
1. Introduction
Constraining the hydration state of the Earth's mantle is crucial to model geodynamic processes and their control 
over lithospheric dynamics, as well as understanding processes that lead to planetary habitability (Ohtani, 2020). 
The transport of H2O ("water") into the Earth's mantle is governed by the subduction of hydrated oceanic lith-
osphere (slabs) (Peacock, 1990). Thus, tracing the subduction of slabs and quantifying their water content with 
depth is of pivotal importance to constrain the influx of water into Earth's mantle.

Dense Hydrous Magnesium Silicates (DHMS), a group of hydrous phases likely present in cold subducting 
slabs, are expected to retain water down to the deepest regions of the Earth's mantle (Ohira et al., 2014). Phase 
relations experiments report DHMS to form within the harzburgitic layer of subducting slabs (Frost,  1999; 
Ohtani et al., 2001, 2004), and the upper sediment layer (Ono, 1998). The oceanic crust, Mid-Ocean Ridge Basalt 
(MORB), localized between the harzburgitic and sediment layers, has historically been regarded as a poor host for 
water (Ono, 1998). However, it has been recently shown that solid solutions between the oxyhydroxides phase H 
(MgSiO4H2), δ-AlOOH and ε-FeOOH can form within hydrous oceanic crust at shallow lower mantle pressures 
(Liu et al., 2019). This finding indicates that MORB may play a pivotal role in the global deep water cycle, and 
highlights the importance of members of the H-δ-ε solid solution as the most likely hosts of water within cold 
oceanic crust entering the lower mantle.

Abstract Oxyhydroxides like δ-(Al,Fe)OOH may stabilize “water” in Mid-Ocean Ridge Basalt (MORB) 
subducted into the Earth's lower mantle. The single-crystal elasticity of δ-(Al,Fe)OOH has not been 
experimentally constrained, hampering an accurate evaluation of the seismic detectability of this high-pressure 
solid solution, and the presence of “water,” in the deep Earth. Here, we report the first experimental single-
crystal elasticity results of δ-(Al0.97Fe0.03)OOH measured by X-ray diffraction and Brillouin spectroscopy. We 
use our results to compute seismic properties of hydrous and anhydrous MORB at pressures and temperatures 
expected in slabs at shallow lower mantle conditions. We show that hydrous MORB is less dense than 
anhydrous MORB, but has faster aggregate seismic velocities. This suggests that hydration in MORB has an 
effect on velocities opposite to that observed in other lithologies, and further indicates that hydration of MORB 
increases the seismic contrast to the background mantle.

Plain Language Summary Water can be delivered into the Earth's mantle via subduction of 
hydrous phases, playing an active role in global-scale geological processes. Hence, tracking hydrous phases 
during subduction is pivotal to understand the geological evolution of our planet. At lower mantle depths, 
oxyhydroxides such as δ-(Al,Fe)OOH are the primary hosts of water in subducted oceanic crust. Here, we 
investigated the single-crystal elasticity of δ-(Al0.97Fe0.03)OOH at pressures consistent with subduction in the 
upper mantle and transition zone. Our experimental results were used to evaluate the impact that hydration 
has on the physical properties of oceanic crust subducted into the lower mantle. For this purpose, we modeled 
density and aggregate properties of hydrous and anhydrous oceanic crust subducted into the lower mantle. Our 
modeling shows that hydration induces a reduction in the density of the modeled lithologies, but increases their 
aggregate velocities. Our results suggest that hydration may influence the subducting behavior of oceanic crust 
as well as their detectability through seismology.
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Previously, δ-AlOOH and ε-FeOOH have been investigated by both theoretical and experimental studies docu-
menting a wide pressure (P)-temperature (T) stability field that stretches up to the core-mantle boundary (Hsieh 
et al., 2020; Lu & Chen, 2018; Mashino et al., 2016; Nishi et al., 2015, 2019; Ohira et al., 2019; Sano et al., 2004; 
Sano-Furukawa et  al.,  2008, 2018; Simonova et  al.,  2020; Su et  al.,  2020; Thompson et  al.,  2017, 2020; Xu 
et al., 2019). The single-crystal elastic properties of these oxyhydroxides have only been previously described by 
theoretical studies, with no experimental confirmation.

At ambient conditions, the crystal structure of δ-AlOOH and ε-FeOOH (Figure S1a in Supporting Informa-
tion S1) has space group P21nm and consists of edge-sharing (Al,Fe)O6 octahedral chains parallel to the c-axis, 
connected with each other through vertices (Gleason et al., 2008; Komatsu et al., 2006). A structural phase transi-
tion in δ-AlOOH and δ-(Al,Fe)OOH occurs at about 8–10 GPa, inducing an increase in symmetry from P21nm to 
Pnnm (Ohira et al., 2019; Sano-Furukawa et al., 2018). This transition causes clear changes in the axial compress-
ibility (Kuribayashi et al., 2014; Sano-Furukawa et al., 2009, 2018). Similar changes in the axial compressibility 
have been observed in ε-FeOOH at about 18 GPa, suggesting that Fe substitution increases the transition pressure 
of the P21nm to Pnnm phase transition (Thompson et al., 2020). The Pnnm structure of δ-AlOOH displays a 
disordered configuration of the hydrogen (H) bonds (Figure S1b and S1c in Supporting Information S1) at the 
onset of the P21nm to Pnnm phase transition. The H bond symmetrization is completed between 16 and 18.1 GPa 
(Sano-Furukawa et al., 2018). Therefore, the δ-AlOOH-rich solid solutions have Pnnm space group and symmet-
ric H bonds in the lower mantle.

Here, we performed simultaneous X-ray diffraction (XRD) and Brillouin spectroscopy experiments on 
δ-(Al0.97Fe0.03)OOH single crystals up to 17.09(5) GPa to constrain the full elastic tensor of the Pnnm phase, that 
is, the stable phase at lower mantle conditions. XRD experiments were carried out up to 19.98(3) GPa. Our results 
were used, together with those available in the literature, to calculate aggregate properties of hydrous and anhy-
drous MORB in a P-T window relevant for slabs stagnating in the shallow lower mantle. Our model shows that 
despite being less dense, hydrous MORB is characterized by faster aggregate velocities with respect to anhydrous 
MORB, increasing the seismic velocity contrast to the background mantle.

2. Materials and Methods
2.1. Material Synthesis and Characterization

Single crystals of δ-(Al,Fe)OOH were synthesized in a multi-anvil apparatus at the Bayerisches Geoinstitut 
(BGI), University of Bayreuth, following the procedure described by Kawazoe et al. (2017). Two crystals, hereaf-
ter named H4765x1 and H4765x2, were selected based on their quality. These crystals have P21nm space group at 
room conditions as determined by the presence of the h + l = 2n + 1 for k0l and k + l = 2n + 1 for 0kl reflections. 
H4765x1 and H4765x2 crystals were oriented parallel to the  142E  and  201E  planes, and double-sided polished 
to a final thickness of about 15 μm. The oriented platelets were cut into half-circles for high-pressure experiments 
using a Focused Ion Beam (FIB) (Figure S2 in Supporting Information S1) (Marquardt & Marquardt,  2012; 
Schulze et al., 2017). After FIB cutting, the final orientations in Cartesian coordinates (e2║b, e3║c) are (0.103, 
0.836, 0.539) and (0.784, 0.021, 0.620) for H4765x1 and H4765x2, respectively. Further details on the syn-
thesis procedure, quality assessment, sample selection, and FIB cutting can be found in Text S1 in Supporting 
Information S1.

The chemical compositions of the H4765x1 and H4765x2 were measured on half-circles, one from each of the 
two platelets, using an Electron Microprobe. Mössbauer spectroscopy was used to determine their Fe3+/Fetot ratio 
(Text S2 in Supporting Information S1). According to our results, the chemical formula normalized to two oxy-
gens per formula unit is Al0.972(7)Fe3+

0.028(1)OOH for H4765x1, and Al0.977(9)Fe3+
0.023(1)OOH for H4765x2.

2.2. High-Pressure Experiments

High-pressure measurements were carried out in a BX90 diamond-anvil cell (DAC) (Kantor et  al.,  2012), 
equipped with diamonds having a culet size of 400 μm. A laser-drilled 250 μm diameter hole was used as pressure 
chamber in a pre-indented Re gasket. Two FIB-cut platelets were loaded in the pressure chamber together with 
a ruby sphere used for pressure determination (Dewaele et al., 2004). High-pressure data were collected during 
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three distinct runs, in which either He or Ne was used as pressure transmitting medium (Text S3 in Supporting 
Information S1).

Simultaneous XRD and Brillouin spectroscopy experiments on the Pnnm phase of δ-(Al0.97Fe0.03)OOH were per-
formed between 8.67(1) and 17.09(5) GPa at the BGI. Further XRD experiments were performed up to 19.98(3) 
GPa. Technical details of the instrument installed at BGI are reported in Text S4 in Supporting Information S1 
and elsewhere (Trots et al., 2011, 2013). In our XRD investigations, no reflections relative to the P21nm space 
group have been detected (Text S5 in Supporting Information S1), confirming that the P21nm to Pnnm phase 
transformation had occurred before 8.67(1) GPa.

Brillouin spectroscopy experiments were performed at six distinct pressure points, for each platelet at different 
rotation angle (χ) with 20° interval over a 360° angular range. Details on the data analysis are provided in Text S4 
in Supporting Information S1. The Pnnm phase of δ-(Al,Fe)OOH has orthorhombic symmetry, hence its elastic 
stiffness tensor consists of nine independent, non-zero coefficients (cij) that in Voigt notation are (Nye, 1985): 
c11, c22, c33, c44, c55, c66, c12, c13, c23. All nine cij were constrained at each pressure point (Table S3 in Supporting 
Information S1) by fitting the χ-dependent variation of the acoustic compressional velocity, vP, and the two shear 
wave velocities, vS1 and vS2, for both H4765x1 and H4765x2 platelets in a least-square fitting procedure of the 
Christoffel equation (Haussühl, 2007):

  2 0ijkl j l ikc n n v (1)

where cijkl are the elastic stiffness coefficients in tensorial notation, nj,nl the phonon direction cosines, ρ the den-
sity calculated from the unit-cell volumes obtained by XRD (Text S4 in Supporting Information S1), and δik the 
Kronecker delta. Voigt and Reuss bounds of the adiabatic bulk (KS) and shear moduli (G) were calculated using 
the cij and elastic compliance coefficients, sij, respectively.

3. Results and Discussion
3.1. High-Pressure Elasticity of δ-(Al,Fe)OOH

Unit-cell volumes of H4765x1 and H4765x2 of the Pnnm phase (Table S1 in Supporting Information S1) have 
been normalized with respect to their values measured at 8.67(1) GPa and fitted using a third-order Birch-Mur-
naghan equation of state (BM3) (Birch, 1947) implemented in the EoSFit7 software (Angel et al., 2014; Gon-
zalez-Platas et al., 2016) using 8.67 GPa as reference pressure. The room pressure volume (V0), isothermal bulk 
modulus (KT0) and its corresponding first pressure derivative (K'T0) were then calculated by extrapolation to 
ambient pressure. Results are reported in Table S2 in Supporting Information S1, while volumes normalized with 
respect to the Equation of State (EoS) parameter V0 are plotted in Figure 1a together with literature data. The 
difference between this and previous studies (Figure 1a, Table S2 in Supporting Information S1) results from a 
trade-off in the V0, KT0, and K'T0 fitting parameters which complicate a quantitative assessment of the effect of 
Fe substitution on the compressibility of δ-AlOOH. The Pnnm ε-FeOOOH end-member is more compressible 
than δ-AlOOH (Thompson et  al.,  2020). However, the KT0 values obtained using a second-order Birch-Mur-
naghan equation of state (BM2), with K'T0 fixed to the value of 4 (Sano-Furukawa et al., 2009; Su et al., 2020; 
Table S2 in Supporting Information S1) show that samples with 5% of FeOOH substitution have the same KT0 as 
δ-AlOOH. The very low KT0 values reported by Ohira et al. (2019) are due to the relatively large K'T0 which are, 
however, poorly constrained. Due to the high quality of our data, we were able to tightly constrain the value of 
K'T0 which is clearly larger than 4. As a consequence, the value of KT0 appears slightly smaller than those reported 
for δ-AlOOH and δ-(Al0.956Fe0.044)OOH (Table S2 in Supporting Information S1). A KT-K'T0 confidence ellipse is 
provided in Figure S4 in Supporting Information S1.

The linear moduli, k, their first pressure derivatives, k´, and the unit-cell parameters at ambient conditions (a0, b0, 
and c0) have been obtained by fitting of a linearized BM3 implemented in EosFit7 (Angel et al., 2014), following 
the same procedure described for the unit-cell volumes. Results are tabulated in Table S2 in Supporting Infor-
mation S1, and unit-cell parameters normalized to their EoS room pressure values are plotted versus pressure in 
Figure S5 in Supporting Information S1. No anomalies in the axial compressibility or the unit-cell axial ratios 
a/b, b/c, and a/c (Figure S6 in Supporting Information S1) have been observed up to the highest pressure point, 
that is, 19.98(3) GPa.
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Measured and calculated acoustic wave velocities obtained for both platelets at a pressure of 17.09(5) GPa are 
shown in Figure 1b, while a representative Brillouin spectrum is reported in Figure S7 in Supporting Informa-
tion S1. The cij and density values for each individual pressure are summarized in Table S3 and Figure S8 in 
Supporting Information S1. All cij smoothly increase across the investigated pressure range, and their high-pres-
sure behavior can be described by third-order finite strain expressions reported for individual cij (Stixrude & 
Lithgow-Bertelloni, 2005; Text S6 in Supporting Information S1).

Ab initio Density Functional Theory (DFT) calculations have reported discrepant results on the cij behavior of 
δ-AlOOH at high pressures (Cortona, 2017; Pillai et al., 2018; Tsuchiya & Tsuchiya, 2009). Our results are plot-
ted together with Cortona (2017) and Tsuchiya and Tsuchiya (2009) in Figure S8 in Supporting Information S1. 
There is a very good agreement between our measured c22, c44, c55, c66, and c13 values and those reported in the 
literature, whereas the other experimental cij exhibit a different evolution with pressure (Figure S8 in Supporting 
Information  S1). However, discrepancies are negligible for the aggregate elastic moduli (Figure  2a, the next 
section).

3.2. Aggregate Properties of δ-(Al,Fe)OOH

Voigt and Reuss bounds of the adiabatic bulk modulus KS and shear modulus G were calculated at each pressure 
using the cij constrained in this study (Nye, 1985). Reuss-Voigt-Hill averages of KS and G were calculated as the 
arithmetic mean between Reuss and Voigt values (Hill, 1952; Table S4 in Supporting Information S1). Both KS 
and G show a monotonic increase with absolute pressure (Text S7 in Supporting Information S1) that can be 
described with third-order Eulerian finite strain equations (Stixrude & Lithgow-Bertelloni, 2005), as shown in 
Figure 2a. Fit results are reported in Table S5 in Supporting Information S1. To facilitate comparison, we used 
the same approach to fit theoretical data (Cortona, 2017) between 10 and 30 GPa (Figure 2a). Moreover, our KS 
and G values show negligible differences with the theoretical prediction from Cortona (2017).

The aggregate compressional, vP, and shear, vS wave velocities (Text S4 in Supporting Information S1) of the 
sample investigated in this study are slightly faster than those reported by previous Brillouin spectroscopy re-
sults on powdered samples of δ-AlOOH (Mashino et al., 2016) and δ-(Al0.956Fe0.044)OOH (Su et al., 2020; Fig-
ure 2b). The discrepancies between our results and those available in the literature cannot be simply explained by 
compositional differences since the small amount of Fe3+ present in our samples and in that of Su et al. (2020) 
should have a limited effect on the wave velocity of Pnnm phase of δ-AlOOH as it has no detectable effect on 

Figure 1. High-pressure experimental results on the Pnnm phase of δ-(Al,Fe)OOH. (a) Unit-cell volumes of Pnnm δ-(Al0.97Fe0.03)OOH normalized with respect to the 
room pressure EoS parameter V0 as function of pressure (filled circles) compared with literature data on Pnnm δ-(Al,Fe)OOH (open symbols). Solid curve: BM3 fit to 
the measured data; the inset plot shows the differences between ruby pressure, Pruby (Table S1 in Supporting Information S1), and pressures calculated using the BM3 
EoS parameters (Pcalc, Table S2 in Supporting Information S1) as function of Pruby. Differences are well within uncertainties, with an average deviation of 0.08 GPa 
and maximum deviation of 0.2 GPa (about 1%). (b) Observed (filled symbols) and calculated (solid curves) acoustic wave velocities of both single-crystals platelets of 
δ-(Al0.97Fe0.03)OOH as a function of the rotation angle χ at 17.09(5) GPa.
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its compressibility (Table S2 in Supporting Information S1). However, Brillouin spectroscopy experiments on 
powdered samples can be affected by crystallographic preferred orientation, grain-grain interactions, and/or op-
to-elastic coupling effects that can influence wave velocities (Marquardt & Thomson, 2020) and may explain the 
observed discrepancies. The acoustic wave velocities measured for ε-FeOOH up to 24 GPa (Ikeda et al., 2019) 
are much slower than those reported here. However, they cannot be used to assess quantitively the effect of Fe 
substitution as ε-FeOOH has the P21nm space group below about 17 GPa (Thompson et al., 2020).

3.3. Implications for the Detection of Water in Stagnant Slabs in the Shallow Lower Mantle

The interpretation of seismological observations is crucial to track the transport of hydrous material in subduc-
tion zones (Wang et al., 2020), including that associated with the subduction of hydrous MORB (e.g., Garth & 
Rietbrock, 2014, 2017). Seismic tomography indicates that subducting slabs enter the lower mantle in several 
locations, and sometimes stagnate at the top of the lower mantle (e.g., Fukao & Obayashi, 2013). Analysis of 
diamond inclusions further suggests that oceanic crust is recycled into the lower mantle (Nestola et al., 2018), 
where it might explain low-velocity seismic wave observations detected at the top of the lower mantle (Gréaux 
et al., 2019).

Recent phase relation experiments have shown that hydrous MORB is capable of retaining water down to the 
lower mantle through a continuous chain of stable hydrous phases, ending with the solid solution formed by 
phase H (MgSiO4H2), δ-AlOOH, and ε-FeOOH (H-δ-ε) at pressures exceeding 25 GPa (Liu et al., 2019). Here, 
we combine our single-crystal elasticity data set on δ-(Al0.97Fe0.03)OOH with previous results (Table S6 in Sup-
porting Information S1) to compute the aggregate properties of hydrous and anhydrous MORB in a P-T window 
relevant for slabs in the shallow lower mantle. Our model is based on the thermodynamic formalism of Stixrude 
and Lithgow-Bertelloni (2005), and relies on mineral volume fractions and compositions constrained by previous 
experimental studies at relevant P-T conditions (Ishii et al., 2019; Liu et al., 2019; Tables S7 and S8 in Supporting 
Information S1). The aggregate elastic moduli and density of the Pnnm phase of δ-(Al0.97Fe0.03)OOH have been 
extrapolated to 30 GPa. This is justified by the fact that previous XRD results (e.g., Sano-Furukawa et al., 2009) 
show a smooth and continuous behavior of the unit-cell volume compression for Pnnm δ-AlOOH up to pressures 
above 30 GPa, suggesting that the H bond symmetrization does not cause any detectable discontinuity in the 
elastic behavior of these H-δ-ε oxyhydroxides. In our model, H-δ-ε oxyhydroxide in hydrous MORB is treated 
as a two-component mixture with molar ratio of MgSiO4H2:(Al0.97Fe0.03)OOH = 25:75. The small Fe content 
is consistent with the recent phase relations reported for hydrous MORB (Liu et al., 2019). The bulk modulus 

Figure 2. Voigt-Reuss-Hill averages of (a) Aggregate elastic moduli and (b) Velocities of δ-(Al0.97Fe0.03)OOH as a function of pressure. Closed and open symbols are 
our and literature data, respectively. The solid lines are fits to adiabatic aggregate moduli and aggregate velocity. The dashed line in panel (a) shows the calculated KT 
based on our XRD results with uncertainties represented by the red shading. Dotted lines are fits to Cortona's (2017) data. All fits are based on 3rd-order Eulerian finite 
strain equations (Stixrude & Lithgow-Bertelloni, 2005). Most uncertainties are within the symbol size.
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used for the modeling of phase H is determined from the P-V-T data reported by Nishi et al. (2018) data, while 
our single-crystal elasticity data set is used to model δ-(Al0.97Fe0.03)OOH. Since no experimental constraints 
on the shear modulus at ambient pressure or its pressure derivative is currently available for phase H, they are 
assumed identical to those of δ-(Al0.97Fe0.03)OOH. Moreover, the thermal parameters of δ-(Al0.97Fe0.03)OOH are 
assumed identical to those of δ-AlOOH (Duan et al., 2018), while those of phase H are determined by refitting 
the P-V-T data of Nishi et al. (2018) using a Debye model (Stixrude & Lithgow-Bertelloni, 2005). Our model 
does not solely consider the formation of H-δ-ε oxyhydroxides as a distinctive feature of MORB hydration, but 
it also takes into account various factors including the reduction of SiO2 stishovite content and a depletion of 
its Al concentration, as well as the complete dissolution of minerals such as calcium ferrite and (Mg,Fe)O—all 
based on the latest phase relation results used as references for our modeling (Ishii et al., 2019; Liu et al., 2019). 
Isotropic aggregate properties were calculated between 25 and 30 GPa, corresponding to depths of 700–800 km, 
and at temperatures of 800°C–1200°C, covering the P-T range expected in subducting slabs entering the lower 
mantle (Kirby et al., 1996). Further details of the modeling are included in Text S8 in Supporting Information S1.

Our model indicates that densities of hydrous MORB are reduced by 2.5% with respect to anhydrous MORB. 
However, the hydration of MORB through the formation of H-δ-ε oxyhydroxides results in an increase of all 
the aggregate velocities, vS, vP, and vϕ, of up to 1.6% for vS (Figure 3). Noticeably, MORB hydration through the 
formation of H-δ-ε oxyhydroxides is coupled with a depletion in the SiO2 stishovite content; hence, the faster 
aggregate velocities characterizing hydrous MORB cannot be reconciled with an increase in the SiO2 stishovite 
content.

Typically, slab hydration is associated with a decrease of the slab aggregate velocity as, for example, recently 
shown for harzburgite and peridotite above and below the 660 km discontinuity (Xu et al., 2020). Our model sug-
gests that the opposite is true for MORB-like lithologies at lower mantle depths. Our model predicts no marked 
difference in terms of aggregate velocity ratios, vP/vS and vϕ/vS, and relative differences of the aggregate velocities 
between hydrous and anhydrous MORB tend to decrease with pressure.

Based on our data, we evaluated the seismic signature and densities of hydrous MORB in the shallow lower man-
tle, in a scenario where it is in contact with mantle of pyrolitic composition. Aggregate properties of the pyrolitic 
mantle were modeled at two different P-T conditions, that is, 26 GPa, 1600°C and 28 GPa, 1800°C, correspond-
ing to depths of about 720–760 km (Katsura et al., 2010). Aggregate properties of both hydrous and anhydrous 
MORB were also calculated at 26 and 28 GPa, but the MORB temperature (TMORB) was varied between 800°C 
and 1200°C to cover the T range expected in slabs in the shallow lower mantle (Kirby et al., 1996). Our model 
was then used to express the relative differences dln in % between MORB and pyrolite in terms of density ρ and 
aggregate velocities vP and vS (Figure 4). Cold, anhydrous MORB shows the largest difference in terms of density 
with respect to the pyrolitic mantle—a difference that can reach up to 4.9% if TMORB is assumed to be 800°C. 
Hydration is expected to decrease MORB density, however, hydrous MORB appears still denser than the pyrolitic 
mantle at the investigated P-T conditions. For example, at 26 GPa and 1200°C TMORB, hydrous MORB is ∼1.6% 
denser than pyrolite at 1600°C (Figure 4).

Figure 3. Relative differences between hydrous and anhydrous MORB in terms of aggregate velocities vϕ, vP, and vS (from the left to the right) across a P-T window 
relevant for slabs in the shallow lower mantle. Color scale applies to all three plots.
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The reduced negative buoyancy of hydrous MORB would make it more likely to stagnate and accumulate in the 
shallow lower mantle when encountering a viscosity increase at the 660 km discontinuity or in the lower mantle 
(Deng & Lee, 2017; Marquardt & Miyagi, 2015; Rudolph et al., 2015). Sinking to the deeper mantle may be 
favored in anhydrous MORB for the opposite reason. At the same time, hydrous MORB produces a significantly 
stronger seismic contrast with the background mantle, for both shear and compressional velocities (Figure 4), 
making accumulated hydrous MORB more visible in seismic tomography models. The velocity contrast gener-
ally decreases as the MORB in the slab heats up and the P-wave contrast between anhydrous MORB and ambi-
ent mantle drops below 1% when their temperature difference is smaller than 600°C (i.e., TMORB > 1000°C) at 
26 GPa, suggesting that it may be difficult to detect relatively hot anhydrous MORB in P-wave tomography mod-
els (e.g., Fukao & Obayashi, 2013). Hydrous MORB at the same temperature, instead, is still about 2.5% faster 
as compared to pyrolite and would likely produce a substantially stronger “slab signature” in P-wave tomography 
models, for example, in the Tonga subduction system (Fukao et al., 2001; van der Hilst, 1995). Since the increase 
in aggregate velocities is coupled with a density reduction, the seismic contrast between pyrolite and MORB in 
terms of acoustic impedance, E Z v , is not very sensitive to hydration (Figure S9 in Supporting Information S1). 
This observation is opposite to previous inferences made on the seismic visibility of hydration in the transition 
zone, where changes in impedance contrast across the 410 km discontinuity were suggested as a characteristic 
feature of hydration (Buchen et al., 2018).

Data Availability Statement
Acoustic wave velocity data used for cij determination are available at: https://doi.org/10.6084/m9.
figshare.16965124.v1.
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