increased simultaneously along the Hugoniot trajectory 

in P - T space. Shock wave measurements can yield bulk equation-of-state data to 

higher pressures than any of the static pressure techniques. However, the derivation of 

an isothermal or adiabatic equation-of-state from Hugoniot measurements requires 

making corrections based on the Gruneisen parameter ( VT CK ραγ /= ), where α is a 

thermal expansivity, KT is the isothermal bulk modulus, ρ is density, and CV is 

constant volume heat capacity. A discussion of the shock wave method and a 

comparison with other methods for making equation-of-state measurements are given 

by Duffy and Wang (1998). Shock wave methods in some sense are in between static 

and dynamic measurements: quite large stresses are applied to the sample (similarly to 

static methods) but for a quite short time (similarly to dynamic methods). Shock wave 

compression could provide only the value of bulk modulus. Pressure and temperature 

cannot be varied independently and only the Hugoniot path in P, T space is possible, 

and only small variations are possible by varying initial sample density or 

temperature. 

 

1.2.3  Dynamic measurements 

 

Elasticity measurements at high pressures and temperatures based on 

dynamic techniques have relied on four basic techniques: (1) ultrasonic interferometry 

(Anderson, 1961), (2) Doppler shifted Brillouin scattering by thermal phonons (Basset 

and Brody, 1977), (3) diffraction of laser light by induced sound waves (impulsive 

stimulated scattering, ISS) (Nelson et al., 1982; Brown et al., 1989), and (4) inelastic 

x-ray (IXS) and neutron (INS) scattering (Dorner et al., 1986 and 1987; Burkel, 
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2000). The first requires the use of ultrasonic signals as the probe. Methods 2 and 3 

utilize laser light and its interaction with phonons as the means to probe sound wave 

velocities. Recently, an inelastic x-ray scattering technique that could determine 

acoustic phonons dispersion curves have also been applied with a large success in a 

high-pressure diamond anvil cell experiments (Krisch et al., 1997).  

 

Ultrasonic interferometry in different pressure devices 

 

Ultrasonic measurements of elastic constants are based on the solution of 

Cristoffel equations (Brugger, 1965). The propagation of ultrasonic waves through a 

solid medium can be considered as an alteration of local compression, expansion and 

shear deformation of relatively small magnitude. The propagation speed is, therefore, 

related to elastic properties of a medium. General relation is 

 Cv =2ρ ,     (1.58) 

where ρ is density, v is the speed of wave propagation, and C is effective elastic 

constant. The latter is a combination of individual elastic constants Cij that depends on 

propagation and polarization vectors. Solutions of Cristoffel equations for different 

crystal symmetries can be found in (Brugger, 1965).  

The earliest ultrasonic measurements of elastic moduli on samples as a function 

of pressure and temperature were performed using gas as the pressure medium. 

Anderson (1961) describes a typical apparatus (Fig. 1.2.1) based on techniques 

developed by McSkimin (1961).  
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Fig. 1.2.1. Apparatus for obtaining isobaric measurements 

of sound velocity (after Anderson, 1961). 

 

In this apparatus the sample was surrounded by a gas, usually helium or nitrogen 

that was held at a very constant and accurately determined pressure by utilizing the 

dead weight principle. This consisted of a piston with a well-defined surface area 

loaded with accurate weights. The piston pressed on oil, which also served as its 

lubricant. The oil was separated from the gas medium by a mercury manometer that 

had a minimal effect on the pressure measurement. This apparatus was capable of 

pressures up to 0.5 GPa and temperatures from 2 to 500 K. Pressures could be 

measured with an accuracy of 3 parts in 10 000. Temperature was measured by a 

copper-constantan thermocouple to within 1/2 K. The sample chamber could be 

cooled by immersion in liquid nitrogen or helium. 

The ultrasonic measurements were made using pulse superposition 

interferometry developed by McSkimin (1961). The quartz transducer was sealed to 

the sample. Frequencies of the order of 10 MHz were used, and the pulses had a width 

of 2-100 msec with a repetition rate of about a millisecond. Measurements of elastic 

moduli could be made with an accuracy of about 1 part in 1 000. 
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Chen with co-authors (1996) used a gas pressure vessel with argon gas as the 

pressure medium. An internal transducer on the end of a buffer rod delivered acoustic 

signals to the sample, which was surrounded by a heater. The major innovation was 

the use of gigahertz frequencies with significantly shorter wavelengths. The shorter 

wavelengths allowed much smaller samples, thus making it possible to have greater 

perfection and to study materials for which large crystals are rare. 

The piston-cylinder apparatus for ultrasonic measurements was developed to 

reach higher pressures than the gas systems could supply. In piston-cylinder devices 

the transducer (or transducers) is placed in contact with the sample inside the pressure 

chamber (Jackson and Niesler, 1982), or the signal is introduced by means of a buffer 

rod built into the pressure vessel that carries the signal from outside the pressure 

vessel to the sample inside (Niesler and Jackson, 1989; Heydemann and Houck, 

1971). 

An example of internal transducers is shown in Figure 1.2.2. In this device a 

single crystal is subjected to hydrostatic pressures of up to 3 GPa in a fluid medium 

such as a mixture of pentane and isopentane. 

A transducer such as quartz or lithium niobate is bonded to the top of the 

sample. An additional transducer can also be bonded to the bottom of the sample. 

Pressure is measured by means of the resistance in a coil of manganin wire 

surrounded by the fluid. Ultrasonic signals in the range of 10-105 MHz are introduced 

into the crystal by the upper transducer and are detected either by reflection from the 

far side of the sample or by a second transducer attached to the bottom of the sample. 

Interference of acoustic waves by pulse superposition is used to determine travel 

times. They can be used to calculate velocities and elastic moduli when the 

dimensions and density of the sample as a function of pressure are known. These can 
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be derived from an equation-of-state for the sample based on the ultrasonic 

measurements themselves (with independent pressure determination) or any other 

source of equation-of-state data for the sample.  

The multianvil high-pressure apparati can also be used and modifications were 

made to adapt these high-pressure devices for measurements of elastic properties at 

pressure using ultrasonic interferometry (Kinoshita et al., 1979; Fukizawa and 

Kinoshita, 1982; Sasakura et al., 1989 and 1990; Yoneda, 1990; Yoneda and Morioka, 

1992; Fujisawa, 1998). Both single-crystal and polycrystalline samples were studied 

by this method. An example for such setup for ultrasonic measurements at 

simultaneous high pressures and temperatures in a multianvil apparatus is the one 

pursued at the Mineral Physics Laboratories of State University of New York 

(SUNY), Stony Brook (Liebermann and Li, 1998; Liebermann et al., 1998). 

At SUNY Stony Brook a 1000-ton uniaxial split-cylinder apparatus (USCA-

1000) has been adapted for ultrasonic interferometry measurements at high pressures 

(Li et al., 1996b). This apparatus consists of eight cubes, each with a truncated corner 

that presses against a sample having the shape of an octahedron. Pressure is applied to 

the sample by driving the eight cubes inward against the octahedral sample. The 

adaptation for ultrasonic measurements consists of truncating diagonally opposite 

corners of one of the cubes and attaching a lithium niobate transducer to the 

truncation opposite from the corner that bears on the sample (Fig. 1.2.3). 
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Fig. 1.2.2. The piston-cylinder apparatus used by 

Jackson and Niesler (1982) for making ultrasonic 

velocity measurements on a sample at hydrostatic 

pressures up to 3 GPa. In this configuration the 

piezoelectric transducers are inside the pressure 

chamber. 

 

The location of the transducer in the gap between the first-stage anvils and the 

second-stage cubes does not allow it to experience stress, and the transducer is 

capable of accurate travel-time measurements in the frequency range of 20-70 MHz. 

The cube, thus modified, serves as the "buffer rod" to transmit acoustic signals from 
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the transducer to the sample and back. Lead surrounding the sample where it is not in 

contact with the "buffer rod" serves as a pressure medium. A Teflon disk attached to 

the sample opposite the "buffer rod" provides an impedance mismatch for reflecting 

the signal back through the sample.  

Runs at different pressures and temperatures can be made on the same sample, 

and repeat runs can be made with only minor repolishing of the contact face. 

 

 

Fig. 1.2.3. A cross-section of one of the eight cubic 

tungsten carbide anvils (after Li et al., 1998b). The cube 

anvil, which has flats on opposite corners, serves as a 

buffer rod to carry the acoustic signal from the external 

transducer to the sample under the pressure. 

 

Although polycrystalline samples provide valuable information about the elastic 

properties of samples in a high-pressure device, the complete set of elastic moduli can 

be obtained only by making measurements on oriented single-crystal samples. The 
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SUNY Stony Brook group has adapted the DIA-type, cubic-anvil apparatus (SAM 85) 

for single-crystal measurements (Li et al., 1998a). The sample is centred in the cubic 

cell assembly and is surrounded by a boron nitride sleeve. The acoustic signal is 

transmitted from the anvil face to the single-crystal sample by an alumina or fused 

silica buffer rod. The far end of the sample is pressed against a NaCl disk. A 

combination of P and S waves with various orientations of the crystal can supply all 

values of Cij. 

Both types of multianvil high-pressure devices just described can be used to 

subject samples to simultaneous high pressures and high temperatures. Immediately 

surrounding the sample is a graphite furnace. A thermocouple is used to measure the 

temperature, and an alumina buffer rod is employed. The NaCl disc in contact with 

the sample not only serves to make the pressure environment more hydrostatic but 

also provides a pressure calibrant.  

It is now feasible to measure elastic properties by ultrasonic interferometry in 

samples small enough to be subjected to high pressures and temperatures in a 

diamond anvil cell, thanks to advances in the generation, transmission, and analysis of 

coherent gigahertz ultrasonic signals (Reichmann et al., 1998; Spetzler et al., 1996; 

Shen et al., 1998; Basset et al., 2000). At these frequencies, acoustic signals have 

wavelengths of the order of micrometers, suitable for use with samples that are 

typically 50-100 microns thick. The ultrasonic signal generated by a thin transducer is 

transmitted along a sapphire buffer rod coupled by force to one of the diamond anvils. 

The signal traverses the diamond anvil and enters the single-crystal sample, which is 

coupled to the anvil face by cement, by adhesion, or by a normal force. Interference of 

superimposed waves reflected from the near and far faces of the single crystal is used 

to measure the travel time of the sound waves in the sample. 
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Figure 1.2.4 shows the diamond anvil cell adapted for gigahertz ultrasonic 

velocity measurements. The acoustic signal travels along the sapphire buffer rod and 

through one of the diamond anvils to the sample, which is under hydrostatic pressure 

inside a gasket between the diamond anvils. 

 

Fig. 1.2.4. Diagram of a diamond anvil cell adapted for gigahertz 

ultrasonic velocity measurements on very small samples (after Shen 

et al., 1998). 
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Brillouin scattering 

 

Brillouin considered (Brillouin, 1921) that the periodic perturbations that a 

sound wave generates in a medium could scatter a beam of light. Furthermore, 

because these "gratings" in the medium propagate with the velocity of sound, he 

predicted that the resulting Doppler effect would lead to a change in the frequency of 

the light. 

From the point of view of lattice dynamics, Brillouin scattering probes the 

acoustic phonon dispersion branches in the vicinity of the Γ point (see section 1.1.2). 

A typical radius of the first Brillouin zone is of the order of 101 nm-1, while laser light 

wavelength used to excite thermal phonons corresponds to the wavevector of the 

order of 10-2 - 10-3 nm-1. Acoustic phonon dispersion curves are linear in this range, 

and corresponding sound speed can be directly calculated with very high accuracy and 

precision (Dorner et al., 1987). 

The technique takes advantage of existing thermal phonons in the sample and 

requires only that a beam of monochromatic laser light enters and exits the high-

pressure zone. The transparent diamond anvils of a diamond anvil cell offer this 

capability. In this method, monochromatic light from a laser passes through one of the 

diamond anvils, is Bragg-reflected from thermal phonons in the single-crystal sample, 

and then passes out through the other diamond anvil at 90 degrees to the entering 

beam. The Brillouin scattered light enters a Fabry-Perot spectrometer, where it is 

frequency analyzed. The scattered light in such an experiment is Doppler-shifted by 

the velocities of the phonons that are oriented to Bragg-reflect the light. The spectrum 

recorded by the Fabry-Perot spectrometer has peaks with both greater and lesser 
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frequencies due to phonons travelling in opposite directions. The amount of shift of 

these peaks can be used to determine the phonon velocities (Basset and Brody, 1977). 

Hydrostatic pressure is essential for accurate measurements of elastic moduli. 

Therefore, the single-crystal sample must be surrounded with a fluid contained inside 

of a gasket between the diamond anvil faces (Fig. 1.2.5).  

 

Fig. 1.2.5. Details of the light path trough the 

diamond anvils and sample (Basset and Brody, 

1977). 

 

The fluid most suitable for achieving hydrostatic pressure up to approximately 

10 GPa is a mixture of methanol, ethanol and water in a ratio of 16:3:1. There are, in 

addition, some experimental conditions that greatly simplify the interpretation of the 

Brillouin scattering measurements. If all of the interfaces through which the light 

passes are strictly parallel and bisect the angle between the incident and scattered 

rays, then no correction needs to be made for the refractive indices of any of the 

materials through which the light passes. When the equations for Doppler shift and for 
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Snell's law are combined for experimental conditions in which the incident and 

scattered angle is 45°, then the relationship can be expressed by the equation 

   ( ) 2/0ωλυ ∆=  ,    (1.59) 

where υ is the velocity of the phonon, ∆ω is the measured frequency shift, and λ0 is 

the wavelength of the impinging light. Similarly, a derivation can be carried out in 

terms of conservation of momentum and energy in the interaction of the quanta of 

light and sound. The final relationship is the same (Basset and Brody, 1977). 

The technique almost exclusively limited to transparent samples but recently 

developed extensions of Brillouin light scattering experiments to the surface Brillouin 

scattering allows measuring also opaque samples (Crowhurst et al., 1999). Crowhurst 

and co-authors used a cell with cubic zirconia anvils. In their cell the sample in the 

form of a thin film was squeezed between glass surface and silicone oil. A laser beam 

passing through the glass was reflected off the surface of the sample while it was 

under pressure. As in the more standard technique employed with transparent 

samples, the frequency shift due to scattering from surface phonons can be used to 

calculate velocities as a function of pressure. Their successful measurement of the 

change of C44 of gold as a function of pressure using this technique demonstrates its 

promise for studying other opaque samples under pressure by Brillouin scattering 

(Crowhurst et al., 1999). 

 

Impulsive stimulated scattering in the diamond anvil cell 

 

As in the Brillouin scattering technique, laser light scattered by sound waves in a 

single-crystal sample can be used to calculate elastic moduli. Unlike Brillouin 

scattering, however, the sound waves in the impulsive stimulated scattering (ISS) 
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method are stimulated in the sample by means of laser radiation (Yan et al., 1998; 

Fayer, 1986; Nelson et al., 1982; Miller et al., 1984). Brown and his colleagues have 

adapted the ISS method, also known as laser-induced phonon spectroscopy, for 

application with single-crystal samples under hydrostatic pressure in a diamond anvil 

cell (Brown et al., 1989; Zaug et al., 1992). 

The ISS method requires two forms of laser radiation, one to stimulate the sound 

waves, and the other to probe the velocity of the sound waves (Fig. 1.8, a). Two 

successive pulses are selected from a train of pulses (or are split by mirrors from a 

single pulse) produced by a Q-switched, mode-locked Nd:YAG laser (λ = 1064 nm). 

Another pulse is selected and passed through a frequency-doubling crystal to provide 

green light (λ = 532 nm) to serve as the probe. The pulses of 1064-nm radiation 

simultaneously enter the sample with an angle, 2θ, separating them. Inside the sample, 

the pulses are combined so that their interference pattern produces a spatially periodic 

distribution of pressure and temperature (Fig. 1.8, b), which in turn launches acoustic 

waves that proceed to travel in opposite directions simultaneously. The highest 

frequency could be excite is limited only by the laser pulse width. There was no 

sample heating due to the excitation and probe pulses found to be a significant factor 

in the measurements (Crowhurst et al., 2004). 

Variation in the refractive index from crest to trough along each of these sound 

waves acts like a picket fence. As the two "picket fences" travel past each other in 

opposite directions, they cause the amount of 532-nm probe light that is Bragg-

reflected off the sound waves to fluctuate. This fluctuation is detected by means of a 

controlled increase in the delay between the stimulating pulses and the probing pulse 

using a variable time-of-flight device (Fig. 1.2.6, a). The wavelength of the sound 
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waves λA depends on the wavelength of the stimulating radiation, λL, and the angle, 

2θ, between the stimulating laser beams. 

 θλλ sin2/LA =  ,    (1.60) 

The fluctuation in the intensity of the probe light yields the frequency, fA, of the 

acoustic waves. The velocity, VA, of the acoustic waves can be calculated from the 

equation 

   AAA fV λ=  ,     (1.61) 

In an anisotropic crystal, the thermal pressure of stimulating radiation launches three 

counter propagating acoustic waves, one - quasi-longitudinal and two - quasi-

transverse. Rotation of the diamond anvil cell around an axis perpendicular to the 

diamond anvil faces permits the measurement of velocities in all directions 

perpendicular to that axis. 

 

Resonant ultrasonic spectroscopy under gas pressure 

 

In resonant ultrasonic spectroscopy (RUS) normal mode frequencies in a sample 

(having the shape of a parallelepiped or sphere) are used to determine the elastic 

properties of the sample. Several years ago the method has been adapted for making 

measurements on samples under pressure (Isaak et al.,1998; Ohno et al., 2000). In 

both of these studies the technique was applied to the measurement of elastic 

properties of a silica glass sphere in a pressure vessel in which the pressure medium 

was helium gas. Two transducers were in contact with the sample sphere. One was 

used to excite the normal mode frequencies, and the other detected the response.  
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Fig. 1.2.6. (a) Schematic diagram of the apparatus used to make ISS 

measurements of phonon velocities in a sample under hydrostatic 

pressure inside a diamond anvil cell, from Baer et al. (1998). The top 

and bottom laser beams interfere to create a diffraction grating inside 

the sample. The middle beam of light is diffracted of the grating. 

Intensity as a function of delay between the exciting and the 

analyzing pulses is used to calculate the velocity. (b) Details of the 

diffraction grating created in the sample by interfering excitation 

pulses (after Zaug et al., 1992).  
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Information about the phonon dispersion curves of crystalline solids can be 

obtained by a variety of experimental techniques. The most direct methods involve the 

scattering (or absorption) of radiation by the solid. 

 

Inelastic neutron scattering (INS) 

 

By far, most of the information available on the dispersion curves of solids has 

been obtained using the more powerful neutron-scattering techniques. The reason for 

the central role played by this technique in the development of the field of lattice 

dynamics is that the energy and wavevector of the neutrons available in a neutron 

source are of the same order as those of the normal vibrations in a solid (for a typical 

normal mode in a solid, 12102/ ≈= πων  Hz = 1 THz ≈ 4 meV ≈ 50 K, and q ≈ 108 

cm-1 = 1 Å-1). 

The phonon dispersion curves can be obtained directly by studying the one-

phonon coherent scattering of a monochromatic beam of neutrons (of wavevector 

0k and energy mkE 2/2
0

2
0 h= ) from a single crystal. In these studies, one simply 

measures the momentum and energy transfer involved in the coherent scattering of an 

incident neutron with wavevector 0k to a final state with wavevector 1k  due to the 

creation of a single phonon of frequency ( )qjω . 

Inelastic neutron scattering technique is one of the most powerful tools for the 

study of the lattice dynamics of solids. However, for the measurements only relatively 

big samples (at least 1 mm3) are necessary, consequently the maximum pressure is 

limited to about 15 GPa. Until recently, inelastic neutron scattering was used to 

determine the elastic constants in cases for which one could not use more 
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conventional techniques: crystals that are difficult to handle, such as barium, and 

materials that are available only in polycrystalline form. Nevertheless, today the 

technique finds its most important application in the study of the elastic constants, of 

the high-temperature and high-pressure phases of various solids. Finally, the 

technique is unique for the study of magnetoelastic effects in solids (Klotz and 

Braden, 2000).  

 

Inelastic x-ray scattering (IXS) 

 

IXS complements the well-established inelastic neutron scattering (INS) 

spectroscopic methods in cases where neutron techniques are difficult to apply. This 

concerns the study of collective excitations in disordered systems, where well defined 

excitations typically exist only up to momentum transfers of a few nm-1. In particular 

for disordered systems with a high speed of sound (>2000 m/s), the low energy (E) 

and momentum transfer (Q) region is difficult, or even impossible, to access by 

neutron scattering owing to kinematic limitations. Furthermore, the small source size 

and beam divergence of modern synchrotron sources opens up the possibility of 

studying materials available only in small quantities down to 10-5 mm3. This is of 

particular interest for the study of matter under high pressure, since it allows one to 

employ diamond anvil cell techniques, and therefore access pressure regimes up to 

100 GPa and beyond. 

Some specific features of inelastic x-ray scattering, as compared to the 

Brillouin scattering of light, arise from the fact that the wavelength, λ of x-rays is four 

orders of magnitude shorter than that of the visible light photons. The most important 

difference, in comparison with the phonon-induced scattering of light and thermal 
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neutrons, is the extremely small energy transfer, ∆E, with respect to the x-ray energy, 

E ≈104 eV. Even for acoustic phonons with wavevectors at the Brillouin zone 

boundary, which have an energy of 02.0≈ωh  eV, the ratio EEE ωh=∆  is only 2 · 

10-6. For 300 MHz phonons, which have energy of 610−≈ωh eV, the ratio 

1010−=Eωh is practically zero. 

IXS cross-section and kinematics will be described in the next Chapter. For 

geophysics, the high frequencies (in order of THz) used in IXS experiments have the 

interest of getting close to the infinite frequency limit, comparatively to the low 

frequency limit provided by radial x-ray diffraction modelling. 

The overview and comparison of discussed above techniques is presented in 

table 1-2. 
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1.3 Geophysical implications 

 

Understanding the mineral composition of Earth's interior is a major challenge 

in geophysical studies. The direct sampling is limited to rocks formed maximum in 

the first few hundred kilometers of depth (Anderson, 2007). Investigations of the 

elastic state of the Earth, however, are a powerful tool for determining the mineral 

composition of Earth's interior. Profiles of compressional and shear wave velocities 

VP and VS in the Earth are calculated from seismic studies. These profiles, when 

compared with the elastic properties of minerals measured at high pressures and 

temperatures in laboratory studies, are the primary means by which one can constrain 

plausible compositional models of Earth's interior. Although most of the laboratory 

measurements are carried out at the conditions far from those in the Earth’s deep 

interior, the frequencies of waves generating in laboratories are usually far from those 

of seismic waves, the measurements themselves, being only the first step in 

interpreting seismic velocities, are rather important, since no “long way” is possible 

without a first step. 

 

1.3.1 Wave velocities and proper thermodynamic interpretations 

 

The primary geophysical data are the longitudinal and shear wave velocities. 

They are related to the isotropic bulk and shear moduli, KS and G, and density, ρ, as 

2
1

3
4
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and  
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The KS modulus in Eq. 1.62 is the adiabatic bulk modulus and is defined by 
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where P is pressure, V is volume, and S is entropy. The isothermal bulk modulus, KT, 

where T is temperature, is given as 
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and generally applies to the bulk modulus when used in equation-of-state 

formulations. Dynamical experiments such as resonance ultrasound, plane-wave 

propagation, and Brillouin scattering necessarily obtain data leading to KS. Static 

pressure-strain experiments (for example, diamond anvil cells or large-volume presses 

experiments) obtain data relevant to KT. The relation between KS and KT is as follows: 
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
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2

1 α ,     (1.66) 

where α is the volume coefficient of thermal expansion, CV is the specific heat 

capacity at constant volume, and temperature (T) is in Kelvin. While 

T
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=  ,      (1.67) 

where CP is the specific heat capacity at constant pressure, the Eq. 1.66 could be 

written as KS  

T
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T 2
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=  ,      (1.68) 

or, alternatively, 
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( )TKK TS αγ+= 1 ,      (1.69) 

where γ is the Grüneisen parameter.  

Equations 1.66 and 1.68 show that KS = KT at T = 0, but KS > KT for T > 0. The 

difference between KS and KT at room temperature is small, being about 1-2 % for 

most minerals, because α is small. The difference between KS and KT increases, 

however, with increasing temperature (Isaak, 2001). 

There is no need to distinguish between isothermal and adiabatic values of the 

shear modulus. The difference between adiabatic and isothermal quantities arises from 

adiabatic heating or cooling with volume changes. The shear modulus, however, 

relates shear stresses to volume-conserving shear strains. 

 

1.3.2  Importance of single-crystal elasticity data in geophysical 

studies 

 

When polycrystalline material studied, the irregular effects of the specimen 

(such as porosity, texturing, and grain boundaries) usually influence the results of 

measurements. These effects could be eliminated when hot-pressed polycrystalline 

aggregates are probed. Such studies have been successfully accomplished and have 

provided crucial data on the elasticity of high-pressure mineral phases relevant to 

Earth's mantle (Liebermann and Li, 1998; Gwanmesia et al., 1990a; Gwanmesia and 

Liebermann, 1992). Performing measurements on high-quality single-crystal 

specimens is even better, since there is no porosity, texturing, or grain boundaries. 

However, this is not the major importance of single-crystal studies in geophysics. 

Geophysical records of the last decade resolved some local seismic anisotropy in 

the Earth’s interior. For many regions in the Earth such anisotropy is believed to be a 
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reflection of non-isotropic orientation of rock-forming crystallites. In order to 

reconstruct the model for texturing in anisotropic regions, a solid knowledge of 

individual elastic constants for the corresponding phases is necessary. Individual 

elastic constants could be measured precisely only when probing the single crystals. 

Selected examples of minerals studied by mean of various techniques for 

elasticity measurements are referred in table 1-2. 

 

1.3.3  Velocity profiles of Earth’s interior 

 

The general structure of the Earth’s interior has been known from seismology 

for about 80 years, and the knowledge of the fine structure is improving continuously.    

The main divisions are the crust, the mantle and the core. Although, the body of our 

planet is inhomogeneous, it is generally considered that Earth's interior behaves 

elastically roughly as a layered sequence of isotropic material. This simplification 

ignores lateral inhomogeneities that are a much more subtle effect than the radial 

changes. The primary considerations are the radial dependence of ρ, VP and VS. Figure 

1.3.1 shows Earth profiles of VP and VS versus depth. The regions represented by the 

figure, the upper mantle, transition zone, and lower mantle, form the rocky part of 

Earth's interior. These regions, collectively, are called the mantle and they consist 

primarily of silicate oxide materials. The mantle extends to a depth of about 2890 km, 

nearly half the way to Earth's radius. D” layer separates silicate mantle and metal core 

and exhibits anomalous seismic waves gradients. The deeper part of Earth consists of 

the metallic molten outer core (depth about 2890-5150 km) and solid inner core 

(depth about 5150-6370 km) (Anderson, 2007). 
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Compositional models of Earth's interior are constrained by several indirect 

evidences, including studies on geochemistry, phase equilibrium, and cosmic 

elemental abundances. The elastic-wave profiles of Earth's interior, however, present 

especially powerful constraints on possible mineralogical models. Figure 1.3.1 reveals 

several major features about Earth's mantle that ultimately must be reconciled with the 

mineral elasticity data. First, there is an overall increase in VP and VS with depth in the 

mantle. Second, the boundary between the upper mantle and transition zone is marked 

by sudden discontinuities in both VP and VS. Third, the rate of increase of VP and VS, 

i.e., dzdV SP /, , where z is depth, in the transition zone is greater than the dzdV SP /, for 

the deeper parts of the upper mantle and for the lower mantle. Finally, there is a 

second major discontinuity in VP and VS between the transition zone and the lower 

mantle. Any acceptable mineralogical model of the Earth should ultimately explain all 

the features of the elastic profile of the mantle (Isaak, 2001). 

 
Fig. 1.3.1. VP and VS profiles in the Earth (data are 

taken from Dziewonski and Anderson, 1981). 
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In order to fit the physical properties of a set of minerals to seismic and density 

profiles of the deep Earth one could use two general point of view. One approach is to 

adiabatically decompress the mantle to zero pressure and the temperature appropriate 

for the foot of the adiabat. The resulting physical properties (density and wave 

velocities) are then compared with those from zero-pressure data for a set of minerals. 

This approach was pioneered by Birch (1952) and used by many researchers (e. g. 

Stacey, 1995 and 1998; Jackson, 1998; Stacey and Isaak, 2000). The primary use of 

this first method is in applications to Earth's lower mantle. A second method is to use 

appropriate equations of state and extrapolate mineral properties to the P, T conditions 

of the mantle for direct comparison with Earth profiles (Isaak, 2001). The consistency 

of these two approaches, when sufficient data on the P and T effects of elasticity for 

minerals are available, is demonstrated by Jackson (1998).  

 

The seismic discontinuity at 410 km 

 

The discontinuities in VP and VS near 410 km provide a good starting point for 

constructing compositional models of Earth's mantle. One explanation for this 

discontinuity is that it represents sudden changes in chemical composition with depth 

(Anderson and Bass, 1986). It is usually understood, however, that the discontinuities 

in VP and VS near 410 km are related to the phase transition of Mg-rich olivine to the 

β-phase (Anderson, 2007). 

Birch (1952) predicted that around 300-km depth, ferro-magnesium silicates 

would begin transforming to close-packed, high-pressure phases. Soon afterwards, 

Ringwood (1956) predicted the olivine-spinel transition. Since that time, the olivine to 

modified spinel transformation has been demonstrated in the lab (Ringwood and 
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Major, 1966 and 1970; Akimoto and Fujisawa, 1966) and this transition has been used 

to estimate the amount of olivine in Earth's mantle. 

While it is commonly assumed that the four dominant minerals of Earth's upper 

mantle are olivine, orthopyroxene, clinopyroxene, and garnet, different compositional 

models ascribe varying amounts (by volume) of these four minerals to the upper 

mantle. Interestingly enough, each competing model appeals to the 410-km seismic 

discontinuities for its support. The pyrolite model introduced by Ringwood (1975) 

assigns the following mixture: olivine, 57%; orthopyroxene, 17%; clinopyroxene 

(omphacitic), 12%; and garnet (pyrope-rich), 14%. The term "pyrolite model" is 

understood to be a mineralogical model of Earth's upper mantle containing 50% or 

more olivine by volume. Since the introduction of pyrolite, other models of the upper 

mantle with the content of olivine somewhere between 16 and 75% have been 

proposed (Bass and Anderson, 1984; Bina and Wood, 1987; Weidner, 1985 and 1986; 

Weidner and Ito, 1987; Anderson, 1988; Duffy and Anderson, 1989; Gwanmesia et 

al., 1990b; Rigden et al., 1992; Ita and Stixrude, 1992; Duffy et al., 1995b). 

The main reason these studies disagree in their conclusions about the amount of 

olivine in Earth's mantle is that they make different assumptions about the elastic 

properties of the high-pressure β-(Mg,Fe)2SiO4 phase at the P, T conditions of the 

410-km discontinuity (Isaak, 2001). The amount of olivine in a proposed model 

would be that required to account for the 4 - 5 % and 4.0 - 4.6 % increase (Grand and 

Helmberger, 1984; Mechie et al., 1993; Nolet et al., 1994) in the respect to VP and VS 

profiles at 410 km. Room-temperature data on the elasticity of α and β-(Mg,Fe)2SiO4 

indicate that these velocity increase would be satisfied with 30 – 40 % olivine content 

by volume in the upper mantle (Duffy et al., 1995b). However one should make the 

comparison at the certain P-T conditions of 410 km (13.8 GPa, 1800 K). The first 
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measurements for ( )TS PK ∂∂ /  and ( )TPG ∂∂ /  for the β-(Mg,Fe)2SiO4 phase were 

made on polycrystalline specimens (Gwanmesia et al., 1990b; Gwanmesia and 

Liebermann, 1992) resulting in respective values of 4.8 and 1.7 (Gwanmesia et al., 

1990a). Further measurements on the pressure effects of elasticity of the β-

(Mg,Fe)2SiO4 phase suggest ( )TS PK ∂∂ /  and ( )TPG ∂∂ /  are closer to 4.2 and 1.5, 

respectively (Li et al., 1996a; Li et al., 1998a). 

Uncertainty about the temperature derivatives of elastic properties, especially 

that of the shear modulus, for the β-(Mg,Fe)2SiO4 phase prevents a more definitive 

interpretation of the olivine content. If ( )PTG ∂∂ /  for the β-(Mg,Fe)2SiO4 phase has a 

relatively large (negative) magnitude compared to the α-(Mg,Fe)2SiO4, the change in 

VP and VS due to the α - β transition will be reduced at elevated temperature, 

necessitating more olivine in the mineralogy to account for the observed seismic 

discontinuities (Isaak, 2001).  

 

Elastic properties of the transition zone 

 

The transition zone is the part of the mantle somewhere between 410 and 660 

km. In this region the VP and VS gradients are greater than can be explained by 

isochemical and isostructural changes in a mineral assemblage with Mg2SiO4 as the 

main component (Bullen, 1940). The gradients throughout the transition zone could 

account for the gradual transitions of minerals from low-velocity to high-velocity 

phases: pyroxene to garnet; β- to γ-(Mg,Fe)2SiO4; and garnet to perovskite (Isaak, 

2001). Researchers, however, are not yet in full agreement on this problem. 
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At around 100-km depth, orthopyroxene begins to transform to clinopyroxene 

(Ito and Takahashi, 1987; Irifune, 1987). Around 275 km, orthopyroxene is no longer 

stable. At about 300 km (10 GPa), the clinopyroxene begins transforming to garnet 

(majorite). This transformation is complete, however, before 500 km (Gasparik, 1990; 

Irifune, 1993). The pyroxene to majorite transformation cannot, therefore, explain the 

high gradients throughout the entire transition zone even if some amount of Ca-rich 

clinopyroxene persists to much higher pressure as suggested by Ito and Takahashi 

(1987). 

The β- to γ-(Mg,Fe)2SiO4 phase change is also complete well short of the major 

discontinuity at about 660 km. Katsura and Ito (1989) find that this wadsleyite-

ringwoodite transition terminates between 505 and 545 km. The garnet-perovskite 

transition begins between 580 and 720 km (Jackson and Rigden, 1998). 

Agee (1998) made a review implying that our present understanding of the 

seismic gradients in the transition zone does not match our knowledge of the elastic 

minerals present in that region. Jackson and Rigden (1998), however, state that known 

phase transitions in the region from 410-660 km adequately account for seismic 

structure of the transition zone. Their conclusion is that the combined effect of the 

pyroxene to garnet, β- to γ-(Mg,Fe)2SiO4, and garnet to perovskite transitions produce 

the overall large gradients in VP and VS in the transition zone. 

A further complication to interpreting the mineralogy of this region is the 

possibility of a global seismic discontinuity around 520 km (Shearer, 1990, 1991, 

1996; Kato and Jordan, 1999; Gaherty et al., 1999). This discontinuity is much more 

subtle than the discontinuities at 410 km. Some have even questioned whether the 

resolution of the seismic is sufficient to see discontinuous changes in wave velocities 
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at 520 km (Bock, 1994), although the prevailing understanding is that this 

discontinuity is indeed present. 

Agee (1998) discusses possible causes for a 520-km discontinuity in terms of: 

(1) the β- to γ-(Mg,Fe)2SiO4 phase change; (2) the clinopyroxene + majorite garnet to 

majorite garnet + perovskite transition; (3) a combination of (1) and (2); and (4) a 

compositional change. The β- to γ-(Mg,Fe)2SiO4 transition is the most widely 

accepted explanation for the 520-km discontinuity. Jackson with coauthors (2000) 

measured the elastic properties of γ-(Mg,Fe)2SiO4 to 873 K using Brillouin scattering 

and concluded that olivine content of 30-50% in the transition zone is sufficient to 

account for the shear impedance contrast at 520 km. Conclusions based on 

compressional waves are less strict because of the uncertain value of ( )TS PK ∂∂ /  of 

the β-phase (Fei et al., 1992; Meng et al., 1993; Li et al., 1998b). Jackson with co-

authors (2000) also note that some studies indicate relatively large local (sub-Eurasian 

mantle) values for ∆VP (~2-3%) (Mechie et al., 1993) and discuss the difficulty in 

explaining these changes in terms of the β- to γ-(Mg,Fe)2SiO4 transition for a mineral 

assemblage of even 100% olivine. They suggested that local instances of chemical 

heterogeneity may explain such large changes in ∆VP, and they cite the accumulation 

of subducted material above the 660-km discontinuity as one possible mechanism. 

 

The seismic discontinuity at 660 km and the lower mantle 

 

The second major discontinuity in seismic wave velocities occurs at 660-km 

depth. It is now widely accepted that this discontinuity represents the breakdown of 

olivine to perovskite (Mg,Fe)SiO3 and magnesiowüstite (Mg,Fe)O. Ming and Bassett 

(1975) observed the breakdown of a range of compositions of olivines at 25 GPa and 
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1700ºC. Their interpretation was similar to what others suggested at that time - the 

new phases were believed to be magnesiowüstite and stishovite. Soon afterwards, Liu 

(1976) and Ito (1977) found that Mg2SiO4 spinel disassociates to MgSiO3 perovskite 

and MgO periclase. Now there exists a large body of experimental evidence that 

points to the disassociation of spinel to perovskite and magnesiowüstite as the reason 

for the 660-km discontinuity. The implication from the olivine phase diagram is that 

this depth, which is at a pressure of 24 GPa, has a corresponding temperature of about 

1900 K (Ito and Katsura, 1989). Many details of 660 km discontinuity are still not 

clear. Many questions regarding influence of minor components (Ca, Al, fluids) still 

remain open. Iron partitioning between perovskite and magnesiowüstite which could 

have dramatic effect on this dissociation reaction remains controversial (Frost and 

Langenhorst, 2002;  McCammon, 1997; Lauterbach et al., 2000). Several interesting 

effects in addition to the density and elasticity gradients discontinuity also occur on 

this boundary. For example, (Mg,Fe)2SiO4 polymorphs (olivine, wadsleyite and 

ringwoodite) does not incorporate significant amount of Al3+ and Fe3+ in their crystal 

structure. Contrary, perovskite easily incorporates a large amount of Al3+ substituting 

Si4+ in octahedral position, and charge balance could be easily maintained by 

oxidation of Fe2+ to Fe3+. The upper/lower mantle boundary therefore also represents 

a strong gradient in Fe2+/Fe3+ ratio in the Earth interior (McCammon, 2005). 

Below 660 km the velocity profile varies relatively smoothly without sharp 

discontinuities with depth. These profiles also indicate that from 660 to 2700 km 

(about 200 km before the core-mantle boundary) the physical properties can be 

described in terms of a chemically and structurally homogeneous material that is self-

compressing. 
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Relative amounts of major Earth mantle phases could be calculated within 

general thermodynamics with the experimental inputs of several parameters including 

elastic properties (Fig. 1.3.2). 

 

Fig. 1.3.2. Mole fraction of main mantle minerals as a function of depth. 

“CPx” and “OPx” – ortho- and clino-pyroxenes; olivine, wadsleyite and 

ringwoodite are α, β, and γ-(Mg,Fe)2SiO4, “ILM” – ilmenite, “MW” – 

(Mg,Fe)O magnesiowüstite, “Mg,Fe-PV” – (Mg,Fe)(Si,Al)O3 

perovskite, “Ca-PV” – CaSiO3 perovskite. 

 

If the compressibility, bulk and shear moduli of these minerals are known, VP 

and VS could be calculated in order to compare to seismological observations (Fig. 

1.3.3, 1.3.4). General trends are reproduced correctly, however, in many fine details 

there is still no good agreement between those two profiles. 
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Fig. 1.3.3. Comparison of mineral VP values determined initially along an 

adiabatic geotherm with Earth VP profile. “S25”-dependence is taken from 

LeFevre and Helmberger (1989); “GCA” - from Walck (1984). Mineral 

names are as following: “cor” – corundum; “Mg-pv” – (Mg,Fe)SiO3 

perovskite; “Ca-pv” – CaSiO3 perovskite, “ol” – olivine, “β-ol” – 

wadsleyite, “γ-ol” – ringwoodite, “Na-mj” and “Ca-mj” – sodium and 

calcium-rich majorites, “il” – ilmenite, “opx” – orthopyroxene, “di” – 

diopside, “jd” – jadeite, “gar-pyr” and “gar-gross” – pyrope and grossular 

garnets, “mw” – magnesiowüstite (after Duffy and Anderson, 1989). 
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Fig. 1.3.4. Comparison of mineral VS values determined initiated along an 

adiabatic geotherm with Earth VS profile. See Fig. 1.3.3 for notations. After 

Duffy and Anderson (1989). 

   

 

1.4  Aims of the study 

 

In order to interpret seismic observations from the point of view of mineral 

physics and to clarify most of the abovementioned problems very high-quality 

experimental data on high-pressure and high-temperature elastic properties of 

minerals are necessary. Such data could be provided mostly from single-crystal 

elasticity data investigated by mean of Brillouin scattering experiments. Many of 

geologically important minerals are not transparent, and ultrasonic interferometry 

combined with diamond-anvil cell technique is one of the best solutions of described 

above problems. This gives the motivation for this work that is the development of in 
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situ high-pressure and high-temperature GHz interferometry at Bavarian Geoinstitut 

and application of this and other experimental techniques to study high-pressure and 

high-temperature elasticity of minerals. 

 

 

 

 



 



72 

 

 

Chapter 2 

 

Developed methods and instrumentation  

 

2.1 GHz ultrasonic interferometry laboratory at Bavarian 

Geoinstitut (BGI) 

 

One of the main goals of the present work was the development of the gigahertz 

ultrasonic interferometry (GUI) system for the in situ high-pressure and high-temperature 

measurements of sound velocities in crystals. Although possibility of simultaneous high-

pressure and high-temperature GUI measurements in diamond anvil cell was 

demonstrated already five years ago up to temperature of 250°C (Jacobsen et al., 2002b), 

in situ pressure measurements were not possible. The necessity of determination P and T 

simultaneously always appears because pressure in diamond anvil cell changes upon 

heating. So raised a problem of developing the experimental setup for simultaneous 

sound velocities measurements and pressure determination under high temperature. 

 

Over 50 years ago, Birch (1952) recognized that the constitution of Earth’s 

inaccessible interior could be interpreted from seismological observation, provided that 

the elasticity of its constituent materials could be measured or calculated at relevant 
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conditions of pressure and temperature in the laboratory. A new gigahertz ultrasonic 

interferometer with shear-wave capabilities (Jacobsen, 2002a) has been developed for 

high-pressure and high-temperature elasticity measurements in the diamond anvil cell 

(DAC). The acoustic instrumentation can be interfaced to nearly any type of DAC, and 

measures single-crystal compressional and shear-wave travel times with high precision. 

Measured travel times and their P–T derivatives are converted to sound velocities and 

elastic moduli for direct application to problems in geophysics. 

Gigahertz-ultrasonic interferometry was initially developed by Spetzler et al. 

(1993), although the idea of using high-frequency ultrasound (at ~100 MHz) in order to 

study micro-crystals and to eliminate unwanted diffraction effects can be traced back to 

McSkimin (1950). By extending ultrasonic measurements to thousands of MHz (i.e. 

GHz), the acoustic wavelengths in minerals are reduced to a few micrometers (µm), 

permitting single-crystal ultrasonic travel-time studies on samples as thin as a few 10’s of 

µm in length. Since its initial application in the gas-loading piston–cylinder at Colorado 

(Chen et al., 1996), the GHz technique, at various stages of development, has been used 

successfully in the DAC with compressional waves (Spetzler et al., 1996; Shen et al., 

1998; Reichmann et al., 1998; Bassett et al., 2000). Later a new method of generating 

GHz shear-waves has been developed for ultrasonic interferometry (Jacobsen et al., 

2002a), and has already been used to determine the complete elastic tensor of a high-

pressure phase of silicate ringwoodite (Fo90) recovered from the multi-anvil press 

(Jacobsen et al., 2004a). Shear-waves have since been transmitted into the DAC for 

acoustic interferometry (Jacobsen et al., 2004b), and the elastic tensor of some opaque 

iron-oxide minerals including magnetite (Reichmann and Jacobsen, 2004), 

magnesiowüstite (Jacobsen et al., 2002a), and wüstite (Kantor et al., 2004a) have been 

determined to ~10 GPa. 
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Transducers and buffer rods 

 

Ultrasonic interferometry is a single-transducer delay-line experiment. The basic 

principles are unchanged from MHz-ultrasonic interferometry (see section 1.2 in Chapter 

1), with the major exceptions being within the electronics and transducer technology, 

discussed in this section. GHz frequency electronics require special attention because 

high-frequency electromagnetic fields suffer higher attenuation in cables and are 

extremely sensitive to impedance mismatch. There are additional complexities for high-

pressure ultrasonics because the travel-time of the carrier signal through the cables and 

circuitry approaches that of sound velocities through thin mineral plates, causing 

additional interference effects. The design challenges for ultrasonics at GHz frequencies 

have therefore mainly to do with impedance matching to avoid unwanted reflections in 

the circuitry. 

Contact to the delicate transducers, which are only about 1 µm thick, is made 

through transmission-line connectors, designed to match the nominal 50 Ω impedance of 

the system. Transmission lines consist of a conductor–insulator–conductor sandwich; one 

measures about 1 mm thick and 3 mm wide, and is soldered to a standard SMA 

connector. The lead contact consists of a polished pin mounted onto the end of a leaf 

spring, which protrudes through the insulating and ground layers. Contact to the 

transducer is made by gently pushing the transmission line against the transducer. With 

these connectors, no additional soldering is necessary and different buffer rods can be 

switched in-and-out of the same connector. 

The transducers used for producing the primary waves are thin-films of ZnO, 

developed in collaboration with K. Müller and H. Ohlmeyer at the University of 

Bayreuth. Figure 2.1.1 shows the structure of a compressional wave transducer. Thin 
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films of chrome (5–10 nm thick) and then gold (~500 nm thick) are vacuum-coated onto 

a single-crystal buffer rod substrates, usually made of c-axis sapphire (Al2O3) for P-

waves or [100]-oriented cubic yttrium aluminium garnet (Y3Al5O12 or simply “YAG”) in 

the case for shear-waves. Deposition of the zinc oxide (ZnO) transducer is a sputtering 

process, requiring about 2 hours for each micron of ZnO growth. To achieve transducers 

that can be driven at ~0.5–2.5 GHz, the ideal ZnO transducer thickness is 1.5 µm. Finally, 

a second Cr–Au layer is precision coated onto the transducer for the lead contact. The 

diameter of the ZnO is normally about 1 mm, and the diameter of the top electrode is 

about 0.3 mm (Jacobsen et al., 2005a) (Fig. 2.1.1). 

The compressional waves produced by this kind of transducers even at GHz-

frequencies have very good quality, but they are not suitable fro producing shear waves. 

For the time being there are no shear-wave transducers for such high-frequencies 

available. Earlier it was tried by Chen and co-workers (Chen et al., 1997) to thin down a 

commercial MHz-frequency ultrasonic shear transducer produced near-GHz shear-waves. 

Unfortunately all they could do was a transducer of relatively low quality and only over a 

narrow frequency range of 590–605 MHz. Later the problem was solved by Jacobsen and 

co-workers with developing a GHz shear-wave buffer rod that produces purely polarized 

shear-waves by P-to-S conversion (Jacobsen et al., 2002a) (Fig. 2.1.2). 
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Fig. 2.1.1. Schematic view of the thin-film 

piezoelectric transducer, sputtered onto a 

single-crystal buffer rod for ultrasonic 

interferometry. 
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Fig. 2.1.2. Schematic view of the high-

pressure ultrasonic experiment for shear-

waves measurements.  
 

The GHz shear-wave buffer rod works on the principle of Snell’s law. An incident 

P-wave strikes a polished conversion facet on a YAG single crystal at an angle of 

incidence (i) such that the converted S-wave is orthogonal to the incident P-wave (Fig. 

2.1.2). If the incident P-wave is travelling in the [100] direction of the cubic YAG crystal, 

from Snell’s law, the velocities are: 
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where the angles i and j are measured between the incident P and converted S-wave from 

the normal of the conversion facet. For the converted shear-wave to propagate as a pure 

shear-wave (i.e. no compressional component or splitting), it must travel in another pure-

mode direction (e.g. [010] for the cubic crystal buffer rod). The S-wave will be 

orthogonal to the incident P-wave when i  + j = 90º. Substituting i = 90º - j into Eq. (2.1) 

and using the identity sin (90º-j) = cos (j) yields: 
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which gives the angle of incidence (i) producing an orthogonal conversion in any cubic 

crystal. For YAG, there were [ ]100
PV and [ ]010

SV  velocities measured on the bench and 

determined i = 59.5º. The useful feature of a P-to-S conversion buffer rod is that the 

polarization of the shear-wave is known precisely, being defined by direction of the 

incident P-wave because there is no rotation of the polarization vector across the 

conversion (Jacobsen et al., 2002a).  

  

Electronic components  

 

The high-frequency ultrasonic interferometer consists of four main components: 

(1) a radio-frequency (RF) generator or microwave synthesizer, (2) a pulse generator – 

either internal to the microwave synthesizer or external to the RF signal generator, (3) a 

high-frequency digitizing main-frame oscilloscope with trigger and channel set, and (4) a 

personal computer to drive the system and save the raw amplitude data. 
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The signal generator provides a highly stable radio-frequency (RF) source to the 

interferometer. This allows measuring ultrasonic travel times to a small part of an 

interference fringe, or about 1 part in 104 if the round-trip travel-time through a sample is 

about 100 ns (samples 0.2–0.6 mm thick) and to about 1 part in 103 if the sample 

thickness is an order of magnitude shorter (in the DAC). The GHz system in BGI uses the 

Gigatronics 6062A signal generator, with 10 MHz to 2.1 GHz bandwidth, 0.1 kHz 

resolution, output power up to 12 dB, and high-stability 10-MHz quartz-oscillator 

reference. 

The continuous output from the RF generator is gated by a pulse generator, 

providing phase-coherent pulses of programmable duration and delay. The GHz-system 

in BGI uses the Stanford Research Systems DG535 Digital Delay/Pulse Generator, but in 

practice the instrument could be internal to a microwave synthesizer provided that it can 

produce gated signals as short as ~100 ns in duration and with appropriately fast rise 

times of about 3–5 ns (Jacobsen et al., 2005a). 

The digitizing oscilloscope has GHz-bandwidth and picoseconds resolution. The 

interferometer now at the BGI uses the HP54750 system (i.e. HP54750A scope with the 

20 GHz HP54751A trigger module). The systems provide a maximum of 500 ps/div 

resolution (5 ns full window) when the trigger rate is 10 kHz. 

 

Data collection and reduction 

 

Ultrasonic P- and S-waves are delivered to the sample through the buffer rod (and 

one of the [100]-oriented diamond anvils in case of high-pressure experiment). Acoustic 

coupling between the buffer rod and the sample (or one of the diamond anvils) is 

achieved by applying a small mechanical force. In high-pressure experiments the sample 
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must have also a good acoustic coupling to the acoustic diamond. Impedance contrasts at 

the buffer rod – diamond interface, the diamond – sample interface, and at the sample – 

pressure medium interface produce reflections, which are detected by the source 

transducer (Jacobsen et al., 2005a). The round trip through the system is normally about 3 

µs. Echo train at 1.2 GHz from the shear-wave buffer rod and attached sample of San-

Carlos olivine is shown in Figure 2.1.3.  

 

 

Fig. 2.1.3. Echo train at 1.2 GHz showing reflections internal to the buffer rod 

and multiple S-wave echoes from the sample at ambient conditions.  

 

In both ambient and high-pressure experiments the travel time is extracted from 

the interference data achieved by overlapping the acoustic echoes from buffer rod and 

sample (or diamond and sample). An interference pattern is produced by measuring the 

amplitude of the combined signal at a position where there is first-order interference 

between the diamond and sample echoes and scanning the frequency (Fig. 2.1.4). Travel 
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times are determined from each fitted frequency maxima and minima of interference by 

experimentally fitting the integer number of wavelengths in the round trip through 

sample. Additional details on data reduction are given by Spetzler et al. (1993). 

 

Fig. 2.1.4. Compressional-wave interferometry data from a crystal of 

Fe0.94O at ~8.1 GPa in the diamond anvil cell. 

 

Diamond anvil cell and equipment for simultaneous high-pressure 

and high-temperature ultrasonic measurements 

 

GHz-ultrasonic interferometry can be interfaced to nearly any type of diamond 

anvil cell (DAC), provided that the buffer rod fits into the conical access of the diamond 

anvil supporting seat for direct contact to the back of the diamond anvil. In the 

hydrothermal DAC (Bassett et al., 2000), ultrasonic interferometry has been carried out 

to ~9 GPa at room temperature (Reichmann and Jacobsen, 2004), and to 250°C at ~2.5 

GPa (Jacobsen et al., 2002b). A miniature three-pin DAC 30 mm in diameter is now used 
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for ultrasonic measurements in Bayerisches Geoinstitut. For simultaneous high-

temperature experiments the DAC is equipped with a miniature internal resistive heater 

(Fig. 2.1.5) (Kantor et al., 2005a) with thermocouple fixed at a very small distance from 

the sample chamber. Temperature of the cell is controlled by back-feed power supply 

system with accuracy of 1 to 3 K within time of measurements.  

 

Fig. 2.1.5. Diamond anvil cell with the heating assembly 

for high-P, T GHz experiments: 1 - diamond anvil cell; 2 - 

ceramic (pyrophilite) heater; 3 – thermocouple; 4 - 

platinum wires; 5 - mica for electrical isolation; 6 - one 

Euro coin for scale; 7 - entire assembly (after Kantor et al., 

2005a). 

 

DAC is mounted inside a tilting platform (Fig. 2.1.6-A) fixed on the end of the 

rotating hand (Fig. 2.1.6-B), and can be moved to three different positions: on the top of a 

P-buffer rod for compressional wave velocities measurement, on the top of S-buffer rod 

for shear wave velocities measurement and under the microscope, equipped with laser 
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and portable high-resolution spectrometer for ruby fluorescence measurements (Fig. 

2.1.6-C). DAC under high temperature could be easily moved between these three 

positions, and independent pressure, temperature, S- and P-wave velocities measurements 

could be done simultaneously at each data point (Fig. 2.1.6-D). 

 

 

 

Fig. 2.1.6-A. Diamond anvil cell mounted for high-P and high-T experiment: 1 – 

two screws for tilting cell alignment; 2 – R-type thermocouple; 3 – wires from the 

internal resistive heater. 
 



  Developed methods and instrumentation  

 84

 

Fig. 2.1.6-B. The rotating hand (1) places the DAC (2) on the top of P-BR (3) fixed in a 

holder and a stage (4). The microscope (5) is used for performing the visual alignment of 

DAC against a buffer rod.  
 

 

Fig. 2.1.6-C. The laser for in situ pressure measurements: 1 – He-

Ne laser; 2 – beam splitter (semitransparent mirror); 3 – focusing 

lens of the detector (high-resolution compact spectrometer). 
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Fig. 2.1.6-D. New experimental setup for GHz high-P,T experiments: 1 – pulse 

generator; 2 – RF signal generator; 3 – sampling oscilloscope; 4 - stage for P-

buffer rod; 5 – stage for S-buffer rod; 6 – rotating stage; 7 – laser for pressure 

calibration; 8 – DAC fixed inside a tilting assembly. 
 

 

Fig. 2.1.6-E. XYZ-stage allows aligning the DAC against buffer rot: 

1- rotating hand, connecting the tilting platform (with DAC fixed in it) 

with the XYZ-stage; 2- X- and Y- translation screws; 3 – Z-translation 

screw. 
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The alignment is achieved by visually inspecting the polished flat of the buffer 

rod against the acoustic anvil using a zoom stereomicroscope with on-axis illumination 

(see Fig. 2.1.6-B). The buffer rod is fixed in a holder and could be only moved up and 

down for few millimetres, while the DAC is sitting in a tilting assembly attached to a 

XYZ-stage (Fig. 2.1.6-E), that provides a simple way to align the diamond surface 

against the buffer rod. While the diamond cell is still open, the polished flat of the buffer 

rod, typically about 250–300 µm in diameter is carefully brought close to the diamond 

table. The interference fringes between the flat and the diamond are used to guide the 

buffer rod parallel to the diamond table. Parallelism is achieved using a tilting platform in 

which the DAC sits, while within a plane the DAC could be easily moved using X-Y 

translation set (see Fig. 2.1.6-D). Finally, once the buffer rod flat appears grey or black 

against the diamond, the buffer rod is pushed up against the diamond with an advancing 

screw. The positions of the XYZ-screws are recorded and after loading the DAC could be 

placed exactly the same way. Some fine adjustment is possible also after loading the cell. 

 

Preparing the experiment 

 

The samples are prepared as oriented single-crystal plates; polished with parallel 

faces and flat to about ~1/10λ with thicknesses ranging from about 25 to 40 µm. The 

plates have a finish polishing of optical quality, and are placed directly on the culet of the 

acoustic transmitting anvil. Samples are oriented with single-crystal x-ray diffraction, 

resulting in a typical uncertainty of about ±1°, due mainly to transferring of the crystal 

from the diffractometer to a glass slide for polishing. The number of orientations required 

to obtain the complete tensor depends on the crystal system of the mineral (see section 

1.1.1). For example, in the cubic system, just one crystal oriented on [110] direction 
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could be used to determine all three Cij because there is one compressional and two shear 

modes, but it is preferable to have two or three pure-mode directions for redundancy (see 

Eqs. 2.5 – 2.11 below). The number of measurements required to obtain all the Cij 

increases with decreasing symmetry such that six different orientations would be required 

to obtain the nine unique Cij in the orthorhombic system and so on. 

Samples are kept in place on the acoustic anvil by adding a small amount of silica 

aerogel to the usual 16:3:1 methanol:ethanol:water pressure-transmitting medium. 

Aerogel is a highly compressible porous material with the lowest density of any known 

solid (ρ ~ 0.1 g/cm3). Once wetted, the gel acts like a transparent sponge to gently press 

the sample against the anvil, while the overall pressure-transmitting medium remains 

alcohol. The uniaxial stress produced by aerogel is negligibly small compared to 

hydrostatic pressure and elastic moduli of minerals, and stress conditions in the DAC can 

are considered as pure hydrostatic pressure (Jacobsen et al., 2005a). 

The described setup was used for the high-pressure measurements up to about 10 

GPa. The oriented diamond anvils with the culet size of 400-500 µm were used. The 200-

300 µm-thick steel or rhenium gasket typically is pre-indented to 80–100 µm thickness, 

and a 200-300 µm-diameter hole is drilled for samples that are typically 25–40 µm thick 

and 150–200 µm wide. Pressure is determined using the ruby fluorescence scale (Mao et 

al., 1986). The pressure was limited to about 10 GPa by solidification of the used 

pressure-transmitting medium. Above this point the sample bends under the non-

hydrostatic pressure and the measured back-echo signal does not allow calculating elastic 

constants because stress tensor is unknown. 
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Calculating elastic constants and moduli from single-crystal 

ultrasonic data 

 

Compressional (VP) and shear (VS) velocities are related to the sample length (L) 

and the measured round-trip travel times (t) by: 

tLV /2=      (2.3) 

At ambient pressure, the length can be measured with a micrometer when the sample is 

sufficiently thick (i.e. > 0.1 mm). In the DAC, samples have typically only 25–40 µm 

thickness, so often the initial length is calculated from the measured zero-pressure travel-

time using a known velocity measured on a thicker sample. In the case that a thick 

sample is not available, the initial thickness can be measured using laser interferometry. 

The elastic constants at ambient or high pressures are determined from the acoustic travel 

times from similar identities: 

( )( ) ( )2
0

2
00

0 ttLLCC ijij ρρ= ,     (2.4) 

where the zero subscript or superscript indicates an initial (ambient pressure) value, ρ is 

the density, and the subscripts ij indicate the element of the elastic tensor corresponding 

to the various pure-mode directions in the single crystal. In the cubic system: 

( )2]100[
11 PVC ρ=         (2.5) 

( )2]100[
44 SVC ρ=          (2.6) 

( )2]111[
124411 324 PVCCC ρ=++        (2.7) 

( )2]111[
124411 3 SVCCC ρ=−+         (2.8) 

( )2]110[
124411 22 PVCCC ρ=++         (2.9) 

( )2]110[]110[
1211 2 −=− polVCC Sρ        (2.10) 
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( )2]001[]110[
44 polVC Sρ=        (2.11) 

The superscripts to V indicate the crystallographic direction of wave propagation and the 

superscripts to pol indicate the direction of shear-wave polarization if it is not 

degenerated (Brugger, 1965). The change in length with pressure in a cubic mineral is 

given by: 

( )[ ] 31
00)( −= ρρ PLPL    (2.12) 

where ρ(P) can either be measured in situ with x-ray diffraction, or, calculated from a 

known P–V equation of state such as the third-order Birch-Murnaghan (Eq. 1.41, see 

Chapter 1). 

Once the full elastic tensor is known (C11, C44, C12), the isotropic equivalent or 

polycrystalline bulk (KS) and shear (G) moduli can be calculated. The methods of Voigt 

and Reuss assume uniform strain, or uniform stress, respectively. Hill (1952) showed that 

the Voigt and Reuss limits represent upper and lower bounds of the isotropic moduli, so 

the widely used Voigt–Reuss–Hill (VRH) method simply refers to the average, although 

there is no physical basis for it. The Voigt and Reuss bounds are equivalent for the bulk 

modulus in a cubic crystal: 

( )1211 23/1 CCKS +=      (2.13) 

The Voigt (GV) and Reuss (GS) bounds on the shear modulus of a cubic crystal are: 

( )44325/1 CCG SV +=      (2.14) 

S

S
R CC

CCG
32

5
44

44

+
=      (2.15) 

where 

( )12112/1 CCCS −=      (2.16) 

 



  Developed methods and instrumentation  

 90

Ultrasonic data from polycrystalline material 

   

Many of high-pressure phases cannot be synthesized as a quality single-crystal. In 

addition, high-pressure reconstructive transitions often destroy single crystals under in 

situ study. Ultrasonic measurements are routinely made at MHz frequencies (with 

millimetre wavelength) on polycrystalline samples with grain sizes of about 50µm, 

resulting in a wavelength-to-grain size ratio of about 20. At 1 GHz the acoustic 

wavelengths in minerals are about 1-10 µm. It is therefore theoretically possible to 

perform the acoustic elasticity experiments at GHz frequencies on polycrystalline 

samples with grain sizes of about 50 nanometres or less. The possible application of 

gigahertz ultrasonic interferometry to nano-polycrystalline materials is being explored.   

The idea was tested and confirmed by preparing several nanocrystalline samples 

under high-pressure. TiO2 anatase with grain size about 30 nm compressed in a DAC 

with 800 µm culets. The sample was squeezed between two diamonds up to about 14 GPa 

using a hardened-steel gasket pre-indented to the thickness of 80 µm with a 400 µm 

diameter hole. The resulting dense material (Raman spectroscopy showed that anatase 

was completely transformed to α-PbO2 – structured phase) was placed (unpolished) on 

the P-wave bench-top buffer rod and a good sample echo was obtained. A P-wave travel 

time tP = 10.11(6) ns was measured, but requires a more quantitative density and 

thickness analysis for interpretation of a bulk elasticity. 

Several other samples of nanocrystalline TiO2 were prepared in a multianvil press 

using a different grain size powder as a starting material (4 nm, 6-10 nm and 50 nm). For 

the first sample the density 4.28 (3) g/cm3 of a resulting material was measured. Several 

peaces were polished down to about 85 µm and both compressional and shear velocities 
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were obtained: VP = 7274 m/s and VS = 3980 m/s that corresponded to the bulk and shear 

moduli of KS = 135.3 GPa and G = 67 GPa. 

Next sample for the elasticity measurements was prepared from the 6-10 nm grain 

size initial material compressed in a multianvil apparatus. A bit less sufficient acoustic 

echo signal from the polished sample was obtained. And the measured resulting 

velocities showed the numbers 6142 m/s and 3434 m/s for longitudinal and transverse 

modes respectively. The effect of grain size on elastic properties seems to be quite strong 

in the nm-range. The present results along with literature data are given in Table 2-1. The 

bulk modulus of nanocrystalline phase seems to be much lower, than the same modulus 

of bulk anatase or other phases of TiO2.   

 

Table 2-1. Experimentally observed sound velocities and bulk moduli of titanium 

dioxide. 

Phase VP, m/s VS, m/s Bulk modulus, GPa Reference 

Nanoanatase, 

4 nm grain size 

7274 3380 135.3 Present study 

Nanoanatase, 

6-10 nm grain size 

6142 3434 - Present study 

Bulk anatase - - 178 

 

179 

Swamy and 

Dubrovinsky, 2001 

Arlt et al., 2000 

Baddeleyite-type 

TiO2 

- - 303 

290 

Swamy et al., 2002 

Arlt et al., 2000 

Rutile 9240 5160 210.3 Isaak et al., 1998b 

 

The sample compressed from a 50 nm grain size TiO2 showed no acoustic echo 

signal probably due to very small wavelength-to-grain size ratio or might be also due to 

the low quality of the sample. 
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Nanocrystalline anatase was also tested as a high-pressure sample in a DAC. The 

ultrasonic signal was good enough but the problem of thickness measurements (while the 

sample is just squeezed between two diamond culets) was not solved sufficiently good to 

interpret and analyse the resulting data. 

Some other polycrystalline samples were also tested for GHz measurements. 

Pyrolitic BN was used as a starting material in order to synthesise the cubic phase of 

boron nitride for further elasticity measurements. X-ray diffraction revealed the 14 nm 

grain sizes in a probed sample. It was characterized by black colour and semi-

transparency, density was determined to be 3.495 g/cm3. The ambient conditions sound 

wave velocities were obtained from two peaces of 96 µm thick, and the found values 

were 15166.9 m/s and 9968.85 m/s for compressional and share waves, respectively 

(Table 2-2). In this case only ambient pressure experiments were performed, since the 

sound velocities are too high and even within a thick sample the travel times were only 

12-18 ns. When polishing the sample down to the thickness sufficient for the high-

pressure experiment, travel time would decrease to 2-3 ns, which is impossible to detect 

with the equipment used now in the described laboratory.  

 
Table 2-2. Comparison of present results with previous experiments for cBN. 

VP, m/s VS, m/s Bulk modulus, GPa Reference 

15166.9 9968.9 340.9 

377 

Present study 

Solozhenko et al., 1998 

 

So far the possibility of application the GHz ultrasonic interferometry to the 

nanocrystalline materials was tested and confirmed. The grain size limitation (grains 

should be smaller than ~40 nanometres) was revealed for the frequency range up to 2.1 

GHz. 



Chapter 2   

 93

The current system is also capable for measuring compressional wave travel time 

in liquids (which was tested on the liquid phase of argon) but the problem of thickness 

knowledge does not allow a quantitatively interpretation of the data.  

 

High-P-T in situ measurements 

 

The GHz system in BGI was developed to the high-temperature experiments only 

recently, and there were performed just the pioneer tests of in situ measurements. The 

sample of MnO was chosen as a testing material. The usual procedure of loading the cell 

with methanol-ethanol-water mixture as a pressure-transmitting medium was performed. 

Small ruby spheres were loaded along in order to provide possibility for simultaneous 

pressure-measurements (Fig. 2.1.7).  

The sample of MnO was commercially available from MaTecK Co. The crystals 

were oriented using x-ray diffraction and several samples were prepared for the ultrasonic 

measurements. Those for ambient conditions were 250 microns thick and for high-

pressure experiments were ~29 µm thick. First the bench-top experiments for both P-and 

S-wave measurements were performed and the obtained velocities along the [100] 

crystallographic direction were 6547 m/s and 4093 m/s for longitudinal and transverse 

waves respectively. These observed numbers allow calculating the individual elastic 

constants C11 and C44, which are presented in Table 2-3 along with literature data for the 

same material. 
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Fig. 2.1.7. MnO single crystal inside a DAC. The black 

spots within the crystal are the Mn3O4 inclusions. The 

ruby spheres allow pressure measurements upon 

compression and heating. 

 

Table 2-3. Comparison of present results for MnO with previous experiments at 

ambient conditions. 

C11, GPa ( )TPC ∂∂ 11  
(unitless) 

C44, GPa Reference 

229.2(3) 11.3(2) 89.9(5) Present study 

226.4(2) 9.26(9) 79.0(1) Webb et al., 1988 

233 8.54 79.4 Sumino et al., 1980 

 

For the share-wave velocity measurements only the thin piece was used because 

no acoustic echo was obtained from the thick one due to the strong S-waves attenuation 

on Mn3O4 lameli (see Fig. 2.1.7). These secondary-phase inclusions were also observed 

in the single-crystal specimen of Webb et al. (1988), who carried out a very thorough and 

careful analysis using optical microscopy, TEM, XRD and electron diffraction. Their 

results identified the phase as polycrystalline Mn3O4 (hausmannite), which appears to 

have formed as an exsolutions precipitate during cooling of the single-crystal. 
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After initial bench-top experiments one of the thin pieces was loaded to the DAC 

equipped with a small Pt-resistive heater in order to perform simultaneous compression 

and heating experiment. The size of the sample was about 200 µm, small ruby spheres 

were placed inside a sample chamber in order to measure the pressure (see Fig. 2.1.7). 

The compressional wave’s velocities were measured at several pressures at room 

temperature, at 50, 100 and 150°C. Figure 2.1.8-A shows the interferometry data 

recorded at 100°C and 5 GPa from the studied sample in the DAC. The measured travel 

times usually decrease upon compression at constant temperature (Fig. 2.1.8-B). Six 

pressure points (from 2.3 to 8.4 GPa) at room temperature showed the usual increase of 

sound velocities in good agreement with the literature data (Pacalo and Graham, 1991) 

resulted in ( )TPC ∂∂ 11  value equal to 11.3 (see Table 2-3). At least one more crystal 

orientation is necessary for both, P- and S-waves, in order to determine the full elastic 

tensor together with pressure and temperature derivatives of individual elastic constants 

of MnO.   

 

Fig. 2.1.8-A. Compressional-wave interferometry data 

from a single-crystal of MnO at 5 GPa and 100°C. 
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Fig. 2.1.8-B. The P-waves’ travel time evaluation in the [100] 

crystallographic direction of MnO sample with pressure at a 

temperature of 100°C. 

 

 

Summary and further developments 

 

So far the developed gigahertz ultrasonic system could be used to get the full 

elasticity tensor of single-crystals under high pressure and temperature simultaneously. 

The pressure is limited now only by conservation of the parallel-faced sample inside a 

DAC. Loading the cell with helium as a pressure-transmitting medium will move the 

pressure limit and using neon pressure medium allows heating to higher temperatures. 

With the increasing temperature it was found that the intensity of the acoustic signal 

decreases. This problem can be potentially solved using additional high-frequency 

amplifier, which increases the intensity in several times. Additional amplifier also 

increases noise, and in this case the GHz-system has to use the internal pulse generator.  
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 In order to reach higher pressures its necessary to use thinner samples and hence 

the shorter wavelengths are required. For the samples size less than about 25 microns, 

higher frequencies are essential for sound wave velocity measurements. 

 The elasticity of nanocrystalline and liquid materials could be also measured but 

the problem of thickness determination should be solved beforehand. Measuring sound 

velocities in metals, which could be really interesting and challenging task, unfortunately 

is not possible with the described technique, because mechanical polishing of the metal 

single crystal to optical quality produces a thin layer of polycrystalline metal on the 

surface, and the acoustic signal in completely absorbed by the sample and therefore no 

backscattered echo could be recorded. 

 The GHz-ultrasonic interferometry technique is promising for many geologically 

important applications, but is quite complicated for routine usage. High requirements to 

the sample quality, the complicated assembly (buffer rods and transducers), which is not 

available commercially and should be prepared “in house” limit the application of GUI 

system as well as the wide employment of the technique. From this point of view, BGI in 

the University of Bayreuth is probably one of the best places for the further development 

and utilization the system, while the transducers, for example, are sputtered at the 

physics department of the university by K. Müller.  

 

2.2  Inelastic x-ray scattering technique 

 

Inelastic scattering of x-rays from phonons is expected to supply similar 

information about the dynamics of the observed system as a coherent inelastic neutron 

scattering. Within the limits of the adiabatic approximation, the electrons are expected to 

follow the movements of the nuclei instantaneously. Therefore, phonons, i.e. low-
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frequency motions of the nuclei, will cause electron charge density variations, which can 

be directly observed by inelastic x-ray scattering (IXS). 

 

Cross-section and geometry 

 

IXS method of studying elastic properties of solids is based on the interaction 

between x-rays and acoustic phonons. A general scattering experiment is shown 

schematically in figure 2.2.1. An incoming photon of well-defined wavevector ik , energy 

Ej and polarization unit vector εi is scattered into the solid-angle element dΩ  under the 

scattering angle 2θ. The scattered beam is completely defined by the new wavevector 

fk , energy Ef and the polarization unit vector εf. The scattered intensity is described by 

the double-differential cross section ( )fddd ωσ Ω/2 . It is given by the removal rate of 

particles out of the incident beam as the result of being scattered into a solid angle Ωd  

with a frequency range of fdω (Burkel, 2000). 

 

 

Fig. 2.2.1. The scattering kinematics in IXS experiment. 
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The scattered beam is usually distributed over a range of energies Ef. There can be 

beam contributions that have been scattered elastically with no change of energy and 

other contributions that have changed energy due to inelastic scattering. Therefore, the 

scattering process contains information on energy and momentum transfers by  

if EEE −≡   and  ( )if kkQ −≡ hh      (2.18) 

Within the scattering of x-rays the transferred energy is normally smaller than the 

photon energy (E << Ei). In this case the momentum transfer Qh  is simply connected 

with the scattering angle θ  by 

θsin2 ⋅⋅= ikQ hh       (2.19) 

IXS cross section is proportional to f(Q)2Q2ρ/µ where ρ is the specific volume, µ 

is the absorption coefficient and Q - the wave vector. The optimal signal for DAC 

experiments is obtained if the absorption length t = 1/µ is of the order of 10–40 µm, 

typically spanning elements with Z between 30 and 50. However, previous experiments 

have shown that studies on lower Z (Occelli et al., 2001) and higher Z materials (Loa et 

al., 2003) are as well possible.  

Elasticity measurements utilizing IXS method are based on sound wave velocity 

determination along specified directions with a particular polarization vector. In the low-

Q part of the Brillouin zone (close to the Г-point, see Fig. 1.1.2) acoustic phonons 

dispersion is strictly linear, and sound wave velocity, that is proportional to the E(Q) 

slope, is independent on wavelength or sampling frequency. For practical applications 

dispersion curve is obtained from several constant Q energy scans. For each pressure 

point several directions are measured, and several q for each direction are required for 

better statistics. An example of the constant Q energy scan is presented in Fig. 2.2.2. It is 

characterized by an elastic contribution centred at zero energy and two symmetric 

features, the Stokes and anti-Stokes peaks of acoustic phonons. Each peak has the 
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different energy positions at different Q-values, which are plotted in a E(Q) diagram. If a 

single crystal is studied, dispersion can be measured down to low Q (~ 1 nm-1) and fitted 

as a line to obtain sound velocity. 

 

Fig. 2.2.2. An IXS-spectrum from a single crystal of wüstite under 11 GPa 

and room temperature. Open circles show the experimental points and the 

solid line represents the fit to the experimental data. 

 

In case of polycrystalline powder overall resolution is lower and elastic peak is 

usually stronger, that does not allow phonons detection at very low Q-values. Dispersion 

is then measured to higher Q up to the first Brillouin zone boundary and fitted to non-

linear relationship, given by Born-von Karman lattice dynamic theory (Ashcroft and 

Mermin, 1976). Within the framework of this model the solution of the dynamical matrix 

can be written as: 

∑ 















−Φ=

n
n Q

QM
max

2 cos1 πω ,    (2.20) 
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where M is the atomic mass, ω is the angular frequency and Q is the wave vector of the 

considered normal mode, Qmax is half the distance to the nearest reciprocal lattice point in 

the direction of Q, and Φn is the interplanar force constants (the force between an atom 

and the nth neighbour plane normal to Q). The shape of acoustic phonon dispersion curve 

depends on the number of neighbour interactions included in the analysis. For simple 

monatomic solids it is usually enough to consider only first nearest neighbours 

interactions. Taking into account only the first term (nearest-neighbours interactions) and 

substituting ω=E/h where h is the Plank constant, it can be rewritten as 


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or, equally 
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Taking into account that in long-wavelength limit 
Q
E

h
V

∂
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=
π2  (with  0→Q ), the final 

result is 









=

max
max2 2

sin
Q

QVQhE π
π

,     (2.23) 

or, equally 

1

max
max

2

2
sin

−

















=

Q
QQE

h
V ππ ,    (2.24) 

 

where V  is the sound wave velocity. Values for V can be consequently derived from the 

equation 2.24 (Fig. 2.2.3). Qmax is the radius of the Brillouin zone. Since Brillouin zone is 

not spherical, Qmax is an averaged radius over multiple directions. It can be calculated 

using Monte-Carlo method or assuming Brillouin zone to be spherical with volume equal 
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to its real volume. In all cases Qmax values are quite close to each other and do not affect 

significantly calculated velocity values (Antonangeli et al., 2004). For practical usage it is 

probably better to leave Qmax as a free parameter of the fit. 

 
Fig. 2.2.3. A sinusoidal fit to the experimental 

E(Q) relation for FeNi-alloy IXS-spectra collected 

at 72 GPa and 715 K. 

  

Polycrystals contain a variety of randomly oriented single crystallites. There is no 

distinct orientational direction as in single crystals and, therefore, the direction of the 

momentum transfer Qh  is not defined. Because of the averaging over the orientations 

only the absolute value, QQ = , is defined. This means that the scattering process takes 

place on a spherical shell in the reciprocal space and not on a point, as in the case of 

single crystals. In a polycrystalline material this is only possible in the first Brillouin zone 

with the reciprocal lattice vector τ equal to 0, which leads to the fact that the momentum 

transfer Qh  equals qh (Burkel, 2000). This shows that only longitudinal (compression) 

phonon modes are measured within the first Brillouin zone. 

Although intrinsic anisotropy of the material could still produce some anisotropy 

even in an orientationally averaged polycrystalline sample, this effect is probably 
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negligible, and in many instances one can consider the sample as an isotropic 

polycrystalline material. In this case, the measured VP is the bulk longitudinal sound 

velocity, and the transverse (shear) sound velocity VS can be obtained according to the 

relation: 

,
4
3 22









−=

ρ
KVV PS      (2.25) 

where ρ is the density and K is the adiabatic bulk modulus. As seen from above the 

knowledge of density and bulk modulus is required. 

At present, there are four instruments for IXS-measurements operational at third-

generation synchrotron radiation centres (two at ESRF (France), one at APS (USA), and 

one at SPring-8 (Japan)).  

The optical layout at an ID-28 at ESRF, where several experiments of the present 

work were performed, is shown in figures 2.2.4 and 2.2.5. The photon source is an 

undulator providing a highly collimated beam. After pre-monochromatization to ∆E/E = 

2 × 10-4 by a silicon (111) double crystal, the photon beam impinges on the 

backscattering silicon crystal, which is operated at a Bragg angle, θB, of 89.98°, and 

diffracting in the vertical plane. A specific Si (hhh) backscattering reflection of the main 

monochromator is chosen by tuning the premonochromator to the correct energy. This x-

ray beam with meV energy resolution impinges on a gold-coated toroidal mirror, which 

provides a focal size of 250 × 60 µm2 H × V (FWHM) at the sample position. For high-

pressure studies, where much smaller horizontal beam sizes are generally needed, the 

focusing optics have been upgraded recently (Krisch et al., 1997). By using the 

cylindrical side part of the mirror and a horizontally focusing multilayer with a lattice 

spacing gradient, located at 2 m from the sample, a spot size of 25 × 60 µm2 H × V 

(FWHM) can be achieved.  
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Fig. 2.2.5.  Photograph of the experimental layout at ID28 (ESRF). 1 – The tube, from 

which monochromatic beam comes out; 2 – position of the sample; 3 – position of the 

analyzer; and 4 – detector. 

 

The photons scattered from the sample are energy-analyzed by a spherical perfect 

silicon crystal analyzer, operated in Rowland geometry, and at the same (hhh) reflection 

order as the monochromator and a Bragg angle of 89.98°. The momentum vector, Q, is 

selected by rotating the analyzer arm in the horizontal plane. Diffracted from the analyzer 

crystal x-rays are recorded by a Peltier-cooled silicon diode. Inelastic x-ray scans are 

typically performed in a constant-Q mode by keeping the analyzer temperature fixed, and 

scanning the temperature of the monochromator. In fact a relative change of the 

monochromator temperature, ∆T, induces a relative variation in the lattice constant and, 

according to Bragg’s law, at a fixed Bragg angle, a relative energy variation 

ddEE // ∆−=∆ . Considering that ∆d/d=α∆T, with the thermal expansion coefficient α 
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= 2.58 × 10-6
 K-1 for silicon at room temperature (Krisch, 2003), in order to obtain an 

energy step of about one tenth of energy resolution (∆E/E ~ 10-9), it is necessary to 

control the monochromator and analyser crystal’s temperature with a precision of mK. 

 

 

Fig. 2.2.6. The DAC with internal resistive heater (1). 2 – The heater-wires 

connection; 3 – thermocouple connection; and 4 – the microscope objective 

used for the ruby fluorescence detection. 

 

Last decade the technique was developed to measure IXS from a sample under 

high pressures (Krisch et al., 1997). One of the topics of present study was to 

investigate the elasticity of Fe-Ni alloy under high pressure and temperature. In order to 

perform such measurements the inelastic x-ray scattering ID28 at ESRF was adapted 
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for heating in a diamond anvil cell. The four-pin modified Merrill-Bassett DAC 

equipped with the internal resistive heater was used (Fig. 2.2.6). When a polycrystalline 

sample is studied, a diamond anvil cell should be placed in the vacuum chamber in 

order to reduce additional x-ray scattering from the air. The standard vacuum chamber 

was adopted in order to provide electrical connectors for resistive heater and 

thermocouple (Fig. 2.2.7). The DAC heating assembly developed at Bayerisches 

Geoinstitut allow maintaining temperatures as high as 1000 K for several days, 

allowing performing many time-consuming experiments (including IXS) under high 

pressures and high temperatures. 

 

 

Fig. 2.2.7. View of a special-designed vacuum chamber with a DAC (inside) for 

IXS measurements at high-P, T at ID28. 
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Chapter 3 

 

Results and discussion 

 

3.1 Elasticity and magnetization in wüstite: High- 

frequency interferometry measurements, neutron diffraction 

study, and inelastic x-ray scattering experiments 

 

Wüstite is an iron monoxide with nominal FeO composition. However, despite 

its apparent simplicity, FeO is a complex material, because wüstite is never “ideal” at 

room temperature and pressure, but rather it is non-stoichiometric with cation 

deficiencies. As a result it should be described by the formula FexO where x is 

variable down to 0.88 (hereafter FexO is designated FeO in this chapter). Wüstite has 

long been of interest on account particularly of its very wide range of non-

stoichiometry and its antiferromagnetic behaviour at certain conditions. Later the 

importance of magnesiowüstite (Mg,Fe)xO as a mineral phase in the Earth’s lower 

mantle and indications of substantial oxygen solubility in the Earth’s liquid outer core 

have focused attention on the high-pressure behaviour of wüstite. Ringwood (1977) 

proposed a compositional model of the Earth's core in which FeO was the major light 
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component. This makes FeO possibly the only common major component of both the 

metallic core and the oxide mantle. Studies of the phase transitions, oxidation-

reduction, disproportionation and metallization of wüstite are thus central to 

understanding core formation, core-mantle interaction, and inner-core solidification 

(Dubretsev and Pankov, 1972; Bullen, 1973; Mao, 1974; Stevenson, 1981).  

Moreover the iron monoxide is an important member of the highly correlated 

transition metal monoxide group including NiO, CoO, and MnO that raise a 

continuous interest due to their complex structural, electronic and magnetic 

properties.  

Under ambient conditions, wüstite has the NaCl (B1)-type structure. At low 

temperature near 90 K the FeO x-ray diffraction pattern shows a small degree of 

trigonal distortion (Willis and Rooksby, 1953). At room temperature a departure from 

cubic symmetry at pressures from 9 to 24 GPa was reported (Zou et al., 1980; 

Jacobsen et al., 2005b). The transition pressure depends on the composition of FeO 

and also on the certain experiment conditions. 

A magnetic ordering (Néel) transition at ambient pressure in FeO was 

observed around 195 K, and structural distortion was assumed to be a 

magnetostriction effect, similar to MnO, CoO and NiO (Smart and Greenwald, 1951). 

In high-pressure Mössbauer experiments (Nasu, 1994; Pasternak et al., 1997) the Néel 

transition was also recorded, but the exact transition pressure at room temperature was 

not known so far. The value of the Néel temperature varies also with FexO 

composition (McCammon, 1992). Many physical properties of FeO are significantly 

influenced by its defect structure. Several systematic studies of this compound show, 

for example, that the lattice parameter varies linearly as a function of x in the FexO 

formula (Simons, 1980; McCammon and Liu, 1984).  
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The elastic properties of wüstite are also dependent on its defect concentration 

or stoichiometry, and this dependence seems to be non monotonous (Zhang, 2000; 

McCammon, 1993). This variation has generally not been well understood by either 

experiments or theories. Data on bulk modulus and its pressure derivative from 

different studies are strongly scattered, however. The behaviour of the pressure (or 

temperature) derivatives of individual elastic constants is also not simple. The 

individual C44 elastic constant softens upon increasing pressure (or decreasing 

temperature) up to (down to) the structure transition (Sumino et al., 1980).  

The studies of elasticity and its possible correlation with magnetization and 

structure transition of FeO are presented in this chapter. 

 

3.1.1  Elasticity measurements: Ultrasonic interferometry data 

 

The study of elastic properties of the material at room temperature and 

pressures up to 9.6 GPa was carried out using a gigahertz ultrasonic interferometry 

technique for the DAC. Details of acoustic interferometry and data reduction are 

given in the previous chapter.  

A single crystal of FeO was synthesized by the floating zone technique 

(Berthon et al., 1979), with measured cell parameter of a =4.3068(1) Å, corresponding 

to the Fe0.943O composition (McCammon and Liu, 1984). The sample was cut to 

several peaces each of which was oriented along the certain crystallographic direction 

using the single crystal x-ray diffraction technique. After initial bench-top 

experiments (Jacobsen et al., 2002a) with FeO crystals oriented parallel to [100] and 

[111] directions, the samples were polished to thin plates measuring about 40 µm in 

thickness for high-pressure work. A series of experiments was performed. Every next 
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time the sample of certain orientation measuring about 200 µm in diameter was 

placed into the pre-indented hole of a T301 steel gasket, and compressed between 0.5 

mm culet diamond anvils in a Merrill-Bassett style DAC (Jayaraman, 1983). All the 

samples were compressed using a 16:3:1 methanol:ethanol:water mixture as a 

pressure transmitting medium, along with some amount of silica aerogel in order to 

press the sample against one of the diamond anvils. Several ruby spheres were loaded 

in the sample chamber for pressure measurements (Mao et al., 1986) (Fig. 3.1.1). The 

uncertainty was 0.1 GPa at the highest pressure reached in this study (9.6 GPa).  

 

 

Fig. 3.1.1. The sample of Fe0.94O and the ruby spheres inside a 

diamond anvil cell. 
  

Measured single-crystal travel time data tP<100>, tS<100>, and tS<111> were 

converted to sound wave velocity using the calculated sample thickness, determined 

initially from bench-top velocities measurements (Jacobsen et al., 2002a). The 

measured thickness usually has 0.001 mm uncertainty, which is about 2% for DAC-

samples, while only about 0.3% for bench-top samples (measuring several hundreds 



  Results and discussion 

 112

of microns in thickness). Hence, sound wave velocities measured at ambient 

conditions (in thick samples) are usually taken as a reference for further high-pressure 

and temperature experiments. An isothermal equation of state for FeO (Jackson et al., 

1990) was used to calculate the change in sample length with pressure. The complete 

elastic tensor was obtained using the pure-mode solutions to the Christoffel equations 

(Eqs. 2.5-2.8) and is plotted in figure 3.1.2-A and B along with the isotropic adiabatic 

bulk (KS) and shear (G) moduli. 

A change in pressure-dependence slope was observed for both C11 and C12 

elastic constants at 4.7 ± 0.2 GPa (see Fig. 3.1.2-A and B, Table 3.1). The reversibility 

of the anomaly was tested and confirmed by measuring tP<100> on both compression 

and decompression. The unusual behaviour of the slope is also clear in the variation of 

isotropic modulus (Fig. 3.1.2-A). Both moduli were calculated using the linear fits to 

the individual elastic constant experimental data. 
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Fig. 3.1.2-A, B. The elastic tensor and isotropic adiabatic moduli for 

Fe0.94O. Filled and open circles for C11 elastic constant indicate points 

measured on compression and decompression, respectively. Lines are linear 

fits to the data (see Table 3-1). 
 

Table 3-1. Coefficients of the linear fits to the elastic moduli of Fe0.94O 

to the equation A + B × P (GPa). 

Modulus and pressure range A B 

P < 4.7 GPa 217 ± 1 10.5±0.3 C11 

4.7 < P < 10 GPa 234.9 ± 0.5 6.6 ± 0.2 

P < 4.7 GPa 121 ± 1 3.5 ± 0.7 C12 

4.7 < P < 10 GPa 138.4 ± 0.5 0.27 ± 0.7 

C44 0 < P < 10 GPa 45.9 ± 0.7 -1.13 ± 0.03 

P < 4.7 GPa 153 ± 1 6.1 ± 0.4 KS 

4.7 < P < 10 GPa 165 ± 1 3.7 ± 0.3 

P < 4.7 GPa 46.8 ± 0.4 0.6 ± 0.1 G 

4.7 < P < 10 GPa 49 ± 1 -0.22 ± 0.03 
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The reason for this discontinuity is suggested by the results of high-pressure 

Mössbauer spectroscopic (MS) studies (Kantor et al., 2004b). At a pressure of 5.0 ± 

0.5 GPa the beginning of magnetic ordering in polycrystalline 57Fe-enriched Fe0.95O 

compressed in a methanol:ethanol hydrostatic pressure-transmitting medium was 

observed. The results of this work show that the magnetic phase boundary between 

anti-ferromagnetic and paramagnetic phases does not coincide with the reported 

location of the structural phase boundary between cubic and rhombohedral phases of 

FeO, and that they differ from each other by at least 10 GPa at room temperature. In 

the event that the structural and magnetic phase boundaries do not in fact coincide, 

this raises an important question regarding magnetic ordering in the cubic structure. 

The remarkable coincidence in transition pressures suggests that magnetic ordering in 

FeO is manifested in changes of elastic properties detected by the high-precision 

ultrasonic data. 

The above shown data indicate the existence of a new cubic magnetically 

ordered phase of FeO at pressures higher than 5.0 ± 0.5 GPa and up to the structural 

transition. The Mössbauer spectra of different phases of FeO should be different. 

In order to see it the MS studies of the same sample were carried out using the 

same methodology as described previously (Kantor et al., 2004b) but with argon as a 

pressure-transmitting medium and up to higher pressures. It was found that 

Mössbauer spectra of the cubic and the rhombohedral magnetic phases differ in some 

ways (Fig. 3.1.3). Mössbauer spectrum at 11.1 GPa consists of two main components: 

a broad magnetic part with unresolved lines and a “paramagnetic” doublet, which 

persists up to the structural phase transformation at ~17 GPa (Mao et al., 1996). 

Mössbauer spectrum of the rhombohedral phase at 23.8 GPa consists only of a 
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relatively well-resolved sextet. These results also support the idea of the existence of 

cubic magnetic phase of studied FeO. 

 

Fig. 3.1.3. Selected Mössbauer spectra of Fe0.95O wüstite at 

different pressures: 3.6 GPa – paramagnetic cubic phase; 11.1 

GPa – magnetically ordered cubic phase with a paramagnetic 

doublet (solid line) and broad magnetic component (dashed 

line); 23.8 and 73 GPa – antiferromagnetic rhombohedral 

phase with a resolved magnetic sextet (dashed line). 

 

 

 



  Results and discussion 

 116

3.1.2  Elasticity of FeO up to 20 GPa: Inelastic x-ray scattering 

measurements 

 

In order to complete the elasticity data of the cubic phase of wüstite the further 

investigations were performed using inelastic x-ray scattering technique up to 20 GPa 

at room temperature. The series of experiments were carried out at ID28, European 

Synchrotron Radiation Facility in Grenoble.  

The single crystal of wüstite was synthesized by the floating zone technique 

(Berthon et al., 1979), with measured cell parameter of a = 4.3093(2) Å, 

corresponding to the Fe0.948O composition (McCammon and Liu, 1984). Using x-ray 

diffraction the single crystal was oriented along the [110] crystallographic direction 

and polished down to 29 microns. The oriented sample measuring about 100 microns 

in diameter was placed into the preindented hole of rhenium gasket, and compressed 

between 0.4 mm culet diamond anvils. The DAC was loaded with helium as a 

pressure-transmitting medium along with a few ruby spheres. Pressure was measured 

using the ruby fluorescence scale (Mao et al., 1986). 

Simple rotation of the cell around the incident beam direction allowed access to 

the longitudinal acoustic (LA) phonon branches along the [001] and [110] directions, 

and the transverse acoustic (TA) branches along the [111] and the [100] directions. In 

Fig. 3.1.4 the example of the collected IXS spectra is reported. It is characterized by 

an elastic contribution centred at zero energy and two symmetric features, the Stokes 

and anti-Stokes peaks of the FeO acoustic phonons. Typically, three to five IXS 

spectra were recorded in the low q part of the acoustic phonon branch, and the sound 

velocity was determined by a linear fit to the E(q) values with an error of 1%–2% 

(Fig. 3.1.4, inset). 
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The corresponding sound velocities were determined from the linear part of the 

acoustic phonon branch, and the three independent elastic moduli were then derived 

using the Christoffel equations (Eqs. 2.5-2.9).  

 

 

Fig. 3.1.4. A representative IXS spectrum of Fe0.95O single crystal recorded at 9.2 

GPa and a reduced momentum transfer value q = 2.1 nm-1. Inset: example of the 

linear fit to the experimental E(q) relation with one adjusted parameter. Only the low-

Q part of the first Brillouin zone shown, which extends up to approximately 16 nm-1.     

 

The pressure evaluation of three independent elastic constants is plotted in Fig. 

3.1.5. It is clear that the negative slope of the C44 elastic constant persists up to the 

transition pressure point, and C44 rapidly increases above cubic-to-trigonal transition 

pressure. Two other constants continue smoothly increasing without any drastic 

anomalies in the whole investigated pressure range. 
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Fig. 3.1.5. Pressure evaluation of individual elastic constants of 

Fe0.95O measured by IXS. 

 

Fig. 3.1.6. Pressure-induced C44 mode softening in FeO 

at room temperature. Linear relation between log(Ptr-

P), where Ptr is the transition pressure and log(C44) 

exists. 
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Table 3-2. Experimental values for volume (x-ray diffraction 

measurements), pressure (determined using ruby fluorescence pressure 

scale), and adiabatic elastic moduli (IXS measurement) of Fe0.95O. 

 

P* (GPa) V (Å3 per unit cell) C11 (GPa) C12 (GPa) C44 (GPa) 

0.001§ 80.02(3) 232(3) 129(4) 48.3(6) 

9.12(5) 76.03(4) 307(4) n.a. 41.7(6) 

11.03(5) 75.18(5) 326(4) 178(5) 36.7(5) 

11.90(5) 74.74(5) 340(4) 176(5) 35.4(6) 

12.73(5) 74.45(4) 320(4) 203(6) 35.6(7) 

14.72(5) 73.68(6) n.a. n.a. 31.8(6) 

16.65(5) 73.10(4) 332(4) 202(5) 32.5(8) 

17.64(5) 72.69(5) n.a n.a 27(1) 

§ – measured outside the diamond anvil cell 

n.a. – value was not measured 

 

Elastic mode softening in the vicinity of distortional structural transition is a 

quite common behaviour. Significant decrease of some of elastic constants reveals 

dynamical instability of a crystal lattice. Usually in the vicinity of a transition the soft 

modes decrease exponentially, and a linear relation between log(Cij) and log(Ttr-T) or 

log(Ptr-P) for temperature- and pressure-induced transitions exists (Ohno et al., 2006), 

where Ttr and Ptr are temperature and pressure of the transition respectively. In case of 

FeO this relation is also valid (Fig. 3.1.6). C44 elastic mode softening in FeO was also 

observed by mean of neutron inelastic scattering up to 12 GPa (Klotz, 2001). The fact 

that the mode’s softening was observed in the whole Brillouin zone and not just near 

Г-point allows concluding that this softening reflects lattice dynamics instability 

rather than anomalous magneto-elastic coupling. In parallel to the IXS spectra, the 



  Results and discussion 

 120

Bragg angles of the (002) and (220) reflections were recorded, in order to provide an 

independent determination of volume and density for each pressure point. Table 3-2 

summarizes the experimental results of this study. 

 

3.1.3  Relation between structural and magnetic transitions in 

FeO: Neutron diffraction data 

 

The fcc-based antiferromagnetic structures are among the most difficult 

structures to treat theoretically: at least two exchange parameters are required to 

describe their magnetic interactions. The molecular-field theory predictions (Brillouin 

function) agrees poor with the experimental magnetization curves, and it was shown 

that either biquadratic exchange interactions (Rodbell et al., 1963) or corrections for 

lattice distortion (Lines, 1965) should be included into the model, suggesting the 

influence of lattice distortion on magnetization. The random phase Green’s-function 

theory defines lattice distortion in type II fcc antiferromagnets to be the function of 

elastic constants, and spin distribution (in other words, magnetization) (Morosin, 

1970). 

All theoretical approaches used so far assume not only strong magneto-elastic 

coupling, but also coincidence of these two transitions (Struzhkin et al., 2001) for all 

transition metal monoxides (TMM). As is shown in sections 3.1.1 and 3.1.2, in FeO at 

high pressures and room temperature these two transitions are decoupled. In order to 

verify if these transitions coincide at low temperatures and whether these relations are 

similar for different TMMs or they are unique FeO feature, a low-temperature neutron 

diffraction study of FeO and MnO was performed.   
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For MnO at ambient pressure the Néel transition and structural distortion 

occurs probably at the same temperature (~118 K), although there is no simultaneous 

study of magnetic and structural properties of the same MnO sample. For FeO, the 

Néel temperature varies with the composition from 192 to 209 K (McCammon, 1992; 

Seehra and Srinivasan, 1984), and no systematic study of FeO crystal structure 

changing at low temperature was ever held before. High-resolution neutron diffraction 

is probably the best method for determination of magneto-structural correlation since 

one diffraction pattern contains both structural and magnetic reflections, providing 

information about crystallographic structure and magnetic properties simultaneously. 

Such experiments were performed on the powder samples of FeO and MnO. 

Manganese oxide was chosen as a structural analogue of FeO with the same type of 

the magnetic structure. 

FeO powder sample was synthesized from a metallic iron in a CO/CO2 gas-

flowing furnace with the controlled oxygen fugacity. After treating for 24 hours at 

900°C and log (fO2) = -11.5 the sample was quenched in water. Measured cell 

parameter of FeO was 4.296(2) Å, corresponding to Fe0.92O composition 

(McCammon and Liu, 1984). MnO powder sample of 99.99% purity was pursed from 

“ALFA products”. Room temperature lattice parameter a of MnO was measured by 

powder x-ray diffraction to be 4.4455(4) Å. Both samples were carefully grained in an 

agate mill, and x-ray powder diffraction analysis confirmed single-phase composition 

of both samples. About 150 mg of each powder samples were loaded into vanadium 

capsules and placed in a liquid He cryostat for neutron diffraction measurements. 

Powder neutron diffraction studies were performed on G6-1 cold neutron two-

axis diffractometer in Laboratoire Lèon Brillouin, Saclay, France. A monochromatic 

neutron beam was selected by a graphite monochromator with initial wavelength of 
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4.741 Å. The diffractometer was equipped with a linear 400-cells BF3 multidetector. 

Diffraction patterns were collected in 2Θ range of 45 – 145 degrees with a 0.1-degree 

step. Diffraction peaks characteristics (positions, FWHM and integrated intensity) 

were extracted for each peak individually using a PeakFit software package assuming 

linear local background. 

 

MnO neutron diffraction data 

 

Collected MnO neutron diffraction patterns above the Néel transition contain 

only one structural reflection 111. Below magnetic ordering transition two new 

magnetic reflections appeared (Fig. 3.1.7), which were previously indexed as 1/2 1/2 

1/2 and -3/2 1/2 1/2 (Shull et al., 1951). Fractional indexes are used for magnetic 

reflections because magnetic cell is twice the “chemical” unit cell along all three 

edges. Hence, the chemical high-temperature 111 reflection is transformed to the 222 

reflection in the magnetic unit cell. To avoid confusion here the “chemical” 

reflections indexes and unit cell are kept, and the fractional indexes for magnetic 

reflections are used. Due to rhombohedral distortion of cubic lattice at low 

temperatures, the structural 111 reflection splits into two: -111 and 111, as is shown in 

Fig. 3.1.7. The degree of such splitting characterizes lattice distortion. In fact, 

magnetic reflections should also be splitted into two (for 1/2 1/2 1/2) or three (for 3/2 

1/2 1/2). Reflection 1/2 1/2 1/2 splits to 1/2 1/2 1/2 and -1/2 1/2 1/2, but the latter one 

is not allowed by symmetry (Shaked et al., 1988). Similarly, only -3/2 1/2 1/2 

reflection is observed at ~122 degrees 2 Θ.  
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Fig. 3.1.7. Neutron diffraction pattern of MnO at 1.5 K. Ticks show the 

calculated reflection positions. 

 

Fig. 3.1.8 shows temperature variation of the lattice parameter a and angle α of the 

pseudo-cubic cell, calculated from two structural reflections 111 and -111. The data 

are in good agreement with previous x-ray diffraction study results (Morosin, 1970) 

(Fig. 3.1.8). Integrated intensity of a magnetic reflection is proportional to the square 

of spontaneous sublattice magnetization (M/M0)2. Experimentally observed 

magnetization curves for both MnO and FeO are shown in Fig. 3.1.9.  
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Fig. 3.1.8. Temperature dependence of cell parameters a (upper graph) 

and α (lower graph) of MnO. Solid circles – this study, open diamonds – 

from Morosin, 1970. 
 

Within this study it was found that a simple Ising model satisfactory fits in a 

temperature range from 60 to 120 K. According to the Ising model, spontaneous 

magnetization in the vicinity of transition temperature is given by 

β2

N0

1~
M
M









−

T
T ,    (3.1) 

where M is magnetization at given temperature T, TN is the Néel temperature and 

constant β is independent of temperature. Resulting fit gives TN = 118.0 ± 0.1 K (in 

perfect agreement with previous results (Morosin, 1970; Shull et al., 1951; Srinivasan 

and Seehra, 1983) and β = 0.0826. 
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Fig. 3.1.9. Magnetization curves for MnO (solid circles) and 

FeO (open diamonds). Solid lines show fits to the Ising model 

(Eq. 3.1). Temperature uncertainties are comparable with 

symbols size.   

 

Since trigonal distortion of a cubic lattice results mainly in interaxial angle 

changing and lattice parameter contraction is negligible small, the value of (α – α0) 

can be used as an quantitative measure of the distortion, and M/M0 can be used as a 

measure of magnetization. As was mentioned above, there is no satisfactory analytical 

form either for M/M0, or for ∆α temperature dependences. Nevertheless the relations 

between these two quantities can be studied. At every given temperature one can 

measure both values simultaneously and plot ∆α as a function of spontaneous 

magnetization without any reference to temperature (Fig. 3.1.10). If the Néel 

transition and structural distortion are assumed to coincide and a strong magneto-

structural correlation exists, such a plot should be a continuous curve, starting from 

zero (in other words, at zero magnetization ∆α is also equal to zero, and since some 
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magnetic order appears, interaxial angle starts to change). Such a curve (dashed line in 

Fig. 3.1.10) can be drawn, and experimental data fits satisfactory to ∆α ~ (M/M0)2 

function.  

 

Fig. 3.1.10. Correlation between magnetization and lattice 

distortion in MnO. Dashed line is quadratic correlation and 

coinciding transitions, and solid line is linear correlation 

and non-coinciding transitions (see text). 

 

Contrary, if one suggests that these two transitions diverges, resulting function ∆α = 

f(M/M0) must have non-zero intercept (in other words, there should be some points, 

when magnetization exists, but ∆α is equal to zero). The present experimental data 

could be fitted also to this model (Fig. 3.1.10, solid line), giving even more simple 

linear correlation between ∆α and (M/M0). In this case MnO remains cubic until 

(M/M0) reaches value of about 0.4. Magnetization curve of MnO is extremely steep 

just below the Néel temperature (see Fig. 3.1.9), and this value is reached at about 

117.5 K. In other words, magnetic and structural transitions would differ for only 0.5 

K in temperature that is comparable with temperature uncertainties and fluctuations in 
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the described experiment. Therefore, the accuracy of present study is not enough to 

distinguish between these two possible cases in MnO. 

 

Neutron diffraction study of FeO 

 

Data for FeO were collected with monochromator and focusing device which 

allowed to observe additionally to magnetic 3/2 1/2 1/2 reflection from primary beam 

(wavelength 4.741 Å) also reflections produced due to first harmonic of the beam 

with wavelength 2.3705 Å (structural 200 and 220 reflections). Lattice parameters of 

cubic FeO were determined from structural 200 and 220 reflections, and for 

rhombohedral phase (below ~160 K) from 200, 220 and -220 reflections.  Figure 

3.1.11 shows variation of lattice parameters with temperature.  

Note, that contrary to MnO (Fig. 3.1.8) almost no anomaly in thermal expansion 

is observed near the Néel transition (around 200 K). The absolute value of ∆α for FeO 

is about six times smaller than for MnO, resulting in higher relative uncertainties. 

Simple comparison of Figs. 3.1.9 and 3.1.11 shows that magnetic ordering does not 

coincide with structural distortion. Ising fit of FeO magnetization curve in 

temperature interval from 150 to 200 K (solid line in Fig. 3.1.9) gives TN equal to 

201.6 ± 0.1 K (expected value of TN for this composition is about 201.9 K  (Seehra 

and Srinivasan, 1984)) and β = 0.1864. 
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Fig. 3.1.11. Cell parameters a and α of FeO as a function of 

temperature. 

 

Correlation between magnetization and trigonal distortion for FeO is shown in 

Fig. 3.1.12. Contrary to MnO, collected data for FeO show that correlation is absent 

(FeO remains cubic) in M/M0 range from 0 to 0.7 that covers all temperatures higher 

than ~160 K. Below this temperature linear correlation between ∆α and M/M0 is 

observed. Results obtained for FeO indicate univocally that structural distortion 

occurs at much lower temperature (about 160 K) than the Néel transition (201 K).  
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Fig. 3.1.12. Correlation between magnetization and 

lattice distortion in FeO. Solid line shows linear 

correlation in M/M0 in a range from 0.7 to 1. 

 

The above shown neutron diffraction and elasticity data indicate that 

magnetically ordered cubic phase of Fe0.92O exists also at high pressures at room and 

low temperatures, and at ambient pressure at a large temperature range. Later 

combined neutron diffraction, x-ray and Mössbauer study of FeO and MnO show that 

in FeO structural and magnetic transitions are not coupled in the whole studied 

pressure (up to 70 GPa) and temperature (1.5-1100 K) range (Fig. 3.1.13). In MnO at 

pressures up to about 3 GPa these two transitions coincide, however, at higher 

pressures a decrease of TN was observed with appearance of a rhombohedral 

paramagnetic phase (Fig. 3.1.14) (Kantor et al., 2007b). 
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Fig. 3.1.13. Phase diagram of non-stoichiometric wüstite. Black lines – phase 

boundaries between cubic paramagnetic (CPM), cubic antiferromagnetic (CAFM), 

and rhombohedral antiferromagnetic (RAFM) phases obtained in this study. Circles 

– Mössbauer spectroscopic runs: solid circles – paramagnetic phase, open circles 

– magnetically ordered phase. Triangles – x-ray diffraction studies: solid triangles 

– cubic phase, open triangles – rhombohedral phase. Diamonds show Néel 

temperature values obtained from neutron diffraction studies. The structural phase 

boundary by Fei and Mao (1994) and magnetic phase boundary proposed by 

Badro et al. (1999) are also shown for comparison in grey. C, R, and B8 are cubic, 

rhombohedral and NiAs-like hexagonal phases, respectively, and PM and AFM 

are paramagnetic and antiferromagnetic phases, respectively (after Kantor et al., 

2007b). 
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Fig. 3.1.14. Phase diagram of MnO. Open diamonds and the solid 

line are the phase boundary between cubic (C) and rhombohedral 

(R) phases. Filled circles and the dashed line are the boundary 

between paramagnetic (PM) and antiferromagnetic (AFM) phases 

(after Kantor et al., 2007b). 

 

The important question appears concerning the actual magnetic structure of 

this new cubic antiferromagnetic phase of FeO.   

 

3.1.4 Cubic magnetic structure   

 

The available experimental and theoretical data are not sufficient to determine 

the magnetic structure of the FeO cubic phase. However, from the shown above data a 

qualitative model of the cubic magnetic structure of FeO that is consistent with 

experimental observations could be proposed. 
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At ambient pressure and low temperatures FeO is known to be type-II 

antiferromagnet (AF-II) with a crystal structure that has rhombohedral symmetry 

(Shull et al., 1951). According to random-phase Green’s-function theory for AF-II fcc 

structures, spin-phonon interactions result in changes of the interaxial angle (α) and 

cell dimensions (a) (Morosin, 1970; Rodbell and Owen, 1964). Namely: 

( ) 44111 24/ CSSSSJNz ap nnjinnji ⋅−⋅=∆ εα    (3.2) 

( )1211222 26// CCSSJNzaa annnji +⋅= εδ     (3.3) 

where α is the rhombohedral setting interaxial angle (α = 60 for the cubic structure), 

N is the number of spins in the system, z1 (=12) and z2 (=6) are the number of nearest- 

neighbour (nn) and next-nearest-neighbour (nnn) metal ions, <…> pnn
, <…> ann

 and 

<…> annn
 refer to the thermal averages over parallel nn, antiparallel nn, and 

antiparallel nnn, respectively, J1 and J2 are nn and nnn exchange interactions, 

( ) rJr ∂∂−= /ln 11ε and ( ) rJr ∂∂−= /ln 22ε , r is interspin distance, and finally C11, C12 

and C44 are the appropriate (cubic) elastic constants.  

Equation (3.3) implies that in AF-II structures, nnn interactions are coupled 

with changes in C11, C12
 and volume striction. It is reasonable to assume that a cubic 

antiferromagnetic structure of FeO exists (at room temperature and pressures between 

∼5 and ∼17 GPa), and that in a cubic magnetic structure the nnn interactions are the 

same as in the rhombohedral AF-II structure. Since C44 changes smoothly and 

continuously up to 9 GPa and ∆α = 0 in this pressure range (Mao et al., 1996), the nn 

spin distribution in the cubic magnetic phase of FeO is not equal to that in the 

classical AF-II structure. 

In the classical rhombohedral (RAFM) structure the parallel spins form sheets 

within 111 planes of the lattice, where each adjacent sheet is antiparallel. Magnetic 



Chapter 3   

  133  

interactions between sheets give rise to a slightly attractive or repulsive force resulting 

in rhombohedral distortion of the lattice below Néel transition. In the RAFM structure, 

all the next-nearest neighbours are antiparallel, and only a half of the nearest 

neighbours are antiferromagnetically coupled, while the other half being coupled 

ferromagnetically (Tebble and Craik, 1969) (Fig. 3.1.15a). Assuming nnn interactions 

(of FeO) the same as in the RAFM type, in the proposed structure the spins are 

distributed in the first coordination shell in a different way: six nn with antiparallel 

spins lie in the same close-packing layer as the central ion, while six nn with parallel 

spins lie in upper and lower hexagonal layers (Fig. 3.1.15b).  

 

Fig. 3.1.15. Nearest-neighbour environment of the metal ion in the (a) 

RAFM and (b) CAFM structures. Ions with ‘‘+’’ spins are represented by 

open circles and ions with ‘‘-’’ spins are shown by filled circles. The 

cubic <111> direction is vertical. 

 

This cubic antiferromagnetic structure (CAFM) is closely related to the classical 

RAFM type, but the symmetry remains cubic. Relatively to the cubic fcc lattice, the 

proposed magnetic structure has doubled cell dimensions and a space group mFd3 , 

while the crystallographic space group remains mFm3 . The CAFM structure can be 

considered as an intermediate step towards the RAFM structure since every hexagonal 
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layer consists primarily of ions with parallel spins with only one quarter of ions 

having antiparallel spins.  

In principal neutron diffraction is able to distinguish between different types of 

magnetic ordering. However, the analysis shows that non-collinear CAFM structure and 

“canonical” RAFM magnetic would produce similar neutron powder diffraction, and 

shown low temperature neutron data agree with the proposed model. A low-

temperature single-crystal neutron diffraction study is necessary to resolve this 

problem.  

 

3.1.5  Conclusions   

 

In order to summarize, this part of the work presents the first determination of 

the full elastic tensor (Cij) of FeO to high precision at hydrostatic pressures up to 9.6 

GPa, using gigahertz ultrasonic interferometry in the DAC; and shows that a unique 

combination of Mössbauer spectroscopy and GHz-ultrasonic experiments in the DAC 

reveals new information about magneto-elastic coupling and structurally hidden phase 

transformations. A pressure-induced mode softening of the C44 elastic constant by 

20% at 10 GPa, consistent with previous ultrasonic measurements to 3 GPa (Jackson 

et al., 1990) was monitored by GUI. An unusual discontinuity in the pressure 

derivatives of C11 and C12 at 4.7 ± 0.2 GPa is consistent with the pressure at which a 

magnetic ordering starts, as observed by high-pressure Mössbauer study. The results 

indicate that an intermediate partially magnetic but still cubic phase of FeO probably 

exists at room temperature and in pressure range from ~5 GPa to ~17 GPa. The 

neutron diffraction study proves the existence of cubic magnetic phase of FeO also at 

low temperatures at ambient and high pressures. 
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 Inelastic x-ray scattering experiment extended pressure range of measurements 

up to 20 GPa, and individual elastic constants, measured by IXS and GUI, are in a 

reasonable agreement. Additional analysis of combined IXS and XRD study of FeO 

revealed very unusual features of high-pressure behaviour of FeO that could be 

interpreted as a strong anelastic relaxation, as is discussed in the following chapter. 

 

3.2 Anelastic behaviour of Fe0.95O under high pressures: 

Evidence from static compressibility and inelastic x-ray 

scattering experiments 

 

The elasticity measurements of Fe0.95O by IXS to 20 GPa, described in the 

preceding section, were combined with x-ray diffraction in a DAC, which provided 

data on unit cell volume and, hence, density as a function of pressure (measured using 

ruby fluorescence gauge). Both series of experiments allowed extracting 

independently the bulk modulus of the studied material. Normally, for many materials 

the values of bulk modulus obtained from static compressibility and dynamic 

measurements should coincide within the experimental error (with the conversion 

factor between isothermal and adiabatic bulk moduli), as was shown, for example, for 

periclase MgO (Zha et al., 2000) and magnetite Fe3O4 (Reichmann and Jacobsen, 

2004).  

In the present study the effective adiabatic bulk modulus KS was calculated for 

every dataset (at every pressure point) using the individual elastic constants, showed 

in the previous section. The bulk modulus was calculated according to the Eq. 2-13 
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(see section 2.1) and converted into isothermal modulus KT using the following 

equation: 

( ) 11 −+= TKK ST αγ                                             (3.4) 

where values for α and γ (thermal expansion and Grüneisen parameter respectively) 

are taken from Saxena et al. (1993). The difference between adiabatic and isothermal 

bulk moduli for the studied material did not exceed 2 %. The coefficients of a finite-

strain third-order Birch-Murnaghan equation of state (EoS) were determined using 

KT-V relation (Zha et al., 2000). Pressure-volume dependence was also fitted 

independently with the same type of EoS. Here only the results obtained using the 

third-order Birch-Murnaghan equation of state are discussed, but 4th order Birch-

Murnaghan EoS or other forms of equations of state (“universal” natural strain, Vienet 

EoS) were also tested and they did not affect the results discussed hereafter. 

In order to estimate visually K0 and K0’ values the F-f plot (Angel, 2000) is very 

helpful. It can be applied to any isothermal EoS based upon finite strain. For the 

Birch-Murnaghan EoS, based upon the Eulerian definition of finite strain fE (Eq. 1.32, 

Chapter 1), a “normalized stress” is defined as 

 ( ) 2
5

213/ EEE ffPF +=     (3.5) 

When P-V data are transformed into fE and FE and plotted with fE as the abscissa a 

direct indication of the compressional behaviour can be obtained.  If all of the data 

points lay on a horizontal line of constant F, then the K0’ equals to 4. This indicates 

that data can be fitted with a second-order truncation of the Birch-Murnaghan EoS. A 

positive slope implies K0’ > 4, while a negative slope corresponds to K0’ < 4. The 

slope is equal to ( ) 2/4'3 0 −KK , and the data can be adequately described by a third 

order truncation of the Birch-Murnaghan EoS (BM3). In very rare cases, when the fE – 
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FE plot is not linear, a 4th order EoS is necessary. In all cases the intersection of the fit 

with the FE axis corresponds to the K0 value.  

The values of the effective ambient conditions bulk modulus determined from 

IXS and compressibility measurements coincide within the experimental error (KT = 

162 ± 3 GPa). However, K’ values differ significantly (5.3 ± 0.2 for IXS data vs. 1.79 

± 0.9 for diffraction data) (Fig. 3.2.1). At pressures of about 17 GPa (just below the 

cubic-to-rhombohedral transition) difference in bulk modulus reaches ~40 GPa, at 

least one order of magnitude larger than the associated experimental uncertainty. 

 

 

Fig. 3.2.1. Bulk modulus of Fe0.95O as a function of 

pressure. 

  

In principle there could be several explanations for the difference between 

bulk moduli measured by static and dynamic techniques. The first idea raised up is the 

strong magneto-elastic coupling occurs in wüstite. The results of Struzhkin and co-

authors (2001), for example, suggest that a strong magnetoelastic coupling in FeO is 
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the driving force behind the changes in the phonon spectrum of the material. However 

the present elasticity measurements by GUI, described in the section 3.1, indicate the 

occurrence of very weak magnetoelastic coupling: there, actually, is a change in 

pressure derivatives of some individual elastic constants, but the change is very small 

and can be detected only by such an accurate method as GUI. Inspection of the 

corresponding theory of magnon-phonon coupling in antiferromagnetic materials 

(Peletminskii, 1960) shows that the value of the bulk modulus determined from 

phonon dispersion should be lower, than the value obtained from static measurements. 

The reason for this is the appearance of interaction between elastic waves and spin 

waves, which leads to a change in the velocity of sound and to an additional sound 

absorption. The latter could not be detected by static compressibility measurements, 

because spin waves are not excited in this case. In a low-Q part the effect results in 

decreasing sound velocities in the material. In the present study the opposite effect 

was observed. The unusual compressional behaviour of FexO could be explained by 

anelastic relaxation (Nowick and Berry, 1972) in wüstite, which occurs due to point 

defects associated with its nonstoichiometry.  

If any anelastic relaxation exists (when the equilibrium strain for a given stress 

is achieved only after certain finite time interval) the effective elastic moduli 

measured by different methods would systematically vary, depending on sampling 

frequency, absolute temperature, and material properties (Nowick and Berry, 1972). 

Anelasticity of a solid appears due to defects or other crystal imperfections when the 

energy minimum is achieved not only by varying the atomic geometry but also by 

changes in the materials’ mesostructure (e.g. structure with a characteristic length 

larger than the crystal unit cell size), such as twin domain walls, dislocations, stacking 

faults, etc. 
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Jeanloz and Hazen (1983) suggested that wüstite could behave anelastically 

and related this phenomenon to defect structure. The variation of elastic properties 

with defect concentration or stoichiometry is a fundamental problem in the study of 

defect materials and has generally not been well understood by either experiments or 

theories (Jeanloz and Hazen, 1983; Zhang, 2000). 

The lattice parameter a of FexO varies nearly linearly with composition 

(McCammon and Liu, 1984; Simons, 1980), while bulk moduli measurements are 

highly controversial – reported values range from 142 GPa to 182 GPa (Mao et al., 

1996). It was suggested that the bulk modulus KT varies non-linearly with wüstite 

composition (Zhang, 2000; McCammon and Liu, 1984). Other authors suggested that 

difference between static and dynamic measurements of bulk moduli is more 

important than the compositional dependence (Jeanloz and Hazen, 1983). 

In the wüstite structure defects form clusters of different size and geometry 

(Long and Grandjean, 1991), and the distribution of defect clusters is known to be not 

random (Welberry and Christy, 1997). Computer simulations show that different 

defect clusters and their distribution results in different values of free energy, 

equilibrium volume, and bulk modulus even for the same composition (Minervini and 

Grimes, 1999; Haavick et al., 2000). Therefore, the redistribution of defects is the 

most likely mechanism of anelastic relaxation in FexO. 

Presented here observations show that significant anelastic behaviour appears 

only at high pressure, when a certain strain is applied. The energy decrease could be 

assumed due to anelastic relaxation and described by a polynomial function of strain 

- ...432 CfBfAfE anelastic ++=∆ ,                                               (3.6) 

where f is the Eulerian strain (Eq. 1.32). 
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The elastic part of strain-induced energy change is described here with the 

generally used Birch-Murnaghan EoS (Eq. 1.41). Taking into account thermodynamic 

relations  

SV
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
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



∂
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−=                                                                            (3.7) 
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−=                                                                         (3.8) 

the anelastic “excess” pressure and bulk modulus could also be calculated. The 

experimental data can be well fitted with only the cubic term of strain, 

3BfE anelastic =∆ , with B equal to 826 ± 47 eV per formula unit (one oxygen atom). 

This model describes both the elastic contribution (elastic limit) probed by acoustic 

phonons and the total contribution (elastic limit + anelastic relaxation), determined by 

static compression experiments (Fig. 3.2.2). 

If FexO data would be used to constrain the primary pressure scale (Zha et al., 

2000), the calculated pressure around 20 GPa would be about 4 GPa higher, than the 

real pressure for the corresponding strain. Of cause, most materials would not show 

such a strong anelasticity, but the differences of the order of tens of gigapascals that 

are discussed when comparing different equations of states (Dewaele et al., 2004) 

could in principle be explained by anelastic relaxation caused by defect diffusion that 

exist in any real crystals.  
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Fig. 3.2.2. The empirical model for the strain-induced anelastic relaxation: volume 

dependence of free energy, pressure, and bulk modulus (top to bottom). Dashed 

lines show the elastic contribution, calculated according to the BM3 EoS; solid lines 

display the result including anelastic relaxation as given by eq. 3.6. Experimental 

values for static pressure (solid circles) represent full stress; experimental values of 

the bulk moduli determined by IXS (present study of Fe0.95O) and gigahertz 

ultrasonic interferometry (study of Fe0.94O by Kantor et al.  (2004a)) probe only the 

elastic contribution (open circles and triangles, respectively). Systematic offset of 

the bulk modulus measured with ultrasonic interferometry can be explained with the 

uncertainty in the initial sample thickness measurement, which will not affect the 

slope, virtually coinciding with those shown by dashed line. 
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 Elastic properties determined from the seismic waves velocities would be 

frequency-dependent and high-frequency measurements (Kantor et al., 2004a) would 

be close to the “elastic limit”, while low-frequency measurements would reflect a sum 

of elastic and anelastic contributions. The main implication of this study for high-

pressure mineral physics is that high-frequency and phonon dispersion measurements 

could give effective elastic moduli different from those seen by low-frequency 

seismic waves in geophysical observations. In case of any internal structural 

relaxations, associated with atomic diffusion, a certain characteristic time τ is required 

to reach an equilibrium state. If the inverse sampling frequency is smaller than τ, only 

elastic relaxation occurs, and the measured bulk modulus and K’ would be higher, that 

those measured for inverse frequency larger than τ. All materials with significant 

amount of defects and all solid solutions and alloys could possess anelastic relaxation, 

and FexO is probably one of the clearest cases. 

Although the present study is not a systematic one, the proposed model could 

explain major reason for controversy of elastic behaviour of wüstite that exists for 

several decades. The parameters in Eq. 3.6 vary with composition together with the 

“elastic” parameters K and K’. In case when parameter A in Eq. 3.6 is not equal to 

zero, the bulk moduli measured by static and dynamic methods would also be 

different, as suggested by Jeanloz and Hazen (1983). 

Due to the pressure-induced anelastic relaxation initial value of K’ could be 

small, and the commonly used second-order truncation of finite strain equation of 

state (assuming K’ = 4) is not longer valid. Most of the powder diffraction 

compressibility studies does not allow the determination of volume and pressure 

precisely enough to refine K’ value and the determination of K is not reliable (K and 

K’ are strongly correlated parameters). Non-hydrostatic compression also affects 
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significantly the data and cannot be compared directly to hydrostatic compressibility. 

Therefore, reliable values of KT and K’ from static compression could be obtained 

only from single-crystal x-ray diffraction studies under hydrostatic conditions 

(Jacobsen et al., 2005b; Ding et al., 2005; Shu et al., 1998). The author re-analyzed 

such available data for various FexO single crystals using the third order Birch-

Murnaghan equation of state and compared K0 and K’ values to those reported from 

dynamic measurements (Fig. 3.2.3). A fairly good agreement between static and 

dynamic measurements of K0 was found; although dynamic values for K0 are 

systematically lower (all the shown data are converted to isothermal values). A 

compositional variation of K0 could also be seen. As suggested by empirical model of 

anelastic relaxation in wüstite, K’ values are significantly different in static and 

dynamic experiments, which imply that this model is valid for FexO with various 

composition. 

Combined IXS and x-ray diffraction study of FexO shows that anelastic 

relaxation at high pressure could be enormously strong and could not be considered as 

a negligible effect a priori. All solid solutions (and all minerals are solid solutions), 

non-stoichiometric compounds, materials with complex mesostructure (particularly 

nano-structured solids) have the internal degree of freedom, and could therefore 

experience internal relaxation and show deviations from normal elastic behaviour. 
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Fig. 3.2.3. Isothermal bulk modulus of FexO and its pressure 

derivative as a function of composition. Dynamic 

measurements are indicated by open symbols, whereas  static 

measurements are shown as filled symbols.  The composition 

was calculated from the lattice parameter (McCammon and 

Liu, 1984) quoted in each study. Compressional data were 

taken from: 1 – Jacobsen et al., 2005b; 2 – Ding et al., 2005; 3 

– Shu et al., 1998; 4 – present study. Dynamic techniques used 

to determine the bulk modulus include ultrasonic 

measurements (5 - Jackson et al., 1990; 6 – Kantor et al., 

2004a) and inelastic x-ray scattering (4 – present study).  
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3.3 IXS study of polycrystalline Fe0.78Ni0.22-alloy at high 

pressures and temperature 

 

Properties of major constituents of the Earth’s core, iron and its alloys, have 

long been of great interest to geophysicists. Cosmochemical data and the composition 

of iron meteorites suggest that Earth’s core contains a significant (5 to 25 %) amount 

of nickel (Anderson, 1989). Iron-nickel alloy with 5-25% Ni content is also thought to 

be the main component of the cores of the Mars, Mercury, Moon, satellites of Saturn 

and Jupiter (Encrenaz et al., 1995; Robbins et al., 1995; Bottke et al., 2006). 

Information on the behaviour of Fe–Ni alloys at high pressure and temperature (P–T), 

such as phase relations and thermal equations of state, is essential for interpreting 

seismic and geomagnetic observations and for computer modelling of the Earth’s deep 

interior. While pure Fe at high P–T has been the subject of numerous studies (Mao et 

al., 1990; Saxena et al., 1995; Yoo et al., 1995; Boehler, 1993; Andrault et al., 1997; 

Dubrovinsky et al., 2000b; Crowhurst et al., 2005; Antonangeli et al., 2004), there are 

far fewer studies on Fe–Ni alloys (Huang et al., 1992; Lin et al., 2003; Mao et al., 

2005; Dubrovinsky and Dubrovinskaia, 2003).  

At ambient conditions, the stable phase of α-Fe has the body-centred cubic 

(bcc) structure. This phase transforms into a γ–Fe (fcc) phase upon increasing 

temperature above 1185 K, and then transforms to δ-Fe (another bcc–structured) 

phase before melting (Saxena et al., 1995). At high pressure, both bcc and fcc phases 

transform into the ε (or hcp) phase (Takahashi and Bassett, 1964). This phase has a 

broad stability region, and ε−Fe is generally considered to be stable at the inner core 

conditions (Hemley and Mao, 2001). Some theoretical calculations (Belonoshko et al., 
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2003) predict the bcc structure of iron in this region near the melting temperature. 

Also, the bcc phase of Fe could be stabilized at the inner core conditions by dissolving 

some amount of “light” elements, in particular, silicon (Vocadlo et al., 2003; Lin et 

al., 2002). Recent experimental studies by Dubrovinsky et al. (2007) confirmed that 

iron alloys with significant nickel, sulphur or silicon content adopt the bcc-structure at 

the Earth’s inner core conditions. Pure Ni is thought to be in the fcc structure at 

pressures over 300 GPa and up to the melting temperature (Yoo et al., 2000). The 

ambient pressure phase diagram of Fe-Ni alloys shows the existence of both fcc and 

bcc phases; the fcc phase, depending on composition, has a complex magnetic 

behaviour, and is known to exist in different magnetic states (Hausch and Warlimont, 

1973; Dubrovinsky et al., 2001a; Meyer and Entel, 1995). The lower temperature field 

(T < 400 °C) of the Fe–Ni phase diagram has a complex configuration that includes a 

paramagnetic low-Ni disordered fcc phase, as well as the ordered compounds FeNi 

(tetrataenite) and Ni3Fe (Guenzburger and Terra, 2005). The high-pressure phase 

diagram of Fe-Ni alloys is still not well constrained, and details of stability fields of 

bcc, fcc and hcp phases are not clear even for low-Ni (below 25 at%) alloys (Mao et 

al., 1990; Huang et al., 1988; Lin et al., 2003; Mao et al., 2005; Dubrovinsky and 

Dubrovinskaia, 2003).  

Seismological observations provide us constraints concerning pressure, 

density and sound wave velocities in the outer liquid and inner solid core, but 

experimental data of Fe-Ni elasticity at appropriate conditions are missing. Although 

sound wave velocities in pure ε−iron were measured at high pressures and 

temperatures (Lin et al., 2005), the effect of its transition to the γ-phase and on the Ni 

content were not known so far. However even relatively small amounts of additional 

components could change phase relations and thermophysical properties of iron alloys 
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(Boehler, 1993; Mao et al., 2005; Lin et al., 2002; Dubrovinsky et al., 2001a; 

Schilfgaarde et al., 1999; Vidale and Earle, 2000): addition of Ni is thought to 

increase the fcc phase stability field. Therefore, the understanding and interpretation 

of composition and properties of the Earth’s core (such as seismic anisotropy, fine-

scale heterogeneity, super-rotation (Vidale and Earle, 2000; Breger et al., 2000)) 

require detailed studies of the Fe-Ni system at high pressures and temperature.  

The described in the previous chapter method for measuring phonon 

dispersion curves at extreme conditions was applied to the investigation of the 

elasticity of the certain iron-nickel alloy. The first in situ measurements of the 

longitudinal sound velocities VP in fcc Fe0.78Ni0.22 alloy were performed at high 

pressures and temperature by means of inelastic x-ray scattering from polycrystalline 

material. The composition was chosen as one of the high-end probable Ni-

concentrations in the Earth’s core in order to see the strongest possible effect of Ni 

addition on the bulk sound velocities in the alloy. The study was combined with the 

determination of the EoS of the alloy by x-ray diffraction (XRD) that provided to 

derive as well the transverse velocity VS. 

A single-crystal of iron-nickel alloy containing 22 at% Ni, commercially 

available from the IBS Company (Germany), was synthesized by the Chochralski 

method. The metastable fcc crystal, quenched from high temperature, completely 

transformed to the polycrystalline bcc phase (during crystal cutting and polishing) as 

confirmed by XRD studies. The Mössbauer spectrum of the starting material, 

collected at ambient conditions, shows a magnetically ordered structure with a 

hyperfine field of about 34 T and a significant BHF distribution, typical for bcc Fe-Ni 

alloys (Narayanasamy et al., 1979) (Fig. 3.3.1a). The sample was polished to a thin 

plate of about 19 µm thickness, loaded into a diamond anvil cell and compressed 
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above 12 GPa. As a result it completely transformed to the polycrystalline high-

pressure fcc phase used for further measurements. 

 

 

Fig. 3.3.1. 57Fe Mössbauer spectra of Fe0.78Ni0.22 alloy at ambient conditions 

(a, bcc phase) and at 23 GPa (b, fcc phase). Black dots are the experimental 

data; solid lines are the total fits. Residuals are shown above each curve, and 

a hyperfine field distribution is shown at the right of each spectrum. 

Velocity scale is relative to the 57Co/Rh source. 

 

A four-pin modified Merrill-Basset type DAC (Dubrovinskaia and 

Dubrovinsky, 2003) equipped with an internal miniature platinum resistive heater was 

used to compress and heat the sample. Diamonds with 250 µm culet diameter were 

used as anvils. A rhenium gasket with 260 µm initial thickness was pre-indented to 
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~45 µm and a hole of 125 µm in diameter was drilled. A Fe-Ni sample was loaded 

along with a large amount (~50 % of volume) of pure polycrystalline LiF. One of the 

loadings was performed without LiF and we didn’t observe any difference between 

experiments with and without LiF. Several small ruby chips were loaded into the 

sample chamber for pressure measurements (Mao et al., 1986). Temperature 

dependence of the ruby fluorescence was taken from Rekhi et al. (1999). Temperature 

was measured using an ultra-thin R-type thermocouple, located close (within less than 

1 mm) to the sample chamber. The thermocouple was fixed with a ceramic bond on 

the surface of the metal gasket right near the diamond/gasket interface.  

IXS measurements were performed on the ID28 beamline at the ESRF. The 

instrument was operated in the Si(888) configuration, with an incident photon energy 

of 15.817 keV and a total instrumental energy resolution of 5.5 meV full width at half 

maximum (FWHM). The transverse dimensions of the focused x-ray beam of 25×60 

µm2 (horizontal×vertical, FWHM) were further reduced by slits to approximately 

10×15 µm2. The momentum resolution was set by slits in front of the analyzers to 

0.25 nm-1. Two sets of experiments, at room temperature and at 715 (10) K, have been 

performed. The special-designed vacuum chamber, described in the section 2.2 of the 

present work, was used for performing all the experiments. Before and after each 

measurement (taking about 10 hours) an in-situ 1-D monochromatic x-ray diffraction 

pattern was collected for lattice parameter determination exactly from the same 

sample. The final pressure value was calculated from the lattice parameters (see 

below). 

High-pressure and high-temperature angle-dispersive XRD study of the same 

Fe-Ni alloy compressed in LiF pressure-transmitting medium was performed using 

the high-resolution powder diffractometer of the Swiss-Norwegian BM01 beamline at 
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the ESRF. Sample loading and experimental protocol was exactly the same as for the 

IXS measurements, in order to avoid any systematic uncertainty. A monochromatic 

beam with 0.7995 Å wavelength was used and the diffracted intensities were 

registered with a MAR345 image plate. Experimentally measured pressure-volume 

relations at room temperature and at 715 K were reduced to the isothermal third order 

Birch-Murnaghan equations of state with a least-square minimization routine.  

Powder x-ray diffraction revealed that Fe0.78Ni0.22 alloy is stable in the fcc 

phase throughout the whole studied P, T range. An example of the analysed integrated 

pattern of the spectrum collected at 24.4(2) GPa and room temperature is shown in 

Fig. 3.3.2. The Debye-Scherrer rings of the studied sample show no evidence of 

“spotty” diffraction or inhomogeneous intensity distribution, indicating the absence of 

notable preferred orientation. The Mössbauer spectrum of the fcc phase, collected 

from 57Fe enriched Fe0.78Ni0.22 alloy at 23 GPa shows negligible magnetic interactions 

(Fig. 3.3.1b). The measured volume in the 20 to 72 GPa pressure range was fitted to 

the third order isothermal equations of state at 300 K and at 715 K with the following 

coefficients:  

K300=161 (1) GPa, K’300=4.97(1), V300=6.89(1) cm3/mole 

K715=160 (1) GPa, K’715=4.97(2), V715=6.96(1) cm3/mole 

All the parameters were fitted, since ambient pressure volume at 300 and 715 

K cannot be measured (high-pressure fcc phase is not quenchable) and is estimated 

from the obtained EoS. These parameters were used to calculate the pressure and bulk 

modulus K from the measured volume for every P-T point of the IXS experiment. 
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Fig. 3.3.2. Typical example of analysed integrated XRD patterns 

of the spectrum collected at 24.4 GPa and room temperature. 

 

Fig. 3.3.3 shows an example of the IXS spectra collected at the highest 

reached pressure (71.7 GPa) and 715 K. It is characterized by an elastic contribution 

centred around zero energy, and two inelastic features, corresponding to the 

longitudinal acoustic phonons of Fe-Ni and the transverse acoustic phonon of 

diamond. Due to the much higher sound velocity (~11 km/s) the diamond contribution 

moves rapidly out of the spectral window of interest with increasing momentum 

transfer. The energy position E(Q) (Q is the wave vector) of the phonons was 

extracted using a model function composed of several Lorentzian’s plus Gaussian 

peak functions, and the number of peak components was kept constant for each fit. 

The origin of small Gaussian smearing of inelastic peaks is probably small 

fluctuations of pressure and temperature during data collection, as well as possible 

pressure gradients and non-systematic instrumental errors. This model function was 

fitted to the IXS spectra, utilizing a standard χ2 minimization routine. In the case of 
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loading with LiF we also saw its LA phonon, but the contribution was clearly 

apparent due to the higher sound speed in LiF. Transverse phonon modes of the 

Fe0.78Ni0.22 alloy cannot be distinguished in the experiment, and only longitudinal 

sound velocities could be obtained directly from IXS measurements. Six to ten E(Q) 

(for Q from 3 to 12.6 nm-1) values were used to describe the LA phonon dispersions at 

every measured P, T condition. 

 

Fig. 3.3.3. Representative IXS spectrum of polycrystalline Fe0.78Ni0.22 

alloy, collected at 71.7 GPa and 715 K (Q=10.45 nm-1). Inset: an 

example of the sinusoidal fit to the experimental E(Q) relation. 

 

The procedure of the data collection and reduction is described in details in the 

previous chapter of the present work (see section 2.2). The values for compressional 

wave velocities were extracted from the sinusoidal fit to the E(Q) relation (see Fig. 

2.2.3 or Fig. 3.3.3, inset) using Eq. 2.24 (see section 2.2). Since no evidence of 

anisotropy was observed by XRD, the sample was consider as an isotropic 

polycrystalline material, and the shear sound velocities VS were extracted according to 
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the Eq. 2.25 (see section 2.2). In the equation the isothermal (instead of adiabatic) 

bulk modulus was used. Numerical estimates show that the difference between KT and 

KS in our case is negligible (less than 2 %). Values of the isothermal bulk modulus K 

for a given density ρ were calculated from measured EoS parameters (see above). The 

values of other generally used isotropic elastic moduli (shear modulus G, Young’s 

modulus E, and Poisson’s ratio ν) could be easily calculated and are listed in table 3-3 

along with VP and VS values. 

 

Table 3-3. Aggregate longitudinal and transverse velocities, bulk, shear, Young’s 

moduli and Poisson ratio of fcc Fe0.78Ni0.22 alloy as obtained from IXS and x-ray 

diffraction measurements. 

 P, GPa ρ, 

g/cm3 

VP, km/s VS, km/s K, GPa G, GPa ν 

 

E, 

GPa 

300 K 12.4 (0.7) 8.74 6.579 (0.3) 3.675 (0.3) 221 (2) 118 (3) 0.2733 301 

 20.4 (1.0) 9.04 6.994 (0.2) 3.877 (0.2) 258 (2) 136 (3) 0.2757 347 

 30.4 (1.5) 9.37 7.348 (0.2) 4.095 (0.2) 302 (3) 157 (4) 0.2783 402 

 35.3 (1.8) 9.52 7.293 (0.4) 3.797 (0.3) 323 (2) 137 (3) 0.3141 361 

 40.6 (2.0) 9.67 7.545 (0.4) 3.729 (0.3) 346 (3) 135 (3) 0.3281 357 

 65.9 (2.1) 10.31 8.557 (0.4) 4.691 (0.3) 452 (4) 227 (2) 0.2496 583 

715 K 21.5 (0.6) 8.997 6.392 (0.3) 2.981 (0.2) 261 (3) 80 (2) 0.2984 218 

 37.1 (0.8) 9.457 7.428 (0.4) 3.912 (0.3) 329 (3) 145 (3) 0.2650 379 

 52.0 (1.3) 9.857 7.783 (0.4) 3.948 (0.3) 392 (3) 154 (3) 0.2771 408 

 54.3 (1.2) 9.945 7.692 (0.4) 3.743 (0.3) 403 (4) 139 (3) 0.2885 375 

 71.7 (1.7) 10.35 8.315 (0.4) 4.179 (0.3) 474 (4) 181 (3) 0.2798 481 

 

 

Sound wave velocities, plotted against density, are shown in Figs. 3.3.4 – 

3.3.6. The data for fcc Fe0.78Ni0.22 are in good agreement with those for ε−iron and 

iron-nickel alloy measured by Lin et al. (2003) (Fig. 3.3.4). The sound velocities for 



  Results and discussion 

 154

pure hcp-Co and Ni are systematically lower at the same density. This difference 

cannot be explained by the atomic mass difference only, implying that simple mass 

corrections to the alloys elastic properties are invalid. 
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Fig. 3.3.4. Sound velocities of Fe0.78Ni0.22 alloy at ambient and high 

temperature (filled circles) in comparison with data for pure ε-iron: 1 – 

Dubrovinsky et al. (2001b), 2 – Lin et al. (2005), 3 – Antonangeli et al. 

(2004), hcp Co – 4 (Antonangeli et al., 2005), Fe0.87Ni0.13 alloy – 5 (Lin 

et al., 2003) and 6 – sound wave velocities for pure fcc Ni at ambient 

conditions. 

 

The well-known linear relation between longitudinal velocities and density (so 

called “Birch’s law”) (Birch, 1961) that is usually used in geosciences for 

extrapolations to the Earth’s inner core conditions is generally satisfied within the 

uncertainties of our measurements. Present IXS study shows no detectable difference 

between room and high temperature results when normalized to density (Fig. 3.3.5).  
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Fig. 3.3.5. Sound velocities of Fe0.78Ni0.22 alloy at ambient and high 

temperature in comparison with high and room temperature data for ε-

iron (Lin et al., 2005). 

 

The only exception is one high-temperature point at pressure 21.5 GPa 

(corresponding to the density ~9 g/cm3), which is notably lower. This point could 

accidentally fall into narrow pressure and temperature region with anomalous 

compressibility in FeNi alloy also known as the invar effect (Dubrovinsky et al., 

2001a) and thus the elastic behaviour of fcc Fe0.78Ni0.22 alloy at low pressure (< 25 

GPa) region require additional studies. The absence of a significant temperature effect 

on VP agrees with theoretical calculations (Steinle-Neumann et al., 2001): even at 

temperatures about 4000 K, longitudinal sound wave velocities in ε-iron are thought 

to decrease only by 2-3% (Fig. 3.3.6). At T < 1000 K the temperature effect is 
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probably not detectable with the present experimental accuracy. In contrast to this, a 

recent nuclear-resonant inelastic x-ray scattering study (Lin et al., 2005) reported that 

ε-iron does not follow Birch’s law at high temperatures, and that sound velocities 

significantly decrease with temperature for a given density. Present results could not 

confirm such anomaly for Fe-Ni alloy in studied pressure – temperature range.  
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Fig. 3.3.6. The present study (line shows linear fit to the data for 

Fe0.78Ni0.22 extended to the inner core conditions) in comparison with the 

seismic observations (PREM) (Dziewonski and Anderson, 1981) and 

calculated sound wave velocities for ε-iron at different temperatures 

(Steinle-Neumann et al., 2001). 

 

When extrapolate current data to Earth’s inner core conditions and compare 

with PREM (Dziewonski and Anderson, 1981), almost no difference can be seen in 

longitudinal wave velocities, but VS is significantly higher than the values expected in 
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Earth’s core (Fig. 3.3.6). If we assume similar temperature corrections as for pure ε-

iron (Steinle-Neumann et al., 2001), both VP and VS would be below the PREM model 

for fcc Fe0.78Ni0.22 alloy. Could this difference be attributed to the presence of “light” 

elements, such as oxygen or sulphur, in the inner core? It is known that the density of 

the core is somewhat lower than what is expected for pure iron or iron-nickel alloy at 

corresponding conditions (Dziewonski and Anderson, 1981; Dubrovinsky et al., 

2000b). Incorporation of a few percent of “light” elements to the core could solve the 

problem. At the same time “light” elements would influence elastic properties of the 

core, and also increase sound velocities. For example, numeric estimations for 

addition of silicon in form of FeSi-alloy to pure iron would result in decreasing 

density and increasing sound wave velocities (Lin et al., 2003; Steinle-Neumann et 

al., 2001). 

Previous studies (Mao et al., 2005; Huang et al., 1992) in combination with the 

present work show that there is still no unambiguous answer about phase stability 

fields of bcc, fcc and hcp structures of FeNi alloys with different content of Ni under 

high pressure. It is clear that even small changes in Ni content result in dramatic 

changes of the fcc stability field. In present case (22 at. % of Ni) the stability field of 

the fcc phase is larger than was reported by Mao et al. (2005) for Fe0.95Ni0.05, 

Fe0.85Ni0.15, Fe0.80Ni0.20 and by Huang et al. (1992) for Fe0.70Ni0.30.   

In order to conclude, in the present section x-ray inelastic scattering 

measurements allowed the longitudinal acoustic wave velocity to be measured that 

gives, combined with the measured EoS, the full isotropic elasticity of the material. 

And no significant deviation of the elastic properties from those of pure ε−iron was 

observed and furthermore no deviation from Birch’s law. Although the bulk elasticity 

of fcc Fe-Ni alloy and ε−Fe seem to be very similar, the elastic anisotropy of 
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hexagonal and cubic phases should be quite different (Cohen et al., 1997). If the metal 

phase in the inner core is not hexagonal, but cubic (or a mixture of the two phases 

exists), seismic anisotropy may provide a better way to discriminate between them 

two. 
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Conclusions 

 

 

The main goals of this study were to extend gigahertz ultrasonic 

interferometry (GUI) into the simultaneous high–pressure high-temperature regime, 

and to apply this instrument in new studies of geophysically relevant materials. The 

problem of magneto-elastic coupling in transition metal monoxides including FeO, 

MnO, as well as elasticity of metals (iron-nickel alloy) have been investigated using 

several techniques, including GUI, Mössbauer spectroscopy (MS), and inelastic x-ray 

scattering.  

 The first series of the experiments carried out within the Project, before the 

high-temperature assembly was developed, resulted in determination of the complete 

elastic tensor of wüstite (FexO) to 10 GPa (Kantor et al., 2004a). This phase is an end-

member of the MgO-FeO solid solution, considered to be the second most abundant 

phase in the lower mantle at 660-2890 km depth. This study extended previous data to 

3 GPa (Jackson et al., 1990), and revealed a new interesting behaviour of elastic 

constants of wüstite related to magnetoelastic coupling in the 4-6 GPa pressure range. 

In agreement with previous studies, dC44/dP is negative, reducing the value of C44 by 

20% at 10 GPa. A discontinuity in the pressure derivatives of C11 and C12 at 4.7 ± 0.2 

GPa are consistent with the pressure at which magnetic ordering starts, as observed by 

high-pressure MS in a 57Fe-enriched sample of Fe0.95O. The results indicate that an 
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intermediate magnetically ordered but still cubic phase of Fe0.94O exists at room 

temperature and in pressure range from ~5 GPa to ~17 GPa. 

 The magneto-elastic coupling observed in Fe0.94O by GUI experiment was 

investigated further using neutron diffraction technique at low temperature and 

ambient pressure (Kantor et al., 2005b). The obtained results demonstrate that 

structural distortion in wüstite occurs at much lower temperature (about 160 K) than 

the Néel transition (202 K). Therefore, magnetically ordered cubic phase of FexO that 

was observed at high pressures seems to exist also at ambient pressure at a large 

temperature range. This result implies that existing theories which directly links of 

magnetostriction and spontaneous magnetization in fcc ferromagnets monoxides are 

not valid at least for FeO, and probably also for other transition metal monoxides.   

 The high-pressure elastic behaviour of wüstite was also studied using inelastic 

x-ray scattering technique up to 20 GPa. The experiment was combined with x-ray 

diffraction in diamond anvil cell, which provided data on unit cell volume and, hence, 

density as a function of pressure. The cubic-to-rhombohedral phase transformation 

was observed between 17.6 GPa and 19.8 GPa. 

The bulk modulus of FexO determined from IXS and compressibility 

measurements coincide within the experimental error (KT = 162 ± 3 GPa). However, 

K’ values differ significantly (5.3 ± 0.2 for IXS data versus 1.79 ± 0.9 for diffraction 

data). At pressures about 17 GPa (just below the cubic-to-rhombohedral transition) 

the difference in bulk modulus reaches ~40 GPa, at least one order of magnitude 

larger than the associated experimental uncertainty. This unusual compressional 

behaviour of FexO can be explained by anelastic relaxation, which in the case of 

wüstite at high pressure is enormously strong and could not be considered as a 

negligible effect a priori.  
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The main implication for high-pressure mineral physics is that high-frequency 

and phonon dispersion measurements could give effective elastic moduli different 

from those seen by low-frequency seismic waves in geophysical observations. In case 

of any internal structural relaxations, associated with atomic diffusion, a certain 

characteristic time τ is required to reach an equilibrium state. If the inverse sampling 

frequency is smaller than τ, only elastic relaxation occurs, and the measured bulk 

modulus and K’ would be higher, that those measured for inverse frequency larger 

that τ. All materials with significant amount of defects and all solid solutions and 

alloys could possess anelastic relaxation and FexO is probably one of the extreme 

cases. 

A method for measuring inelastic x-ray scattering in externally heated 

diamond anvil cells has been developed. The high-pressure and temperature elasticity 

investigation was performed on a FeNi-alloy. It was the first in situ measurement of 

the longitudinal sound velocity VP in fcc Fe0.78Ni0.22 alloy at high pressure and 

temperature by means of inelastic x-ray scattering from polycrystalline material 

(Kantor et al., 2007a). The composition was chosen as one of the high-end probable 

Ni-concentration in the Earth’s core in order to evaluate the strongest possible effect 

of it on the bulk sound velocities in the alloy. Combined with the determination of the 

EoS by x-ray diffraction, the transverse velocities VS were derived as well. 

Powder x-ray diffraction revealed that Fe0.78Ni0.22 alloy is stable in the fcc 

phase throughout the whole studied P, T range. Sound velocities in Fe0.78Ni0.22 alloy 

do not significantly deviate from those of pure ε−iron and furthermore no deviation 

from Birch’s law (linear relation between density and longitudinal seismic velocity) 

for the studied material was observed. Although the bulk elasticity of fcc Fe-Ni alloy 

and ε−Fe seem to be very similar, the elastic anisotropy of hexagonal and cubic 
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phases should be quite different (Cohen et al., 1997). If the metal phase in the inner 

core is not hexagonal, but cubic (or a mixture of the two phases exists), anisotropy 

may provide a better way to discriminate between them two. 

The high P-T gigahertz ultrasonic system was developed for the purpose of 

determining the full elastic tensor of single-crystals under high pressure and 

temperature simultaneously. The pressure is limited now only by preserving single-

crystal at high pressure and maintaining the parallel-faced sample inside a DAC. GUI 

experiments were conducted at pressures up to 10 GPa. In the future, loading with a 

helium pressure-transmitting medium could increase this pressure limit, and use of 

neon pressure medium would allow high-temperature experiments. With the 

increasing temperature it was found that the intensity of the acoustic signal decreases. 

This problem can be potentially solved using additional high-frequency amplifier, 

which increases the intensity in several times. 

 GUI system is also helpful in measuring the bulk elasticity of nanocrystalline 

and liquid materials but the problem of thickness determination should be solved 

beforehand. Measuring sound velocities in metals proved to be challenging, and is yet 

unsuccessful. Despite concerted effort to produce polished facets, the malleability of 

metal results in a thin distorted, possibly polycrystalline layer on the surface. Because 

the acoustic waves at GHz-frequencies have near-optical wavelengths (1-10 mm), any 

disturbance of the crystalline solid on this scale scatters or absorbs the incident 

acoustic wave-field. In the future, it may be possible to use ion beams or chemical 

etching to produce crystalline surfaces on metals for high-frequency acoustic 

measurements.  

The GHz-ultrasonic interferometry technique is promising for many 

geologically important applications, but is quite complicated for routine usage. The 
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very high requirements for the sample quality and the complicated assembly (custom 

buffer rods and transducers, which are not available commercially and have been 

prepared by magnetron sputtering) are the primary limits in the application of GUI 

system, preventing wider employment of the technique at this time. There are 

currently only three GHz-systems worldwide: in Bayreuth (BGI), at GFZ-Potsdam by 

H.J. Reichmann and at Northwestern University (Evanston, IL) by S.D. Jacobsen. The 

technological challenges associated with the technique are also balanced by the 

novelty of results possible only with GUI. The technique holds exciting potential for 

the future of mineral physics. 
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