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Differential forms on log canonical spaces in positive characteristic

Patrick Graf

Abstract

Given a logarithmic 1-form on the snc locus of a log canonical surface pair (X,D) over a
perfect field of characteristic p � 7, we show that it extends with at worst logarithmic poles
to any resolution of singularities. We also prove the analogous statement for regular differential
forms, under an additional tameness hypothesis. In addition, residue and restriction sequences
for tamely dlt pairs are established. We give a number of examples showing that our results
are sharp in the surface case, and that they fail in higher dimensions. On the other hand, our
techniques yield a new proof of the characteristic zero Logarithmic Extension Theorem in any
dimension.
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1. Introduction

Differential forms play an essential role in the study of algebraic varieties. Given an algebraic
variety X over a field k and a resolution of singularities π : Y → X, it is natural to ask whether
any p-form on the regular locus Xreg extends to a regular p-form on Y . There is also a version
of this question which concerns pairs and allows certain logarithmic poles. In order to fix our
terminology once and for all, we introduce the following language (for notation, see Section 2).

Definition (Extension properties for differential forms). Let (X,D) be a pair (that is, X
is normal and D is a Weil Q-divisor with coefficients in [0, 1] ∩ Q) defined over a field k, and
1 � q � dimX an integer.
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• We say that (X,D) satisfies the regular extension theorem for q-forms if for any proper
birational map π : Y → X from a normal variety Y , the natural inclusion

π∗Ω
[q]
Y/k ↪→ Ω[q]

X/k

is an isomorphism. Equivalently, the sheaf π∗Ω
[q]
Y/k is reflexive. It is sufficient to check this for

a resolution of singularities Y → X (if available): cf. [10, Lemma 2.13] and note that the proof
given there is independent of the base field.
• We say that (X,D) satisfies the logarithmic extension theorem for q-forms if for any map

π as above, with DY the strict transform of D and E ⊂ Y the reduced divisorial part of the
exceptional set Exc(π), the natural inclusion

π∗Ω
[q]
Y/k(log �DY � + E) ↪→ Ω[q]

X/k(log �D�)

is an isomorphism. Equivalently, the sheaf π∗Ω
[q]
Y/k(log �DY � + E) is reflexive. Again, it is

sufficient to check this for a log resolution Y → X of (X,D).
• We say that (X,D) satisfies the regular extension theorem if it satisfies the regular

extension theorem for q-forms, for all values of q. Ditto for the logarithmic variant.

Over the complex numbers, the problem of when the extension theorems hold has a long
history. It has been studied by several people using different methods — the following list is
not exhaustive: [4, 7, 10, 11, 22, 23]. The paper mentioned last, [11], can in many ways be
seen as the culmination† of this line of research. It proved the following.

(1.1.1) Any complex klt (=Kawamata log terminal) pair (X,D) satisfies the regular
extension theorem [11, Theorem 1.4].

(1.1.2) Any complex log canonical pair (X,D) satisfies the logarithmic extension theo-
rem [11, Theorem 1.5].

Given the importance of these results, it is not free of interest to ask whether similar results
also hold in positive characteristic. Curiously enough, no research in this direction has been
conducted so far. We have identified two main reasons for this.

• It has been known to experts for some time that (1.1.1) fails in a strong sense in positive
characteristic. In fact, over any field of non-zero characteristic, there exists a strongly F -regular
(in particular, klt) surface X violating the regular extension theorem (Example 10.2).
• The proof of (1.1.2) relies on rather subtle Hodge-theoretic vanishing theorems for Du Bois

spaces. These are either false or not known in positive characteristic, inextricably linking the
proof to the complex numbers. The same can be said of the techniques in [16].

The purpose of this paper is to overcome these obstacles, at least for surfaces (but see
Theorem 1.6 for higher dimensions). Concerning the first issue, our approach is pretty
straightforward: as (1.1.1) fails, we instead concentrate on (1.1.2) (cf. however Theorem 1.3,
which explores the failure of (1.1.1) more thoroughly). To deal with the second problem, we
develop a completely novel and much more hands-on approach to extension. Our first main
result is as follows.

Theorem 1.2 (Logarithmic extension for surfaces). Let (X,D) be a log canonical surface
pair over a perfect field k of characteristic p � 7. Then (X,D) satisfies the logarithmic
extension theorem.

†Very recently, it has been generalized further in [16], using perverse sheaves.
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Our second main result explains when the logarithmic extension theorem does imply the
regular extension theorem.

Theorem 1.3 (Regular extension for surfaces). Let (0 ∈ X,D) be a surface singularity over a
field k of characteristic p > 0. Assume that for some (not necessarily log) resolution π : Y → X,
with exceptional curves E1, . . . , E�, the determinant of the intersection matrix (Ei · Ej) is not
divisible by p. Then if (0 ∈ X,D) satisfies the logarithmic extension theorem for 1-forms, it
also satisfies the regular extension theorem for 1-forms.

We would like to emphasize the advantages of our approach over the existing techniques.
First of all, we feel that our proof offers a new level of both transparency and tangibility,
as it does not explicitly use any Hodge theory (it does, however, rely on the minimal model
program). Second, this very same feature also makes it, to a large extent, insensitive to the
characteristics of the ground field. In fact, aside from some effortless changes our approach also
yields a new proof of the characteristic zero extension theorem [11, Theorem 1.5] — the details
are worked out in Section 9. Third and maybe most importantly, we obtain a lucid explanation
of why the logarithmic extension theorem fails in low characteristics, even for surface rational
double points (RDPs).

Further results in this paper

Apart from the above extension results, we establish residue and restriction sequences for
reflexive differential forms on dlt pairs in positive characteristic, and symmetric powers thereof.
This is analogous to known results in characteristic zero [8, 11]. However, it is important to
note that actually a slightly stronger notion is required, called tamely dlt in this paper. A dlt
pair (X,D) is tamely dlt if D is reduced and the Cartier index of KX + D is not divisible by
p (Definition 4.2).

The precise statement is as follows. Even though we only use it as a technical tool in the
proof of our main result, we believe that it is of independent interest.

Theorem 1.4 (Residue sequence). Let (X,D) be a tamely dlt surface pair (in particular,
D is reduced), and let P ⊂ D be an irreducible component. Set P c := DiffP (D − P ), so that
(KX + D)|P = KP + P c. Then there is a short exact sequence

0 −→ Ω[1]
X (logD − P ) −→ Ω[1]

X (logD) resP−−−→ OP −→ 0 (1.4.1)
which on the simple normal crossings (snc) locus of (X,D) agrees with the usual residue
sequence. Its restriction to P induces a short exact sequence†

0 −→ Ω1
P (log�P c�) −→ Ω[1]

X (logD)
∣∣ ‹ ‹

P

resPP−−−→ OP −→ 0. (1.4.2)
More generally, for every m ∈ N there is a surjective map

resmP : Sym[m] Ω[1]
X (logD) −→−→ OP

which generically coincides with the mth symmetric power of the residue map.

Theorem 1.5 (Restriction sequence). Notation as above. Then there is a short exact
sequence‡

0 −→ Ω[1]
X (logD)(−P ) ‹ ‹ −→ Ω[1]

X (logD − P ) restrP−−−−−→ Ω1
P (log�P c�) −→ 0 (1.5.1)

†Here, of course, in the middle term we are taking the double dual on P and not on X (the latter would be
zero).

‡By definition, Ω
[1]
X (logD)(−P ) ‹ ‹ means the double dual of Ω

[1]
X (logD) ⊗ OX(−P ). Taking the reflexive hull

is necessary because P ⊂ X is in general not a Cartier divisor.
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which on the snc locus of (X,D) agrees with the usual restriction sequence. More generally,
for every m ∈ N there is a surjective map

restrmP : Sym[m] Ω[1]
X (logD − P ) −→−→ OP (mKP + �mP c�)

which generically coincides with the mth symmetric power of the restriction map.

Sharpness of results

In Section 10, we have gathered a number of examples to show that our results are sharp. First
of all, Theorem 1.2 does fail in characteristic less than seven, even if k is algebraically closed,
D = 0 and X is an RDP. More precisely, we show by explicit calculation that the singularity
given by the equation z2 + x3 + y5 = 0 violates the logarithmic extension theorem over any
field of characteristic p � 5. In the terminology of Artin’s classification of RDPs [2], this is the
E0

8 singularity. This failure also occurs for some singularities of types Dn (p = 2) and E6, E7

(p = 2, 3). We have omitted those calculations, as they are very similar in spirit to the E8 case.
Turning to Theorem 1.3, its statement is sharp too, as shown by the example of contracting

a smooth rational curve with self-intersection −p in any characteristic p > 0. In this case, the
logarithmic extension theorem holds for 1-forms, but the regular extension theorem does not.
Again, this can be seen via explicit computation.

The latter example can also be elaborated upon to show that Theorem 1.5 fails for dlt pairs
that are not tamely dlt. If one tries to run the proof of Theorem 1.2 on, say, a Dn singularity
in characteristic two, the lack of a suitable restriction map is exactly where the argument
breaks down: already the first contraction performed by the minimal model program (MMP)
produces a pair that is not tamely dlt. This should be seen as the deeper reason for the failure
of Theorem 1.2 in low characteristics.

Higher dimensions

For the majority of readers, a most pressing question will be to what extent Theorem 1.2
carries over to higher dimensions. As we will see in Section 9, in characteristic zero the
higher dimensional logarithmic extension theorem is intimately linked to the fact that on a
projective snc pair (X,D), a line bundle L ⊂ Ωp

X(logD) cannot be big unless p = dimX.
This is the content of the Bogomolov–Sommese vanishing theorem [5, Corollary 6.9], while
the weaker statement that L cannot be ample is a special case of (Kodaira–Akizuki–)Nakano
vanishing [1, Theorem 1′′]. Both results fail badly in positive characteristic and in fact there
are counterexamples strong enough to show that Theorem 1.2 itself does not hold. The precise
statement is as follows and the details of the construction can be found in Section 11.

Theorem 1.6 (Failure of the higher dimensional logarithmic extension theorem). Fix an
algebraically closed field k of characteristic p > 0.

(1.6.1) In any dimension n � p− 1, there exists a log canonical pair (X, ∅) over k that
violates the logarithmic extension theorem for (n− 2)-forms.

(1.6.2) If n � 2p− 1, there exists a canonical pair (X, ∅) for which the logarithmic extension
theorem fails as above.

(1.6.3) If n � 3p− 1, there even exists a terminal pair (X, ∅) as above.

Furthermore, the above examples admit log resolutions.

As Theorem 1.2 already fails for surfaces if the characteristic is low, Theorem 1.6 becomes
interesting only for p � 7. In this sense, the lowest dimensional example it provides is a six-
dimensional singularity in characteristic seven. The following conjecture hence remains open.
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One sacrilegious conjecture. Over a perfect field of characteristic p � 7, the
logarithmic extension theorem holds for log canonical pairs of dimension at most p− 2.

Of course, we do not believe in the sacrilegious conjecture. Rather, our inability to disprove
it is caused by a lack of techniques to produce meaningful counterexamples.

Relation to F -singularities

The examples in Theorem 1.6 are (un-)fortunately not F -pure. On the other hand, using
classification results [12, Theorem 1.1] one can show that all normal F -regular surface
singularities over a perfect field satisfy the logarithmic extension theorem. The same is probably
true for F -pure surfaces, but the case distinctions get much more tedious. These observations
have led us to the following intriguing question:

Question 1.7. Is there a version of the logarithmic extension theorem for strongly
F -regular/F -pure singularities that does not exclude low characteristics and works in
any dimension?

The following line of attack appears to be quite promising. By [25, Theorem 3.3], the
affine cone over a smooth projective variety X is F -pure if and only if X is (globally) F -
split. Hence one would need to investigate whether F -split varieties satisfy Nakano vanishing.
Since at least Kodaira vanishing obviously holds for these, chances may not be that bad. This
would immediately provide a positive answer to Question 1.7 for cones. On the other hand,
if Nakano vanishing failed, we would obtain an F -pure counterexample to the logarithmic
extension theorem.

2. Notation and conventions

Base field

Throughout this paper, we work over a field k, which except for Section 9 will be assumed to
be of positive characteristic p > 0. Further assumptions (perfect, algebraically closed, etc.) will
be expressly stated whenever necessary.

Pairs and divisors

A pair (X,D) consists of a normal variety X and a Weil Q-divisor D =
∑

aiDi with coefficients
0 � ai � 1. The pair is called reduced if D is reduced. The round-down of D is denoted by
�D� :=

∑�ai�Di, and similarly for the round-up 	D
. The fractional part {D} is, by definition,
D − �D�. For a uniform definition of the singularities of the MMP (klt, plt, dlt, lc, etc.), we
refer to [19, Definition 2.8].

The regular and singular loci of a variety X are denoted Xreg and Xsg, respectively. We say
that a closed subset Z ⊂ X is small if codimX(Z) � 2, and that an open subset U ⊂ X is big
if X \ U is small.

A Weil divisor D on a normal variety X is said to be Z(p)-Cartier if it has a multiple not
divisible by p which is Cartier. Equivalently, D is in the image of the natural map

Div(X) ⊗Z Z(p) −→ WDiv(X) ⊗Z Z(p).

Since Z(0) = Q, in characteristic zero we recover the usual notion of being Q-Cartier. More
generally, the Cartier index of D is the smallest integer m > 0 with mD Cartier (or +∞ if no
such m exists).
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Reflexive sheaves

Let X be a normal variety and E a coherent sheaf on X. The OX -double dual (or reflexive
hull) of E is denoted by E ‹ ‹ . The sheaf E is called reflexive if the canonical map E → E ‹ ‹ is
an isomorphism. A Weil divisorial sheaf is a reflexive sheaf of rank one. A coherent subsheaf
A ⊂ E of a reflexive sheaf is said to be saturated if the quotient E /A is torsion-free. We use
square brackets [−] as an abbreviation for taking the double dual, for example, E [k] = (E ⊗k) ‹ ‹

and f [∗]E = (f∗E ) ‹ ‹ for a map f : Y → X with Y normal.
Let D ⊂ X be a reduced divisor. Then we denote by

E (∗D) := lim−→ (E ⊗ OX(mD)) ‹ ‹

the quasi-coherent sheaf of sections of E with arbitrarily high-order poles along D. If i : U ↪→ X
is the inclusion of the snc locus of (X,D), the sheaf of reflexive differential q-forms is defined
to be Ω[q]

X/k(logD) := i∗Ω
q
U/k(logD|U ). The base field k will usually be dropped from notation.

Following are some useful properties of reflexive sheaves which will be used implicitly or
explicitly. For proofs, we refer to [8, Section 3].

Lemma 2.1. Let E be a reflexive sheaf on the normal variety X and A ,B ⊂ E coherent
subsheaves, with A saturated.

(2.1.1) The sheaf A is reflexive.
(2.1.2) Let s be a rational section of A which is regular as a section of E . Then s is also

regular as a section of A .
(2.1.3) Suppose that for some dense open subset U ⊂ X, the subsheaves A |U and B|U of

E |U are equal. Then it follows that B ⊂ A .

3. Factorizing resolutions

It is well known that in characteristic zero, the MMP can be used to obtain log crepant
partial resolutions for log canonical pairs (called ‘minimal dlt models’, ‘dlt blowups’ or ‘dlt
modifications’); see, for example, [20, Theorem 3.1]. Here we would like to point out that the
same argument also works for surfaces over arbitrary fields. The reason is that the MMP for
log canonical surfaces is very well developed [24]. In fact, our proof is even simpler than the
one in [20] because we do not have to perturb the dlt pair of interest into a linearly equivalent
klt pair.

Unlike [20], we are not only interested in the end product of the MMP (in the notation
below, the map f), but also in the intermediate steps. Note that since we are on a surface, we
can use Mumford’s pullback to get the same result also for numerically log canonical pairs [21,
Notation 4.1]. This will be important later.

Theorem 3.1. Let (X,D) be a numerically log canonical surface pair and π : Y → X a
log resolution, with exceptional divisor E. Then π can be factored into a sequence of maps as
follows:
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such that, setting D̃0 := π−1
∗ D + E and D̃i+1 := (ϕi)∗D̃i, the following properties hold:

(3.1.1) for any 0 � i � r, the pair (Yi, D̃i) is dlt and Yi is Q-factorial;
(3.1.2) for any 0 � i � r − 1, the exceptional locus of ϕi is irreducible;
(3.1.3) the map f is (numerically) log crepant, that is, KZ + D̃r = f∗(KX + D).

Proof. Let F1, . . . , Fn be all the irreducible components of E, and consider the ramification
formula KY + π−1

∗ D = π∗(KX + D) +
∑n

i=1 aiFi, where π∗(−) denotes Mumford’s pullback.
We then have

KY + D̃0 = π∗(KX + D) +
n∑

i=1

(ai + 1)Fi. (3.1.4)

We may run the MMP on the dlt pair (Y, D̃0) and obtain a minimal model ϕ : Y →
Z over X [24, Theorem 1.1]. This provides the maps in the statement to be proven.
Also, (3.1.1) and (3.1.2) are clear by construction. It remains to show (3.1.3). To this end,
push forward (3.1.4) to Z:

KZ + D̃r = f∗(KX + D) + ϕ∗

(
n∑

i=1

(ai + 1)Fi

)
︸ ︷︷ ︸
f-nef by construction

. (3.1.5)

The negativity lemma [21, Lemma 3.40] implies that the underbraced term in the above formula
is zero. Hence (3.1.5) simplifies to (3.1.3). �

4. Adjunction and the different on dlt surface pairs

The different is a correction term that makes the adjunction formula work in the presence
of singularities. For a general treatment of the different, including the case of positive
characteristic; see [19, Chapter 4]. On a surface, things are somewhat simpler, as explained
in [19, Definition 2.34].

Proposition/Definition 4.1 (Different on surfaces). Let X be a normal Q-factorial
surface and B ⊂ X a reduced irreducible curve with normalization B → B. Let B′ be a Q-
divisor that has no common components with B. Then there is a canonically defined Q-divisor
DiffB(B′) on B, called the different, such that

(KX + B + B′)
∣∣
B

∼Q KB + DiffB(B′).

We will mostly be interested in the case where (X,B) is dlt, in which case B is regular by
Proposition 4.4. Hence B = B and we may write

DiffB(B′) =
∑
x∈B

δx · [x],

where δx �= 0 only for points x that are singular on X or contained in suppB′. We need
to compute the coefficients δx in relation to the singularities of (X,B + B′). In positive
characteristic this is only possible under the following additional tameness hypothesis:

Definition 4.2 (Tamely and fiercely dlt pairs). A pair (X,D) over a field of characteristic
p is called tamely dlt if the following hold:

(4.2.1) (X,D) is reduced and dlt,
(4.2.2) KX + D is Z(p)-Cartier (see Section 2).

If Condition (4.2.1) is satisfied but (4.2.2) is not, the pair is said to be fiercely dlt.



DIFFERENTIAL FORMS IN POSITIVE CHARACTERISTIC 2215

In the case p = 0, we recover the usual notion of a reduced dlt pair. The main result
concerning the different is then as follows. The reader may like to compare this to [19,
Theorem 3.36], where a similar formula is proven under slightly different assumptions.

Theorem 4.3 (Computation of the different). Let (X,D) be a tamely dlt surface pair, and
let P ⊂ D be an irreducible component. Write

DiffP (D − P ) =
∑
x∈P

δx · [x]

as above. Then, referring to the dichotomy in Proposition 4.4:

(4.3.1) if locally at x, (4.4.1) holds, then δx = 1;
(4.3.2) if locally at x, (4.4.2) holds, then δx = 1 − 1

m , where m is the Cartier index of KX + D
at x.

4.A. The local structure of dlt surfaces

Locally, dlt surface pairs are in some sense quite simple (even if they are fierce).

Proposition 4.4 (Dichotomy for dlt surfaces). Let (X,D) be a reduced dlt surface pair,
and let x ∈ suppD be any point. Then either one of the following holds.

(4.4.1) The pair (X,D) is snc at x, and x is contained in exactly two components of D.
(4.4.2) The divisor D is regular at x and the pair (X,D) is plt at x.

In particular, every irreducible component of D is regular.

Proof. Assume that we are not in case (4.4.1). Then either (X,D) is snc at x, but D
has only one component at x. In this case, (4.4.2) clearly holds. Or the pair (X,D) is not
snc at x, in which case it is plt at x by definition. Regularity of D at x then follows from
[19, 3.35]. �

In the following corollary, the crucial point is the separability of the maps γα. Note that the
Uα cover only suppD and not all of X.

Corollary 4.5 (Dlt surfaces as quotients). Let (X,D) be a tamely dlt surface pair. Then
there exist finitely many Zariski-open subsets {Uα}α∈I of X that cover suppD and admit
maps

γα : Vα → Uα finite quasi-étale separable cyclic Galois

such that the pairs (Vα, γ
∗
αD) are snc for all indices α ∈ I.

Proof. Let x ∈ suppD be any point, and apply Proposition 4.4. If we are in case (4.4.1),
we may take γα = id and there is nothing to show. In case (4.4.2), let γα be a local index
one cover with respect to KX + D. Then γα by construction has all the properties claimed,
except separability. But separability is also clear because of our assumption that KX + D
is Z(p)-Cartier. It remains to see that (Vα, γ

∗
αD) is snc. To this end, note that this pair

is again plt [19, Corollary 2.43]. Furthermore, as KVα
+ γ∗

αD is Cartier, the discrepancies
are actually integral and hence non-negative. The pair (Vα, γ

∗
αD) is therefore canonical. Let

y ∈ Vα be the unique point in γ−1
α (x). Then y ∈ supp γ∗

αD. The claim now follows from
[19, Theorem 2.29]. �
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4.B. Proof of Theorem 4.3

Case (4.3.1) is clear, hence we concentrate on Case (4.3.2). We follow the local computational
approach as illustrated in [19, Example 4.3]. Let γ : V → U be a map as in Corollary 4.5, where
x ∈ U , and put

DV = γ∗D, a regular curve,

γD = γ
∣∣
DV

,

σ = a local generator for m
(
KU + D

∣∣
U

)
,

σV = γ∗σ,

ω = a local generator for KV + DV .

Then σV = ω[m] up to a unit, that is, for a suitable choice of ω. It follows that

res(σV ) = res(ω[m]) = res(ω)m = ω′m, (4.5.1)

where ω′ is a local generator for ωDV
. On the other hand, as γ is quasi-étale and the residue

map (in the snc case) commutes with étale pullback, we have

res(σV ) = γ∗
D res(σ). (4.5.2)

Let t ∈ OD,x be a local parameter of D at x, and let u ∈ ODV ,y be a local parameter of DV at
the unique point y lying over x such that ω′ = du. Then γ∗

D(t) = εum for some unit ε ∈ O×
DV ,y.

Hence, writing res(σ) = tk(dt)m up to a unit, with k to be determined, combining (4.5.1)
with (4.5.2) gives

εkukm(εmum−1du + umdε)m =
(
εk+mmmum(k+m−1) + · · ·

)
· (du)m

= (du)m,

where the dots stand for terms involving higher powers of u. By the tameness assumption,
m �= 0 in the ground field and we obtain m(k + m− 1) = 0. So k = 1 −m and δx = −k/m =
1 − 1/m, as claimed.

5. Residues and restriction on dlt surfaces

In this section, we prove Theorems 1.4 and 1.5.

5.A. Proof of Theorem 1.4

The proof is divided into four steps.

Step 1: Symmetric residue maps. First, we will construct the maps resmP . So fix a natural
number m and consider the mth symmetric power of the residue map on the snc locus of
(X,D). Pushing it forward to all of X yields a map

Sym[m] Ω[1]
X (logD) −→ OP (∗	P c
) (5.1.1)

to the sheaf of rational functions on P with arbitrarily high-order poles along supp	P c
. We
need to show that (5.1.1) factorizes via Sym[m] Ω[1]

X (logD) → OP , for this will be the desired
map resmP . So let σ be an arbitrary local section of Sym[m] Ω[1]

X (logD), defined on an open set
U ⊂ X. Let σ̃ be its image under (5.1.1), and (after possibly shrinking U) pick a map γ : V → U
as in Corollary 4.5.
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We will employ the following regularity criterion: σ̃ ∈ Γ(U,OP ) if and only if γ∗(σ̃) ∈
Γ(V,OPV

), where PV := γ∗P and DV := γ∗D. This criterion holds because P is regular, in
particular normal. (Recall that if A ⊂ B is a finite extension of normal domains and Q(A) is
the fraction field of A, then B ∩Q(A) = A. In our situation, A is a local ring of P and B is a
suitable local ring of PV .)

By Corollary 4.5, the pair (V,DV ) is snc, hence Ω1
V (logDV ) is locally free and we obtain a

residue map

resmPV
: Sym[m] Ω[1]

V (logDV ) = Symm Ω1
V (logDV ) −→ Symm OPV

= OPV
.

Furthermore, note that γ : (V,DV ) → (U,D|U ) is a ‘morphism of logarithmic pairs’ in the sense
of [10, Definition 2.4] (this simply means that γ−1(D|U ) = DV set-theoretically). Therefore,
by [10, Remark 2.10] we can pullback σ to a regular section of Symm Ω1

V (logDV ), at least off
the preimage of the non-snc locus (U,D|U )sg. But γ is finite (in particular equidimensional), so
this preimage still has codimension two in V . Hence γ∗σ is regular on all of V . In other words,

γ∗σ ∈ Γ
(
V, Sym[m] Ω[1]

V (logDV )
)
.

Recall that the standard residue map commutes with étale pullback, and that γ is étale over
the general point of P . So the two functions

(γ|PV
)∗(σ̃) ∈ Γ

(
PV ,OPV

(∗ supp γ|∗PV
	P c
))

and

resmPV
(γ∗σ) ∈ Γ(PV ,OPV

)

agree on an open subset of PV , hence everywhere. This shows that σ̃ is a regular function on
PV , as desired.

Step 2: Surjectivity. It remains to show surjectivity of the maps resmP . This is a local
question, so we may restrict ourselves to an open set U ⊂ X admitting a map γ : V → U
as in Corollary 4.5. Let G = Gal(γ) be the Galois group of γ. Start with the map

resmPV
: Symm Ω1

V (logDV ) −→ OPV

as before and note that we can also construct resmP by applying the functor γ∗(−)G to resmPV
.

This means that we consider U = V /G with the trivial G-action and look at the invariant
sections of the relevant push-forward sheaves (which are G-sheaves in a natural way). For more
details, cf. [11, Appendix A].

The claim now follows from the surjectivity of resmPV
(which is due to the fact that the pair

(V,DV ) is snc) and the exactness of the functor γ∗(−)G. This exactness holds because the order
of G is prime to p by the ‘tamely dlt’ assumption, and therefore we have the usual Reynolds
operator argument at our disposal; cf. the characteristic zero version of this argument [11,
Lemma A.3].

Step 3: Residue sequence on X. Next we prove the existence of sequence (1.4.1). The map
resP is of course nothing but the special case m = 1 of the maps just constructed. By what
we already know, we thus only need to show that its kernel is isomorphic to Ω[1]

X (logD − P ).
But that kernel is a reflexive sheaf by [14, Corollary 1.5]. Furthermore, it is isomorphic to
Ω[1]

X (logD − P ) on (X,D)snc, by the usual residue sequence for snc pairs. The isomorphism
then extends to all of X by reflexivity.

Step 4: Residue sequence on P . Finally we turn to sequence (1.4.2). Clearly, the reflexive
restriction of resP to P is a surjective map resPP : Ω[1]

X (logD)| ‹ ‹P −→ OP , and it remains to show
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Figure 1. Diagram used in the proof of (1.4.2).

that its kernel is isomorphic to Ω1
P (log�P c�). To this end, first note that there is a short exact

sequence

0 −→ Ω[1]
X (logD)(−P ) ‹ ‹ −→ Ω[1]

X (logD) −→ Ω[1]
X (logD)

∣∣ ‹ ‹

P
−→ 0. (5.1.2)

In fact, the second map is surjective because on a regular curve, taking the double dual really
just amounts to dividing out the torsion. And by the same argument as in the previous step,
the kernel is reflexive and thus isomorphic to Ω[1]

X (logD)(−P ) ‹ ‹ .
Consider now the commutative diagram with exact rows and columns depicted in Figure 1 on

the facing page. The first row is the restriction sequence (1.5.1)†, while the second row is (5.1.2).
The middle column is (1.4.1), the residue sequence on X. The snake lemma then shows that the
dotted arrow Ω1

P (log�P c�) ��� Ω[1]
X (logD)| ‹ ‹P exists, is injective and that its image is exactly the

kernel of resPP . The column on the right-hand side is therefore likewise exact, and it is precisely
sequence (1.4.2).

5.B. Proof of Theorem 1.5

The proof of Theorem 1.5 is analogous to the proof of Theorem 1.4, hence we will only provide
an outline, with most details omitted. To begin with, if (X,D) is snc then sequence (1.5.1)
reads

0 −→ Ω1
X(logD)(−P ) −→ Ω1

X(logD − P ) restrP−−−−−→ Ω1
P (logP c) −→ 0

and this exists by [5, 2.3(c)]. In particular, we already have restrP and its mth symmetric
power on the snc locus (X,D)snc. Pushing forward this symmetric power to all of X, we obtain
a map

Sym[m] Ω[1]
X (logD − P ) −→ OP (mKP )(∗	P c
), (5.1.3)

and we have to show that it factors via a map

Sym[m] Ω[1]
X (logD − P ) −→ OP (mKP + �mP c�),

for this will be the desired map restrmP . To this end, we have the following criterion:

Claim 5.2. Notation as in the previous proof. A local section σ̃ of OP (mKP )(∗	P c
) is
contained in OP (mKP + �mP c�) if and only if γ∗(σ̃) is a regular section of OPV

(mKPV
+

mP c
V ), where P c

V := DiffPV
(DV − PV ) = (DV − PV )|PV

.

†Needless to say, the proof of Theorem 1.5 does not rely on Theorem 1.4 — see Section 5.B.
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Proof of Claim 5.2. The proof of this criterion is done by a local computation similar to
the one in the proof of Theorem 4.3, whose notation we adopt. If locally at x ∈ supp	P c
,
Case (4.4.1) holds, the claim is clear. Therefore we focus on Case (4.4.2). Note that in this case
DV is smooth, which implies PV = DV and thus P c

V = 0.
Write σ̃ = tk (dt)m with k ∈ Z (locally and up to units), and let � be the Cartier index

of KX + D at x. The coefficient of �mP c� at x is �m(1 − 1
� )�, therefore σ̃ is contained in

OP (mKP + �mP c�) if and only if

k � −�m(1 − 1
� )�. (5.2.1)

On the other hand, γ∗(t) = εu� and hence

γ∗(σ̃) =
(
εk+m�muk�+m(�−1) + · · ·

)
· (du)m,

where the dots stand for terms involving higher powers of u. We see that γ∗(σ̃) is regular if
and only if k� + m(�− 1) � 0. This is equivalent to (5.2.1), proving the claim. �

Once the maps restrmP are constructed, their surjectivity follows from the right-exactness of
γ∗(−)G, as before. Finally, to obtain sequence (1.5.1) we set restrP := restr1P . On the snc locus
(X,D)snc, the kernel agrees with Ω[1]

X (logD)(−P ) ‹ ‹ by the snc case mentioned in the beginning
of the proof. Since both sheaves are reflexive, they agree everywhere.

6. Lifting forms along a non-positive map

The following theorem, while technical in nature, is at the heart of the paper. The ‘non-
positivity’ in the title refers to property (6.1.2).

Theorem 6.1 (Lifting forms). Let g : Y → X be a proper birational map of normal surfaces
over a field k, with E = Exc(g) the reduced exceptional divisor. Furthermore, let D be a reduced
divisor on X, and set DY := g−1

∗ D + E. Assume the following:

(6.1.1) the pair (Y,DY ) is tamely dlt, and
(6.1.2) the anticanonical divisor −(KY + DY ) is g-nef.

Then the natural map

g∗Ω
[1]
Y/k(logDY ) ↪→ Ω[1]

X/k(logD)

is an isomorphism.

Step 0: Setup of notation and outline of proof strategy

Let

σ ∈ H0
(
X,Ω[1]

X (logD)
)
\ {0}

be a non-zero reflexive logarithmic 1-form, and let g∗σ be its pullback to Y , considered as a
rational section of the sheaf Ω[1]

Y (logDY ). We want to show that g∗σ is in fact a regular section
of that sheaf. To this end, first pick an effective g-exceptional divisor G such that

g∗σ ∈ H0
(
Y,Ω[1]

Y (logDY )(G) ‹ ‹

)
. (6.1.3)

For example, G may be taken to be the pole divisor of the rational section g∗σ. We will show
that whenever G is non-zero, there is a curve P ⊂ suppG such that (6.1.3) continues to hold
with G replaced by G− P . Iterating this argument finitely often, we arrive at G = 0, hence
g∗σ ∈ H0(Y,Ω[1]

Y (logDY )) as desired.
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Step 1: Residue sequence

Assume that (6.1.3) holds for some G �= 0. Then G2 < 0 by the negativity lemma (applied on
some resolution of Y ) and consequently, G · P < 0 for some exceptional curve P ⊂ suppG ⊂
E. Twisting by OY (−G) and taking the reflexive hull, (6.1.3) induces a map i : OY (−G) →
Ω[1]

Y (logDY ). As g∗σ �= 0, this map is non-zero and hence injective. On the tamely dlt pair
(Y,DY ), we have the residue sequence (1.4.1)

Claim 6.2. The composition resP ◦ i is zero, and hence i factors via a map j as indicated
by the dashed arrow in the above diagram.

Proof of Claim 6.2. Let m � 1 be sufficiently divisible so that mG is Cartier (recall that
Y is Q-factorial). The mth reflexive symmetric power of i, composed with the map resmP from
Theorem 1.4, yields a map

OY (−mG)
Sym[m] i−−−−−→ Sym[m] Ω[1]

Y (logDY )
resmP−−−→ OP (6.2.1)

which is nothing but the mth reflexive symmetric power of resP ◦ i. Hence in order to show
that resP ◦ i vanishes, it is sufficient to prove the vanishing of (6.2.1). As the target of the latter
map is supported on P , it is zero if and only if its restriction to P is zero. But that restriction
is a map OP (−mG) → OP , or in other words, an element of H0(P,OP (mG)). As G · P < 0 and
mG is Cartier, the latter space is zero. �

Step 2: Restriction sequence

We essentially repeat Step 1, but with the residue sequence replaced by the restriction
sequence (1.5.1):

Claim 6.3. The composition restrP ◦ j is zero, and hence j factors via a map ι as indicated
by the dashed arrow in the above diagram.

Proof of Claim 6.3. Let m be as in the proof of Claim 6.2, so that mG is Cartier. The mth
reflexive symmetric power of j, composed with the map restrmP from Theorem 1.5, is the mth
reflexive symmetric power of restrP ◦ j:

OY (−mG)
Sym[m] j−−−−−→ Sym[m] Ω[1]

Y (logDY − P )
restrmP−−−−→ OP (mKP + �mP c�). (6.3.1)

As in Claim 6.2, it suffices to show that the restriction of (6.3.1) to P vanishes. This is a
map OP (−mG) → OP (mKP + �mP c�), or in other words, an element of H0(P,OP (mKP +
�mP c� + mG)). As

deg
(
mKP + �mP c� + mG

∣∣
P

)
� deg

(
m(KP + P c) + mG

∣∣
P

)
round-down

� deg
(
m(KY + DY + G)

∣∣
P

)
by adjunction
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� deg
(
mG
∣∣
P

)
by (6.1.2)

= mG · P mG is Cartier

< 0, ˜

the latter space is zero. This ends the argument. �

The proof of Theorem 6.1 is now easily finished: the existence of the map ι is equivalent to
giving a global section of the sheaf Ω[1]

Y (logDY )(G− P ) ‹ ‹ , which of course is exactly the form
g∗σ we started with. This shows that (6.1.3) holds with G− P in place of G, as desired.

7. Proof of Theorem 1.2

The aim of this section is to prove our first main result: any log canonical surface pair (X,D)
over a perfect field of characteristic at least seven satisfies the logarithmic extension theorem.
The following notion will play a key role.

Definition 7.1 (Tame resolutions). Let (X,D) be a reduced log canonical surface pair over
a field k. A tame resolution of (X,D) is a log resolution π : Y → X together with a factorization
of π as in Theorem 3.1 such that

(7.1.1) for any 0 � i � r − 1, the pair (Yi, D̃i) is tamely dlt, and
(7.1.2) if f is not an isomorphism (this can happen only if (X,D) is not plt), then also

(Z, D̃r) is required to be tamely dlt.

7.A. Auxiliary results

First we show that when dealing with log canonical surface pairs, there is no loss of generality
in assuming them to be reduced. We also prove that having a tame resolution implies the
logarithmic extension theorem and that the logarithmic extension theorem is invariant under
separable base change. The latter property is used for reducing to the case of an algebraically
closed ground field, where the classification of surface singularities becomes simpler.

Proposition 7.2 (Rounding down). Let (X,D) be a log canonical surface pair. Then also
(X, �D�) is log canonical.

Proposition 7.3 (Tameness is sufficient). Let (X,D) be a reduced log canonical surface
pair admitting a tame resolution. Then (X,D) satisfies the logarithmic extension theorem
for 1-forms.

Proposition 7.4 (Base change). Let (X,D) be a pair defined over a field k, and consider a
separable field extension k′/k. Set X ′ := X ×k k′ and D′ := D ×k k′.

(7.4.1) If (X ′, D′) satisfies the regular extension theorem for q-forms, for some value of q,
then so does (X,D).

(7.4.2) If (X,D) admits a log resolution, the converse of (7.4.1) also holds.

Ditto for the logarithmic extension theorem.

Proof of Proposition 7.2. If (X,D) is numerically log canonical, then so is (X, �D�). Thus
it suffices to show that KX + �D� is Q-Cartier. The question is local, so we may concentrate
attention on a point x ∈ supp {D}, the fractional part of D. At such a point, the pair (X, �D�) is
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even numerically dlt and then (X, ∅) is numerically klt. Applying Theorem 3.1 to the latter pair,
we get that f : Z → X is an isomorphism, as there are no exceptional divisors of discrepancy
−1, and hence X is even Q-factorial because Z is.

An alternative (yet closely related) argument goes by noting that the characteristic zero proof
of [21, Proposition 4.11] still works if we replace the use of the basepoint-free theorem [21,
Theorem 3.3] by [24, Theorem 4.2]. �

Proof of Proposition 7.3. Let π : Y → X be a tame resolution of (X,D), where we keep
notation from Theorem 3.1. It suffices to extend 1-forms along each step of the given
factorization separately. That is, we will prove the following two statements:

Claim 7.5. The sheaf f∗Ω
[1]
Z (log D̃r) is reflexive.

Claim 7.6. For any 0 � i � r − 1, the sheaf (ϕi)∗ Ω[1]
Yi

(log D̃i) is reflexive.

Proof of Claim 7.5. If (X,D) is plt, then f is an isomorphism and there is nothing to prove.
Otherwise, we would like to apply Theorem 6.1. The tameness condition (6.1.1) is satisfied
by (7.1.2). It remains to check (6.1.2), that is, −(KZ + D̃r) is f -nef. To this end, let P ⊂ Z be
any f -exceptional curve and note that(

KZ + D̃r

)
· P = f∗(KX + D) · P by (3.1.3)

= 0 as f∗P = 0.

So KZ + D̃r is even f -numerically trivial. Claim 7.5 is proved. �

Proof of Claim 7.6. Again, we will apply Theorem 6.1 and only Condition (6.1.2), the ϕi-
nefness of −(KYi

+ D̃i), needs to be checked. Let P ⊂ Yi be the unique ϕi-exceptional curve.
Since (Yi+1, D̃i+1) is dlt (in particular, log canonical) and D̃i = (ϕ−1

i )∗(D̃i+1) + P , we have

KYi
+ D̃i = ϕ∗

i

(
KYi+1 + D̃i+1

)
+ λP, (7.6.1)

where λ = a(P, Yi+1, D̃i+1) + 1 � 0. On the other hand, P 2 < 0 by the negativity lemma.
Hence

(KYi
+ D̃i) · P =

(
ϕ∗
i

(
KYi+1 + D̃i+1

)
+ λP

)
· P by (7.6.1)

= λ · P 2 as (ϕi)∗P = 0

� 0. ˜

Claim 7.6 now follows from Theorem 6.1. �

By Claims 7.5 and 7.6, also the sheaf

π∗Ω1
Y

(
log π−1

∗ D + E
)

= (f ◦ ϕr−1 ◦ · · · ◦ ϕ0)∗ Ω1
Y0

(
log D̃0

)
= (f ◦ ϕr−1 ◦ · · · ◦ ϕ1)∗ Ω[1]

Y1

(
log D̃1

)
= · · ·
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Figure 2. Cusp [19, (3.39.2)].

= f∗Ω
[1]
Yr

(
log D̃r

)
= Ω[1]

X (logD)

is reflexive. The proof of Proposition 7.3 is thus finished. �

Proof of Proposition 7.4. For any object (variety, map, sheaf, etc.) over k, we denote the
base change to k′ by (−)′. Concerning (7.4.1), let π : Y → X be proper birational, with Y
normal. Then there is a commutative diagram

Since k′/k is a separable field extension, the horizontal maps are étale and faithfully flat. In
particular, X ′ and Y ′ are still normal, and after possibly replacing them by suitable connected
components, π′ is proper birational. By assumption, π′

∗Ω
[q]
Y ′/k′ is reflexive. But

π′
∗Ω

[q]
Y ′/k′ = π′

∗
((

Ωq
Y ′/k′

) ‹ ‹)
by definition

= π′
∗

[((
Ωq

Y/k

)′) ‹ ‹]
[13, Chapter II, Proposition 8.10]

= π′
∗

((
Ω[q]

Y/k

)′)
=
(
π∗Ω

[q]
Y/k

)′
[13, Chapter III, Proposition 9.3],

hence the claim follows.
For (7.4.2), keep notation but assume additionally that π is a resolution of singularities. By

the above argument, the sheaf π′
∗Ω

[q]
Y ′/k′ is reflexive. Because Y ′ → Y is étale, π′ is in fact a

resolution and it follows that X ′ satisfies the regular extension theorem for q-forms.
The proof in the logarithmic case is similar, and therefore omitted. �

7.B. Proof of Theorem 1.2

By Proposition 7.2, we may assume that (X,D) is reduced. Furthermore, since our ground
field k is assumed to be perfect, its algebraic closure k̄ is separable over k and hence by
Proposition 7.4, we may assume that k = k̄. The singularities of reduced log canonical surface
pairs over an algebraically closed ground field have been classified in [19, Corollaries 3.31, 3.39,
3.40]. According to this classification, there are seven cases to be considered. Their dual graphs
are depicted in Figures 2–7 (the first case is not shown since it has only one exceptional curve).
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Figure 3. Z/2-quotient of cusp or simple elliptic [19, (3.39.3)].

Figure 4. Other quotient of simple elliptic [19, (3.39.4)]. Γ3 is likewise a chain and (det Γi) is
either (3, 3, 3), (2, 4, 4) or (2, 3, 6).

Figure 5. The three possibilities for a cyclic quotient [19, (3.40.1)].

Figure 6. The two possibilities for a dihedral quotient [19, (3.40.2)].

Figure 7. Other quotient of a smooth surface [19, (3.40.3)]. (det Γi) is either (2, 3, 3), (2, 3, 4)
or (2, 3, 5).

Here we use the following color and labeling pattern. The extra information thus contained in
the figures is easily verified.

Notation 7.7. A plain circle denotes an exceptional curve with discrepancy equal to −1.
A node shaded in gray denotes an exceptional curve with discrepancy > −1. All exceptional
curves are smooth rational. The components of π−1

∗ D are shown in black. A negative number
attached to a vertex denotes the self-intersection of the corresponding curve. A leaf is a curve
intersecting at most one other curve, while a fork intersects at least three other curves.
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Since Theorem 1.2 is local, we may shrink X and assume that (X,D) has only one singular
point. We use notation from Theorem 3.1, applied to the minimal resolution π : Y → X of
(X,D). In particular, E is the exceptional locus of π and r is the number of contractions
performed by the MMP before the minimal dlt model is reached. The classification is then as
follows. (The names are actually valid only in characteristic zero. Here they are only meant for
easier reference and should not be taken literally.)

(7.8.1) (Simple elliptic, [19, (3.39.1)]) Here D = 0 and E consists of a single smooth
elliptic curve, which has discrepancy −1. So r = 0 and the tameness condition on
π is automatically satisfied. In this case, Theorem 1.2 thus follows directly from
Proposition 7.3.

(7.8.2) (Cusp, Figure 2) Again, there are no curves of discrepancy > −1, so r = 0 and we
conclude as before.

(7.8.3) (Z/2-quotient of cusp or simple elliptic, Figure 3) Here r = 4 and each step ϕi

contracts a curve Ci ⊂ Ui ⊂ Yi, where Ui is a smooth open subset of Yi and C2
i = −2.

By [19, Theorem 3.32], the resulting singularity is étale locally† isomorphic to the
vertex of Spec k[u2, uv, v2]. Since char k � 7 > 2, this singularity is actually a Z/2-
quotient of a smooth surface. Then by the usual norm argument, 2 · Δi is Cartier for
every integral Weil divisor Δi on Yi, where 0 � i � 4. Applying this to KYi

+ D̃i, we
see that π is a tame resolution and we conclude by Proposition 7.3.

(7.8.4) (Other quotient of simple elliptic, Figure 4) The three chains of rational curves Γi can
obviously be treated independently of each other, hence we will concentrate on, say,
Γ1. The first curve contracted has to be the leaf, since otherwise there would be two
components of D̃1 intersecting at a singular point of Y1, contradicting Proposition 4.4.
Repeating this argument, we see that the curves in Γ1 are contracted in sequence,
starting from the leaf and proceeding toward the fork. In particular, at each step
there is only one singular point and it is obtained by contracting a subchain of Γ1.
But det Γ1 � 6 and by the recurrence relation in [19, (3.33.1)], the same also holds for
all its subchains. By [19, Theorem 3.32] and the assumption char k � 7, the singular
point of each Yi is a quotient by a finite group of order at most 6. As in the previous
case (7.8.3), this implies that π is tame and hence Theorem 1.2 holds also in this
case.

(7.8.5) (Cyclic quotient, Figure 5) There are three subcases, according to whether the
boundary D has zero, one or two components. In the first two cases, it actually
not true that (X,D) has a tame resolution, since the chain E can be arbitrarily
long and hence infinitely many (in fact, all) primes would have to be excluded. So we
cannot apply Proposition 7.3. But note that for every exceptional curve P ⊂ Y = Y0,
we have deg(KP + P c) � 0, where P c := DiffP (D̃0 − P ). (The degree is −1 for the
leaves and 0 for the other curves, since there is no fork.) Also the pair (Y0, D̃0) is
clearly tamely dlt, since it is even snc. Hence in these cases, Theorem 1.2 is a direct
consequence of Theorem 6.1 applied to π. In the third subcase, we may follow the
same argument or else note that r = 0, so π is tame — it boils down to the same
thing.

(7.8.6) (Dihedral quotient, Figure 6) We have two subcases: either D = 0 or D �= 0. If D = 0,
again there may not be a tame resolution. Instead, the MMP needs to be chosen
in such a way that first the two (−2)-curves intersecting the fork are contracted.
The resulting pairs (Yi, D̃i), i = 1, 2, are tamely dlt by the same reasoning as in

†As stated, [19, Theorem 3.32] gives the result only up to completion (which would also be sufficient), but
the proof shows that there is a map ϕi(Ui) → Spec k[u2, uv, v2] which is étale at the point ϕi(Ci).
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case (7.8.3). If P ⊂ Y2 is the image of the fork, both singular points of Y2 appear in
P c := DiffP (D̃2 − P ) with coefficient either† zero or 1

2 , by Theorem 4.3. Hence

deg(KP + P c) � −2 + 1 +
1
2

+
1
2

= 0.

If P ⊂ Y2 is any other exceptional curve, the above inequality also holds, as in
case (7.8.5). We can therefore apply Theorem 6.1 to the map Y2 → X to conclude.
If D �= 0, then r = 2 and only the two (−2)-curves are contracted. The resolution π
is then tame by exactly the same argument as in case (7.8.3).

(7.8.7) (Other quotient of a smooth surface, Figure 7) The argument is similar to case (7.8.4).
First the chains Γi are contracted, starting from the leaves and progressing toward
the fork. As det Γi � 5 < 7 � char k, this implies that (Yi, D̃i) is tamely dlt for 0 �
i � r − 1. Furthermore, X is log terminal and D = 0, so (X,D) is plt and case (7.1.2)
of the definition of tameness applies. So π is tame and Proposition 7.3 gives the result.

Since we have now worked our way through all the cases, the proof of Theorem 1.2 is finished.

8. Proof of Theorem 1.3

This section contains the proof of our second main result, Theorem 1.3. The argument proceeds
in three steps.

8.A. Passing to a log resolution

First of all, by blowing up Y further we may turn Exc(π) + DY into an snc divisor. We need
to show that this does not change det(Ei · Ej) up to sign. Indeed, after renumbering we may
assume that we are blowing up a point p ∈ Y which is contained exactly in the exceptional
curves E1, . . . , Ek, where k � �. Let ri be the multiplicity of Ei at p. Set A = (aij) = (−Ei · Ej),
the negative of the intersection matrix on Y and Ã the analogous matrix after blowing up p,

with the new exceptional curve put first. Also, let A0 = (
0 0
0 A

) with one additional zero row

and column. Then

Ã = A0 +

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −r1 −r2 · · · −rk 0
−r1 r2

1 r1r2 · · · r1rk 0
...

...
...

. . .
...

...
−rk r1rk r2rk · · · r2

k 0
0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where there are �− k zero rows and columns, respectively. By adding ri · (first column) to the
(i + 1)st column for all 1 � i � k, the matrix Ã is transformed into

Ã′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
−r1 a11 · · · a1�

...
...

...

−rk
...

...
0 a�1 . . . a��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

†As KY2 + ˜D2 is not Cartier, the coefficient is actually 1/2, but we only need an upper bound on the different.
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while keeping the determinant unchanged. Expanding det Ã′ by the first row, we see that
det Ã′ = detA. Hence we may make the following

Additional Assumption 8.1. The map π : Y → X is a log resolution of (X,D).

8.B. Dropping the non-exceptional divisor

Pick an irreducible component P ⊂ �D�, and let PY be its strict transform on Y . Then consider
the short exact sequence given by the residue map [5, 2.3(b)]

0 −→ Ω1
Y (log�DY � + E − PY ) −→ Ω1

Y (log�DY � + E) −→ OPY
−→ 0.

Pushing it forward via π yields

0 −→ π∗Ω1
Y (log�DY � + E − PY ) −→ π∗Ω1

Y (log�DY � + E) −→ Q −→ 0,

where Q ⊂ π∗OPY
. In particular, Q is supported on P and it is torsion-free as an OP -module.

Hence Q has only one associated prime, which is of height 1. It then follows from [14,
Corollary 1.5] that the sheaf π∗Ω1

Y (log�DY � + E − PY ) is likewise reflexive. Repeating this
argument for all components P ⊂ �D�, we arrive at the conclusion that

π∗Ω1
Y (logE)

is reflexive, and hence isomorphic to Ω[1]
X . In other words, (X, ∅) satisfies the logarithmic

extension theorem.

8.C. Dropping the exceptional divisor

Set E = E1 + · · · + E�, and consider the residue sequence [5, 2.3(a)]

0 −→ Ω1
Y −→ Ω1

Y (logE) −→
�⊕

i=1

OEi
−→ 0.

We need to show that

H0
(
Y,Ω1

Y

) −→ H0
(
Y,Ω1

Y (logE)
)

is an isomorphism. It suffices to show that the connecting homomorphism

δ :
�⊕

i=1

H0(Ei,OEi
) −→ H1

(
Y,Ω1

Y

)
is injective. To this end, consider the restriction map

r : H1
(
Y,Ω1

Y

) −→ �⊕
i=1

H1
(
Ei,Ω1

Ei

)
.

We will show that the composition

r ◦ δ :
�⊕

i=1

H0(Ei,OEi
) −→

�⊕
i=1

H1
(
Ei,Ω1

Ei

)
(8.1.1)

is an isomorphism. In fact, on the left-hand side choose the basis consisting of the constant
functions 1Ei

, and on each summand of the right-hand side, choose the basis canonically
determined by the trace map. It is easy to see† that with respect to these bases, (8.1.1) is

†For more details, the reader is advised to consult the proof of [9, Proposition 3.2], which is independent of
the characteristic.
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given by the intersection matrix A := (Ei · Ej). By the negativity lemma [21, Lemma 3.40],
A is negative definite (in particular, invertible) when considered as an integer matrix. Here,
of course, we have to regard A as defined over our ground field k instead. However, by our
assumption, the characteristic p of k does not divide detA. Hence the matrix A remains
invertible when reduced modulo p. In other words, r ◦ δ is an isomorphism, and then δ is
injective. It follows that the sheaf π∗Ω1

Y is reflexive.

9. The characteristic zero extension theorem revisited

The purpose of this section is to explain how the ideas in this paper yield a new proof of [11,
Theorem 1.5], repeated below as Theorem A. Even though we are ultimately only interested
in that statement, in order to give a self-contained argument we have to set up an inductive
procedure involving Theorem B. The latter statement has already been proven in much greater
generality in [8, Theorem 1.2], but we must not use that result in our proof in order to avoid
a circular dependence on [11].

For a very brief run-down of C-pairs and C-differentials, we refer to Section 9.A. In the whole
section, all varieties are assumed to be defined over the complex numbers.

Theorem A. Let (X,D) be a complex log canonical pair. Then (X,D) satisfies the
logarithmic extension theorem.

Theorem B (Bogomolov–Sommese vanishing). Let (X,D) be a complex-projective dlt
C-pair and A ⊂ Sym[1]

C Ωr
X(logD) = Ω[r]

X (log�D�) a rank one reflexive subsheaf. Then the
C-Kodaira dimension κC(A ) � r.

The induction runs as follows, where the start of induction (dimension one) is trivial. Here,
of course, ‘Theorem An’ means ‘Theorem A for X of dimension at most n’, and ditto for
Theorem Bn.

• Theorem An implies Theorem Bn, and
• Theorem Bn implies Theorem An+1.

While the proofs of both directions do draw on some of the more elementary arguments in [11],
we stress that the technical core of that paper is not used. Hence it still seems fair to say that
our proof is ‘new’.

9.A. Background on C-pairs

For a more thorough treatment, see [8, Section 5] and the references therein. A C-pair is a
pair (X,D) in the usual sense, where D =

∑
i(1 − 1

ni
)Di with ni ∈ N ∪ {∞}. One then defines

adapted morphisms γ : Y → X, essentially by requiring that the ramification order over Di is
equal to ni. The sheaves of C-differentials are subsheaves

Sym[m]
C Ωr

X(logD) ⊂
(
Sym[m] Ωr

X

)
(∗	D
)

defined by the condition that the pullback of a local section under an adapted morphism has
at worst logarithmic poles along supp γ∗�D�. We have

Sym[m] Ωr
X(log�D�) ⊂ Sym[m]

C Ωr
X(logD)

and for m = 1, this is an equality. Let A ⊂ Sym[1]
C Ωr

X(logD) be a Weil divisorial subsheaf.
The C-Kodaira dimension κC(A ) is defined to be the maximum of the dimensions of ϕm(X),



DIFFERENTIAL FORMS IN POSITIVE CHARACTERISTIC 2229

where ϕm is the rational map given by the global sections of Sym[m]
C A . Here Sym[m]

C A is the
saturation of A [m] inside Sym[m]

C Ωr
X(logD).

9.B. Residue and restriction sequences

We need to have the results of Section 5 at our disposal in this setting. These are, to a large
extent, already contained in [8, Section 6; 11, Section 11]. Hence we only give a sketch of the
proof.

Theorem 9.1 (Residue sequence). Let (X,D) be a dlt C-pair and P ⊂ �D� an irreducible
component. Setting P c := DiffP (D − P ), the pair (P, P c) is again a dlt C-pair, and the following
holds: For any integer r � 1, there is a sequence

0 −→ Ω[r]
X (log�D� − P ) −→ Ω[r]

X (log�D�) resP−−−→ Ω[r−1]
P (log�P c�) −→ 0 (9.1.1)

which is exact on X off a codimension three subset and on (X,D)snc agrees with the usual
residue sequence. Its restriction to P induces a sequence

0 −→ Ω[r]
P (log�P c�) −→ Ω[r]

X (log�D�)∣∣ ‹ ‹
P

resPP−−−→ Ω[r−1]
P (log�P c�) −→ 0 (9.1.2)

which is exact on P off a codimension two subset. More generally, for every m ∈ N there is a
map

resmP : Sym[m]
C Ωr

X(logD) −→ Sym[m]
C Ωr−1

P (logP c),

surjective off a codimension three subset of X, which generically coincides with the mth
symmetric power of the residue map.

Theorem 9.2 (Restriction sequence). Notation as above. Then there is a sequence

0 −→ Ω[r]
X (log�D�)(−P ) ‹ ‹ −→ Ω[r]

X (log�D� − P ) restrP−−−−−→ Ω[r]
P (log�P c�) −→ 0, (9.2.1)

exact off a codimension three subset, which on (X,D)snc agrees with the usual restriction
sequence. More generally, for every m ∈ N there is a map

restrmP : Sym[m]
C Ωr

X(logD − P ) −→ Sym[m]
C Ωr

P (logP c)

which is surjective in codimension two and generically coincides with the mth symmetric power
of the restriction map.

Proof sketch of Theorems 9.1 and 9.2. Sequences (9.1.1) and (9.1.2) along with the respective
properties are in [11, Theorem 11.7]. The existence of resmP is shown in [8, Theorem 6.9(i)].
Likewise, the maps restrmP are constructed in [8, Theorem 6.9(ii)]. What is missing is the
following:

• the existence of sequence (9.2.1), and
• the surjectivity properties of resmP and restrmP .

For the first item, the argument is similar to Step 3 in the proof of Theorem 1.4, that is, we
reduce to the snc case by a reflexivity argument. For the second item (which is in fact not used
in this paper), we resort to Step 2 in the above proof, but instead of Corollary 4.5 we use [8,
Proposition 6.12]. �

9.C. Lifting along a non-positive map

The analog of Theorem 6.1 is as follows.
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Theorem 9.3 (Lifting forms). Assume Theorem Bn. Let g : Y → X be a proper birational
map of normal varieties of dimension at most n + 1, with E = Exc(g) the reduced divisorial
part of the exceptional locus. Furthermore, let D be an effective divisor on X, and set DY :=
g−1
∗ D + E. Assume both of the following:

(9.3.1) The pair (Y,DY ) is dlt and Q-factorial.
(9.3.2) For any irreducible component P ⊂ E, setting P c := DiffP (DY − P ), we have that

KP + P c is not g|P -big.

Then for any integer r � 1, the natural map

g∗Ω
[r]
Y (log�DY �) ↪→ Ω[r]

X (log�D�)
is an isomorphism.

Recall that if f is any map, a divisor on the source of f is called f -big if its restriction to a
general fiber of f is big.

The proof relies crucially on the following negativity lemma, which should be compared to
the usual one [3, Lemma 3.6.2(1)]. Indeed our version is somewhat stronger, as it does not
merely make a numerical statement, but actually produces sections of a suitable line bundle.

Proposition 9.4 (Big negativity lemma, cf. [8, Proposition 4.1]). Let π : Y → X be a proper
birational map between normal quasi-projective varieties. Then for any non-zero effective π-
exceptional Q-Cartier divisor E, there is an irreducible component P ⊂ E such that −E|P is
π|P -big.

Proof of Theorem 9.3. We first contend that we may replace D by �D� and thus assume
that D is reduced. To this end, note that �DY � = g−1

∗ �D� + E, so the conclusion we are aiming
at only depends on �D�. Also, as Y is Q-factorial, the pair (Y, �DY �) remains dlt. Finally, for
any component P ⊂ E we have

DiffP (�DY � − P ) = DiffP (0) + (�DY � − P )
∣∣
P

[19, (4.2.10)]

= DiffP (0) + (DY − P )
∣∣
P
− {DY }

∣∣
P

= P c − {DY }
∣∣
P
, [19, (4.2.10)]

where {DY } := DY − �DY � � 0 is the fractional part of DY . So Condition (9.3.2) is
likewise preserved.

Now let σ ∈ H0(X,Ω[r]
X (logD)) \ {0} be an arbitrary non-zero logarithmic r-form, and pick

an effective g-exceptional divisor G such that

g∗σ ∈ H0
(
Y,Ω[r]

Y (logDY )(G) ‹ ‹

)
. (9.4.1)

Equivalently, there is an injective map i : OY (−G) → Ω[r]
Y (logDY ). We may assume that G �= 0,

in which case by Proposition 9.4 there is a component P ⊂ G such that −G|P is g|P -big. Set
P c := DiffP (DY − P ). Let F ⊂ P be a general fiber of g|P , and set F c := P c|F . Then F is
normal and (F, F c) is again a dlt C-pair. Also, define A ⊂ Sym[1]

C Ωr
Y (logDY ) to be the image

of i. Now consider the residue sequence (9.1.1) along P :
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Claim 9.5. We have resP (A ) = 0, and hence A is contained in Ω[r]
Y (logDY − P ) as

indicated by the dashed arrow in the above diagram.

In the following, note that the restriction of a reflexive sheaf on P to the general fiber F
remains reflexive and hence in this case the double dual may be omitted.

Proof of Claim 9.5. Arguing by contradiction, let us assume that resP (A ) �= 0 and denote
its saturation by B ⊂ Sym[1]

C Ωr−1
P (logP c), a Weil divisorial sheaf. By [8, Proposition 7.3], there

are a number 0 � q � r − 1 and embeddings

αk : Ck := (Sym[k]
C B)

∣∣
F
↪→ Sym[k]

C Ωq
F (logF c)

for all k, satisfying the compatibility conditions that Ck and C
[k]
1 generically agree as subsheaves

of Sym[k]
C Ωq

F (logF c). We will show that C := C1 is ‘C-big’ in the sense that κC(C ) = dimF .
If q < dimF , this contradicts Theorem Bn. If q = dimF , it contradicts Assumption (9.3.2),
which says that KF + F c = (KP + P c)|F is not big.

To this end, we claim that for any natural number m there is an inclusion(
OY (−mG)

∣∣ ‹ ‹

P

)∣∣
F
⊂
(
(Sym[m]

C A )
∣∣ ‹ ‹
P

)∣∣
F
⊂ Sym[m]

C C . (9.5.1)

The first inclusion holds because i does not vanish along P nor F (otherwise we would
necessarily have resP (A ) = 0). For the second one, the map resmP from Theorem 9.1 gives
an inclusion

(Sym[m]
C A )

∣∣ ‹ ‹

P
↪→ Sym[m]

C Ωr−1
P (logP c)

which by (2.1.3) factors via the saturated subsheaf Sym[m]
C B. Restricting to F , we see that the

middle term of (9.5.1) is contained in Cm. But Cm, C [m] and Sym[m]
C C all generically agree.

Hence Cm ⊂ Sym[m]
C C by another application of (2.1.3) and we obtain (9.5.1).

Now let m be sufficiently divisible so that mG is Cartier. In this case, on the left-hand side
of (9.5.1) the double dual may be dropped and we simply get the big line bundle OF (−mG|F ).
As a consequence, also Sym[m]

C C is big, establishing our claim that κC(C ) = dimF . �

We next consider the restriction sequence (9.2.1):

The same line of argument as in the proof of Claim 9.5 then shows that we have restrP (A ) = 0
and so A is contained in Ω[r]

Y (logDY )(−P ) ‹ ‹ . The details are omitted for their similarity. The
proof of Theorem 9.3 is now finished in exactly the same fashion as Theorem 6.1: we have
shown that G can be replaced by G− P in (9.4.1). Hence after finitely many repetitions we
arrive at G = 0. �

9.D. Proof of ‘An ⇒ Bn’

This implication is by far the easier of the two. By [3], the dlt pair (X,D) admits a Q-
factorialization. This is essentially a dlt modification in the special case of dlt pairs; cf. Section 3.
For the proof, see [20, Theorem 3.1] and [8, Theorem 9.2].

As the Kodaira dimension is invariant under small morphisms, we may assume that A is
Q-Cartier. Under this assumption, the proof of [11, Theorem 7.2] shows how to deduce that
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κ(A ) � r from Theorem An and the standard Bogomolov–Sommese vanishing theorem for snc
pairs [5, Corollary 6.9]. The stronger statement that κC(A ) � r can then be obtained from this
by a branched covering trick as explained in [15, Section 7]. Compare also [11, Theorem 7.3]
(which erroneously contains the extra assumption that dimX � 3).

9.E. Proof of ‘Bn ⇒ An+1’

Let π : Y → X be a log resolution of (X,D). Then π can be factored as f ◦ ϕr−1 ◦ · · · ◦ ϕ0 just
as in Theorem 3.1, whose notation we adopt here. The only difference is that some of the ϕi

might be flips. Also the proof is essentially the same, except that instead of [24] we need to
appeal to [3]. Also, because we cannot in general run the MMP on a dlt pair, we have to use
the perturbation trick from the proof of [20, Theorem 3.1] to reduce the situation to the case
of klt pairs.

We will lift forms along each step separately, just as in Proposition 7.3 but using Theorem 9.3
instead of Theorem 6.1. For this, we need to make sure Condition (9.3.2) is satisfied. As far
as the map f is concerned, this is quite clear: since KZ + D̃r = f∗(KX + D), the restriction of
KZ + D̃r to any fiber of f is trivial and in particular not big. But for any component P ⊂ E,
we have (KZ + D̃r)|P = KP + P c by adjunction and so (9.3.2) is satisfied.

We now fix 0 � i � r − 1 and turn to the map ϕi : Yi → Yi+1. If ϕi is a flip, then it is an
isomorphism in codimension one and hence extension of forms from Yi+1 to Yi is automatic
by reflexivity. We may therefore assume that ϕi is a divisorial contraction, with irreducible
exceptional divisor P . By construction, KYi

+ D̃i is ϕi-anti-ample. Also, (KYi
+ D̃i)|P = KP +

P c by adjunction. Thus KP + P c is ϕi|P -anti-ample and in particular (9.3.2) is satisfied.

10. Sharpness of results

In this section we discuss some examples that show to what extent our main results are optimal.
First, we show that Theorem 1.2 fails for the RDP E0

8 in characteristic p � 5, using notation
from [2].

Example 10.1 (No logarithmic extension theorem in low characteristics). Fix any field k of
characteristic p = 2, 3 or 5. Then for the (non-F -pure) E0

8 singularity

X =
{
f = z2 + x3 + y5 = 0

} ⊂ A3
k,

the logarithmic extension theorem does not hold. More precisely, note that Kähler differentials
on X satisfy the relation

df = 3x2dx + 5y4dy + 2zdz = 0

and hence we may consider the 1-form

σ :=

⎧⎪⎨⎪⎩
y−4dx = x−2dy, p = 2,
z−1dy = −y−4dz, p = 3,
z−1dx = −x−2dz, p = 5.

As any two coordinate functions on X vanish simultaneously only at the origin, σ ∈
H0(Xreg,Ω1

X) = H0(X,Ω[1]
X ) is a reflexive differential form on X. We blow up the origin of

A3
k (and points lying over it) four times in a row, yielding a map ϕ : Ã3

k → A3
k. In suitable

coordinates on Ã3
k, this map is given by

ϕ(u, v, w) = (u2v5, uv3, u2v7w).
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We compute

ϕ∗(f) = u4v14w2 + u6v15 + u5v15 = u4v14 · (w2 + uv(u + 1)
)︸ ︷︷ ︸

equation of strict
transform ˜X of X

.

We see that X̃ can be parametrized rationally by the (u,w)-plane, namely by setting v =
− w2

u(u+1) . In this parametrization, for p = 2 the pullback of σ is given by

ϕ∗(σ) = (uv3)−4 d(u2v5)

= u−2v−8 dv

=
u6(u + 1)8

w16
d
(

w2

u(u + 1)

)
= · · ·

=
u4(u + 1)6

w14
du.

A similar calculation for the other characteristics gives

ϕ∗(σ) =

⎧⎪⎪⎨⎪⎪⎩
u2(u + 1)4

w9
du, p = 3,

u(u + 1)2

w5
du, p = 5.

This shows that the extension of σ to X̃ has worse than logarithmic poles along the exceptional
divisor {w = 0}.

Next, we show that in Theorem 1.3, the assumption on det(Ei · Ej) not being divisible by p
really is necessary.

Example 10.2 (No regular extension theorem in spite of logarithmic extension theorem). Let
k be a field of characteristic p > 0, and consider the pth Veronese subring R of k[x, y], that
is, R = k[xp, xp−1y, . . . , yp]. Then X = SpecR is a strongly F -regular surface, since R is a
direct summand of the regular ring k[x, y]. In particular, X is klt. If π : Y → X is the minimal
resolution, then E = Exc(π) consists of a single smooth rational curve of self-intersection −p.
In particular, the assumptions of Theorem 1.3 are not satisfied. For later use, let us record the
discrepancy a = a(E,X) along E: by adjunction,

−2 = (KY + E) · E = (π∗KX + (a + 1)E) · E = −(a + 1)p

and hence a = −1 + 2
p .

One can see by direct calculation that X satisfies the logarithmic extension theorem, but
not the regular extension theorem. More precisely, Y is covered by two open sets U0, U1

∼= A2
k,

where Ui has coordinates xi, yi and the coordinate change is given by (x1, y1) = (x−1
0 , xp

0y0).
The exceptional curve E is given by the equation yi = 0 in the chart Ui. Consider the form
σ ∈ H0(Y \ E,Ω1

Y ) given by y−1
0 dy0 on U0 and by y−1

1 dy1 on U1. It obviously does not extend
regularly over E, showing that the regular extension theorem fails for X. But σ has only

a logarithmic pole along E, and it generates the quotient Ω[1]
X /π∗Ω1

Y
. Thus the logarithmic

extension theorem does hold for X. (Of course, this last fact also follows from Theorem 1.2, at
least if p � 7.)
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An elaboration of the previous example shows that Theorem 1.5 fails for dlt pairs whose
canonical divisor is not Z(p)-Cartier.

Example 10.3 (No restriction sequence for fiercely dlt pairs). Using notation from Exam-
ple 10.2, let D ⊂ X be the π-image of the curve DY ⊂ U0 ⊂ Y given by the equation
{x0 = const.} (where the constant is arbitrary). Then D is a smooth curve passing through
the singular point x ∈ X, and it is isomorphic to its strict transform DY .

We have π∗D = DY + rE, where 0 = π∗D · E = 1 − rp and hence r = 1/p. It follows that the
discrepancy of (X,D) along E is

a(E,X,D) = a(E,X) − r = −p− 1
p

.

This shows that the pair (X,D) is plt. On the other hand, KX + D cannot be Z(p)-Cartier, since
otherwise p would not appear in the denominator of a(E,X,D) (written in lowest terms). Hence
(X,D) is fiercely dlt. In particular, we cannot apply Theorem 4.3 to compute DiffD(0). But [19,
Theorem 3.36] tells us that we still have Dc := DiffD(0) = (1 − 1

p ) · [x]. So, if Theorem 1.5 is
held, we would have a restriction map as in (1.5.1):

restrD : Ω[1]
X → Ω1

D(log�Dc�) = Ω1
D.

Consider however the form σ from the previous example, viewed as a section of Ω[1]
X . As

DY
∼= D, we can compute restrD(σ) on Y . We have already seen that σ acquires a logarithmic

pole along E. So σ|DY
has a logarithmic (that is, simple) pole at the unique point in the

intersection DY ∩ E, which under π maps to x. Summing up, this means that we do have a
restriction map

restrD : Ω[1]
X → Ω1

D(log x),

but it does not factor via Ω1
D. Looking at higher powers σ[m], we see that also the other maps

restrmD from Theorem 1.5 do not exist in this example.

Example 10.4 (No logarithmic extension theorem for singularities reduced from character-
istic zero). Finally, we would like to remark that if we start with a log canonical singularity
in characteristic zero and then reduce it modulo some small prime p, the resulting singularity
may not satisfy the logarithmic extension theorem even if it remains log canonical. Indeed,
Example 10.1 furnishes a counterexample since z2 + x3 + y5 = 0 defines an E8 RDP also in
characteristic zero.

11. Counterexamples in higher dimensions

In this final section, we will prove Theorem 1.6. As a starting point, in [17] Kollár has given
a fairly explicit method for constructing counterexamples to Bogomolov–Sommese vanishing
over fields of positive characteristic. We will recall Kollár’s construction in Section 11.A, both
for the benefit of the reader and in order to bring the result in the precise form we need. It
turns out that in the examples, the line bundle in question is not just big, but even ample.
Thus also Nakano vanishing is violated:



DIFFERENTIAL FORMS IN POSITIVE CHARACTERISTIC 2235

Proposition 11.1 (Failure of Nakano vanishing). Fix an algebraically closed field k of
characteristic p > 0, and an integer n � 2.

(11.1.1) If n � 2p− 2, then there exists an n-dimensional Fano variety Y/k with only isolated
canonical hypersurface singularities such that

H0
(
Y,Ω[n−1]

Y ⊗ ωY

)
�= 0.

(11.1.2) If n � 3p− 2, then there exists Y as above, but such that ω−1
Y admits a square root

L (that is, an ample line bundle with L2 ∼= ω−1
Y ) and

H0
(
Y,Ω[n−1]

Y ⊗ L−1
)
�= 0.

(11.1.3) If n � p− 2, then there exists an n-dimensional variety Y/k with only isolated
canonical hypersurface singularities, satisfying ωY

∼= OY and

H0
(
Y,Ω[n−1]

Y ⊗ L−1
)
�= 0

for some ample line bundle L on Y .

In all cases, Y actually has F -pure singularities. If n � 3, then Y is even terminal and strongly
F -regular.

In Section 11.B, we will turn our attention to cones over projective varieties and study when
the logarithmic extension theorem holds for such spaces. The conclusion is that cones over the
examples from Proposition 11.1 are sufficient to prove Theorem 1.6, which is accomplished in
Section 11.C.

11.A. Kollár’s construction

Kollár’s method is quite flexible in the sense that it does not rely on resolution of singularities
and gives very good control on the canonical divisor of the resulting example. On the other
hand, it only works in dimensions that satisfy a certain lower bound depending on the
characteristic, and the spaces obtained are virtually never smooth. Also, the violation of Nakano
vanishing is only guaranteed in degree n− 1, where n is the dimension.

Let X be an n-dimensional smooth projective variety over an algebraically closed field of
characteristic p > 0 and L a line bundle on X. Assume that Lp is ‘globally generated to second
order’ in the sense that the restriction map

H0(X,Lp) −→ Lp ⊗OX

(
OX
/
m3

x

)
is surjective for every (closed) point x ∈ X with ideal sheaf mx ⊂ OX . Choose a general section
s ∈ H0(X,Lp) and consider the cover

Y := X[ p
√
s] π−−−→ X

as before. By [17, (14.2)] there is a short exact sequence

0 −→ π∗ coker
[
L−p ds−→ Ω1

X

]
︸ ︷︷ ︸
const. rank one
off small subset

−→ Ω1
Y −→ π∗L−1 −→ 0. (11.1.4)

Taking determinants, we see that KY = π∗(KX + (p− 1)L). On the other hand, the (n− 1)th
reflexive wedge power of the first map in (11.1.4) shows that

H0
(
Y,Ω[n−1]

Y ⊗ π∗(KX + pL)−1
)
�= 0. (11.1.5)

Thus we obtain interesting examples if KX + pL is ample, but KX + (p− 1)L is not.
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Proof of Proposition 11.1. Let X ⊂ Pn+1 be a smooth hypersurface of degree d = n− 2p +
3 � 1, and take L = OX(2). The global generation hypothesis on Lp is automatically satisfied,
hence we may construct π : Y → X as above. Then Y is Fano since

KX + (p− 1)L = OX(−(n + 2) + d + 2(p− 1)) = OX(−1)

is anti-ample. On the other hand, KX + pL = OX(1) = (KX + (p− 1)L)−1 is ample and so
by (11.1.5), the variety Y violates Nakano vanishing in the required form. By [17, (20.3),
(22.1)], the singularities of Y are locally of the form

yp = xn−1xn + f2(x1, . . . , xn−2)︸ ︷︷ ︸
non-degenerate quadric

+ (higher order terms with respect to x). (11.1.6)

Using this description, it can be checked that Y has only isolated canonical hypersurface
singularities, which are terminal for n � 3. This proves (11.1.1).

The argument for (11.1.2) is very similar. We start with X a smooth hypersurface of degree
d = n− 3p + 3 � 1 and L = OX(3). Then

KX + (p− 1)L = OX(−(n + 2) + d + 3(p− 1)) = OX(−2)

and KX + pL = OX(1). Again we conclude by (11.1.5).
For (11.1.3), we tweak the numbers once more. Let X be of degree d = n− p + 3 � 1 and

L = OX(1). Then

KX + (p− 1)L = OX(−(n + 2) + d + (p− 1)) = OX ,

so ωY
∼= OY , and KX + pL = OX(1).

The claim about F -purity can likewise be checked using (11.1.6) and Fedder’s criterion [6].
If n � 3, then even (11.1.6) multiplied by the non-unit x1 is F -pure and so Y is strongly F -
regular. Note also that a strongly F -regular Gorenstein singularity is automatically canonical,
therefore this provides an alternative proof of Y being canonical. �

Remark 11.2. One might be tempted to try and construct lower dimensional examples
by starting with a more interesting X than just a hypersurface in Pn+1. This, however, is not
possible because the Fano index of X is always � dimX + 1 by [18, Chapter V, Theorem 1.6].

11.B. Extension properties on cones

Fix an integer n � 2, a smooth projective variety Y with dimY = n− 1, and an ample line
bundle L on Y . Following [19, Chapter 3.1], let

X := Spec
⊕
m�0

H0(Y, Lm)

be the affine cone over (Y, L). Blowing up the vertex gives a log resolution π : X̃ → X, where
X̃ is the total space of the line bundle L−1 and the exceptional locus E is the zero section of
L−1. In particular, there is an affine map r : X̃ → Y , which maps E isomorphically onto Y .

For any integer q � 0, we will say that Condition (∗)q holds if

H0
(
Y,Ωq

Y ⊗ L−m
)

= 0 for all m � 1. (∗)
Note that (∗)q always holds in any of the following cases: q = 0, q � n, or if L is sufficiently
ample. In characteristic zero, (∗)q holds for any q �= n− 1 by Nakano vanishing.

With this notation in place, we have the following result. It should be compared to the
non-logarithmic, characteristic zero version in [16, Proposition B.2].
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Figure 8. Relative (log) differential sequences for the map r.

Proposition 11.3 (Logarithmic extension theorem on cones). Notation as above. Then the
following equivalences hold:

(11.3.1) X satisfies the logarithmic extension theorem for 1-forms ⇔ (∗)1 holds.
(11.3.2) X satisfies the logarithmic extension theorem for n-forms ⇔ (∗)n−1 holds.

More generally, for arbitrary values of q we have the following:

(11.3.3) If (∗)q and (∗)q−1 hold, then X satisfies the logarithmic extension theorem for
q-forms.

(11.3.4) Conversely, if X satisfies the logarithmic extension theorem for q-forms, then (∗)q
holds. If in addition n � 3 and L is sufficiently ample, then also (∗)q−1 holds.

Proof. The sequence of relative differentials for r reads
0 −→ r∗Ω1

Y −→ Ω1
˜X
−→ r∗L −→ 0 (11.3.5)

and its logarithmic version is
0 −→ r∗Ω1

Y −→ Ω1
˜X
(logE) −→ r∗L(E) −→ 0. (11.3.6)

For (11.3.6), choose a system of local parameters y1, . . . , yn−1 of Y and let t be a nowhere
vanishing local section of L, considered as a fiberwise linear coordinate on X̃. Then the middle
term of (11.3.6) is locally freely generated by

r∗dy1, . . . , r
∗dyn−1, dt/t,

and the first map is the inclusion of the subsheaf generated by the r∗dyi. Consequently, the
quotient sheaf is invertible, locally generated by dt/t. Since E = {t = 0}, this shows that the
quotient is isomorphic to r∗L(E).

Now (11.3.5) and (11.3.6) sit inside the diagram shown in Figure 8. Also, for forms of higher
degree, from (11.3.6) we get [13, Chapter II, Example 5.16]

0 −→ r∗Ωq
Y −→ Ωq

˜X
(logE) −→ r∗

(
Ωq−1

Y ⊗ L
)
(E) −→ 0. (11.3.7)

Recalling that both r and its restriction r′ := r|
˜X\E are affine, with

r∗O ˜X =
⊕
m�0

Lm,

r∗O ˜X(E) =
⊕

m�−1

Lm and

r′∗O ˜X\E =
⊕
m∈Z

Lm,
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from (11.3.7) we obtain the following diagram with exact rows and injective vertical arrows:

It is clear that α is an isomorphism ⇔ (∗)q holds, β is an isomorphism ⇔ the logarithmic
extension theorem for q-forms holds on X and γ is an isomorphism ⇔ (∗)q−1 holds.
Furthermore, if n � 3 and L is sufficiently ample then δ is an isomorphism by Serre vanishing
and Serre duality. All claims thus follow from straightforward diagram chases (cf. [11,
Lemma B.2]). �

11.C. Proof of Theorem 1.6

With all preliminaries in place, the construction of counterexamples to the logarithmic
extension theorem becomes very easy. Take (Y, L) as in (11.1.3), and let X be the affine
cone over (Y, L). Blowing up the vertex gives an exceptional divisor of discrepancy −1 because
ωY

∼= OY . The result is the total space of L−1, which has canonical singularities just as Y .
We conclude that X is log canonical. By (11.3.4), the logarithmic extension theorem for
(n− 2)-forms does not hold on X. This proves (1.6.1).

For (1.6.2), we use the Fano variety Y from (11.1.1) instead. In this case, X is the cone over
(Y, ω−1

Y ). A calculation shows that the first discrepancy is zero. Hence, since Y has canonical
singularities, so does X. The logarithmic extension theorem fails for the same reason as above.

For (1.6.3), we appeal to (11.1.2), that is, the cone X is taken with respect to a square root
of ω−1

Y . In this case the first discrepancy is equal to one. Since dimY � 3p− 2 � 4, we know
that Y has only terminal singularities and then the same is true of X.

In each case, a log resolution of X can be obtained by first blowing up the vertex of the cone
and then pulling back everything along a resolution of Y , which exists by [17, §21].
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