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Zusammenfassung 
 

TiO2 und das System TiO2-ZrO2 
 

TiO2 ist ein wichtiges technologisches Material, das als weißes Farbpigment 

eingesetzt wird, sowie als Halbleiter mit großer Energielücke in farbstoffsensibilisierten 

Solarzellen, zur Photokatalyse und bei photochemischen Prozessen der 

Energieumwandlung Verwendung findet. Die bekanntesten Phasen sind Rutil 

(P42/mnm, Z=2), Anatas (I4/amd, Z=4) und Brookit (Pcab, Z=8), desweiteren gibt es 

eine Reihe von metastabilen Phasen mit geringer Dichte. Kalorimetrische Messungen an 

microskaligen Proben klärten die Reihenfolge von der thermodynamisch stabilsten zur 

unstabilen Phase wie folgt auf: Rutil → Brookit → Anatas. Bei einer Verringerung der 

Korngröße in den nm-Bereich ändern sich die relativen Stabilitäten, so dass Rutil die 

stabile Phase im µm-Bereich ist, Brookit bei mittlerer Korngröße und Anatas im nm-

Bereich.  

Hochdruckpolymorphe von TiO2 werden mit steigendem Druck immer dichter 

und die Koordinationszahl von Ti-O steigt von 6 beim Rutil-typen über 7 beim 

Baddeleyit-typen (ZrO2, P21/c, Z=4) und 8 bei der kubischen Struktur, die entweder in 

der Fluorit- (Fm-3m, Z=4) oder Pyritstruktur (FeS2, Pa3, Z=4) vorliegt, zu 9 beim 

Cotunnit-typen (PbCl2, Pnma, Z=4). Mehrere Hochdruckpolymorphe zeichnen sich 

durch ihre große Härte und interessante optische Eigenschaften aus und sind daher 

potentielle Kandidaten für einen technischen Einsatz.  

Das Phasendiagramm des Systems TiO2-ZrO2 besitzt die folgenden 

Mischkristalle: Baddeleyit und tetragonales ZrO2 enthalten bis zu  9 bzw. 20 mol% 

TiO2. Es gibt verschiedene (Zr,Ti)2O4 Phasen mit einem Gehalt an TiO2 von zwischen 

42 und 67 mol%. Rutil baut mit stiegender Temperatur bis zu ~15 mol% ZrO2 bei 

1600°C ein. Experimente bei hohen Drücken und Temperaturen wurden unter 

Verwendung der Stempel-Zylinder-Presse und der Viel-Stempel-Presse durchgeführt. 

Abgeschreckte Proben von Rutil, Anatas und deren Hochdruckmodifikationen, die bei 

Drücken bis zu 10 GPa synthetisiert wurden, zeigen einen Gehalt von ≤10 mol% ZrO2, 

Zr-gedopte TiO2 Ausgangsmaterialien haben daher die chemische Zusammensetzung 

Ti0.9Zr0.1O2. 
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Experimentelle Methoden dieser Studie 
 

Das Kompressionverhalten von Anatas und Rutil mit der Zusammensetzung von 

TiO2 und Ti0.9Zr0.1O2 wurde anhand von Proben mit Kristallitgrößen im µm- und nm-

Bereich untersucht. Kompressionsexperimente wurden in der Diamant-Stempelzelle 

durchgeführt und die Proben wurden mit Hilfe von in-situ Röntgendiffraktometrie, 

Röntgenabsorption und Ramanspektroskopie charakterisiert. Eine Sol-gel Methode 

wurde zur Herstellung von Ausgangsmaterialien Tix:Zr1-xO2 mit x = 0.00, 0.10, 0.25, 

0.33, 0.50, 0.67, 0.75, 0.90 und 1.0 entwickelt. Bei den Syntheseprodukten mit x=0.90 

und 1.0 handelte es sich um nanoskaligen Anatas, der bei 1000°C zu mikroskaligem 

Rutil gesintert werden konnte. In Hydrothermal-Experimenten wurde außerdem nano-

Anatas Ti0.9Zr0.1O2 verwended um mikroskaligen Zr-gedopten Rutil zu synthetisieren. 

 

Kompressionsverhalten von Anatas 
 

Experimente zeigen, dass Anatas weniger kompressibel wird, wenn die 

Kristallitgröße in den nm-Bereich herabgesetzt oder das Material mit Zr gedopt wird. 

Gefittete Zustandsgleichungen (EoS) der zweiten Ordung (K0’=4) weissen einen 

Kompressionsmodul von micro-Anatas von K0=178(1) GPa [1] bzw. K0=179(2) GPa 

[2] auf. Das nanokristalline Äquivalent hat einen höheren Wert von zwischen 

K0=237(3) GPa [3] bis K0=243(3) GPa [4]. In dieser Studie wurde das 

Kompressionsmodul von micro-Anatas Ti0.90Zr0.10O2 zu K0=195(38) GPa ermittelt, 

vergleichbar zu ungedoptem Material. Der höchste Wert wurde für nano-Anatas 

Ti0.90Zr0.10O2 gefunden, hier ist K0=258(8) GPa. Der Einbau von Zr reduziert daher die 

Kompressibilität, obwohl ZrO2 Polymorphe generell kompressibler sind als die 

dazugehörigen TiO2 Phasen.  

Für Zr-gedopten Anatas zeigten Röntgendiffraktionsanalysen eine signifikante 

Änderung des Kompressionsverhaltens bei einem Druck >4 GPa, hervorgerufen durch 

die Wirkung von deviatorischem Streß der während der Kompression im nano-Material 

entsteht. Berechnungen an Superzellen mit verschiedenen Abständen von benachbarten 

Zr-Atomen legten die Vermutung nahe, dass es zur Cluster-Bildung von Zr-Atomen im 
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(Ti,Zr)O2 Anatas kommt. Die resultierende Gitterstörung kann das veränderte 

Kompresionsverhalten weiterhin beeinflussen.  

Zr-gedopter nano-Aanatas wird während wiederholter Zyklen von Kompression 

und Druckentlastung steifer. Während das Kompressionsmodul der ersten Kompression 

bei 211 GPa lag, zeigte die Probe nach Druckentlastung bei wiederholter 

Komprimierung ein Kompressionsmodul von 249 GPa. Es liegt die Vermutung nahe, 

dass partielle druckinduzierte Amorphisierung eine entschiedende Rolle für die 

Versteifung des Materials spielt.  

Microanatas TiO2 transformiert bei der Komprimierung zur MI Phase. Der 

Transformationsdruck von Anatase zu MI steigt, wenn die Kristallitgröße in den nm-

Berich fällt, und zwar von 12 GPa bei microscaligem Material zu 18 GPa bei Anatas mit 

einer Kristallitgröße von 12 nm. Noch kleinere Kristallite wandeln sich in eine amorphe 

Phase bei Drücken von 20–24 GPa. Der Einbau von Zr wirkt sich nicht auf den 

Transformationsdruck aus.  

 

Kompressionsverhalten von Rutil 
 

Experimentelle Ergebnisse zeigen, dass weder der Einbau von Zr, noch die 

Reduzierung der Kristalitgröße in den nm-Bereich einen Einfluss auf das 

Kompressionsverhalten von Rutil haben. Die Kompressionsmodule von nano- und 

microskaligem TiO2 sowie nanoskaligem Ti0.90Zr0.10O2 wurden mit 230(20), 251(12) 

und 203(13) GPa bestimm, Unterschiede dieser Werte sind geringer als die Toleranzen 

der Messungen. Diese Ergebnisse untertscheiden sich von denen von Anatas, für den die 

Reduzierung der Kristallitegröße und der Einbau von Zr zu einer Erhöhung des 

Komrpessionmodules führten.  

Experimente zeigen, dass der Transformationsdruck von Rutil TiO2 zur MI 

Phase mit einer Erniedrigung der Kristallitgröße steigt. In Experimenten, in denen kein 

Druckmedium benutzt wurde, liegt der Transfomrationsdruck bei 12 GPa für 

microskaligen Rutil, bei 18 GPa für Rutil mit einer Kristallitgröße von 15 nm und bei 

22 GPa für eine Probe mit 10 nm. Der Einbau von Zr hat keinen Einfluss auf den 

Transformationsdruck.  
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Berechnungen des Grundzustandes von TiO2 
 

Ab-initio Berechnungen der elektronischen Struktur mit Hilfe der 

Dichtefunktionaltheorie wurden durchgeführt, um die Energien der Grundzustände der 

TiO2 Phasen Rutil, Anatas, Brookit, TiO2II und der MI-Phase zu berechnen. Dazu 

wurden die projector augmented wave und die linear augmented plane wave Methoden 

angewandt, zusammen mit der lokalen Dichte Näherung (LDA) und zwei Typen der 

generalisierten Gradienten Näherung (GGA) zum Austausch-Korrelationspotential der 

Elektronen. Es wurden die Formulierungen von Perdew, Bunge und Enzerhoff (PBE), 

sowie durch Wu und Cohen (WC) verwendet.  

Die Null-Druck Volumina wurden in LDA Berechnungen um 3% kleiner, und in 

PBE und WC Berechnungen um 8 und 0.4% größer als experimentelle Werte bestimmt. 

Die stabile Phase bei 0 GPa ist Baddeleyite in den LDA Berechnungen und Anatas in 

GGA Berechnungen. Dies steht im Gegensatz zu experimentellen Ergebnissen, die Rutil 

als die stabile Modifikation zeigen. Rutil besitzt jedoch die höchste Energie in LDA 

Berechnugnen und mittlere Energie in GGA Berechnungen.  
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Summary 
 

TiO2 and the System TiO2-ZrO2 
 

TiO2 is an important technological material, used as white pigment, as wide 

band gap semiconductor in electrochemical dye solar cells, for photocatalysis and in 

photochemical energy-conversion processes. The most abundant phases are rutile 

(P42/mnm, Z=2), anatase (I4/amd, Z=4) and brookite (Pcab, Z=8). In addition, there are 

a number of metastable low density modifications. Calorimetric measurements showed 

that the sequence for microscale material from the stable to the less stable phase is: 

rutile → brookite → anatase. Several phase stability crossovers occur with the decrease 

of the crystallite size while rutile is the stable phase for big crystallite sizes, brookite is 

stable for intermediate sizes and anatase for smallest crystals.  

High pressure polymorphs of TiO2 are subsequently denser and have increasing 

coordination number of Ti-O with increasing pressure, ranging from 6 for the rutile type 

over 7 for the baddeleyite type (ZrO2, P21/c, Z=4) and 8 for the cubic structure, which is 

fluorite type (Fm-3m, Z=4) or pyrite type (FeS2, Pa3, Z=4), up to 9 for the cotunnite 

type (PbCl2, Pnma, Z=4). Several high pressure polymorphs are suggested as candidate 

materials for technological applications because they are very hard and have interesting 

optical properties.  

The phase diagram of the system TiO2-ZrO2 shows the following solid solutions. 

Baddeleyite and tetragonal ZrO2 contain up to ~9 and 20 mol% TiO2, respectively, 

several distinct phases (Zr,Ti)2O4 with the compositional range of 42 to 67 mol% exist 

and TiO2 rutile can be doped with up to ~15 mol% ZrO2 at 1600°C. Experiments at high 

pressure and temperatures performed here, using piston cylinder and multi anvil presses 

showed that quenched samples of rutile, anatase and high pressure polymorphs 

synthesized at up to 10 GPa adopt ≤10 mol% ZrO2, Zr-doped TiO2 starting materials 

therefore have the composition Ti0.9Zr0.1O2. 
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Experimental Methods of this Study 
 

The compression behavior of anatase and rutile was studied for TiO2 and 

Ti0.9Zr0.1O2 starting materials with crystallite size in the micro- and also nanometer 

range. Compression experiments were carried out in the diamond anvil cell and samples 

were characterized by in-situ X-ray diffraction, X-ray absorption and Raman 

spectroscopic measurements. A sol-gel route was developed for the synthesis of starting 

materials Tix:Zr1-xO2 with x=0.00, 0.10, 0.25, 0.33, 0.50, 0.67, 0.75, 0.90 and 1.0. 

Product of the synthesis with x=0.90 and 1.0 was nanaoscale anatase, which was 

annealed at 1000°C to microscale rutile. In hydrothermal experiments, nanoscale 

anatase Ti0.9Zr0.1O2 was used as starting material for the synthesis of microscale Zr-

doped anatase. 

 

Compression Behavior of Anatase 
 

Experiments show that anatase becomes less compressible when the crystallite 

size is decreased to the nanometer scale and when the material is Zr-doped. Second 

order EoS fits (K0’=4) resulted in a bulk modulus of microscale anatase of K0=178(1) 

GPa [1] and K0=179(2) GPa [2]. The nanoscale counterpart shows much higher values 

of K0=237(3) GPa [3] and K0=243(3) GPa [4]. In this study, it was found that 

microscale anatase Ti0.90Zr0.10O2 has K0=195(38) GPa, which is comparable to undoped 

material. Largest values were found for nanoscale anatase Ti0.90Zr0.10O2 with K0=258(8) 

GPa. Zr-doping thus reduces the compressibility of nanoanatase, even though ZrO2 

polymorphs are more compressible than the corresponding TiO2 forms.  

For the Zr-doped nanoanatase, XRD analysis showed a significant change in 

compression behavior at pressures >4 GPa, suggested as a consequence of deviatoric 

stresses during experimental compression of the nanoscale material. Computations on 

supercells with different distances of neighboring Zr-atoms suggested cluster formation 

of Zr in the (Ti,Zr)O2 anatase. The resulting structural distortions can further augment 

the change in compression behavior.  
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Zr-doped nanoanatase becomes stiffer upon multiple compression cycles. While 

the bulk modulus of the first compression was 211 GPa, after the sample was 

decompressed, the second compression showed a bulk modulus of 249 GPa. We suggest 

that partial pressure induced amorphization plays an important role for the observed 

stiffening. 

Microscale anatase TiO2 transforms to the MI phase upon compression. The 

transition pressure increases with a decreasing crystallite size from 12 GPa for 

microscale material to 18 GPa for anatase with crystallite size of 12 nm. Smaller 

particles transform to an amorphous phase at pressures of 20–24 GPa. Zr-doping does 

not seem to vary the transformation pressure. 

 

Compression Behavior of Rutile 
 

Experimental results show that neither the incorporation of Zr nor the decrease 

of crystallite size to the nanometer range modifies the bulk modulus of rutile. Values for 

micro- and nanoscale TiO2 as well as nanoscale Ti0.90Zr0.10O2 were 230(20), 251(12) 

and 203(13) GPa, the differences of the values lie within the error of the fits. These 

results are different from those of anatase, where a decreasse of crystallite size and 

doping with Zr leads to an increase of the bulk modulus. 

Experiments show that the pressure of transformation of rutile TiO2 to the MI 

phase increases with decreasing crystallite size. In experiments with no use of a pressure 

medium, the transformation pressure is 12 GPa for microscale rutile, 18 GPa for rutile 

with crystallite size of 15 nm and >22 GPa for 10 nm. Zr-doping has no effect on the 

transformation pressure. However, the transformation pressure is lowered when 

siliconoil is used as pressure medium. 

 

Computational Ground States of TiO2 
 

Ab-initio all-electron density functional electronic structure simulations on the 

ground state energetics of the TiO2 phases rutile, anatase, brookite, TiO2II and MI-phase 

were performed using the projector augmented wave and the linear augmented plane 

wave methods along with local density approximation (LDA) and two types of 
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generalized gradient approximations (GGA), using the formulations by Perdew, Bunge 

and Enzerhoff, referred to as PBE, and by Wu and Cohen, reffered to as WC.  

The zero pressure volumes are predicted smaller by <3% in LDA computations 

and larger by 8 and 0.4% in PBE and WC computations. The stable structure at 0 GPa is 

baddeleyite for LDA computations and anatase for GGA computations, contradicting 

experimental results that determine rutile as the most stable phase. Rutile appears to 

have the highest energy in LDA computations and intermediate energy in GGA 

computations.  
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I. Introduction 
 

1. TiO2 and ZrO2 Polymorphs 
 

Titania, TiO2 and zirconia, ZrO2, exhibit a series of high pressure polymorphs 

with common crystallographic features, shown also for other simple oxides with the 

formula AO2. With increasing pressure the sequent polymorphs are denser and have an 

increasing coordination number (CN), which is the number of oxygen ligands around 

the cation. The coordination numbers range from 6 for the rutile type (TiO2, P42/mnm, 

Z=2) over 7 for the baddeleyite type (ZrO2, P21/c, Z=4, here referred to as MI) and 8 for 

the fluorite type (Fm-3m, Z=4) or pyrite type, respectively (FeS2, Pa3, Z=4) up to 9 for 

the cotunnite type (PbCl2, Pnma, Z=4). Furthermore, a 10-fold coordination of the post-

cotunnite structure was found for PbCl2 and SnCl2 and was proposed also for AO2 

oxides with heavy cation at very high pressure [5,6]. Among the oxides that undergo the 

pressure transition sequence fully or partly from CN=6 to 9 are: TiO2 [2,7-24], ZrO2 

[25-36], HfO2 [5,28,33,37-44], PbO2 [5] and SiO2 [45-49]. Because SiO2 is an 

important phase of the Earth’s crust and mantle, its transition sequence is of great 

interest for geosciences. TiO2 served as an analogous system in the search for potential 

post-stishovite silica phases. It was chosen because the phase transitions occur at lower 

pressures compared to the SiO2 system [22,50].  

 

1.1. Polymorphs of Titania  
 

At ambient conditions, the stable form of TiO2 
is rutile, but also anatase (I4/amd, 

CN=6) and brookite (Pcab, CN=6) exist as metastable forms, as well as modifications 

with the structure of β-VO2 (C2/m [51]), hollandite (I4Im) [52] and ramsdellite (Pbnm) 

[53]. Rutile, anatase, brookite, TiO2II (Pbcn, CN=6, α-PbO2 structure) and the β-VO2 – 

structured phase occur naturally as accessory minerals in sediments, metamorphic, 

plutonic and volcanic rocks, derived from crust and mantle [54]. Anatase, brookite and 

the β-VO2 – structured phase convert to rutile during prograde metamorphism. Upon 

decompression, TiO2II is a common quench-product of high pressure polymorphs. 
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Because rutile is resistant to weathering, it is inherited by metasediments, making them 

the predominant host for Ti along with other trace elements [54].  

 

Figure 1. Phase diagram of TiO2 from diamond anvil cell experiments. Shown are the pressure and 
temperature conditions of stable phases, the known metastable phases are named in the inset. The rutile–
TiO2II and TiO2II–MI phase boundaries are after refs. [22,24,55,56]. The P-T conditions of synthesis for 
OI [9], C-TiO2 [18], and OII [11] are shown by the shaded areas. The arrows indicate the pressure ranges 
over which P-V data were retrieved for OI (19-36 GPa), OII (30-80 GPa), and C-TiO2 (9-48 GPa) during 
compression (right pointing arrow) and decompression (left pointing arrow). After Swamy et al. [57]. 

 

The sequence of TiO2 high pressure polymorphs was determined experimentally 

as follows (Figure 1): TiO2II (orthorhombic) was found upon compression of anatase at 

pressures of 2.6-7 GPa [2,16,17,58]. The phase is quenchable to ambient conditions. 

Anatase, rutile and TiO2II transform to MI at ~12 GPa [1,2,11,14,17,55]. The 

transformation of MI to OI was found at 30 GPa by laser heating to 1300-1500 K and at 

48 GPa OI transforms to a mixture of OII and the cubic phase [18]. A transformation 

from MI to OII was found at 60 GPa under laser heating to 1260-1800 K. OII could be 

compressed to at least 80 GPa and transforms to MI at 25 GPa upon decompression. A 

rapid quench at 77 K, using liquid nitrogen, preserved OII to room pressure and low 
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temperatures [11]. Upon decompression at ambient temperatures, the transformation of 

OII to MI was found at 20 GPa, the cubic phase could be followed to below 9 GPa and 

below 7 GPa MI transforms to a mixture of TiO2II and rutile [18]. The pressures of 

phase transformations are different for compression and decompression and vary in 

different studies. The reason for that is most likely that in many cases phase 

transformations to the thermodynamically stable phase were hindered kinetically and 

only the metastable phases were observed. The apparent pressure-temperature phase 

diagram of TiO2 is presented in Figure 1, containing transformation pressures as well as 

pressure ranges in which the phases were observed.  

In the following chapters, the phases anatase, rutile, TiO2II and MI will play an 

important role and their structures are described in more detail in the following (Figure 

2). In anatase, each Ti is surrounded by an octahedron of six oxygen atoms. Four edges 

per octahedron are shared, building a “zig-zag” chain parallel to a as well as b. The 

chains are stacked antiparallel to the c axis. Rutile consists of TiO6 octahedra and two 

opposing edges of each octahedron are shared, forming linear chains parallel to the c-

direction. In the a-b-plane, the chains are linked via corner-sharing oxygen atoms. In 

TiO2II, the octahedra make up a network similar to rutile but are distorted. The structure 

of MI can be seen as an even further distorted version of TiO2II, exhibiting a seven-fold 

coordination of the Ti-atom.  

 

 
 
Figure 2: Elementary cells and polyhedra of TiO2 anatase, rutile, TiO2II and MI. Oxygen atoms are shown 
in red, titanium atoms and polyhedra are shown in blue. 
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1.2. Polymorphs of Zirconia  
 

The ZrO2 
polymorph stable at ambient pressures is monoclinic baddeleyite. It is 

a widespread trace mineral, occurring in a variety of rock types like meteorites, tektites, 

mafic and ultramafic rocks, alkaline intrusions, kimberlites and metacarbonates [59]. At 

ambient pressure, it transforms to a tetragonal phase above 1200°C with space group 

P42/nmc and CN=7, which is a distorted version of the cubic fluorite-structured phase, 

occurring above 2372°C. ZrO2 melts at 2680°C [60,61] and under pressure baddeleyite 

is stable up to 10 GPa, polymorphs at higher pressures are OI (10-25 GPa) and OII (25-

42 GPa). At higher pressures, another orthorhombic phase OIII was found but the 

structure could not be determined [44]. The values given by Ohtaka et al. [34] for the 

stabilities of the high pressure polymorphs differ strongly from the ones above: 

Baddeleyite <3-4GPa, OI <12.5 GPa and OII <24 GPa. Both groups of authors suggest 

cotunnite structure for OII and describe an orthorhombic phase, OIV, which is stable at 

higher temperatures than OII and higher pressures than the tetragonal phase with space 

group most likely Pbc21. The pressure-temperature phase diagram of ZrO2 is presented 

in Figure 3.  

 

 
Figure 3: Generalized phase diagram of ZrO2 from in-situ detection of phase transitions and 
characterization of quenched samples. The stable form at ambient conditions is monoclinic baddeleyite, 
polymorphs at high temperature are tetragonal and cubic phases. High pressure polymorphs are 
orthorhombic (named ort.I to V), space groups of phases ort. III and V are not identified and the existence 
of ort. IV is under debate. Redrawn after experimental data from refs. [34,44].  
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1.3. Energetics of Nanocrystalline ZrO2 and TiO2 Phases  
 

In microscale particles, only a negligible amount of atoms is situated on the 

surface, whereas the bulk mass of atoms is surrounded by other bulk atoms. With a 

decrease of the crystallite size to the nanometer range, the relative amount of atoms on 

the surface increases. Atoms on the surface exhibit a surface structure, different from 

the bulk material due to unsaturated bondings of the atoms. Energetics are therefore 

very different compared to the bulk mass and in most cases, H2O is adsorbed on the 

surface, making the energetics even more complicated. Figure 4 shows a nanometer 

scale particle with a core of bulk material and a surface area as the part of the particle 

within hailing distance of the surface, defined to be 0.5 nm. With decreasing particle 

size, the fraction of atoms near the surface increases, and at a certain point, all of the 

atoms belong to the surface shell. As will be seen later, the mechanical properties and 

phase stabilities are strongly affected by a decrease of the crystallite size to the 

nanometer range. 

 

 
Figure 4: Plot of fraction of volume for nanoscale particle as a function of the particle diameter, showing 
the fraction of volume within 0.5nm of the surface for a spherical particle. From ref. [62]. 

 
1.3.1 Energetics of Nanocrystalline Titania 

Relative phase stabilities of micro- and nanoscale rutile, brookite and anatase 

were intensively studied by Ranade et al. [63], using high temperature oxide melt drop 

solution calorimetry. In that method, two samples are each dropped into a molten oxide, 

such as lead borate, sodium molybdate or alkali borate. The difference in observed 
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enthalpy of reactants and products gives the heat of formation. The stable form of TiO2 

microscale materials is rutile, having the lowest enthalpy. Relative to bulk rutile, bulk 

brookite is 0.71±0.38 kJ/mol [64] and bulk anatase is 2.61±0.41 kJ/mol higher in 

enthalpy [63]. Experiments on nanoscale materials revealed that rutile has the highest 

surface enthalpy of 2.2±0.2 J/m², brookite has a medium value of 1.0±0.2 J/m² and 

anatase has the lowest value of 0.4±0.1 J/m². The closely balanced energetics lead to 

several phase stability crossovers occurring with the decrease of the crystallite size 

(compare Figure 5). The stable phase (with lowest enthalpy) is rutile for big crystallite 

sizes, brooktie for intermediate sizes and anatase for smallest crystallite sizes.  

 

 

Figure 5: Enthalpy of micro- and nanoscale TiO2 phases rutile, brookite and anatase with respect to 
microscale rutile versus surface area. Data were obtained by high temperature oxide melt drop solution 
calorimetry using 3Na2O·4MoO3 as a solvent. The darker line segments indicate the energetically stable 
phases. From ref. [63]. 

 
Because the MI phase is not quenchable, calorimetric measurements can not be 

performed on the material. The following calorimetric data on TiO2II are reported. For 

anatase-rutile a difference in enthalpy of 1.24 kcal/mole was measured [65] and for 

TiO2II-rutile a value of 0.76 kcal/mole [66]. We can therefore estimate that the 

sequence for bulk material from the stable to the less stable phase is: rutile → brookite 

→ TiO2II → anatase. Taking into account that TiO2II is a common decompression 

product in experiments and occurs naturally as nanocrystallites (e.g. [67]), we can 

furthermore estimate very roughly that it would plot with a slope comparable to anatase 

in Figure 5.  
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1.3.2. Energetics of Nanocrystalline Zirconia 

Calorimetric measurements on ZrO2 baddeleyite as well as the tetragonal and 

amorphous phases [68] show that for bulk material, the stable modification is 

baddeleyite. The enthalpy of the monoclinic to tetragonal transition was estimated to be 

10±1 kJ/mol and the amorphization enthalpy to be 34±2 kJ/mole higher than for bulk 

baddeleyite. The monoclinic form has the highest surface enthalpy of 4.2 J/m², the 

tetragonal phase has intermediate value of 0.9 J/m² and the amorphous phase 0.5 J/m² 

[68]. Energy crossovers for nanocrystalline zirconia enthalpies are shown in Figure 6. 

The stable phase (with lowest enthalpy) is monoclinic zirconia for big crystallite sizes, 

the tetragonal phase for intermediate sizes and the amorphous phase for smallest 

crystallite sizes. 

 

 
 
Figure 6: Enthalpy of micro- and nanoscale ZrO2 phases with respect to the microscale monoclinic 
baddeleyite, showing several phase stability crossovers of nanocrystalline zirconia. Data were obtained by 
high temperature oxide melt drop solution calorimetry using lead borate as solvent. The darker line 
segments indicate the energetically stable phases. From ref. [68]. 
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2. TiO2-ZrO2 Phase Diagram 
 

The phase diagram of TiO2 and ZrO2 is well studied up to a pressure of 2.8 GPa 

[69-71] and a temperature of 1600°C [72-76], results are presented in Figure 7. The 

authors describe the occurrence of monoclinic ZrO2 (baddeleyite), containing up to ~9 

mol% TiO2. The tetragonal ZrO2 phase, stable at temperatures greater than ~1060°C can 

adopt much higher amounts of TiO2, up to 20 mol%. The authors distinguish between 

an ordered phase of (Zr,Ti)2O4 at a temperature below 1160°C and a disordered one at 

higher temperatures. The ordered phase contains 64.9 mol% TiO2 at 800°C to 60.4 

mol% TiO2 at 1060°C. A jump occurs to ~49 mol% TiO2 at 1080°C, coinciding with a 

remarkable change in the b-dimension, yielding at a second, distinct ordered phase. The 

disordered phase, stable at temperatures >1160°C contains 50 mol% TiO2 at 1160°C 

and a bigger range of compositions at higher temperatures with 42 to 67 mol% TiO2 at 

1600°C. The mineral srilankite (ZrTi2O6 [77]) represents a specific composition of this 

solid solution. The TiO2 phase is rutile and its Zr-incorporation increases linearly with 

temperature up to ~15 mol% ZrO2 at 1600°C. 

 

 

Figure 7: ZrO2-TiO2 phase diagram from characterization of quenched samples (refs. [75,76]). All phases 
(tetragonal and monoclinic ZrO2, ordered and disordered (Zr,Ti)2O4, TiO2) are solid solutions, and the 
phase fields are labelled with the predominant end-member. The label ’ordered’ encompasses partly and 
fully ordered (Zr,Ti)2O4. 
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Srilankite is a rare mineral, its origin and stability are discussed controversially 

and for a long time, a hydrothermal origin was proposed for natural samples, first found 

in a gemstone mine [77], a lamprohpyre pipe [78] and ultramafic diatremes [79]. 

However, experimental results show an ordered phase at low temperatures and 

disordering (as for srilankite) only at temperatures >1160°C, thus suggesting magmatic 

origin. Newer findings of srilankite in crustal mafic granulites [80] and a gabbroic vein 

[81] are consistent with the generation at high temperatures. 

There are three different phases with the space group Pbcn: the ordered solid 

solution (Zr,Ti)2O4, having the structure of columbite; the disordered solid solution 

(Zr,Ti)2O4 with the structure of scrutinyite [82], containing srilankite with the formula 

ZrTi2O6 [77]; Furthermore there is the TiO2 high pressure polymorph TiO2II. There is 

ongoing research whether this phase makes a solid solution with one of the phases 

mentioned. In chapter III. section 2. “Experimental results on the system TiO2-ZrO2 to 

10 GPa“, new results are presented, suggesting that it is a separate phase. 
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3. Technical Applications 
 

TiO2 phases have a high refractive index with values of 2.52, 2.63 and 2.72 for 

anatase, brookite and rutile [83]. Because it lacks absorption of visible light, it is used as 

white pigment for paints, plastics and paper. As a wide band gap semiconductor 

(Eg=3.0-3.2 eV) it is used for electrochemical dye solar cells [84] and exhibits a good 

performance in photocatalysis [85,86]. It is chemically inert and highly corrosion 

resistant, ideal for exposition to aqueous solutions [87] and is used in the development 

of photoelectrodes for photochemical energy-conversion processes [88].  

ZrO2 is a common functional ceramic material as it is hard, chemically inert, has 

a high melting point, good ionic conductivity and interesting electrical properties. It is 

used as structural ceramic, high temperature solid electrode and optical material. It finds 

electrical applications, including catalyst supports, oxygen sensors, and thermal barrier 

coatings. The tetragonal and cubic phases of ZrO2 are stabilized by doping an amount of 

~0.15 mol% of other oxides like CaO, MgO, and Y2O3 [26,89]. Partially stabilized ZrO2 

and Y2O3-stabilized tetragonal ZrO2 polycrystalline (Y-TZP) materials are particularly 

useful for advanced structural applications because of their high strength and fracture 

toughness. Furthermore, natural baddeleyite and synthetic ZrO2 ceramics are candidate 

materials for the safe disposal of high level nuclear waste from power reactors as well 

as pure plutonium from disposition of nuclear weapons [59,90].  

Zirconium titanate ceramics are used as temperature-stable dielectric materials 

for ceramic capacitors and exhibit outstanding dielectric properties in the microwave 

frequency range [91-94], making it a candidate material for ceramic resonators, used for 

example in wireless communication technology.  

In addition to the current application, other TiO2 structures exhibit interesting 

optical and mechanical properties and are proposed as candidate materials for functional 

ceramics. For example, the cubic high pressure polymorph of TiO2 may be used as light 

absorber in solar-energy conversion [87]; ab-initio investigations of the electronic band 

structure showed important optical absorptive transitions in the region of the visible 

light, predicting a more efficient performance than the TiO2 forms used so far. 
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Furthermore, the cotunnite phase (CN=9) is a candidate material for new noncarbon 

abrasive materials. Dubrovinsky et al. [11] presented a bulk modulus value of K0=431 

GPa and a hardness of 38 GPa, exceeding the values for WC (421 and 30 GPa, [95]) 

and cubic BN (369 and 32 GPa, [96]). It is likely that the OI phase (CN=7) and the 

cubic phase (CN=8) are also ultrahard substances (compare [57]). 
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4. Tuning of Elastic Properties 
 

In industrial technologies using superhard materials for cutting, drilling, milling 

and polishing there is a need for designing new abrasive materials that are hard, tough, 

chemically inert and thermally stable. As the hardest materials, covalent ceramics like 

diamond, cubic boron-nitride and SiC are applied. But also hard oxides play an 

important role because of their low reactivity with atmosphere, especially at elevated 

temperatures, which is essential for such applications. The oxide materials that have 

received attention due to their high hardness, toughness and strength are rutile 

structured SiO2 (stishovite), α-Al2O3 (corundum), CVD-produced к-Al2O3, and 

transformation-toughened ZrO2, HfO2 and TiO2 [97,98]. As it was already mentioned in 

the last section, hard TiO2 structures seem to be very promising for new abrasive 

materials.  

 

Figure 8: Correlation of shear modulus and hardness, plotted for various materials from ref. [97]. Square 
and diamond symbols are computational data for TiO2 fluorite and pyrite from ref. [57].  
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The hardness of a material is correlated to its bulk modulus and shear modulus. 

Figure 8 shows, how well the shear modulus can be used as indicator for the hardness of 

a material. Data are presented for various materials [97] as well as for pyrite and fluorite 

forms of TiO2 [57]. Unfortunately, the determination of the shear modulus is not 

possible for high pressure polymorphs. We therefore have to take the bulk modulus as a 

substitute for an indicator of the hardness. The definition of the bulk modulus and how 

to determine the equation of state experimentally and computationally is described in 

chapter II. section 4. “Compressing Materials: Equation of state”.  

There are several possibilities to alter the elastic properties of a given material. 

Experimental data and theoretical predictions suggest that the values of the bulk 

modulus K0 of the TiO2 high pressure polymorphs increase with an increasing Ti-O 

coordination number. The 9-fold coordinated cotunnite structured phase is therefore the 

hardest of TiO2 polymorphs, and of oxides known in general. One tool of creating new 

hard materials is therefore to synthesize the dense high pressure polymorphs and to 

stabilize them at ambient conditions. As one promising way to do that, doping of TiO2 

with ZrO2 is proposed. The crystal chemistry of both, titanium and zirconium dioxides 

are similar and it is known that high pressure zirconia polymorphs (OI and OII) are 

quenchable. It is also well known that the ZrO2 tetragonal and cubic high temperature 

polymorphs can be stabilized at ambient conditions by doping with other cations, such 

as Ca, Mg or Y. With a similar principle, the stabilization of high pressure polymorphs 

of the (Ti1-xZrx)O2 
solid solution is proposed. 

The incorporation of other cations is not only a way to stabilize high pressure 

polymorphs but is a tool by itself to tune elastic properties. The compressibility of high-

pressure polymorphs of TiO2 is systematically smaller than for ZrO2 (Table 1). For the 

monoclinic MI phase, K0 was measured as 290–303 GPa for TiO2 and as 187–212 GPa 

for ZrO2. The values of K0 for the orthorhombic phases are 318 GPa (TiO2) and 243 

GPa (ZrO2) for OI, and 431 GPa (TiO2) and 265 – 444 GPa (ZrO2) for OII, respectively 

(details, nomenclature, and references are given in Table 1). This pattern can be 

understood by a comparison of the electronic structures of Zr and Ti. Having one more 

electron shell, Zr has larger ionic and covalent radii than Ti and therefore a higher 

compressibility. The compression behavior of Ti and Zr oxides is not only controlled by 

the compressibility of the metal atoms, but also by the distortion of their coordination 
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polyhedra and of the oxygen atoms. The valence electrons in the d states play an 

important role in the distortion of the polyhedra [19]. However, to give away the results 

of this study, it is worth mentioning that our experimental results on Zr-doped 

nanoanatase gave the highest bulk modulus for anatase (Ti1-xZrx)O2 reported so far. The 

doping of TiO2 with ZrO2 thus led to hardening of the material. 

Table 1: Volumes and bulk moduli of TiO2 and ZrO2 polymorphs. 

Phase V0  V0/Z  K0  K'0  P T Technique Ref. 
  (Å³) (Å³) (GPa)   (GPa) (K)     

TiO2         
rutile 62.5 31.2 230(20) 6.6(7) 0-20 300 DAC + XRD [14] 
rutile 62.5 31.2 210(10) 6.6(7) 0-8 300 MA + XRD [19] 

rutile (10 nm)   211(7)     [20] 
anatase  136.8 34.2 178(1) 4 f 0-8 300 DAC + XRD [1] 
anatase  136.3 34.1 190(10) 5.3(10) 0-14 300 DAC + XRD [2] 
anatase  143.8 36.0 189.5 3.4 0-50 - ab-initio [2] 

anatase (single cryst.) 136.3 34.1 179(2) 4.5(10) 0-5 300 DAC + XRD [2] 
anatase (30 - 40 nm) 136.2 34.0 243(3) 4 f 0-35 300 DAC + XRD [4] 

anatase (6 nm) - - 237(3) 4 f 6-18 300 DAC + XRD [3] 
anatase (6 nm) - - 260 4 f 15 - MD [3] 
anatase (6 nm) - - 240 4 f 20 - MD [3] 

brookite 257.8 32.2 255(10) 4 f 0-8 300 DAC + XRD [99] 
MI 112.2 28.1 290(20) 4 f 10-60 300 DAC + XRD [14] 
MI 112.2 28.1 290(20) 4 f 0-20 300 MA + XRD [19] 
MI 105.1 26.3 304(6) 3.9(2) 30-80 300 DAC + XRD [1] 

MI (10 nm)   235(16)     [20] 
α-PbO2 122.4 30.6 260(30) - 0-10 300 DAC + XRD [14] 
α-PbO2 122.4 30.6 258(8) 4.05(25) 0-8 300 MA + XRD [19] 
α-PbO2   212(25)     [20] 

OI 109.1 27.3 318(3) 4 f 19-36 300 DAC + XRD [9] 
OII  105.1 26.3 431(10) 1.35(10) 15-42 300 DAC + XRD [1] 

cubic  115.5 28.9 202(5) 1.3(1) 10-55 300 DAC + XRD [18] 
ZrO2         

MI  140.6 35.2 212(24) 8(4) 0-70 300 DAC + XRD [38] 
MI  - - 187 - 0 - Brill. scat. [100] 
MI  - - 152 4.00 - - ab-initio [101] 
MI  - - 157 2.38 - - ab-initio [102] 

tetragonal (nanocryst.) 139.4 34.9 172(6) 8.5(5) 0-10 300 DAC + XRD [25] 
tetragonal - - 205(10) 4 f 0-12.5 1000 MA + XRD [34] 
tetragonal - - 200 6.25 - - ab-initio [102] 

OI 134.0 33.5 243(10) 7(2) 10-25 300 DAC + XRD [38] 
OI - - 273 3..51 - - ab-initio [101] 
OI - - 272 4.63 - - ab-initio [102] 
OII  123.2 30.8 444(15) 1 f 0-70 300 DAC + XRD [38] 
OII  120.1 30.0 265(10) 4 f 0-24 300 MA + XRD [34] 
OII  120.1 30.0 296(5) 1 f 0-24 300 MA + XRD [34] 
OII  120.9 30.2 306(10) 3.66 f 0-50 300 DAC + XRD [27] 
OII  120.9 30.2 322(8) 2.3(4) 0-50 300 DAC + XRD [27] 
OII  120.0 30.0 278(11) 3.70(22) 0-100 300 DAC + XRD [32] 
OII  120.0 30.0 267(3) 4 f 0-100 300 DAC + XRD [32] 
OII  - - 314 3.66 - - ab-initio [101] 
OII  - - 305 4.68 - - ab-initio [102] 

K0 = isothermal bulk modulus; V = elementary cell Volume; Z = number of TiO2 or ZrO2 per elementary 
cell; DAC = diamond anvil cell; XRD = in-situ X-ray diffraction; MA = multianvil; MD = Molecular 
Dynamics; LD = Lattice Dynamics; Brill. Scat. = Brillouin scattering; f = fixed value; 
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The compression behavior of a material is furthermore controlled by the 

microstructure as well as stress and strain in the crystallites. Size dependent 

modifications of mechanical properties are described by the Hall-Petch effect [103,104], 

stating that hardness and yield strength increase with decreasing crystallite size: 

τ = τ0 + kd -½         (1) 

where τ is the yield stress, τ0 is the friction stress needed to move individual 

dislocations, k is a constant (often referred to as the Hall-Petch slope) and is material 

characteristic, and d is the average grain size. The hardening of the nanoscale materials 

is related to the fact that such small crystallites are free of dislocations and therefore do 

not exhibit dislocation-creep upon compression. That way, an important tool for 

shearing is not possible in nanoscale compared to microscale material, leading to an 

increase of the shear-modulus. Nieh et al. [105] reformulated the effect for 

nanocrystalline materials using the Vicker’s hardness H as a function of the crystallite 

size d: 

H=H0+K/ √d         (2) 

In contrast, Schiotz et al. [106] describe materials which get softer as the 

crystallite size decreases after a certain critical size, referred to as the reverse Hall-Petch 

effect. 

A decrease in crystallite size leads to a higher bulk modulus for anatase, as 

shown by Swamy et al.  [1,4]. The authors carried out experiments on the compression 

behaviour of macrocrystalline anatase [1] up to 8 GPa as well as of nanocrystalline 

anatase [4] up to 35 GPa and determined the isothermal bulk modulus for 

macrocrystalline anatase to be 178(1) GPa. The value for the nanocrystalline 

counterpart is 243(3) GPa, which is about 35% larger. The results suggest that stress 

hardens the material. In Table 1, the volumes, densities and equation of state data are 

presented for TiO2 and ZrO2 polymorphs with various crystallite sizes. 

Stress and strain also vary the pressure of transformation from one polymorph to 

the other and therefore might be another tool for stabilization of high pressure 

polymorphs upon decompression or low pressure polymorphs upon compression. A 

decrease in crystallite size apparently suppresses the formation of TiO2II and leads to a 

higher pressure limit of the transformation anatase → MI. New experimental results on 

TiO2 are reported in chapter III. section 4. 
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5. Computational Work 
 

Experiments on the TiO2 system have been complemented by a large number of 

computational studies on structural [9,21,107-118] and electronic properties [119-125]. 

A wide range of computational approaches have been used in these studies, with 

varying degrees of transferability and efficiency of the methods. On the more efficient 

side, a number of interatomic potential models were developed for atomistic simulations 

of titanium oxides [9,107-113,126], primarily applied to lattice dynamics (LD) and 

molecular dynamics (MD) computations. Among the various potentials derived, a 

number is well transferable [108,113] and LD and MD computations are successful in 

describing the relative stabilities of phases in pressure and temperature.  

However, to describe electronic properties of a material, such as the band 

structure or electronic densities of states, ab-initio methods must be considered, even 

though they are computationally more demanding. In order to solve the Kohn-Sham 

(KS) equations for the solid [127], many-body interaction of the electrons through 

exchange and correlation need to be approximated. Hartree-Fock (HF) theory calculates 

the exchange energy exactly, but does not account for correlation [114,115]. In contrast, 

in the local density (LDA) [128] and generalized gradient approximation (GGA) [129], 

both exchange and correlation are approximated. Computations using LDA and GGA 

are typically referred to as density functional theory (DFT) computations. For Ti as a 

light transition metal ion, the correlation of electrons plays an important role, as has 

been pointed out in the literature. Rościszewski et al. [114] found that the correlation 

energy does not change linearly upon (de)compression, making it impossible for HF 

computations to predict the compressibility of rutile accurately. Only the lattice 

constants of the equilibrium geometry are reproducible. Reinhardt et al. [115] 

performed a comparative study on rutile using HF as well as DFT with LDA. They 

found that the latter one gives a good estimate for the binding energy whereas HF only 

provides 70% of it. The results show that HF is an inappropriate method for 

computations on TiO2. 

In DFT methods, either all electrons in the systems can be considered explicitely 

or the potential can be approximated by a pseudopotential. A large number of ab-initio 
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computations were performed in order to reveal the structures, bulk moduli and relative 

stabilites of TiO2 polymorphs. Sasaki [21] applied GGA and a pseudopotential that was 

constructed for the electron configuration of the groundstate of Ti4+, having a partial 

core correction incorporated in the evaluation of the exchange-correlation energy. Phase 

transformations occurred in the same order as seen experimentally, from rutile to TiO2II 

- brookite; however, anatase was not considered. Dewhurst and Lowther [116] used 

Troullier-Martin-pseudopotentials with LDA and included anatase in the structures. 

They found rutile more stable than anatase. In fact, anatase was the phase with the 

highest energy among the phases considered. In contrast, Muscat et al. [117] used the 

all-electron linear combination of atmic orbitals (LCAO) and pseudopotential (PS) 

methods as well as HF theory to compute the optimal crystal structures at various 

pressures. As a result, anatase was predicted more stable than rutile. Labat et al. [118] 

performed a detailed analysis of the structural and electronic properties of rutile and 

anatase, applying HF as well as density functional calculations using the hybrid HF/KS 

schemes, LDA and GGA. The authors report excellent agreement with experimental 

band structures as well as structural descriptions, but again anatase was found more 

stable than rutile. 
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6. Motivation and Outline 
 

The goal of the current work is to examine the effect of crystallite size and Zr-

doping on the compressibility and the transition behavior of rutile and anatase. It was 

found before that a decrease of the crystallite size to the nanometer range leads to 

stiffening of the material and here we investigate if this hypothesis applies to pure and 

Zr-doped anatase and rutile. From experimental data it is inferred that high pressure 

polymorphs of TiO2 have a higher bulk modulus than the analogous ZrO2 polymorphs. 

In this study, the bulk moduli of doped and undoped phases are determined and the 

study demonstrates that Zr-doping leads to a stiffening of nanoscale anatase. It was 

found before that a decreasing crystallite size to the nanometer scale leads to a higher 

transformation pressure of anatase and rutile to TiO2II, which is confirmed here. A 

detailed comparison of the transition behavior of micro- and naoscale doped and 

undoped forms of rutile and anatase is given below. 

For the synthesis of starting materials for the experiments, a route of the sol-gel 

method was developed and hydrothermal experiments were performed. In order to 

determine the maximum amount of Zr-doping possible, experiments at pressure up to 10 

GPa and temperatures up to 1600°C were performed. The experiments showed that ≤10 

mole% of ZrO2 can be incorporated into the structure of rutile and the high pressure 

polymorphs. Therefore, the Zr-doped samples used in compression experiments had the 

composition Ti0.9Zr0.1O2. 
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II. Methods and Instrumentation 
 

In this study, two kinds of experiments at high pressures and high temperatures 

(HPHT) were performed: First the materials synthesis of TiO2-ZrO2 materials and 

second diamond anvil cell (DAC) experiments with in-situ observation and data 

collection upon compression and decompression. For synthesis experiments at HPHT, 

the piston cylinder, multi anvil and hydrothermal apparatus were chosen and recovered 

samples were analyzed by means of powder X-ray diffraction (XRD), microprobing and 

transmission electron microscopy (TEM). Compression experiments were carried out in 

the DAC and in-situ XRD, X-ray absorption (XAS) and Raman spectroscopic 

measurements were performed. In section 1 and 2, high pressure experimental 

techniques as well as analytical methods are described. The theoretical approach to 

calculate energetics and structures of TiO2 polymorphs is reported in section 3. In 

experiments and computations, the compression behavior was analyzed in detail and 

therefore, some theory about the compressibility is given in section 4, reviewing basic 

terms of elasticity and the concept of finite strain. 

 

1. High Pressure Experimental Techniques 
 

There are numerous methods for performing experiments at high pressures and 

high temperatures, used for synthesis as well as in-situ studies of materials at extreme 

conditions [130]. As a general rule, one can state that the higher the pressure achieved, 

the smaller the sample volume has to be. With the piston cylinder apparatus, pressures 

up to ~5 GPa and temperatures up to 2200°C can be achieved, with a sample volume of 

typically ~200 mm³. The piston-cylinder press is durable and robust, and controls the 

high pressures and temperatures over long periods of time, days to even weeks. 

Compared to that, the multi-anvil apparatus can produce much higher pressures. 

Depending on the choice of cubes and load, up to 25 GPa can be achieved at up to 

~2000°C, and the conditions can be controlled for time periods of several hours. The 

sample volumes are between 14 mm³ for lower pressures and ~6 mm³ for higher 
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pressures. In contrast, in the DAC, a maximum static pressure of ~300 GPa can be 

reached. At intermediate pressures, the DAC can be heated by electrical resistive 

heating (internal or external) to about 1000°C or internal laser heating to about 3000°C. 

However, sample volumes are as small as 0.0002 mm³. 

The choice of in-situ measurements possible is highest for DAC experiments. 

Diamonds are transparent for electromagnetic radiation in a broad energy range, 

allowing for optical, near-infrared and X-ray analytical methods. Depending on the 

design and the choice of materials, multi anvil presses can allow for in-situ X-ray 

diffraction, but are limited for other in-situ techniques. The piston cylinder apparatus 

lacks the possibility for in-situ X-ray diffraction. 

 

1.1. Hydrothermal Experiments 
 

Hydrothermal experiments were performed in cold-seal pressure vessels, at 

pressure and temperature conditions, were H2O is in the supercritical state, allowing for 

generally high dissolution rates. The system is shown in Figure 9 and described 

elsewhere [131-133]. 

 

 

Figure 9: Schematics of a cold-seal pressure vessel and system. The pressure vessel is externally heated, 
while the seal is cooled. Pressure is generated by an external pressure pump and held constant by closing 
the valve when run conditions are reached. Temperature is controlled by a thermocouple situated close to 
the sample capsule. From ref.[134].  
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Experiments were performed in Au capsules with the diameter of 2.0 mm and a 

length of 10 mm. The capsules were cut from seamless tubing, washed in concentrated 

hydrofluoric acid, repeatedly rinsed in distilled water, cleaned with alcohol in an 

ultrasonic bath and annealed to yellow-orange color over a Meeker burner. Capsules 

were crimped and welded flat, filled with distilled and deionized water and ~30 mg 

sample powder, yielding 5 wt% H2O. Capsules were crimped and welded immediately 

with a trifold. During welding, capsules were partly submerged in a bath of cold water 

and ice to prevent loss of H2O. In all cases, weight loss during welding was 0.04–0.08 

mg; For the same method, Dolejš and Baker [135] report that piercing the welded 

capsule and determining the weight loss by drying revealed no loss of H2O within the 

weighing error (0.02 mg). Capsules were stored at 120°C for 1 h to ensure 

homogeneous distribution of H2O vapor and re-weighed to check for leakage. 

Experiments were carried out in cold-seal pressure vessels, using air as pressure 

medium. Temperatures were monitored by external chromel-alumel thermocouples, 

calibrated against the melting point of NaCl (800.6°C). Individual temperatures are 

accurate to ±2°C. Pressure was measured with the Bourdon-tube gauges, calibrated 

against a factory calibrated Heise gauge. Pressure data are precise to ±2 MPa. The 

experiments were terminated by placing the vessel in an air jet and quenched below the 

solidus temperature in 1–2 min. All capsules were checked for leakage, opened and 

stored at room conditions. 

 

1.2. Piston Cylinder Technique 
 

The piston cylinder technique works by the principle of pressure amplification, 

where in the so called master ram a small load on a large piston is converted to a 

relatively large load on a small piston. Additionally to the master ram, the type of 

piston-cylinder apparatus used here is end-loaded, having a second hydraulic ram to 

vertically load and hence strengthen the pressure vessel in which the sample is located 

(Figure 10).  
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Figure 10: Cross-section of an end-loaded piston cylinder apparatus. The sample is situated in the 
pressure vessel and compressed by applying force on the master ram. The end load ram serves to 
strengthen the pressure vessel. The sample is heated by electrical resistance. Redrawn after ref. [136]. 

 

The sample assembly contains NaCl as solid pressure medium, a graphitic 

resistance heater, and the sample, which is surrounded by a Pt-capsule and placed into 

the hot spot of the assembly (Figure 11). A large voltage is applied to the steel plates 

above and below the pressure vessel and passed across the resistance heater to heat the 

sample, while the temperature is monitored with a s-type thermocouple placed close to 

the sample. During an experiment, pressure vessel, bridge and upper plates are cooled 

by a circulating water system.  

 



II. Methods and Instrumentation   
 

 34

 

Figure 11: Cross section of the sample assembly for piston-cylinder experiments. 

 

In all experiments, samples were compressed to 90% of the target run pressure 

and then heated. The pressure of the heated sample was adjusted to the target pressure 

and automatically controlled during the run time. Samples were quenched by switching 

off the heating power, followed by manual decompression. 

 

1.3. Multi Anvil Technique 
 

In the multi anvil apparatus, the force of a hydraulic press is exerted onto a set of 

six steel anvils, forming a cubic cavity, in which eight tungsten carbide (WC) cubes are 

placed. The corners of the WC cubes are truncated to form an octahedral pressure 

chamber, filled by an MgO octahedron that contains the sample capsule (Figure 12). 

Details of the technique are described elsewhere (e.g. ref. [137-140]). 
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Figure 12: Schematic of the multi-anvil setup. On the left, two steel blocks are shown, forming a cubic 
cavity and enclosing a set of eight WC-anvils. On the right, the eight WC cubes are shown in detail, 
having truncated corners to form an octahedral void in which the sample is situated. The truncation edge 
length (TEL) of the cubes is marked in red, the octahedron edge length (OEL) is marked in blue. 

 

Several assemblies exist with varying octahedron edge length (OEL) and 

truncation edge length (TEL) of the cubes. The maximum pressure that can be reached 

in an experiment increases with decreasing OEL and TEL, and thus with decreasing 

sample size. For the experiments here, WC cubes with OEL = 10 mm and TEL = 5 mm 

were used, allowing to squeeze the sample to 10 GPa (Figure 13).  

 

 

Figure 13: Pressure assembly of a multi anvil experiment. 
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The octahedron is made of MgO doped with 5% Cr2O3 to reduce heat loss by 

radiation. The sample is surrounded by a Re-capsule, which again is surrounded by an 

MgO cylinder and placed into the hot spot of a cylindrical graphite resistance heater, 

which is insulated from the octahedron by a zirconia sleeve. The capsule, made from 

0.25 mm thick Re-foil, has a diameter of 1.6 mm and a length of 3.5 mm. The sample 

temperature is monitored using a W75Re25-W97Re3 thermocouple, which is placed in 

contact with the capsule. Pressures are calibrated using known phase transitions of 

common minerals (compare ref. [141]), with an uncertainty of ~1 GPa. The thermal 

gradient along the capsule at 1600°C and 10 GPa is ±50°C [142].  

Multi-anvil experiments were carried out using the 1-Cylinder Sumitomo Press 

with axial force of 1200 t. In all experiments the samples were compressed to the run 

pressure and then heated at the rate of ~100 °C/min. The samples were quenched by 

switching off the heating power and cooled at a rate of 1000 °C/s, followed by slow 

pressure quenching, lasting up to 15 hours. 

 

1.4. Diamond Anvil Cell 
 

In the diamond anvil cell (DAC), the pressure chamber is made by a drilled hole 

of a metal foil, which is placed between the polished culets of two diamonds. The 

diamonds are seated on supporting plates, such that even moderate force on the plates 

lead to very high pressures on the sample chamber. There are a number of different 

types of DAC designs (for details see refs. [143-147]). The DAC design used for 

experiments of this study is described in detail by Dubrovinskaia and Dubrovinsky 

[148] and the principle is shown in Figure 14. For this study, a pair of 1/4 karate type IA 

diamonds with a cullet size of 250 µm or 300 µm was used. The gasket was made from 

Re-foil with a thickness of ~250 µm, which was indented between the diamonds to 40–

60 µm. Using electrical erosion, a hole with diameter of 80–100 µm was drilled in the 

middle of the indented area to form the pressure chamber. 
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Figure 14: Schematic of a diamond anvil cell used at BGI. Redrawn after ref. [148]. 

 

For Raman studies, a small ruby sphere served as pressure calibrant, and the 

shift of the fluorescence line was used to determine the pressure, following the method 

described by Mao et al. [149]. For X-ray diffraction studies, a small piece of Cu-wire 

served as internal pressure calibrant, when the pressure transmitting medium was 

absent. When deviatoric stresses in the sample needed to be minimized by the use of a 

transmitting medium, LiF was chosen. LiF is a chemically stable soft material with low 

shear strength, and serves as both, pressure transmitting medium and pressure calibrant 

in X-ray diffraction experiments, exhibiting low absorption and a low scattering factor 

for in-situ measurements through the DAC.  

The DAC can be heated using either electrical resistive (e.g. [148]) or laser 

heating [150-153]. In this study, samples were heated using the Nd-YAG laser (λ=1.064 

µm and power above 20 W), as provided at the synchrotron facility at the advanced 

photon source (APS) in Argonne, Illinois, [154]. 
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2. Analytical Methods 
 

2.1. Powder X-Ray Diffraction 
 

To determine the lattice parameters and atomic coordinates of the crystalline 

samples, two types of angle-dispersive XRD analysis were performed, in-situ studies on 

DAC experiments as well as characterization of synthesized samples. The latter was 

done at BGI on a the Siemens D5000 diffractometer (Cu Kα2 radiation, λ=1.542 Å), or a 

Phillips X’Pert diffractometer (Co Kα2 radiation, λ=1.78897 Å). The sample was 

ground and mixed with Si powder in proportion of ~1:0.2, serving as calibrant. The 

principles of the technique can be found in ref. [155]. Full profile refinements of the 

diffraction patterns were performed using the General Structure Analysis System 

(GSAS) program [156,157]. In-situ measurements of DAC experiments were performed 

at the high brilliance X-ray system at BGI, using Mo Kα radiation (λ=0.7105 Å) and a 

CCD Bruker APEX detector, or at a synchrotron facility, using flexible radiation with 

wavelength of ~0.3 Å and a MAR345 image plate. Experiments were performed at the 

Swiss Norwegian Beamline at the European Synchrotron Radiation Facility (ESRF), 

Grenoble, France, together with Prof. Vladimir Dmitriev, and at GeoSoilEnviroCARS 

13 BMD at the Advanced Photon Source (APS), Argonne, Illinois, together with Dr. 

Vitali Prakapenka. The diffraction images were integrated using the FIT2D program 

[158], where CeO2 was used to determine the distance of the sample from the detector 

along with other fitting parameters necessary. GSAS was used for full profile 

refinement of the integrated patterns, an example is shown in Figure 15. 
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Figure 15: Processing of XRD data from imaging plates. On the top, an image from MAR345 detector of 
LiF + Zr0.1Ti0.9O2 at 13 GPa ( λ=0.31) is shown before integration. On the bottom, the result of full profile 
refinement is shown for the same spectrum, upper tickmarks indicate LiF and lower tickmarks indicate 
anatase Zr0.1Ti0.9O2. 

 

To determine the crystallite size and the strain of a sample from XRD data, the 

TOPAS-ACADEMIC software [159] was used for convolution-based profile fitting 

[160] and refinement of the microstructure. The diffraction spectrum of a CeO2 standard 

was used to determine the source emission profile and instrumental contribution to peak 

broadening. The effects of crystallite size and strain on the peak broadening were 
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analyzed using the double-Voigt approach [161]. Integral-breadth based volume-

weighted mean column height LVol_IB of coherently diffracting domains as well as mean 

strain values e0 [160] were obtained simultaneously. The estimate of crystallite size 

from LVol_IB depends on the particular crystallite shape and on the size distribution of 

the crystallites. For monodisperse spherical crystallites with diameter D, the following 

equation is applicable: D = 4/3 LVol_IB [162,163]. 

 

2.2. X-Ray Absorption Spectroscopy 
 

X-Ray Absorption Spectroscopy (XAS) is generally used to determine the local 

atomic and electronic structure of atoms, in our study that of Ti atoms. Absorbing X-

rays of energies close to the electron binding energy, the absorption spectra of an atom 

shows specific features, the absorption edge, which is divided into three regions: The 

pre-edge region just before the edge, the X-Ray Absorption Near-Edge Structure 

(XANES) and the Extended X-Ray Absorption Fine Structure (EXAFS). The XANES 

region is extended to 50-100 eV beyond an absorption edge and is determined by the 

local density of vacant states of an absorbing atom, as well as multiple-scattering 

effects, while the EXAFS region is extended to up to 2000 eV beyond the edge and is 

dominated by single scattering processes [164]. High quality XANES spectra were 

recorded in-situ upon compression of the material in a DAC for several pressures across 

the phase transition. It was shown before that pre-edge features observed at the K edge 

of the Ti atom are very sensitive to the distortion of the local environment around the Ti 

atom [165-167], and that displacement of the Ti atoms from their centrosymmetric 

positions leads to the appearance of an additional peak due to transitions into unfilled 

atomic d level. The transition from the s to d states is forbidden in the electric dipole 

approximation and is usually very weak because its existence is only due to a small 

electric quadrupole matrix element in the absorption cross section. However, the Ti 

atom displacement from the cubic site breaks inversion symmetry and induces a mixing 

of p and d states, thus introduces a large dipole transition. The intensity of this peak is 

therefore a direct probe of the local displacement of this atom [165,166]. K edge 

measurements serve well to distinguish between different phases. 
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Ti K-edge measurements were performed in the transmission geometry at 

beamline ID12 of the ESRF [168]. The experimental conditions and the sensitivity of 

the measurement are reported in ref. [169]. In order to enhance the intensity of the 

transmitted beam, a DAC was used with thin diamonds, which were mounted on fully 

perforated diamond anvils [170,171]. In order to minimize deviatoric stresses on the 

sample, siliconoil was used as pressure transmitting medium. 

 

2.3. Raman Spectroscopy 
 

Raman scattering occurs due to the excitation of vibrations of atoms or 

molecules in the sample when the frequency of the electric field applied equals the 

eigen frequency of the corresponding vibration. A charge separation is induced during 

the interaction with radiation while the electron shell is displaced as a response to the 

external field. The number of observed Raman bands as well as the eigen frequencies, 

relative intensities, widths and polarization of vibrational bands are controlled by the 

sizes, valences and masses of the atomic species, the bond forces between the vibrating 

atoms and the symmetry of their arrangement in the crystal structure (e.g. ref.[172]). 

Raman spectroscopy serves as an important tool for in-situ phase identification and 

characterization upon compression and heating during DAC experiments [173-175].  

Raman scattering measurements were perfomred on a LABRAM Raman 

spectrometer with a He-Ne laser (632 nm). The spectrometer was calibrated using the 

Г25 phonon of Si. The vibrational peaks were analysed using the PeakFitTM program by 

Jandel Scientific and the Savitsky-Golay data-smoothing algorithm was used for peak 

analysis. The peak profiles were described by combinations of Lorentzian and Guassian 

functions.  

 

2.4. Electron Microprobe 
 

Electron microprobing is a common tool for materials analysis; details about the 

method can be found elsewhere, e.g. refs. [176,177]. All samples were mounted in 

epoxy resin and polished. Samples and epoxy mounts are non-conductive and were 
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therefore carbon coated to ensure conduction of the beam electrons away from the 

sample. All samples were analyzed on the JEOL JXA-8200 electron microprobe at BGI. 

In order to identify the phases and to achieve knowledge about which elements are 

present in each phase, Energy Dispersive Spectrometry (EDS) was used to obtain 

qualitative spectra. The EDS software is equipped with a marker database for K-, L-, 

and M-lines for peak identification. The chemical compositions were analyzed using 

Wavelength Dispersive Spectrometry (WDS) with a 10 nA beam current and an 

accelerating voltage of 15 kV. The instrument was calibrated on a natural rutile standard 

for TiO2 and natural zircon standard for ZrO2. The CITZAF correction package of 

Armstrong [178] was used to reduce the data and to obtain quantitative analysis. The 

atomic number correction of Duncumb and Reed, Heinrich’s tabulation of absorption 

coefficients, and the fluorescence correction of Reed were used to obtain a quantitative 

analysis [178]. 

 

2.5. Transmission Electron Microscopy 
 

Details about Transmission Electron Microscopy (TEM) technique can be found 

in refs. [179,180]. The microstructure of the sample as well as crystal structures were 

investigated by High Resolution Transmission Electron Microscopy (HRTEM), a phase 

contrasting imaging technique where the contrast is due to differences in the 

electrostatic potential in the crystal. Analysis was done on the analytical Philips CM20 

FEG scanning TEM at BGI as well as on the FEI TecnaiTM G2 F20 X-Twin TEM at 

Geoforschungszentrum Potsdam (GFZ), using accelerating voltage of 120–200 kV. 

Samples of nanocrystalline starting material were prepared by dropping of ethanolic 

solution of the sample onto the grid of a specimen holder. Samples of compressed 

material after a DAC experiment were prepared by Focused Ion Beam Thinning [181] at 

GFZ. 
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3. Ab-initio Calculations 
 

Ab-initio all-electron density functional electronic structure simulations were 

performed on the TiO2 polymorphs rutile, anatase, brookite, TiO2II and baddelyite 

structured phase in order to explore the ground state energetics. The PAW method [182] 

as implemented in the Vienna Ab-Initio Simulation Package (VASP) [129,183] and the 

LAPW method [184] as implemented in the WIEN2k code [185,186] were used. 

Computations were performed, using LDA [128] and GGA [129] for VASP and 

WIEN2k, applying the approximation of Perdew et al. [187] as well as WC for Wien2k 

[188]. WC is a new GGA approximation, developed in the context of Ti-based 

ferroelectric phases [188]. It may be appropriate for computations on TiO2, but has not 

been applied to date. In the plane wave computations, plane wave cutoffs of Ec =1000 

eV were included. They have been found necessary for computations on transition metal 

bearing oxides and silicates. In the LAPW method, the plane waves were expanded up 

to RKmax=9.0, with uniform muffin tin radii of 1.8 Bohr for Ti and 1.6 Bohr for O for all 

structures. Crystal structures were optimized for internal and external degrees of 

freedom at constant volumes, starting from experimental structures. Reciprocal space 

was sampled on Monkhorst-Pack k-point grids [189], with the product of 

kpoints · atoms per unit cell >1944. Computations were performed for a wide volume 

range allowing for a reliable equation-of-state fit with a third order finite strain (Birch-

Murnaghan) equation-of-state [190]. Results of the study are presented in chapter III. 

section 6. “Computational ground states of TiO2”. 

Another set of computations, using PAW method with LDA and PBE, was 

performed to calculate ground state energetics of Ti8O16 as well as Zr1Ti7O16 supercells 

for varying volumes. The variation of cell parameters as well as energies and atomic 

positions as a function of the volume were explored. A 2×1×1 supercell was used for 

anatase along with a Zr doped version of this cell (Zr1Ti7O16). Reciprocal space was 

sampled on a 6×12×4 Monkhorst-Pack k-point grid [189]. Both cells were relaxed for 

internal and external degrees of freedom, leaving the volume fixed for volumes ranging 

from 10.0–12.5 Å³ for TiO2 and 10.0–13.0 Å³ per atom for ZrTi7O16.  

 



II. Methods and Instrumentation   
 

 44

4. Compressing Materials: Equation of State 
 

The change in volume of a material with changing pressure and temperature 

depends on the isobaric thermal expansion α as well as the isothermal compressibility β 

such that: 

VT,P = V1, 298 [1+ α(T-298) – β(P-1)]      (3) 

where α and β are not constant but approximate to a certain value, resulting in finite 

strain. The isothermal volume change upon compression can be described by a number 

of Equations of State (EoS). Here, the Birch-Murnaghan EoS for finite strain was used. 

It is based upon the assumption that the strain energy of a solid undergoing compression 

can be expressed as a Taylor series in the finite strain, f. The Birch-Murnaghan EoS 

[190] is based upon the Eulerian strain:  

fE =0.5 [(V0/V)2/3 -1]/2       (4) 

and the expansion to third order in the strain yields the Birch-Munraghan EoS: 

P = 1.5 K0 [(V0/V)7/3 - (V0/V)5/3]·{1 - 0.75 (4- K0’)·[(V0/V)2/3-1]}   (5) 

with K0 = isothermal bulk modulus (K0 = 1/β (dP/dV)T) and K0’ = dK0/dP. In this study, 

pressure-volume data upon compression of the samples were gained during diamond 

anvil cell experiments. The data were then fitted to a third order Birch Murnaghan EoS 

and for some instances to a second order EoS with K0’ fixed to 4, which is typical for 

most materials. In order to yield estimates for the EoS parameters and their uncertainties 

in a least square refinement, application of a weighing scheme was necessary. For each 

data point i, the weight wi was assigned such that: 

wi = σ-2          (6) 

where σ² is the true variance of the data point, comprised of the contribution from 

uncertainties in the pressure and volume measurements. 

In order to express the relations of P and V linearly, the F-f plot was used. Here, Birch’s 

normalized pressure F was plotted versus the Eulerian strain fE with:  

F = P/(3 fE (2 fE +1))5/2        (7) 

The data are described by a third order truncation of the EoS and as an 

advantage, K0 and K0’ can be fitted as parameters of a linear function. The slope of such 

a fit equals 3K0(K0’−4)/2. To calculate fE (equation 4), V0 was gained from 
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experimental data. If no experimental V0 was available, the refined V0 was used as fitted 

by the EoS refinement (equations 5 and 6).  

In this study, experimental pressure-volume data obtained from DAC 

experiments were fitted to Birch-Murnaghan EoS and plotted as F-f. Furthermore, in ab-

initio computations the internal energy E was calculated for varying pressures. Given 

that –P = dE/dV, it follows that: 

E(V) = V0K0/ K0’ [(1/ K0’-1)·(V0/V) Ko’-1 + (V/V0)] + const,   (8) 

allowing for direct comparison of computational and experimental results of K0 

and K’. 
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III. Results and Discussion 
 

1. Synthesis and Characterization of Starting Materials  
 

Due to small sample volumes, experimental studies at high pressures and 

temperatures require a starting material with distinct stoichiometry that is homogeneous 

on a nanometer scale. Because TiO2 and ZrO2 are poor glass builders, homogeneous 

mixtures can not be gained from quenching a melt. The typical manufacturing process 

of mixtures is therefore the sintering of ceramics from oxides or carbonates at 

temperatures of 1400°C or higher [70,191]. However, such a synthesis path has clear 

limitations due to the immiscibility of TiO2 and ZrO2, and the very slow diffusion of the 

solid state reaction. At calcination conditions, there are immiscibility gaps of solid 

solutions between ~30 and ~45 mol% TiO2 and ~60 and ~90 mol% TiO2 (compare 

Figure 7). Samples with relevant compositions will therefore always consist of two 

phases. The effect leads to inhomogeneous distribution of Ti and Zr atoms, especially 

when grain sizes are in the µm range or bigger.  

 

1.1. Sol-Gel Synthesis of TiO2-ZrO2 Powders 
 

As an alternative to sintering of oxides, zirconium-titanium oxides were 

prepared by sol-gel synthesis. There are a number of sol-gel studies with the goal to 

obtain zirconia-titania powders with high surface energy, e.g. for application as 

humidity sensors [71,192-195]. The goal of this study was to synthesize a series of 

amorphous or nanocrystalline materials with a distinct stoichiometry, which are 

homogeneous on a nanometer scale and free of organic material. Therefore, a route of 

sol-gel synthesis was established in which temperature and duration of the hydrolisis 

reaction were optimized, having the following constraints: In order to gain carbon free 

material, the hydrolysis should last for a long period of time at high temperature. At the 

same time, diffusion and growth to bigger crystallite sizes was to be hindered, requiring 

lower temperature and shorter duration of the hydrolysis reaction.  
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The precursor powders were synthesized as previously reported [196]. 1 mole 

acetylacetone was added slowly to one mole zirconium–n–propoxide, or titanium-n-

ethoxide, respectively. The yellow solution obtained was stirred at 40°C for one hour. 3 

mole destilled water were added and stirred for 30 minutes at 80°C. The solution was 

destilled by rotational evaporation at 80 mbar air pressure and 80°C. The powder 

obtained had a concentration of ~53 wt% with respect to the oxide, given from heat loss 

analysis after heating at 1000°C.  

The precursor powders were weighed, yielding stoichiometries of Tix:Zr1-x with  

x = 0.00, 0.10, 0.25, 0.33, 0.50, 0.67, 0.75, 0.90 and 1.0 and dissolved in either H2O- or 

ethanol-based solutions, so that concentrations were 10 wt% in the sol with respect to 

the corresponding oxide. The sols were stirred for about one hour until they were clear. 

In the sols, the Ti and Zr atoms are homogeneously distributed to the atomic scale, ideal 

for obtaining homogeneous gels and powders. The sols were distilled under rotational 

evaporation at 80 mbar air pressure and 80°C, obtaining gel powders.  

The gel powders were heated at 200°C for one hour, ground in an agate mortar, 

heated at 200°C for another 30 minutes and ground again. In six portions of ~8 g each, 

the dried powders were put into ceramic crucibles, placed in a metal chamber of a 

furnace with the volume of 2110 cm³ and heated to 400°C or 500°C, respectively for 2 

hours, while 400 ml of distilled water were sprayed into the chamber and supported the 

hydrolysis of the material. Afterwards, the samples were heated at the same temperature 

in the dry furnace for another hour. 

In order to study the crystallization behavior of the material synthesized, and to 

minimize its water content, the samples were annealed at 1400°C for 72 hours. 

 

1.1.1. Purity and Microstructure of Sol-Gel Powders 

In order to gain more information about the grain sizes and the texture of the 

reaction products, HRTEM images were taken. Differential Thermal Analysis (DTA) 

and ThermoGravimetric Analysis (TGA; Setaram TAG24, Caluire, France) of the 

powders were performed with a heating rate of 10 K/min in dry air atmosphere. 

Nitrogen sorption was measured, using an automated volumetric analyser (Model 

Autosorb 3B, Quantachrome Instruments, Boynton Beach, USA). Prior to nitrogen 

adsorption analysis, samples were dried at 110°C for 16 h at reduced pressure. The 
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multipoint-method was used to determine the specific surface area according to 

Brunauer, Emmet and Teller (BET).  

The samples synthesized via sol-gel process are mainly colorless powders, 

excluding samples with nominally 100 mol% ZrO2, which are always dark grey or black 

and thus, contain small amounts of carbon (<0.5 wt%). Studies by Bockmeyer et al. 

[197] showed that small contents of organic material can be indicated by eye as they 

lead to a brownish color, at contents greater than 0.5 wt% carbon the samples turn 

black. The synthesis path using a hydrous sol and a temperature of the hydrolysis 

reaction of 400°C was most sufficient. Here, colorless and thus, mainly organic free 

samples of TixZr1-xO2 within the compositional range of 0.10<x≤1.0 were produced. 

The following characterization will therefore focus on these samples. Other paths 

produced powders with small carbon contents. The study clearly demonstrates that H2O 

enhances the hydrolysis reaction, which works best when H2O is present as steam as 

well as solvent of the sol.  

 

Figure 16: High resolution TEM images of sol-gel samples, hydrolyzed at 400°C from a hydrous sol. On 
the left: amorphous sample with 50 mol% TiO2; on the right: crystalline sample (anatase) with 90 mol% 
TiO2. 

 

The microstructures of the sol-gel powders were characterized as follows. TEM 

images of the samples with x=0.50 and x=0.90, hydrolized at 400°C show amorphous 

and nanocrystalline material with crystallite sizes in the range of 10 to15 nm (Figure 

16). This appearance and the range of grain sizes is representative for other samples. N2-

sorption experiments on a sample with x=0.50 revealed a highly porous microstructure 
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with a pore volume of 0.16 cm3/g, which is typical for sol-gel materials (Figure 17). The 

type 1 isotherm indicates a microporous network with an average pore diameter of 

around 1.8 nm.  

 

  

Figure 17: N2-sorption of sol-gel sample with 50 mol-% TiO2. The pore size distribution (left) shows a 
highly porous material with a pore volume of 0.16cm³/g, the isotherm (right) indicates an average pore 
diameter of 1.8 nm.  

 

The results of the TGA and DTA/TG experiments are presented in Figure 18. 

The total overall mass loss up to 1000°C is 6 wt% and can be separated in two 

temperature regimes. The first, major mass loss until 250°C of ~5 wt% is directly 

associated with a broad endothermic DTA signal due to the evaporation of adsorbed 

water in the micropores. The minor mass loss at T=250-1000°C of ~1 wt% may be 

explained by decomposition reactions of organic residues or the continued condensation 

of OH-groups within the material. At a temperature of 717°C, the DTA data show a 

large exothermic signal (onset at T=714°C), indicating the crystallization of srilankite 

from the amorphous phase. It can be concluded that the total amount of carbon + H2O of 

the sol-gel samples produced is samller than 1 wt%. 

A standard drying procedure at 250°C for 24 h was used to reduce the water 

content of the powders. The overall mass loss was reduced to ~3%, as can be seen from 

the differential thermal DTA/TG experiments (Figure 18). However, it has to be noted 

that still a minor endothermic vaporization of water occurs. Also the small weight loss 

at temperatures >250°C is still present. 
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Figure 18: Results of DTA/TG measurements of a sol-gel sample with 50 mol% TiO2, before (left) and 
after (right) drying at 250°C. 

 
 

1.1.2. Phase Characterization of Sol-Gel and Annealed Powders 

XRD patterns show that sol-gel samples with nominal bulk compositions of 

x=0.25-0.67 are amorphous, samples with x≤0.10 are solid solutions with the structures 

of cubic zirconia and baddeleyite, and at x≥0.67 an anatase structured phase appears. 

The crystalline phases show very broad peaks, indicating crystallite sizes in the 

nanometer range (Figure 19).  

After annealing at 1400°C, samples with nominal bulk compositions of x≤0.33 

contain solid solutions with the structure of baddeleyite, samples with x=0.33-0.75 

contain a srilankite-structured phase, and with x≤0.90 solid solutions with the structure 

of rutile. The very sharp peaks confirm an increase in crystallite size after annealing 

(Figure 19). Cubic zirconia is not present after annealing and thus, Ti does not stabilize 

the cubic zirconia phase, as opposed to other cations, e.g. Y. The amorphous 

intermediate phase transforms to srilankite at a temperature of about 720°C, as indicated 

by TGK. The temperature of transformation from anatase into rutile was not measured 

in this study, Borkar et al. [198] present a detailed study on the phase transition and 

give a temperature of 700°C for the onset of the phase transformation for undoped 

anatase.  
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Figure 19: Full profile refinements of X-ray powder diffraction patterns from the samples with x=0 (top), 
x=50 (middle) and x=100 (bottom) before (left) and after (right) annealing at 1400°C. Patterns were 
collected using Co Kα1 radiation (1.78897 Å) with Si as internal standard. 
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Figure 20: Lattice parameters and volumes of synthesized oxides as refined by full profile analysis. 
Values are given for experiments with nominal bulk compositions in mol% TiO2. Literature data are: 
Baddeleyite [199], cubic ZrO2 [79],srilankite [200], rutile [201] and anatase [202]. Mole fractions are 
refined occupancies (annealed samples), nominal bulk compositions (single phase sol-gel products) or 
estimates from phase diagrams (multi phase sol-gel products), respectively. Lines are linear fits (see text). 
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Results of full profile refinements are presented in Figure 20, showing lattice 

parameters as a function of the composition. The refined lattice parameters of all end-

members of solid solutions are in very good agreement with literature data. The volume 

of baddeleyite was refined to 140.88(16) Å3, Yashima et al [199] give a value of 140.76 

Å3. The volume of cubic ZrO2 was refined to 134.09(14) Å3, Wang et al. [79] present 

135.4 Å3. It is remarkable that the high temperature phase (cubic zirconia) has a smaller 

volume then the low temperature phase (baddeleyite). The volume of rutile was refined 

to 62.43(1) Å3, Gonschorek [201] describes a value of 62.43 Å3; the volume of anatase 

was refined to 136.15(4) Å3, Howard et al. [202] found a value of 136.27 Å3; the 

volume of srilankite was refined to 132.2264(18) Å3, Newnham [200] gives a value of 

131.73 Å3. Following the same trend, the lattice parameters of all solid solutions 

decrease with the substitution of the bigger cation Zr by the smaller Ti (Figure 20). 

Especially anatase and rutile show a significant change in volume with the incorporation 

of Zr.  

The results of the non-equlibrium synthesis differ from those expected by the 

equilibrium phase diagram of McHale et al. [70] (Figure 21). In the sol-gel synthesis, 

tetragonal zirconia was not synthesized but baddeleyite along with cubic zirconia. In the 

synthesis at 500°C and 400°C with bulk composition x=0.10, solid solutions with 

structure of baddeleyite and the cubic ZrO2 were produced and thus, the amount of TiO2 

that can be incorporated into the structures is higher than described before.  
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Figure 21: Phase diagram of the system TiO2-ZrO2. t-ZrO2 ss indicates the solid solution with structure of 
tetragonal zirconia, m-ZrO2 ss the solid solution with structure of baddeleyite, t-TiO2 ss the solid solution 
with structure of rutile. Plotted are solid solutions from annealed samples (open symbols) and from 
samples of sol-gel synthesis (filled symbols) in the structures of anatase, rutile, baddeleyite, cubic ZrO2, 
srilankite and an amorphous phase. Compositions are refined from full profile analysis (annealed 
samples) and nominal bulk compositions (sol-gel samples). Redrawn after Mc Hale et al. [70]. 

 

Furthermore, stable fits of Rietveld refinements on the annealed sample with 

x=0.33 were found in which the occupancies of both, baddeleyite and cubic zirconia, 

are refined to x~0.33. These values again extend the metastablity fields of the phases. It 

is therefore confirmed that the high temperature srilankite phase has disordered 

structure as full profile refinements do not show any superstructural reflexes. 

Furthermore x=0.92 was refined as lowest value for the annealed solid solutions with 

rutile structure, consistent with the phase diagram by McHale et al. [70].  

As demonstrated above we were able to obtain homogeneous starting materials 

of TixZr1-xO2 with x=0.00, 0.10, 0.25, 0.33, 0.50, 0.67, 0.75, 0.90 and 1.0. The synthesis 

path using a hydrous sol and hydrolysis temperature of 400°C was most appropriate and 

produced samples with carbon contents <0.5 wt% in the compositional range of 

0.10<x≤1.0. Products of the synthesis with x=0.90 and 1.0 were nanaoscale anatase and 

microscale rutile as the annealed counterpart, which were used for compression 

experiments in the DAC. 
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1.2. Synthesis of Microscale Anatase and Nanoscale Rutile 
Ti0.9Zr0.1O2  
 

Hydrothermal experiments as well as dry annealing experiments were 

performed, using nanoscale anatase Ti0.9Zr0.1O2 as starting material which was 

synthesized by the sol-gel method. For hydrothermal experiments, the starting material 

was filled in a gold capsule, 5 wt% H2O was added and the capsules were welded shut. 

For the synthesis of microscale anatase conditions below the estimated transformation 

temperature to rutile were chosen (pressure=1 kbar, temperature=500°C) and a duration 

of 5 days to allow for growth of the crystallites. The run product was a mixture of 

microscale rutile and microscale anatase, determined by XRD. In order to prevent the 

transformation into rutile, a second experiment at 300°C was performed. The 

experiment was successful and the run product was pure microscale Zr-doped anatase 

(Figure 22).  

 

 

Figure 22: Back scattered electron image of microscale anatase Ti0.9Zr0.1O2 

 
For the synthesis of nanoscale rutile, conditions above the estimated 

transformation temperature (pressure=1 kbar, temperature=750°C) and a short run 

duration of one hour were chosen in order to suppress crystal coarsening. Nevertheless, 

the run product obtained was microscale rutile. Taking into account that the synthesis at 

500°C also produced microscale rutile and anatase it is suggested that it is not possible 
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to find the conditions required for a successful synthesis of nanoscale rutile upon the 

hydrothermal route. This is because the coarsening of the material seems to happen 

before the transformation is complete. Therefore, dry annealing experiments were 

performed for the transformation to nanoscale rutile. The starting material was placed 

into platinum crucibles and heated in the furnace under air. The phase transformation 

was expected to take place at ~500°C, but it was found that after heating at temperatures 

between 500°C and 1000°C for 1 hour only anatase was present. Therefore, heating 

time or temperature were decreased and it was found that heating at 800°C for 7 days as 

well as at 1200°C for 10 minutes led to the transformation into a mixture of microscale 

TiO2II and rutile. It can be assumed that the transformation occurs in the form anatase 

→ TiO2II → rutile. During or even before the transformation the crystallites coarsen to 

the micrometer range, making it impossible to synthesize nanoscale rutile.  
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2. Experimental Results on the System TiO2-ZrO2 to 10 
GPa 
 

High pressure experiments were carried out in the piston cylinder apparatus at 

pressures of 2 GPa and 3.5 GPa and temperatures of 1300°C and 1600°C, as well as on 

the multi anvil apparatus at a pressure of 10 GPa and temperatures of 1200°C and 

1350°C. As starting material, mixtures of TiO2 (99,999%) and ZrO2 (99,99%) with a 

TiO2 content of 75 and 40 mol% were used. In order to get a homogeneous and fine 

grained mixture, the oxides were ground for 6 hrs, using an achate mortar and pestle and 

heated in a furnace at 1300°C for 24 hrs, then grinded again for 12 hrs. 

 

 

Figure 23: Back scattered electron image of the recovered sample from a piston cylinder experiment with 
75 mol% TiO2, performed at P=3.5 GPa, T=1220°C and a duration of 21 hrs. The appearance is 
representative for other experiments. The light grains are Zr- rich solid solutions, the dark grains are Ti-
rich solid solutions, grey grains have intermediate composition. 

 

Microprobe analyses show that the run product is a sintered material that 

contains crystallites with the size of some micrometers. Figure 23 shows the back 

scattered electron image of a recovered sample from a piston cylinder experiment with 

x=75 mol% TiO2, which is representative for all run products of our series of 
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experiments. The grains have reactions rims, indicating that chemical equilibrium is not 

yet achieved. 

The chemical compositions of the phases produced were analyzed, using the 

Wavelength Dispersive Spectrometry (WDS). Rutile and zirconia standards were used 

for calibration. Duration for the measurements were 20 seconds on the peak position 

and 10 seconds on the background. For each sample, 100 points were measured and it 

was assured that every measured point was placed well within a grain. The results were 

transformed to whole-numbered mol% TiO2 and the amount of each mole-number was 

counted, Figure 24 shows the results for the samples synthesized at 2 GPa and 1650°C. 

A Ti rich solid solution with ≤12 mol% ZrO2, an intermediate phase with 45-70 mol% 

TiO2 and a Zr-rich phase with ≤28 mol% TiO2 were found. It has to be noted here that 

chemical equilibrium is not claimed to be achieved. For that, multiple reversal 

experiments would have been necessary. Nevertheless, the experiments are sufficient to 

investigate the composition of solid solutions in the pressure- and temperature range 

analyzed and to determine the maximum amount of Zr-doping in TiO2 polymorphs to 

~10 mol%. 

 

 

Figure 24: Chemical composition of quenched samples from piston cylinder experiments at 2 GPa and 
1650°C. Starting materials had the composition of 75 (top) and 40 (bottom) mol% TiO2. Datapoints are 
counts of whole-numbered values of mol% TiO2. 
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Figure 25 shows the experimental results for the system TiO2-ZrO2 at pressures 

≤10 GPa. Between 2 and 3.5 GPa, the Ti content of the Zr-rich phase (baddeleyite and 

high pressure polymorphs) and the intermediate phase (srilankite and high pressure 

polymorphs) increase with increasing pressure, as expected for the smaller cation in the 

high pressure phase. The phase boundary of the Ti-rich phase (rutile and high pressure 

polymorphs) does not shift with pressure, indicating that the Zr solubility in TiO2 

phases is limited to ~10 mol%.  

XRD data show that disordered orthorhombic srilankite is stable up to at least 

3.5 GPa and transforms to a high pressure polymorph between 3.5 and 6 GPa. 

Hydrothermal origin for srilankite can be ruled out and an igneous origin can be 

confirmed, consistent with the occurrence in high grade rocks such as eclogites, 

granulites, lamprophyres and chromatites. Furthermore, an upper pressure limit for the 

stability of srilankite of 6 GPa can be given. 

 

 

Figure 25: Experimental results of the system TiO2-ZrO2 at pressures ≤10 GPa. Thick lines label results 
of this study: Zr-rich phase is baddeleyite and high pressure polymorphs, the intermediate phase is 
srilankite and high pressure polymorphs, Ti-rich phase is rutile and high pressure polymorphs. Thin lines 
are after data from ref. [73]. 
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3. Compression Behavior of Anatase and Rutile 
 

A systematic experimental study was performed on pure TiO2 and Ti0.9Zr0.1O2 

materials with micro- and nanometer scaled crystallite sizes. The compressibilities of 

the materials were determined by equation of state (EoS) fits. An overview over 

experimental studies is presented in Table 2. Only the compression behavior of 

microcrystalline TiO2 anatase and rutile as well as of nanoscale TiO2 anatase were 

studied sufficiently before (references are given in Table 2). In the following, new 

results on the compression behavior of TiO2 nanoscale rutile and Ti0.9Zr0.1O2 anatase 

(micro- and nanoscale) and rutile (microscale) are presented. Unfortunately, 

experiments on Zr-doped nanoscale rutile can not be presented here because the 

material could not be synthesized. It should be noted again that the maximum amount of 

ZrO2 incorporated by the TiO2 polymorphs up to 10 GPa is 10 mol% (compare Figure 

25), leading to the composition of the Zr-doped material studied here.  

 

Table 2: Overview over experiments 

 Size Material Literature Comp.-cycles 
Anatase     
  TiO2 µm chemical Sufficiently studied (ref. [1])  
 nm sol-gel Sufficiently studied (ref. [3,4]  
  Ti0.9Zr0.1O2 µm hydrothermal This study  
 nm sol-gel This study (ref. [203]) This study 
Rutile     
  TiO2 µm sol-gel/comm. Sufficiently studied (ref. [14,19,20]  
 nm sol-gel This study  
  Ti0.9Zr0.1O2 µm sol-gel This study  
 nm n.a.   
Material = starting material (comm = commercial chemical, sol-gel = synthesized by the sol-gel process 
at the Fraunhofer ISC, hydrothermal = grown hydrothermally) Comp.-cycles = experiment with cycles of 
compression and decompression. 
 

In the following, the compression behavior of the various forms of anatase and 

rutile is described (this section). It is followed by a section on the pressure induced 

phase transitions that were observed during the compression experiments and a section 

on computational ground states of TiO2 phases.  
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3.1. Compression Behavior of Zr-doped Anatase 
 

3.1.1 Experimental Details 

An experiment was carried out on the hydrothermally grown microscale Zr-

doped anatase Ti0.90Zr0.10O2, mixed homogeneously with LiF (99.99% purity) in a mass 

proportion of about 1:1. In-situ XRD patterns were collected at APS, using an X-ray 

beam with λ=0.33 Å and a size of 6×15 µm. The sample-to-detector distance was 248 

mm. The seats of the DAC had an opening of 22°, allowing the collection of diffraction 

data to ∼1 Å³. The standard deviation of the LiF volume at the maximum pressure 

achieved (13 GPa) is less than 0.01 Å³, corresponding to an uncertainty in pressure of 

less than 0.5 GPa.  

Another experiment was carried out on nanocrystalline Zr-doped anatase 

Ti0.90Zr0.10O2, synthesized with the sol-gel process, again mixed with LiF (99.99% 

purity) in a proportion of about 1:1. The crystallite size of the doped anatase was about 

12(±3) nm, as indicated by High-Resolution Transmission Electron Microscopy (Figure 

35) and confirmed by convolution-based profile fitting of XRD data. In-situ XRD 

patterns were collected at APS, using an X-ray beam with λ=0.31 Å and a size of 6×15 

µm. The distance sample to detector was 272 mm.  

 

3.1.2 Experimental and Computational Results  

The lattice parameters of Zr-doped nanoscale anatase at zero pressure were 

refined to a=3.8110(3) Å, c=9.6101(12) Å and V=139.57(2) Å³, results from fitting to 

an EoS for the microcrystalline counterpart give smaller values of a=3.799(1) Å, 

c=9.589(6) Å and V = 138.5(1) Å³. Lattice expansion of TiO2 nanoparticles was 

observed before [204,205]. As the larger Zr is incorporated for the smaller Ti into the 

structure, the values are consistently higher than the ones for pure anatase obtained by 

Swamy et al.. [1,4] The authors report a=3.7910(5) Å, c=9.5146(9) Å and V=136.74(5) 

Å³ for macrocrystalline anatase [1] and a=3.7830(3) Å, c=9.513(9) Å and V=136.15(2) 

Å³ for nanocrystalline anatase with crystallite sizes of 30 to 40 nm [4].  

The XRD data of the nanocrystalline sample at ambient conditions were used to 

estimate the crystallite size of the starting material. We used the TOPAS-ACADEMIC 

software [159] for convolution-based profile fitting [160] and refined the 
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microstructure. The diffraction spectrum of a CeO2 standard was used to determine the 

source emission profile and instrumental contribution to peak broadening. The effects of 

crystallite size and strain on the peak broadening were analyzed using the double-Voigt 

approach, results are LVol_IB=11.0(3) nm, and e0=22(1)%. The resulting value for the 

starting material is D=14.7(4) nm, which is in good agreement with the estimate from 

TEM analysis of 12(3) nm.  

 

Figure 26: Results of full profile refinements of XRD patterns of nanoscale Zr-doped anatase at different 
pressures, obtained from DAC experiments, using radiation with λ=0.31 Å. Upper red tickmarks label LiF 
peaks, lower black tickmarks label peaks from anatase Zr0.1Ti0.9O2. 

 

The Zr-doped nano- and microanatase were observed as pure phases up to a 

pressure of 13 GPa, as indicated by the refined XRD patterns (Figure 26). The trends of 

the variations of the lattice parameters are presented in Figure 27. While all relative 

lattice parameters of microscale Zr-doped anatse decrease linearly upon compression, 
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the slope of the relative lattice parameter a/a0 of the nanoscale material decreases for 

pressures >4 GPa, indicating a decrease in compressibility of the a parameter at higher 

pressures. Because the slope c/c0 remains the same, the ratio of a/c strongly increases at 

pressures >4 GPa. For the nanoscale material, a difference in the slope is also observed 

for the average metal oxygen (M–O) bond lengths in the octahedra (Figure 28), 

indicating a change in the compression behavior at a pressure of ∼4 GPa. The variation 

of the M–O4 bond length (between equatorial atoms) is slightly larger than the error of 

data points and therefore can be taken as almost constant. In contrast, the M–O2 bond 

length (in between apical atoms) has a negative slope at pressures <4 GPa and a positive 

slope at higher pressures. It is worth noting that the change in compression behavior is 

not related to a phase transformation, as can be seen from the refined X-ray pattern 

(Figure 26), which clearly indicates the presence of only anatase and LiF up to a 

pressure of 13 GPa. 

 
 

 

 

 

Figure 27: Relative lattice parameters as a function of pressure for Zr-doped anatase. The left figure 
shows a/a0 and c/c0 versus pressure, the right figure shows the ratio of the lattice parameters a/c versus 
pressure. Shown are data for nanoscale anatase Zr0.1Ti0.9O2 (from experiments, open symbols), microscale 
anatase Zr0.1Ti0.9O2 (from experiments, filled symbols) as well as anatase Ti8O16 and Zr1Ti7O16 (from 
computation, lines).  
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Figure 28: Metal-oxygen bond lengths of the MO6 octahedra for nanoscale Zr-doped anatase. M–O2 
indicates average bond length between metal atom (Ti, Zr) and apical oxygen atom (O2), M–O4 inidcates 
average bond length between metal atom (Ti, Zr) and equatorial oxygen atom (O4); black points are 
experimental results from XRD; grey continued lines are results from ab-initio computations. 

 

The pressure versus volume data obtained from full profile analysis were fitted 

to Birch-Murnaghan equations of state (EoS). For of the nanoscale Zr-doped anatase, V0 

was experimentally determined to 139.57(1) Å³ and the data were fitted to a third order 

EoS, resulting in V0=139.58(2) Å³, K0=227(18) GPa and K0‘=14(6) (Figure 29). The 

value of K0‘ is 4 for most materials, a value of 14 is anormously high. Figure 29 shows 

a plot of Birch’s normalized pressure F versus the Eulerian strain f, referred to as F-f 

plot, for the nanoscale material, using the experimentally determined V0. Fitting of the 

data resulted in F = 3799 f +221, it follows that K0=226(6) GPa. Given that the slope of 

the fit is 3K0(K’−4)/2, it follows that K0’=14. These results are compatible with the 

results from the EoS fits presented above. For comparison with other materials, the data 

were fitted to a second order EoS with K0‘=4, results are shown in Figure 29. However, 

the qualitiy of the fit is much poorer than for the fit with K0‘=14(6). 
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Figure 29: Compression behavior of nanoscale anatase Zr0.1Ti0.9O2. The left figure shows experimental 
pressure-volume data from room temperature experiments (diamonds), a third order Birch-Murnaghan 
EoS fit (black curve) and a second order EoS fit with K0’=4. The right figure shows an F-f plot, data are 
described by a third-order truncation of the EoS and the linear fit has a slope of 3 K0 (K’ −4)/2, fitted to  
F = 3799 f +221. 

 

The F-f plot of microscale Zr-doped anatase (Figure 30) shows a horizontal slope with 

K0‘=4, typical for most materials and different from the nanoscale counterpart, where 

K0’=14. Unfortunately, V0 was not determined experimentally and therefore, the value 

of V0=138.39(51) Å³ was used for fitting an EoS with K0‘=4. Here, the bulk modulus 

was determined to K0=195(38) GPa (Figure 30, left); fitting of the F-f plot (Figure 30, 

right) gave K0=241(8) GPa.  

 

 

Figure 30: Compression behavior of microscale anatase Zr0.1Ti0.9O2. The left figure shows experimental 
pressure-volume data from room temperature experiments (diamonds) and a second order Birch-
Murnaghan EoS (black curve) with K0’=4. The right figure shows an F-f plot with a fitted slope of  
F=241(8). 
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Experiments were complemented by ab-intio computations on internal energies 

for different cell volumes of TiO2 and Zr-doped anatase (Ti:Zr=7:1), for computational 

details see chapter II, section 3. The EoS parameters were obtained by fitting the E-V 

relation. In agreement with experiment it was found that doping of TiO2 anatase with Zr 

expands the zero pressure volume by ∼3% and decreases the compressibility markedly. 

We obtained K0’=4.0 for both, TiO2 and (Ti7Zr)O16, differing from experimental results 

for Zr-doped nanocrystalline anatase. Additionally, the computational results were 

compared to the experimentally determined relative lattice parameters (Figure 27) and 

bond lengths (Figure 28). The calculated slopes of relative lattice parameters a/a0 and 

c/c0 are constant and have a more negative slope than the experimental data. The bond 

lengths of the metal to the equatorial oxygen atoms of a polyhedron (M–O4) are smaller 

than the ones to the apical atoms (M–O2), in contrast to experimental data where the 

polyhedra are found largely incompressible.  

In order to gain insight into the Zr-distribution in the TiO2-ZrO2 solid solution 

and to investigate the possible tendency of clustering of zirconium atoms, computations 

on alternative supercells were performed. Computations were conducted on cells with a 

volume of 11.0 Å³ per atom and the ratio of Ti:Zr=7:1. In the Ti-Zr supercell, the a 

parameter was doubled while b and c remained the same as in anatase, the notation is 

therefore 2a×b×c. In this cell, next neighboring Zr atoms with a distance of 3.78 Å were 

found along the b direction. A different supercell with the setup a×b×2c had next 

neighboring Zr atoms with the same distance in both, a and b directions and therefore 

showed a tendency of clustering when compared to the 2a×b×c cell. In another 

supercell, the Zr atoms were spread equally, opposing the tendency of clustering. The 

setup was 2a×2b×c and the next neighboring Zr atoms had a distance of 5.38 Å. The 

cell had a doubled size and two Zr atoms were placed in the positions 0, 0, 1/2 and  

0, 1/2, 1/8. For all supercells, ions and cell shape were relaxed. Reciprocal space was 

sampled using k-point meshes of 6×12×4 for 2a×b×c, 12×12×2 for a×b×2c and 4×4×4 

for 2a×2b×c.  

The results are shown in Figure 31, indicating that the Zr atoms in anatase have 

a tendency to cluster. The cell with evenly spread Zr atoms (2a× 2b×c) with the longest 

possible Zr–Zr distance for nearest neighbors of 5.377 Å is energetically least favorable. 
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The cell a×b×2c in which the nearest neighbors with a Zr–Zr distance of 3.785 Å are 

found in the directions parallel to the a and b axis has the lowest energy. 

 

 

Figure 31: Energies of Ti7ZrO16 anatase supercells with different setups, indicated by the dimensions in a, 
b and c-direction and the position of the Zr-atom (red points). The supercell on the left exhibits the 
highest amount of Zr-clustering and has the lowest energy, thus is most stable.  

 

3.1.3 Discussion 

The bulk modulus of anatase strongly increases with a decreasing crystallite size 

to the nanometer scale as well as with doping of Zr. Values of the bulk modulus from 

fitting an EoS with K0’=4 for periodic cells from ab-initio computations are K0=153 

GPa for TiO2 and K0=161 GPa for ZrTi7O16. Values for microscale anatase are 

K0=178(1) GPa [1] and K0=179(2) GPa [2] (TiO2) and K0=195(38) GPa (Ti0.90Zr0.10O2). 

For nanoscale anatase, K0=237(3) GPa [3] and K0=243(3) GPa [4] are reported for TiO2 

and K0=258(8) GPa was measured in this study for Ti0.90Zr0.10O2 (compare Figure 32 

and Table 12). 
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Figure 32: Compressibility of various forms of anatase. Grey symbols are computational results (“infinite 
crystal”), black symbols are from experiments on microscale crystallites. Open symbols indicate 
experimental results on nanoscale crystallites. Squares represent TiO2 anatase, triangles show Zr-doped 
anatase. Lines are from fitting to an EoS. 

 

The experimental results on Zr-doped nanoanatase show a significant change in 

compression behavior at pressures >4 GPa: The slope of a/c strongly increases and the 

slope of the bond length M–O2 of the octahedral changes from negative to positive. 

This change in compression behavior can be understood by considering the crystal 

structure. Figure 33 shows the structure of anatase in the b-c plane. Each Ti is 

surrounded by an octahedron of six oxygen atoms. The octahedra are linked via edges 

and build a “zig-zag” chain parallel to a as well as b. The chains are stacked antiparallel 

to the c axis and, as the data suggest, can be compressed parallel to c with the same rate 

over the whole pressure range analyzed. However, along the directions a and b, the 

chains can be compressed more readily at pressures <4 GPa. This phenomenon also 

affects the bond lengths and thus the distortion of the octahedra: At pressures below 4 

GPa the degree of distortion of individual octahedra increases, while above 4 GPa the 

distortion decreases.  
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Figure 33: Structure of anatase. The lattice is shown in the b-c plane, dimensions are 3a×2b×2c. O4 are 
marked red and display equatorial oxygen atoms (edge sharing), O2 are marked black and display apical 
oxygen atoms (cornersharing). 

 

The change of compression behavior as it is seen for nanoscale Zr-doped anatase 

is not observed in experiments on the microscale material or computations (compare 

Figures 26 and 27). It is suggested that the anomalous compression behavior is 

attributed to the deviatoric stresse that play an important role in the compression of 

nanoscale material. Even though the pressure medium LiF was used, which is 

characterized by a small shear modulus [206], the spatial pressure distribution within 

the cell is most likely not even, resulting in deviatoric stresses. It can be concluded that 

the strong decrease of compressibility at higher pressures is related to the 

nanocrystallinity of the Zr-doped anatase material. It appears that Zr-doping and the 

tendency of clustering of Zr-atoms can affect the structural parameters and influence the 

elastic properties: opposed to the conclusion one would draw from comparison of elastic 

constants for TiO2 and ZrO2 polymorphs (Table 1), the incorporation of Zr into TiO2 

anatase results in an increasing bulk modulus.  

 

3.1.4. Experiment with Cycles of Compression and Decompression  

In order to find out, whether the anomalous compression behavior of Zr-doped 

nanoanatase is reversible upon compression and decompression, additional DAC 

experiments were performed with cycles of compression and decompression. As 

starting material, Zr-doped anatase Ti0.90Zr0.10O2 was mixed with LiF (99.99% purity) in 

a mass proportion of about 1:1. XRD patterns were collected at APS beamline BM-D, 

X-ray beam with λ=0.3344 Å and a size of 6×15 µm. The sample-to-detector distance 
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was 201 mm. The seats of the DAC were made from cBN, allowing for collection of 

diffraction data to d=1 Å. Unlike other DAC samples, the sample was loaded without 

any compression applied during the loading process, then compressed at room 

temperature to 12 GPa, decompressed to 0.5 GPa, compressed to 12 GPa and 

decompressed to ambient conditions. A second DAC experiment was performed on Zr-

doped nanoanatase, using Raman spectroscopy. The material was loaded together with a 

small ruby-sphere, serving as a pressure calibrant, no pressure medium was used. The 

pressure-induced frequency shifts were monitored while the sample was compressed 

and decompressed in the same way as for the previous experiment. After the 

experiment, the sample was prepared for TEM analysis, using a Focused Ion Beam 

Device [181]. The produced foil with a thickness of ~50 nm was analyzed at the TEM at 

the GeoForschungszentrum, Potsdam. The crystallite size of the doped anatase was 

measured before and after the experiment, using high-resolution TEM and convolution-

based profile fitting of XRD data.  

Table 3 presents refined lattice parameters of anatase and LiF as well as the 

pressure. Figure 34 shows the pressure-volume data of the sample as refined from XRD 

data and results of the fitting to a second order EoS with K’ fixed to 4. The bulk 

modulus of the material was determined during the first compression to K0=211(7) GPa, 

upon the decompression K0 decreased to 199(3) GPa and it was increased upon the 

second compression to 249(9) GPa. The precompressed sample is stiffer than the 

uncompressed sample. The figure also shows the data of the previous experiment 

performed on the same material. It is worth noting at this point that the experiment was 

performed on a sample which was compacted and precompressed between diamond 

anvils during the sample loading. The bulk modulus was measured as K0=266(6) GPa, 

confirming the hypothesis that precompressed samples are stiffer than originally 

uncompressed samples.  
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Table 3: Experimental lattice parameters and pressures 

Exp. Anatase   LiF   
 a (Å) c (Å) V (Å³) a (Å) V (Å³) p (GPa) 

1 3.801(1) 9.583(4) 138.45(6) 4.031(1) 65.47(1) 0.3(1) 
2 3.800(1) 9.583(4) 138.39(7) 4.030(1) 65.46(1) 0.3(1) 
3 3.800(1) 9.583(5)  138.35(8) 4.030(1)  65.46(2) 0.3(1) 
4 3.799(2) 9.577(1)  138.20(20) 4.003(1) 64.14(1) 1.9(1) 
5 3.794(1) 9.544(6) 137.35(10) 3.988(1) 63.44(1) 2.8(2) 
6 3.790(2) 9.528(11)  136.86(18) 3.964(1)  62.28(1) 4.0(3) 
7 3.784(1) 9.493(8)  135.89(14) 3.946(1) 61.42(1) 5.7(3) 
8 3.778(2) 9.465(11) 135.11(19) 3.924(1) 60.43(1) 7.3(4) 
9 3.770(1) 9.411(6) 133.79(10) 3.904(1) 59.49(1) 8.9(4) 

10 3.767(2) 9.393(9)  133.29(15) 3.887(1) 58.75(1) 10.3(5) 
11 3.762(2) 9.368(14)  132.57(23) 3.873(1) 58.09(1) 11.6(5) 
12 3.761(2) 9.339(9) 132.09(14) 3.872(1) 58.05(1) 11.7(5) 
13 3.761(1) 9.343(7) 132.15(11) 3.880(1) 58.42(1) 10.9(5) 
14 3.761(1) 9.347(6) 132.24(9) 3.885(1) 58.62(1) 10.6(5) 
15 3.763(1) 9.347(7)  132.37(11) 3.893(1) 59.00(1) 9.8(4) 
16 3.768(1) 9.393(8)  133.37(13) 3.917(1) 60.11(1) 7.8(4) 
17 3.770(1) 9.397(8)  133.52(13) 3.919(1) 60.17(1) 7.7(4) 
18 3.772(1)  9.410(6) 133.87(11) 3.926(1) 60.53(1) 7.1(4) 
19 3.777(1) 9.447(7) 134.75(12) 3.946(4) 61.46(1) 5.6(3) 
21 3.781(1) 9.473(7)  135.40(12) 3.960(5)  62.10(1) 4.6(3) 
22 3.783(1) 9.490(6) 135.80(10) 3.9732(6) 62.72(2) 3.8(2) 
23 3.800(1) 9.556(5) 137.96(8) 4.024(1) 65.17(2) 0.6(1) 
24 3.798(1) 9.550(7)  137.73(12) 3.982(1) 63.13(1) 3.2(2) 
25 3.793(1) 9.521(5) 136.95(8) 3.959(4) 62.06(1) 4.7(3) 
26 3.787(8) 9.494(5)  136.14(8) 3.933(1) 60.83(2) 6.6(3) 
27 3.780(1) 9.462(6) 135.18(10) 3.909(1) 59.72(2) 8.5(4) 
28 3.771(1) 9.417(6)  133.88(9) 3.880(1) 58.40(2) 11.0(5) 
29 3.803(1) 9.567(3) 138.36(6) 4.026(1) 65.25(1) 0.5(1) 

 
Figure 34 presents the ratio of lattice parameters a/c as a function of the 

pressure. The slope of the curve is linear for the first compression and more or less also 

for the decompression. Upon the second compression however, the slope becomes 

steeper at pressure larger than 5 GPa (line 3), which is comparable to the previous 

experiment (line 3’). The anomalous compression behavior for nanoscale Zr-doped 

anatase reported before is therefore partly reproduced in this study.  
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Figure 34: Results of a DAC experiment on nanocrystalline Zr0.1Ti0.9O2 with cycles of compression and 
decompression. Experimental room temperature pressure-volume data are shown on the left side, curves 
are fits to a second order Birch-Murnaghan EoS with K0’=4. The ratio of the lattice parameters a/c are 
presented on the right side, curves are to guide the eye. Data are from the experiment on an originally 
uncompressed sample (diamonds) and the experiment on a precompresed sample (crosses). The black 
symbols (labelled “1”) are from the first compression; the dark grey symbols (labelled “2”) are from the 
first decompression, the light grey symbols (labelled “3”) are from the second compression, the open 
symbol diamonds are from the second decompression and the light grey symbols labeled “3’” is from the 
experiment on precompressed material.  

 

The XRD data of the sample at ambient conditions at the beginning (a) and at 

the end (b) of the experiment were used to estimate the crystallite size and to see 

whether a change of the microstructure can be observed. Results of convolution-based 

profile fitting revealed that the strain of the material increased strongly during the 

experiment from e0=0.13(3)% at the beginning to e0=0.26(4)% at the end. Another 

confirmation of the additionally induced strain is the relationship between a and c lattice 

parameters (Table 4). The unit cell at the end of the experiment is deformed with an 

elongation of the a parameter and shortening of the b parameter. At the same time, the 

unit cell volume and pressure are practically the same.  

 

Table 4: Results of convolution-based profile fitting 

 p (GPa) V (Å³) a (Å) c (Å) LVol_IB (nm) D (nm) e0 (%) Rwp 
a 0.29 138.30(4) 3.7998(4) 9.578(2) 8.2(4) 10.9(6) 0.13(3) 8.6 
b 0.52 138.22(5) 3.8017(4) 9.563(3) 9.3(6) 12.4(1) 0.26(4) 9.1 
at the beginning (a) and at the end (b) of the experiment;  

 

Figure 35 shows high-resolution TEM images of the starting material as well as 

the quenched sample of the second experiment, performed on anatase Ti0.90Zr0.10O2 
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without the use of a pressure medium. The crystallite sizes are 12(±3) nm for both 

samples and therefore remain more or less constant during the experiment. The 

crystallites of the quenched sample show spherical crystal shape and are defect free. 

 

 

Figure 35: HRTEM images of the nanoscale anatase Ti0.90Zr0.10O2 sample before (left) and recovered after 
the experiment (right). A indicates an area of a suggested amorphous rim, C indicates a crystalline area. 

 

There are several lines of evidence suggesting that the crystallites are 

surrounded by amorphous rims and that amorphization takes place gradually upon 

compression. Pressure induced amorphization was observed before by Swamy et al. 

[207], who claimed that anatase with crystallite size of <10 nm transforms upon 

compression to a high density amorphous phase, which transforms to a low density 

amorphous phase upon the quenching process. In contrast, coarser samples undergo 

transformations to crystalline high pressure polymorphs. Partial amorphization was 

suggested earlier for experimental studies (e.g. [3]), but could not be detected by the in-

situ XRD analysis because the broad amorphous features would be hidden in the 

background signal – a phenomenon that applies also for this study. Partial 

amorphization was theoretically predicted by Pischedda et al. [3], who performed 

molecular dynamics computations, using a simple Buckingham potential, and computed 

compression of a single anatase nanoparticle in a box of 10 nm dimension in excess of 

the nanoparticle volume. At 25 GPa, the simulations suggest the appearance of disorder 

in the surface-shell region (about 30-40% of the atoms), surrounding a more rigid 
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crystalline core, which also contains some defects. In our study, the TEM analysis of the 

material after compression shows in fact features that can be assigned as rims of 

amorphous material with a thickness of several nanometer (Figure 35, right), confirming 

the suggested appearance of partial amorphization. However, the TEM image shows a 

foil of the sample in which several crystallites overlap and the features seen could be the 

consequence of that. To avoid overlap of crystallites, TEM foils with a thickness of 10-

15 nm would be necessary.  

The lines of evidence described lead to the conclusion that the nanoscale anatase 

Ti0.9Zr0.1O2 undergoes partial pressure induced amorphization, which leads to stiffening 

of the material. Upon compression, amorphous rims start to envelop the crystallites. The 

amorphization takes place gradually and starts at lower pressures than predicted 

theoretically (12 GPa as opposed to 25 GPa [3]). We can use the phenomenon of 

amorphization to explain the compression behavior of the sample in the following way: 

Part of the compression energy is used for the formation of amorphous crystallite rims. 

The rims seem to shield the anatase particles against pressure change and most probably 

deform and exhibit strain while they are assimilating the compression energy. The 

anatase nanocrystallites therefore undergo less pressure change than the LiF particles. 

The partial amorphization is accompanied by stiffening of the material, making it an 

interesting phenomenon for material research with the goal to create new abrasive 

materials. 

 

3.1.5. Conclusions 

Experimental and computational results show that anatase becomes less 

compressible when the crystallite size is decreased to the nanometer scale and when the 

material is Zr-doped (compare Figure 32 and Table 11). The fact that Zr-doped 

nanoanatase is least compressible is opposite to the expectation from the comparison of 

elastic constants for TiO2 and ZrO2 polymorphs: while ZrO2 polymorphs show a smaller 

bulk modulus than the corresponding TiO2 forms, the incorporation of Zr into TiO2 

anatase results in an increasing bulk modulus.  

For the Zr-doped nanoanatase, XRD analysis showed a significant change in 

compression behavior at pressures >4 GPa: The slope of a/c strongly increases (Figure 

27), the slope of the bond length M-O2 of the octahedra changes from negative to 
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positive (Figure 28). Computations on supercells with different distances of neighboring 

Zr-atoms showed that Zr atoms at close distances are energetically favored, hinting at 

possible cluster formation of Zr in the (Ti,Zr)O2 compounds (Figure 31). The change in 

compression behavior at ~4 GPa observed in the experiments is not reproduced by the 

computations for the perfect bulk crystal, suggesting that the anomalous compression 

behavior is caused by the nano-crystallinity of the samples. The cluster formation and 

resulting structural distortions can further augment the change in compression behavior.  

It was furthermore observed that Zr-doped nanoanatase becomes stiffer upon 

multiple compression cycles. The first compression of the sample showed a bulk 

modulus of 211 GPa, after the sample was decompressed, the bulk modulus for the 

second compression was 249 GPa. We suggest that partial pressure induced 

amorphization plays an important role for the process of stiffening observed. 

 

3.2. Compression Behavior of TiO2 Nanoscale Rutile 
 

Compression experiments at ambient temperature on nanoscale rutile were 

performed before by Olsen et al. [20]. In that study, the starting material was obtained 

via milling of bulk material to a final crystallite size of ~10 nm. Upon compression, the 

material transformed to the MI structure at ~20 GPa and the pressure-volume data 

resulted in a value of K0=211(7) GPa, identical for bulk rutile, and K’=8(1). Milling can 

induce strain and structural disorder and therefore eventually affect the compression 

behavior of the material. To avoid this possibility, we used nanoscale rutile for the 

experiments which was synthesized from TiCl4 starting material by a hydrothermal 

method, described by Li et al. [208]. The material was synthesized by the group of Prof. 

Guangshe Li, Fujian Institute of Research of the Structure of Matter, China and before 

at Brigham Young University, USA.  

The DAC compression experiment was performed at APS under conditions as 

described for Zr-doped nanoanatase. The starting material with crystallite size of ~15 

nm (Figure 46 left) was placed in the DAC along with Cu as pressure calibrant, no other 

pressure medium was used. 
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Figure 36: Pressure-volume data (diamonds) and a Birch-Murnaghan EoS fit (curve) of TiO2 nanorutile 
from room temperature DAC experiments. 

 

The pressure-volume data of nanorutile were used to determine the parameters 

of the EoS. V0 was not available from experiments and therefore fitted in a second order 

EoS with K’=4, results of the fit were V0=62.49(6) Å and K0=251(12) GPa (Figure 36). 

The F-f plot of the data revealed that K0’=4 and K0=257(22) GPa (Figure 37), consistent 

with the EoS fit mentioned mefore. The bulk modulus is similar to that of bulk rutile 

(230 GPa, compare Table 5).  

 

 

Figure 37: F-f plot of experimental data on TiO2 nanorutile, based on the Birch-Murnaghan EoS. The data 
are described by a third-order truncation of the EoS and the linear fit has a slope of 3 K0 (K’ −4)/2. 

 

Nanorutile shows the same compression behavior as the microscale counterpart 

in the pressure regime below 10 GPa. At higher pressures the data show slight stiffening 

in relation to the trend of microscale material. Furthermore, the bulk modulus obtained 

for hydrothermally grown material (this study) is essentially the same as for milled 



III. Results and Discussion   
 

 77

starting material (Figure 38, compare ref. [20]). However, the latter one has a larger unit 

cell volume of 62.9 Å³, compared to 62.5 Å³ for hydrothermally grown and bulk rutile.  

 

 

Figure 38: Pressure-volume data for bulk and nanocrystalline rutile. The diamonds [209] and squares 
[210] represent bulk rutile while the crosses represent ~10 nm rutile nanocrystals from milled starting 
material [20],and circles represent ~15 nm rutile nanocrystals from hydrothermal growth (this study). 

 

3.3. Compression behavior of Zr-doped microscale rutile 
 

DAC experiments were carried out analogous to experiments on Zr-doped 

nanoanatase. For the study on Zr-doped rutile, Ti0.9Zr0.1O2 from sol gel synthesis was 

annealed at 1400°C for 20 hours, transforming to microscale rutile. The rutile obtained 

was mixed with LiF in mass proportions of 1:1 and the mixture was homogenized. The 

lattice parameters of Zr-doped rutile at zero pressure were refined to a=4.622(1) Å, 

c=2.993(2) Å and V = 63.944(5) Å³. Incorporating the larger Zr as substituent for the 

smaller Ti into the structure, the values are consistently higher then the ones for pure 

rutile with a=4.5939(1) Å, c=2.9589(1) Å and V=62.444(2) Å³ (NIST-certificated 

values).  
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Figure 39: Pressure-volume data for microscale rutile (diamonds) with composition Ti0.9Zr0.1O2 and 
Birch-Murnaghan equation of state fit (curve). 

 

Least-square refinement of the data to a third order Birch Murnaghan EoS 

resulted in the following parameters: V0=63.94(1) Å³, K0=203(13) GPa and K0‘=14(4) 

(Figure 39). The value for K0‘ of 14 is higher than for most materials and similar to the 

refined value of the nanoscale Zr-doped anatase (Figure 29). Figure 40 shows an F-f-

plot for Zr-doped rutile, for which the experimentally determined V0 was used. Fitting 

of the data resulted in F = 2999(948) f +206(12), it follows that K0=206(12) GPa and 

the high value of K0‘ = 14 is confirmed. 

 

 

Figure 40: F-f plot of experimental data on Zr0.1Ti0.9O2 microscale rutile, based on the Birch-Murnaghan 
equation of state. The data are described by a third-order truncation of the equation of state and the linear 
fit has a slope of 3K0(K’-4)/2.  

 

Figure 41 shows the evolution of the relative lattice parameters a/a0 and c/c0 

upon compression. The c-parameter has a constant slope over the pressure range 
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analyzed; the a-parameter shows a steeper slope at pressures <8 GPa than at higher 

pressures. This behavior is similar to the one described for Zr-doped nanoanatase.  

 

 

Figure 41: Relative lattice parameters a/a0 and c/c0 of Zr0.1Ti0.9O2 rutile as a function of pressure from 
DAC experiments at room temperature. 

 

Our data suggest that neither the incorporation of Zr nor the decrease of 

crystallite size to the nanometer range does modify the bulk modulus, differences of the 

values lie within the error of the fits (see Table 5). These results are different from those 

of anatase, where a decreasse of crystallite size and doping with Zr leads to an increase 

of the bulk modulus. 

 

Table 5: Volumes and bulk moduli of varios forms of rutile 

phase V0 
(Å³) 

K0 
(GPa) 

K'0 
 

P 
(GPa) 

Technique Reference 

TiO2, bulk 62.5 230(20) 6.6(7) 0-20 DAC + XRD [14] 

TiO2, bulk 62.5 210(10) 6.6(7) 0-8 MA + XRD [19] 

TiO2, nano 62.49(6) 251(12) 4 0-18 DAC + XRD this study 

Ti0.9Zr0.1O2, bulk 63.94(1) 203(13) 14 0-14 DAC + XRD this study 

K0 = isothermal bulk modulus; V0 = zero pressure Volume; * = fixed value; DAC = diamond anvil cell; 

XRD = in-situ X-ray diffraction; MA = multianvil 
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4. Pressure Induced Transformations of Anatase and 
Rutile 

 
In the following, experimental results on the pressure induced phase 

transformations of anatase and rutile are reported. In the first section, a study on the 

phase boundaries anatase – TiO2II and rutile – TiO2II by means of sample synthesis 

with the multi anvil apparatus and XRD sample characterization is presented. Sections 

4.2. and 4.3. address compression experiments in the DAC with in-situ phase 

characterization via XRD. 

 

4.1. Multi Anvil Experiments on Phase Transition of Anatase 
and Rutile to TiO2II  

 

TiO2II was found as accessory mineral in impact rocks (e.g.[13]) and raised the 

interest to determine the phase boundary between rutile and TiO2II so that the pressure 

and temperature experienced by the rock could be constrained.  
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Figure 42: Phase diagram of the boundaries of rutile and TiO2II. The left diagram (from Frost and 
Massonne, unpublished) shows phase boundaries of rutile (filled symbols) and TiO2II (open symbols) 
bracketed by piston cylinder (<1000oC) and multianvil (>1000oC) experiments. Only the experiments that 
constrain the curve are shown. Curves from two previous studies are shown for comparison. The right 
figure is from ref. [19] and shows the phase diagram of TiO2, obtained in heating and compression. 
Circles denote rutile; squares denote TiO2II; triangles show MI. The full line marks the rutile/TiO2II 
phase boundary for the bulk material, the broken line for the nanophase material, the dotted line is the 
phase boundary from ref. [56]. 
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Experimental studies using the piston cylinder and multi anvil techniques were 

done by Withers et al. [24], Akaogi et al. [56], Olsen et al. [19] and also Frost and 

Massonne (personal information from D.J. Frost). The determinations of the phase 

boundary disagree considerably as shown in Figure 42, and changes from negative to 

positive slopes with increasing temperature are reported; for nanophase material, the 

phase boundary is shifted towards lower pressure [19]. The discrepancy between the 

studies demonstrates the complexity under which the conditions of the phase 

transformation are controlled. We therefore studied which parameters affect the 

conditions and mechanism of the transformation and conducted experiments on rutile 

and anatase starting material with different crystallites sizes under varying run 

conditions, using the multi anvil apparatus. Experimental conditions and starting 

materials are listed in Table 6, run pressure was 10 GPa for all experiments.  

 

Table 6: Run conditions of multi anvil experiments 

T 
(°C)  Start. mat. # time 

rutile  TiO2II  

     e0 D (nm)  e0  D (nm) 
1800 rutile (µm) 1 45min min. 0.17(1) >1000 maj. 0.010(1) 204(5) 
1100 rutile (µm) 13 20sec min n.d. n.d. maj. 0.115(8) 41(3) 
1100 rutile (µm) 2 45min min 0.48(6) 84(9) maj. 0.061(2) 105(5) 
1100 rutile (µm) 3 22hrs min 0.19(6) >1000 maj. 0.044(1) 192(15) 
1100 rutile (nm, hyd.) 16 45min - n.d. n.d. maj. 0.068(3) 75(3) 
1100 rutile (nm, com.) 19 45min min n.d. n.d. maj. 0.054(6) 95(14) 
1100 anatase (µm) 14 45min - n.d. n.d. maj. 0.041(2) 122(6) 
1100 anatase (nm, sol.) 10 45min - n.d. n.d. maj. 0 34(1) 
1100 anatase (nm, hyd.) 15 45min - n.d. n.d. maj. 0 42(1) 
20 rutile (µm) 5 45min maj. 0.27(5) 67(9) -   
hyd. = hydrothermally grown; sol. = material from sol-gel synthesis; com. = commercial; min = minor phase (~5 

wt%), maj. = major phase. 

 

XRD analysis of the samples were performed at ESRF, Figure 43 shows 

representative patterns for the range of 2 theta of 6.5–18°. The peaks for the rutile 

starting material (green) are very sharp, whereas peaks of the cold compressed sample 

(blue) are much broader. Here, results from convolution based profile fitting indicate 

high strain with e0=0.27(5) and a small apparent crystallite size of 67(9) nm (Table 6, 

#5). Under compression at 1100°C, TiO2II starts to form (red), but even though the run 

conditions lay within the proposed stability field of TiO2II (Figure 42), ~5 wt% rutile is 

still present. Rutile in this sample has a much higher strain of e0=0.048(6) compared to 
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TiO2II, where e0=0.061(2). The apparent crystallite size of rutile is smaller (84(9) nm) 

compared to TiO2II (105(5) mn). Figure 44 shows a HRTEM image of the sample. 

TiO2II phase makes up the bulk material and small lamella of rutile are intergrown. This 

appearance was observed before in natural minerals [211] as well as synthestic samples 

[67]. Longer run duration of 22 hrs leads to crystal growth of rutile to D>1000 nm and 

reduced strain with e0=0.19(6) (Table 6, #3), while extremely shortened duration of 22 

sec produces a small amount of rutile for which the convolution-based profile fitting 

fails. Compression at higher temperature of 1800°C produces a sample similar to the 

one at 1100°C (compare #1 and #2 in table 6). In experiments with nanoscale rutile 

starting material, a very small amount of rutile is present in the experiment using ball 

milled commercial rutile, and no rutile is present when the nanoscale starting material 

was grown hydrothermally. XRD patterns of samples from experiments on anatase 

starting material do not allow to judge whether anatase is present as minor phase or not, 

because the peaks of anatase and TiO2II strongly overlap. 

 

 
Figure 43: XRD patterns of the starting material and the recovered samples of multi anvil experiments in 
the range of 6.5-18°, collected at ESRF with radiation of λ=0.711 Å. The spectra show varying peak 
breadths and for broad peaks, strain or a decreased crystallite size is suggested. Results of convolution-
based profile fitting are presented in table 6. 
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Figure 44: HRTEM image of the recovered sample of an experiment at 1100°C with duration of 45 min, 
using microscale rutile as starting material. The experiment was performed in the suggested stability field 
of TiO2II, which is the main phase observed by X-ray diffraction. However, the sample contains lamella 
of rutile. Similar observations using HRTEM are described in refs. [67,211]. 

 

Even though experiments were performed in the proposed stability field of 

TiO2II, ~5% of rutile remain present in recovered samples of multi anvil experiments at 

10 GPa and 1100-1800°C. Small rutile lamella with breadths of a few nm and 

elongation parallel to the c-direction are found.  

In multi anvil experiments, the volume is not constant as the transformation 

takes place and therefore, pressure can drop and may become buffered at the transition 

pressure where both phases coexist. In order to overcome this phenomenon, in-situ 

experiments are necessary, in which the pressure- and temperature conditions can be 

controlled more sufficiently. Pressure buffering does not occur in a natural environment 
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und therefore, TiO2 can still be seen as an appropriate system to be used as 

Geothermobarometer to constrain pressure and temperature experienced by the rock. 

 

4.2. DAC Experiments on Phase Transitions of Zr-doped 
Anatase 

 

Experiments on anatase single crystals [2,17,58] as well as polycrystalline anatase 

[16,58] showed transformation to TiO2II at 2.5-7 GPa. In contrast, Arlt et al. [2] observed 

the transformation of polycrystalline anatase to MI without the formation of TiO2II at 13 

GPa. The experiments by Swamy et al. [4] and Wang et al.  [212,213] led to the 

conclusion that a decrease in crystallite size suppresses the formation of TiO2II and leads 

to a higher pressure of the transformation anatase → MI (compare Table 13). The 

transformation of MI to OI was found at 30 GPa by laser heating to 1300-1500 K [18]. In 

this chapter, the effect of doping with 10 mol% Zr on the transition behavior is studied 

for micro- and nanoscale anatase. Experimental details are the same as for experiments 

on the compression behavior (compare section 3.1.). 

The compression experiment at room temperature on microscale Zr-doped 

anatase showed anatase as single phase up to 13 GPa and the transformation of Zr-doped 

anatase to the MI phase took place between 13 and 20 GPa, which is higher than for TiO2 

microscale anatase. TiO2II was not observed. Upon further compression to 50 GPa, the 

OII phase was identified, which remained stable after laser heating to 1500 K. Further 

heating to 2000 K led to the transformation into a single new phase, which could not be 

identified yet. The high pressure phase could be quenched to ambient conditions.  

The experiment on Zr-doped nanoscale anatase showed the following pressure 

induced phase transformations. TiO2II was not observed and the first reflections of 

coexisting MI and OI phases appeared at 14 GPa. Anatase remained present until 17 

GPa. Laser heating at 35 GPa to ~1500-1600K conserved the phase assemblage of MI 

plus OI. Upon decompression to ambient conditions, the phases transformed to a mixture 

of TiO2II plus OII. Swamy et al. [4] observed the preservation of nanocrystalline anatase 

TiO2 until 16.5 GPa, comparable to our study. The authors found the first appearance of 

MI reflection at 18.2(4) GPa as opposed to 14 GPa for Zr-doped nanoanatase. They 

furthermore observed anatase stable up to 25 GPa, which is much higher than 17 GPa for 
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Zr-doped nanoanatase. No occurrence of the OI phase is reported in the study by Swamy 

et al. We therefore conclude that the doping with Zr stabilizes the OI phase within the 

pressure range of 14–35 GPa, coexisting with MI. In order to analyze whether or not the 

coexistence of the MI and OI phases over such a broad P-intervall, even after heating, is 

related to a chemical decomposition, we carried out a multi anvil experiment on Zr- 

doped nano-anatase at 20 GPa and 1200°C. A backscattered electron microprobe image 

on the quench product indicates two distinct phases (Figure 45). The brighter phase has 

crystallites sizes of ≤2 µm, too small for quantitative analysis. Nevertheless 

measurements on larger individuals could be performed and revealed that the two phases 

have very similar composition, both ranging from TiO2 contents of 83 to 95 mol%. The 

results do not yield at a chemical breakup. 

 

 

Figure 45: Backscattered electron image (left) and chemical composition (right) of mulit anvil experiment 
on Zr-doped nanoanatase at 20 GPa and 1200°C 
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4.3. DAC Experiments on Phase Transitions of Rutile  
 

Upon compression, bulk rutile transforms to MI at ~12 GPa [19]. Nanoscale 

anatase was studied by Olsen et al. [20], using a ~10 nm starting material and the 

transformation to the MI phase was found between 20 and 30 GPa, which is much higher 

compared to bulk material. However, for this study ball milled powder was used and it is 

not clear how the strain induced by the method might affect the transition behavior. For a 

mixture of nanorutile + nanoanatase (30 nm) [213], transformation of nanoanatase to an 

amorphous phase after 16 GPa is reported, and of nanorutile to MI between 9 and 16 

GPa. However, the high pressure transformation of rutile was not deduced explicitly. In 

order to do so, experiments on nanorutile were carried out on a number of samples with 

different crystallite sizes in the nanoscale, synthesized with a hydrothermal method [208] 

to reduce strain of the starting material. Furthermore, experiments on Zr-doped 

microscale rutile are reported.  

 

4.3.1. TiO2 Nanoscale Rutile 

Several DAC experiments were carried out in order to reveal the effect of 

crystallite size on the pressure of transformation. It was furthermore tested, what effect 

the pressure medium has on the transformation behavior. Experiments using XRD 

without any pressure medium were performed on material with smallest dimensions of 

the crystallites of ~15 nm (a), ~10 nm (b) and ~8 nm (c), as indicated by high resolution 

TEM analysis (Figure 46) and on the smallest size additional experiments were 

performed with siliconoil as pressure medium, using XRD and XAS techniques. 

Experiments (a) and (b) and were performed at APS, using Cu as pressure calibrant and 

an X-ray beam with λ=0.31 Å and a size of 6×15 µm. The distance sample to detector 

was 272 mm. Experiment (c) was performed at BGI and the pressure was calibrated by 

Raman spectroscopy of a ruby crystal, incorporated in the sample chamber. The XRD 

experiment on the same sample with siliconoil as pressure medium was performed at 

APS and Cu served as pressure calibrant. The X-ray beam had a wavelength of λ=0.275 

Å and a size of 6x15µm. The XAS experiment was performed in the transmission 

geometry at beamline ID12 at the ESRF, using soliconoil as pressure medium and a 
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ruby crystal as Raman-presure calibrant, other experimental details can be found in ref. 

[165]. 

 

 

Figure 46: HRTEM images of nanoscale rutile starting materials a (left), b (middle) and c (right). 

 

Rutile with the crystallite size of 15 nm (a) undergoes a phase transformation to 

the MI phase at pressures of ~18 GPa, which is much higher than observed for the bulk 

material (12 GPa). The MI phase was observed as the only phase at pressures of 32 to at 

least 45 GPa and remained present as the only phase after heating to ~1500 °C at 45 GPa 

(Figure 47), consistent with experiments on bulk rutile (APS).  

 

 

Figure 47: XRD patterns of high pressure phases upon compression of nanorutile. The top shows the full 
profile refinement of MI phase at 45 GPa after leaser heating at 1500 °C, gained upon compression of 
starting material (a). The bottom shows an unidentified phase from compression of sample (b) to 44 GPa. 
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Rutile with smaller crystallite sizes of ~10x10x50nm (b) remained present to even 

higher pressures: It was observed as single phase up to a pressure of 22 GPa, at 34 GPa 

the main phase was still rutile and at 44 GPa the material transformed in to a new phase 

which is not identified from the XRD data available (Figure 47). The sample with 

smallest crystallite size of ~8x8x90 nm (c) showed a decreasing intensity of rutile peaks 

at pressures ≥20 GPa and vanishing 40 GPa. Unfortunately, the high pressure phase is not 

identified from the XRD data available (BGI), baddeleyite can be excluded. The 

comparison of experimental results from starting materials (a) and (b) suggest that 

decreasing crystallite size leads to stabilization of rutile to higher pressures. However, the 

use of siliconoil lowers the pressure of transformation as can be seen in XRD and XAS 

experiments on starting material (c): XRD patterns reveal that baddeleyite starts to form 

between 19 and 23 GP, while rutile remains present up to at least 33 GPa (Figure 48). In 

contrast, the baddeleyite phase could not be identified in the experiment in which no 

pressure medium was used. The results suggest that the choice of the pressure medium 

and thus the conditions of hydrostaticity affect the transition behavior. 

                

Figure 48: In-situ XRD spectra upon compression of nanorutile from the DAC experiment with starting 
material (c) and siliconoil 

 

X-ray absorption spectroscopy (XAS) was performed in collaboration with Prof. 

Jean-Paul Itié at the synchrotron SOLEIL. K preeedge spectra of Ti indicate that a 

transformation to the MI phase starts at 14 GPa and is complete at 20 GPa (Figure 49); 
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the quench product is TiO2II. This pressure of transformation is lower than observed by 

XRD. 

 

 

Figure 49: K pre-edge spectra for Ti. The left spectrum shows rutile, MI and TiO2II phases for reference, 
the right spectrum shows in-situ experimental results from the compression of nanorutile. 

 

Comparison of the results gained shows that the pressure of transformation 

generally increases with decreasing crystallite size and is lowered when siliconoil is used 

as pressure medium. However, results from XRD and XAS differ quantitatively.  

 

4.3.2. Zr-doped Microscale Rutile 

Experiments on Zr-doped rutile were performed in the presence of LiF, 

experimental details are described in section 3.3. The start of phase transitions to the MI 

phase was observed at 11 GPa, slightly lower pressure than observed for TiO2 microscale 

rutile (12 GPa). Zr-doped rutile is present up to 20 GPa and the MI phase remained after 

laser heating to ~1500°C at 30 GPa.  
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5. Computational Ground States of TiO2 
 

Ab-initio all-electron density functional electronic structure simulations were 

performed, using the PAW method [182] as implemented in the Vienna Ab-Initio 

Simulation Package (VASP) [129,183] and the LAPW method [184] as implemented in 

the WIEN2k code [185,186]. LDA [128] and GGA [129] were used for computations 

with VASP and WIEN2k, and WC was used for computations with Wien2k [188].  

 

Table 7: Equations of state from experiments and computations 
Phase Method  V (Å³) E0(eV) V0 (Å³) K0 (GPa) K0' 
rutile exp [14]   62.50 230(20) 7(1) 
 PAW_LDA 52-66 -9.788 60.93 246 4.0 
 LAPW_LDA 52-66 -9087.058 60.55 254 4.0 
 PAW_GGA 52-68 -8.969 64.37 214 4.0 
 LAPW_GGA 52-68 -9111.519 64.16 219 4.0 
 LAPW_WC 52-68 -9106.298 62.29 233 4.0 
anatase exp [2]   136.30 179(2) 5(1) 
 PAW_LDA 112-140 -9.794 133.62 160 4.0 
 LAPW_LDA 112-140 -9087.063 133.02 162 4.0 
 PAW_GGA 120-152 -8.998 140.93 155 4.0 
 LAPW_GGA 120-152 -9111.558 140.14 157 4.0 
 LAPW_WC 120-144 -9106.315 137.19 149 4.0 
α-PbO2 exp [19]   122.40 258(8) 4(1) 
 PAW_LDA 104-128 -9.793 119.59 200 4.0 
 LAPW_LDA 104-128 -9087.063 118.84 208 4.0 
 PAW_GGA 104-136 -8.974 126.68 197 4.0 
 LAPW_GGA 108-136 -9111.523 126.76 192 4.0 
 LAPW_WC 104-128 -9106.288 123.16 167 4.0 
brookite exp [99]   257.80 255(10) 4 
 PAW_LDA 208-272 -9.795 250.98 217 4.0 
 LAPW_LDA 208-272 -9087.063 249.70 210 4.0 
 PAW_GGA 208-288 -8.987 266.18 187 4.0 
 LAPW_GGA 224-288 -9111.538 265.92 185 4.0 
 LAPW_WC 208-272 -9106.307 256.82 203 4.0 
baddeleyite exp [14]   112.20 290(20) 4 
 PAW_LDA 100-120 -9.802 112.00 190 4.0 
 LAPW_LDA 100-120 -9087.069 111.50 194 4.0 
 PAW_GGA 108-124 -8.940 120.72 147 4.0 
 LAPW_GGA 108-124 -9111.483 121.27 134 4.0 
 LAPW_WC 108-120 -9106.288 113.91 251 4.0 

 

In the plane wave computations, plane wave cutoffs of Ec=1000 eV were 

included, which have been found necessary for computations on transition metal bearing 

oxides and silicates. In the LAPW method the plane waves were expanded up to 

RKmax=9.0, with uniform muffin tin radii of 1.8 Bohr for Ti and 1.6 Bohr for O for all 

structures. Crystal structures were optimized for internal and external degrees of 

freedom at constant volumes, starting from experimental structures in the PAW 

computations (Table 9). Reciprocal space was sampled on Monkhorst-Pack k-point 
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grids [189], with the product of kpoints · atoms per unit cell >1944. Computations were 

performed for a wide volume range, allowing for a reliable fit to a third order Birch-

Murnaghan EoS [190] (Table 8).  

 
Table 8: Lattice parameters and atomic coordinates 
Phase Meth. Atom (Pos.) a (Å) b (Å) c (Å) α (°) ß (°) γ (°) V (Å³) 
Space gr. (#)   x y z     
rutile exp  4.594 4.594 2.959 90 90 90 62.44 
P 42/m n m  Ti (2a) 0 0 0     
(136)  O (4f) 0.3049 0.3049 0     
 LDA  4.563 4.563 2.927 90 90 90 60.93 
  Ti (2a) 0 0 0     
  O (4f) 0.3038 0.3038 0     
 GGA  4.658 4.658 2.968 90 90 90 64.37 
  Ti (2a) 0 0 0     
  O (4f) 0.3046 0.3046 0     
anatase exp  3.784 3.784 9.515 90 90 90 136.25 
I 41/a m d S  Ti (4a) 0 0 0     
(141)  O (8e) 0 0 0.2081     
 LDA  3.723 3.723 8.790 90 90 90 133.62 
  Ti (4a) 0 0 0     
  O (8e) 0 0 0.2188     
 GGA  3.813 3.813 9.618 90 90 90 140.93 
  Ti (4a) 0 0 0     
  O (8e) 0 0 0.2057     
α -PbO2  exp  4.786 5.476 5.028 90 90 90 131.74 
P b c n  Ti (4c) 0 0.2025 0.25     
(60)  O (8d) 0.2689 0.4024 0.4337     
 LDA  4.542 5.495 4.882 90 90 90 119.56 
  Ti (4c) 0 0.1743 0.25     
  O (8d) 0.2727 0.3812 0.4183     
 GGA  4.582 5.606 4.934 90 90 90 126.68 
  Ti (4c) 0 0.1773 0.25     
  O (8d) 0.2715 0.3805 0.4186     
brookite exp  9.184 5.447 5.145 90 90 90 257.38 
P b c a  Ti (8c) 0.1250 0.0980 0.8630     
(61)  O (8c) 0.0080 0.1470 0.1820     
  O (8c) 0.2290 0.1100 0.5300     
 LDA  9.125 5.403 5.091 90 90 90 125.49 
  Ti (8c) 0.1289 0.0972 0.8618     
  O (8c) 0.0103 0.1494 0.1844     
  O (8c) 0.2303 0.1101 0.5348     
 GGA  9.282 5.521 5.194 90 90 90 133.09 
  Ti (8c) 0.1289 0.0926 0.8614     
  O (8c) 0.0103 0.1482 0.1826     
  O (8c) 0.2292 0.1068 0.5349     
baddeleyite exp  5.145 5.208 5.311 90 99.23 90 140.46 
P 21/c  Ti (4e) 0.2758 0.0404 0.2089     
(14)  O (4e) 0.0690 0.3420 0.3450     
  O (4e) 0.4510 0.7580 0.4790     
 LDA  4.744 4.844 4.947 90 101.63 90 112.01 
  Ti (4e) 0.2794 0.0528 0.2119     
  O (4e) 0.0684 0.3352 0.3400     
  O (4e) 0.4412 0.7592 0.4757     
 GGA  4.878 4.914 5.126 90 101.52 90 120.72 
  Ti (4e) 0.2753 0.0583 0.2180     
  O (4e) 0.0589 0.3159 0.3593     
  O (4e) 0.4510 0.7583 0.4548     

 

Following the known trend for most materials, LDA both in the PAW and 

LAPW computations underestimates experimental values of V0, although in the case of 

the TiO2 structures by less than 3%. Bulk moduli of rutile are well reproduced, larger by 
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7% for PAW and 10% for LAPW. Bulk moduli for anatase are underestimated by ~10% 

(both PAW and LAPW), for α-PbO2 by ~25% (PAW) and ~20% (LAPW), for brookite 

by ~15% and for baddeleyite by 34% (both PAW and LAPW). The zero-pressure 

volumes obtained from the fitting were used to interpolate zero-pressure lattice 

constants and atomic coordinates (Table 9). Axial ratios for all phases are within 2% of 

the experimental values. Atomic coordinates for rutile and brookite are in good 

agreement with experiment, for baddeleyite, α-PbO2 and anatase the atomic coordinates 

are considerably different (Table 9). At zero pressure the stable structures is 

baddeleyite, and at slightly over-expanded volumes anatase is the grounstate, with a 

transition pressure of ~0.5 GPa. Rutile, which is the experimentally determined stable 

phase at ambient conditions, has the highest E0 (Table 10 and Figure 50).  

 

  

Figure 50: Computational results of LDA on TiO2 phases. On the lefthand side, energy-volume data 
(symbols) and equation of state fits (lines) are shown, volumes are normalized to 12 atoms per unit cell. 
The right hand side shows energy-pressure data calculated from the equations of state. 
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Figure 51: Computational results of PBE on TiO2 phases. On the lefthand side, energy-volume data 
(symbols) and equation of state fits (lines) are shown, volumes are normalized to 12 atoms per unit cell. 
The right hand side shows energy-pressure data calculated from the equations of state. 

 

In the PBE computations, experimental V0 are overestimated by 8% for 

baddeleyite and less than 4% for other TiO2 phases in PAW as well as LAPW 

computations, following the general trend for PBE. The bulk modulus of rutile is well 

reproduced, smaller by 7% for PAW and 5% for LAPW. Bulk moduli of anatase are 

underestimated by 14% (PAW) and 12% (LAPW), for α-PbO2 by 24% (PAW) and 26% 

(LAPW), for brookite by 27% (PAW and LAPW) and for baddeleyite by 49% (PAW) 

and 54% (LAPW). Axial ratios for all phases are within 2% of the experimental values. 

Atomic coordinates for rutile, anatase and brookite are in good agreement with 

experiment, for baddeleyite and α-PbO2 the atomic coordinates are considerably 

different (Table 9). The stable structure at ambient pressure is anatase. Rutile has low 

relative stability (Table 10 and Figure 51).  

WC in the LAPW computations estimates experimental values of V0 larger by 

only 0.4% and therefore is the most appropriate approximation. The bulk modulus of 

rutile is well reproduced, larger by only 1%. Bulk moduli for anatase are underestimated 

by 17%, for α-PbO2 by 35%, for brookite by 20% and for baddeleyite by 13%. The 



III. Results and Discussion   
 

 94

stable structure at ambient pressure is anatase. Rutile has intermediate relative stability 

(Table 10 and Figure 52).  

 

  

Figure 52: Computational results of WC on TiO2 phases. On the lefthand side, energy-volume data 
(symbols) and equation of state fits (lines) are shown, volumes are normalized to 12 atoms per unit cell. 
The right hand side shows energy-pressure data calculated from the equations of state. 

 

The stable structures at ambient pressure (0 GPa) is baddeleyite for LDA 

computations and anatase for GGA computations, contradicting experimental results 

that determine rutile as the most stable phase [64-66]. However, rutile appears to have 

the highest energy in LDA computations and intermediate energy in GGA 

computations.  

 

Table 9: Internal energies and phase transformations at zero pressure 
PAW_LDA LAPW_LDA PAW_PBE LAPW_PBE LAPW_WC 
phase E0 (eV) phase E0 (eV) phase E0 (eV) phase E0 (eV) phase E0 (eV) 

rutile -117.449 rutile 
-
109044.699 baddeleyite -107.281 baddeleyite 

-
109337.804 baddeleyite 

-
109275.455 

α-PbO2 -117.516 brookite 
-
109044.748 rutile -107.635 rutile 

-
109338.230 α-PbO2 

-
109275.460 

anatase -117.534 α-PbO2 
-
109044.749 α-PbO2 -107.691 α-PbO2 

-
109338.279 rutile 

-
109275.578 

brookite -117.538 anatase 
-
109044.755 brookite -107.838 brookite 

-
109338.450 brookite 

-
109275.682 

baddeleyite -117.617 baddeleyite 
-
109044.832 anatase -107.974 anatase 

-
109338.693 anatase 

-
109275.784 

phase 
Ptrans 
(GPa) phase Ptrans (GPa) phase 

Ptrans 
(GPa) phase Ptrans (GPa) phase Ptrans (GPa) 

anatase → 
baddeleyite 
 

- 0.7 
 
 

anatase → 
baddeleyite 
 

- 0.6 
 
 

anatase → 
brookite → 
α-PbO2 

3.0 
3.5 
 

anatase → 
α-PbO2 
 

5.2 
 
 

anatase → 
brookite →  
baddeleyite 

1.9 
2.5 
 

 

The following phase transformations are predicted by LDA: anatase → 

baddelyite at -0.7 GPa (PAW) and -0.6 GPa (LAPW). For PBE results are anatase → 

brookite at 3.0 GPa → α-PbO2 at 3.5 GPa (PAW) whereas LAPW predicts anatase → α-

PbO2 at 5.2 GPa. WC predicts anatase → brookite at 1.9 GPa and brookite → 
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baddelyite at 2.5 GPa. Compared to that compression experiments on single crystal and 

microcrystalline anatase showed transformation into α-PbO2 at pressures of 2-4 GPa 

[2,16,17,58]. Rutile and α-PbO2 transform into baddeleyite at ~ 13 GPa [2,11].  



Conclusions   
 

 96

 

IV. Conclusions 
 

This study addresses the effect of Zr-doping and crystallite size on the 

mechanical properties of TiO2 rutile and anatase phases. Compression experiments in 

the diamond anvil cell using in-situ XRD were performed and the compressibilities of 

the samples were determined. Therefore, pressure-volume data were fitted to equations 

of state (EoS) and the zero-pressure volume V0, the bulk modulus K0 and the first 

pressure derivative of the bulk modulus K0’ were obtained. During compression 

experiments, the transformations to high pressure polymorphs were observed and the 

effect of Zr-doping and crystallite size on the transition behavior was studied. 

Furthermore, ab-initio computations were performed to predict the EoS parameters 

theoretically. Table 11 shows a list of studies found in literature and performed here 

(marked with X).  

 

Table 10: Experimental and computational studies on rutile and anatase 

  µm nm comp 

Anatase TiO2 refs. [1,2] refs. [3,4] X 

 Ti0.9Zr0.1O2 X X X 

Rutile TiO2 refs. [14,19,20] X X 

 Ti0.9Zr0.1O2 X n.a. n.a. 

µm = Experiments on microscale material; nm = experiments on nanoscale material; comp = ab-initio 

computational study 

 

Crystallite Size Effect on TiO2 Anatase and Rutile 
 

Anatase becomes less compressible when the crystallite size is decreased to the 

nanometer scale. Ab-initio computations on TiO2 anatase with periodic boundary 

conditions, thus computing an infinite crystal, have lowest bulk modulus of 149 – 153 

GPa, depending on the computational approximations used (Table 12). The bulk 

modulus of microcrystalline anatase was measured as K0=178(1) GPa [1] and 179(2) 

GPa [2] GPa, the nanoscale cpounterpart shows K0=237(3) GPa [3] and 243(3) [4] GPa 

(Table 12).  
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In contrast, the compression behavior of rutile is not affected by variation of the 

crystallite size. Computaions with periodic boundary conditions give a bulk modulus of 

233 GPa, experiments on microscale rutile revealed a bulk modulus of K0=230(20) GPa 

[20] and the nanoscale counterpart has K0=203(13) (Table 12).  

The pressure induced phase transformations of anatase and rutile are described 

in Table 13. Transformation of anatase to TiO2II is only observed for TiO2 single 

crystals and some microscale polycrystalline materials at a pressure of 2.6–7 GPa; 

TiO2II transforms to the MI phase at 10–17 GPa (details in Table 13). The 

transformation of anatase to MI was observed for micro- and nanoscale TiO2. The 

pressure of transformation increases with a decrease of the crystallite size from 13 GPa 

(microscale material) to 18 GPa for 12 nm particles. Smaller particles transform to an 

amorphous phase at pressures of 20–24 GPa. Pressure induced transformation of rutile 

to the MI phase was observed at a pressure of 12 GPa, nanocrystals transform at higher 

pressures. The onset of transformation is at 16–23 GPa when ref. [213], in which the 

detection of the high pressure phase seems unreliable, is excluded. 

The pressure induced phase transformations predicted by the ab-initio 

computational study are not consistent with experimental results. Rutile, which is the 

stable modification of TiO2 (e.g. [63]), has lowest to intermediate energy (Table 12) in 

computations. The transformation of anatase into TiO2II was predicted very well at a 

pressure of 3.5 GPa (PAW-PBE) and 5.2 (LAPW_PBE), the pressure of transformation 

of anatase into MI was calculated slightly lower observed experimentally at -1 GPa 

(LDA) and 2.5 GPa (WC) (Tables 10 and 12). 
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Table 11: Equation of state parameters for anatase and rutile 

Material Size V0 (Å³) K0 (GPa) K'0 
 

Reference 

Anatase      
  TiO2 WC2 137.19 149 4.0 this study 
 LDA2 133.62 160 4.0 this study 
 LDA1 141.1 153 4.0 this study 
 µm 136.8 178(1), 179(2)  [1,2] 
 nm 136.2 237(3), 243(3)  [3,4] 
  Ti0.9Zr0.1O2      
 LDA1 145.4 161 4.0  
 µm 138.5(1) 195(38) 4.0  
 nm 139.4(1) 258(8) 4.0 [203], this study 
Rutile      
  TiO2 WC 62.29 233 4.0 this study 
 µm 62.5 230(20) 6.6(7) [14,19,20] 
 nm 62.50(9) 203(13) 4.0 this study 

  Ti0.9Zr0.1O2      
 µm 63.94(5) 236(5) 6.6(7) this study 

 

 

Effect of Zr-Doping on TiO2 Anatase and Rutile 
 

In order to determine the maximum amount of Zr that can be incorporated into 

TiO2 polymorphs, experiments were carried out at temperatures of 1200–1600 °C and 

pressures of 2–10 GPa, using the piston cylinder and multi anvil press. Run products 

were analyzed by XRD and microprobe analysis. Results show that rutile and high 

pressure polymorphs to 10 GPa incorporate up to 10 mol% ZrO2. Therefore, for 

experiments on Zr-doped anatase and rutile, starting materials with composition 

Ti0.9Zr0.1O2 were used. The high pressure experiments furthermore revealed that the 

high pressure limit of the stability of srilankite lies between 3.5 and 6 GPa, important 

for geosciences in understanding the origin and conditions for the genesis of the 

mineral. 

For synthesis of Zr-doped nanoscale and microscale starting materials, a route of 

sol-gel synthesis was developed and nanoscale anatase TixZr1-xO2 with x = 0.90 and 1.0 

was produced. Microscale Zr-doped rutile was synthesized hydrothermally at a pressure 

of 0.1 GPa and temperature of 300°C, using the nanoscale Zr-doped anatase from sol-

gel synthesis as starting material. 
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Table 12: Pressure induced phase transformations of anatase and rutile 

Chem. Size Anatase→TiO2II 

P (GPa) 

TiO2II→MI 

P (GPa) 

Anatase→MI, 

AP; P (GPa) 

P-

medium 

Ref. 

TiO2 comp 3.5 – 5.2  -1 – 2.5  this work 

 SC 4.5; 4.5 - 7    Meth.-eth [2,17] 

 13 - 17  Meth.-eth. [17] 

2.6   Meth.-eth. [58] 

~ 7 ~ 10  Siliconoil [16]  

 µm 

  13 (MI) NaCl [1] 

 30-40 nm   18 (MI) none [4] 

 12 nm   18 (MI)  Liqu. Nit. [214] 

 7-11 nm   24 (AP) Meth.-eth. [212] 

 4-8 nm   20 - 24 (AP) none [207] 

Ti0.9Zr0.1O2 µm   13 – 20 (MI) none this work 

 12 nm   14 – 17 (MI) LiF this work 

Chem. Size Rutile→TiO2II 

P (GPa) 

TiO2II→MI 

P (GPa) 

Rutile→MI  

P (GPa) 

P-

medium 

Ref. 

TiO2 µm   12 Meth.-eth. [14] 

 µm   12 NaCl [55] 

 30 nm   9 - 16 none [213] 

 15 nm   18 none this work 

 10 nm   20 - 30 none [20] 

 8 nm   > 20 none this work 

 8 nm   23 - 33 Si-oil 

XRD 

this work 

 8 nm   14 - 20 Si-oil 

XAS 

this work 

Ti0.9Zr0.1O2 µm   11 - 20 LiF this work 

Comp = computations, compare Table 10, MI = baddeleyite structured phase, AP = amorphous phase 

 

The compressibility of high-pressure polymorphs of TiO2 is systematically 

smaller than for ZrO2 (compare Table 1). Nevertheless, doping with 10% Zr leads to 

stiffening of nanoscale anatase: TiO2 nanoanatase has a bulk modulus of K0=237(3) 

GPa [3] and K0=243(3) GPa [4] GPa, while the Zr-doped counterpart shows K0=258(8) 

GPa. However, differences for microscale anatase samples are within the error: 

K0=178(1) GPa [1] and K0=179(2) GPa [2] for TiO2 and K0=195(38) GPa for 
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Ti0.90Zr0.10O2. A similar relationship was observed for rutile, where the bulk moduli of 

the undoped microscale rutile and the doped counterpart are 230(20) GPa [20] and 

203(13) GPa.  

XRD analysis showed a significant change in compression behavior for the Zr-

doped nanoanatase at pressures >4 GPa. It is likely to be a consequence of deviatoric 

stresses during experimental compression of the nanoscale material. Computations on 

supercells with different distances of neighboring Zr-atoms suggested cluster formation 

of Zr in the (Ti,Zr)O2 anatase. The resulting structural distortions can further augment 

the change in compression behavior.  

It was found that Zr-doped nanoanatase becomes stiffer upon multiple 

compression cycles. The bulk modulus of the first compression was 211 GPa. After 

decompression of the sample, the second compression showed a bulk modulus of 249 

GPa. It is suggested that partial pressure induced amorphization plays an important role 

for the observed stiffening. 

The transformation pressure of anatase and rutile to the MI phase is not affected 

by Zr-doping. 
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