RESEARCH ARTICLE

Making powder aerosol deposition accessible for small amounts: A novel and modular approach to produce dense ceramic films

Jörg Exner | Mario Linz | Jaroslaw Kita | Ralf Moos

Department of Functional Materials, University of Bayreuth, Bayreuth, Germany

Correspondence
Jörg Exner and Ralf Moos, Department of Functional Materials, University of Bayreuth, Bayreuth, Germany.
Email: Functional.Materials@Uni-Bayreuth.de

Funding information
Funding from the Deutsche Forschungsgemeinschaft (German research foundation, DFG) is gratefully acknowledged (DFG grant MO 1060/40-1).

Abstract
Powder aerosol deposition is a promising technique to deposit dense ceramic films directly at room temperature. While previous developments pointed towards larger and more complex deposition devices, this work follows a different approach and proposes a simplified and miniaturized coating device (denoted as Micro-PAD, µPAD). The aim is twofold: creating a smaller and flexible device consisting of an aerosol generation unit and a deposition chamber with a combined low areal footprint of 30 cm by 20 cm (that, e.g., easily fits in a glove box) as well as lowering the hurdle for other researchers to use the powder aerosol deposition. Therefore, we introduce a device mainly based on commercially available components/connectors as well as manual operated valves/flow meters. A key point is the elimination of moving components by just using a spot deposition that was enabled by using a circular de-Laval-type nozzle.

The operational capability of µPAD is proven for the deposition of alumina films and compared to conventional PAD in terms of mechanical, crystalline, and optical film properties. Thick films with a bell-shape-like profile are deposited by µPAD, featuring a plateau in the center of the film with a diameter of 5 mm and a FWHM (full width at half maximum) diameter of about 10 mm. Alumina films produced by µPAD do not only match the properties of corresponding PAD films, but oftentimes outperform them. Here, µPAD films exhibit increased hardness and optical transmittance values, surpassing reference values of the conventional sprayed counterparts by at least 10%. Also, film integrity and adhesion to the substrate are slightly higher in case of µPAD. Reasons for the improved film properties are found by X-ray diffraction, with a significantly higher fracturing of impacting particles during µPAD combined with improved film consolidation as observed by SEM. Furthermore, µPAD featured doubled to tripled the deposition rates and, markedly almost doubled the deposition efficiency.

KEYWORDS
ceramic cold processing, ceramic spray coating, miniaturized deposition device, optical transmittance, spot deposition
1 | INTRODUCTION

Ceramic films are of high interest in a broad variety of technical applications, ranging from high-temperature-resistant, abrasive, and chemically stable protective films over electrically insulation films to applications as functional components in solid oxide fuel cells, lithium ion batteries, or sensors. It is a major drawback for many ceramic films that typically very high production temperatures either during or after film formation are required to form the dense and suitable ceramic (micro)morphology. Two exemptions exist that may overcome this requirement: cold sintering and aerosol deposition method. While the first technique is mainly utilized to manufacture bulk samples, the latter enables to produce dense ceramic films without any heat treatment directly at room temperature. Aerosol Deposition (abbreviated as AD or ADM), oftentimes also referred as powder aerosol deposition (PAD), vacuum kinetic spray (VKS), or vacuum cold spray (VCS), is a dry ceramic powder spray-coating method that uses micrometer-sized powders (0.5–5 µm). For all methods, dry ceramic particles are accelerated to velocities in the range of 150–500 m s⁻¹ in a carrier gas flow of 1–20 L min⁻¹. The particles subsequently collide with the surface that is to be coated in rough vacuum conditions (p = 1 mbar). Film formation and growth occur based on the Room Temperature Impact Consolidation (RTIC) mechanism by mainly using the kinetic energy of the impacting particles without dominating thermal heating effects. Upon high-momentum contact with the substrate, the particle undergoes a brittle fragmentation to nanometer-sized fragments in conjunction with plastic deformation. The newly formed fragments exhibit fresh, unsaturated and therefore reactive surfaces that bond to the substrate as well as to already deposited particles. An additional film densification emerges by subsequently impacting particles that consolidate the previously formed film. Already realized electrochemical applications are photocatalytic ceramics like TiO₂, GaN–ZnO, and BiVO₄, as well as energy storage and conversion devices like fuel cells, thermoelectric generators, and batteries. Furthermore, a variety of sensors was published using powder aerosol deposited functional films. A more detailed description of the aerosol deposition process, its deposition mechanism, and the resulting film properties can be found in overview articles of Akedo’s group and of our group.

Developments in the past decade pointed towards a better understanding of the deposition mechanism, possible applications, and a scale-up of the spray process. The latter resulted in an enhanced process control and increased coating areas, for example, for PZT on 4-inch wafers, SOFC anode/electrolyte bi-layers up to 1000 cm², Y₂O₃ transparent films on 500 mm square glass panels, and even larger films using nozzles width of 400 mm up to 1000 mm. However, this process improvement comes at the cost of a significantly raised complexity of the coating devices. Consequently, expensive moving stages, high-throughput aerosol generation devices, and very large deposition chambers are required. The high necessary investment costs and the difficult prospect to build the required knowhow may hinder researchers and developers in the field of chemistry, physics, and material science to start using this otherwise very promising coating technique. Furthermore, with existing PAD machinery, it is hardly possible to deposit newly synthesized materials that are often available in very small quantities below one gram.

To complement this, we have developed a simplified method that enables the room temperature deposition of powders, even if these are only available in small amounts. In other words, the aim of this modular and miniaturized approach, which we will denote as µPAD in the following, is to allow for a film formation on a smaller scale yet still adequate for material research and application testing. This will be shown for alumina, the best-investigated material for PAD. Alumina films produced by the proposed µPAD setup are characterized in terms of their mechanical, crystalline, and optical properties and are compared with conventionally sprayed PAD reference samples.

2 | EXPERIMENTAL DETAILS

For a proof of concept, alumina powders were used to determine the performance of conventional PAD and miniaturized Micro-PAD (µPAD) in terms of film deposition and film properties.

2.1 | Differences of a conventional PAD and the modular µPAD setup

A powder aerosol deposition apparatus typically consists of three main components: 1. a deposition chamber, 2. an aerosol generation unit including the aerosol chamber and the carrier gas supply, and 3. a high-throughput vacuum pump (as displayed in Figure S1 in the Supporting Information). The dry coating material is placed within the aerosol chamber. A defined carrier gas, which is electronically controlled by mass flow controllers, is injected into the aerosol chamber. Thereby, the powder becomes airborne and forms a fluidized bed. A mechanical vibration supports the formation and stability of the aerosol generation. A constant pressure difference between the aerosol chamber and the deposition chamber
is maintained by continuous evacuation of the deposition chamber through the vacuum pump. Consequently, particles are transported through the connecting pipe and get accelerated by a nozzle. In most PAD setups, stationary slit nozzles with widths between 5 and 1000 mm are used. To form a ceramic film of a certain size, the substrate is repeatedly scanned above the nozzle by a predefined motion sequence of the motorized x-y stage. A scheme of the section within the conventional PAD chamber containing the slit nozzle, the substrate, and the substrate mounting is shown in Figure 1A.

In general, the same main components are present in µPAD equipment, too. However, in this work, we focus on the aerosol generation unit and the deposition chamber. A vacuum pump as third component is also required to operate the device yet will not be part of the thorough discussion since it is a commercially available standard part. The main difference between µPAD and PAD is undoubtedly the absence of moving parts like the before-mentioned x-y stages. Therefore, the deposition area is reduced to nearly the size of the nozzle orifice (see Figure 1B). Hence, converging slit nozzles become unfavorable since an irregular-shaped, line-like film forms. To overcome this issue and to allow for the deposition of uniform film areas, de-Laval-type nozzles with a circular orifice are used instead. Each deposited film (spot) thereby also exhibits a circular appearance, preferably featuring a plateau with constant thickness in the center of the spot. More detailed design principles are also given in the Supporting Information (Section: general design principles of the µPAD setup). After explaining the idea of the µPAD setup, the exact layout and used components are described in the following.

The realized, compact µPAD device (excluding the vacuum pump) as well as a scheme of it are shown in the images of Figures 2 and 3, respectively. A detailed 3D model is also available in the Supporting Information (Figure S2). Commercially available small flange components (ISO-KF, Pfeiffer Vacuum) were chosen to construct the modular deposition chamber. KF40 with an inner diameter of 40.5 mm was identified as the best trade-off between miniaturization and cleanability on one hand as well as operability and low gas flow resistances on the other hand.

The main deposition chamber on the right-hand side in Figure 2A consists of a low-profile, angular-shaped KF40-Tee and houses the de-Laval-type nozzle. A blank flange with an aerosol feedthrough (bulkhead union; Swagelok, outer diameter of 6 mm, inner diameter of 4 mm) is located at the top side of the chamber while the exhaust to the vacuum pump is attached to the side port. The latter connection can be closed using a KF40 butterfly valve and may be implemented with a corrugated KF40 hose for more flexibility. The third port optionally extends the deposition chamber downwards with KF40 pipes or can be sealed using a blank flange. Here, two different modes of operation exist: Either the substrate is small enough to fit inside the inner diameter of the pipe and therefore a completely closed chamber is preferred, or a semi-open chamber may be used for large substrates exceeding sizes of 45 mm. The latter option requires a flat and mechanical stable substrate that represents the last wall of the deposition chamber therefore fully sealing it. This setup is displayed in Figure 2 and in Figure S2 with a square substrate of 100 mm edge length.

The aerosol formation is achieved in a custom-made, lab-scale aerosol chamber as displayed in Figure 2B. It consists of three connecting ports. Here, the glass aerosol chamber also houses a horizontal porous glass frit near the lower end, which allows to permit a gas flow while restricting the powder to the upper part of the chamber. A gas flow, denoted as aerosol inlet gas flow, enters through the lower port of the chamber, passes through the porous frit, and aerosolizes the coating material. Airborne aerosol continuously flows to the top of the aerosol chamber, is ejected through the upper connector (see yellow arrow), and is mixed with a dilution gas flow (upper green arrow). A flexible tube transports the aerosol to the miniaturized deposition chamber, where it gets accelerated within the de-Laval-type nozzle and subsequently gets deposited. The third port at the aerosol chamber connects to a pressure gauge to monitor the process pressure level. When unplugging this connector, refilling of the aerosol chamber is possible using a funnel.
The complete aerosol chamber is top-mounted, hanging at the dilution gas flow pipe of the gas flow controller box. Therefore, the lower end of the aerosol chamber remains movable to a certain degree and allows for a mechanical shaking of the device (e.g., using an attached unbalance vibrator). This supports the formation of the fluidized powder bed and enhances the stability of the aerosol output. By using two gas flows—the aerosol inlet flow and the dilution gas flow—the aerosol concentration (mass of powder per time) may be altered independently of the additional important spray process parameters (especially the total gas flow responsible for the aerosol acceleration within the nozzle). Both flows are independently adjustable using two sets of flow meters with attached needle valves (Figure 3) integrated in a flow controller box. Since gas flows in PAD are typically given in standard liter per minute measured against ambient atmosphere, three-way valves enable to switch among three states to control the process: 1. closed—no gas flow (no deposition), 2. drain flow to atmosphere to adjust the desired gas flow.
rates (no deposition), and 3. gas and aerosol flow to deposition chamber (active deposition).

The last preliminary study investigates the pressure in the deposition chamber since it is one of the most crucial PAD parameters (see Supporting Information, Figure S3). In contrast to conventional PAD deposition chambers with large piping profiles, µPAD shall utilize smaller and flexible hoses to connect the chamber to the high-throughput vacuum pump. Typical flow rates for PAD are in the range of 5–10 L min$^{-1}$, leading to a chamber pressure of 0.4 to 0.8 mbar (based on the pump characteristics of a 1000 m3 h$^{-1}$ pump system). For the µPAD setup using the proposed flexible KF40 hose, here with a length of 0.75 m, the working pressure range rises by a factor of 2 (0.8–1.7 mbar) due to increased flow resistances. However, this pressure still coincides well with the typically used value of about 1 mbar for PAD. If a corrugated hose with only a diameter of 25 mm (KF25) and a length of 1 m were used instead, pressure levels again would grow to 2.1 to 4.1 mbar. This is significantly higher than 1 mbar, yet still falls in the often stated deposition pressure region between 0.2 and 20 mbar that it suitable for PAD. To stay as close as possible to optimal PAD process parameters, the larger KF40 hoses were used for the coating runs.

2.2 | Film preparation

Alumina films were prepared using the described µPAD setup and compared to reference samples produced by conventional PAD as described in previous publications. All process parameters are summarized in Table 1. For good comparability, matching deposition parameters were chosen as far as possible. The same two-stage vacuum pump, aerosol generation chamber, alumina powder (Sasol Chemicals LLC), and substrates were used. With standard spray parameters, PAD films with an area of 10 × 10 mm2 (see Table 1), with 8–60 scans each resulting in coating durations t_c of 15 to 120 s were manufactured.

Differences occurred mainly due to the different operation modes of PAD and µPAD. While for PAD, a standard slit nozzle that requires an x-y movement of the substrate to obtain a rectangular-shaped film (including masking of the turning points of the scan movement) was applied, µPAD uses a single-spot deposition with a stationary substrate. Hence, an adapted nozzle geometry became necessary. A round de-Laval-type nozzle (orifice: $\phi = 10$ mm, throat: $\phi = 3.5$ mm, material: ABS) was used. The µPAD spray parameters were set to obtain an identical aerosol chamber pressure of 210 mbar. Due to the different nozzle geometry, the total oxygen carrier gas flow had to be adapted from 6 to 8 L min$^{-1}$, divided into 6 L min$^{-1}$ to the aerosol chamber (identical to conventional PAD) and additional 2 L min$^{-1}$ as dilution gas flow. Consequently, the deposition chamber pressure slightly increased from <1 to 1.4 mbar. The used nozzle exhibited an increased substrate-nozzle working distance of 55 mm and created bell-shape-like film profiles with diameters of about 10 mm (FWHM, full width at half maximum).

All produced films including important spray parameters, resulting film thicknesses h, and deposition efficiencies are summarized in detail in Table S1 (Supporting
To determine the crystallite size and the internal strain, Rietveld refinement was conducted using the TOPAS-Academic software. A differentiation of crystallite size and strain is possible, since both effects depend differently on the Bragg angle θ of the reflection. The crystallite size depends on $1/\cos(\theta)$, whereas the microstrain depends on $\tan(\theta)$.

To investigate the film morphology, samples on stainless steel substrates were prepared for cross-sectional imaging (embedded in resin followed by grinding and mechanical/chemical polishing) on a scanning electron microscope (Leo 1530 VP, Zeiss).

The thickness h of all deposited films was measured by a stylus profilometer (Jenoptik Waveline W20). 3D surface profiles of selected μPAD and PAD films were taken using a 405-nm laser scanning confocal microscope (LSM 900 Mat, Zeiss) to determine three-dimensional film thickness profiles and profile roughness parameters.

The hardness of the samples on stainless steel substrates was determined by a microindentation hardness tester (Fischerscope HM2000, Fischer Technology Inc.) in accordance with DIN EN ISO 14577-1-3. Here, 25 indentations with a force of 100 mN were repeated for each sample and the averages were calculated.

The optical (in-line) transmittance of films on glass substrates was determined between 250 and 1050 nm by a UV-Vis-NIR spectrophotometer (Cary 60, Agilent). As reference, an uncoated glass substrate was measured. The following parameter set was used for all transmittance measurements: scan rate = 600 nm/min, data interval = 1 nm, and average time = 0.1s.

To investigate the mechanical stability and adhesion of the deposited films, Daimler-Benz Rockwell-C adhesion tests were conducted on films on stainless steel. This technique enables a semi-quantitative statement about the adhesion and general mechanical integrity of coated components (in accordance with the German VDI 3198 standard). The investigation follows the indentation procedure of a Rockwell-C hardness measurement, followed by an optical assessment around the imprint by light microscopy. A conical indenter yields a massive plastic deformation within the coating and substrate, combined with extreme shear stresses at the interface of both. General adhesion is described in six quality levels ranging from HF1 (tight bonding to the substrate) to HF6 (low adhesion with catastrophic failure and excessive delamination). Classification is based on the amount of visible crack formation and film delamination around the circumference of the indentation spot, as summarized in the schematic test chart in Figure S6 (Supporting Information). Only HF1 to HF4 are considered as acceptable failure modes, whereas HF5 and HF6 indicate a poor adhesion with a widespread and (nearly)

2.3 | Film characterization

X-ray powder diffraction (XRD) patterns (D8 Advance, Bruker, Ge-Kα1 monochromator) were taken from the applied powders and the sprayed films on silicon between 20° and 70° (2θ) in steps of 0.02° for a hold time of 0.5 s each. X’Pert HighScore Plus software was used for structure verification. The patterns were compared with the hexagonal alpha alumina pattern (ICDD-PDF 04-004-2852).

(A) films on glass substrates

μPAD

PAD

(B) films on stainless steel substrates

μPAD

PAD

FIGURE 4 Images of alumina films produced by PAD or μPAD after different coating durations t_c on (A) glass substrates and (B) stainless steel substrates [Color figure can be viewed at wileyonlinelibrary.com]
entire peeling of the coating. For high quality coating with HF1 and HF2, solely minor cracks without any delamination are tolerated. HF1 and HF2 are distinguished by the number of occurring cracks: when only a few without the formation of a crack network exist, it is considered as the highest quality level HF1. The Daimler-Benz Rockwell-C adhesion test is limited to film thicknesses up to 5 µm and to ductile substrates that withstand the high indentation forces. Four to six spots were measured for each investigated sample using a Wolpert hardness measurement system (120° conical diamond indenter; 150 kg load with 15-s holding time).

Two important key performance indicators of PAD are the deposition rate \(r_c \) and the deposition efficiency \(\eta_c \). The deposition rate \(r_c \) describes the deposited volume \(V_c \) per coating time \(t_c \)

\[
r_c = \frac{V_c}{t_c}.
\]

\(r_c \) is typically given in mm\(^3\) min\(^{-1}\) or µm mm\(^2\) min\(^{-1}\). The deposition efficiency \(\eta_c \) given in % indicates the ratio between deposited film mass \(m_c \) and the mass of the sprayed powder \(m_{\text{powder}} \)

\[
\eta_c = \frac{m_c}{m_{\text{powder}}}.
\]

3 | RESULTS AND DISCUSSION

Alumina films produced by conventional PAD and by \(\mu \)PAD were comprehensively characterized in terms of their mechanical, crystalline, optical, and surface profile film properties. The overall aim is to survey whether with the proposed miniaturized and simplified \(\mu \)PAD setup films with a similar quality of conventionally sprayed PAD films can be obtained.

3.1 | Surface and profiles of films

Shape and homogeneity of deposited films are important factors for their later application. Films deposited on both stainless steel and glass substrates were analyzed with the laser scanning microscope. Films with the longest coating duration \(t_c \) of 60 and 120 s, respectively, and high powder fillings of 13 g and higher were characterized. Table 2 summarizes the mean thicknesses \(h \) and volumes \(V_c \), as well as roughnesses \(R_s \) (centerline-average) and \(R_z \) (maximum height of the profile) of these films.

Looking at the films on stainless steel, it is obvious that the deposition by \(\mu \)PAD achieves a significantly higher mean film thickness of 26 µm over 11 µm for conventional PAD. On glass substrates, the thickness increases by a factor of 3 to 4 (11 µm for \(\mu \)PAD in contrast to about 3 µm for PAD). Since the shape of the films is different, as discussed above, the deposition rate \(r_c \) calculations are based on the complete film volume \(V_c \) instead of just the film thickness \(h \). However, the previous observations are also roughly valid for the behavior of \(r_c \), with \(r_c = 1.1 \) mm\(^3\) min\(^{-1}\) and \(r_c = 0.92 \) mm\(^3\) min\(^{-1}\) for \(\mu \)PAD on steel and glass, respectively, in contrast to \(r_c = 0.55 \) mm\(^3\) min\(^{-1}\) and \(r_c = 0.33 \) mm\(^3\) min\(^{-1}\) for conventional PAD. This indicates that the volumetric deposition rate \(r_c \) is almost tripled in case of \(\mu \)PAD under otherwise closely matching spray parameters. Much of that differences may be explained by a change in the weight-based deposition efficiency \(\eta_c \). Here, processing by \(\mu \)PAD yields \(\eta_c \) about 0.2%, while with PAD only 0.1% is reached. The latter behavior coincides well with deposition experiments by Naoe et al. They used a similar rectangular nozzle (orifice 10 mm × 0.4 mm) with a deposition efficiency for alumina particles of up to 0.10%.\(^{60,61}\) Undeniably, \(\eta_c \) is still quite small for \(\mu \)PAD and PAD alike, meaning that 99.8% of the used alumina powder does not participate in film formation and typically settles within the deposition chamber. A reuse of the loosely adhered, undeposited powder was possible in preliminary, yet to be published experiments. This indicates that the low \(\eta_c \) of single deposition experiments may be considerably improved through multiple usage.

When comparing the \(R_s \) and \(R_z \) roughness values of \(\mu \)PAD films with their PAD counterpart (see Table 2), \(\mu \)PAD films tend to be rougher. However, the film thicknesses should be taken into account when interpreting roughness values of PAD films. As already described by Lee et al., the mean roughness \(R_s \) of alumina PAD films increases with

<table>
<thead>
<tr>
<th>Process</th>
<th>Substrate</th>
<th>Coating time</th>
<th>Film thickness</th>
<th>Film volume</th>
<th>Film roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(t_c)</td>
<td>(H)</td>
<td>(V_c)</td>
<td>(R_s)</td>
</tr>
<tr>
<td>PAD</td>
<td>Steel</td>
<td>120 s</td>
<td>11 µm</td>
<td>1.11 mm(^3)</td>
<td>0.08 µm</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>60 s</td>
<td>3 µm</td>
<td>0.33 mm(^3)</td>
<td>0.05 µm</td>
</tr>
<tr>
<td>(\mu)PAD</td>
<td>Steel</td>
<td>120 s</td>
<td>26 µm</td>
<td>2.27 mm(^3)</td>
<td>0.14 µm</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>60 s</td>
<td>11 µm</td>
<td>0.92 mm(^3)</td>
<td>0.08 µm</td>
</tr>
</tbody>
</table>
film thickness. Their reported data showed an increase in the mean roughness from 0.07 to 0.12 µm when films grew from 0.5 to 3 µm. This behavior, however, seems to be dependent on the used alumina powder and its particle size, since the same group published contradictory results where higher scanning numbers (and therefore higher film thicknesses) yielded decreasing film roughnesses.

By coincidence, the µPAD film on glass ($t_c = 60$ s) and the PAD film on stainless steel ($t_c = 120$ s) exhibit matching film thicknesses of 11 µm, therefore enabling to directly compare the roughness of µPAD versus PAD. Both films, independent of the type of manufacturing, feature identical roughnesses of $R_s = 0.08$ µm and $R_z = 0.55$ µm.

After explaining the general deposition characteristics in terms of film thickness and deposition rate, the resulting film profile is investigated in detail. Figure 5 shows the three-dimensional film thickness of the PAD reference sample on the stainless steel substrate together with two line profiles perpendicular and parallel to the substrate traverse direction. For the conventionally sprayed reference samples, the following orientation applies: The long side of the slit nozzle orifice with a length of 10 mm is oriented perpendicular to the traverse direction; hence, Figure 5B represents the film thickness distribution along the nozzle length. The profile parallel to the traverse direction in Figure 5C illustrates the timely homogeneity of the film deposition. Please note that only the reversal points of the movement (meaning the front and back side of Figure 5A) were masked during deposition, which was not the case for the sides of the film.

The sprayed reference PAD film features a nearly flat plane in the center of the film with a thickness of 11.5 µm, whereas the left and right boundaries are slightly elevated to about 17 µm. This film thickness distribution is caused by the used slit nozzle (details are given in the Supporting Information). Along the traverse direction, the film thickness is nearly constant with a low standard deviation of 0.5 µm. The shape of the PAD film prepared on the glass substrate (see Figure S4 in the Supporting Information) coincides, in general, with the film on stainless steel; however, due to a shorter coating time and less amount of used powder for the deposition, the thickness is lowered to about 3.2 µm. Summarizing both samples produced by PAD, the deposition is generally independent on the substrate material and results in similar film appearances. The standard slit nozzle with an orifice of 10 mm × 0.5 mm in combination with the alumina powder and the used spray parameter yields rectangular ceramic films with a nearly flat plateau at the center of the film and elevated film edges.

The shapes of the alumina films produced by the µPAD method deviate widely from the previous observed PAD films, as displayed in Figure 6 for the µPAD film on stainless steel. The thickness, in general, resembles a bell-shaped profile. Please note that due to the significantly miniaturized deposition chamber, the location of the vacuum chamber port becomes increasingly important. Looking at Figure 6A, the vacuum port was located at the back side of the sample (corresponding to the upper side of the top view inset in Figure 6B).

The thickness profile perpendicular to the vacuum port in Figure 6B shows an almost symmetrical course. In this measuring direction, the bell shape is flattened in the center of the film, resulting in a plateau with a height of 26 µm at a diameter of about 5 mm (the FWHM diameter is about 10 mm). Looking at the profile measured towards the vacuum port (Figure 6C), a non-symmetry occurs. While the side that faces the vacuum pump is elevated to 28 µm, the opposite side is reduced to 24 µm. This behavior may be explained by two major differences between the µPAD and...
PAD chamber. Firstly, the miniaturized deposition chamber (KF40 pipe with inner diameter of 40.5 mm compared to inner chamber dimensions of 500 mm) may increase inhomogeneities of gas flow and pressure distribution, additionally influenced by the location of the vacuum port near the nozzle orifice (see Figure S2, Supporting Information). Secondly, the large nozzle-to-substrate distance of 55 mm, necessary for the de-Laval-nozzle, increases the time-of-flight of particles after ejecting from the nozzle orifice and hence results in a longer interaction time of particles and surrounding chamber gas before impacting the substrate. Consequently, the thickness distribution with about 26 ± 2 μm is currently less uniform than for conventional PAD films. However, a derivation of about 8% may be tolerable in most applications and can be further decreased by an optimized µPAD chamber design. When using glass instead of stainless steel as substrate, the µPAD film thickness again resembles a nearly circular, bell-shaped profile (Figure S5, Supporting Information). However, the total film thickness of 11 μm is lower due to the halved coating time of \(t_c = 60 \) s.

To conclude, the µPAD device allows for manufacturing spot-like ceramic films with a very simple and inexpensive setup. It additionally features higher deposition rates and efficiencies yet is limited in terms of coating areas at present. The homogeneity of the film thickness within the center (about 5 mm in diameter) is in the range of 4%–8% and is suitable for material research; however, film edges are significantly less step due to the bell shape of the profile. Applying masks during deposition may allow for more precise edges, if necessary.

3.2 Film morphology

Two sets of cross-sectional SEM images of alumina films on stainless steel produced by PAD and µPAD, respectively, are shown in Figure 7. Both samples were produced using an identical coating time \(t_c \) of 120 s (see Table 2). The smallest magnification images in Figure 7A,D show uniform and defect-free thick films for both processing methods.

The thickness of the PAD film (\(h = 11 \) μm) perfectly coincides with the value previously determined using the laser scanning confocal microscope. For the µPAD film, the thickness of \(h = 18 \) μm is significantly higher compared to the corresponding PAD film; however, it appears lower than assumed in Section 3.1. The latter is probably related to the sample preparation with the cut slightly offset from the center of the film. Therefore, the cross-section does not display the center plateau of the film, yet a section of the falling edge of the bell-shaped film profile. Higher magnifications in Figure 7B,E reveal the high density and homogeneity of both films as well as their tight interface to the substrate. The interface between the substrate and the coating is not flat but has an irregular roughness due to the formation of the anchoring layer. However, the morphology of the PAD as well as the µPAD film appear identical on this scale. Differences only emerge at the highest magnification, where the films’ microstructure slightly differs. Please note that this nanograin structure is especially visible due to the chemical polishing of the cross-sectional samples leading to partially etched grains. The conventionally sprayed alumina film in Figure 7C consists of mainly two fractions: larger grains (crystallites) of 50 nm to 200 nm. They seem to be embedded in a matrix of even smaller grains of 20 to 30 nm. Additionally, nanopores of 10 to 20 nm are observed. In contrast, for the film produced by µPAD in Figure 7F, almost no nanopores occur and the sizes and amounts of both grain
size fractions appear to be altered. Less volume is occupied by the larger grains and consequently the amount of the smaller grain fraction increases. Yet, sizes of a few single grains up to 300 nm significantly exceed those of the PAD counterparts. This indicates that a slight change in the deposition behavior of alumina particles occurs when using μPAD in combination with its de-Laval-type nozzle. Higher particle velocities also increase the strain during particle impact, therefore affecting the formation of cracks and dislocations under fracturing.44

The SEM images clearly demonstrate that the RTIC mechanism underlying PAD also takes place under the modified process conditions of μPAD. The typical features of PAD including the dense and nanograined film morphology as well as the formation of the anchoring layer on ductile substrates are present within the μPAD film. Furthermore, the high-magnification SEM images even indicate an improved consolidation with less pores.

3.3 | Mechanical properties and film integrity

Ceramic PAD films usually are characterized by superior mechanical properties like hardness and film integrity (adhesion and stability). These properties are, therefore, an indication for a successful film formation, and hence, for the quality of sprayed films. Hardness values of two films on steel each produced by PAD and μPAD, respectively, were measured using microindentation (Figure 8). Please note that higher amounts of powders and consequently higher aerosol concentrations were used for
the films with \(t_c = 120 \text{ s} \) to achieve significantly higher thicknesses.

The 2.5 and 11-\(\mu \)m-thick PAD reference films exhibit a Vickers microhardness of 8.3 and 10.1 GPa, respectively. Both films produced by \(\mu \)PAD feature a higher hardness of 11.1 and 12.9 GPa at film thicknesses of 8 and 26 \(\mu \)m, respectively. Since there seems to be a tendency that higher film thicknesses lead to increased total measured hardness values, films with (approximately) similar thicknesses are compared. Here, even the 8-\(\mu \)m-thick \(\mu \)PAD film \((t_c = 60 \text{ s})\) exceeds the hardness of the 3 \(\mu \)m thicker PAD film \((11 \mu \text{m}, t_c = 120 \text{ s})\) by 10\%. This shows that \(\mu \)PAD not only matches hardness values of conventionally sprayed PAD films but instead also outperforms them. All sprayed alumina films exhibit hardness values significantly higher than that of the used stainless steel substrate (2.2 GPa), indicating that measured values indeed originate from the contribution of the films. Sintered alumina substrates taken as reference range up to hardness values of 15 GPa and hence are slightly higher than the films. However, especially the 26-\(\mu \)m-thick \(\mu \)PAD films come considerably close to this bulk value.

FIGURE 8 Vickers microhardness of alumina films produced by PAD and \(\mu \)PAD after coating durations \(t_c \) of 60 and 120 s. Measured bulk values of the used stainless steel substrate as well as bulk alumina are given for comparison [Color figure can be viewed at wileyonlinelibrary.com]

Film adhesion and integrity are analyzed using the Daimler-Benz Rockwell-C test in accordance with VDI 3198. Figure 9 shows optical microscope images of indentation spots on different samples. The uncoated steel substrate is shown as a reference (Figure 9A). Here, the ductile steel substrate clearly mirrors the imprint of the conical diamond indenter with a circular boundary to the non-deformed outer region. Selected indentation spots for the 2.5-\(\mu \)m-thick PAD alumina film and the 4.0-\(\mu \)m-thick \(\mu \)PAD alumina film are displayed in Figure 9B,C, respectively. The complete series of measurements with four to six spots per sample is available in Figure S7 (Supporting Information).

After the indentation procedure, both sample types still show a uniform coating outside the circumference of the imprint. Neither cracks nor delamination occur, also proving the superior quality and adhesion of PAD and \(\mu \)PAD films. In all cases, even the requirements for the highest adhesion level HF1 are easily surpassed, since HF1 still tolerates a few, isolated cracks ranging from the circumference into the undeformed film. Daimler-Benz Rockwell-C testing only makes use of the film appearance outside the imprint. Since both PAD and \(\mu \)PAD show undistorted, homogeneous surfaces after testing, the semi-quantitative method verifies that both film processing methods yield excellent mechanical properties. Therefore, high adhesion strengths are proven for the simplified \(\mu \)PAD, featuring this typical property of successfully deposited PAD films, too. Differences of the optical appearance between PAD and \(\mu \)PAD films yet are in the center of the imprint, within the circular boundary where highest mechanical stresses occur. Please note that studying this region is not part of the Daimler-Benz Rockwell-C method yet may give some additional insights. While for the conventional PAD film, surface flaking is visible due to the occurrence of very

FIGURE 9 Optical microscope images of the indentation spot after evaluation in accordance with VDI 3198: (A) uncoated steel substrate, (B) PAD alumina film \((h = 2.5 \mu \text{m})\), and (C) \(\mu \)PAD alumina film \((h = 4.0 \mu \text{m})\) [Color figure can be viewed at wileyonlinelibrary.com]
high strain, little to no delamination is observed for the μPAD films (despite their 1.5 μm higher film thickness). The cross-sectional SEM image of an indentation spot of a conventional PAD alumina film in Figure S8 (Supporting Information) supports the previous observations. At the edge as well as the complete surrounding of the imprint, the PAD film is still fully intact and free of delamination after testing. However, within the boundaries of the imprint, cracks in the film orientated perpendicular and parallel to the deformed surface become apparent. These cracks indicate that the applied high stresses exceed the stability of the PAD film and eventually lead to the optically observed surface flaking. For further testing of the crack formation in this region, indentation experiments were performed on an even thicker PAD film with \(h = 8 \mu m \), hence substantially exceeding the specification of VDI 3198 (\(h \leq 5 \mu m \)). While delaminations begin to form at the surrounding of the imprint as expected due to the very high film thickness, the level of flaking within the center region nearly remains the same. The concentration of cracks in the SEM images is increased and pronounced perpendicular cracks appear, yet film adhesion and general integrity of the PAD film are still present. Returning to the optical examination of the imprints, μPAD films may exhibit an even higher adhesion and mechanical strength than conventional PAD films; however, this initial observation needs further proof in future experiments.

Fracture resistance and excellent adhesion are based on multiple aspects of powder aerosol deposited films, namely.

1. a seamless interface between the substrate and the film that is free of cracks and delamination, known as anchoring layer: first impacting particles deform the substrate surface and may even get partially embedded, thereby increasing the substrate roughness and total interface area. Consequently, this roughened yet dense interface (typical in the height range of 200 nm to 700 nm) supports a mechanical clamping.\(^{64,65}\) Additionally, interactions in the form of ionic and covalent bonding between metallic atoms of the substrate and oxide ions from the alumina PAD film have been reported, that may also improve the film adhesion.\(^{66}\)

2. a high, near theoretical film density: the nanocrystalline, dense microstructure without pores, except for some nanopores, improves the cohesion of the coating material within the film.\(^{2}\)

3. a static compressive pre-strain within powder aerosol deposited films. It lowers tensile stress levels when a tensile load is applied.

While the first two points are self-explaining, the last statement requires further explanation. The underlying deposition mechanism of PAD, typically referred to as room temperature impact consolidation (RTIC), generates a nanocrystalline microstructure that is under a high compressive microstrain in the range of 0.5%–1.0%.\(^{29,67}\) Stresses can reach up to 2 GPa and are even be visible on a macroscopic scale since (thin) substrates get bended.\(^{68}\) For alumina powders processed with oxygen as carrier gas; however, a lower macroscopic stress of 1 GPa is common.\(^{68}\) This compressive stress seems undesirable at first glance, since it may cause a film peel-off at very high film thicknesses. However, technical ceramics sustain a considerably higher compressive strength compared to their tensile strength, commonly by one order of magnitude, so they are significantly more vulnerable to tensile strains. This basically means that compressive strains in PAD films are acceptable as long as the substrate–film interface (anchoring layer) is stable enough to withstand the formed stress. When a mechanical load is applied to PAD films, a superposition of the process-related compressive pre-strain and the additionally applied strain occurs. Hence, a tensile deformation applied to the PAD film first must relieve this pre-strain before a tensile stress state can build up. Since crack formation and propagation in brittle materials like glass and ceramics mainly occur under tensile stresses, the described pre-existing compression helps to suppress cracking that leads to the total failure of the coating. A similar behavior is well known for tempered/toughened glass panes, where tempering puts the outer glass surface into compression. This helps to increase mechanical strength by preventing the crack expansion and propagation that otherwise occurs at surface flaws.

For PAD as well as for μPAD films, the highly dense and seamless substrate–film interface in combination with the explained process-related compressive strains cause the extraordinary hardness and tolerance to indentation or applied mechanical bending.

3.4 Crystalline film properties

X-ray diffraction pattern of the powder and of the PAD/μPAD films deposited on silicon are shown in Figure 10. All reflections of the powder belong to the phase-pure α-alumina. Both, the PAD and the μPAD film, have identical reflection positions and thus are also present as α-alumina.

Whereas the reflections of the powder show a distinctive, narrow shape, the reflections of the PAD/μPAD processed films are notably broadened. This behavior is well known for PAD films, since the RTIC mechanism is based on a fracturing of particles and crystallites upon impact combined with the already explained formation of microstrain.\(^{6,69}\) Rietveld refinement enables to calculate the crystallite sizes as well as the microstrain (see Table 3).
required a nozzle with a larger deposition area, since the pressures of 210 mbar were set for PAD as well as µPAD, and µPAD. Also, pressure levels can be ruled out as a major influencing factor, because identical aerosol generator pressures of 210 mbar were set for PAD as well as µPAD, and the deposition chamber pressure is only slightly higher when comparing µPAD to PAD (see Table 1). However, the main difference between both PAD variations is indeed the applied nozzle. Spot deposition as used in µPAD required a nozzle with a larger deposition area, since the film area cannot be increased through a substrate movement. When designing the nozzle, also higher and more flexible nozzle-to-substrate working distances were intended to improve the general usability and flexibility of the µPAD device. As we considered, these requirements could only be met by de-Laval-type nozzles (converging-diverging nozzles). In addition, the converging–diverging layout enables to reach gas velocities above Mach 1 (velocity of sound). Consequently, also the powder within the particle-laden gas gets accelerated to higher particle velocities, 70–72 In contrast, the barrel-type slit nozzle as used for conventional PAD only makes use of a converging layout and hence is physically limited to a velocity of about Mach 1. We strongly assume that in fact these higher particle velocities as created by de-Laval-nozzles lead to the improved deposition behavior for powder aerosol deposition. This agrees with observations of Naoe et al. and Kwon et al. made for the deposition of alumina particles. 10,60 Although it is not possible to directly determine the particle velocity in-situ using our current devices, we plan to address this aspect in detail in our future work using the time-of-flight method as proposed by various groups. 73,74

The results not only show that the proposed µPAD setup forms films with the typical crystalline reflection pattern of powder aerosol deposited films. Moreover, the de-Laval-type nozzle, which was used to enable the spot deposition in case of µPAD, may even be responsible for the enhanced mechanical film properties compared to standard PAD films. This clearly underlines the high importance of the nozzle type and its geometry for PAD-based ceramic spray coating processes. Knowhow and advances in this field found for µPAD may also benefit the conventional PAD to improve the deposition rate and efficiency here as well.

3.5 Optical film properties

Since alumina films are often used as transparent protective films, 75,76 optical properties like the transmittance T may be of high importance. Four films on glass substrates were prepared each by PAD and µPAD with coating times t_c of 15, 30, 45, and 60 s, respectively. For transmittance evaluation, the measuring spot with a size of about 1 mm2 was positioned to the center of the film, where a nearly constant film thickness is present (especially necessary in case of the bell-shaped µPAD films). Due to varying deposition rates and film profiles of PAD and µPAD, resulting film thicknesses also deviate for corresponding coating times. Hence, transmittance measurements of films with a thickness of 1.0, 1.6, 2.0, and 3.0 µm for PAD were compared to µPAD with thicknesses of 2.5, 5.0, 7.3, and 11 µm (Figure 11A,B).
At first sight, two obvious results can be drawn: First, all films in general exhibit the same influence of λ on T. Whereas the highest transmittance T occurs at the highest measured wavelengths in the infrared region, T continuously decreases in the direction of smaller wavelengths. Within the UV region, films exhibit only a low transmittance, as also observed for bulk sapphire (single crystalline alumina). This λ-dependent behavior of the transmittance is typically for alumina in the form of both bulk samples and films. Second, by increasing the film thickness h, the transmittance T becomes lower. For larger film thicknesses, the light also travels for longer periods of time within the film, hence increasing the probability of interactions like scattering, absorance, or reflection. Consequently, the transmittance decreases as observed when passing through thicker films in accordance with the Lambert–Beer law.

When looking more closely to the course of the transmittance, two regions with different slopes are visible especially for the thinner films. At smaller wavelengths, within the violet to green region of the light (400–550 nm), a steep incline occurs. In contrast, at higher wavelengths in the red to infrared region above 800 nm, only a smaller slope is visible. On the contrary, for higher film thicknesses, the course resembles more the form of a straight line without pronounced regions. A similar behavior was found by Kim et al. for bulk alumina disks when sintered at different temperatures. However, the interactions of light in alumina like scattering are rather complex, since the grain size of the bulk alumina as well as pore size and concentration may affect the optical transmittance. Scattering of light mainly occurs at scattering centers like mentioned pores and grain boundaries. The latter is a consequence of birefringent that takes place in non-cubic ceramics like alumina due to differences in the direction-dependent refractive index. PAD and μPAD films feature nanometer-sized grains combined with a very low concentration of nanopores as discussed in Section 3.2. This should be beneficial for high transmittance values.

The transmittance T of all films manufactured by PAD and μPAD is compared in respect to their film thickness in Figure 12. Wavelengths of 300, 500, and 800 nm are marked within the figure. Results from Lee et al. with 2.3 and 6.5-μm-thick alumina films produced by vacuum kinetic spraying with a thickness of 2.3 and 6.5 μm are given as reference (measured at identical wavelengths as PAD films) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Optical transmittance T of films produced by (A) PAD and (B) μPAD films depending on their film thickness h and wavelength λ

FIGURE 12 Comparison of the optical transmittance T of PAD and μPAD films depending on their film thickness h and measured wavelength λ. Two alumina films produced by vacuum kinetic spraying with a thickness of 2.3 and 6.5 μm are given as reference (measured at identical wavelengths as PAD films) [Color figure can be viewed at wileyonlinelibrary.com]
exceed a leap of 15% at \(\lambda = 500 \) nm. The transmittance of the corresponding PAD film was calculated by linear interpolation using the 2.0 and 3.0-\(\mu \)m-thick film. This increased transmittance of \(\mu \)PAD films may again be attributed to the increased film consolidation as discussed in Sections 3.2 and 3.4. Grains that are half the size of those in PAD films scatter light to a smaller extent,\(^{80,82}\) further assisted by a better consolidation with less and/or smaller pores. Alumina films reported in literature show a smaller wavelength-dependent variation of the transmittance, yet roughly coincide with films in this work.\(^{83}\) For the 2.3-\(\mu \)m-thick film from ref. [77], \(T \) at \(\lambda = 300 \) nm closely matches the value of the 2.5-\(\mu \)m-thick \(\mu \)PAD film, whereas at \(\lambda = 800 \) nm it falls about 20% behind the \(\mu \)PAD film. For the thicker reference film with \(h = 6.5 \) \(\mu \)m, the relative levels are slightly shifted. Here, the reference film surpasses the \(\mu \)PAD film at \(\lambda = 300 \) nm by 9%, yet again falls back at \(\lambda = 800 \) nm by 9%. The difference in absolute transmittance between films in this work produced by PAD and \(\mu \)PAD, respectively, and data from literature may be explained by differing spray conditions and a different used alumina powder.

\section{CONCLUSION}

Powder aerosol deposition is a promising technique to deposit dense ceramic films directly at room temperature. While previous developments pointed towards larger and more complex deposition devices, we followed a different approach and proposed a simplified and miniaturized device. The aim was twofold: creating a smaller, inexpensive, flexible, easily cleanable, and even mobile aerosol generation unit and deposition chamber with a low areal footprint (e.g., that fits in a glove box) as well as lowering the hurdle for other researchers to use powder aerosol deposition themselves. It should also be possible to deposit materials that are not available in large quantities. Therefore, we introduced a deposition chamber based only on commercially available small flange components and pipe/hose connections. Furthermore, we have deliberately avoided the use of electronically controlled equipment requiring additionally control hardware like a computer. Instead, manually operated devices like flow meters and manual valves were installed. A key point is the elimination of moving components by just using a spot deposition that was enabled by using a circular de-Laval-type nozzle. To distinguish this miniaturized setup, we introduced the term micropowder aerosol deposition, abbreviated as \(\mu \)PAD. The operational capability was proven for the deposition of alumina films and compared to conventional PAD in terms of mechanical, crystalline, and optical film properties.

Thick films with a bell-shaped-like profile were easily deposited by \(\mu \)PAD, featuring a plateau in the center of the films with a diameter of 5 mm and a FWHM diameter of about 10 mm. The obtained \(\mu \)PAD films do not only match the properties of the corresponding PAD films, but oftentimes outperformed them. Here, \(\mu \)PAD films exhibit increased hardness and optical transmittance values, surpassing reference values of the conventional sprayed counterparts by at least by 10%. Also, film integrity and adhesion to the substrate might be slightly higher in case of \(\mu \)PAD. Reasons for the improved film properties were found by X-ray diffraction with a significantly higher fracturing of impacting particles during \(\mu \)PAD combined with improved film consolidation. This was achieved by using a de-Laval-type nozzle for the spot deposition. Again, this underlines the importance of a suitable nozzle layout and may also enhance the deposition of conventional PAD. Consequently, \(\mu \)PAD featured doubled to tripled deposition rates and a nearly doubled deposition efficiency.

We believe that the proposed miniaturized \(\mu \)PAD device enables a flexible usage of the powder aerosol deposition method in the field of research and development as well as in new applications like the remanufacturing of partially damaged ceramic surface coatings.

\section{COMPETING INTEREST}

The authors declare no competing financial interest.

\section{ACKNOWLEDGEMENTS}

The authors are indebted to Mrs. Nicole Hall and the Bavarian Polymer Institute (KeyLab Electron and Optical Microscopy) for SEM imaging, the chair of metals and alloys (Prof. Uwe Glatzel, Hans Lassner-Meisel) for XRD, film adhesion, and microhardness measurements as well as to Dr. Martin Hämmerle for the optical transmittance measurements. Special thanks to Philipp Nieke for the development and provision of the de-Laval-type nozzles (greetings to NZ). Open Access funding enabled and organized by Projekt DEAL.

\section{AUTHOR CONTRIBUTIONS}

J.E. conceived, designed, and performed the experiments and subsequently analyzed the data and evaluated the results. M.L. and J.E. discussed the experimental design and all authors discussed the data jointly. J.K. and R.M. supervised the work. J.E. and R.M. wrote the manuscript. All authors have given approval to the final version of the manuscript.

\section{ASSOCIATED CONTENT}

Supporting Information: The following additional data and information are available in the SI: A detailed 3D model of the used \(\mu \)PAD apparatus; a schema of the PAD method; measurements regarding the deposition chamber...
REFERENCES

25. Nazarenus T, Sun Y, Exner J, Kita J, Moos R. Powder aerosol deposition as a method to produce garnet-type solid ceramic
2194

The present study aims to characterize some clayey materials collected from the Zouza member, located in the far north of Tunisia. These raw materials were subjected to physical and chemical analyzes, followed by the mineralogical analysis with the attitude to follow the mineralogical transitions composed of kaolinite and illite often contain various impurities, mostly illite, calcite, feldspar, and quartz. The upper clays (Sa4) identified in Nefza locality and known as argillites, obtained from Zouza member in far north of Tunisia. These raw materials were all recognized as rich in kaolinite with illite association. The middle clays (Sa3) are silty, green plastic clays, formed by a kaolinite-illite association. The lower clays (Sa1), are gray, low-plastic clays, rich in kaolinite, admitting some admixture of quartz. The overlying clays (Sa2), recognized as silty gray-green, moderately plastic clays, formed by a kaolinite-illite association. The starting clayey materials were subjected to physicochemical analyzes composed of kaolinite and illite often contain various impurities, mostly illite, calcite, feldspar, and quartz.

The identification of clay minerals was made according to the oriented clay aggregates method (air drying, ethylene glycol saturation and heating at 550°C for 2 h). The mineral phase relative content of clay minerals in the clay fraction was made on this percentage is about 5%–10%. The mineral phase is organized into four large sequences. The lower clays (Sa1) is organized into four large sequences. The lower clays (Sa1) is composed of clayey marls containing impurities, mostly illite, calcite, feldspar, and quartz. The upper clays (Sa4) identified in Nefza locality and known as argillites, obtained from Zouza member in far north of Tunisia. These raw materials were all recognized as rich in kaolinite with illite association. The middle clays (Sa3) are silty, green plastic clays, formed by a kaolinite-illite association. The lower clays (Sa1), are gray, low-plastic clays, rich in kaolinite, admitting some admixture of quartz. The overlying clays (Sa2), recognized as silty gray-green, moderately plastic clays, formed by a kaolinite-illite association. The mineralogically, these clayey materials are characterized by high iron contents whose the effect on the color and microstructural features on optical transmittance mechanism in vacuum kinetic sprayed Al₂O₃ film. Korean J Met Mater. 2016;54:15–21. https://doi.org/10.3365/KJMM.2016.54.1.15