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Abstract 22 

Ever since its discovery, Cas9 from Streptococcus pyogenes has revolutionized biology by enabling 23 

analysis and engineering of genomes with unprecedented precision and ease. To fine-tune on-target 24 

effects and to mitigate adverse effects caused by untimely and off-target action of Cas9, strategies 25 

have been developed to control its activity at the post-translational stage via external trigger signals. 26 

Control is either achieved by modifying the Cas9 protein itself or its programmable RNA molecules. 27 

To date, switchable Cas9 variants responding to small ligands, light or temperature have been 28 

engineered. With these variants in hand, the regulation and modification of genomes can be 29 

accomplished in graded and ever more precise manner. 30 

 31 

Highlights 32 

➢ diverse Cas9 variants have been engineered that are switchable by external signals 33 

➢ suitable signals include addition of small molecules, light and temperature changes 34 

➢ to achieve control, the Cas9 protein itself or its programmable RNAs are modified 35 

➢ switchable Cas9 variants are engineered as split or single-chain proteins 36 

➢ switchable variants mitigate effects caused by excessive and untimely Cas9 activity 37 

 38 

Introduction 39 

The advent of the programmable DNA endonuclease Cas9 has revolutionized analysis, control 40 

and engineering of genomes [1]. The most widely used Cas9 from Streptococcus pyogenes originally 41 

forms part of the type II-A CRISPR-Cas (clustered regularly interspaced short palindromic repeats-42 

CRISPSR associated) adaptive immune system [2,3] and requires two non-coding RNA molecules, 43 

denoted crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA), for sequence-specific binding 44 

and cleavage of DNA double strands. Of key advantage, the Cas9 programmability to target a specific 45 



3 
 

DNA sequence is encoded in the crRNA of the dual tracrRNA:crRNA, rather than in proteinaceous 46 

components as in the alternative zinc finger or TALE (transcription activator-like effector) systems 47 

[4]. Routinely, the crRNA and tracrRNA of Cas9 are covalently linked by a hairpin to yield a chimeric 48 

RNA, termed single-guide RNA (sgRNA) [5•]. 49 

Biotechnological applications that harnesses the ability of the sgRNA to direct Cas9 to specific 50 

DNA target sites fall into two general areas (Fig. 1): first, sequence-specific endonucleolytic cleavage 51 

by Cas9 wild-type or variants introduces single-strand nicks or double-strand breaks (DSB) to trigger 52 

cellular repair mechanisms, principally non-homologous end-joining and homologous 53 

recombination [1]. Second, DNA cleavage is deliberately suspended in a Cas9 variant, termed dCas9, 54 

which bears two mutations in its RuvC and HNH nuclease domains, respectively [6]. dCas9 hence 55 

serves as a programmable sequence-specific DNA-binding protein. In the CRISPR interference 56 

(CRISPRi) approach, dCas9 is directed to the promoter or 5’ region of target genes, thereby 57 

competes with RNA polymerase and represses transcription [7]. Alternatively, dCas9 is connected 58 

to transcriptional activators, repressors and silencers to exert transcriptional regulation [8,9], or to 59 

fluorescent reporters to mark certain genetic loci [10]. 60 

Both areas benefit from means of precisely controlling (d)Cas9 activity, preferably with spatial 61 

and temporal resolution, and in reversible manner. In particular, off-target cleavage caused by 62 

elevated Cas9 levels can be mitigated by adjusting overall activity and by turning off Cas9 at desired 63 

times [11]. In principle, control can be achieved at the expression level, leading to changes in the 64 

production of (d)Cas9, or at the post-translational level, leading to changes in (d)Cas9 activity, 65 

availability or stability. The latter of the two offers the advantages of faster response and of being 66 

compatible with approaches where pre-assembled (d)Cas9 is injected into target cells as opposed 67 

to being expressed in situ. Natural mechanisms that directly affect the activity of Cas9 [12•,13•] and 68 

related CRISPR proteins [14] have only been discovered very recently and are so far limited to 69 

inhibitory proteins. Against this backdrop, the past two years have witnessed the vigorous 70 
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development of synthetic strategies for controlling (d)Cas9 activity [11,15]. Here, we review recent 71 

advances in the engineering of (d)Cas9 variants that can be modulated in their cellular availability 72 

and activity by external stimuli. 73 

 74 

Leverage Points for Interfering with Cas9 Activity 75 

As illustrated by the high-resolution structure of the S. pyogenes holo enzyme [6], Cas9 is an 76 

elaborate molecular machine that precisely mediates several reaction steps with several ligands 77 

(Fig. 1). Although the mechanistic details await full elucidation, it is evident that for proper function 78 

Cas9 needs to bind the dual tracrRNA:crRNA (or, the sgRNA) to locate the specific target site within 79 

double-stranded DNA, to cleave both DNA strands and to eventually release the reaction products 80 

[5•]. Potentially, each of these steps offers toeholds for interfering with Cas9 activity; if interference 81 

proceeds in signal-dependent manner, the desired regulation of Cas9 is accomplished. Present 82 

approaches for signal-dependent regulation of Cas9 activity rely on impeding assembly with its 83 

programmable RNA and/or correct binding to the DNA target site, as opposed to affecting 84 

nucleolytic cleavage per se. As a corollary, the regulatory approaches developed for the cleavage-85 

competent Cas9 also hold for the cleavage-incompetent dCas9. The opposite is not necessarily true 86 

as dCas9 is often used as an inert, RNA-guided, sequence-specific DNA-binding protein, to which 87 

accessory effector modules are recruited that exert the desired biological activity. Regulation of this 88 

activity can be achieved via signal-modulated recruitment of accessory effector units to dCas9. 89 

 90 

Split Variants to Regulate Cas9 Activity 91 

Precisely orchestrated interactions between proteins and nucleic acids underpin diverse natural 92 

processes and are often subject to regulation by signals, e.g., small-molecule compounds. The 93 

moieties mediating such signal-dependent interactions have long been coopted in the engineering 94 
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of split proteins that regain function when dimerized, e.g., [16]. Several of these strategies have also 95 

been applied in order to subject split Cas9 under the control of external triggers. 96 

Cas9 has been divided into two fragments and linked to the two halves of a split intein [17,18•]; 97 

fragment combination allowed seamless trans splicing and yielded native, fully functional protein. 98 

However, intein-based approaches suffer from being irreversible as reversible activation would 99 

require non-covalent fragment assembly. 100 

The dissection of Cas9 into recognition and nuclease lobes, which are inactive on their own but 101 

regain activity when associating upon sgRNA binding, demonstrated the principal validity of the split 102 

approach for Cas9 [19]. The combination of split Cas9 parts with the FKBP protein and the 103 

rapamycin-binding domain of mTOR, respectively, yielded a system in which fragment assembly and 104 

concomitant recovery of Cas9 activity are under control of rapalogs (i.e. rapamycin or analogs) [20•]. 105 

To overcome the challenge posed by undesirable residual dimerization in the absence of rapalogs, 106 

one fragment was directed to the nucleus and the other to the cytosol via appendage of suitable 107 

localization signal peptides. Nguyen et al. later added an additional layer of control by linking both 108 

Cas9 fragments with the ligand-binding domain (LBD) of the estrogen receptor ERT [21•]. This 109 

domain interacts with the cytosolic chaperone Hsp90 and is thus sequestered from the nucleus. 110 

Addition of the ligand 4-hydroxytamoxifen (4-HT) disrupts the Hsp90:ERT interaction and thereby 111 

promotes nuclear translocation of ERT and the connected split fragments. Assembly in the nucleus 112 

and resultant reconstitution of Cas9 activity either occurs spontaneously or, in enhanced fashion, 113 

by rapalog addition. 114 

Rather than by chemical means, split Cas9 fragments can also be functionally reconstituted via 115 

light-mediated dimerization. To this end, Cas9 fragments were linked to derivatives of the 116 

Neurospora crassa light-oxygen-voltage (LOV) photoreceptor Vivid, dubbed Magnets [22], that 117 

assemble into a heterodimer upon blue-light-exposure [23••]. In contrast to the above approaches, 118 

this light-regulated system benefits from higher spatiotemporal resolution and reversible activation. 119 
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At least some of the above approaches achieve external control of Cas9 activity with high 120 

dynamic range, but they all require the use of two separate polypeptides. Although the two-121 

component nature can be advantageous, e.g., enabling regulatory strategies and making for smaller 122 

gene constructs (e.g., beneficial for viral transfection) [18•], at least under certain circumstances it 123 

may also impart disadvantages, in particular a strong concentration dependence of the response 124 

[24] and sensitivity to different expression levels of the individual compounds. Cas9 derivatives that 125 

can be triggered by external signals yet are engineered as a single polypeptide thus represent viable 126 

alternatives to the split systems. 127 

 128 

Single-chain Variants to Regulate Cas9 Activity 129 

Modification of a lysine residue nearby the crRNA binding site of Cas9 with a photolabile caging 130 

group put RNA binding and catalytic activity under control of UV light [25•]. Notably, the 131 

photocaging group was incorporated site-specifically as an unnatural amino acid (UAA) via amber 132 

suppression, and in its photocaged form, Cas9 showed negligible activity. However, after UV-133 

induced deprotection unmodified, fully functional enzyme was obtained. Modification via amber 134 

suppression of the same lysine with a different protecting group rendered uncaging and restoration 135 

of Cas9 activity dependent on addition of a small-molecule compound [26•]. The requirement for 136 

the heterologous machinery for UAA incorporation, and, in case of [25•], for irreversible activation 137 

by UV light, may limit the wider uptake of these systems. 138 

In an approach similar to that of Nguyen et al. [21•], Liu et al. [27] sequestered Cas9 in the cytosol 139 

by flanking it N- and C-terminally with two copies each of the ERT LBD. Addition of the ligand 4-HT 140 

triggered nuclear localization and increase of Cas9 activity. (Interestingly, the underlying concept of 141 

this approach had already been demonstrated within the iGEM competition [28].) Conceptually 142 



7 
 

similar, optogenetic control of Cas9 activity might be achieved by resorting to systems for blue-light-143 

mediated nuclear import and export [29,30]. 144 

Control over Cas9 activity has also been achieved by insertion of functional domains, in particular 145 

inteins [31], LBDs [32••] and LOV photosensors [33•]. An engineered version of the RecA intein from 146 

Mycobacterium tuberculosis whose splicing activity is regulated by 4-HT was inserted into different 147 

surface-exposed sites of Cas9 and cleavage activity thus abrogated [31]. Addition of the ligand 4-HT 148 

promoted splicing out of the intein and restored Cas9 activity, albeit in irreversible manner. In 149 

another study, an inert PDZ domain was randomly placed throughout the Cas9 protein by 150 

transposon mutagenesis to determine suitable insertion sites; ensuing high-throughput screening 151 

identified permissive sites that still support Cas9 activity [32••]. Replacement of the PDZ domain by 152 

the ERT LBD generated a Cas9 variant, called arCas9, that is allosterically regulated by 4-HT. The 153 

dynamic range of arCas9 could be further enhanced by combining allosteric activation with nuclear 154 

localization induced by 4-HT, cf. above. In another approach, we inserted the dimeric LOV 155 

photoreceptor RsLOV from Rhodobacter sphaeroides [34] which undergoes blue-light-dependent 156 

dissociation at candidate, surface-exposed sites of Cas9. We reasoned that Cas9 activity might thus 157 

be repressed by forcing the enzyme into an unproductive dimeric complex and by restricting access 158 

to its active site [33•]. High-throughput screening identified the variant paRC9 which was modestly 159 

activated by blue light. In an unexpected twist, we discovered that insertion of RsLOV bestowed 160 

temperature sensitivity on Cas9 activity. We isolated the variant tsRC9 which displayed robust 161 

activity at 29°C but negligible one at 37°C. 162 

While it is desirable to ramp up Cas9 activity by a certain signal, it is equally attractive to decrease 163 

activity at will once Cas9 has performed its duty, which could for example be accomplished with 164 

tsRC9 [33•]. An interesting alternative tactic is the targeting of Cas9 for destruction after successful 165 

cleavage events in a cell-cycle dependent manner [35]. A logical extension to this approach would 166 
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be the fusion of Cas9 with degrons that are inducible by small ligands, e.g., auxin [36], or by light 167 

[37,38]. 168 

 169 

Controlling sgRNA Availability to Regulate Cas9 Activity 170 

As Cas9 must associate with its RNA ligands to exert its function, activity can also be regulated by 171 

modulating the availability, conformation, or interaction with other factors of the sgRNA (or, of the 172 

dual tracrRNA:crRNA). These approaches offer advantages in terms of orthogonal regulation of 173 

different on-target activities (as differently modified sgRNAs can be used in multiplexing scenarios) 174 

and potentially also in terms of better regulation dynamics, because the sgRNA usually shows much 175 

faster cellular turnover than the Cas9 protein itself [39]. Liu et al. [40••] embedded riboswitches, 176 

i.e. RNA aptamers that are responsive to binding of (usually) small-molecule ligands, into the sgRNA 177 

at its 3’ end to render the accessibility of the crRNA targeting region and the ability of Cas9 to bind 178 

its DNA target dependent on the presence of ligands such as theophylline. In a different approach 179 

[41••], the sgRNA was incapacitated by hybridization with a protector DNA olignucleotide; 180 

photolabile linkers embedded in the protector DNA allowed its destruction by UV irradiation, 181 

resulting in release of the sgRNA and turning on of Cas9 activity. 182 

 183 

Transcriptional and Epigenetic Control with dCas9 184 

In addition to the above approaches that afford control over Cas9 binding and cleavage activities, 185 

a number of strategies for regulating the activity of systems based on the cleavage-deficient dCas9 186 

have been developed. All these strategies have in common that dCas9 is employed as an inert, RNA-187 

guided, sequence-specific DNA-binding protein to which effector components are recruited via 188 

signal-dependent interactions with the Cas9 protein or the RNA ligands. In two related studies 189 

[42,43•], the photoreceptor cryptochrome 2 from Arabidopsis thaliana (Cry2) which interacts with 190 
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the CIB1 protein under blue light [44] was combined with dCas9. CIB1 (or, its N-terminal part CIBN) 191 

and Cry2 were fused to dCas9 and strong trans-activating effectors, e.g., VP64 or p65, respectively. 192 

Blue light promoted the dimerization of Cry2:CIB1 thereby recruiting the transactivators to desired 193 

sites in the genome targeted by dCas9. In this manner, expression from endogenous genetic loci 194 

could be upregulated in light-dependent manner. Instead of Cry2:CIB1, different protein modules 195 

that heterodimerize in the presence of rapalogs or the plant hormones abscisic acid and gibberellin, 196 

respectively, have also been employed [45•,46]. Again, effector modules could be recruited to 197 

desired loci in signal-controlled fashion. Remarkably, logic gates and genetic circuits were 198 

constructed that made the output dependent on the presence or absence of either or both of the 199 

hormones, although this approach required parallel expression of two orthogonal Cas9 variants 200 

outfitted with the respective interaction domains. As previously demonstrated [9], none of these 201 

approaches [42,43•,45•,46] is restricted to activators but in principle they extend to other 202 

transcriptional and epigenetic effectors, e.g., repressors and histone deacetylases, as well as 203 

fluorescent reporters. 204 

While the above approaches require covalent fusion of dCas9 with suitable interaction domains, 205 

effectors can also be recruited via interactions with the RNA components. To this end, short RNA 206 

aptamer sequences were embedded into or appended to the 3’ end of the sgRNA [47–50]. The 207 

aptamers specifically interact with cognate RNA-binding proteins, e.g., the coat protein of the 208 

bacteriophage MS2, and can therefore be used to recruit desired effectors to the dCas9:sgRNA 209 

complex. Strikingly, aptamer-based recruitment [47,48,50] afforded markedly improved 210 

upregulation of endogenous loci compared to the above approaches. A recent investigation 211 

demonstrates how control by external signals can be added to the aptamer-recruitment platform 212 

[51•]. Here, the transactivating effectors were not only fused to RNA-binding domains but also to 213 

destabilized protein domains that promote rapid proteasomal degradation. Addition of suitable 214 

compounds stabilizes these domains and the attached RNA-binding effector complexes, thus 215 
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yielding a ligand-inducible dCas9 system. Notably, multiplexed regulation of several genes is readily 216 

possible by parallel use of multiple sgRNAs and transactivating effectors, rather than requiring 217 

expression of orthogonal Cas9 variants, cf. above [45•,46]. In a variation of the approach, the ligand-218 

sensitive destabilized domains were fused to the N and C termini of Cas9 to achieve ligand-induced 219 

cleavage activity [51•]. 220 

 221 

Conclusions and Future Perspectives 222 

Advances in the development of switchable (d)Cas9 variants have been nothing but tremendous. 223 

Over the past two years, several options have arrived by which (d)Cas9 availability and activity can 224 

be controlled at the post-translational stage (as opposed to regulating the expression of Cas9) in its 225 

overall levels and spatiotemporal timing, thus affording enhanced control over the analysis, control 226 

and engineering of genomes. The unrelenting progress in this field has to large extent benefited 227 

from the adaption of established and previously successful concepts, e.g., in the design of split Cas9 228 

variants and the recurring, creative deployment of the ERT:4-HT switch. Given the recent 229 

developments, we expect additional Cas9 variants to become available that afford control by 230 

different signals and with enhanced performance. Variants which could be activated by red light 231 

appear of particular interest as they would facilitate optogenetic applications in living animals. 232 

The choice of one particular variant among the various switchable Cas9 proteins will be governed 233 

by the needs and constraints of a given application. One consideration is the nature and 234 

compatibility of the trigger signal which at present can be either small ligands, light or temperature 235 

changes. The optogenetic approach, i.e. using light as the trigger, offers the advantage of better 236 

spatial control. Another aspect that may be required is reversibility of the response in at least two 237 

regards. First, can the trigger signal be readily removed or shut off? Changes in illumination and 238 

temperature appear to have the edge over small-molecule ligands which would need to be washed 239 



11 
 

out. Second, is the molecular mechanism leading to Cas9 activation reversible? Strategies that 240 

involve the breaking or formation of covalent bonds, e.g., photo- and ligand-induced uncaging or 241 

the intein-mediated methods, are not, whereas the others usually are. A subsidiary consideration is 242 

the kinetics of the response; how fast can Cas9 activation be effected, how rapidly can activity be 243 

shut off (if at all)? Specifically, Cas9 has been shown to have long DNA residence times, even post-244 

cleavage which might interfere with desired double-strand break repair outcomes [52]. It remains 245 

to be investigated whether any of the methods presented here can, upon signal removal or addition, 246 

increase dissociation rates of DNA-bound Cas9 (instead of decreasing association rates of the free 247 

Cas9:RNA complex). Furthermore, the degree of regulation by signal and the leakiness of the 248 

system, i.e. activity in the absence of signal, play important roles. Whereas many dCas9 applications 249 

can arguably tolerate low leak activities, applications that employ Cas9 to effect irreversible genome 250 

rearrangements usually cannot. 251 

Finally, researchers interested in the generation of new and the improvement of existing Cas9 252 

variants also need to consider how transferable the engineering strategies are between different 253 

CRISPR systems [53]. For example, Cas9 from Staphylococcus aureus [54] is smaller in size, has 254 

different requirements for the protospacer adjacent motif (PAM) sequence, and may be 255 

advantageous in certain applications [45•], while Cpf1 [55] which cleaves its own gRNA has 256 

advantages in multiplexing applications [55,56]. Moreover, additional CRISPR systems are being 257 

discovered and mechanistically characterized at amazing pace [2,3], including such that act on RNA 258 

rather than DNA [57]. We anticipate that modes of control that rely on appending interaction 259 

domains to a CRISPR effector protein or aptamers to the sgRNA should be easily transferable, while 260 

approaches that modify the core of the CRISPR effector itself (such as split constructs or insertions) 261 

will be harder to engineer. Given the rapid development of diverse variants of S. pyogenes Cas9 262 

which can be triggered by external cues and which we review here, we expect switchable variants 263 

of other CRISPR systems to become available shortly. Lastly, the existence of natural CRISPR-264 
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inhibitory proteins [12•,13•] hints at the possibility of developing small-molecule inhibitors of Cas9, 265 

which would offer additional, complementary ways of regulating activity. 266 
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 462 

Figures 463 

Figure 1 464 

Principal applications of RNA-guided Cas9 and leverage points for controlling its cellular activity. 465 

Cleavage-competent Cas9 is used to introduce single-strand nicks or double-strand breaks at 466 
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specific, unique sites in genomes. The cleavage-deficient dCas9 serves as a sequence-specific DNA-467 

binding protein and can be connected to effector modules that exert desired biological output, e.g., 468 

up- or down-regulation of transcription. To fulfill its intended function, (d)Cas9 has to mediate 469 

several steps, all of which potentially offer toeholds for interfering with (red symbols). Control can 470 

be exerted by regulating the availability of (d)Cas9 (①) and the sgRNA (②). (d)Cas9 then has to 471 

bind a sgRNA (or, tracrRNA:crRNA) and find its PAM sequence and the adjacent, cognate DNA target 472 

(③). Cas9 additionally has to cleave one or both DNA strands (④) and release the reaction 473 

products afterwards (⑤). In case of dCas9, DNA effector units must be recruited (⑥). To turn off 474 

(d)Cas9 activity, its cellular turnover can be regulated (⑦). 475 

 476 

Figure 2 477 

Select case studies of (d)Cas9 variants that are switchable by external trigger signals. (a, b) Split 478 

Cas9 can be reconstituted and activity thus regained via fragment dimerization induced by light or 479 

small-molecule ligands [20•,21•]. Spontaneous dimerization and leak activity can be minimized by 480 

directing one fragment to the cytosol (panel b). (c) Modification of a lysine residue with a photolabile 481 

caging group renders Cas9 inactive, presumably because of interference with RNA and DNA binding 482 

[25•]. UV light liberates the caging group and restores activity. (d) Terminal fusion with the ligand-483 

binding domain (LBD) of the estrogen receptor ETR leads to sequestration of Cas9 in the cytosol 484 

[27]; addition of 4-hydroxytamoxifen (4-HT) induces nuclear translocation. Insertion of the ETR-LBD 485 

sketched here, rather than terminal fusion, additionally results in allosteric activation by 4-HT 486 

[32••]. (e) Insertion of a dimeric light-oxygen-voltage (LOV) photosensor into Cas9 leads to 487 

formation of a sterically hindered, inactive complex [33•]. Blue light raises Cas9 activity, presumably 488 

via dissociation of the LOV sensor. (f, g) dCas9 is used as a sequence-specific DNA-binding protein 489 

to which effector modules are recruited in a signal-dependent manner [42,43•,48,51•]. Recruitment 490 
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is either achieved via covalent fusion of interaction domains to Cas9 (panel f) or via RNA aptamers 491 

inserted into or appended to the sgRNA (panel g). 492 
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Highlights 1 

➢ diverse Cas9 variants have been engineered that are switchable by external signals 2 

➢ suitable signals include addition of small molecules, light and temperature changes 3 

➢ to achieve control, the Cas9 protein itself or its programmable RNAs are modified 4 

➢ switchable Cas9 variants are engineered as split or single-chain proteins 5 

➢ switchable variants mitigate effects caused by excessive and untimely Cas9 activity 6 
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