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Kurzdarstellung

Diese Arbeit befasst sich in drei Projekten mit bemerkenswerten Eigenschaften von
Permanentmagneten auf unterschiedlichen Gröÿenskalen und deren potentiellen Nut-
zen.
Im ersten Teil wird die Gröÿenverteilung von permanentmagnetischen Nanopar-

tikeln untersucht, welche die Bestandteile eines Ferro�uids bilden. Für diese Unter-
suchung wird die Methode der gra�schen Rekti�zierung von Magnetisierungskurven
eingeführt und genutzt, um die experimentellen Daten von zwei verschiedenen Fer-
ro�uiden auszuwerten. Mit dieser Methode lassen sich das arithmetische und das
geometrische Mittel der magnetischen Momente direkt graphisch ablesen, ohne dass
eine Annahme über die zugrundeliegende Verteilungsfunktion erforderlich ist. Es
ist festzustellen, dass Langevin-Funktionen, Gamma-Verteilungen und Lognormal-
Verteilungen mit Fitparametern die gemessenen Funktionen alle gleich gut interpo-
lieren können: Dies ist eine Manifestation des schlecht gestellten inversen Problems.
Für den praktischen Gebrauch empfehlen wir nachdrücklich die Superposition einer
Handvoll Langevin-Funktionen.
Die Feldeigenschaften eines Ensembles von Dipolen sind Gegenstand des zwei-

ten Projekts. Das Zusammenbringen von acht kugelförmigen Permanentmagneten zu
einer Würfelform lässt die magnetischen Momente in ein Kontinuum von Gleichge-
wichtslagen relaxieren. Es wird erstmals experimentell gezeigt, dass das magnetische
Fernfeld eines solchen Würfels mit der siebten Potenz des Abstandes abnimmt und
damit in niedrigster Ordnung einen Dotriakontapol formt. Zudem entsteht durch die
unendlichfache Entartung der Dipolausrichtungen in diesem Zustand eine siebenfache
rastmomentfreie Kupplung zwischen den Magneten.
Eine geometrisch einfachere rastmomentfreie Permanentmanget-Kupplung wird im

dritten Projekt anhand von zwei kugelförmigen Neodym-Eisen-Bor-Magneten unter-
sucht. Der experimentelle Aufbau ermöglicht die Realisierung einer rastmomentfreien
Kupplung, wobei ein Magnet von einem Schrittmotor getrieben wird und den ande-
ren durch rein magnetische Wechselwirkung antreibt. Die Punktdipoleigenschaft des
Auÿenfeldes dieser Kugelmagneten wird experimentell sehr gut bestätigt. Das dy-
namische Verhalten dieses Aufbaus wird zum ersten Mal experimentell untersucht.
Es wird ein mathematisches Modell erstellt, dessen numerische Integration die expe-
rimentellen Daten gut beschreibt. Diese Ergebnisse sind teilweise bereits publiziert
und werden teilweise in der Einleitung dieser Arbeit erstmals vorgestellt.
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Abstract

This work deals with remarkable features of permanent magnets on di�erent length
scales and the possibilities of their technical implementation over three di�erent
projects.
In the �rst part the size distribution of permanent magnet nanoparticles is stud-

ied when constituting a ferro�uid. For this investigation the method of graphical
recti�cation of magnetization curves is introduced and used for the evaluation of ex-
perimental data of two di�erent �uids. With this method a direct graphical readout
of the arithmetic and harmonic mean of the magnetic moments is possible, without
the need for an assumption of the underlying distribution function. It is noted that
Langevin functions, Gamma distributions and Lognormal distributions are all able
to interpolate the data equally well: This is a manifestation of this ill-posed inverse
problem. For practical implementation, we recommend the use of a superposition of
a handful of Langevin functions.
The �eld properties of an ensemble of dipoles are the scope of the second project.

The gathering of eight spherical permanent magnets in a cubic formation leads to a
relaxation of the magnetic moments into a continuum of equilibrium positions. It is
shown experimentally for the �rst time that the far �eld of such a cube decreases with
the seventh order of the distance, forming a dotriacontapole in its lowest order. In
addition, the in�nite frustration of the dipole orientations forms a seven-fold cogging-
free coupling between the magnets.
A cogging-free coupling with simpler geometry is investigated in the third project

under the use of two spherical magnets out of a neodymium iron bor alloy. The
experimental setup makes the implementation of a cogging-free coupling possible
while one magnet is driven by a stepper motor and is itself driving the other magnet
purely by magnetic interaction. The point dipole feature of the far �eld of these
spherical magnets is con�rmed well experimentally. The dynamic behavior of this
setup is studied experimentally for the �rst time. A mathematical model is created
whose numerical integration is in good accordance with the experimental data. A
part of the results can be found in the corresponding publication while another part
of the results is presented in the introductory part of this work for the �rst time.
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1 Introduction

Magnets have a long tradition of being part of our daily lives and reportedly were
already known to the ancient Greeks. They coined the term "magnet", according to
a �nding place of magnetite called Magnesia in Anatolia (Carus, 2019). They real-
ized that a special kind of rock � we know it as magnetite or lodestone today � was
able to attract small amounts of iron and other lodestones. Similar discoveries were
documented in ancient India and China. Even though an obscure understanding of
this experienced attraction � spirits and gods that command the lodestones to their
actions � was present at that time, it had been put to practical use over the centuries.
In India, a �rst medical implementation for magnetic materials was found with lode-
stones that could extract iron splinters and arrow heads from wounds (Bhishagratna,
2006). In the middle ages, Chinese were the �rst to develop a magnetic version of a
compass with a small "�sh" out of magnetized iron that was made a�oat in a bowl
of water (Needham et al., 1976).

Centuries later, the development of electromagnetism shed light on the underly-
ing mechanisms of magnetism, directly expanding the variety of implementations
(Bergmann et al., 2006). This is even more relevant today, where we drive electric
cars, magnetic valves secure the water supply of the automatic washing machine,
mobile communication using electromagnetic waves is ubiquitous, and our complete
cultural heritage is being digitized and stored on magnetic hard discs at steadily
decreasing length scales.

When permanent magnets in the form of nanoparticles are suspended in a �uid,
the result is called a ferro�uid (Rosensweig, 2013; Stephen, 1965). The magnetic
moments of these particles scale with their respective size. They are coated to avoid
agglomeration and with this appear at a size of 10 nm or less. Since the coating of
the nanoparticles wears out over time, the particle size distribution is an important
quality factor of a ferro�uid. To access this feature, a magnetization curve of such a
�uid can be analyzed. However, traditionally one had to determine the underlying
distribution function of the particles within the �uid �rst, which is hard to obtain. In
the �rst part of this work, a new method is presented, that is able to reliably extract
key values of the underlying particle size distribution without assuming a speci�c
distribution function.

Most permanent magnets can in lowest order be described as magnetic dipoles.
Pure higher order multipoles are rare to �nd. By forming clusters of magnetic dipoles
with certain geometries, true multipoles can be created. Such a geometric formation
that yields a magnetic dotriacontapole is examined in some detail in the second part
of this work.

Even the investigation of the interaction of two single dipoles can lead to fruitful
novel results. The contact-free drive of one magnet by another magnet is already
commonly used in technical applications, most prominently maybe the stir fry in
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1 Introduction

chemistry labs. The use of two permanent magnets of spherical shape opens up new
possibilities � due to their close resemblance to perfect magnetic dipoles. By applying
the right geometry, these magnets can form a novel cogging-free clutch. Cogging-
free operation is a feature highly sought after in magnetically driven machines. In
the third part of this work, the dynamic limits of such a coupling and its geometric
deviations are investigated for the �rst time, unraveling several classes of operation
modes and their transitions.
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2 Analyzing the Size Distribution of

Magnetic Nanoparticles in

Suspension

Publications 1 and 2 featured in this work focus on analyzing the dipole strength
of magnetic particles in a ferro�uid. This is achieved by a graphical recti�cation of
their respective magnetization curves � a method that can be expanded beyond the
scope of ferro�uids towards any particles with a dipole moment in a �uid.
In general, the size and dipole strength of magnetic nanoparticles in suspension

are described by certain distribution functions. While several of these are commonly
used to describe ferro�uid compositions, it is shown by Ivanov et al. (2007) that the
choice among them has a strong in�uence on the information that can be obtained
from a data set. Unfortunately, determining the correct distribution function of a
given magnetization curve is challenging because of the ill-posed character of this
problem. This is visible in the top panel in Fig. 3 of publication 1 where two of the
most commonly used distribution functions, a gamma and a log-normal distribution,
are compared to a bidisperse delta distribution. Even though these functions are
fundamentally di�erent, their resulting magnetization curves are hardly distinguish-
able.
With our method of graphical recti�cation, we are able to obtain several statistical

relevant values without having to choose a speci�c distribution function. Taking the
�rst derivative to the e�ective magnetic �ux density of the inverse Langevin function
of the magnetization curve, �attens the typical s-shape of these curves, as shown in
the bottom panel of Fig. 3 in publication 1. Most importantly though, two statistical
key values can be read out safely from the recti�ed graph. As visualized in Fig. 2 of
publication 1, the limit value for large e�ective magnetic �elds shows the harmonic
mean of the magnetic moments, and for vanishing e�ective �elds the arithmetic mean
of the moments becomes directly visible as the maximum value.
Even though the advantage of independence from a certain distribution function

is evident, there is still one variable that has to be determined with high precision
for graphical magnetogranulometry: the saturation magnetization of the �uid. To
obtain this, two options have proven to be successful.
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2 Analyzing the Size Distribution of Magnetic Nanoparticles in Suspension

In the �rst option, we plot the magnetization data against the inverse e�ective
magnetic �ux density. An asymptotic polynomial �t towards vanishing inverse �ux
densities then yields the value of the saturation magnetization as shown exemplary
in Fig. 2.1.
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Figure 2.1: Asymptotic �t to inverted e�ective magnetic �eld data to obtain the
saturation magnetization of a ferro�uid.

In the second option, a �t to the magnetization curves according to any distribution
function can be used to calculate the saturation magnetization as its limit value. We
�nd that a quadmodal sum of Langevin curves is most practical to interpolate a given
data set, as discussed in publication 2. There we show the reliability of this �tting
method for data interpolation and its revelation of the saturation magnetization. We
are aware though that such a discrete function itself can not give reliable information
for the dipole strength distributions of most ferro�uids which generally have to be
assumed to be continuous.

However, there are systems in which the contained magnetic particles can all be
divided into few, highly distinguishable parties. One example for this gives the work
of Taheri et al. (2015) in which the self-assembly of nanoparticles in solution into
highly ordered chains, sheets and cuboids has been discovered, once an external
magnetic �eld is applied. Another example are studies on the �eld of magnetotactic
bacteria. These organisms have the ability to synthesize crystal-like permanent mag-
netic nanoparticles within their body, so-called magnetosomes. They are aligned in a
chain along the main axis of the bacteria which use them for orientation along earth's
magnetic �eld. These particles are of highly consistent size and dipole strength. For
this and their natural, bio-friendly generation by the bacteria, magnetosomes are a
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key research interest with focus on their bio-medical application (Alphandéry, 2014;
Araujo et al., 2015; Jacob & Suthindhiran, 2016; Yan et al., 2012). In recent years,
the controlled cultivation of these organisms and the extraction of their magneto-
somes has been established at the University of Bayreuth (Mickoleit et al., 2018).
As a current project in our research group, under the lead of Reinhard Richter, the
magnetization curves of a dilute suspension of living and dead magnetotactic bacteria
in water are investigated. Since the dipole strength of the magnetosomes is highly
quantized, a multimodal �t of discrete Langevin curves could be able to identify
di�erent chain lengths and singular magnetosomes in the solution.
Apart from the magnetic dipole moments, a sum of Langevin curves also accounts

for the temperature within a �uid. While this is less interesting for common fer-
ro�uids, it provides us with another challenge for future research on magnetotactic
bacteria. Once the magnetization curve of a suspension of living organisms can be
compared to itself after all bacteria have died without a change in their composition
of magnetosome chain lengths, an e�ective temperature di�erence could be calcu-
lated between the living and dead sample. Even though this value will not show the
actual rise in temperature that comes with the presence of living organisms, it could
provide a reliable tool to measure the presence of life from a single magnetization
curve.
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3 Forming a Dotriacontapole from

eight spherical permanent magnets

In the previous chapter, we brie�y shed light on the clustering dynamics of magnetic
nanoparticles in suspension under the in�uence of an external magnetic �eld. As
shown by Taheri et al. (2015), cuboidal particles can form chains, sheets and simple
cubic superlattices, once an external magnetic �eld is applied, that can even remain
stable once the �eld is turned o�. These supercubes appear to be the �nal state of the
clustering dynamics. While they can contain more than 10000 particles (Taheri et al.,
2015), the attraction of the cuboids towards each other seems comparably small. This
raises the question about the orientation of the individual dipole moments of the
particles inside the cube. While the linear orientation of the dipoles inside a chain is
clear, and the division into parallel and antiparallel orientation for chains that form
a sheet can also be well understood, the orientation of dipoles in a cubic arrangement
follows no intuitive order: As seen in a simulation of a stable equilibrium state of a
of 5 x 5 x 5 cubic cluster of point dipoles in Fig. 4 of the work of Taheri et al. (2015),
the dipoles can be completely asymmetrically aligned. Also, this is only one of a
manifold of stable solutions for the dipole orientations. Schönke et al. (2015) provide
an upper bound Smax for the total number of equilibrium solutions of an assembly
of N dipoles as

Smax = 23N (3.1)

This leads to a staggering high number of possible equilibria for the 5 x 5 x 5 example
of Smax = 2375, which makes a numerical investigation of all solutions infeasible with
todays computational tools. Also, any experimental approach would surely show a
tremendous amount of stable solutions, but would be unable to determine whether
the ground state has been found. We therefore consider the simplest possible cubic
arrangement: That of eight dipoles. The resulting upper bound for the number
of equilibrium solutions, Smax = 16 777 216, is still very frightening. Fortunately,
Schönke et al. (2015) showed that many of these solutions are equivalent to each
other because of symmetry arguments. They were able to calculate the complete set
of zero-dimensional solutions, yielding a number of 1 594 032 in total. Of these, 9536
solutions are real and thus physically meaningful. They can be boiled down further
to only 183 families of equivalent discrete equilibrium solutions. Furthermore, they
found that four one-dimensional solutions exist, of which one constitutes the ground
state of the system. With this continuum solution, we not only get a description of
the energetic ground state of the cube, but are presented with an unique feature: The
orientation for each dipole in this state is in�nitely geometrically frustrated. While
every dipole is aligned perpendicular to the respective space diagonal of the cube,
it can be turned freely into any direction within this plane, provided that the other
seven follow accordingly. An exemplary depiction of such a ground state with the
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3 Forming a Dotriacontapole from eight spherical permanent magnets

respective sense of rotation for each dipole can be found in Fig. 3 of publication 3.
Furthermore, minor deviations from the dipole positions are expected to change the
energy of the ground state only in a linear way, as the stability analysis in the
supplementary information of the work of Schönke et al. (2015) shows. That is,
the ground state properties appear to be fairly robust. Therefore, an experimental
realization of such a cogging-free clutch is feasible.

To approach this, we drastically scale this problem up beyond the nanoscale under
the use of a proper permanent magnet material to macroscopic spheres. In the 1980s,
an alloy of neodymium, iron, and bor has been discovered to yield the strongest
permanent magnets there are to this date (Croat et al., 1984; Sagawa et al., 1984). By
now, these magnets are fairly easy to manufacture and widely commercial available.
While they can be purchased in high quantities as toys to build appealing structures
out of balls with diameters as little as three millimeters, these spheres are distributed
by the same manufacturers up to four centimeters in diameter. Spheres of this size
that are in direct contact with each other and aligned vertically are reported to hold
a mass of 23 kg against gravity (Webcraft GmbH, 2021). From a scienti�c point of
view, permanent magnetic spheres are remarkable since their outer magnetic �eld
resembles that of a point dipole located at the center of the sphere.

For our experiments, we choose a set of spheres with 19mm diameter which were
also used in experiments by Schönke et al. (2016). While they already exhibit a
strong magnetic �eld of about one Tesla on the surface, they are still fairly easy to
safely deal with.

Figure 3.1: Cubes assembled from spherical permanent magnets (Zawischa, 2021).

With macroscopic spheres, one can build simple cubic lattices of di�erent size
(see Fig. 3.1). Even though their assembly is remarkably challenging for some edge
lengths, all of them are stable in their cubic arrangement. For edge lengths of three,
four and �ve balls, the corresponding experimental realization is shown in Fig. 3.1.
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However, within these �nal lattices, a twist of arbitrary magnets in such a way that
their dipole moment is turned out of its original orientation generally leads to an
unwanted deconstruction of the whole cube. With one exception: The 2×2×2 cube.
After its assembly, we are able to freely turn each magnet relative to the respective
space diagonal, given that the remaining seven magnets have freedom of movement
� they turn as well, displaying a seven-fold coupling (see the right-hand side of Fig. 1
of the supplementary information of (Schönke et al., 2015)).
The magnetic �eld of this arrangement has been measured extensively as described

in publication 3. The far �eld of this arrangement decays like 1
r7
, which is a charac-

teristic feature of a dotriacontapole. From the center of the cuboid, it increases with
the fourth power of the distance. Beyond that, it has been experimentally established
that the external magnetic �eld of a neodymium sphere does indeed follow that of a
point dipole with a precision of better than one percent.
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4 Special Features of Permanent

Magnet Couplings

While the cuboid led to the �nding of a seven-fold magnetic clutch, a technical
application of this arrangement has not yet been developed. Of practical interest are
magnetic clutches formed by two dipoles, one rotated by a motor, the other driven by
the magnetic coupling. The milk frother might be the most prominent example. This
arrangement becomes amazingly complicated when the two axes of the driving and
the driven dipole are not collinear. The most fascinating result is that two cogging-
free arrangements can be found here, with di�erent sense of rotation (Borgers et al.,
2018). The dynamic behavior of this arrangement has been experimentally explored
in publication 4.
A mathematical model for the dynamics of the output shaft is proposed, which

includes two types of friction in the bearing. This simpli�ed model describes the
experimental �ndings on a semi-quantitative level. In particular, it can reproduce T
periodicity, T/2 periodicity, and chaotic responses. Moreover, it helps to understand
the nature of the bifurcations between these di�erent states. Most importantly, it
clari�es the parameter range for a safe operation of this magnetic gear: The driving
frequency needs to be su�ciently low, and the shaft angle, which quanti�es the
amount parallel shift of the axes, needs to be su�ciently far from Θ = 35.26◦, the
angle where the output rotation changes its sign.

Outlook

Figure 10 in publication 4 demonstrates the possibility of bistable behaviour involving
a locked and a slip-through state only theoretically. Experimental measurements of
that behavior were not presented in that publication. Those measurements were
performed later and are presented for the �rst time in Fig. 4.1 below.
To demonstrate the bi-stable state within the driving frequency range of the setup,

the geometrical con�guration of the apparatus had to be changed. The distance be-
tween the two magnets was increased to r = 100mm to weaken the magnetic inter-
action. The experimental results obtained in the driving frequency range between
1.00Hz and 1.25Hz are shown in Fig. 4.1 both for a clockwise (cw) and counter clock-
wise (ccw) operation of the drive. For su�ciently slow driving frequencies, the locked
state is achieved. It is characterized by exactly one rotation of the output within one
driving cycle. For higher frequencies, the output might slip though. It still rotates
in this state, but the number of output rotations per driving cycle is smaller than 1.
For a driving frequency of 1.2Hz, 0.0394 is found, which corresponds to one rotation
of the output within 25.4 rotations of the driving input. Note that di�erent numbers
were obtained for clockwise and counter clockwise operation. This feature cannot be
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4 Special Features of Permanent Magnet Couplings

explained on the basis of the theoretical model provided in publication 4. The hand-
edness of these results is an artifact of some broken symmetry in the experimental
setup, which is not yet detected unambiguously.
The rotations of the output can be compared with the theoretical expectation based

on the numerical integration of eq. (22) from publication 4. The parameters for the
friction and magnetic interaction needed to be remeasured for this new experimental
setup. They are ζ = 0.804, η = 13.297 and gτ = 5.7842. The values obtained for the
counter clockwise rotation seem to be in reasonable agreement with the numerical
data. The range of the locked state is larger in the experiment, however. This
might be caused by the distortion involved in changing the frequency experimentally,
which is presumably larger than the distortion in the numerical procedure. From a
technical point of view, the fact that the locked state seems to have a larger basis of
attraction than the slip through state can be considered as an advantage, because in
most applications one would be interested to operate the gear in the locked state.
While for the slipping state published in Fig. 10 of publication 4 no a priori knowl-

edge of the number of rotations per driving cycle is available, any real number seems
possible here. The situation is di�erent for any ∆ 6= 0 (In Fig. 4.1, ∆ = 9◦ was
used). Here, it seems more natural to expect periodic solutions of the output, where
the period is an integer multiple of the driving period. If such a period could be
detected in the numerical integration, it is plotted in Fig. 4.1, together with the
corresponding winding number of the output. Most prominent in this �gure is the
period 3 state with a winding number of 1, e. g., the input needs 3 rotations to turn
the output only once.
The most exotic combination in this plot is one with a periodicity of 17 and a wind-

ing number of 4. The frequency range for the existence of this state is comparably
small, as indicated by the zoom provided in Fig. 4.2. It shows that it is only present
within a driving frequency range of 40 mHz. The inset shows the trajectory of this
attractor in the α-β plane, similar to the insets of Figs. 9 and 10 of publication 4.
The inset on the right hand side provides the same information on the surface of a
torus.
Additional aspects of the situation shown in Fig. 4.2 can be found in the screenshot

of an interactive analysis program shown in Fig. 4.3. In the Poincaré map Fig. 4.3(g)
and the return map Fig. 4.3(h), the 17 revolutions are visible which the output must
undergo until it reaches its �rst repetition. While it is easy to con�rm a periodic
response with these tools once the output reaches its �rst repetition, it is di�cult to
make a de�nitive assumption beforehand. In Fig. 4.4 the scenario for a yet unde�ned
state is shown. Here, no repetition is found after the depicted 170 rotations of
the input. For the simulated data of Fig. 4.1, the period length is determined with
the help of Fig. 4.3(h) by counting the number of points in that plot. Points are
considered as equal if their distance is smaller than a certain value. For high period
lengths this method is not su�cient. Therefore, further work would be necessary to
di�erentiate between high period lengths and a non-periodic response.
Higher numbers of periodicity larger than 17 are presumably also possible, but

have not been investigated in detail yet. The detection of those states is time con-
suming, and the experimental data did not provide a motivation to dig deeper here,
because they did not show any of these higher periods. This is presumably due to
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Figure 4.1: Experimental and numerical data from the locked and the slip through
state for di�erent driving frequencies. Blue dots correspond to clockwise
and blue squares to counter-clockwise rotation of the input in the ex-
periments that were started from the steady state. Red dots show the
numerical results for decreasing, the green dashed line for increasing steps
of the driving frequency, starting at the highest value and ending there
again. The red arrow marks the end of the slip through state in the de-
creasing branch.

relatively large steps of frequency resolution, and the limited amount of stability of
our experimental parameters.

In Fig. 7 of publication 4, we showed that with parallel shaft angles of Θ = 35.26◦,
we reach the point where the output rotation changes its sign and experience a
chaotic response in this area. The underlying mechanism is now analyzed in detail in
Fig. 4.5. Here, the output rotations per driving cycle average out to zero at Θ = 35◦

and Θ = 37.5◦. Another important result is the occurrence of period doubling of
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Figure 4.2: Numerical data showing a commensurable relation between period and
winding number in the slip through state around the driving frequency
of 1.13Hz. The green empty squares depict increasing, the red circles
decreasing frequency steps. The left inset shows the phase trajectory
(yellow line) modulo 360◦. Red areas denote high, blue areas low potential
energy. The right inset shows this trajectory on the surface of a torus. A
revolution with the major radius corresponds to a full input rotation, a
revolution with the minor radius to a full output rotation. Trajectories
are shown in the complementary color of the underlying surface.

the output response relative to driving period at Θ = 32.5◦. The period becomes
immeasurable with our numerical method at Θ = 35◦. It remains to be investigated
whether a period doubling cascade leading into a chaotic response occurs here.

The geometric arrangement is undoubtedly a key factor determining the sense of
the output rotation in our magnetic coupling. Nevertheless, our numerical results
show that it is not the only one: The sense of rotation can also be changed by
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Figure 4.3: Screen shot from an interactive simulation. 170 consecutive driving cycles
are shown at a an angular driving frequency of ωd = 7 s−1. (a) shows
the trajectory of β(α) modulo 360◦ as a yellow line. The background
shows the areas of high (low) potential energy in red (blue). In (b) the
trajectory is shown on a torus. The surface has the same color coding as
in (a), the trajectory has the respective complementary color. (c) shows
the normalized velocity β̇/α̇ updated after each turn of the input as a
function of the respective ωd. In (d) the distances between points in the
return map (h) are shown on the x-axis, with the logarithmic frequency
of their occurance on the y-axis. The shaft orientation index ∆ is shown
in (e) for the shaft angles Θ and Φ, high values in red, low in blue. The
yellow circle shows the current system geometry, which is illustrated in
(f). (g) shows a Poincaré map of the system. In (i) the angle di�erence
between input and output is shown in relation to the input angle. The
angular velocity of the output is shown in (j).
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Figure 4.4: Screen shot from the interactive simulation, explained in Fig 4.3. 170
consecutive driving cycles are shown at a an angular driving frequency of
ωd = 7.2 s−1.

slightly tuning the absolute value of the driving frequency. For a constant shaft
angle of Θ = 31◦, the data is shown in Fig. 4.6. For driving frequencies f smaller
than 0.75Hz, the output follows the input in the same rotation sense. For frequencies
between 0.8Hz and 1.05Hz the coupling undergoes a slip through motion similar to
that in Fig. 4.1, in which the input must undergo three revolutions for one output
rotation. If the frequency is further increased to 1.1Hz, the input still slips through,
but now the sign of the output rotation changes. A depiction of the respective
trajectories of these phases is found in the insets in Fig. 4.6 (b). In the range from
1.15Hz to 1.40Hz, the locked state with the initial sense of rotation is recovered. A
driving frequency of 1.40Hz is necessary to fall into the slip through state again. In
this phase the rotations per driving cycle roughly decrease with increasing f and a
hysteresis is present between the response for increasing and decreasing frequency
steps. Beyond a driving frequency of 1.9Hz, the output rotation is fully opposed to
that of the input, resulting in a locked state with opposite rotation sense of the two
magnets.
The frequency tuning of our setup is currently too coarse to reproduce this e�ect

experimentally. In a future work, an upgrade of the driving motor would be necessary.
In addition, a transition towards air bearings could help to further reduce the noise
in our system to obtain reproducible results.
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Figure 4.5: Theoretical characterization of the output movement for di�erent shaft
angles Θ. Red dots mark increasing, green squares decreasing steps in
angular shift. In (c) the rotations of the output per driving cycle of the
input are shown. The left inset shows the trajectory for Θ = 20◦, the right
inset for Θ = 70◦. In (b) the input period for periodic solutions is shown.
The insets show the energy landscape and trajectory for Θ = 37.5◦ and 50
driving cycles. In (a) the winding number of periodic solutions is shown.
For clarity, the grey arrow connects the winding number at Θ = 30◦ with
the corresponding period.
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Measuring magnetic moments of polydisperse ferrofluids utilizing the inverse Langevin function
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The dipole strength of magnetic particles in a suspension is obtained by a graphical rectification of the
magnetization curves based on the inverse Langevin function. The method yields the arithmetic and the harmonic
mean of the particle distribution. It has an advantage compared to the fitting of magnetization curves to some
appropriate mathematical model: It does not rely on assuming a particular distribution function of the particles.

DOI: 10.1103/PhysRevB.100.134425

I. INTRODUCTION

Ferrofluids, i.e., colloidal suspensions of magnetic parti-
cles, can be characterized by their magnetization curve, which
reveals superparamagnetic behavior [1]. In particular, it is pos-
sible to obtain an estimate of the dipole moment distribution
of the colloidal particles within the fluid from that curve [2],
which provides a convenient kind of magnetogranulometry
[3]. Knowledge of the size distribution is of importance to
understand the dynamic behavior of ferrofluids [4]. The un-
derlying analysis of the magnetization curves is well defined
for the case of small particle concentrations, where the inter-
action of the individual magnetic particles can be neglected.
The examination of the magnetization curves is thus a suitable
tool to get an idea about the particle size distribution within
the fluid, and in particular, it is suitable to resolve changes of
the distribution, i.e., to monitor and characterize the aging of
a colloidal suspension of magnetic particles. The extraction
of the moment distribution function is done by assuming
some continuous distribution function like, e.g., the gamma-
or log-normal distribution with adjustable parameters. The
distribution function is then obtained by fitting the corre-
sponding magnetization curve to the measured one. Some
examples, together with a critical comparison, are presented
in Ref. [5]. Alternatively, a distribution with discrete δ peaks
can be assumed [6,7]. If no knowledge about the particle
distribution function is available, an unprejudiced ansatz can
be made in connection with a regularization scheme. This
procedure yields at least reproducible results for the particle
distribution function, an example is given in Ref. [8]. If the
resulting distribution functions contain negative concentra-
tions, additional mathematical insights are needed in order to
interpret the results.

In the dilute limit, the computed magnetization curve is a
folding of the Langevin function—which describes the mag-
netization of a sufficiently dilute monodisperse solution—
with the assumed particle size distribution function. For this
kind of extraction procedure, the Langevin function has an
unpleasant feature: The folding of different distribution curves
with that function can give very similar, almost identical,
results [9]. The situation is comparable to the method of

extracting the characteristics of a polydisperse particle size
distribution from the analysis of dynamic light scattering
experiments, a prominent example for a mathematically ill-
conditioned problem [10]. The corresponding aspect of the
Langevin function has been discussed in some detail by Potton
et al. [11], who used a maximum entropy method to face the
ensuing complications.

In this paper we demonstrate a method which circumvents
these difficulties by not even trying to obtain the complete
distribution function. It is basically a graphical rectification of
the magnetization curve and reveals important parameters of
the magnetic moment distribution, but does not rely on assum-
ing a particular distribution function of the magnetic particles.
Our analysis of the rectified curves is, however, based on the
limit of small concentrations. For larger concentrations, the
interaction between the magnetic particles lead to additional
complications [5,12] which are not addressed in the present
paper.

To give a motivation for the method, Fig. 1 provides an
example of this rectification method to characterize an aging
process of a ferrofluid. It makes use of data taken from the
literature [6,7] describing the formation of magnetic clusters
in a colloidal suspension of nanocubes. They characterize the
aging of cubic nanoparticles (8 wt %, iron oxide, edge length
9 nm) in solution triggered by a magnetic field (800 kA/m
for 4 h). Figure 1(a) shows magnetization curves of that fluid
for three different times. They were obtained with a vibrating
sample magnetometer described in detail by Friedrich et al.
[13]. The first data set was obtained for a relatively fresh
sample, which had been exposed to a magnetizing field of
about 800 kA/m for 4 h. The magnetization curves in Fig. 1(a)
show an increasing slope with the time elapsed. This aging
process is interpreted as the manifestation of the clustering
of the magnetic particles. Some features of the change of
these curves can be seen more clearly in Fig. 1(b). Here the
appropriately scaled slope of the inverse Langevin function
L−1 of the magnetization data has been plotted. The ensuing
curves yield the arithmetic mean of the dipole distribution at
its center, and the harmonic mean as the asymptotic value for
large polarizing fields.

2469-9950/2019/100(13)/134425(5) 134425-1 ©2019 American Physical Society



INGO REHBERG et al. PHYSICAL REVIEW B 100, 134425 (2019)

FIG. 1. Aging of a nanocube fluid. (a) The magnetization of a
freshly prepared ferrofluid is presented together with one obtained
two (six) days later. During the measurements, the magnetizing field
strength went from about 750 to −750 kA/m and back within a
period of 108 min. The measurements are presented as polygonal
lines, every 30th data point is shown to label them. (b) The curves
shown in the lower part are derived from the magnetization curves
and give information about the magnetic moments of the suspended
particles. The maximum corresponds to the arithmetic mean ma, and
the asymptotic value for large polarizing fields to the harmonic mean
mh. The corresponding estimator for the coefficient of variation cv is
listed in the lower legend.

II. METHOD

To explain this, we illustrate the data processing by arti-
ficial magnetization curves in Fig. 2. A monodisperse dilute
solution of particles with a magnetic moment m is expected to
be described by a magnetization

M = MsL

(
mB

kBT

)
, with L(x) = coth(x) − 1

x
.

In Fig. 2(a) the abbreviations

M∗ = M/Ms, m∗ = m/μB, and B∗ = B
μB

kBT

are used. It displays the magnetization of two monodisperse
fluids with m∗ = 1 and m∗ = 5, respectively, and one for a
bidisperse 30%/70% mixture. All three curves show a fairly
similar shape. To bring out the difference between these
curves more clearly, it helps to take the inverse Langevin func-
tion L−1(M∗) as shown in Fig. 2(b). The two monodisperse
curves reveal a constant slope—in this sense the magneti-
zation curve is rectified—while that of the mixture appears

FIG. 2. The data processing demonstrated by three artificial mag-
netization curves. (a) The magnetization curves of two monodisperse
(dashed and dotted lines) and a bidisperse solution. The first pair
of numbers in the legend represents the relative fraction a1 and
a2, and the second one the corresponding magnetic moments m1

and m2. (b) The inverse Langevin function L−1 of the relative
magnetization. The straight dashed and dotted lines correspond to
the two monodisperse distributions, the slightly curved solid line to
the bidisperse distribution. (c) The chord slope of the rectified curves.
The monodisperse distributions lead to constant values (dashed and
dotted lines) which represent the strengths of the magnetic dipole
moment. The bidisperse curve yields the arithmetic mean of the two
contributing moments as its maximum value, and the harmonic mean
as the asymptotic value for large polarizing fields. (d) The tangential
slope of the L−1(M∗) curves.

slightly more complicated. To bring out these differences
quantitatively, both the chord slope m∗

ch = L−1

B∗ or the tangen-

tial slope m∗
ta = dL−1

dB∗ can be used to obtain a value for what
can be called an “effective magnetic moment.” m∗

ch is shown
in Fig. 2(c) and the tangential slope m∗

ta in Fig. 2(d). In both
cases, the monodisperse curve yields the constant value m∗,
which is proportional to the magnetic moment of the particles.

The more interesting part is the interpretation of the non-
constant curves obtained for the bidisperse mixture. Both

134425-2
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methods yield the same maximum in the center, i.e., for the
magnetizing field B∗ = 0. Near this point L(B∗m∗) ≈ B∗m∗

3 ,
thus the derivative represents the appropriately weighted sum
of the two slopes of the monodisperse magnetization curves,
i.e., the arithmetic mean m∗

a = 〈m∗
i 〉 of the magnetic moments

involved. Its value is 0.3m1 + 0.7m2 = 3.8 for this particular
example.

Both methods also yield the same results for large values
of B∗. For the interpretation of this value, one has to recall
that the Langevin function converges to its asymptotic value
1, like 1/(B∗m∗), which means that the slope is inversely
proportional to the magnetic moment. Consequently, the slope
for the bidisperse curve can be obtained by the weighted sum
of the inverse moments, the harmonic mean m∗

h = 〈1/m∗
i 〉−1.

It is (0.3/m1 + 0.7/m2)−1 ≈ 2.27 for this example.
Whether the chord slope or the tangential slope should be

used to obtain the effective magnetic moment for real data
is a practical issue. When dealing with a poor signal/noise
ratio, data obtained from the chord slope have the advantage
to show less scatter. On the other hand, the effective mag-
netic moments obtained from the tangential slope have the
advantage to converge faster towards the asymptotic limit,
which is important when the scaled applied field B∗ is still
far from the saturation field. A practical value for judging the
strength of the polarizing field could be given by that field
where the magnetization reaches 90% of Ms. The value for
the corresponding polarizing field is then given by L(m∗B∗) =
0.9, yielding B∗ = L−1(0.9)/m∗ ≈ 10.0/m∗.

The difference between the arithmetic and the harmonic
mean values, ma − mh, can be taken as a direct order pa-
rameter for the amount of polydispersity: It is zero for a
monodisperse distribution and increases with the width of the
distribution. In fact, this difference divided by the harmonic
mean provides an estimator for the relative standard deviation
(RSD, also called coefficient of variation cv). More precisely,

we obtain the coefficient of variation as cv =
√

ma−mh
mh

. Addi-

tionally, the square root of their product yields an estimator for
the geometric mean mg = √

mamh. However, these last two
statements are only correct for certain distribution functions of
the magnetic moment, including the log-normal distribution,
which seems to be the most prominent one assumed within
the granulometric analysis of magnetization curves.

To illustrate the procedure with more realistic distributions
than the artificial bidisperse one used in Fig. 2, we compare
this bidisperse distribution with a suitably chosen log-normal
and gamma distribution [5]. More precisely, in both cases
we chose that distribution which has the same arithmetic
and harmonic mean as the bidisperse one. This is possible
because both functions contain two adjustable parameters.
The comparison is presented in Fig. 3. The inset of Fig. 3(a)
shows the distribution function for the three cases. The con-
tinuous functions are the log-normal and gamma distribution,
while the bidisperse distribution function is basically zero,
except for the two δ peaks. The corresponding cumulative
distribution functions for the three examples are shown in the
inset of Fig. 3(b).

Note that in spite of the drastically different distribution
functions, the corresponding magnetization curves displayed
in Fig. 3(a) are almost nondistinguishable. This is an exem-

FIG. 3. A comparison between magnetization curves calculated
for the bidisperse distribution with two δ peaks introduced in the
example in Fig. 2 (dashed gray line), the log-normal distribution
(solid red line), and the γ distribution (dotted green line). The
parameters are chosen such that all three distributions have the
same values of the harmonic and the arithmetic mean. Therefore, all
curves in (b) start for B∗ = 0 at the same value of 3.8 and approach
the value of 2.27 for high field strength. The inset (a) shows the
partial and inset (b) the cumulative distribution functions of the three
distributions.

plary illustration of the ill-conditioned nature of magnetogran-
ulometry mentioned in the Introduction.

Taking the derivative of the inverse dL−1(M∗)/dB∗ helps
to bring out the differences in the three magnetization curves
more clearly, as shown in Fig. 3(b). More importantly, this
effective magnetic moment m∗

ta reveals the correct arithmetic
and harmonic mean for all three distribution functions, as
expected.

III. EXPERIMENTAL RESULTS

Finally, we would like to illustrate the method by analyzing
magnetization curves of two additional samples of ferroflu-
ids. The one measured for commercially available EMG909
(EMG909, Lot H030308A, Ferrotec) is presented in Fig. 4(a).
The “polarizing field” used for the horizontal axis is the field
acting on a magnetic particle. We used the lowest order to
determine that field, namely the Weiss correction He = Hi +
M/3, see, e.g., Ref. [5] for a discussion of this correction. Note
that in our case the correction term M/3 exactly cancels out
the demagnetization factor provided by our spherical sample
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FIG. 4. The method illustrated by the the commercially available
ferrofluid EMG909. (a) The measured magnetization curve (red dots,
only every 10th data point is shown) is fitted by a superposition of
four Langevin functions (solid blue line) indicated by the Mk given
in kA m−1. The corresponding βk yields the magnetic moment mk

provided in kμB. The resulting saturation magnetization Ms and the
initial susceptibility χ0 are listed as well. (b) The effective magnetic
moment mch obtained from the data (red dots) and the fitting function
(solid blue line). The cv obtained from the arithmetic and harmonic
mean of the magnetic moments is listed, and the blue arrow points
to the value of the corresponding geometric mean. (c) The effective
magnetic moment mta obtained from the data (red dots) and the fitting
function (solid blue line)

holder, leading to He = H0, and Be = B0. Thus, in our case the
polarizing field Be turns out to be the one measured far from
our magnetized sphere B0. Note that the resulting plot—with
the effective Be field used for the x axis—is slightly different
from the more common practice, where the inner magnetic
field Hi is used for the horizontal axis of the magnetization
curve. For the latter kind of plot, however, taking L−1(M/Ms)
would not produce a straight line even for a monodisperse
ferrofluid. This would make the rectification method proposed
here less powerful.

The measured magnetization data can well be represented
by a superposition of four Langevin functions

M(Be ) =
4∑

k=1

MkL

(
Be

βk

)
, with

1

βk
= mk

kBT
.

This M(Be ) resulting from this “quad-disperse” distribution
function provides a convenient fitting curve for the magne-
tization data, with the Mk and βk as fit parameters, and is
shown as a solid line in the upper part. It serves primarily

FIG. 5. The method illustrated by a CoFe2O4 ferrofluid. The
features are the same as explained in Fig. 4, and in addition, a fit
to a γ distribution (solid green line) shown in the inset has been
performed here. While the differences of the two fitting functions
in (a) are barely visible, (b) and (c) bring out these tiny differences
more clearly. The geometric mean of both fits is indicated by the
arrows in (b).

for giving a smooth and analytic representation of the data. In
addition, it can be used to calculate the so called Langevin
susceptibility χL as the slope of the magnetization curve
in its origin. From χL, the initial susceptibility χ0 = dM

dHi
is

obtained as χ0 = χL

1−χL/3 , which is provided in the figure as
well. While this number is an important characteristic number
for ferrofluids in general, its value is not needed for the further
analysis presented here, but it helps to label the fluid and to
judge its concentration. The saturation magnetization can be
obtained from the fitting parameters as Ms = ∑4

k=1 Mk .
Figure 4(b) shows the effective magnetic moment mch

obtained from the chord slope. The red dots are obtained
directly from the data. The solid blue line stems from the fit
to the magnetization curve. Both numbers agree fairly well.
Note that there is a small asymmetry with respect to the y axis
within the data, which the ansatz for the quad-disperse fitting
function cannot produce.

These small differences between the data and the fitted
curve can be seen more clearly in Fig. 4(c), where the ef-
fective magnetic moment mta is shown. But even here the
signal/noise ratio seems good enough to extract the numbers
for ma and mh, and the corresponding guesses for the geomet-
ric mean mg and the relative standard deviation cv.

For demonstrating the method also with a different chem-
ical species, we use a cobalt-ferrite-based ferrofluid. It
was synthesized in a one-step process with a subsequent
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stabilization step after a modified synthesis procedure of
Nappini et al. [14]. For the synthesis both iron and cobalt salts
were precipitated in a boiling solution of sodium hydroxide.
The particles were magnetically separated by holding a per-
manent magnet (with a surface field of about 1 T and a diam-
eter of about 3 cm) onto the reaction vessel for a few minutes
and rinsed with water. This step was repeated until a neutral
pH value was reached, typically about three times, then the
particles were stabilized in a sodium citrate solution. The
resulting magnetization curve is shown in Fig. 5(a). It can also
fairly precisely be fitted by assuming a quad-disperse solution,
as shown by the blue line. In addition, we have also fitted a γ

distribution here, as advocated in [5]. The resulting distribu-
tion is shown in the inset. The corresponding magnetization
shown by the green line fits the data almost as good as the
quad-disperse one, which is just considered as another mani-
festation of the ill-posed character of this inverse problem.

Displaying the resulting magnetic moments in Figs. 5(b)
and 5(c) brings out the differences between the two mag-
netization curves more clearly. It also reveals that the quad-
disperse fit is closer to the data, which is no surprise, because
that fit contains eight fitting parameters, while the γ distri-
bution only has two. With a relative standard deviation of
cv = 2.2, the distribution function of the CoFe2O4 ferrofluid
is wider compared to the EMG909 fluid presented in Fig. 4.
That might be a manifestation of the fact that our fluid was rel-
atively freshly prepared, and no special measures were taken
in order to obtain a more monodisperse solution. On the other
hand, special measures to obtain monodispersity were taken
for the fluid analyzed in Fig. 1, which contained originally
fairly monodisperse nanocubes. Here the monotonic increase

of cv with time is interpreted as a result of the formation of
supercubes [6,7].

IV. CONCLUSION AND OUTLOOK

In summary, we have demonstrated the use of a graphi-
cal rectification method revealing the characteristic magnetic
moments of the particles in a ferrofluid from their magneti-
zation curves. In particular, the arithmetic and the harmonic
mean of the moments ma and mh can be read off from a
plot of the effective magnetic moment. The method works
without the need to assume a specific distribution function,
thus circumventing the difficulties stemming from an ill-
posed problem for the interpretation of those functions. As
secondary results, the method yields a guess for the relative
standard deviation cv and the geometric mean mg, although
that guess can strictly be justified only for certain distributions
including the log-normal one. The method applied here can
be justified for dilute solutions, higher order corrections for
larger concentrations [5,12] have not been taken into account.
A corresponding graphical method for the examination of
light scattering data in terms of granulometric information is
currently under investigation.

The open source Python code for the graphical display of
the magnetization curves together with the ensuing magnetic
moments is still under construction, but we are happy to
provide the current version on request.
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A R T I C L E I N F O
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Ferrofluid EMG909 from Ferrotec Co

A B S T R A C T

The magnetization curve of the commercially available ferrofluid EMG909 is measured. It can adequately be
described by a superposition of four Langevin terms. The effective dipole strength of the magnetic particles in
this fluid is subsequently obtained by a graphical rectification of the magnetization curve based on the inverse
Langevin function. The method yields the arithmetic and the harmonic mean of the magnetic moment dis-
tribution function, and a guess for the geometric mean and the relative standard deviation. It has the advantage
that it does not require a prejudiced guess of the distribution function of the poly-disperse suspension of mag-
netic particles.

1. Introduction

“Die krumme Linie kennt kein größeres Wunder, als die gerade.
Aber nicht umgekehrt.” (The bent line does not know a greater marvel
than the straight line. But not the other way round.) This statement
from Friedrich Hebbel might be easier to justify from an aesthetic than
from a mathematical point of view, but can be considered as our
guideline in the pursuit of straightening the typical S-shape of magne-
tization curves to bring out their individual and specific characteristics
more clearly. For that purpose, taking the inverse Langevin function of
the magnetization seems to be the natural approach [1]. While that
rectification effort is expected to work exactly for monodisperse ferro-
fluids, the outcome for polydisperse fluids is slightly more complicated
than just a straight line. However, it turns out to be very useful: It serves
to provide the arithmetic and the harmonic mean of the particle dis-
tribution function.

In this contribution, we apply that method of “graphical magneto-
granulometry” [1] to the magnetization curve of the ferrofluid
EMG909, commercially available from Ferrotec Co. This is of special
interest within these proceedings, because this fluid had been chosen
for the investigation of the magnetically stabilized Kelvin–Helmholtz
instability, which was presented at ICMF 2019 [2], and is described in
Ref. [3].

2. Magnetization of EMG909

We have measured the magnetization with a vibrating sample
magnetometer utilizing a spherical sample holder described in Ref. [4].
The result of this measurement is presented in Fig. 1(a). The ”polarizing

field” used for the horizontal axis is the field acting on a magnetic
particle. It is determined by the external magnetic field H0 measured far
from the spherical sample, and influenced by the homogeneous mag-
netization M inside the sphere. We used the lowest order to determine
the polarizing field, namely the Weiss correction = +H H M/3e i , where
Hi is the magnetic field inside the spherical sample. A discussion of the
Weiss correction and higher order corrections for the effective field He
can be found in Ref. [5]. For our magnetometer geometry, that cor-
rection term M/3 exactly cancels out the demagnetization factor pro-
vided by the spherical sample holder. This leads to =H He 0, and cor-
respondingly =B Be 0. Here Be is the magnetic induction inside the
virtual – and hollow – “Weiss sphere”, which is responsible for the
torque acting on the individual magnetic particle. In conclusion, in our
case and in lowest order approximation the polarizing field Be turns out
to be the one measured far from our magnetized sphere B0, which is
conveniently detected by a Hall probe.

Note that this effective field correction is only a correction to lowest
order for reasons of simplicity. According to Eq. (20) of Ref. [5], the
next correction term reads M M

H
1

144 L
d
d

L
i
, which brings only a correction on

a sub-percentage scale for the fluid presented here. For fluids with a
higher magnetization, that term would become more important, i.e. the
estimation of Be presented here is only a lowest order approximation for
sufficiently dilute solutions.

Neglecting this Weiss correction completely would have a measur-
able effect on the data examination: The initial slope of the magneti-
zation curve would change by about 20% (see Eq. 2 below). This would
lead to an error in the estimation of the arithmetic mean of the mag-
netic moments of the same order of magnitude [1]. The harmonic
mean, on the other hand, is determined from the slope of the
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magnetization at higher fields where the magnetization is almost sa-
turated and the influence of the Weiss correction term decreases to
zero. Thus, the harmonic mean would still be measured correctly, at
least asymptotically for large fields. A comparison of the two terms
would then lead to a qualitatively wrong statement for a monodisperse
fluid: It would be interpreted as a polydisperse one. In conclusion, ne-
glecting the Weiss correction is clearly prohibited for the graphical
granulometry [1].

Note that the resulting plot—with the effective Be-field used for the
x-axis—is slightly different from the more common practice, where the
inner magnetic field Hi is used for the horizontal axis of the magneti-
zation curve. Our motivation to use Be instead is the fact that magne-
tization curves in lowest order can be considered as a superposition of
terms

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

B m
k T

μ H m
k T

L , or equivalently L ,e

B

0 e

B

a fact which is used both for the best-fit curve in Fig. 1(a), and the
graphical granulometry provided in Fig. 1(a) and (c).

The magnetization data shown in Fig. 1(a) are obtained as the dif-
ference between the magnetization data from the filled and the empty
sample holder, which is a lowest order correction for the magnetization
of the sample holder. This is only a tiny correction of less than 0.1% for
the fairly concentrated magnetic fluid used here, it is nevertheless
performed routinely.

It turns out that the measured magnetization data can fairly accu-
rately be represented by a superposition of four Langevin terms

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠

=
=

M B M B
β β

m
k T

( ) L , with 1 .
k

k
k k

k
e

1

4
e

B (1)

This M B( )e resulting from this “quad-disperse” distribution function
provides a convenient fitting curve for the magnetization data, with the
Mk and βk as fit parameters. The result is shown as a solid line in
Fig. 1(a). It serves primarily for giving a smooth and analytical re-
presentation of the data.

The inset on the left hand side in Fig. 1(a) is a graphical re-
presentation of the eight fit parameters. It might serve to give some
feeling for the distribution function of the dipole strength in the poly-
disperse suspension. However, it should not be over-interpreted in this
sense, other distribution functions would do the job almost as well,
which is due to the ill-posed character of this inverse problem. More
illustrations for this point are provided in Ref. [1]. The corresponding
cumulative distribution function (CDF) of the quad-disperse distribu-
tion is shown in the inset on the right hand side of Fig. 1(a).

Some technical remarks about the fitting procedure have to be
made. We found it useful to suppress negative values for the magnetic
moments and the magnetization, which is conveniently done by
squaring the corresponding terms in the fitting procedure, and finally
taking the positive root of the resulting value. The method to obtain the
eight fitting parameters of this particular representation contains four
steps:

(i) Fit M B( )e with two parameters M1 and β1.
(ii) Keep M1 and β1, and allow for two additional fit parameters M2
and β2.
(iii) Keep the four parameters, and allow for two additional fit
parameters M3 and β3.
(iv) Keep the six parameters, and allow for two additional fit para-
meters M4 and β4.

It seems that in principle this list could be extended. In practice, we
found for many of the fluids investigated so far that even six parameters
are enough to describe the magnetization within the resolution of our
data. On the other hand, we never needed more than eight parameters.

For the fitting procedure, we use a standard routine (named cur-
ve_fit, from the package scipy.optimze [6]) within the Python program
minimizing the deviation between the data and the fitting function. Our
program calls this function repeatedly, until a local minimum with re-
spect to all the fit parameters is reached. It seems worth noticing that
the ansatz given by Eq. (1) is sufficiently simple and fast, so that the
data processing can conveniently be done interactively. The fitting
curve provides a noise-free representation of the data. It can be used to
calculate the so-called Langevin susceptibility

=χ M
H

d
dL

e

as the slope of the magnetization curve in its origin. From χL, the initial
susceptibility is obtained as

= =
−

χ M
H

χd
d 1

,χ0
i

L

3
L

(2)

which is provided in Fig. 1(a). This number is an important macro-
scopic parameter for the hydrodynamic instability of this particular
fluid investigated in Ref. [3]. The other important characteristic
number is the saturation magnetization of the fluid, which can be ob-
tained from the fitting parameters as

∑=
=

M M ,
k

ks
1

4

a convenient way to extrapolate the data towards → ∞Be .
Fig. 1(b) shows the effective magnetic moment mch obtained from

the chord slope as

Fig. 1. Examination of the ferrofluid EMG909. (a) The measured magnetization
curve (red dots, only every 10th data point is shown) is fitted by the sum of four
Langevin terms (solid blue line) indicated by the Mk . The corresponding βk
yields the magnetic moment mk. The respective Mk and mk of the fitted function
are shown in the left inset, the corresponding cumulative distribution function
in the right inset. The resulting saturation magnetization Ms and initial sus-
ceptibility χ0 are listed as well. (b) The effective magnetic moment mch obtained
via the chord slope (Eq. 3) from the data (red dots) and the fitting function
(solid blue line). The corresponding cv (Eq. 4) is listed. The blue arrow points to
the value of the corresponding geometric mean (Eq. 5). (c) The effective
magnetic moment mta obtained via the tangential slope (Eq. 6) from the data
(red dots) and the fitting function (solid blue line).
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The red dots are obtained directly from the data, which does not cause
any problem for large values of Be, but becomes difficult near the
origin, where both Be andM are small. A careful calibration of the offset
of the measured magnetization field is therefore crucial here. We do
that by fitting a second order curve

= + +M a a B a B a a a, with parameters , ,0 1 2
2

0 1 2

to the data in a neighborhood of the polarizing field where the mea-
sured magnetization changes sign. The correction term for the magnetic
field data is then obtained as

= − ± −B a
a

a
a

a
a2 4

.offset
1

2

1
2

2
2

0

2

The smaller one of these two solutions is subtracted from the measured
values of the polarizing field to ensure that the average magnetization is
very close to zero for =B 0e . Note that this method does even work
when the magnetization data contain hysteresis, provided that the
magnetization curve is measured in both directions. This was indeed
done for the measurement presented here.

The solid blue line in Fig. 1(b), on the other hand, is obtained from
the quad-disperse fitting function. Its analytic representation causes no
problem with regard to taking the ratio of two small numbers. The solid
line agrees fairly well with the discrete values obtained directly from
the data. The comparison brings out a small asymmetry with respect to
the sign of the polarizing field for the discrete data points, which the
symmetric ansatz for the quad-disperse fitting function cannot produce.

The maximum value of the effective magnetic moment corresponds
to the arithmetic mean of the magnetic moments of the particles ma,
and the asymptotic value for large Be to the harmonic mean mh, as
explained in more detail in Ref. [1].

Their difference −m ma h is a direct order parameter for the amount
of polydispersity: It is zero for a monodisperse distribution and in-
creases with the width of the distribution. In fact, this difference di-
vided by the harmonic mean provides an estimator for the relative
standard deviation (RSD, also called coefficient of variation cv). More
precisely, we obtain the coefficient of variation as

= −c m m
m

.v
a h

h (4)

Its value is listed in the upper part of Fig. 1(b).
Additionally, an estimator for the geometric mean is obtained by

=m m m .g a h (5)

It is provided in the figure as well, and its value is indicated by the blue
arrow pointing to the corresponding location on the vertical axis.

Note that the calculations leading to cv and mg are only correct for
certain distribution functions. Among those is the log-normal distribu-
tion, which seems to be the most prominent one assumed within the
granulometric analysis of magnetization curves. It should be noted that
the log-normal distribution tends to overestimate the fraction of large
particles [7]. An alternative comparison with a gamma distribution is
presented in Ref. [1].

The small differences between the data and the fitted curve in
Fig. 1(b) become more prominent in Fig. 1(c), where the effective

magnetic moment
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∂

⎛
⎝

⎞
⎠

−m k T
B

M
M

L ,ta B
e

1

s (6)

obtained from the tangential slope, is shown [1]. Here the noise of the
discrete data points is clearly larger. However, even here the signal/
noise ratio seems good enough to extract the numbers for ma and mh,
and the corresponding guesses for the geometric mean mg and the re-
lative standard deviation cv .

3. Conclusion

We propose the superposition of a few – in our case four – Langevin
curves as an effective and precise model to describe the magnetization
curve of real ferrofluids. The four effective magnetic moments in that fit
should not be over-interpreted in the sense that they represent a dis-
tribution function of the magnetic moments. However, two character-
istic values of that function, namely the arithmetic and the harmonic
mean, can be safely read off from a plot of the slope of the inverse
Langevin function of the magnetization data. This graphical magneto-
granulometry is sufficient to get an estimate for the relative standard
deviation of the distribution function of the magnetic moments.
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The magnetic field of a cuboidal cluster of eight magnetic spheres is measured. It decays with the inverse
seventh power of the distance. This corresponds formally to a multipole named a dotriacontapole. This strong
decay is explained on the basis of dipole-dipole interaction and the symmetry of the ensuing ground state of the
cuboidal cluster. A method to build such dotriacontapoles is provided.

DOI: 10.1103/PhysRevB.98.214424

I. INTRODUCTION

Within the forces determining the interplay of condensed
matter, the dipole-dipole interaction can be considered as
the most important one, because monopoles do not exist for
neutral matter, and pure quadrupole, octopole, or hexadecapol
interaction tends to be masked by induced dipole moments.
While the interaction of quadrupoles is not too exotic [1]
and includes examples from continuum mechanics [2], pure
octopole or even higher order interaction is different. Here we
demonstrate that the combination of eight dipoles in a simple
cubic arrangement leads to a 32-pole or dotriacontapole.

The exploration of the cuboidal dipole arrangement dis-
cussed here is triggered by the investigation of magnetic
nanoparticles, which have been reported to self-assemble into
such configurations [3,4]. The most elementary cluster of
this type contains only eight particles. It can also be assem-
bled macroscopically as a cubic cluster from eight magnetic
spheres, as indicated by the left-hand side inset of Fig. 1, and
described previously [5,6]. The ground state of this arrange-
ment is stable, and an interesting continuum [5,7]. In this state,
the spheres attract each other by the magnetic interaction. The
cuboidal arrangement is an attractor, provided that the spheres
are brought sufficiently close to that configuration and are
allowed to adjust their orientation towards the ground state,
i.e., their mutual friction must not be too large. That is the
reason why the arrangement shown by the left-hand side inset
of Fig. 1 can be assembled without needing a tremendous
amount of dexterity, and in that sense the arrangement can
be considered as almost self-assembled.

While the hallmark of a dipole is its field decay with the
third power of the distance, the combination of eight dipoles
could be expected to form a 16-pole or hexadecapole with
a decay according to the sixth power. Amazingly enough, it
turns out that the ground state of a cuboidal cluster of eight
dipoles shows a field decay with the seventh power. This is

*Stefan.Hartung@uni-bayreuth.de
†Johannes.Schoenke@oist.jp
‡Ingo.Rehberg@uni-bayreuth.de

explained by the symmetry of the ensuing ground state which
make all lower-order terms vanish.

II. EXPERIMENTAL RESULTS

For reaching the ground state of the cluster, the eight
spheres should be allowed to rotate freely. For that purpose
it is useful to provide a Teflon® spacer to reduce the friction
of the spheres, as shown in the right-hand side inset of Fig. 1.
Here, the eight neodymium magnets of diameter d = (19 ±
0.05) mm are arranged in a cuboidal configuration by the
holes at the corners of the white Teflon® cube, and kept
at an edge length L = (39.5 ± 0.05) mm by means of the
nonmagnetic Teflon® spacer. A hole is drilled into that spacer
along the face diagonal, the (1,1,0) direction of the cube. This
allows us to move the Hall probe (the black tip) into the
cuboid, down to its center, by means of a stepper motor, using
0.1-mm steps. We adjust the spheres within their continuous
ground state to maximize the measured magnetic-flux density.
This is achieved by manually turning just one sphere around
the space diagonal as rotation axis; the other ones follow
accordingly due to the magnetic interaction.

The measured magnetic-flux density along the (1,1,0)
direction is shown in Fig. 1. It has a maximum at about
r = 28 mm—where the Hall probe is closest to the spheres—
and decays to zero both when approaching the center, and
when increasing the distance from the cube. The solid line
corresponds to a fit of the numerical superposition of the flux
densities of eight accordingly arranged point dipoles, as given
by (1) discussed below.

The most important feature of this cuboidal arrangement
of dipoles is the unusually steep decrease of the magnetic-
flux density outside the cube. To quantify this decrease, Fig. 2
shows the data from Fig. 1 in a logarithmic plot. It becomes
obvious that the magnetic-flux density decays with the inverse
seventh power of the distance. To characterize this magnetic
cluster with an appropriate name, it must be recalled that the
field of dipoles decays with the third power, quadrupoles with
the fourth power, and so on. In that sense, the seventh power
corresponds to a dotriacontapole.

The fact that the field is expected to be zero at that
center of the arrangement is caused by the symmetry of the
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FIG. 1. Magnetic-flux density as measured along a straight path
through the center of the cuboid. Only every 30th data point is shown.
The solid line corresponds to the numerical superposition of the flux
densities of eight accordingly arranged point dipoles with a magnetic
moment m = 3.48 J T−1. The left-hand side inset shows the principal
cuboidal arrangement of the eight magnetic spheres, and the right-
hand side inset a geometrically similar arrangement, but here with a
white Teflon® spacer. The hole in that spacer allows us to take data
inside the cuboid by means of the Hall probe, which is visible as the
black part above the hole.

ground state. The measured deviations from that value can be
attributed to geometrical and experimental imperfections: The
dipole moments are not mathematically identical; they might
not have reached their ground state due to the finite amount
of friction, and the Hall probe can reach the center of the
arrangement only with a mm precision.

The increase of the flux density with the fourth power is in
agreement with the numerical evaluation of the ground state.
According to that simulation, it even seems to be universal,
i.e., independent of the direction along which the field is
calculated. Compared to the seventh power of the decay this
fourth power seems less exotic. It is somehow reminiscent of
the field near the center of a Helmholtz pair of coils, where

FIG. 2. The magnetic-flux density measured along a path starting
from the center of the cuboid is represented by the circles. Only every
tenth data point is shown at the left-hand side of the maximum, and
every 40th data point at the right-hand side. The solid line is the same
numerically obtained curve as in Fig. 1. The dash-dotted lines are for
comparison with the expected asymptotic slopes. The dashed line
depicts the analytical solution (7) for the far field.

FIG. 3. The position r and the position vectors p� of the dipole
moments m� are taken from the center of the cluster. The orientations
of the dipoles in the continuous ground state are determined by the
angle τ . The dipole configuration is sketched here for τ = 90◦, which
corresponds to the largest negative value of Bz along the (1,1,0)
direction.

the second-order terms vanish at a singular value of the coil
distance.

III. THEORY

The scalar potential φ at position r for a distribution of N

dipoles with position vectors p� and dipole moments m� (see
Fig. 3) is given by

φ =
N∑

�=1

m� · (r − p�)

4π |r − p�|3 . (1)

This equation is expected to describe the cluster field, because
the individual spheres have a pure dipole field, in agreement
with the theoretical expectation for homogeneously magne-
tized spheres [8] and our measurements presented in Ap-
pendix A. The numerical results of this equation correspond
to the gray lines in Figs. 1 and 2.

To explain the behavior of the magnetic-flux density B in
the far field, we perform a multidipole expansion, where the
potential is expanded in a series for |p�| � |r|,

φ =
∞∑

ν=0

1

ν!

N∑
�=1

∂νφ

∂pν
�

∣∣∣∣
p�=0

· (p� ⊗ · · · ⊗ p�︸ ︷︷ ︸
ν times

).

As an example, the quadrupole (second term in the expansion)
reads

φ(2) = 1

4π |r|5
N∑

�=1

[3(m� · r)r − |r|2m�] · p�

= 1

4π |r|5
N∑

�=1

[3 m� ⊗ p� − (m� · p�)I︸ ︷︷ ︸
M2

] · (r ⊗ r),
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with the second-order unit tensor I. The second-order tensor
M2 is the quadrupole moment. Using Cartesian coordinates
p� = (px

� , p
y

� , p
z
� ), m� = (mx

�,m
y

� ,m
z
�) and r = (x, y, z), we

obtain

φ(2) = 1

4π |r|5

⎡
⎢⎢⎢⎢⎢⎣

N∑
�=1

(
2px

� m
x
� − p

y

� m
y

� − pz
�m

z
�

)
︸ ︷︷ ︸

M2
200

x2

+ 3
N∑

�=1

(
px

� m
y

� + p
y

� m
x
�

)
︸ ︷︷ ︸

M2
110

xy + · · ·

⎤
⎥⎥⎥⎥⎥⎦.

M2
ijk are the Cartesian components of the moment M2

with i + j + k = 2. Using the moments, the potential can be
written as

φ =
∞∑

α=1

φ(α) =
∞∑

α=1

1

4π |r|2α+1

∑
i+j+k=α

Mα
ijk xiyj zk. (2)

The cube ground state [5,9] is a highly shielded structure. For
a cube with edge length L and dipole moment magnitudes
|m�| = m we have

(dipole) M1
ijk = 0,

(quadrupole) M2
ijk = 0,

(octopole) M3
ijk = 0, (3)

(hexadecapole) M4
ijk = 0,

(dotriacontapole) M5
311 = C sin(τ + π/3),

M5
131 = C sin(τ + 5π/3), (4)

M5
113 = C sin(τ + 9π/3), (5)

where τ = 0 . . . 2π is the current phase angle [5,9] of
the continuous ground state as indicated in Fig. 3 and
Appendix B, and C = 105

√
3/2 L4m. There are restrictions

for the cube moments following from the symmetries of the
ground state [5]. The potential φ has to be zero in the three
planes, x = 0 , y = 0 , z = 0, as well as on the four volume
diagonals, |x| = |y| = |z|. Together with (2) this leads to
conditions for the nonzero moments Mα

ijk:

i, j, k positive, odd ⇒ α odd, and
∑

i+j+k=α

Mα
ijk = 0.

This explains why the first nonzero moments appear in the
dotriacontapole,

φ(5) = M5
311 x3yz + M5

131 xy3z + M5
113 xyz3

4π |r|11
. (6)

The magnetic-flux density is related to the potential through
B = −μ0∂φ/∂r. We parametrize the measurement along
the direction (1,1,0) with the radius parameter s through

(x, y, z) = (s, s, 0)/
√

2 and obtain the following expression
for the z component of the magnetic-flux density from (3)–(6):

Bz(s, τ ) = −μ0
∂φ

∂z

∣∣∣∣
x=y=s/

√
2, z=0

= −105
√

3/2 μ0L
4m sin τ

16πs7
+ O

(
1

s9

)
. (7)

The next order decays with |B| ∝ 1/s9 because all moments
with even α are zero.

Equation (7) is displayed in Fig. 2 by the dashed line. The
solid lines in Figs. 1 and 2 are obtained numerically from
the exact (1), with τ = 90◦ taken as the phase angle of the
continuous ground state (see Appendix C). It is amazing that
this asymptotic prediction reaches the exact solution already
at a distance of about 50 mm, which can be considered as
sheer luck from an experimental point of view, because the
field is hardly detectable for our equipment at distances larger
than 100 mm. For the measurements shown there, the angle
τ was adjusted manually to obtain the largest signal of the
Hall probe to achieve an optimal signal-to-noise ratio. This
corresponds either to τ = 90◦ or to τ = 270◦.

Note that the shape of the B(r ) curve shown in Figs. 1
and 2 is not universal, it rather depends on the direction of the
line along which the flux density is measured. The 1/r7 decay,
however, is a universal feature for all directions in the far-field
limit, |p�| � |r|.

IV. CONCLUSION AND OUTLOOK

In summary, we have demonstrated that eight spherical
permanent magnets assemble into a configuration which be-
haves like a dotriacontapole. This can be explained by a model
based on pure dipole-dipole interaction. This model is based
on symmetry considerations which are an idealization of the
experimental situation. The measurements make it clear that
the conclusions drawn from the idealization are robust against
(small) distortions, in particular the decay of the magnetic-
flux density with 1/r7—a hallmark for a highly shielded
structure—survives.

This finding implies that storing strong magnets in a cubic
packing might be the optimal way for suppressing their field in
the outer surrounding. Moreover, the extremely steep field de-
cay has remarkable consequences for the clustering dynamics:
If two dipole spheres, initially separated by say ten diameters,
needed one second to collide due to their attractive force, for
dotriacontapoles of comparable strength, this process would
take more than one year (see Appendix B). Thus, dipoles
which manage to arrange themselves in this configuration are
fairly robust against further clustering. This argument is scale
invariant. It applies to macroscopic granules in the early stages
of planet formation [10], but could also shed some light on the
self-assembly dynamics of colloidal nanomagnets [3,4] used
for medical applications [11].

The plastic spheres shown in Fig. 4 demonstrate an attempt
to build a handful of such dotriacontapoles with the help of
a three-dimensional (3D) printer. Each sphere contains eight
magnetic dipoles in a cubic arrangement. This is provided
by three perpendicular walls inside these spheres, indicated
in the left-hand side inset, and eight holes along the space

214424-3



HARTUNG, SOMMER, VÖLKEL, SCHÖNKE, AND REHBERG PHYSICAL REVIEW B 98, 214424 (2018)

FIG. 4. A cluster of 3D-printed dotriacontapoles. The inner part
of these spheres contains three perpendicular walls as indicated by
the left-hand side inset. The colored magnetic spheres of 5 mm
diameter are placed inside these plastic spheres by the eight holes
along the space diagonals, as indicated by the right-hand side inset.

diagonals, as indicated by the right-hand side inset. These
plastic spheres should thus interact with an extremely short-
ranged interaction force, which should asymptotically de-
cay with the inverse 12th power of the mutual distance—
provided that the magnetic dipoles inside a sphere are in
their ground state. Measuring such a short-range interaction
between dipole clusters provides a challenge left to be faced
in future work.
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APPENDIX A: MAGNETIC SPHERES AS DIPOLES

The magnetic spheres (MK-19-C from magnets4you
GmbH) have a diameter of d = (19 ± 0.05) mm. For explain-
ing the experimental findings with a theoretical model based
on pure dipole-dipole interaction, it is crucial to demonstrate
that these spheres can be described as magnetically hard
point dipoles. Thus, we have measured the axial component
of the magnetic-flux density Bx of a single sphere along
the x direction in a 170-mm × 20-mm xy plane, as shown
in the inset of Fig. 5. The flux density is measured by a
Hall probe (HU-ST1-184605, MAGNET-PHYSIK Dr. Stein-
groever GmbH). The 3D positioning of this probe is done
with a stepper motor (High-Z S-400T, with Zero-3 controller
from CNC-STEP), the interface (CNCPod) is programmable
in G-Code, DIN/ISO 66025. A single-board microcontroller
(Leonardo, Arduino) is additionally used for interfacing it to
a PC.

To emphasize deviations from the point dipole approxi-
mation, and to extract the underlying magnetic moment, we
make use of the theoretically expected flux density of a point

FIG. 5. The inset shows Bx(x, y ) measured in a plane, color
coded in red for strong fields to blue for weak ones. The direction
of the x coordinate is chosen to be parallel to the dipole moment m
and forms a horizontal plane with the perpendicular coordinate y. An
estimator for the magnetic moment is obtained from these data with
(A2). The result is displayed as a function of r by the circles. The
dashed line represents the mean value m1 of these data.

dipole [8],

Bx = μ0

4π

m (3 cos2� − 1)

r3
, (A1)

with � = arctan(y/x), r =
√

x2 + y2 measuring the an-
gle between the dipole moment and the position vector,
and the magnetic constant μ0. With the shorthand notation

4π
μ0(3 cos2�−1) = f�, this provides the magnitude of the mag-
netic moment,

m = Bxr
3f�. (A2)

The resulting m as a function of the measured value of
Bx(x, y) is plotted in Fig. 5 as a function of the distance of
the Hall probe from the center of the sphere. The increasing

FIG. 6. Data obtained from the measurements of the magnetic-
flux density Bx of two spheres in contact. The raw data are shown in
the inset, and the solid line shows the calculated superposition of two
dipole fields. Bx scaled with x32π/μ0 is shown in the larger plot. The
horizontal dashed line represents the sum of the magnetic moments
of the isolated spheres. The dashed vertical line represents the origin
at the contact point of the spheres.
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scatter at larger distances r is caused by the fast decay of
the magnetic-flux density. Based on these data, it seems
safe to conclude that the point dipole approximation for the
magnetic-flux density of the sphere is reliable within ±2 %.
The mean value is (3.51 ± 0.18) J T−1, which is well within
the (3.54 ± 0.11) J T−1 claimed by the manufacturer. We have
measured all eight dipoles used in the experiments described
here in a similar way, they differ by an amount of ±3%.

To measure the mutual influence of such magnetic spheres,
we brought them in direct contact as shown in the left-hand
side inset of Fig. 6. The measured flux density along the
axis of the resulting two-dipole cluster is shown as the right-
hand side inset in Fig. 6. The position of the Hall probe
is measured as the distance from the center between the
spheres. The data reveal roughly the typical 1/x3 descent of a
dipole, but deviations from that scaling are hard to judge from
this inset plot. To get a better resolution for the deviations
from the overall 1/x3 decay, the data were multiplied with
x3. After scaling with 2π/μ0 one gets an estimate for the
magnetic moment, which is displayed on the vertical axis
of Fig. 6. These scaled data decay monotonically with the
position x and reach the value of the sum of the two magnetic
moments asymptotically, which is indicated by the dashed
line. The solid line is the theoretical estimation, based on
the superposition of the fields of the individually measured
moments m1 = 3.51 J T−1 and m2 = 3.50 J T−1, with their
mutual distance given by the diameter of the spheres. The
good agreement between this curve and the data indicates
that the magnets are hard ones: Their magnetic moment stays
constant even under the influence of the immediately adjacent
other magnet, at least within the experimental resolution on a
percentage level.

APPENDIX B: DIPOLE ORIENTATION IN THE CUBE
GROUND STATE

The dipole orientation within the ground state of the
cuboidal cluster can be parametrized by a single parameter,
namely the phase angle τ = 0◦ . . . 360◦ [5,9]. The configura-
tion for the angle τ = 90◦ is illustrated in Fig. 3. The source
code of a Python script animating this state together with the
corresponding fields for adjustable values of τ is available
[12]. The exact positions and orientations of the dipoles with
respect to τ are provided by Table I.

APPENDIX C: ASSEMBLY TIME FOR DIPOLES VERSUS
THAT FOR DOTRIACONTAPOLES

The time Tm for two multipoles of diameter d starting at
a distance of 10d to come into contact under the influence of

TABLE I. Description of pi and mi in the cube ground state.

i pi mi · √
3/2/m

1

⎛
⎝ 0.5

0.5

0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

−sin(τ − 120◦ )

−sin(τ )

⎞
⎠

2

⎛
⎝ 0.5

0.5

−0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

+sin(τ − 120◦ )

−sin(τ )

⎞
⎠

3

⎛
⎝ 0.5

−0.5

0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

−sin(τ − 120◦ )

+sin(τ )

⎞
⎠

4

⎛
⎝ 0.5

−0.5

−0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

+sin(τ − 120◦ )

+sin(τ )

⎞
⎠

5

⎛
⎝−0.5

0.5

0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

+sin(τ − 120◦ )

+sin(τ )

⎞
⎠

6

⎛
⎝−0.5

0.5

−0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

−sin(τ − 120◦ )

+sin(τ )

⎞
⎠

7

⎛
⎝−0.5

−0.5

0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

+sin(τ − 120◦ )

−sin(τ )

⎞
⎠

8

⎛
⎝−0.5

−0.5

−0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

−sin(τ − 120◦ )

−sin(τ )

⎞
⎠

their mutual attraction—a characteristic time for the dynamics
of the self-assembly of magnetic clusters [3,4]—is obtained
by integrating over their inverse velocity. When assuming that
these particles are suspended in a viscous fluid, that velocity is
proportional to the attractive force (Stokes’s law). T2 denotes
the pair of dipoles, T32 denotes the pair of dotriacontapoles.
The attracting force of these multipole pairs is assumed to be
the same when they are in contact at the distance of 1d,

T32

T2
=

∫ d/2
5 d

1
v32

dr∫ d/2
5 d

1
v2

dr

v∝F=
∫ d/2

5 d
−(

2 r
d

)12
dr∫ d/2

5 d
−(

2 r
d

)4
dr

= 5

13

1013 − 1

105 − 1
≈ 0.4 × 108.

This ratio turns, e.g., 1s for a dipole pair into 1a for the
corresponding pair of dotriacontapoles: They are fairly robust
against further clustering.
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Abstract The coupling of two rotating spherical magnets is investigated experimentally. For two specific
angles between the input and output rotation axes, a cogging-free coupling is observed, where the driven
magnet is phase-locked to the driving one. The striking difference between these two modes of operation is
the reversed sense of rotation of the driven magnet. For other angles, the experiments reveal a more complex
dynamical behavior, which is divided in three different classes. This is done by analyzing the deviation from
a periodic motion of the driven magnet, and by measuring the total harmonic distortion of this rotation. The
experimental results can be understood by a mathematical model based on pure dipole–dipole interaction, with
the addition of adequate friction terms.

Keywords Couplings · Gears · Permanent magnets · Permanent magnet machines · Rotating machines

1 Introduction

Magnetic gears have advantages: The input and output are free of mechanical contact. Thus, they are not
subject to mechanical wear, need no lubrication, and operate with reduced maintenance. Moreover, they
possess inherent overload protection, are noiseless, and highly reliable [1].

With the appearance of strongmagnets based on alloys of rare-earth elements, the interest inmagnetic gears
based on permanent magnets grew because of increased torque transmission capabilities [2–5] and continues
to do so today [6].

An interesting type of a magnetic gear based on pure magnetic dipoles has been proposed in 2015 by J.
Schönke [7]. Inspired by his former work on a sevenfold magnetic clutch [8], he demonstrated theoretically
that two magnetic dipoles could couple in two cogging-free modes, provided that the angles of the two rotation
axes follow a certain algebraic condition. Almost pure dipoles are indeed commercially available in the form of
spherical permanentmagnets, as has been demonstrated experimentally [9]. A first experimental demonstration
of the principle of this gear using such spherical magnets concentrated on static aspects [10]. In this paper, we
provide measurements of the dynamical behavior of such a gear. Moreover, we compare these measurements
with numerical simulations of the dynamics of two coupled magnetic dipoles.

S. Hartung (B) · I. Rehberg
Experimental Physics V, University of Bayreuth, Bayreuth, Germany
E-mail: Stefan.Hartung@uni-bayreuth.de
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2 Experimental setup

Fig. 1 shows the experimental setup, which is very similar to the one described by Borgers et al. [10]. The
two spherical neodymium permanent magnets have a diameter of 19mm and are each attached to a shaft with
their dipole moment aligned perpendicular to the rotation axis with a precision of about 3◦. Both axes lie in
the horizontal plane. The bearings are non-magnetic and electrically non-conducting. The input shaft runs in a
bearing that consists of a plastic cage with glass beads, which has been constructed in our in-house workshop.
It is connected to a stepper motor by an 80cm long brass rod to suppress any magnetic interference between
the motor and the spherical magnets. The output shaft runs in two industrial full ceramic deep groove ball
bearings made out of silicon nitride, in which it can rotate freely [11].

To track the orientation of the dipolem2, the end of the output shaft is covered with a white surface marked
with a black line which is recorded by a CCD-camera. The stepper motor and the CCD-camera are both
connected to a computer. The input dipole angle α (see Fig. 2) is detected by a signal from the stepper motor
yielding a resolution of 7.2◦. The output dipole angle β is obtained by digitally processing the image of the
black line marker. As an additional feedback to track α, a commercial wireless acceleration sensor is located
on the brass rod that drives the input [12]. The position of the output shaft is fixed on a granite table, while
the input shaft can be oriented freely on the surface of the table. An interchangeable spacer keeps the distance
between the dipoles constant during a set of experiments, while the relative orientation of their rotation axes
can be varied.

The system geometry is further explained in Fig. 2. The x-axis is determined by the connection between
the two dipoles r12. The y-axis lies in the plane defined by r12 and the shaft axes. The results shown in this
article stem from experiments with parallel rotation axes of input and output so that Θ ≈Φ applies.

Fig. 1 Experimental setup: The input SI and output SO axis aremarked by dashed red lines. The rotations of themagneticmoments
m1 andm2 (red arrows) are marked by α and β. The spacer R keeps the distance r12 between the dipole centers. Their connecting
line (dotted yellow) forms the input (output) shaft angle Θ (Φ) with the input (output) axis. The inset shows the marker for the
optical data readout at the front end of SO

Fig. 2 Coordinate system defining the orientation angles. The x-axis connects the center of the input (left sphere) with that of
the output magnet (right sphere). Their distance is r12. The rotation axes of the magnets (blue arrows) lie in the x-y-plane. Their
angle toward the x-axis is Θ (Φ) for the input (output). The orientation of m1 and m2 (thick arrows) is marked by α and β
measured against the x-y-plane
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Fig. 3 Temporal evolution of β for a locked input angle α0, and shaft angles Φ =Θ =31◦. The elapsed time starts with the release
of the output from the unstable equilibrium position. The formula in the top right is fitted (red curve) to the measured data points
(black dots). Red letters show the fit parameters and their respective values

3 Quantifying system parameters

While the work of Borgers et al. focused on the static equilibrium conditions of a magnetic clutch [10], this
article shows the dynamic behavior of the output when the input magnet is driven with a constant frequency.
Thus, friction is an important additional parameter in our system which we determine experimentally by
keeping the input angle fixed and analyzing the oscillation of the output around its equilibrium position.
Following refs. [7,10], the equilibrium position for the angle β0 of the output as a function of a fixed input
angle α0 can be written as

β0 = arctan

(
1

Δ
tan(α0) + k · π

)
, k ∈ N0. (1)

Here, Δ �= 0 is the shaft orientation index of the input and output shaft angles Θ and Φ and writes as

Δ = cosΘ cosΦ − 2 sinΘ sinΦ. (2)

In an ideal systemwithout friction, the oscillation the output will undergowhen turned out of its equilibrium
position is therefore described by

β̈ + κ sin(β − β0) = 0, (3)

where κ is the restoring coefficient defined by

κ =
(
dτax

dβ

)
· 1

Iax
= D

Iax
. (4)

Here, τax is the torque on the output, Iax is its moment of inertia, both along its rotation axis, and D is the
directional constant. For any real coupling, however, this equation is unsatisfactory, since the ball bearings are
prone to friction.

To quantify the influence of friction,we conduct a damped oscillation experiment inwhich the input rotation
is prevented while the output magnet can rotate freely. We first turn the output magnet out of its equilibrium
position until the restoring moment reaches its maximum. From there, we release the output magnet and record
its damped oscillation with the camera. An exemplary result of such a measurement can be seen in Fig. 3. We
make 20 suchmeasurements, eachwith a different locked input angle α0. The output and input shaft are parallel
to each other with constant shaft angles Θ =Φ = (31±3)◦. The relatively high uncertainty stems from the fact,
that a small tilt of the magnets in their sockets is difficult to avoid during their fixation in our setup, as well as
small deviations from the parallel alignment.

We evaluate our model by fitting it to the data points. We find that the addition of a single, dry friction-
related term is not sufficient to give a good representation of the experiment. The data implies that we need
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(a)

(b)

(c)

Fig. 4 Summary of the fit parameters (black dots) from damped oscillation experiments. The gray dotted lines are guides to the
eye. In graph (a), the red line is the result of a theoretical calculation for Θ =31◦ with its uncertainty shown by the red area. In
(b) and (c), the red line indicates the arithmetic mean of the data points

another, rotation frequency-dependent friction parameter to describe the oscillation. By consideration of these
aspects, (3) changes toward

β̈ + ζ β̇ + η sgn(β̇) + κ sin(β − β0) = 0. (5)

Here, we call ζ the damping torque coefficient that takes account for the fluid-like friction in our system. The
dry friction is represented by η, the friction torque coefficient, defined by

η = τfr

Iax
= μ F

dcyl
2

Iax
, (6)

with τfr being the friction torque for a normal force F on the bearings, a rotating cylinder of diameter dcyl and
a sliding friction coefficient μ.

For a realistic model of the output response, we need estimates for the values of ζ and η. Therefore, we fit
(5) to our sets of data for different α0 with ζ , η, κ as the fit parameters. We decide to fit β0 as well. This is
more precise than calculating β0 from (1). While the value of β0 is not interesting, the obtained values of the
other fit parameters are shown in Fig. 4 for the respective locked input angles.

The values obtained for
√

κ are shown in the top panel. To compare them with a theoretical estimate, we
calculate its value starting from (4). The torque τ is caused by the dipole–dipole interaction and reads

τ = m2 × B1. (7)
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Here, B1 is the magnetic flux density of the input magnet

B1 = μ0

4π

3 (m1 · r) r − m1r2

r5
, (8)

while the magnetic moment of the input magnetm1, of the output magnet m2 and the distance vector r are

m1 = m1

⎛
⎝− cosα sinΘ

cosα cosΘ
sin α

⎞
⎠ ,

m2 = m2

⎛
⎝− cosβ sinΦ

cosβ cosΦ
sin β

⎞
⎠ , r = r

⎛
⎝1
0
0

⎞
⎠ .

(9)

Since the output can only rotate around the shaft axis, only the component τax of the torque along the shaft
is of interest. We calculate it as

τax = τ

⎛
⎝cosΦ
sinΦ
0

⎞
⎠ . (10)

With (2), (7), (8), (9) this becomes

τax = μ0

4π

m1m2

r3
(− sin α cosβ + Δ cosα sin β) . (11)

The moment of inertia of the output shaft Iax is difficult to estimate. Reasons for this are the spacers on
both shaft ends, the additional moment of inertia from the bearing balls, and the different densities between the
permanent magnet and the rest of the shaft material. We therefore treat it as a fit parameter in the calculation
of κ . With (11), we get

κ = μ0m1m2

4πr3 Iax
(sin α0 sin β0 + Δ cosα0 cosβ0) (12)

We measured the magnetic dipole moments of the input and output in a former work as m1 = m2 =
(3.51±0.11) JT−1 [9]. The distance between the magnets is r = (40.0±0.5)mm. With this, we fit

√
κ via Iax

according to (12) to the data for different α0. The result is seen as the red line in the top panel of Fig. 4. The
red shaded area marks the uncertainty of the fitted curve that stems from the variation of the constants within
their measurement accuracy. The fitted value for the moment of inertia is

Iax = 6.45 · 10−5 kgm2. (13)

The complete output shaft has a mass of m = (320±1) g, which corresponds to a radius of gyration of

rgyr =
√

Iax
m

= 14.2mm. (14)

By approximating the output shaft as a circular cylinder and its mass to be homogeneous, its effective diameter
is

deff = 2
rgyr√
2

= 40.16mm. (15)

This is a reasonable result, since the inside diameter of the bearings that hold the shaft is dcyl = (30.0±0.1)mm
and the diameter of the spacers on the shaft ends is dspacer = (50.0±0.1)mm.

We see in Fig. 4 that the experimentally obtained values for κ are in good agreement with the theoretical
prediction. Nevertheless, the fact that the red curve leads to systematically higher values at the maxima and
lower values at the minima indicates that the actual shaft angles might be slightly smaller than what we
measured at the spacer position.

The middle and bottom panels of Fig. 4 show the fitted values for ζ and η. Their relative variation is up to
approximately 100%. Any dependence on α0, however, we interpret as shortcomings of our setup that hold no
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further information. We therefore simply take the arithmetic means of both data sets, which are shown as the
horizontal red line in the respective graph and get

ζ = (1.1 ± 0.4) s−1

η = (23.1 ± 9.9) s−2.
(16)

The sliding friction coefficient μ is determined from (16) and (13) and yields

μ = η I

F
dcyl
2

= η d2eff
4 g dcyl

= 0.031 ± 0.014, (17)

with g being the gravitational constant. For the dry sliding friction coefficient between two surfaces of silicon
nitride (Si3N4), the material of the bearing balls and cage, we find a way higher value of μ=0.17 in the
literature [13–15]. However, one has to keep in mind that we calculated the friction coefficient for a system
with rolling balls instead of sliding ones. Aramaki et al. investigated the friction of a Si3N4 bearing and found
that values for μ vary from 0.01 to 0.05 depending on the applied load and the spinning velocity of the balls
[16]. This is in good agreement with our result.

4 Output response for finite driving frequencies

We now want to analyze the response of the output magnet while the input magnet is driven with a constant
rotation frequency. From measuring β, we calculate the angle difference δ between input and output as

δ = β − α. (18)

We do so for parallel rotation axes and different shaft angles Θ =Φ and driving frequencies f .
Three examples of these measurements are shown for Θ =31◦ in Fig. 5. Each of them features a unique

response of the output. In the bottom panel, δ is periodic with a full rotation of the input, which we call
T -periodic. The middle panel shows δ to be periodic with a half rotation of the input, i. e., T/2-periodic. In
the top panel, the answer of δ is seemingly non-periodic, chaotic.

We find that after a short settling phase, each of our measurements falls in one of these categories. An
objective tool for differentiation is by the method shown in the flowchart on the right-hand side of Fig. 5. We
first make a multi-harmonic fit δharm to the data

δharm =
(

7∑
i=1

ai sin i α + bi cos i α

)
+ b0 (19)

with a1,...,7 and b0,...,7 as the fitting parameters. Here, i =1 marks a response with the fundamental mode of
the input while i =2, ..., 7 are the respective higher harmonics. The first decision is done regarding whether
the output behaves chaotically or is answering periodically. For this, we calculate the root mean square (RMS)
of the difference between δ and δharm for the last 10 rotations of a measurement where 50 positions of α are
detected for each rotation, namely

RMS =
√√√√ 1

500

5000∑
m=4501

(δm − δharm(αi ))2. (20)

We find that RMS > 20 serves well to be characteristic for a chaotic output. To differentiate between T
periodicity and T/2 periodicity, we calculate the total harmonic distortion (THDF) of δharm as

THDF =
√∑7

i=2 (a2i + b2i )

a21 + b21
. (21)

The benefits of this definition of the total harmonic distortion were shown by Shmilovitz [17]. For THDF =1,
the amplitudes of all harmonic modes of δ together are just as big as the fundamental one. We use THDF >1
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(a)

(b)

(c)

Fig. 5 Scheme for differentiating between three types of output rotation. The right-hand side shows a logical flowchart. On the
left-hand side an exemplary graph for each kind is provided. α is depicted modulo 360◦. For each plot, the response to the last 10
of 100 full rotations of the input is shown. Non-periodic response is marked in (a) by empty circles. Circled crosses in (b) denote
T/2 periodicity, and circled dashes in (c) T periodicity. The red lines show the results of the harmonic fits (19) to the data points

to identify the case of T/2 periodicity. For smaller values, the fundamental mode prevails and δ is seen as
T -periodic.

To further investigate the transition between these phases, δ is shown in Fig. 6 for different driving fre-
quencies of the input f at constant shaft angles Θ =Φ =31◦. This way of presenting the data is adopted from
the work of Borgers et al. [10]. It is explained by a more detailed diagram in the top part of Fig. 6.

The frequencies shown in the bottom part are chosen as such that the polar diagrams give a good rep-
resentation of the phases observed in the experiment and displayed on the left-hand side. For each plot, the
measurement started from the resting position of the input at α =90◦ and the output at β =270◦. This is followed
by a settling phase of 90 input rotations. The data that are shown stem from the next 10 input rotations.

For f =1.00Hz, the experimentally observed δ seems to behave chaotically. When f is increased up to
1.07Hz, T/2 periodicity of δ is observed. The thickness of the line indicates the experimental noise. Both at
1.33Hz and at 1.48Hz T/2 periodicity can be seen as well—the pattern clearly is symmetric with a 180◦ turn
of α. This is clearly not the case anymore for 1.63Hz and 1.65Hz where we enter the T -periodic regime. At
1.68Hz, we observe seemingly chaotic behavior again.

Simulated results for δ are shown on the right-hand side for the respective driving frequencies. They were
derived using a model similar to (5) except for a change in the last summand, because the magnetic torque is
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Fig. 6 Polar diagrams with radial distance δ and azimuthal angle α for different driving frequencies of the input (Θ =31◦). The
graphs each show the last 10 of 100 full rotations of input angle. Experimental results are shown in blue, the simulation in red.
The top shows an expanded diagram simulated for 2.08Hz. The arrows on the left-hand side mark the respective input driving
frequencies
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(a) (b)

Fig. 7 Color map of the standard deviation of δ for different shaft angles Θ and driving frequencies f . a Shows experimental
data, b stems from a numerical simulation. Each data point is represented by a marker: circles indicate chaotic response, crosses
T/2 periodicity, and dashes T periodicity

now time-dependent. With the use of (11), (13) and (16), we get

β̈ + ζ β̇ + η sgn(β̇) + gτ (− sin α cosβ + Δ cosα sin β) = 0, (22)

with

gτ = μ0

4π

m1m2

Iax r3
. (23)

We solve this equation for β numerically, with discrete time steps

Δt = 1

n f
, (24)

with f being the driving frequency of the input and n = 50.
For 1.00 Hz, the simulation differs qualitatively from the experiment: the response is 3 T -periodic. At 1.07

Hz, the simulation creates a chaotic response. We see a T -periodic response at 1.33Hz and a T/2-periodic
response at 14.8Hz. For 1.63Hz, 1.65Hz and 1.68Hz, the simulated data appears to be chaotic.

In a recent work of Haugen and Edwards, it was shown that the free oscillation of two magnetic dipoles in
a plane does not feature chaotic behavior, contradictory to their own intuition [18]. This is not in contradiction
with our findings here, because they did not take an externally driven magnet into account. This adds one
degree of freedom to the system, thus allowing for chaotic motions.

In summary, both experiment and simulation create similar dynamical scenarios, but a quantitative match
cannot be achieved due to the simplicity of our model.

In order to further investigate qualitative changes in the dynamics of the output magnet in our experiment,
the measurement of δ is shown in Fig. 7 as a color map for different parallel shaft angles Θ =Φ and driving
frequencies f . The experimental data shown on the left-hand side can be compared to a simulation of (22) with
appropriate parameters shown on the right-hand side. In both cases, phases of chaotic behavior are surrounded
by periodic phases with high standard deviation of δ which stem from oscillations with high amplitudes.

The shaft angles near Θ =0◦ and Θ =54.74◦—the cogging-free cases [7,10]—are characterized by a
minimum of RMSδ =

√
Var(δ). Once the shaft angles approachΘ =35.26◦, we reach a maximum of this value.

This is the position where the highest cogging occurs, accompanied by a change of the sense of rotation of
output angle β. We conclude that the cogging of this magnetic gear is an important factor for the onset of
chaotic motion.

It is interesting to note that the red highlighted area of higher oscillation amplitudes is widest spread at
driving frequencies near f =1.3Hz. A possible reason for this could be the reaching of a resonance frequency
of the output shaft. This might also explain why chaos is predominantly observed near that frequency.

While the experimental results summarized in Fig. 7 are restricted to the parameter range accessible in our
experiment, we provide an expanded range in Fig. 8, where the data are based on purely numerical simulation.
The whole range of shaft angles for parallel alignment is analyzed with increasing driving frequencies for each
configuration that range from 0.1Hz up to 100 Hz and is shown on a logarithmic scale.
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Fig. 8 Diagram similar to Fig. 7, but limited to simulated data points. The step width in Θ is 5◦, and 0.02Hz in f

While the symbols and color map are the same as in Fig. 7, we now free ourselves from the restriction
of using the steady state as an initial condition for each new driving frequency as done in the experiments.
Instead, the driving frequency is now increased in a semi-static way for each shaft angle. After each frequency
increase of 0.2Hz, a waiting time of 1000 rotations is implemented. The starting geometry for each new Θ is
α =0◦ and β =180◦.

A striking feature is the symmetry breaking between Θ =−30◦ and Θ =30◦ above f =20Hz. This can be
explained by our starting configuration, which breaks the mirror symmetry between positive and negative Θ
values. Moreover, it clearly indicates that multi-stability is present in this regime.

Outside the immediate surrounding of the cogging-free shaft angle configurations, e. g. at Θ =25◦, a
maximum of RMSδ is seen near f =1.25Hz. For further increase in driving frequency, the amplitude decreases
but forms a second maximum at f ≈2.5Hz. This marks a window of T -periodic response of the output in an
otherwise T/2-periodic surrounding and can be seen in detail in Fig. 9.

If f is increased even further, RMSδ remains small until a certain frequency threshold. Beyond that, the
input is no longer locked to the output, the output rather slips through. A more detailed investigation of this
transition is shown in Fig. 10.

An interesting feature of Fig. 8 is the transition from T/2 periodicity to T periodicity, occurring e. g. at
Θ =25 ◦ near f =2.2Hz. This period-doubling transition is examined in detail in Fig. 9. We simulated this
transition by changing the driving frequency in a quasi-static manner, i. e., after every frequency change the
simulation of (22) was allowed to relax into an equilibrium situation. This protocol was applied both for
increasing and decreasing frequency steps to cope with the hysteresis in this transition.

In the bottom panel of Fig. 9, the reciprocal of the total harmonic distortion THD−1
F is shown. Its values

are effectively zero below 1.8Hz and above 2.5Hz. In between these frequencies, we see a drastic change
toward finite values of THD−1

F that reach a maximum around 2.1Hz. Hysteresis is clearly present from 1.9Hz
to 2.5Hz, between increasing and decreasing driving frequencies. At 2.5Hz as small deviation between the
increasing and decreasing branch can also be observed. This is presumably caused by the critical slowing down
of the dynamics near this period-doubling bifurcation.

Themiddle panel shows δfund, the fundamentalmodeof the discreteFourier transformof the angle difference
δ(t). Its values are zero where THD−1

F is zero, and they are finite in the same regime as well. However, for
decreasing driving frequencies, δfund reaches its maximum at a lower f than THD−1

F at about 1.9Hz. This
plot is especially well-suited to illustrate that we are dealing with a supercritical period-doubling bifurcation
at 2.5Hz with the characteristic square root increase in the order parameter δfund. The bifurcation at 2.1Hz is
subcritical, on the other hand. Its unstable branch gains stability in a saddle-node bifurcation at 1.85Hz [19].

The two insets in the middle panel show the trajectories of β(α) and the corresponding magnetic field
energy

E(α, β) = μ0

4π

m1m2

r3
(sin α sin β + Δ cosα cosβ) (25)
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(a)

(b)

(c)

Fig. 9 Numerical simulation of the transition between T -periodic response and T/2 periodicity for increasing (open squares)
and decreasing (solid circles) driving frequencies (Θ =25◦). The connecting lines are guides to the eye. The left inset shows a
T -periodic phase trajectory at f =2.1Hz, the right inset a T/2-periodic trajectory at f =2.7Hz. The background color of the
insets indicates the strength of the magnetic field energy (valleys in blue, hills in red)

of the output dipole m2 in the field of the input dipole m1, color coded in the background. The left inset was
taken for decreasing frequencies at f =2.1Hz. The evolution in the range 0◦ − 180◦ of β(α) is substantially
different from the evolution in the range 180◦ − 360◦, a clear manifestation of T periodicity.

The right inset shows the behavior for decreasing frequency steps at f =2.7Hz. The trajectory is now similar
in the first and the second half of the driving cycle, a clear indication of T/2 periodicity.

The top panel shows the calculated value δavg averaged over one full rotation of the input. It measures the
average lag between the output and the input angle. The hysteresis also finds a manifestation in this lag. δavg
slightly increases with an increase in driving frequency for f >2.5Hz. This is due to the increased damping
caused by the liquid-like friction. Below 1.8Hz, one can observe a local minimum of δavg. We cannot provide
a simple explanation for this minimum, but it might be connected to the resonance phenomenon near 1.25Hz,
mentioned in the discussion of Fig. 8.

Fig. 8 clearly indicates that the output of the gear might slip through for any Θ , provided that the driving
frequency is large enough. Understanding the nature of this transition is of greatest technological interest for
the practical application of the gear. Thus, we simulated this transition by applying the same procedure used
to calculate Fig. 9. The results for Θ =0◦, the fundamental cogging-free coupling geometry, are presented in
Fig. 10. Starting at a small driving frequency of 1Hz, the output is locked to the input in the sense that a
constant angle difference δ is asymptotically achieved. This locked state is illustrated by the yellow line in the
upper inset of Fig. 10, which yields from a simulation at a driving frequency of 6Hz. The background color
of the inset indicates the strength of the magnetic field energy given by (25). In the locked state, the yellow
trajectory remains in the valley of the minimal energy configuration indicated in blue. Increasing the driving
frequency leads to an increase in the locked angle according to

δlock = arcsin

(
ζ β̇ + η

gτ

)
+ 180◦, (26)

which is determined from (22) by assuming β̈ = 0.
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(a)

(b)

Fig. 10 Numerical simulation of the transition between the locked and unlocked operation mode for increasing (open squares)
and decreasing (solid circles) driving frequencies. a shows the locked state, together with the stable (black line) and unstable
(dashed gray line) branch of its analytical solution. b shows the slip-through state, where the dashed green line is a guide to the
eye. The insets both show a phase trajectory at 6Hz., with the same coding used as in Fig.9

The locked branch starts at a finite value of 184.4◦ determined by the solid state friction for a driving
frequency f → 0Hz. The branch terminates in a saddle node bifurcation a value of 270◦ for a driving frequency
fc =

gτ −η
2πζ

determined by both friction coefficients. It is interesting to note that the numerical simulation of
this branch loses stability slightly before reaching the saddle node bifurcation located at 270◦. This can be
explained by the distortion caused by the finite frequency steps of about 1Hz in the numerical simulation.

In the unlocked slip-through state, which is reached after a transient following the instability of the locked
state, the output almost ceases to move expect for a relatively small wiggling. The lower inset provides an
example for the phase trajectory at a driving frequency of 6Hz. At this frequency, a clear back and forth move-
ment of the output can be seen, while the net rotation frequency determined by the difference β(360◦)−β(0◦)
is less than 1% of the driving frequency and thus barely visible. This net rotation frequency is indicated by
the solid green circles in Fig. 10b. Decreasing the driving frequency leads to an increase in this slow rotation.
The slip through branch terminates near 5Hz, i.e., the width of the hysteresis spans over 80% of the width of
the locked state. For most technical applications, this hysteresis would presumably have to be avoided. This
is done by working below that critical frequency, namely 5Hz in our case. This frequency could be increased
by using a stronger magnetic coupling gτ .

5 Conclusion and outlook

In this work, the dynamic response of a particular magnetic gear based on pure dipole-dipole coupling is
analyzed experimentally for the first time. A mathematical model for the dynamics of the output shaft is
proposed, which includes two types of friction in the bearing. This simplifiedmodel describes the experimental
findings on a semi-quantitative level. In particular, it can reproduce T periodicity, T/2 periodicity, and chaotic
responses. Moreover, it enables us to understand the nature of the bifurcations between these different states.
Most importantly, it helps us to clarify the parameter range for a safe operation of this magnetic gear: The
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driving frequency needs to be sufficiently low, and shaft angles need to be sufficiently far from Θ =35.26◦,
the angle where the output rotation changes its sign.

The mathematical model revealed 3T periodicity in a small parameter range, which has not been seen in
the experiment. Understanding this discrepancy is the goal of ongoing work.
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