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I. Introduction 

 

I. Introduction 
 
I.1 The glass transition  

 

The glass transition phenomenon has been recognized since a long time as one of 

the major topics in condensed matter physics. In spite of its considerable scientific 

impact there still exists a fairly widespread lack of understanding the nature of the 

glass transition.  

A glass can be defined as a solid with irregular microscopic structure or, equivalently, 

as a liquid with infinite viscosity. The simplest way to produce a glass is by 

supercooling a liquid. Presumably, any liquid can be transformed into a glass if 

cooled fast enough to avoid crystallization. Supercooling a liquid results in a 

continuous slowing down of the structural relaxation process or, equivalently, a 

continuous increase of viscosity. This process, called glass transition, is purely kinetic 

in nature, as no thermodynamic phase transition is involved. 

The temperature associated with the liquid surpassing a viscosity value of η ≈ 1012 

Pa•s or with an increase of the time constant of the liquid structural relaxation beyond 

100 seconds gives the conventional definition for the glass transition temperature Tg. 

Another criterion for Tg may be given by the temperature at which a step is recorded 

in the specific heat while heating the sample at 10 K/min. This is called the 

calorimetric glass transition temperature. All the experiments probing structural 

relaxation, viscosity or specific heat yield similar values for Tg.  

The glass is produced by the inability of the liquid structure to equilibrate on the 

experimental time scale at low temperatures. Since in the liquid, well above the 

melting point, the structural relaxation takes place on the time scale of picoseconds 

and on the time scale of hundreds of seconds around Tg, the structural relaxation 

time constant (or viscosity) changes by many decades upon supercooling. One of the 

most interesting features of supercooled liquids is that this change occurs in a rather 

small temperature range, as shown in Fig. I.1. Here the time constants of the glass 

former SiO2 obeys a thermally activated behavior (straight line in Fig. I.1), i.e. their 

temperature dependence is given by an Arrhenius law: 
RT
Ea∝∝ τη lnln , with an 

activation energy Ea  = constant. However, as the most glass formers, glycerol and o-

terphenyl (OTP) show deviations from the Arrhenius behavior and a curvature in the 

“Arrhenius plot” is observed. Close to Tg, this non-Arrhenius temperature 
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dependence can be phenomenologically described by the Vogel-Fulcher-Tammann 

(VFT) equation [19,20]: 

)exp()()(
0

0 TT
DTT
−

=∝ ττη                                                                            (I.1) 

 
 

 
Fig. I.1 The Arrhenius plot for the 

viscosity for two supercooled liquids: 
SiO2 and glycerol. In addition, time 

constants from dielectric measurements 
for o-terphenyl (OTP) are plotted as open 

circles. Figure from [18]. 
 

 

 

 

 

The good interpolation of the data with the VFT function can be interpreted as 

pointing to the existence of a non-zero temperature T0 < Tg at which the relaxation 

time of the supercooled liquid may diverge, i.e. a phase transition is expected here. 

However, since the relaxation time τ becomes inaccessibly large at such 

temperatures, it is impossible to actually verify this scenario.   

Based on the temperature dependence of the viscosity, a classification of glass 

formers was introduced [21,22]: systems showing a weak change of viscosity at Tg in 

the above representation, lgη vs. Tg/T, are called “strong” (e.g. SiO2) while the others 

with a strong change are called “fragile” (e.g. OTP).  

 

I.2 Relaxation processes in molecular glass forming systems 
 

Dielectric spectroscopy (DS) is a powerful tool to investigate the extremely broad 

dynamic range involved in the glass transition (cf. Fig. I.1). Though dielectric 

measurements covering more than 18 decades in frequency were already performed, 

a conclusive picture of the evolution of molecular dynamics upon supercooling is still 

missing. This is due to the fact that there are not so many glass formers investigated 

in this full relevant relaxation time range. As most of commercially available dielectric 

spectrometers operate below some GHz, there are actually only two molecular liquids 
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investigated in the 10-6 – 1013 Hz range with dielectric spectroscopy, namely glycerol 

and propylene carbonate (PC) [25].  

In order to reveal some characteristic relaxation features of the supercooled 

molecular liquids, the dielectric susceptibility of glycerol [25,26] is shown in Fig. I.2 

(a). These data represent the state-of-the-art in the dielectric investigations of 

molecular glass formers. The main contribution to the dielectric spectra is given by 

the so-called α-process. For simple liquids this process is responsible for the ultimate 

correlation loss at long times; it characterizes the structural relaxation and controls 

macroscopic properties such as the flow, hence it governs the glass transition.  
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Fig. I.2 (a) Dielectric spectra of glycerol (Tg = 186 K) scaled by the static permittivity. The data 
plotted as crosses are from Lunkenheimer et al. [25] and the full circles are data measured by our 

group [26] scaled by the εs at Tg. (b) Dielectric spectra of m-fluoroaniline (m-FAN, Tg = 172 K), 
measured in our group [27]. Few temperatures (in K) are indicated. 

 

Besides the non-Arrhenius temperature dependence of the α-relaxation times, 

another important feature of the α-relaxation peak is its asymmetric non-Debye 

spectral shape. There are several empirical expressions proposed to describe the the 

α-peak as, e.g., the Cole-Davidson (CD) function. This function describe the high 

frequency side of the peak as a power-law ν-β with 0 < β < 1. This function seems 

sufficient for interpolating the relaxation peak at the highest temperatures in Fig. I.2 

(a). 

The relaxation pattern gets more complicated while approaching Tg. A characteristic 

of the deeply supercooled state is the emergence of secondary relaxation features in 

addition to the α-relaxation close to Tg. One recognizes for glycerol in Fig. I.2 (a), at 

temperatures close and above Tg, an additional spectral contribution on the high-

frequency flank of the α-peak, which can be described as a power-law ν-γ (with 
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exponent γ < β), the so-called excess wing (EW). This relaxation feature extends up 

to high frequencies (above GHz range) where a minimum in the susceptibility marks 

the crossover to the “fast dynamics”. At the highest frequencies the so-called 

“microscopic peak“, associated with vibrational dynamics ends the relaxation regime. 

The majority of the investigated glass formers exhibits in their dielectric spectra, in 

addition to EW, a second relaxation peak at frequencies higher than those 

associated with the α-process. An example is shown in Fig. I.2 (b) for m-fluoroaniline 

(m-FAN). Secondary relaxation peaks were observed since long in polymers, where 

they are usually related to the dynamics of particular side groups. However, 

investigating simple molecular liquids formed by rigid molecules, Johari and 

Goldstein discovered that the secondary relaxation peaks may be present even for 

such simple compounds [28,29]. Ever since, it is commonly accepted that the so-

called Johari-Goldstein β-process is an intrinsic property of the amorphous state. 

A highly debated topic in the glass community is the validity of the frequency-

temperature superposition, i.e. the invariance of the spectral shape of the α-

relaxation while changing temperature. Besides its theoretical implications, it is a 

useful concept for handling experimental data acquired in a limited frequency range 

at different temperatures. Since different phenomenological approaches for 

disentangling the contribution of the α-peak from the overall relaxation including the 

secondary processes may lead to quite different results, the situation here appears 

not conclusive.  

As observed in Fig. I.2, the secondary processes (EW and/or β-process) survive in 

the glass and give the major contribution to the dielectric response for temperatures 

down to say, Tg/2. However, systematic dielectric investigations of molecular glasses 

at even lower temperatures are not carried out up to date, as data here are sparse.   

 

I.3 Scope and structure of the present study 

 
The main purpose of the current work is to extend previous dielectric investigations of 

the molecular glass forming systems down to cryogenic temperatures say, close to 2 

K. As the main experimental effort has been spent on the investigations at 

temperatures below Tg, only few molecular glass-formers are newly investigated in 

the supercooled regime, at T > Tg. However, having at hand a huge collection of data 
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compiled in the Bayreuth group in the last years, this work starts with describing the 

temperature evolution of the different spectral contributions (α-process, EW and β-

process) for the molecular glass formers investigated above and also below Tg. A 

new phenomenological approach will be introduced to interpret the evolution of the 

dynamic susceptibility. This scenario stands for the applicability of the frequency 

temperature superposition for the α-peak in the whole temperature range down to Tg. 

The results of this approach call for strong reconsiderations for the evolution of the 

secondary processes in the supercooled regime, but also in the glass where they 

dominate the spectra. The dielectric results of glycerol will be discussed within this 

scenario together with those obtained by field cycling NMR and light scattering. From 

this comparison important conclusions will be drawn regarding the nature of the 

molecular dynamics associated with the EW. 

The dielectric investigations will be extended down to cryogenic temperatures by 

applying a high precision bridge. Using this bridge, up to three decades in the 

frequency dependence of the dielectric loss of molecular glasses can be accessed at 

such low temperatures. This study will address the question down to what 

temperatures the dielectric spectra are still dominated by the contribution from the 

secondary processes emerging at T > Tg and surviving in the glass. Moreover, it tries 

to identify some fingerprints of the “low temperatures anomalies” intensively 

discussed for inorganic glasses: whether the tunneling plateau can be reached in the 

accessible temperature range (T > 2 K) for molecular glasses, whether the spectra in 

the tunneling regime follow the predictions of the Standard Tunneling Model (STM) 

and whether one finds contributions from thermally activated Asymmetric Double 

Well Potential (ADWP) dynamics, a natural extension of the STM to higher 

temperatures. 

The Thesis is structured as follows: the next Chapter (II) gives a brief description of 

the dielectric response of polar materials and the principles of the experimental 

techniques used within this work. Here, some functions taken from literature and 

used for the interpolation of the measured spectra are also discussed. Chapter III 

presents the state-of-the-art for the description of the evolution of dynamic 

susceptibility in molecular systems, cumulating the theoretical and phenomenological 

approaches preceding this work. The experimental results are discussed starting with 

Chapter IV, where new data, together with those previously obtained, are discussed 

within the new approach. Here, the evolution of the α-process, excess wing and β-
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process is considered. Chapter V presents the low temperature investigations of the 

molecular glasses. The data are discussed within the predictions of theoretical 

models as STM and Gilroy-Phillips, aiming to describe the relaxation pattern 

observed as typical for inorganic glasses. In Chapter VI a comparison of three 

techniques (dielectric spectroscopy, field cycling NMR and light scattering) accessing 

the dynamic susceptibility of glycerol in a broad frequency and temperature range is 

presented. Ending the results, Chapter VII describes the dielectric response of 1,4 

polybutadiene. This polymeric system shows a peculiar relaxational behaviour with 

respect to the one generally observed for the simple glass forming systems at low 

temperatures. All the findings within this work are summarized in Chapter VIII.  
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II. Dielectric Spectroscopy: Theory, Experiment and 

Phenomenological Description of the Dielectric Response  
 
Dielectric spectroscopy relies on the property of materials to be polarized under the 

influence of an external electric field. The effect of a constant electric perturbation on 

a dielectric material as, e.g., a supercooled molecular liquid, results in building-up of 

a non-zero macroscopic polarization. The value of the equilibrium polarization 

depends on temperature and material structure and the time needed for reaching this 

equilibrium value depends on the underlying microscopic dynamics. All in all, 

dielectric spectroscopy provides direct access to the microscopic molecular dynamics 

and, indirectly, certain structure information. 

The main advantage of using this technique is the extremely large range in 

accessible time/frequency and the signal amplitude, i.e., the complete dielectric 

response of molecular glass forming liquids can be monitored. Nowadays dielectric 

investigations can cover the spectral range of 10-6 Hz – 1 THz.       

This Chapter will give a brief description of the dielectric response of polar materials 

and the principles of this experimental technique. The following parts are, more or 

less, a compilation from the books of Böttcher and Bordewijk [1,2] and Kremer and 

Schönhals [3].  

 

II.1 Theoretical background 

 
This Thesis will focus on the electric response of dielectric materials such as glass-

forming molecular systems. Thus, most attention will be given to the polarization 

phenomena arising from the reorientational motion of molecular dipoles. 

Nevertheless, during experiments additional polarization mechanisms may interfere 

and they are briefly mentioned here [1,4,5]: 

- shortly after an electric field is applied (at times smaller than say 10-13 s) dipole 

moments are induced by the change of the atoms position within the molecule or by 

the shift of the electronic cloud within the atoms. This gives a contribution to the total 

polarization, the so-called induced polarization. The corresponding fingerprint in the 

dielectric spectra is a number of resonance lines at frequencies beyond infrared 

band;   
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- any polar material contains electrically charged impurities whose diffusion will 

be manifested in the electric response as conductivity; 

-  at very low frequencies of the probing electric field, these free charges can 

accumulate at the electrod boundaries, a phenomenon called electrode polarization; 

- if the material allows the presence of interfaces enclosing different structural 

domains, charges may accumulate at the embedding surfaces leading to the so-

called interfacial polarization (or Maxwell-Wagner polarization).  

 

Static response 
 
Dielectric measurements can be performed in both time and frequency domain [2,3]. 

In a time domain experiment one applies a constant electric field with a moderate 

amplitude (below 103 Vcm-1) to a capacitor filled with the material under investigation. 

Let us assume the absence of the free charges (conductivity is neglected), and that 

the dielectric material consists only of rigid molecules with permanent dipole 

moments. In the absence of the field the molecular dipoles are randomly oriented. 

Shortly after the field is applied, the dipoles start to reorient due to the electric force. 

The minimum energy dictates a preferred alignment parallel with the field direction, 

thus a macroscopic dipole moment  is induced. This phenomenon is known as 

orientational polarization. 

→

P

In the (quasi)static limit, i.e., any change of the electric field  occurs slowly 

compared with the intrinsic motion of the constituent molecular dipoles, the total 

macroscopic polarization  builds-up to a value proportional with the applied field. 

Along the z-axis defined by  

0E
→

→

P
→→

= zEE 00

000000 )1( EEEDP ss χεεεε =−=−=                                                              (II.1)       

 where 0ε is the vacuum permittivity, sε is the static permittivity and 1−= ss εχ  is the 

static susceptibility of the material. D is the electric displacement and represents the 

density of electric charge induced on the sample surfaces. The material is considered 

isotropic, therefore sε and χs are scalars.  
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The overall polarization P arises from two contributions: the instantaneous 

polarization P∞ due to the induced dipole moments, and the orientational polarization 

P0  due to the reorientation of the permanent dipoles: 

 0000 )1( EEPPP o εεεε Δ+−=+= ∞∞                                                                  (II.2) 

where sε = εε Δ+∞  was substituted in Eq. (II.1), εΔ  being the relaxation strength 

and ∞ε the permittivity related to the short-time response or, equivalently, to the 

response at very high frequencies, far above the ones associated with the molecular 

relaxation.  

The orientational polarization  can be expressed as the macroscopic volume 

density of the vectorial sum over all permanent dipole moments contained in the 

material. Its projection on the z-axis defined by the electric field is given by: 

0

→

P

z

N

i
i

V
Nz

V
P μ

μ
=⋅=

→
=

→

∑
1

0                                                                                   (II.3) 

Here N is the number of permanent dipoles in the volume V and 
z

μ is the average 

over all projections of the dipole moments on the z-axis. 

After the electric field is applied the dipoles in the new equilibrium state are only 

partially oriented parallel with the applied field due to the thermal fluctuations. One 

may consider their orientations as distributed within a solid angle θθπ dd sin2=Ω  

around the z-axis and the distribution following the Boltzmann statistics. Accordingly: 

 

∫

∫

⋅

⋅

=
π

π

θθπ
κ

μ

θθπ
κ

μ
μ

μ

0

sin2)exp(

sin2)exp(

d
T
E

d
T
E

oz

o

oz
z

z
                                                               (II.4) 

where θμμ cos=z . After the integration, for small interaction energies ( kTE <<0μ ) 

the equation reduces to [1]: 

  0

2

3
E

Tz κ
μμ =                                                                                                (II.5) 

Identifying the orientation polarization P0 in Eq. (II.2) and Eq. (II.3) we obtain, via Eq. 

(II.5), the Curie law [1,3]: 

TV
N

κε
με

0

2

3
=Δ                                                                                                  (II.6) 
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Most of the dielectric investigations of the molecular supercooled liquids indicate that 

the temperature dependence of the relaxation strength εΔ may differ from the Curie-

law [1,6]. This indicates that additional considerations are to be taken into account:  

- the local field (Lorentz field) for a given dipole can differ from the external field   

E0 (Maxwell field) due to the polarization of the dipole surroundings; 

 - a so called reaction field (Onsager field) may occur due to an additional 

polarization of  the surroundings by the dipole itself [6]; 

 - most important, the dipole – dipole interaction might play a significant role 

especially in the case of high values of the dipole moment [1,4]. 

   
 Dynamic response 
 

As already mentioned, if an external electric field is applied to a dielectric material the 

macroscopic polarization will not reach its equilibrium value instantaneously but after 

a certain time. By analogy, in a step-off experiment, the polarization decays with a 

delay with respect to the switched-off electric field (see Fig. II.1). In this way, one can 

introduce the relaxation function (step-response function) as: 

)0(
)(

)(
o

o

P
tP

t =Φ                                                                                                    (II.7) 

 
Fig.II.1. When the electric field E0 
(continuous line) is removed, the 
orientational polarization Po (dashed line) 
starts to decrease in time towards the 0 
value. The induced polarization P∞ is 
neglected here. 

 
0 

Po 

E0 

Time 
 

 

Within the linear response approximation [2,7], the response of a system under the to 

an external perturbation is determined by the same mechanisms that also controls 

statistical equilibrium fluctuations within the system (fluctuation-dissipation theorem). 

Thus, one can identify the relaxation function Φ(t) with the autocorrelation function 

)(tPφ  of the macroscopic polarization noise in the absence of the field [2]: 

)0()0(

)()0(
)()(

→→

→→

⋅

⋅
≡=Φ

oo

oo

P

PP

tPP
tt φ                                                                           (II.8) 
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The brackets denote ensemble average. Dielectric experiments access the response 

function  or its Fourier transform and implicitly, via the fluctuation-dissipation 

theorem, the correlation function φ(t). We note here that the autocorrelation function 

)(tΦ

)(tPφ  can also be directly accessed in the absence of any external electric field by 

monitoring directly the equilibrium polarization noise [8,9]. However, this requires a 

significant experimental effort.   

The main interest is to access the microscopic dynamics of the material under study. 

Therefore it is necessary to establish a connection between the fluctuations of the 

macroscopic polarization and the dynamic fluctuations on the microscopic scale. 

Introducing the molecular dipole moment , the correlation function 
→

μ )(tPφ  in Eq. (II.8) 

can be rewritten as: 

∑

∑∑

∑

∑

≠

→→

≠

→→→→

→→

→→

⋅+

⋅+⋅
=

⋅

⋅
= N

ji
ji

N

ji
ji

N

i
ii

N

ji
ji

N

ji
ji

P

N

ttt
t

)0()0(

)()0()()0(

)0()0(

)()0(
)(

2

,

,

μμμ

μμμμ

μμ

μμ
φ                     (II.12) 

Since )(tPφ  contains both auto- and cross-correlation terms, dielectric investigations 

of molecular systems probe both collective and single particle dynamics. A priori, it is 

difficult to separate the two contributions. However, provided that the cross-

correlation terms can be neglected [2,10] one can identify the correlation function of 

the macroscopic polarization with the dipole-dipole autocorrelation function )(tμφ : 

)(cos)0(cos)()0(1)()0(1)()( 22 ttt
N

tt
N

i
iip ϑϑμμ

μ
μμ

μ
φφ μ =⋅=⋅=≈

→→→→

∑               (II.13) 

In glass forming systems the collective dynamics do not significantly differ from the 

single particle dynamics, hence dielectric spectroscopy probes in this case the 

dipole-dipole reorientation autocorrelation function in a good approximation.  

Due to technical reasons, time domain experiments cannot be carried out for times 

shorter than milliseconds. In order to extend the investigations into a shorter time 

range, experiments are performed in the frequency domain, where the Fourier 

transform of  is accessed.  )(tΦ

For investigations in the frequency domain, the quantity of interest is the complex 

dielectric permittivity . Relation (II.1) reads for alternating fields: )(ωε ∗

                                                     (II.9) )()()()1)(()( 00 ωωχεωωεεω ∗∗∗∗ =−= EEP
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)(ωχ ∗  is now the complex dielectric susceptibility. The permittivity relates to the 

response function as [2,3]: 

  ∫
∞

∞
∗

−Φ−=
Δ

−

0

)()exp()(1)( tdtiti ωω
ε

εωε
                                                      (II.10) 

The real and imaginary components of permittivity are interrelated by the Kramers–

Kronig relations, thus they carry equivalent information. From the Kramers-Kronig 

analysis two important consequences can be drawn: 

 - the relaxation strength Δε is directly related to the integral over the 

relaxational part of the spectrum ε’’(ω): 

∫ ωωε
π

=εΔ
relax

)(lnd)(''2                                                                                   (II.11) 

- the DC conductivity giving a contribution proportional with 1/ω in ε’’(ω) has no 

manifestation in the real part ε’(ω) [2,3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  12 



 II. Dielectric Spectroscopy: Theory, Experiment and Phenomenological Description of the Dielectric Response 

 

II.2 Experimental details 
 

In the following the physical principles of the dielectric techniques used for obtaining 

the data presented in this Thesis are briefly described.  

As indicated in Fig. II.2, the experiments were performed using four spectrometers: 

three of them, operating in the frequency domain, are commercially available [11,13], 

and one measuring in the time domain is home-built [11]. Except high frequency 

experiments, all the others were performed using a dielectric cell suitable for the 

liquids investigation, constructed as suggested by Wagner and Richert [12] (see Fig. 

II.3). The cell was made from gold-plated Invar steel and in the absence of the 

sample, empty capacity (≅ 40 pF) varied within 0.5 % in the temperature range from 4 

to 300 K. The experiments can be performed in a temperature range from 500 K 

down to 2 K. 
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Fig. II.2 The dielectric 
spectrometers used to obtain the 
data presented in this Thesis; for 
every spectrometer the frequency 
and resolution (tanδ) ranges, i.e., 

the accessible ranges are 
indicated. 

 

   

 
 

 
 

 
Fig. II.3 The sample cell user for the low 

frequency and time-domain spectroscopy in this 
work. Picture from [11]. 
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II.2.1 Frequency domain measurements 

 
The experiments in the frequency domain were performed using three different 

setups: one accesses a broadband intermediate frequency range, between 10–3 and 

107 Hz, one the high frequency range, 106 – 2•109 Hz and the last setup is suited for 

high precision measurements in the frequency range 50 Hz–20 kHz. For intermediate 

frequencies an Impedance Analyzer Schlumberger SI1260 together with a Broad 

Band Dielectric Converter (BDC) by Novocontrol were employed, and for the high 

frequency range a Hewlett Packard 4291 B network analyzer. Both spectrometers 

measure the frequency dependence of the complex impedance  of the sample 

[11,13]: 

)(ω∗Z

1. The SI 1260 generates an alternating voltage  that is applied 

to a capacitor filled with the material under investigation. The amplitude and the 

phase shift of the resulting current are recorded , yielding the 

complex impedance 

tieUtU ωω 0),( =∗

)(
0),( ϕωω +∗ = tieItI

),(
),()(

tI
tUZ

ω
ωω ∗

∗
∗ = . Since supercooled molecular liquids and 

glasses exhibit as high impedances, the BDC assures that the resulting low current 

amplitudes are monitored with high precision. 

2. The HP 4291 B generates an electromagnetic wave along a coaxial line 

terminated by a small sample capacitor [91]. For a given frequency the amplitude and 

the phase shift of the reflected wave is recorded, yielding the complex reflection 

coefficient . The reflection coefficient is related to the impedance by )(ω∗Γ

∗∗

∗∗
∗

+
−

=Γ
0

0

)(
)()(

ZZ
ZZ

ω
ωω , where  is the characteristic impedance of the coaxial line, 

determined from the system calibration in the absence of a sample [91].  

∗
0Z

Modeling the sample as a pure capacitive reactance X*
C, the permittivity ε∗(ω) can be 

related to the impedance by: 

  
g

C Ci
XZ

)(
1)()(
ωωε

ωω ∗
∗∗ ==                                                                       (II.14) 

where the geometric factor 
d
SCg 0ε=  is given by the cell geometry (S is the area of 

the electrodes and d the distance between the electrodes) and is determined by the 

measurements of the unfilled capacitor.   
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The peculiarity of the high-precision bridge (AH 2700 A) is that it allows 

measurements of very low electric signals in a frequency range between 50 Hz and 

20 kHz. This enables, for example, investigations of glasses at cryogenic 

temperatures. The resolution limit of the bridge incorporated in the setup is around 

tanδ ≈ 8x10-6, as assured by the measurements of the empty cell from room 

temperature down to 4 K.  

Fig. II.4 displays the essentials of the AH bridge. A 50 Hz to 20 kHz sine wave 

generator excites the ratio transformer, which forms legs 1 and 2 of a basic bridge. 

Both legs have many transformer taps to ensure selection of precisely defined 

voltages. Leg 3 consists of a temperature-controlled fused-silica variable capacitor 

and a circuit simulating a very stable resistor. The sample represented in Fig. II.4 as 

a parallel circuit RxCx is connected to leg 4. A microprocessor performs the tasks of 

selecting Taps 1 and 2 in the transformer and of balancing C0 and R0 so that the 

current through the detector is minimized. The bridge allows to measure 

independently both resistive and capacitive components of the unknown impedance. 

If the zero current condition on the detector is fulfilled, the unknown capacity can be 

easily obtained since its ratio to C0 is equal to the ratio of the voltage on Tap 1 to the 

voltage on Tap 2. Similarly, the ratio Rx/R0 is equal to the ratio of the voltage on Tap 

2 to the voltage on Tap 1. Thus, the bridge provides the values of Cx and Rx.

 

 

 

 

 

 

 

 

 

 
Fig. II.4 The basic electrical circuit of the AH 2700 A bridge.  

  
Since the sample is modeled as a parallel circuit of a pure capacitor Cx and a pure 

resistive element Rx, the complex admittance of the circuit is given by: 

   )'''(*1 ωεεωωω iCiCiCiR
Z

Y gxx −==+== ∗
∗                                             (II.15) 
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The real and imaginary parts of the sample permittivity can be then related to Cx and 

Rx: 

 

gx

g

x

CR

C
C

ω
ε

ε

1''

'

=

=

                                                                                                 (II.16) 

 
II.2.2 Time domain measurements 

 
Though the principle of a time domain experiment may seem quite simple, the 

experimental details involved are rather complicated. In this kind of experiment the 

dielectric relaxation function Φ(t) is directly recorded. The relation between Φ(t) and 

time dependent permittivity is given by: 

)()( tt ΦΔ+= ∞ εεε                                                                                         (II.17) 

When a constant voltage V is applied to a capacitor filled with a molecular dielectric, 

the charge on the electrodes varies in time due to orientational polarization of the 

molecular dipoles: 

)()()( tVCtVCtQ gε==                                                                                  (II.18) 

Relations (II.17) and (II.18) relate the relaxation function with the time dependence of 

the charge on the capacitor electrodes. The measurement of the charge is one of the 

experimental difficulties to be overcome, since the standard multimeters usually 

measure the electric current instead. For such reasons, a modified Sawyer-Tower 

bridge is employed [97]. Details on the experimental setup, its resolution limits and 

the accessible time/frequency range are presented elsewhere [11]. Here, only a brief 

description of the physical principle will be given. 

In order to directly access the time depending charge on the sample capacitor Cs, a 

reference capacitor Cref in a serial connection has to be used (see Fig. II.5). A 

constant voltage V is applied to this serial connection. The value of the reference 

capacitor Cref is chosen to be roughly 1000 times greater that the maximum value of 

the sample capacity during the experiment (the static permittivity εs of the material 

under investigation can be estimated from the frequency domain measurements). 

Since the charge on both capacitors has the same value, the potential on the 

reference capacitor Vref is in the order of 1000 times smaller than V. This small 

potential drop assures that the potential on the sample capacitor V-Vref stays 
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essentially constant during the experiment. The change in time of the Vref(t) is 

recorded and since it is directly related to the charge on the electrodes of the sample 

capacitor Qs(t)=Vref(t)Cref, the relaxation function Φ(t) is implicitly accessed, cf. (II.18). 

 

Cref

V 

Cs

Vref(t)=Qs(t)/
Cref 

 

 
Fig. II.5 The basic electrical circuit of the modified 

Sawyer-Tower Bridge 
  

 
 

II.2.3 Low temperature measurements 

 
In order to access the tunneling regime for molecular glasses, glycerol was 

investigated down to 0.03 K by using the Oxford CF1200 dynamic cryostat. For this 

purpose, a dielectric capacitor consisting of two plates made from annealed copper, 

separated by few silica fibers each with a 50 μm diameter, was build and inserted in 

the ultra-low temperature cryostat [14]. The investigations were carried out in 

collaboration with Experimentalphysik V, the low-temperature experimental group of 

Prof. G. Eska at University of Bayreuth. In the temperature range 4.2 K – 1.2 K, 

cooling was done by the standard technique of pumping 4He, and for lower 

temperatures a 3He - 4He dilution refrigerator (1000 E from Oxford Instruments) was 

used. Due to its higher stability, an Andeen Hagerling 2500 precision bridge 

operating at single frequency (1 kHz) was applied, rather than the multifrequency 

bridge AH2700 A in the temperature range below 4 K. 

 

II.3 Phenomenological Description of the Dielectric Response 

 
In this Paragraph we will discuss a number of functions used for the interpolation of 

the complex dielectric permittivity, response function and the distribution function of 

correlation times, as suggested in the literature [2,11]. 
 

II.3.1 The Debye function 
 

The simplest relaxation process is described by an exponential decay of the step 

response function, 
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)/exp()( τtt −=Φ                                 (II.19) 

where τ is called the relaxation time. Accordingly, Eq. (II.10) transforms for this case 

into the Debye equation: 

 
ωτε

εωε
i+

=
Δ

− ∞
∗

1
1)(                                                           (II.20) 

The real and imaginary parts of the complex permittivity ε∗(ω) can be separated as: 

2

2

)(1
''

)(1
1'

ωτ
ωτεε

ωτ
εεε

+
Δ=

+
Δ+= ∞

                                                                                      (II.21) 

These quantities are represented in Fig. II.6 as functions of frequency: 

 

ε
∞
 ε''

  

 

ωτ = 1

Δε = εs− ε
∞

ε'

εs 

0

 

 

 

 

 

 

 

 

 
 

Fig. II.6 The real (dotted line) and imaginary part (line) of the complex permittivity in the Debye model. 

 

As seen, the real part is a monotonous function of frequency and decays from the 

value sε  at low frequencies to the value ∞ε  far above the relaxation frequency defined 

by ωτ = 1. On the other hand, the imaginary part is a Lorentzian function with the 

maximum at ωτ = 1. The dielectric response of molecular systems is commonly 

presented by the frequency dependence of the imaginary part ε’’(ω) (spectrum) due 

to its peak structure and large variation range in contrast to ε’(ω). As an alternative, 

the tangent of the loss angle can be also used: 

)('
)('')(tan

ωε
ωεωδ =         (dielectric loss)                                                         (II.22) 
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Derived within certain models for molecular reorientation, e.g., isotropic rotational 

diffusion [3], the Debye relaxation is not suited to describe the dielectric response of 

glass-forming liquids. For this purpose, some empirical expressions were introduced 

and some of them are presented in the following. They allow for an additional 

stretching parameter to interpolate the relaxation peaks as, e.g., the α-peak observed 

in the spectra of glass-forming systems, discussed in the next Chapter. 

 
II.3.2 The Cole-Davidson (CD) function 
 

In 1950, Davidson and Cole [15] proposed a generalization of Eq. (II.19): 

   βωτε
εωε

)1(
1)(

0i+
=

Δ
− ∞

∗

                                                                       (II.23) 

The expression reduces to Eq. (II.20) for β = 1. The real and imaginary parts of the 

complex permittivity can be separated as: 

)sin()(cos)(''

)cos()(cos)('

βϕϕεωε

βϕϕεεωε
β

β

Δ=

Δ+= ∞                                            (II.24) 

where )( 0ωτϕ arctg= . 

The CD function produces an asymmetrically broadened peak for the imaginary part 

ε’’(ω) with a power-law proportional with ω on the low frequency side and another 

proportional with on the high frequency side. βω −

This function plays an important role in the analysis presented in this Thesis. Other 

empirical expressions used for the interpolation of spectra in the frequency domain 

as, e.g., the Cole-Cole and Havriliak-Negami equation are described in [2].  

 
II.3.3 The Kohlrausch function 
 

In time domain the Kohlrausch relation (sometimes mentioned as the Kohlrausch-

Williams-Watts or, simply KWW equation) assumes a stretched exponential decay for 

the relaxation function [2,3]: 

 , ])/t(exp[)t( KWWβτ−=Φ 10 ≤< KWWβ                                                              (II.25) 

The average relaxation time is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ=

KWWKWW

KWW

ββ
τ

τ 1                                                                                   (II.26) 
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with Γ denoting the gamma function. The KWW function has no analytic Fourier 

transform. 

 
II.3.4 Distributions of relaxation times 
 

An alternative for interpolating the dielectric spectra is the direct use of an 

appropriate distribution of relaxation times. This idea goes together with assuming a 

distribution of subensembles, each relaxing in a Debye-like manner, allowing for the 

presence of dynamic heterogeneities. The distribution of relaxation times G(lnτ) 

describes both relaxation function and permittivity and can be extracted from both 

time and frequency domain data: 

ττ
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εωε
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                                                                                         (II.27) 

The mean relaxation time is given by the integral over the relaxation function:  

  τ≡Φ=τ ∫
∞

0

dt)t(                                                                                        (II.28) 

In the case of a Debye relaxation G(lnτ) reduces to a delta-function. For CD equation 

the corresponding distribution of relaxation times is given by (cf. Eq. II.27):  
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GCD                                                   (II.29) 

The average relaxation time is for this case: 

βτ=τ 0 CD                      (II.30) 

The distribution GCD is plotted in Fig. II.7.  

 
 The Generalized Gamma distribution function 
 

In some cases three parameters (Δε,τ,β) seem insufficient to describe the evolution 

of the spectra in a large frequency and temperature range. In order to overcome this, 

further functions were introduced by our group. Here the approach introduced by 

Kudlik et al. and Blochowicz et al. will be shortly described [11,13]. This analysis 
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uses the so-called generalized gamma (GG) distribution of relaxation times (see Fig. 

II.7):   

 ⎟
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that yields a relaxation function Φ(t) and a complex permittivity ε’’(ω) via Eq. (II.27).  

The normalization factor ),( βαGGN  assures that the integral of the distribution over 

all relaxation times equals 1. The maximum of the distribution is at τ = τ0. The 

broadening of the peak is controlled by the parameters α and β, that can assume 

values between 0 and ∞.  For 0 < β < 1 there appears a power law ω-β in ε’’(ω) on the 

high frequency flank of the α-peak. If β > 1 the high frequency exponent stays always 

–1 and the peak resembles more and more a Debye shape as β increases towards 

∞. The α parameter controls the shape of the GG distribution at long relaxation 

times, respectively low frequencies. The broader is the peak the smaller is the value 

of α. For a stable interpolation routine, the values of α cannot exceed the interval of 

0.3 – 50. The mean relaxation time is given by: 
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The Extended Generalized Gamma distribution function 

 
For some molecular systems an additional power-law appears in the spectra on the 

high frequency side of the main relaxation peak (cf. Fig. III.3 a, discussed in the next 

Chapter). Therefore Blochowicz et al. extended the GG function to account for this 

so-called excess wing (EW) [11]: 
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where NGGE is the normalization factor. Two additional parameters are introduced to 

describe the evolution of the EW: γ is the exponent of the high frequency power law 

ω-γ that appears in the spectrum at highest frequencies and σ marks the crossover 

between the ω-β and ω-γ regimes (the “onset” of the excess wing).   

For the average relaxation time we now have: 

  21 



 II. Dielectric Spectroscopy: Theory, Experiment and Phenomenological Description of the Dielectric Response 

 

 

⎟
⎠
⎞

⎜
⎝
⎛Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +

Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

−

−
−

α
γ

β
ασ

α
β

α
γ

β
ασ

α
β

β
αττ βγ

βγ

βγ
βγ

α

11
1

0                                             (II.34) 

The single peak distribution described by Eq. (II.31) is obtained for β ≅ γ or σ ≅ 0.  

 
 A distribution for thermally activated processes 
 

As shown in the next Chapter, the dielectric spectra of most of the molecular glass-

forming systems exhibit in the glassy state an additional symmetric (with some 

exceptions) peak that is much broader than a Debye. To account for this relaxation 

peak, usually a thermally activated process is assumed (also discussed in the next 

Chapter), and Blochowicz et al. [11] introduced a suitable distribution of relaxation 

times Gβ(lnτ):  
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where Nβ(a, b) is the normalization factor. 

 The position of the maximum of the distribution is at τ0 and the parameters a and b 

control the broadening and asymmetry of the β-peak: for a<1 and ab<1 the peak is 

defined between the two power laws ωa and ω-ab. The peak is symmetric for b = 1 

and its broadening while cooling is controlled solely by parameter a. This distribution 

is also shown in Fig. II.7 below. 

   

 

 

 
Fig. II.7 Distributions of relaxation times 

discussed above. Picture from [11]. 
 
 
 
                                     
 
 

 
ln(τ/τ0)                                        
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III. The evolution of the dynamic susceptibility of 
simple glass formers from the liquid state to the 

tunneling regime; overview 
 

 
 
In the following it will be presented an overview concerning the temperature 

evolution of the various relaxation phenomena for molecular systems upon 

cooling from the boiling point down to cryogenic temperatures. 

 
III.1 The high-temperature regime (T >> Tg)  

 
The investigation of the low viscosity glass forming liquids became an 

important experimental task due to the impact of the Mode Coupling Theory 

(MCT). This model is, at the moment, the most discussed theoretical 

approach aiming to describe the glass transition phenomenon [10,33]. This 

theory triggered an important experimental effort and new techniques were 

developed in order to confirm or disprove its predictions.  

A close inspection of the glycerol spectra at highest temperatures in Fig. I.3 

(a) indicates that their shape is not changing with temperature. In order to 

verify this, the high temperature spectra of glycerol are scaled in Fig. III.1 (a) 

by their minimum according to: 

))()(()('')(/)(
minmin

''
min'' ba ab

ba
T

ω
ω

ω
ωχ

ωχεωε +
+

==Δ                (III.1) 

where the exponents a and b define the power laws exponents at the high 

and, respectively, the low frequency side of the minimum observed in the GHz 

range; ωmin and χ’’
min are the frequency and the amplitude of the minimum. 

This “minimum scaling”, inspired by the MCT, works nicely for all the spectra 

above some temperature Tx = 300 K and fails below, as it will be proven in the 

next paragraph. The exponents a and b were obtained by interpolating the 

scaled minimum as a sum of two power-laws and they values are indicated in 

the figure below [35,37]. 

Providing that the FTS applies, a collapse of the spectra scaled by height and 

position of the α-peak (i.e. the “α-peak scaling”), should work. This is indeed 

the case, as indicated by Fig. III.1 (b) where the same spectra of glycerol 

  23                             



III. The glass transition and the evolution of the dynamic susceptibility of simple glass formers; overview 

    

above Tx are scaled accordingly. Both the minimum and the α-peak scaling 

characterize the high temperature regime above Tx. 
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Fig. III.1 (a) The “minimum scaling” for dielectric spectra of glycerol at high 
temperatures. (b) The same data in (a) collapsed by the “α-peak scaling”. 

  

 
III.2 The intermediate temperature range (Tg < T < Tx) 
 

As mentioned above, the dynamics of molecular glass formers in the 

intermediate temperature range close to Tg is characterized by the emergence 

of slow secondary relaxation processes, namely the excess wing (EW) and 

the β–process. In order to distinguish between different glass formers, a 

classification was proposed by Kudlik et al. [26]: systems showing a clearly 

distinguishable secondary relaxation β-peak belong to the “Type B” class (e.g. 

m-FAN) while those not showing a secondary peak, but only the EW are 

referred to as “Type A” (e.g. glycerol). Though purely phenomenological, this 

classification implies that the EW has a different physical nature than the β-

process. Some experimental investigations support this idea [11,30], while 

others, for example the aging experiments, indicates that the EW might be 

just the high-frequency flank of a “special” β-peak submerged under the α-

peak [31]. The situation is far from being clear since for some systems both 

features may appear simultaneously, e.g., for m-FAN (see Fig. I.3 b). The 

physical origins of the EW and of the β-process are still a matter of debate. 

For the sake of simplicity we will discuss the temperature evolution of these 

relaxation features separately. As will be shown, the central properties of the 

relaxation in the high temperature regime, namely α–peak scaling and 
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minimum scaling fail upon cooling, implying that below the crossover 

temperature Tx the evolution of the dynamic susceptibility changes [35, 36].  

 
III.2.1 Glass formers with excess wing 

 
In order to demonstrate that the evolution of the susceptibility spectra 

qualitatively changes from the high temperature scenario to a behavior 

determined by the emergence of the EW at temperatures close to Tg, we 

present in Fig. III.2 (a) the minimum scaling of the full glycerol dataset 

including now temperatures down to Tg. Clearly, below 290 K the minimum 

scaling fails, as the susceptibility minimum continuously flattens upon cooling. 

This observation may be taken as an indication for the emergence of the 

excess wing recognized in the spectra of glycerol (cf. Fig. I.3 a). As indicated 

in Fig. III.2 (b) for propylene carbonate (PC) [25], also the α-peak scaling fails 

below a certain temperature (around 200 K), and the scaling breaking down 

coincides with the appearance of the EW. 

 

 

 

 

 

 

 

 3
 
 

Fig. III.2 (a) Scaling of the susceptibility minimum for the dielectric spectra of glycerol; 
dashed line: interpolation of the minimum at high temperatures applying Eq. (III.4), cf. [37]. (b) 
Dielectric spectra of propylene carbonate (PC, Tg = 158 K) measured by Lunkenheimer et al. 
[25], scaled by the α-peak height and position. Dashed line: a CD function with βCD = 0.78. 

 

Davidson and Cole first identified the EW in the dielectric spectra of glycerol in 

1951 [15]. Disregarded until the beginning of 90’s, it focused the attention of 

scientific community since the so-called Nagel scaling was introduced [38]. 

Nagel and coworkers found a way to collapse the dielectric spectra measured 

for various systems, at different temperatures and containing both α-peak and 
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EW, on a universal master curve. As a consequence of this scaling, the 

exponent of the EW (γ) and that of the high frequency flank of the α-peak (β) 

are connected, i.e. 3.1
1)(
1)(

=
+
+

T
T

γ
β . The authors claimed that the high frequency 

wing is an intrinsic feature of the α-process, universal for all glass formers 

and, therefore, even in the case of a well-resolved β-peak any analysis should 

employ an EW contribution [92]. Though Kudlik et al. proved that the Nagel 

scaling is mathematically not well defined [39], the latter attracted many 

theoreticians and physical models were proposed to explain the EW [40].  

On the other hand, based on the aging experiments of Schneider et al. [31], 

Lunkenheimer and Ngai suggested that the EW is just the high frequency 

flank of a slow β-process [41]. This may justify why the dielectric spectra of 

type A glasses appears as curving on the EW side while aging towards the 

equilibrium at temperatures slightly below Tg. Consequently, the authors 

analyzed the spectra of type A glass formers above Tg using a two-peak 

approach. Though the number of the fitting parameters was quite high, the 

interpolation of the data was not perfect (as seen in Fig. III.3 (a) for 

temperatures close to Tg). 

Blochowicz et al. [11,42] obtained better fits for the α-peak including the EW 

contribution by using the extended generalized gamma (GGE) distribution of 

relaxation times described in Paragraph II.3.5. In fact, this approach is similar 

with the one above in the sense that it involves also a two-peak description of 

the overall spectral shape [11]. However, here the time constants of the two 

processes are chosen as identical τα = τEW as observed in Fig. III.3 (b). By 

this, one reduces the number of fitting parameters, and the temperature 

evolution of the spectra can be parameterized by the change of the stretching 

parameters β and γ and the onset σ of the EW (see II.3.5). 

This analysis was applied to several type A glass formers, indicating that the 

EW parameters show similar behavior when plotted as functions of the time 

constant τα, i.e. independent of fragility [42,43]. According to this approach the 

EW contribution vanishes at a crossover temperature Tx (associated with a 

characteristic time constant τα ≅ 10-8 s) [30,42,43]. At higher temperatures T > 

Tx the overall (slow dynamics) spectrum reduces to a single peak with a 
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constant stretching exponent. This crossover temperature (Tx ≅ 1.2•Tg for 

fragile systems) turned out to be similar with the Stickel temperature TS [43] 

and with the temperature at which the decoupling of translational and 

rotational diffusion coefficients is discussed [93].  
 

 

 

 

 

 

 

 

 

 
Fig. III.3 Dielectric spectra of glycerol with interpolations of the α-peak and excess wing 

by a two-peak function according to (a) Ngai and (b) Blochowitz. Figures taken from [41] and, 
respectively, [84]. 
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Though different in detail all the approaches aiming to describe the evolution 

of the dynamic susceptibility agree that the width parameter of both α–peak 

and excess wing exhibit a pronounced temperature dependence below the 

crossover temperature Tx. In other words, the models suggest that below Tx 

the FTS fails for the spectra of the slow dynamics. 

 
III.2.2 Glass formers with β-process 

  
The β-process is identified in a large variety of glass forming compounds, and 

it shares a number of common features. Most of them are recognized in Fig. 

I.3 (b) where the dielectric spectra of m-fluoroaniline (m-FAN) are presented. 

First of all, the β-peak emerges in the supercooled state upon cooling close to 

Tg, and persists in the glass at T < Tg. Here, it is a thermally activated process 

and the temperature dependence of the characteristic time constant follows 

an Arrhenius law, as shown in Fig. III.4 (a) for three type B systems. An 

important empirical observation is that the mean activation energy is directly 

related to Tg. With some exceptions Ea  ≅ 24 kBTg was found to hold for simple 
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molecular glasses, but also for polymers [26,45,49,51]. This indicates that the 

β-process is intimately related to the glass transition phenomenon. Moreover, 

its relaxation strength is virtually temperature independent below Tg, and it 

strongly increases with temperature above, cf. Fig III.4 (b). It is worth noting 

that the dielectric strength of β- relative to α-process Δεβ/Δεα largely differs 

from material to material.  
 

 10

 

 

 

 

 

 1.

 
 

Fig. III.4 (a) Time constants of the β–process obtained from dielectric spectroscopy 
as a function of the reduced reciprocal temperature Tg/T for a series of glasses. (b) the 
relative relaxation strength of the β-process plotted against Tg/T for few type B systems. 

Pictures taken from [26]. 
 

The β-peak is much broader than the α-peak and usually it appears as being 

symmetric. The most used expression to interpolate it is the Cole-Cole 

function [2,3]. However, as most of other empirical functions it is not suitable 

to describe the temperature evolution of a thermally activated process [2,11]. 

Nevertheless, this condition is fulfilled by a log-Gauss distribution or by the 

distribution described in II.3.4 [11].   

There exist two scenarios concerning the molecular origin of the β-process. 

The first one, introduced by Johari, states that only a small number of 

molecules confined in some low-density sites called “islands of mobility” 

participate in this process [52]. The second scenario is based on the Williams 

and Watts considerations, i.e., essentially all molecules participate in this 

process [53]. This is experimentally supported by NMR [54,55,56] and 

solvation [94] experiments.  

Within the Williams-Watts approach, the same molecular dipole vector 

participates in both relaxation processes, yielding a correlation function that 
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partially decays at short times via the β-process and at long time decays to 

zero due to the α-process. Assuming the two processes to be statistically 

independent, the complete relaxation function is given by: 

   [ ])()())(1()()( tTTtt βα λλ Φ+−Φ=Φ                                                   (III.2) 

where λ is the temperature dependent fraction of correlation lost via the β-

process. This approach will be used in this Thesis for the analysis of dielectric 

spectra containing both α and β-peaks. 

According to the NMR studies, the β-process in the glass is a highly hindered 

motion, that can be modeled by reorientation of the molecule within a cone 

with a small fixed opening around θβ ≈ 40 below Tg in the case of toluene [56]. 

Based on such considerations, Döß et al. [78] and Benkhof et al. [27] 

proposed that the relative dielectric strength Δεβ/Δεα is determined by the 

amplitude of the reorientational angle θβ. Thus the decrease in Δεβ/Δεα(T) 

upon cooling can be explained by the decrease of the average reorientational 

angle θβ with T. Accordingly, if θβ is very small, the dielectric intensity of the β-

process should be very weak. 

 

III.3. The glassy state (T < Tg) 
 
III.3.1 The secondary relaxation processes 

 
As discussed above, the spectra of molecular glass formers in the deep 

supercooled state are characterized by the presence of the secondary 

relaxation processes (EW and β-process) in addition to the α-process. Both 

the EW and the β-process survive in the glass (cf. Fig. I.3), and they give the 

main contribution to the spectra in the moderate temperature range below Tg 

down to, say, 50 K [26].  

As the β-process manifests itself in a widespread variety (amplitude and 

temperature dependence) among different glass formers, it renders a system 

dependent glassy behavior. Due to this complex relaxation pattern governed 

by the secondary relaxation peaks there are no conclusive studies of type B 

systems in the temperature range below Tg down to the cryogenic 

temperatures. Figure III.5 gives an example of such relaxation response. 
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Clearly, the situation here is quite puzzling as internal degrees of freedom 

may be involved for some systems showing secondary relaxation peaks.  

 

 

  

 
Fig. III.5 Dielectric loss for a series of alcohols 

measured at 10 kHz below Tg. Picture from [73] 
 

 

 

 

 

On the other hand, as discussed next, type A systems appear to exhibit a 

more uniform evolution in the glassy state. There exist some dielectric 

investigations of type A systems focusing below Tg down to say 20 - 50 K.  As 

an example we present in Fig. III.6 (a) the dielectric response of glycerol 

measured down to 57 K [11,42].  

The figure contains spectra measured both in supercooled (T > Tg) and glassy 

state (T < Tg). For temperatures above Tg, in addition to the α-peak the EW 

can be identified as an additional power-law . Extracting the 

exponent γ, the latter appears to decrease with the temperature in the 

supercooled state and to freeze below T

γ

ννε −∝)(''

g to a small value around 0.1, cf. Fig. 

III.6 (b). This flat dielectric response below Tg is usually referred to as the 

Nearly Constant Loss (NCL).  

For several molecular glass formers the NCL extends over several decades in 

frequency and it was observed for temperatures down to 50 K [11,13,26,42]. 

The temperature dependence of the loss in this temperature range was found 

to be exponential ε’’(T) ∝ exp(T/Tf) with a quite similar exponent Tf ≅ 34 for the 

type A systems compiled in our group [26]. Hansen and Richert obtained 

similar results using a high precision bridge operating at single frequency of 1 

kHz [75]. In addition, their study revealed that some glasses display an 

increase of the dielectric loss in the range 25 K < T < 50 K indicating a 

crossover from NCL to another relaxation mechanism.  
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Fig. III.6 (a) Dielectric spectra of glycerol (picture from [11]); at frequencies higher than 

the  α-peak the high-frequency wing can be recognized. (b) the power-law exponent γ as a 
function of temperature; Tg is indicated (figure from [26]).   

         

The extension of the above mentioned studies towards lower T was limited 

(until recently) by the resolution of the dielectric spectrometers. Up to our 

knowledge, it is not yet clear how and whether at all the crossover to the 

Asymmetric Double Well Potential (ADWP) dynamics (intensively discussed 

for the inorganic glasses at lowest temperatures) takes places in molecular 

systems. 

 
III.3.2. The Asymmetric Double Well Potential dynamics 

 
The low temperature anomalies of glasses  
 
In the search for universal relaxation properties, the amorphous systems are 

well investigated in the supercooled regime T > Tg (the molecular systems) as 

well as in the very low temperature regime, say below 10 K [58-62]. This low 

temperature regime is well studied for inorganic glasses, but information on 

molecular glasses is poor. The reasons may be their high tendency to 

crystallize and their low viscosity at room temperature, experimental 

drawbacks for their investigation in ultra low-temperature equipments. All the 

cryogenic measurements on molecular systems consider, to our knowledge, 

only some alcohols and polymers [73,74].  

At sufficiently low temperatures the behavior of crystalline materials is well 

explained by the Debye theory of harmonic oscillations [63]. Accordingly, the 

collective lattice vibrations are propagating through the crystal viewed as an 
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elastic continuum, insensitive to the spatial arrangement of the lattice. This 

model explains the temperature dependence of the specific heat exhibiting the 

famous T3 law at low temperatures.    

Until the end of the 60's it was believed that the theory of Debye could be 

easily extended also to non-metallic amorphous solids since the wavelength 

of the contributing phonons at low temperatures is much larger as compared 

with the scale of atomic or molecular disorder. However, in 1971, Zeller and 

Pohl proved unambiguously that the low temperature properties of amorphous 

materials are very different from those of crystals [64]. In particular, they 

showed that thermal properties such as the specific heat or the thermal 

conductivity of the vitreous solids below 1 K indicate the presence of low 

energy excitation in addition to those from phonons. 

 

                                          (a) 

 

 

 

                                                                                                           

                                                                                                         (b)                          

                                       

 

 
 
 

Fig. III.7 (a) Specific heat of crystalline SiO2 and vitreous silica below 1 K (from [58]). (b) 
Thermal conductivity of several amorphous solids as a function of temperature; the arrow 

indicates the variation interval (about 20). For crystal a linear dependence is expected here 
according to Debye’s theory. Picture from [62]. 

 

For example, in Fig. III.7 (a) the temperature dependences of the specific heat 

(C) of SiO2 for the amorphous and crystalline states, respectively, are 

compared. Below 1 K the crystal shows the Debye behavior (C ∝ T3), 

however, for glassy SiO2 the specific heat is a few orders of magnitude higher 

and depends roughly linearly on temperature. As another example, in Fig. III.7 

(b) the thermal conductivity Λ of several amorphous materials is displayed for 

temperatures below room temperature. For all glasses the thermal 
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conductivity below 1 K depends quadratically on temperature, and between 2 

and 20 K Λ is almost temperature independent. Above 20 K the thermal 

conductivity increases again with temperature. Such a behavior was proved to 

be specific for a large variety of amorphous materials pointing to the fact that 

the presence of the additional excitations is an intrinsic characteristic of 

glasses.  

Another important finding is that the thermal parameters of glasses below 1 K 

not only qualitatively strongly differ from those of crystals, but their values are 

very similar for a large number of systems, independent of the material. This 

is also shown in Fig. III.7 (b) were the values of the thermal conductivity Λ 

obtained for network glasses, ionic glasses and organic polymers vary within 

a factor of only 20 below a few K.  

 

 

 

 

 

 

 

 

 

 
Fig. III.8 (a) Temperature dependence of the internal friction coefficient Q-1 for several 

glasses; the arrow indicates the same variation interval as in Fig. III.10 (b). Picture from [62]. 
(b) Dielectric loss below room temperature for several glasses; measurements performed at 

the frequency of 1 kHz. Picture from [65]. 
 

Besides the thermal properties, also the relaxation behavior of glasses in the 

low temperature range shows a peculiar behavior. Figure III.8 (a) presents the 

internal friction coefficient Q-1 (the acoustic attenuation) obtained from 

mechanical relaxation measurements as a function of temperature for a large 

variety of glasses. The acoustic attenuation displays a temperature 

independent "plateau" in the temperature range between 100 mK and 10 K, 

with a similar absorption level. Thermal conductivity as well as acoustic 

attenuation data, allows the extraction of the ratio between the dominating 
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phonons wave length and their mean free path, showing similar values for all 

the glasses studied so far [62]. Dielectric measurements at kHz frequencies 

[65] show a similar relaxation pattern, cf. Fig. III.8 (b).  

All these findings indicate that in the low temperature range amorphous solids 

exhibit low temperature “anomalies” with quite universal properties. The low-

temperature relaxational behaviour of glasses can be fairly well explained by 

the standard tunneling model (STM) as discussed in the next paragraph. 

       

The Standard Tunneling Model (STM)  
  
Soon after the results of Zeller and Pohl were published, Phillips and, 

independently, Anderson et al. introduced in 1972 the Tunneling Model (TM) 

[66,67]. This is the most widely accepted model to describe the low 

temperature properties of the non-crystalline solids. The TM assumes that the 

additional low energy excitations in glasses are related to the existence of 

some atoms or groups of atoms that can tunnel between two configurations 

with similar energy. The tunneling particles are located within asymmetric 

double well potentials (ADWP), schematically presented in Fig. III.9. At lowest 

temperatures, due to the tunneling two-level systems (TLS) are formed. TM is 

a phenomenological model and the microscopic nature of the TLS systems is 

not yet fully understood.  

The main ingredients of the "standard" tunneling model (STM) are: 

-  a broad distribution of ADWP parameters (due to the structural 

disorder of glasses); 

  - when perturbed by an external field the TLS relax via the absorption or 

emission of a single thermal phonon (so-called "one phonon process" or 

"direct process"); 

-  any interaction between the TLS are neglected.  

The TLS may interact with external fields (e.g. electric field) via relaxation or 

resonance processes depending on the temperature and probing frequency. 

The resonance takes place when the energy is absorbed or emitted within the 

TLS. As the resonances appears for frequencies in the kHz range at 

extremely low temperatures below 1 mK, while the measurements for this 
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Thesis were performed in the temperature range above 10 mK, the discussion 

here will concern only the relaxation phenomenon.  
 

 
Fig.III.9 Schematic representation of an 
asymmetric double well potential (ADWP) 
characterized by the barrier V, the asymmetry Δ, 
the distance between minima d and by the ground 
state of the single wells E0; note that the difference 
between the lowest energy levels E is due to the 
tunneling (schematic shown here by the dashed 
horizontal lines) but also to the asymmetry Δ.   

d

E VB

Δ
E0 

      

 

 

At the lowest temperatures only the ground vibrational states of the ADWP 

can be occupied. The energy difference E between the lowest energy levels 

within the ADWP results from both the asymmetry Δ and the tunneling splitting 

Δ0. Following the quantum mechanics description, 2
0

2 Δ+Δ=E [60]. 

For a given ADWP, the applied electric field modulates the asymmetry Δ and 

consequently the energy difference E. The equilibrium is established by the 

absorption or emission of one thermal phonon. The relaxation rate τ-1 for such 

"one-phonon process" is given by [68]:   

)2/coth(0
1 TkEEA BΔ=−τ                                                                     (III.3) 

where A is a constant characteristic of the glass: 
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The indices l, t refer to the longitudinal and transversal phonons, ρ is the mass 

density and γl,t are the coupling constants between the phonons and the TLS.  

The tunnel splitting Δ0 is related to the ADWP parameters by:  

)/2exp(00 hmVdE≈Δ                                                                      (III.5) 

m is the mass of the tunneling "particle" and E0 is the ground-state energy of 

the single well potential.  

An important quantity in the following discussion is the minimal relaxation time 

τmin, characteristic for symmetric TLS (Δ = 0) with energy splitting matching 

thermal energy (E = Δ0 = kBT). The minimum condition of Eq. (III.3) gives:  
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                                                                                  (III.6) 33
min

1 TAkb=−τ

Two limiting situations should be considered for the analysis of the dielectric 

(or acoustic) loss caused by the relaxation process: 

(a) for minωτ >>1 (high frequencies, low temperature) even the fastest 

TLS with the relaxation time τmin are unable to relax towards equilibrium within 

a period of the external electric field and they give the main contribution to the 

loss. From Eq. (III.6) a cubic temperature dependence is expected for the 

loss: 

 
ωε

εδ
3

'
''tan CT
≈=          high ω, low T                     (III.7) 

where C is a constant reflecting the coupling strength between the external 

field and the TLS. For electric interaction one finds [60,68]: 
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=                            (III.8) 

with the assumption that the TLS dipole moments are randomly orientated. 

The expression may need corrections for including the effects of the local 

field. 
−

P  is the density of tunneling systems (number of TLS / unit volume / unit 

energy ) and μeff is the effective dipole moment of the TLS. ε0 is the dielectric 

permittivity of the vacuum and ε’ is the dielectric constant of the material 

under investigation. 

(b) for minωτ << 1 (low frequencies, high temperature) the main 

contribution to the loss is given by the systems for which ωτ ≈ 1. The 

calculations lead to a plateau of the loss [68]: 

 C
2'

''tan π
ε
εδ ==         low ω, high T                       (III.9) 

The real part of the permittivity ε’= Δε+ε∞ also appears in the above equations 

via C (see Eq. III.8). The dielectric strength Δε associated with such relaxation 

processes is very small, thus yielding an almost temperature independent ε’ ≅ 

ε∞ originating mainly from the high frequency resonance processes. The tiny 

change of the overall ε’(T) is insignificant for the temperature dependence of 

the loss, tanδ ∝ ε’’. However, for the relative change δε’/ε’ = (ε’-εref)/ε’ due only 

to the contribution of the TLS, the transition from the regime (b) to (a) is 
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marked by the change of the slope in the semilogarithmic representation at a 

function of T/Tref [60,68]. 
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Here Tref is the reference temperature where ε’ref is measured; usually it is 

chosen to be the lowest accessed temperature in the measurements. 

 
tanδ 

Tmin 
 

 
Fig III.10. The predictions of the STM for the dielectric 
loss as function of temperature. Picture adapted from 

[98]. 
 

 

 

 

Summarizing, the STM predicts a plateau of the dielectric loss for 

temperatures below some K. This plateau height is expected to be frequency 

independent. At lower temperatures the loss is expected to decrease, cf. Fig. 

III.10, and the crossover temperature for which this decrease starts is given 

by (according with Eq. III.6): 

3Ak
Tm

ω
=               (III.11) 

In this regime ending the relaxation, a cubic temperature dependence is 

expected for tanδ.  
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The thermally activated ADWP dynamics 

 
Above 10 K the relaxation behavior of the investigated (inorganic) glasses is 

less universal and less understood. Depending on the probing frequency, a 

more or less pronounced relaxation peak appears when internal friction or 

dielectric loss data are plotted as functions of temperature. For example, in 

Figs. III.8 the mechanic and the dielectric absorption above 10 K increases to 

a maximum, and the position of the maximum depends on the material. In 

order to account for this behavior, Gilroy and Phillips extended the STM to 

higher temperatures where thermally activated transitions over the barrier of 

the ADWP’s are expected [69,95].  

The important parameters for a given ADWP in this temperature range (see 

Fig. III.11) are the barrier height V and the asymmetry Δ. 

The jump rates ν over the barrier VB between the minima are given by: 
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where τ0 ∼ 10-12 -10-13 sec is a typical molecular attempt time. The overall rate 

ν  = ν 12 + ν 21 yields a relaxation time  
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The dynamic susceptibility is expressed by integrating over the ADWP’s 

parameters [69,70]: 
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where C is a constant determined by the specific experiment (dielectric or 

acoustic), g(V) is the distribution of barrier heights V, f(Δ) is the distribution of 

the asymmetry parameter Δ. For the dielectric case  

 
0

2

3ε
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where μeff is now the effective dipole moment relaxing via thermally activated 

ADWP dynamics. 

 If the thermal energy is high enough with respect to the asymmetry 

parameter Δ, i.e., Δ < 2kT, and the distribution function for Δ is flat, f(Δ) = f0  

Eq. (III.14) reduces to:  

              ∫
∞

+
=

0
20 )(

)2(1
22)('' dVVgAf

πντ
πντνχ ,                                            (III.16) 

where now τ = τ0exp(V/kT) and A is a material constant. An important 

consequence of the linear temperature cut-off is that the prefactor of the 

integral in (III.16), i.e. the area under the spectra becomes temperature 

independent.  

Gilroy and Phillips assumed an exponential distribution of the barrier heights 

with no low-energy cut-off: 

)/exp(1)( 0
0

VV
V

Vg −=               (III.17) 

V0 has the meaning of the mean activation energy. With this g(V), Eq. (III.16) 

transforms to:  
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dxxAf                             (III.18)  

where  x = 2πντ and α = kT/V0.  

According to this model, for frequencies ω << 1/τ0, where1/τ0 is the attempt 

frequency on the order of 1013 – 1014 Hz, the loss is given by [69]: 
αωταωε )(),('' 0∝T                    (III.19) 

Power-law spectra are expected with a characteristic exponent α being 

proportional to temperature. The dependence α = α(T) gives directly the mean 

activation energy V0.  

Using this model Gilroy and Phillips were able to interpolate for the first time 

the acoustic attenuation data for silica [69]. In several cases an exponential 

distribution cannot reproduce the data, and different distributions (e.g., a 

Gaussian) were discussed [71]. Nevertheless, the distribution g(V) can be 

extracted directly from the frequency dependent measurements of 
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susceptibility covering several decades [70,71,72], as it will be demonstrated 

in Chapter V. Accordingly, recent quasi-elastic light scattering experiments on 

silica and calcium potassium nitrate (CKN) revealed a distribution g(V) that is 

essentially an exponential with barrier heights in the range 0 – 1500 K [70,71].  
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IV. Results; Relaxation properties of molecular glass 
formers at T ≥ 100 K  

 

 

 

The following Chapter considers the evolution of the three relaxation features, 

α-process, excess wing (EW) and β-process. Above the glass transition 

temperature Tg the spectra are dominated by the α-relaxation peak and, in 

addition, the secondary processes (EW and/or β-process) emerge. These 

secondary processes survive in the glass (T < Tg) and give the main 

contribution to the dielectric response down to, say, 100 K. As the main 

experimental effort of this Thesis is spent on investigations at even lower 

temperatures, only few molecular glass-formers are newly investigated in the 

temperature range considered in this Chapter. Some of the previous 

investigations are extended to a broader frequency and temperature range 

and aging experiments are performed. Having at hand a huge collection of 

data, this work tries to consistently describe the temperature evolution of the 

different spectral contributions (α-process, EW and β-process). Since there 

are no generally accepted theoretical approaches to account for the relaxation 

behavior in this temperature range, the spectral evolution is purely 

phenomenologicaly described.  

A new approach is introduced here, called in the following approach II. This 

scenario stands for the applicability of the frequency temperature 

superposition (FTS) for the α-peak in whole temperature range down to Tg. 

This is in contrast with previous analyses, as e.g., the one introduced by 

Blochowicz et al. (referred to in the following as approach I), concluding a 

considerable temperature dependence of all individual spectral contributions, 

including the α-peak itself. As it allows almost perfect interpolation of the data, 

the proposed scenario offers a quite different picture for the relaxation pattern 

of molecular systems.  
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IV.1 Experimental results 
 

In the following are presented the dielectric spectra of propylene glycol (PG) 

and trimethyl phosphate (TMP), both measured within this work. The samples 

were purchased from Sigma-Aldrich and investigated as received. The 

experimental details are given in II.2. The data, measured above and slightly 

below Tg, are presented in Fig. IV.1. 
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Fig. IV.1 Dielectric spectra of (a) propylene glycol PG, Tg = 168 K and (b) trimetyl 
phosphate TMP, Tg = 136 K. Few temperatures (in K) are indicated. The solid lines are fits 

using Approach I. 
 

In Fig. IV.1. (a), in addition to the spectra measured with the time domain and 

the frequency domain broadband spectrometer (plotted as dots), the high 

frequency data by Lunkenheimer et al. [41] (open circles) are included for PG. 

A good agreement between the different datasets is observed in the common 

temperature range. By including the high frequency results the dielectric 

spectra are monitored over 15 decades in frequency above Tg. Here, besides 

the shift of the α-peak, the EW emerges and gets more pronounced while 

approaching Tg, thus type A characteristics are revealed for this system. 

Below Tg the spectra get very flat and, apparently, only their amplitude 

changes with temperature here.  

For TMP a β process can be identified in the spectra, cf. Fig IV.1 (b). This 

process is quite fast and the β-peak can be clearly observed only at the 

lowest temperature presented here (T = 100 K), well below Tg. At higher 

temperatures one recognizes an EW contribution between the reminiscence 
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of the α- and the β-peak. Due to the high tendency to crystallize of this 

system, a gap appears between the spectra measured while heating, after 

fast quenching into the glass and those measured above the melting point Tm. 

 
IV.2. Spectra analysis using approach I 
 

As already mentioned in III.2.1, the approach introduced by Kudlik et al. [26] 

and Blochowicz et al. [11,42] describes both the α–peak and the EW in type A 

systems by using a special distribution of relaxation times being an extension 

of the generalized gamma distribution (see II.3.4). This so-called GGE 

function has the advantage to interpolate the spectra close to Tg showing a 

well-pronounced EW but also to reduce to a single peak for a certain 

constellation of its parameters, as typically observed for the spectra measured 

at high temperatures.  

The newly measured systems are analyzed here using this approach, and the 

results of the analysis are discussed together with those previously obtained 

for glycerol, propylene carbonate (PC), 2-picoline, ethylene glycol (EG), m-

tricresyl phosphate (m-TCP), 4-tertbutyl pyridine (4-TBP) and m-fluoroaniline 

(m-FAN) [11,30,42,43]. For every system, the investigated temperature range, 

the glass transition temperature Tg and the corresponding abbreviation used 

in this Thesis are posted in Appendix A.  

The dielectric spectra of 2-methyl tetrahydrofuran (MTHF) [80] are included in 

the present analysis. As for TMP and m-FAN, a β-contribution appears in the 

MTHF spectra close to Tg, however well separated from the α-peak (cf. 

Appendix B). Between the two relaxation features an EW is well resolved, 

allowing an analysis with the GGE function. In such cases when the spectra 

contain all three spectral contributions (α-process, EW and β-process) the fits 

are performed in accordance with the Williams-Watts approach (see III.2.2), 

using GGGE(lnτ) distribution for the α-peak and the EW, together with Gβ(lnτ) 

for the β-process.    

To remind the reader, the GGE distribution was introduced by Eq. (II.33): 
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-5 10-3 10-1 101 103 105 107 109

As mentioned in III.2.1, the maximum of the distribution is at τ = τ0. The 

broadening of the distribution peak is controlled by the parameters α and β. 

The parameter α controls the shape of the distribution at long relaxation times 

while β defines the slope of the distribution peak at short times. The EW is 

described by two additional parameters: γ is its exponent and σ marks the 

crossover between the ν-β and ν-γ regimes (the “onset” of the EW). The 

connection between the distribution and the measured permittivity is given by 

Eq. (II.27). 

To illustrate the quality of the GGE fits, the interpolations of the spectra 

measured above Tg for glycerol, 2-picoline, m-TCP and 4-TBP are presented 

in Fig. IV.2. For the newly measured systems the fits using approach I are 

previously shown in Fig. IV.1. Using this approach, very good interpolations 

are obtained for the data spreading up to 15 decades in frequency, as 

observed for glycerol, 4-TBP and PG.   

.  
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Fig. IV.2. Dielectric spectra of (a) glycerol, (b) 2-picoline, (c) m-TCP and (d) 4-TBP, 
measured above Tg. Temperatures (in K) are indicated. The solid lines are fits applying the 

GGE distribution, according to Eq. (II.33). 
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For some systems the fit quality is slightly spoiled at temperatures close to Tg 

due to the presence of a small curvature at the highest frequencies in the 

spectra. This feature may indicate the presence of an additional weak β-

process, not well resolved.    

For all systems the presumably temperature independent width parameter α 

of the α-peak is obtained by the interpolation of the spectra close to Tg. The α 

values for all systems investigated here are given in Table C.1 in Appendix C. 

The fitting parameters for describing the overall spectral evolution are the 

overall relaxation strength Δε, and τ0, β, γ and σ of the GGE function.  
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Fig. IV.3 The GGE parameters γ in (a), σ in (b) and β in (c) as functions of the time constant of 

the α–process (τα); the arrow indicate the crossover from a susceptibility with EW (low 
temperature regime) to the one without EW (high-temperature regime, “CD limit”). In the case 
of two data sets of glycerol and PC, A refers to dielectric spectra measured by the Augsburg 

dielectric group and BT by the Bayreuth group. Dashed lines: guides for the eye. 
 

In Fig. IV.3 the results for β, γ and σ, quantifying the changes of the spectral 

shape, are plotted as functions of the relaxation time τα. This representation 

allows the direct comparison of the susceptibility evolution for different 

systems independent of their fragility. As seen, the parameters are found to 
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be quite similar for all investigated glass formers, suggesting that the shape of 

the α-peak together with the EW is essentially controlled by τα.  

Starting at Tg (i.e. τα  ≅ 100 s), the exponent γ increases nonlinearly with 

decreasing lgτα. The type A systems EG and m-TCP, as well as the type B m-

FAN and MTHF show small, but systematic deviations from the common 

behavior. For the same systems deviations are found also in the evolution of β 

= β(lgτα) and σ = σ(lgτα). While the β(lgτα) parameter show similar changes as 

γ(lgτα), the EW onset lgσ appears as a linear function of lg(τα). As observed in 

Fig. IV.3 (b), σ increases with τα and implicitly, decreases with temperature. 

This indicates that the onset of the EW approaches the α-peak at high 

temperatures.  

A single peak susceptibility is expected for σ ≈ 1, and for few systems this 

relation is reached at short relaxation times [43]. According to Figs IV.1 and 

IV.2, at highest temperatures single peak spectra are indeed experimentally 

observed and, as discussed in III.1, this behavior is characteristic for the slow 

dynamics above Tx, i.e. in the high-temperature regime. As demonstrated in 

ref. [42], the GGE function with σ ≅ 2 and γ = βCD can well interpolate a Cole 

Davidson (CD) distribution of relaxation times. Thus, the GGE function allows 

to identify a crossover time constant τx (associated with Tx) between the low 

temperature regime characterized by the presence of the additional EW and 

high-temperature regime with a CD susceptibility (“CD limit”). As indicated in 

Fig. IV.3 (a) and (b) a value of τx ≈ 10-8…10-9 can be estimated for glycerol 

and PC, systems investigated by Lunkenheimer et al. [25] at such short 

relaxation times. For these two systems the fitting results in the high 

temperature regime (T > Tx), where the exponent γ = βCD is virtually not 

changing with τα, are added in Fig. IV.3 (a). This is an indication that the FTS 

applies in good approximation in the high-temperature limit.  

Assuming a linear dependence for lgσ = lgσ(lg(τα)) one can estimate a 

crossover time constant for any system by extrapolating this dependency to 

lgσ ≈ 1. As indicated by the intersection of the dashed lines in Fig. IV.3 (b), it 

appears that the crossover time constant τx is not universal. 
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The two temperature regimes are even better recognized when the GGE 

parameters β and γ  for glycerol and PC are discussed as functions of 

temperature, cf. Fig. IV.4 (a). Whereas γ does not change at high 

temperatures, a linear decrease with T is recognized below Tx. Note that both 

the EW exponent γ, as well as the exponent β for the α-process change by a 

factor 4 from Tg to Tx, indicating that FTS strongly fails here for both 

processes.  

 
 
 

Fig. IV.4 (a) The 
parameters β and γ for glycerol 

and PC as functions of 
temperature; β is divided by a 
factor c demonstrating that it is  

proportional to γ in the low 
temperature regime; data of high-

temperature regime from 
analyzing the spectra measured 
by Lunkenheimer et al. [25] are 

included and the crossover 
temperature Tx is indicated. 

 
 

 

More consequences of the approach I analysis are discussed in Appendix C. 

As shown there, the temperature dependence of the GGE parameters may be 

connected with the VFT law (see I.1), and the temperature Tx is found to be 

similar with the crossover temperature TS reported from the Stickel analysis 

[23], i.e., as revealed by the failure of the low temperature Vogel-Fulcher-

Tammann (VFT) law. 

To summarize, the parameters β, γ and σ mapping the evolution of the 

susceptibility including α-process and EW are strongly temperature 

dependent. Within approach I the parameters are linked among each other 

and the spectral shape is controlled by the time constant of the structural 

relaxation τα. This latter result of the model is confirmed by recent isothermal 

dielectric measurements using pressure as variable [86], indicating that both 

α-process and the EW are intimately connected. Within this approach the 

relaxation strength of the EW strongly increases while heating above Tg, 
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resembling the behavior of the β-process in this respect. This point of the 

analysis is not discussed here, but treated in ref. [84]. 

      
A critical assessment  
 
The above analysis, as well as the others mentioned in Chapter III, agree in 

the sense that the width parameters of α–peak and EW exhibit a strong 

temperature dependence in type A systems, i.e. the FTS principle is strongly 

violated below the crossover temperature Tx even for the α–process alone.  

 

 

 

  

 

 

 

 

 

10-4 10-2 100 102 104 106 108 1010 1012 1014
10-4

10-3

10-2

10-1

(a)

 

 

 

 

323

234

Fig. IV.5 Dielectric spectra scaled by the α-peak maximum and position for (a) glycerol 
measured by Lunkenheimer et al.[25], (b) glycerol (GLY), propylene glycol (PG), propylene 

carbonate (PC) and 2-picoline (PIC) measured in Bayreuth group [26,42,43]. 
 

However, simple “α-peak scaling” (cf. III.1) of the spectra measured above Tg, 

as done in Fig. IV.5 (a) for glycerol measured by Lunkenheimer et al. and in 

(b) for other type A systems measured in Bayreuth, clearly show that the 

shape of both α-process and EW are not changing so drastically with 

temperature. In other words, the strong change of γ(T) and β(T) parameters 

as revealed, e.g., by approach I, is not at all obvious from a mere inspection 

of the spectra at different temperatures. Moreover, for a given system 

measured at different temperatures, the high-frequency flanks constituting the 

EW appear as parallel in the double logarithmic plot in Fig. IV.5 (b), and their 

apparent exponents are very similar among different systems (close to 0.2). 

This is best seen when the data are measured close to Tg, as the EW is most 

pronounced here.  
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Furthermore, when inspecting the derivatives dlg(ε’’(ν))/dlg(ν) of the glycerol 

spectra in Fig. IV.6, the minimal value of the derivative, i.e. the maximum 

negative slope in spectrum, appears to be almost temperature independent 

(see the horizontal dashed line), pointing to the validity of FTS. The exponent 

γ of the EW is directly given by the level of the derivatives plateau at highest 

frequencies [11,42,43]. However, it is almost impossible to identify any 

plateau at all, as the data are strongly scattered above 105 Hz.  
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Fig. IV.6 Double logarithmic 

derivative of the glycerol data above 
Tg; the spectra are presented in Fig. 
V.2. The dashed line is a horizontal. 
 

 

 

 

 

Indications for the validity of FTS may be obtained also by using the optical 

Kerr effect (OKE) data compiled recently by Fayer and co-workers [113]. In an 

OKE experiment the pulse-response function φOKE(t) is measured which is 

related to the usually obtained step-response FLS(t) by φOKE(t) = - dFLS(t)/dt. 

The index stands for “Light Scattering”. The OKE decay curves measured for 

benzophenone (Tg = 213 K) exhibit an interesting property [114]: in the full 

temperature range covered a master curve can be obtained when the time 

scale is scaled by t/τα and the ordinate is scaled by the value of φOKE at τα (cf. 

Fig. IV.7 a). Moreover, comparing the dielectric data of type A systems 

measured close to Tg in the pulse-response representation similar decay 

curves are obtained, cf. Fig. IV.7 (b), thus, essentially, both techniques probe 

the same spectral features [114,115]. In particular, the first power-law regime 

(nothing else than the EW) exhibits a quite similar exponent γ as in the case of 

the OKE data of benzophenone.  
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Providing that the EW is present also in the OKE data, these results indicate 

that not only the shape of the α-decay (at longest times), but also the EW 

exponent γ may be considered as temperature independent.  
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Fig.IV.7 (a) Optical Kerr effect data of benzophenone compiled by Cang et al. [113] as a 
function of the scaled time t/τα providing a master curve (b) Pulse-response representation of 

the dielectric data close to Tg scaled to achieve agreement at short times for five glass 
formers: PG, PC, glycerol, 4-TBP and PIC; the time constant τα are chosen to be similar. In 
both (a) and (b) the dashed lines correspond to power laws in susceptibility representation 

with exponent γ. 

 
One may ask whether it is possible that the conclusion that the FTS principle 

strongly fails is a mere artifact of the interpolations covering in most cases 

only a restricted frequency window. The strong temperature variation for the 

stretching parameter of the α-process itself may appear as a result of 

interpolating the overall slow dynamics (resembling more and more a single 

peak susceptibility at high temperatures) with a two-peak function, as, e.g., 

provided by approach I.  

Independent of any considerations, it is a fact that the FTS for the overall slow 

dynamics (α-peak + EW) fails, though not strongly cf. Fig. IV.5 (b), in all type 

A systems. The best example may be the behavior of PC below Tx, cf. Fig. 

III.2 (b) also. However, as discussed in III.2.1, the broadening of the relaxation 

peak for PC is accompanied by the appearance of the EW that gets more 

pronounced while approaching Tg. Since the exponent γ of the EW appears 

not to change with temperature (cf. Fig. IV.5 b), one may ask whether the FTS 

failure or, more precisely, the overall peak broadening is due to a smooth 

increase of the EW amplitude (relative to the α-process) while cooling. If true, 
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the temperature change of the EW is opposite to the behavior observed for β-

processes. 

Next the α-relaxation is discussed for type B glass formers, systems exhibiting 

a discernible β-peak in their spectra above Tg. In Fig. IV.8 (a) the spectra 

measured at T ≈ Tg for various systems (previously measured) are plotted 

together with the results for newly investigated TMP.  

At a first inspection of the data one observes a large variation in the amplitude 

of the α-process among different systems, reflecting large differences 

between the corresponding molecular dipole moments (cf. II.1). It appears 

that the lower is the relaxation strength Δεα the broader is the α-peak.  
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Fig. IV.8 Dielectric spectra of the type B systems measured at temperatures close to Tg. (b) 

The spectra in (a) are vertically shifted to coincide at the relaxation maximum; for comparison, 
the data of type A glycerol (measured at 196 K) and 4-TBP (measured at 166 K) are added. 

 

In Fig. IV.8 (b) all the spectra in (a) are rescaled by the α-peak maximum. In 

this way one may clearly reveal a strong variation among the systems for the 

relative amplitude of the β- with respect to the α-contribution. For comparison, 

the spectra measured close to Tg for type A glycerol and 4-TBP are included. 

A general picture emerges: the smaller or faster is the relative β-contribution, 

the more the EW is revealed on the right flank of the α-peak. This suggests 

that the EW may be present even in the case of a strong β-relaxation that may 

obscure its contribution. An example in this sense is the behavior of the glass 

former PGE, for which the EW is revealed only at lowest frequencies when 

measurements are performed very close to Tg, cf. Fig. IV.9 (c). On the other 

hand, as most of type A systems reveal a curvature in their spectra close to 
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Tg, this may also suggest that in such cases the β-peak is obscured by the 

overwhelming EW. As for 4-TBP this curvature is the strongest, its spectra 

well fits in the smooth crossover between of type A and type B spectral 

shapes, cf. Fig. IV.8 (b). Upon such considerations one may assume that both 

secondary processes EW and β-process are always present in the spectra 

close to Tg.  

In type B systems the α-peak appears usually as broad, with a stretching 

exponent β ≤ 0.5, that may hide the EW. However, if the β- and α-process are 

sufficiently separated (as for triphenyl phosphate-TPP, phenyl glycid ether-

PGE and diglycyl ether of bisphenol A-DGEBA) one finds indications that the 

α-peak itself obeys FTS, according to the peak scalings presented in Fig. 

IV.9. The applicability of FTS for such systems was previously noticed by 

Olsen [34].  
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Fig.IV.9 Selected dielectric spectra of DGEBA [115], TPP [115] and PGE [116] scaled by the 
α-peak position and amplitude. The systems exhibit a strong β-peak, however the α-peaks 

superimpose well, demonstrating FTS. 
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IV.3.  Spectra analysis using approach II 
 

The model independent findings discussed above can be used as arguments 

in favor of an alternative description. This so-called in the following approach 

II will be consequently applied in the rest of the Thesis. Guided by the idea 

that FTS holds for the α-peak itself, this analysis suggests that the latter can 

be described by a susceptibility function with a stretching exponent not 

changing over the entire temperature range relevant for the glass transition. A 

change of the relative weight of the EW with respect to that of the α-peak is 

allowed to account for the minor changes of the overall slow dynamics spectra 

(α-peak + EW).  

 
IV.3.1 Analysis of type A systems  
 
Glycerol, T > Tg
 
In order to introduce the analysis one should resort to the best dielectric data 

currently available, i.e., spectra of glycerol measured by Lunkenheimer et al. 

[25]. The spectra are plotted in Fig. IV.10, where, in addition, the spectrum at 

the lowest temperature T = 181 K measured within this work, is included. 

To interpolate the data we describe the relaxation function as a product of two 

terms, explicitly )()()( tttF ex αφφ= . The function φex(t) denote the partial loss 

due to the EW and )(tαφ due to the α–process. Introducing the normalized 

relaxation functions with their corresponding relaxation strengths, one may 

write, in accordance with Williams-Watts (see III.2.2): 

)(])1[()( tSStF exexex αΦ+Φ−=                                                    (IV.1) 

Thus, the EW is interpreted as a secondary relaxation process that relaxes 

(statistically independent) a certain fraction of the total polarization. From F(t) 

the dielectric spectrum is calculated via [ ]))((Re,, tFFTωεε Δ=  (cf. Eq. II.10), 

where FT denotes the Fourier transform. The α-peak is usually well described 

by the CD function, while the EW power-law spectrum can be equally well 

described by the high frequency power-law asymptote of an additional CD 

function. Accordingly, the relaxation functions )(tαΦ and  are )(texΦ
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expressed by the corresponding time-domain equivalents of CD function, i.e. 

the incomplete gamma function [90].  

One should mention here that a convolution of a simple power-law (for EW) 

with a Fourier transform of a CD (for the α-process) provides similar fitting 

results. The choice for a CD function accounting for the EW contribution is 

motivated by the sake of clarity in attributing an individual spectral area to this 

process. The time constants of the two processes are fixed to each other, i.e., 

τα = τex. The high-frequency exponents are denoted β and γ for the α–process 

and the EW contribution, respectively. The resulting fits are nearly perfect 

(see Fig. IV.10), and supports the choice of the CD functions. The same 

analysis but using the KWW function, more natural for the time domain was 

tested and could not provided such good fits. Thus, the parameters of this 

model are: τα and β for the α-process, γ and Sex for the EW and the overall 

relaxation strength Δε.  
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Fig. IV.10 Dielectric loss of glycerol 

at indicated temperature with fits 
according to approach I; dashed line 
are EW contributions according with 

Approach II and the solid line 
indicated by arrow is a CD function 

with βCD = 0.63. 
 

 

 

 

 

First the high-temperature data was analyzed demonstrating that the α-peak 

above 289 K is well interpolated by a CD function with βCD = 0.63 (Sex = 1 in 

Eq. IV.1). This value is close to the one obtained by the “minimum scaling” 

and ”peak scaling” above Tx, discussed in III.1. Next it is assumed that the 

high-temperature value of β is appropriate for all temperatures down to Tg, 

and kept fixed accordingly. This leaves some freedom in the choice of the EW 

exponent γ, and fits constrained with β = 0.63 lead to values of γ = 0.2 – 0.23 
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in the temperature range 195 K < T < 289 K. A similar value was already 

foreseen from the model independent α-peak scaling (see Fig. IV.5 b). Due to 

its small interval of variation, it is tempting to assume that the EW exponent γ 

is also temperature independent, in order to further reduce the number of 

fitting variables.  

The exact value of γ was extracted to consistently interpret the aging 

experiments at T ≈ Tg, discussed in the next section. As shown there, the 

aging analysis yields γ = 0.21. Thus γ = 0.21 is assumed for all temperatures, 

and the interpolations above 195 K are repeated with only three parameters, 

i.e. the relative relaxation strength of the excess wing 1-Sex, the time constant 

τα, and the overall amplitude Δε. The resulting fits, shown in Fig. IV.10, are 

nearly perfect and indistinguishable from those obtained using approach I (cf. 

Fig. IV.2). Note that the evolution of the spectral shape for T > Tg is now 

described by the variation of a single parameter 1-Sex(T), and any contribution 

from a secondary β-peak can be disregarded here. The evolution of 1-Sex(T) 

for glycerol is discussed in IV.3.3 together with the results obtained for other 

glass formers. 

In Fig. IV.10 the individual contributions of the EW at several temperatures as 

obtained from the above fitting procedure are presented as dashed lines. 

These contributions grow with decreasing temperature, opposite to the 

behavior expected for a β-process.  

As commonly observed for other type A systems, at temperatures very close 

to Tg a curvature appears in the spectra of glycerol measured at 181 K and 

184 K, indicative for a small β-contribution, cf. Fig. IV.10. In accordance with 

the previous discussion, both EW and β-process may be present in the 

spectra of molecular glasses at Tg. However, within the present interpretation, 

in type A systems the weak β-contribution manifests itself only as a small 

curvature in the spectra measured at temperatures close to Tg, when both the 

α-process and the EW become well separated from the latter. Since within 

approach II the EW amplitude behaves differently with respect to the one of β-

process, this may offer the possibility to disentangle the two spectral 

contributions at temperatures close to Tg and even below. Thus, it becomes a 

  55                   
 



IV. Results; relaxation properties of molecular glass formers 

 
challenge to reinterpret the aging experiments of Schneider et al. [31] 

accordingly.  

 
Aging experiments described by approach II 
 

When a glass former is cooled rapidly below its glass transition temperature 

Tg, it freezes into a non equilibrium state, i.e. the glass. Physical aging 

describes the relaxation of the out-of-equilibrium glass towards the equilibrium 

liquid state under isothermal conditions. During aging the structural relaxation 

time τα grows in time towards the equilibrium value that can be estimated from 

the extrapolation of the VFT law at temperatures above Tg. Depending on 

temperature, the equilibrium state may not be reached even over a time scale 

of years, thus aging experiments are done at temperatures below, but very 

close to calorimetric Tg.   

In the case of molecular glassformers, that are usually fragile systems, there 

are strong changes of τα while aging. On the other hand, studies of type B 

systems at T > Tg [24,47] showed that the temperature dependence of the 

time constants of the β-process τβ is much weaker with respect to τα(T), thus 

the two processes continuously separate while cooling towards Tg. The 

results reported by Schneider et al. [31] for glycerol, aged at 179 K, are 

presented in Fig. IV.11.  

 

 

 

 

 

 
 

 
 
 
 
 
 

Fig. IV.11 Dielectric spectrum of (a) glycerol (Tg = 186 K) measured at 179 K at different aging 
times and (b) The equilibrium spectrum at 179 K interpolated by a sum of a power-law and a 

Cole-Cole function. Figures taken from [31]. 
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During the experiments (extending up to five weeks!) the spectrum at highest 

frequencies (attributed to the EW) develops into a shoulder and its curvature 

becomes more pronounced as the system equilibrates. The authors 

concluded that the EW is just the high-frequency flank of a submerged β-

peak, and fitted the equilibrium spectrum by adding a power-law and a Cole –

Cole contribution. Deviations between the experimental results and the 

corresponding interpolation can be observed for low frequencies, cf. Fig. IV.11 

(b).   

Figure IV.12 (a) presents the results for glycerol annealed at 181 K, obtained 

within this work. The lower spectrum (dots) is measured 70 h later than the 

upper one (open circles). The invariance of the loss after this aging time 

indicated that the equilibrium was established. Both spectra recorded in the 

non-equilibrium and the equilibrium state, respectively, show a similar 

curvature at highest frequencies, as the aging appears to affect mainly the low 

frequencies.  
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Fig. IV.12 Aging analysis of two different data sets of glycerol: (a) data measured within this 
work; (b) data at 179 K reported by Schneider et al [31]; spectrum at 184 K was added for 

comparison. Inset: time constants of glycerol measured by Lunkenheimer et al. (dots), 
interpolated by a VFT function (line). The point at lowest temperatures (cross) is obtained 

from the aging analysis with approach II. See text for details. 
 
 

According to approach II, a fine-tuning of the EW exponent γ is essential for a 

further characterization of the β-process in the glass, due to the relatively 

small amplitude of this process with respect with the α-process (roughly a 

factor of thousand cf. Fig. IV.12). In order to extract a value for the exponent γ 

the EW is subtracted from the overall spectra, aged and non-aged, as a 
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power-law Aν-γ to reveal the presumably temperature invariable high-

frequency flank of the α-process with exponent β = 0.63, as determined at 

highest temperatures. The second constraint used to refine γ is that a 

symmetric β-peak results after the subtraction of Aν-γ . Both conditions are 

fulfilled for γ = 0.21 ± 0.005. This value is in good agreement with the analysis 

at higher temperatures (T > 195 K), where the EW exponent is determined as 

a fit parameter under the constraint of β = 0.63. There are extremely small 

differences between the aged and non-aged β-peaks, which implies that the 

β-process virtually does not change in the course of the aging experiment. 

In Fig. IV.12 (b), a similar analysis is applied for the glycerol spectrum aged 

by Schneider et al. [31]. As this experiment is performed at a lower 

temperature, T = 179 K, the aging effects are significantly larger. Subtracting 

the EW contribution as a power-law Aν-0.21 from the equilibrium spectrum one 

rediscovers the high frequency flank of the α-peak that extends as ν-0.63 for 3 

decades in amplitude. Assuming that the α-peak height does not change 

significantly from 184 K to 179 K, one can estimate a time constant for the α-

process τα ≈106 s for the equilibrium spectrum measured at 179 K. This time 

constant agrees well with the others measured at higher temperatures, as 

indicated by the Inset of Fig. IV.12 (b).  

Both the Schneider et al. and the current approach can interpolate the aging 

data. Both agree that a β-process is observed in the spectra, however this 

process appears significantly different within the two scenarios: in the former 

one it is partially submerged under the α-peak and it is identified with the EW, 

in the later is an additional relaxation feature. One should admit that the 

Schneider et al. interpretation appears somehow simpler, as their aging 

description involves only two processes. However, as we will try to 

demonstrate next, within the Schneider interpretation the β-process in type A 

systems must be of a “special” kind, different from the one typically observed 

in type B glasses.  

Assuming an Arrhenius behavior for the time constants of the β-process (τβ = 

τ0exp(Ea/T) with a typical value for the attempt time τ0 ≈ 10-13 s, one can 

estimate a mean activation energy Ea from the position of the predicted β-
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peak in the aged spectrum. From the Schneider et al. analysis the β-

maximum at 179 K appears around 1 Hz (cf. Fig. IV.11 b), thus Ea (in K) must 

be on the order of 30•Tg. On the other hand, approach II predicts a β-peak that 

is by roughly four orders of magnitude faster, cf. Fig. IV.11 (a). From a simple 

fit of the peak using, e.g., Gβ function [11], one obtains τβ ≈ 1.6*10-5 s and, 

following the above considerations Ea  ≅ 19•Tg. This value appears much 

closer to those observed in type B systems [26], where Ea varies between 

12•Tg and 24•Tg.  

Further experiments are needed to clarify whether any of the two above 

analyses predicts the “true” position for the β-peak, i.e. to really identify its 

maximum position after aging. An attempt is made within this work for 4-TBP, 

a system that reveals in its spectra close to Tg the strongest high frequency 

curvature among all type A systems (cf. Fig. IV.2). The experiment is 

performed at 155 K, i.e. 10 K below Tg (165 K), where the structure relaxes 

within 150 hours. The aging analysis within the current approach is discussed 

in Appendix D. As in the case of glycerol, the high temperature stretching 

exponent of the α-peak and a symmetric β-peak with Ea ≈ 22•Tg are revealed 

after the subtraction of an EW power-law with an exponent γ = 0.21 from the 

overall equilibrium spectrum. Though the high frequency curvature gets more 

pronounced upon aging, we fail to reveal any peak maximum. Nevertheless, 

the author believes that this system remains a good candidate for separating 

a β-peak by aging at even lower temperatures, for longer times.         

Following these considerations, to quantitatively interpolate the glycerol 

spectra close to Tg, the relaxation function is described as a three-step 

function and written as a product of three terms, explicitly 

in which F)()()()( ttFtFtF ex αβ φ= β(t) and Fex(t) denote the partial loss due to 

the β–process and the EW, respectively, and )(tαφ the overall relaxation due 

to the α–process. Introducing the corresponding relaxation strengths Si one 

may write: 

)(])1[(])()1[()( tSSStStF exexex αβββ φφφ +−+−=                    (IV.2) 

For the β–process the symmetric distribution of relaxation times Gβ discussed 

in Paragraph II.3.4 is applied. The parameters of the model are: τα and β for 
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the α-process, γ and Sex for the EW and τβ, Sβ and the shape parameter a for 

β-process. The relative amplitudes of the processes are 1-Sβ for the β-

process, Sβ(1-Sex) for the EW and SβSex for the α-process. The stretching 

parameter of the α-process and the EW are kept constant β = 0.63 and γ = 

0.21. As seen in Fig. IV.10 the fitting of the spectra at 181 K and 184 K works 

very well in the whole frequency range, as the β-process is additionally 

accounted.    

The present approach has the advantage to consider the stretching 

parameters of the α-process and the EW as temperature independent, even 

though it allows for the presence of both secondary processes (EW+β-

process). These constraints reduce considerably the number of free 

parameters in the analysis. Moreover, it offers the possibility to extend the 

investigations also below Tg, where for the first time “typical” β-processes can 

be identified and characterized also in type A systems, as discussed next.  

 
Glycerol, T < Tg
 
The above analysis can be extended to temperatures below Tg where the α–

peak exits the accessible frequency window. Assuming that the exponent of 

the EW is not changing even below Tg, one can isolate the symmetric β–peak 

and even some residual contribution from the α–process by subtracting the 

EW power-law contribution Aν-0.21.  
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Fig. IV.13 The β-peaks of 
glycerol extracted from the 
dielectric spectra below Tg 
(shown in the Inset for the 

exact temperatures given in the main 
frame) by subtracting the EW 
contribution as Aν-0.21. The solid lines are 
fits using Gβ(lnτ), cf. II.3.4. 
 

 

 

 

The same procedure as the one done for the aged spectrum is applied at T < 
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Tg. As demonstrated in Fig. IV.13, using approach II a typical β–peak is found 

for the first time for glycerol below Tg. In order to reveal the β-contribution at 

temperatures where one cannot access its maximum (below 115 K), the 

temperature dependence of A is extrapolated from above. The evolution of 

A(T), the time constants and the relaxation strength of the β-process are 

discussed in IV.4.2, where the results obtained within the same analysis for 

m-FAN are included.   

 
Other type A systems 
 

Next we analyze in the same spirit the dielectric spectra of propylene 

carbonate (Tg ≈ 158 K) in the temperature range between 163 K and 179 K. 

Fig IV.14 contains datasets measured by Lunkenheimer et al. [25] (dots) and 

by Kudlik et al. [26] (circles). The dataset measured by Lunkenheimer et al. in 

the high-temperature regime is used here for defining the width of the α-peak. 

By this means we justified the choice of β = 0.78. This value is also indicated 

in Fig III.2 (b) where the α-peak scaling for PC is presented  
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Fig. IV.14 (a) Selected dielectric 
spectra of PC as presented by 

Lunkenheimer et al. [25] (dots) and 
Kudlik et al. [26] (circles) at indicated 
temperatures (in K) with approach II 

fits (lines).  
 

 

 

In order to identify the γ parameter of the EW one interpolates the spectra at 

167 K and 169 K (where the EW is best defined) using a fixed β = 0.78. From 

these constrained fits a value for γ = 0.2 is obtained. Having now both 

stretching parameters β and γ, we keep them fixed for the analysis of all 

spectra above 163 K. Again, only three parameters are free: 1-Sex, τα  and Δε. 

The interpolations are good again, as seen in Fig. IV.14.  
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Unfortunately only two dielectric datasets (glycerol and PC) are measured in 

such a large frequency range allowing to identify in the high-temperature 

regime (above Tx) the stretching parameter of the α-process. In order to 

demonstrate that approach II can be also applied for datasets acquired in a 

more limited frequency range, the 2-picoline interpolations, plotted in Fig. 

IV.15, are discussed next. The gap in the 2-picoline experimental data is due 

to the unavoidable crystallization of this system [30].  
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Fig. IV.15 Dielectric spectra of 2-

picoline [42] together with approach II fits. 
Between 131 K and 139 K spectra are 

measured every 1 K. 
 

 

 

 

 

Even though the high temperature regime may not be experimentally reached 

in this case, one may tentatively consider the single peak limit (where the EW 

contribution is negligible) to be the spectrum at the highest temperature here, 

T = 178 K. From a CD interpolation of this spectrum β = 0.61 is obtained. We 

then fit the spectrum at the lowest temperature around Tg (131 K), where the 

EW is best defined constraining β = 0.61. This strategy returns a value for γ = 

0.2, as for glycerol and PC. Finally, all the spectra are interpolated keeping β 

and γ unchanged, thus the temperature variance of the overall spectral shape 

is mapped solely by the optimized 1-Sex. The interpolations are again close to 

perfect, cf. Fig. IV.15. The 1-Sex results are discussed in IV.3.3, together with 

those obtained the other systems.  
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IV.3.2. Analysis of type B systems with EW contribution 
 
m-FAN, T > Tg 
 

In order to extend the approach II considerations to systems with well-

resolved β-peak, previously classified as type B, the dielectric spectra of the 

glass former m-FAN are analyzed next in the temperature range 162 K – 182 

K. This system shows a clearly discernible β–process and an EW close to Tg 

(cf. Fig. IV.16). In order to account for the β-peak contribution, Eq. (IV.2) is 

used, as done above for the analysis of glycerol at T ≈ Tg.  
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Fig. IV.16 Dielectric loss of m-FAN at 

indicated temperatures (in K) with 
approach II fits. 

 

 

 

 

 

Again β is fixed at highest temperature, β = 0.52, as obtained from a CD fit of 

the spectrum at 207 K. The exponent of the EW, obtained from the fit of the 

spectrum at 168 K, where the wing is best resolved, is also fixed to γ = 0.23. 

The EW contribution at 168 K is indicated as the dashed line in Figure IV.16, 

where the fits with the three contributions (α-process, EW and β-process) are 

also included. No systematic deviation between fits and data is observed. 

The parameters for the β-process of m-FAN above Tg are plotted in Fig. IV.17. 

In this temperature range the β-peak shape appears to be temperature 

independent, as indicated by the evolution of the width parameter a(T) of the 

distribution Gβ(lnτ). According to the inset (a) of Fig IV.17, a = 0.32 ± 0.02 in 

the whole temperature range above Tg. The temperature dependence of the 

time constant τβ can be interpolated by an Arrhenius law (see I.1), as shown 
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in the inset (b). The time constants display a weaker temperature dependence 

than in glass T < Tg [11]. The only parameter that shows a significant change 

with temperature (as compared with its evolution in the glass) is the relative 

amplitude 1-Sβ. As previously mentioned in III.2.2, this strong increase of its 

amplitude is as characteristic for β-process above Tg.  
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Fig. IV.17 

Parameters of the β-process 
for m-FAN above Tg as 

obtained with approach II: in 
the main frame the 

temperature dependence of 
the relative amplitude 1-Sβ, 

and in the insets: (a) 
stretching parameter a(T); 
(b) time constant τβ(Tg/T). 
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m-FAN, T <  Tg
 

Below Tg the above analysis is not further possible due to the shift of the α-

process out of the frequency window. However, the analysis is extended in 

the same manner as done for glycerol at T < Tg. In order to separate the 

individual spectral contributions, we assume that the exponent β of the 

remaining α-contribution is not changing below Tg. According to the Figure 

IV.18 (a) the EW is subtracted from the spectrum measured at 162 K as a 

power-law to reveal the α-contribution as proportional with ν-0.52 and a 

symmetric β-peak. The two conditions are fulfilled for γ = 0.22.  

The β-peaks can be extracted in this manner for the temperature range down 

to say 130 K. As discussed for the case of glycerol, the temperature 

dependence of the EW prefactor A close to Tg was extrapolated at lowest 

temperatures. The parameter A for glycerol and m-FAN is plotted in Fig. IV.19 

(a) as a function of temperature and in (b) as a function of the reduced 

temperature T/Tg. The temperature dependence A(T) is very similar for both 

systems and A even appears as identical in the reduced temperature 
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representation. Note that A increases with temperature above Tg, though the 

relative contribution 1-Sex of the EW with respect to the α-process decreases 

instead. 
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Fig. IV.18 (a) The dielectric spectra of m-FAN at 207 K, 168 K and 162 K together 
with the resulting spectrum after subtraction of the EW contribution at 162 K. The spectrum of 

glycerol measured at 181 K is added for comparison. (b) β-peaks of m-FAN extracted from 
the dielectric spectra at T ≤ 162 K with fits. Data at 168 and 173 K are generated from the fits 

with Eq.(IV.2). 
 

The extracted β-peaks are plotted in Fig. V.18 (b), together with their 

interpolations using the Gβ distribution [11]. We included the individual β-

contribution extracted from the fits for two spectra measured above Tg. For 

these two β-peaks it appears that only their amplitude changes with T.     

 

 

 

 

 

 

 

 
 
 

Fig. IV.19 (a) The prefactor A of the EW power- law Aν-γ for glycerol, and m-FAN as 
function of temperature Tg are indicated by the dashed lines. (b) Same results in (a) now as a 

function of the reduced temperature T/Tg.  
 

The exponent γ for m-FAN is close to 0.2, as for the other systems 

investigated here. We added in Fig V.18 (a), for comparison, the spectrum of 
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glycerol measured at 181 K. One can recognize that in the intermediate 

frequency range (attributed to the EW) the two spectra appear similar, 

pointing to a common exponent γ.    

The time constants τβ for m-FAN are compared in Fig V.20 with those 

extracted for glycerol. From the Arrhenius temperature dependence the 

activation energy of the β-process for m-FAN can be estimated to Ea = 18.8 

Tg. Ea appears similar for the two systems. For glycerol the value of Ea = 18.5 

Tg is close to the one estimated from the aging interpretation.  

Regarding the residual contribution of the α–process, its “isostructural” 

relaxation time below Tg can be estimated assuming that its relaxation 

strength stays temperature independent in the glass. The data points fall 

below the equilibrium liquid line of τα(T) but are expected to converge on it 

upon sufficiently, yet inaccessibly long aging, cf. Fig. IV.20. 
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Fig. IV.20. The relaxation 

times of glycerol and m-FAN in the 
temperature activation plot. 

 
 

 

 

 

 

To conclude, the approach II can be extended also for type B systems that 

exhibit a well-defined EW in their spectra above Tg. The good interpolations 

demonstrate that the spectra above Tg consist of the α-peak obeying FTS, a 

β-process with characteristics in accordance with previous investigations and 

an EW with a temperature independent exponent close to 0.2. From the 

evolution of the approach II parameters, it appears that the differences 

observed between the spectra of the type A glycerol and type B m-FAN 

(introduced in I.1) appear only due to a different amplitude of the β-process.  
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IV.3.3. The excess wing at T > Tg 

 
The temperature dependence of the EW amplitude (1-Sex) for all the systems 

analyzed above is presented in Fig. IV.21 (a). The relaxation strength of the 

EW decreases with temperature, as previously mentioned. Assuming a linear 

temperature dependence, 1–Sex extrapolates to zero at a certain temperature. 

For glycerol and PC this crossover temperature is close to (slightly above) Tx 

determined from approach I, and also to the Stickel temperature [32]. 
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Fig.IV.21 (a) Temperature dependence of the relative relaxation strength 1-Sex of the EW for 
m-FAN, glycerol, PC and 2-picoline. Linear extrapolation yields crossover temperature Tx 

(indicated by arrows); (b) 1-Sex data from (a) now as a function of τα. 
 

However, if the results for 1-Sex are plotted as functions of the time constants 

of the α-process, as done in Fig. IV.21 (b), one can estimate an approximately 

linear dependence also in this case. According to this extrapolation, the EW 

contribution for m-FAN becomes negligible in this analysis already at high τα 

due to the dominant β-contribution here. For this system the vanishing of the 

EW cannot be identified with the crossover to the high-temperature regime, 

since in this case the β-process still contribute to the spectral shape of the 

slow dynamics. On the other hand, one may speculate that for glycerol and 

PC the EW may be present in the spectra measured up to highest 

temperatures, as it seems to vanish at a time constant in the vibration limit. 

Accordingly, the fast dynamics may obscure the relative small EW 

contribution here. This point of the analysis will be readdressed in Chapter VI.  
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Independent of any representation, we note that for type A glycerol, PC and 2-

picoline the small parameter 1-Sex changes within a factor 2 in the whole 

temperature range above Tg, reflecting the minor changes in the peak 

scalings shown in Fig. IV.5 (b).    

 
IV.4. Consequences of approach II  

 
IV.4.1. Unperturbed type A characteristics  
 
It is interesting that the EW exponent appears to be not only temperature 

independent, but also system independent, i.e. γ ≈ 0.2. In order to further 

check this non-trivial result of the analysis, we focus next on glass-formers for 

which the β-contribution is minimal or, alternatively, fast and well separated 

from the α-peak. For these systems the type A characteristics should be less 

affected by the β-contribution and, within the light of the above results, the 

unspoiled EW exponent should appear as γ ≈ 0.2 in the temperature range 

below Tg.  
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Fig. IV.22 Dielectric spectra of 

2-picoline in the temperature range139 
K– 97 K from [26]. The solid line is a 

power law Aν-0.19. 
 

 

 

 

 

The glass forming 2-picoline is a system which appears, at first glance, to 

show no curvature in its spectra close to and below Tg, cf. Fig. IV.22. This is 

easily proved by the good interpolation of the spectrum at 107 K extending 

over eight decades in frequency by using a simple power-low Aν-γ. The 

exponent γ of the power-law is in this case γ = 0.19, close to the one 

discussed above, and it appears as not changing with temperature below Tg.  
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Next we present in Fig. IV.23 the results for m-TCP investigated at 

temperatures close and below Tg. The measurements between 200 K and 

160 K and are obtained as part of this work by employing an Alpha Analyzer∗ 

from Novocontrol [149]. The lower resolution limit of the Alpha spectrometer 

(almost one decade below the one of the Schlumberger spectrometer, cf. II.2) 

allows to monitor the evolution of the EW in the glass. In a broad (low) 

frequency range the spectra below 200 K can be interpolated by power-laws 

Aν-γ with a temperature independent exponent γ. The value of γ is again 0.2. 

This system shows no β-peak in the spectra above Tg (cf. Fig. IV.2), however, 

a secondary peak appears at much lower temperatures, cf. Fig. IV.28. The 

maximum of the peak is revealed only if the AH2700 high precision bridge is 

applied, as shown later.  
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Fig. IV.23 Dielectric spectra of 

m-TCP as obtained using the 
Schlumberger spectrometer for 247 

K > T > 203 K from [43] and the 
Alpha spectrometer (this work) for 
190 K > T > 160 K . Above Tg, few 
temperatures (in K) are indicated. 
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We finally present the TMP spectra measured below Tg. This system was 

already introduced in IV.I. For the intermediate temperature range below Tg 

down to say 100 K the spectra contains two contributions. As seen in Figure 

IV.24 (a), one arises from the EW as a power-law Aν-γ exponent γ = 0.19 that 

does not change from 130 K to 100 K, and the second one from a fast β-

process. Below 100 K the β-peak can be analyzed with the distribution Gβ (cf. 

II.3.4). The resulting time constants τβ are plotted together with the results for 

the α-process in Fig. IV.24 (b). The β-process in TMP is fast, well separated 

                                                 
∗ This spectrometer was only recently acquired by our group and used in this work only for m-TCP investigations. 
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from the α-peak (Ea = 15.5*Tg), thus favoring the investigation of the resolved 

EW.  
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Fig. IV.24 (a) Dielectric spectra of TMP in the temperature range below Tg down to 70 
K together with Gβ fits for the β-process. Solid lines are power laws Aν-0.2 (b) Time constants 

for the α- and β-processes as function of the reduced temperature Tg/T. The dotted line 
indicates Tg and the dashed line is an Arrhenius fit.   

 

In order to compare the temperature dependence of the EW amplitude for the 

systems discussed above, namely 2-picoline, m-TCP and 4-TBP, the 

prefactor A of the power-law ε’’EW = Aν-γ is plotted in Fig. IV.25 as function of 

the reduced temperature T/Tg. Note that the parameter A is just the value of 

ε’’EW at 1 Hz. Here are also included the results for glycerol and m-FAN from 

Fig. IV.19, obtained within approach II analysis (model dependent).  
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Fig. IV.25 The prefactor A of the EW 

power-law Aν-γ as function of the reduced 
temperature T/Tg. 

 

 

 

 

 

For all systems an exponential temperature dependence for A(T/Tg) is 

observed and, with the exception of m-TCP, the parameter A appears as 
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identical in this representation. As it will be shown later, this is a consequence 

of a similar molecular dipole moment of these systems. 

As suggested by the dashed line, the slope of lgA(T/Tg) is close to 5 for all 

systems, thus one may write for the EW below Tg: 

 
 ε’’EW(ν,T) ∝ ν-0.2exp(5T/Tg)                                                                         (IV.3) 

 
Further systems with fast β-process should be investigated to check if they 

reveal the same behavior as m-TCP or TMP: for temperatures below Tg, the 

spectra should consist of both the β-contribution and an EW with a power law 

exponent γ = 0.2 ± 0.01.    

 
IV.4.2. The Nearly Constant Loss  

According to previous investigations, type A glass-formers show similar 

relaxation features in the supercooled regime but also in the intermediate 

temperature range below Tg [26,75]. Here, the extremely broad spectra can 

be interpolated, in the first approximation, by a simple power-law, i.e. ε’’(ν) = 

Aν-γ with an small exponent γ ≈ 0.1 - 0.2, resembling the previously called 

nearly constant loss (NCL). In the previous investigated temperature range 

from Tg down to say, 50 – 70 K, exponent γ was found almost material and 

temperature independent, and the prefactor A revealed a similar exponential 

temperature dependence, i.e. A ∝ exp(T/TNCL) with TNCL ≅ 34 K for most of 

type A glass-formers investigated in the kHz regime. This relaxation behavior 

is revealed not only by dielectric data, but also by NMR and acoustic 

attenuation measurements [26].  

Examples of NCL spectra can be depicted from Fig. IV.13 (Inset) for glycerol, 

Fig. IV.14 for PC, Fig. IV.22 for 2-picoline and Fig. IV.23 for m-TCP. 

According to the discussion above, for 2-picoline and m-TCP this NCL is 

nothing else than the pure EW with the exponent γ ≈ 0.2. On the other hand, 

for glycerol or 4-TBP the NCL results from the interplay the overwhelming EW 

contribution and a weak β-process. For these systems the weak β-contribution 

may change the apparent exponent α from γ ≈ 0.2, as commonly observed at 

T ≈ Tg, to lower values (γ ≈ 0.1) in the glass, cf. Fig. IV.26 (a). For m-TCP the 
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power-law analysis at low temperatures is hampered by the presence of the 

fast β-process. 
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Fig. IV.26 (a) Power law exponent γ at temperatures close to and below Tg (indicated 
by an arrow for every system). (b) γ from (a) vs. reduced temperature T/Tg. 

 

According to approach II, one expects a common exponent for all systems at 

Tg. In order to demonstrate this, γ is displayed as a function of T/Tg in Fig. 

IV.26 (b). As observed here, γ at T/Tg = 1 appears as universal. 
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Fig. IV. 27 Temperature 

dependence of ε’’ at 1 kHz; the dashed 
lines corresponds to an exponential 

dependence ε’’(T) ∝ exp(T/TNCL) with 
TNCL= 34. 

 

 

 

 

 

In type A systems the EW contribution is larger than the one of the β-process 

at temperatures above, as well below Tg, where the NCL is discussed. This 

difference in the amplitudes of the two processes can be depicted from the 

aging analysis for glycerol and 4-TBP (cf. IV.3.1 and Appendix D). As the EW 

dominates here, the temperature dependence of its amplitude below Tg (see 

Fig. IV.25), A ∝ exp(5T/Tg) is in agreement with the previous observed 
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exponential temperature dependence for the NCL. i.e. A ∝ exp(T/TNCL) with 

TNCL ≅ 34 K. This is justified by the fact that for most of the systems 

considered here Tg ≈ 5TNCL.  

The amplitude of the EW decreases faster than the one of the β-process and 

the latter dominates the spectra at temperatures far below Tg: for example, 

the EW amplitude A (ε’’EW at 1 Hz) in the glycerol spectrum at 95 K is below 

10-3 (cf. Fig. IV.19 a), while the amplitude of the β-process at 1 Hz is clearly 

above, cf. Fig. IV.13. If this is true, one should be able to scale the spectra 

attributed to the thermally activated β-process at such low temperatures, 

ending the NCL regime. As demonstrated later in V.3.2 this is indeed the case 

for glycerol.  

 

IV.4.3 The influence of the molecular dipole moment on the 
amplitude of secondary processes 
 

For glass formers with very small β-contribution (type A) the dielectric 

response in the glass appears quite uniform, cf. Fig. IV.27. According to this 

figure, the amplitude of the dielectric response of type A systems in the glass 

appears to correlate with the amplitude of the α-peak. This is not the case for 

type B systems, as discussed next. 

For comparison, the temperature dependence of the dielectric loss ε’’(T), 

measured  at 1 kHz, is present in Fig. IV.28 for systems with strong β-

processes, that may obscure the presence of any EW contribution below Tg. 

The data are obtained as part of this work by applying the high-precision 

bridge AH 2700. In Fig. IV.28 only single frequency data are presented, while 

the results obtained within three decades in frequency (covered by the bridge) 

are analyzed in details in next Chapter. 

For type B systems the ε’’(T) curves appear as distinctive. At high 

temperatures, above Tg, ε’’(T) is dominated by the α-peak, while in the glass 

by the β-peak. For the high molecular mass PB2000 even two secondary 

relaxation peaks can be identified in the glass, as discussed in details in 

Chapter VII. The data for m-TCP are also added here to indicate a β-

contribution at low temperatures.  
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Fig. IV.28  Temperature dependence of ε’’ at 1 kHz for the type B systems and glycerol as 
obtained with the high precision bridge.  

 

As for these systems the β-contribution appears not to correlate with the α-

amplitude (cf. also Fig. IV.8.b), it becomes interesting to present all the data 

(for type A and type B) scaled by the value of the molecular dipole moment 

that controls the amplitude of the latter.  

Up to our knowledge, such a scaling was not done yet. This maybe due to the 

fact that one cannot find in literature the values for the molecular dipole 

moments μmol for many molecular systems. In order to overcome this problem, 

we estimate μ  using the Curie law at temperatures well above Tmol g, as 

discussed next.  

The Curie law (introduced in II.1) relates the dielectric strength Δε of any 

relaxation process with the relaxing dipole moment μ, the number density of 

the dipoles in the dielectric material and the temperature T: 

kT
n mol

0

2

3ε
μ

ε =Δ                                                                                        (II.6)   

This law was found to interpolate well the data for the α-process for low 

viscous liquids, however, it usually fails for high viscous liquids close to Tg 

[117]. In order to access the values of μmol, we evaluated for most of the 

systems the dielectric strength of the α-process Δε = ε - εs ∞ at the highest 

accessible temperature (T ), where the Curie law should hold best. For  ref
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systems the dielectric strength of the α-process Δε = εs - ε∞ at the highest 

accessible temperature (Tref), where the Curie law should hold best. For 

systems with very low dipole moment as, e.g. toluene and PB, Δε could not be 

evaluated directly from ε’(ν) data. Instead, Δε was obtained as a fitting 

parameter in the interpolation of the spectra ε’’(ν) cf. analysis in IV.2. The 

reference temperatures Tref and the corresponding values of the strength Δεref 

used in the analysis are posted in Table IV.1. 

 
 System Tref (K) Δεref

Glycerol 413 23.8 

PC 212 65 

2-picoline 202 6.5 

Salol 245 3.9 
Type A 

4TBP 187 10.1 

m-TCP 260 4 

m-FAN 198 17.8 

Toluene 127 0.3 (from[26]) 
Type B 

PB330 200 0.06 (from [26]) 

 
Table IV.1. The values of Tref and Δεref used for the evaluation of the molecular dipole 

moments μmol according to the Curie law.  
  

Taking for granted the Curie law at such high temperatures, the following 

relation should hold:  

 
n

kT refref
mol

εε
μ

Δ
= 02 3

                         (V.4) 

Since the number density for the systems under consideration vary within a 

factor smaller than 4 (cf. discussion in V.2), one just have to divide ε’’ by the 

product TrefΔεref in order to scale out the contribution of the dipole moment. 

The result of this scaling is shown in Fig. IV.29. Here ε’’/ (TrefΔεref) is plotted as 

a function of the reduced temperature T/Tg for all systems investigated in this 

work down to cryogenic temperatures, around 4 K. Some interesting features 

are revealed: the systems that do not exhibit secondary relaxation peaks the 

dielectric loss ε’’, above and also below Tg exhibit a quite similar behavior. 

Among these systems the corresponding amplitudes of the α-process, the 

NCL, the ADWP peak and the tunneling plateau (the last two are discussed in 
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the next Chapter) vary within a small factor below 5. For systems with strong 

β-contribution the scaling works well at the highest and the lowest 

temperatures, but not in the temperature range dominated by the β-peak, i.e. 

the β-process does not scale with the molecular dipole moment. As suggested 

by the behavior of the systems with fast β-processes (e.g., 4-TBP or m-TCP) 

close to Tg, one may speculate that the EW is always present in molecular 

glasses as a relaxation background that may be obscured in cases of strong 

β-contribution.  
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Fig. IV.29 The imaginary part of permittivity ε’’ for all molecular glasses investigated in 
this work down to 4 K, scaled by the molecular dipole moment (see text for details) in the 

reduced T/Tg scale.  
 

Another remarkable fact is that by scaling out the dipole moment, independent 

from the particularities observed above, the data at lowest temperatures 

collapse to a system independent constant value for most of the systems. As 

discussed in the next Chapter, this may be taken as an indication that the 

tunneling regime is reached for molecular systems at such low temperatures, 

below, say, 10 K.   
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IV.5 Conclusions 

 
According to the proposed scenario (approach II), the long-time part of the 

overall relaxation in molecular systems (α-process) keeps its shape and thus 

obeys FTS at all temperatures. The corresponding stretching parameter β is 

taken from the high-temperature spectra; here the analysis is not hampered 

by the appearance of any secondary relaxation processes thus β can be 

determined unambiguously. 

 As demonstrated by the good interpolations, the EW exponent γ can also be 

chosen as temperature independent. Thus, the overall spectral evolution for 

systems exhibiting no discernible β-manifestation above Tg (previously 

introduced as type A), is essentially attributed only to a small variation of the 

relative weight 1-Sex of the EW with respect to the α-peak. At variance with 

the behavior of the β-process, the EW contribution decreases with 

temperature. A crossover temperature Tx can be estimated, at which the EW 

contribution vanishes. The crossover to a single peak susceptibility at high 

temperatures can be indicated by the linear extrapolation of 1-Sex to zero 

value at T = Tx. This crossover temperature Tx is similar with the Stickel 

temperature or with the one obtained from GGE analysis. 

The EW exponent appears also as system independent γ ≈ 0.2. According to 

this approach, both EW and β-process are always present in the spectra of 

molecular systems close to Tg. In “type A” systems the weak β-contribution 

manifests itself only as a small curvature in the spectra close to Tg, when both 

the α-process and the EW become well separated from the latter. Based on 

their different temperature evolution, the contributions of both secondary 

processes (EW and β-process) are disentangled close to Tg, and the 

corresponding aging experiments are reinterpreted upon such considerations. 

As shown, typical β-processes can be revealed and analyzed also in type A 

systems below Tg. Within this scenario, the NCL previously discussed can be 

interpreted as an interplay of the dominating EW and a weak β-process, both 

surviving in the glass.  

                     
 

77



IV. Results; relaxation properties of molecular glass formers 

 
 

 

                     
 

78



V. Results; Low temperature relaxations  in molecular glasses (T << Tg) 

 

 
 
V. Results; Low temperature relaxations in molecular glasses 

(T << Tg) 
 

 
As discussed in III.3.2, glasses at low temperatures below, say, 10 K, exhibit 

a peculiar physical behavior with respect to crystals. Thermal properties, as 

well as acoustic attenuation, show similar values for all (inorganic) glasses 

studied so far, pointing to universality. In this temperature range the 

mechanic/dielectric relaxation profile displays a weak temperature and 

frequency dependence, close to a “plateau”. While this relaxation behavior 

can be interpreted within the standard tunneling model (STM), the theory 

cannot explain the universality of the phenomena.   

Above 10 K the relaxation behavior becomes system dependent and the 

relaxation response appears as a more or a less pronounced peak when loss 

is plotted as function of temperature. To describe this behavior the TM was 

extended to high temperatures at which thermally activated dynamics in 

asymmetric double well potentials (ADWP) is expected to dominate the 

relaxation. For a detailed data analysis the distribution of barrier heights g(V) 

is needed as input, and in most cases an exponential distribution was found to 

be suitable. However, there are examples when the data cannot be 

reproduced by the thermally activated ADWP model, even though such an 

extension of the TM to higher temperatures appears as natural. 

The purpose of this work is to extend the previous investigations of the 

dielectric response of molecular glasses down to cryogenic temperatures by 

applying the high precision bridge AH2700 (described in II.2.1). By using this 

bridge, three decades in the frequency dependence of the dielectric loss in 

molecular glasses can be accessed at such low temperatures. Up to now, a 

systematic study of the dynamics of such glasses covering the full 

temperature range below the glass transition temperature Tg down to say, 1 K 

is missing.  
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Within the approach II, the nearly constant loss (NCL), experimentally 

accessed for some molecular systems, is a universal relaxation background, 

observed only if the β-contribution is small enough. In such cases the NCL is 

dominated close to Tg by the excess wing (EW) that survives in the glass as a 

universal power-law ∝ exp(5T/Tg)ν-0.2. The β-process is perturbing this 

universality, as its amplitude does not scale with the molecular dipole 

moment. In order to extend the investigations of the relaxation features not 

obscured by the presence of a strong β-process towards lower temperatures, 

the following discussion starts with type A systems. The discussion is 

extended afterwards for systems with well-resolved β-peaks.  

The following questions are addressed in this Chapter: down to what 

temperatures the dielectric spectra are still dominated by the contribution of 

the secondary processes, namely excess wing (EW) and β-process, both 

emerging already above Tg and surviving into the glass? Can the tunneling 

regime be reached in the accessible temperature range (T > 2 K) for 

molecular glasses? Do the spectra in the tunneling regime follow the Standard 

Tunneling Model (STM) predictions? Does one find contributions from 

thermally activated Asymmetric Double Well Potential (ADWP) dynamics?  

 

 
V.1 Experimental results and discussion 

 
V.1.1 Systems with weak β-contribution (type A) 
 

The previous dielectric investigations of glycerol, propylene carbonate (PC), 

salol, 2-picoline, m-tricresyl phosphate (m-TCP) and 4-tertbutyl pyridine (4-

TBP) are extended down to cryogenic temperatures close to 2 K. The 

investigation in the temperature range from 4 K down to 2 K was possible by 

pumping liquid helium in the cryostat. The measurements for glycerol down to 

0.03 K are performed in collaboration with Experimentalphysik V in Bayreuth 

(Prof. G. Eska); some measurement details are given in II.2.3. The 

investigated temperature range and the values of Tg for every system are 

specified in Appendix A.  
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We present in Fig.V.1 the frequency dependence of the imaginary part of 

permittivity ε’’(ν) for the glass formers PC, 2-picoline, salol and glycerol as 

obtained with the high-precision bridge in the full temperature range down to 2 

K. The previously measured broadband data are also included. As seen, both 

datasets agree well in the common temperature range. Hansen and Richert 

also investigated salol down to 30 K with a single frequency bridge operating 

at 1 kHz [75]; their results are in good agreement with those presented here 

(see Fig. V.9 a).  

The bridge measurements cover the frequency range 60 Hz – 2*104 Hz and 

ε’’(ν) are monitored to a minimum level of 5*10-5, as reached for salol. Clearly, 

the high precision bridge allows the investigation of the dielectric response 

towards lower temperatures by extending the previous resolution limit, and 

most important, accessing the frequency dependence of the permittivity. 
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Fig. V.1 Selected dielectric spectra of PC (a), 2-picoline (b), salol (c) and glycerol (d). 
The data measured with the AH2700 bridge (crosses) are compared with those measured by 

the broadband technique (open circles), [26,27]; the dashed lines represent power-laws 
ε’’(ν)=Aν-γ. Few temperatures (in K) are indicated.   
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The spectra presented here show no indication of a distinct secondary β-

relaxation maximum. Besides the shift of the α-peak, one can recognize the 

EW emerging above Tg. In the glass (T < Tg) the response gets very flat and 

the broadband spectra appear as power-laws with constant exponent, since 

only the amplitude of the signal changes with temperature. However, 

inspecting the high precision data measured at lower temperatures (below 

100 K), one identifies, a crossover range in which the spectra change their 

slope while further cooling. For every system, at a given temperature (TCL), 

the spectra become completely frequency independent, as a true constant 

loss is revealed here. The crossover temperature TCL is indicated by an arrow 

in Figs. V.1 and the values of TCL are posted in Table V.1 for all the systems 

considered in this Chapter. One example of a spectrum measured at TCL is 

shown in the Inset of Fig. V.2 (c) for salol. 

The crossover is better observed when the results at different frequencies are 

plotted as function of temperature, as done in Fig. V.2: for all systems the 

datasets measured at different frequencies intersect at TCL. With the exception 

of glycerol, below TCL ε’’(T) develops to a maximum with lowering T, as an 

indication for the emergence of a different relaxation feature. At even lower 

temperatures, ε’’(T) for 2-picoline, PC and salol exhibits a maximum, cf. Fig. 

V.2. However, an important observation is that this maximum in ε’’(T) does not 

have an equivalent in the frequency dependence ε’’(ν), as discussed later in 

details. For glycerol neither a minimum nor a maximum is recognized in ε’’(T) 

below TCL.  

As mentioned above, the spectra measured with the bridge can be well 

interpolated by power-laws Aν-γ. The power-law exponent γ at T < Tg is plotted 

in Fig. V.3 as a function of temperature. In addition, the results for 4-TBP and 

m-TCP close to Tg are included. As discussed in the next paragraph, these 

two systems reveal in their spectra a secondary relaxation peak, hampering 

the power-law analysis at temperatures well below Tg. For all systems, the 

exponent γ below Tg saturates to a small value γNCL (0.1 – 0.2), cf. also the 

discussion in IV.4.2. This regime of NCL, i.e. within the approach II the joint 

EW + β-process contribution, expands in a temperature range below Tg down 

to 40 – 80 K, depending on system. Below this temperature the spectra 
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further flatten and γ decreases to 0 at TCL. The increase of ε’’(T) below TCL 

correlates with the power-law exponent γ crossing over to a small but positive 

value, in the current terminology γ < 0.  
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Fig. V.2 Temperature dependence of ε’’ for (a) propylene carbonate (PC), (b) 2-picoline, (c) 
salol – logarithmic scale on T and (d) glycerol, measured with the high precision bridge. In (b) 

ε’’(T) is plotted for 7 frequencies between 50 Hz and 20 kHz, i.e. for every frequency it 
corresponds a line. For the other systems, data measured at 25 frequencies between 50 Hz 

and 20 kHz are plotted as small dots; for the sake of clarity, the extreme frequencies are 
highlighted. The solid lines in represent exponential temperature dependences (ε’’(T) ∝ 

exp(T/TNCL)). Inset (c): the spectrum of salol measured at T=TCL (see text for details). The 
dashed lines suggest different relaxation regimes.  

  

An interesting observation is that independent of any individual details of the 

curve γ(T) in Fig. V.3, it appears that a system independent exponent γ is 

reached at the lowest temperatures. Here all the spectra can be interpolated 

by power-laws with small and similar positive exponent (cf. also Fig. V.1). At 

such lowest temperatures the loss saturates to a plateau (best seen for salol 
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in Fig. IV.2. (c), where ε’’(T) is plotted in double logarithmic scale), as an 

indication of a even further relaxation regime below 10 K.  
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Fig. V.3 Power law exponent γ of the 

spectra at temperatures below Tg (indicated 
by an arrow for every system). The dashed 
lines suggest different relaxation regimes. 

 
 
 
 
 

 
 

 

In order to compare the results, the temperature dependence ε’’(T) measured 

at the single frequency of 1 kHz is presented in Fig. V.4 for all the glasses 

investigated here. The data shown are extensions of those plotted in Fig. 

IV.27, now down to 2 K. Similar relaxation features are found for all systems. 

Above Tg the loss is governed by the appearance of the main relaxation (α-

process) which leads to a strong increase of ε’’(T) with temperature. 

Inspecting the temperature dependence of ε’’ in the range where γ is 

essentially temperature invariant, an exponential change is observed for all 

investigated systems. Explicitly, we rediscover, ε’’(T) ∝ exp(T/TNCL) for ν = 1 

kHz holding down to crossover temperature TCL. 

With the exception of 2-picoline, the parameter TNCL is similar within the 

different systems (close to 33 K), implying that the curves ε’’(T) in Fig. IV.4 are 

almost parallel. The values obtained for TNCL and γNCL are listed in Table V.1, 

where, for comparison, the results obtained by Kudlik et al. [26] and Hansen 

and Richert [75] are also included. Just to be remarked, within approach II the 

NCL close to Tg is dominated by the EW contribution that survives in the glass 

as a power law ε’’EW(ν,T) ∝ ν-0.2exp(5T/Tg). Note in Table V.I that for most of 

the systems Tg ≈ 5 TNCL holds, in accordance with the discussion in IV.4.1.                                  
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Fig. V.4 Temperature dependence of ε’’ at 1 
kHz for systems with type A characteristics 

at T > Tg. The dashed line corresponds to an 
exponential dependence 

ε’’(T) ∝ exp(T/ 33 K). 
 

 

 

 

 
 
 
Peculiarities 
 

Though m-TCP and 4-TBP are type A glass-formers concerning their spectral 

shape above Tg, one can identify secondary relaxation peaks in their spectra 

ε’’(ν) at much lower temperatures around Tg/2, as seen in Figs. V.5 (Inset) 

and V.6. This is at variance with what is observed for other systems at low T, 

where a peak is recognized in ε’’(T) but not in the spectra ε’’(ν). The activation 

energy of these processes (few Tg’s) is small as compared to the ones 

typically found for the β-process and may reflect the presence of internal 

degrees of freedom of the constituent molecules. Nevertheless, at much lower 

temperatures, the two systems also show the crossover to the additional 

relaxation feature marked by the constant loss temperature TCL.  Below TCL 

the spectra changes their slope to positive, and, finally, at the lowest 

investigated temperature the spectrum can be interpolated by a power-law 

with a small and similar exponent with the one observed for the other systems 

discussed above. 
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Fig. V.5 Dielectric spectra of m-TCP (Tg = 205 

K). Few temperatures (in K) are indicated. Inset: A 
fast secondary process is recognized as a peak 

deep in the glass, better recognized when the data 
are plotted in linear scale. Dashed line is a power-

law with exponent 0.04. 
 

 

 

 

 

 

 

 
Fig. V.6 Dielectric spectra of 4-TBP (Tg = 163 

K). Few temperatures (in K) are indicated. Dashed 
line is a power-law with exponent 0.04. 

 
 
 
 
 
 

 
 

 System Tg (K) TNCL(K) γNCL TCL (K) TCL/Tg TNCL/Tg

2-PIC 133 17 0.17 51 0.38 0.12 

PC 158 28 0.09 59 0.37 0.18 

4-TBP 163 31 0.11 75 0.46 0.19 

glycerol 189 34, 33*, 34** 0.11 35 0.19 0.18 

PG 170 30, 34* 0.12 - - 0.2 

salol 220 23, 22.5** 0.21 79 0.36 0.1 

Ty
pe

 A
 

m-TCP 205 - 0.2 48 0.23 - 

m-FAN 172 - - 54 0.31 - 

toluene 117 - - 33 0.28 - 

PB 330 140 - - 19 0.14 - Ty
pe

 B
 

CCH 134 - - 23 0.17 - 

 
 
Table V.1 Parameters of the “NCL”. The numbers with * are obtained by Kudlik et al. [26] and 

those with ** by Hansen and Richert [75]. 
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V.1.2. Systems with strong β-contribution 
 
In the following we discuss the dielectric response of glasses that reveal 

already above Tg a distinguishable secondary β-relaxation peak in their 

spectra. The results of ε’’(T) at a single frequency 1 kHz have been already 

presented and discussed in IV.4.3. However, in order to reveal the frequency 

dependence of the loss for such systems, we present in Fig. V.7 the spectra 

of m-FAN, toluene, polybutadiene (PB) with the molecular mass of Mw = 330 

and the plastic crystal cyano cyclohexane (CCH), as measured in the whole 

temperature range down to 3 - 5 K. As observed, the spectra within the 

different systems appear as similar.  
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Fig. V.7 Dielectric spectra of m-FAN (a), toluene (b), PB 330 (c) and CCH (d). The new 
data (crosses) measured with the AH2700 bridge are compared with those measured by the 

broadband techniques (open circles), previously published in [26,148]; the dashed lines 
represent power-laws ε’’(ν) = Aν-γ. Few temperatures (in K) are indicated.   

 

At temperatures close and below Tg the relaxation pattern is dominated by the 

β-process. At lower temperatures the resolution limit of the broadband 

spectrometer is reached, thus the investigations are further carried out by 
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applying the high-precision bridge. As the β-peak moves out from the 

accessible frequency window, the remaining contributions appear as power-

laws with a small and temperature independent exponent. As indicated by the 

power-law interpolations (dashed lines in Fig. V.7), the value of the exponent 

varies between 0.1 and 0.2 among the systems, resembling the behavior 

observed in systems with type A characteristics, cf. previous discussion. As 

generally observed, these (B) systems also exhibit at a given temperature 

(TCL) a true constant loss that signals the crossover to a further relaxation 

regime below TCL.  

The similarities among A/B systems at such low temperatures are better 

observed when the exponent γ for m-FAN (extracted in the temperature range 

where the m-FAN spectra can be interpolated by power-laws) is directly 

compared with the one for glycerol in Fig. V.8. The main differences appears 

to be the value of TCL for the two systems. 
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Fig. V.8 The exponent γ of the 

power-laws Aν-γ interpolating the spectra of 
m-FAN and glycerol beyond the β-peak and 

NCL, respectively. 
 

 

 

 

 

At lowest investigated temperatures the spectra appear similar within all the 

molecular glasses presented up to now (type A and type B). They can be 

interpolated by a power-law with a small positive exponent (close to 0.04), 

pointing to a final distinct relaxation regime that seems to have universal 

characteristics.  

To summarize, for all molecular systems three different relaxation regime can 

be identified below Tg : 

I. Between Tg and TCL some systems exhibit a behavior resembling the 

NCL while for others the β-process dominates the relaxation here. 
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Special cases are m-TCP and 4-TBP that present NCL behavior close 

to Tg and a fast β-process close to TCL. 

II.  Below TCL down to say 10 K for all the systems the spectra can be 

interpolated with power-laws with positive, small and temperature 

dependent exponent. For salol, PC and 2-picoline there appears a 

peak in ε’’(T) but not in the spectra ε’’(ν), while for the other glasses no 

such peak can be recognized.   

III.  At lowest temperatures T < 10 K for all systems the relaxation profile is 

very similar, displaying a weak temperature and frequency 

dependence.  

The first regime was already discussed in IV.4.2 and IV.4.3. In the following 

the discussion will be focused on regimes II and III, in which the ADWP 

dynamics is expected to dominate the relaxation behavior. 

 
V.2. The tunneling regime (T < 10 K) 
 

As already mentioned, inspecting Fig. V.3 and Fig. V.8 a remarkable fact is 

observed: independent of the individual details of the curve γ(T), it appears 

that a common exponent γ is reached at lowest temperatures. For all 

molecular systems the spectra exhibit themselves as power-laws with a small, 

positive exponent, explicitly, γ (2 K – 7 K) = 0.038…0.043. In all (inorganic) 

glasses studied so far at temperatures below 10 K (in the kHz regime) the 

tunneling plateau is reached, i.e. the dielectric loss becomes independent of 

temperature and only at much lower temperatures, again a strong decrease is 

observed [62]. Thus, the system independent small value of the exponent γ at 

lowest temperatures may be taken as an indication that the tunneling regime 

is reached, for the first time, also for molecular glasses.  

In order to check whether this is indeed the case we extended most of the 

investigations in the temperature range from 4 K down to 2 K and for glycerol 

even down to 0.03 K. The results for several systems investigated at single 

frequency ν = 1 kHz are presented in Fig. V.9 (a) as tanδ(T), and for the 

others as ε’’(T) in Fig. V.11. In order to emphasize the behavior at lowest 

temperatures, the data are displayed on a logarithmic temperature scale. The 
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temperature independence of the loss observed in the two figures indicates 

that indeed a plateau is reached for most of the molecular systems. For 

glycerol the plateau extends for more than one decade in temperature, cf. Fig. 

V.9 (a). For comparison, the data of silica measured at 1 kHz [65] are added 

here, showing a similar behavior to the one observed in molecular systems. 

As mentioned, the frequency dependence of ε’’(ν) or tanδ(ν) in the plateau 

regime is characterized by a very low exponent γ, common for all glasses 

investigated here. In Fig. V.9 (b) we compare the present results in the 

plateau regime with some previously obtained for inorganic glasses (from 

literature) at somehow lower temperatures and in a broader frequency range. 

For getting comparable data the spectra are normalized by the plateau value 

at ν =12 kHz. It turns out that a similar frequency dependence is found for all 

the glasses including polymers (PMMA [74]), ionic glasses (CKN [74] and LiCl 

5H2O [119]) and inorganic network glasses (BK7 [74]). Note that for the type 

B systems CCH and toluene the spectrum at lowest temperature exhibits a 

stronger frequency dependence, as the tunneling regime may not be reached 

here (cf. Fig. V.7). Nevertheless, the general behavior observed in Fig V.9 (b) 

can be described within the so-called “modified soft atomic potential model”, 

as the dashed line calculated accordingly to this model well interpolate the 

results [118].    

  
 

  

 

 

 

 

 

 
Fig. V.9 (a) tanδ at 1 kHz as function of temperature (logarithmic scale) for some molecular 

glasses investigated here. For comparison data from ref [75] for salol (solid line) and for silica 
[65] are added (b) Frequency dependence of tan δ at lowest temperature (2 K – 6 K) as 

obtained for the molecular glasses studied here and for several other glasses as reported in 
the literature [74,118,119]. For comparison the internal friction coefficient Q-1 estimated from 
[125] is included (crosses). Data are normalized by the value at 12 kHz. Dashed line is a Soft 

Potential Model prediction [118,120]. 
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Within the STM, at lowest temperatures (below 1 K) the main contribution to 

the loss is expected to be given by the fastest relaxing TLS (see III.3.2), and 

the predicted temperature dependence is tanδ ∝ T3. At the same 

temperatures, a crossover between two power-laws (with exponents in the 

ratio of (-2):(1) in semilogarithmic plot as function of temperature) is expected 

for the relative change of real part of permittivity δε’/ε’ (or the overall capacity). 

These predictions (Eq. III.7, III.10) are not in accordance with the 

experimental results for glycerol in this temperature range: the observed ratio 

of the slopes is close to (-1):(1) for δε’/ε’ and the temperature dependence of 

tanδ(T) is much weaker, as observed in Fig V.10. However, similar results 

with those obtained here are found in literature for many inorganic glasses 

[121]. Actually, situations when the STM predictions are exactly 

experimentally confirmed are rather seldom [119]. In order to account for 

these “exceptions”, extensions of the tunneling model were introduced. In 

particular, incoherent tunneling is suggested to explain results similar with the 

ones obtained here for glycerol [121].  

 

 

  

 

 

 

 

 

 

Tm 

Fig. V.10 Temperature dependence of the capacity and tan δ for glycerol at 1 kHz below 1 K 
in semilogarithmic plot; the crossover temperature Tm is indicated (see text for details). 

 
As also discussed in III.3.2, in the plateau region the main contribution to the 

loss is given by the systems for which ωτ ≈ 1. Within the STM, the transition to 

lower temperatures is marked by a crossover temperature given by: 

3
3Ak

Tm
ω

=                    (III.11) 

This crossover temperature is indicated in Fig. V.10 by arrows and can be 
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approximated to be around 0.1 K for glycerol. Since the operating frequency is 

1 kHz one can estimate, assuming that Eq. (III.11) holds, the important glass 

parameter Ak3 (defined by Eq. III.4) that reads for glycerol the value of Ak3 = 

106 (K-3s-1). For comparison, Esquinazi et al. [122] estimated a value of Ak3 = 

8•107 (K-3s-1) for SiO2 using acoustic measurements.  

At higher temperatures T > 1 K, the plateau value can provide information 

concerning the tunneling strength C that is related to the density of tunneling 

states 
−

P  and the effective dipole moment μ of the relaxing element (as a 

coupling parameter of the ADWP to the external electric field): 

 

                                                                                          (Eq. III.8, III.9) '
,

0εε
δ

32
tan

2μπ
−

==
PCC

The equation above is derived assuming that the TLS dipole moments are 

randomly oriented, and the expression may need (small) corrections for 

including the effects of the local field [118]. The density of states 
−

P  can be 

directly accessed only by heat release experiments, where no coupling to 

external field is involved [123].  

 
 System C 

2-picoline 7.4•10-5 (1 kHz) 

PC 5.3•10-4 (1 kHz) 

Glycerol 7.5•10-5 (1 kHz) 
Type A 

Salol 2.2•10-5 (1 kHz) 

m-TCP 1.7•10-4 (1 kHz) 

m-FAN 1.7•10-4 (1 kHz) 

PB330 1.1•10-5 (1 kHz) 

Toluene 2•10-6 (1 kHz) 

Molecular 

glasses 

Type B 

CCH 2.2•10-5 (1 kHz) 

Suprasil (<1.5 ppm OH) 10-5 (2.2 kHz) from [124] 

GeO2+0.1 % Na2O 6•10-5 (1 kHz) from [124] 

BK7 3•10-4 (1 kHz) from [74] 

PMMA 3.4•10-5 (10 kHz) from [74] 

CKN 3•10-5 (10 kHz) from [74] 

Inorganic glasses 

LiCl•7H2O 3•10-4 (50 kHz) from [119] 

 
Table V.2 The tunneling strength C for all the molecular glasses investigated here. For 
comparison we included some data for the inorganic glasses as found in the literature.  
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The values of plateau strength C obtained for the molecular systems, together 

with the previous results for inorganic glasses are posted in Table V.2. 

Neglecting the weak frequency dependence displayed in Fig. V.9 (b), the 

constant C varies among the molecular glasses by a factor of about few 

hundreds.  

As discussed in IV.4.3, the dielectric loss ε’’ for molecular systems at lowest 

temperatures can be collapsed to a system independent constant value by 

scaling out the value of the molecular dipole moment (see Fig. IV.29 re-

plotted below as Fig. V.11 b, now in logarithmic T-axis). The tunneling 

strength C appears to correlate with the value of molecular dipole moment 

that dictates the amplitude of the α-peak. Since the STM theory provides no 

picture about the microscopic origin of the relaxing tunneling elements, it is 

tempting to check if there is indeed a direct connection between effective 

dipole moment μeff of the tunneling centers and the molecular dipole moment 

μmol.  
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Fig. V.11 (a) Temperature dependence of ε’’ at 1 kHz for the molecular systems investigated 
here as function of temperature in logarithmic representation (b) The imaginary part of 

permittivity ε’’ scaled by the molecular dipole moment in the logarithmic reduced T/Tg scale for 
all the molecular glasses below Tg.  

 

As explained in IV.4.3, from the Curie law evaluated at highest temperature 

Tref:  

 
n

kT refref
mol

εε
μ

Δ
= 02 3

                        (IV.4) 

On the other hand, using Eq. (III.9) one can write for the tunneling regime:  

  
)2(''6

32
)2('' 02

0

2

π
εε

μ
ε
μπε

K
P

P
K eff

eff =⇒=
−

−

                                          (V.1) 
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From Eq. (V.1) and (IV.4) one may calculate the ratio: 

 
refrefmol

eff

kT
KnP
επ

ε
μ
μ

Δ
=

−

)2(''2
2

2

                                                                           (V.2) 

As observed in Fig. V.11 (b), one can assume for all the molecular systems a 

value for ε’’(2K)/(TrefΔεref) ≈ 2*10-7 (1/K). Glycerol is an exception, and this may 

be due to the failure of the Curie law (Eq. IV.4) for this system even at highest 

temperatures [117]. Polybutadiene exhibits a peculiar relaxation behavior at 

low temperatures that is discussed separately in Chapter VII.  

The number density n = ρ/Mw, where ρ is the volume density and Mw the 

molecular weight. One can assume that in the high temperature liquid regime, 

where Eq. (IV.4) should hold best, the density of all molecular systems may 

be considered close to the one of the water, i.e. ρ = 103 kg/m3.  The values of 

Mw for the systems under discussion vary within a factor 4. For a value of Mw 

= 100 u = 100*1.66*10-27 kg, one can estimate, cf. Eq. (V.2): 

   3143
2

2

106.5 −−

−

⋅= mJ
P

mol

eff

μ
μ

                                                                     (V.3) 

In literature one finds only little information for the values of the density of the 

tunneling states 
−

P  in organic glasses. From the heat release experiments, 
−

P  

was evaluated for poly (methyl methacrylate) (PMMA) and polystyrene (PS) in 

J-1g-1 units. In order to get comparable results one should transform the 

quantity in (V.3) using that (for water) 1 m3 weights 106 g: 

          1137
2

2

106.5 −−

−

⋅= gJ
P

mol

eff

μ
μ

. 

The values for 
−

P  found in literature for the two polymers are 
−

P ≈ 5*1038 J-1g-1. 

Assuming that 
−

P  is a universal quantity, it results that the effective dipole 

moment of the tunnelling centres  has the same order of magnitude as the 

molecular dipole moment . Alternatively, if =  than 

effμ

molμ effμ molμ
−

P  in molecular 

glasses is by a factor 10 smaller than the value measured in polymers. This 

result is in agreement with the one indirectly obtained for the inorganic 

glasses from the internal friction data, cf. Pohl et al. [62]. According to the 
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compilation done by these authors, 
−

P  for inorganic glasses varies within a 

factor 20.   

 

V.3 The thermally activated Asymmetric Double Well Potential 
(ADWP) dynamics (10 K < T < TCL) 
 

V.3.1 Systems with weak β-contribution 
  

Next we discuss the origin of the relaxation behavior in the temperature range 

in between the tunneling plateau and the true constant loss identified at TCL. 

For 2-picoline, PC and salol, ε’’(T) exhibits a maximum and then a minimum 

while heating, cf. Fig. V.2 (a-c), and the exponent γ(T) exhibit a shallow 

minimum, cf. Fig. V.3. The maximum of the loss is better seen when the data 

are plotted linearly, as done for 2-picoline measured at three different 

frequencies in Fig. V.12 (a). As observed here, the behavior of ε’’(T) is similar 

to that found in silica (amorphous SiO2) although the maxima for 2-picoline 

occur at somewhat lower temperatures. In silica and other inorganic glasses 

these maxima are attributed to thermally activated jumps within ADWPs (see 

III.3.2 and ref. therein).  

Extending the STM model to higher temperatures for which the thermally 

activated transitions over the ADWP barriers are expected, Gilroy and Phillips 

considered an exponential distribution of barrier heights g(V) with no low-

energy cut-off. When a low energy cut-off is missing in g(V), a peak is 

expected in ε’’(T) but not in the spectra ε’’(ν), cf. discussion in III.3.2. Indeed, 

this is the behavior observed in, e.g., silica and CKN data obtained by light 

scattering and acoustic attenuation techniques [70] – and, as depicted from 

Figs. V.2 and V.12 – also for the molecular glasses PC, salol and 2-picoline 

measured here. For 4-TBP and m-TCP the relaxation peak is observed in 

both ε’’(ν) and ε’’(T), cf. Fig. V.5 and V.6 discussed above. For glycerol no 

peak is discernible at all, a behavior found also for some other inorganic 

glasses as, e.g. LiCl•5H2O [119].   
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Fig. V.12 (a) Loss peaks of 2-picoline and silica [65] in linear temperature scale; (b) 

Frequency vs. inverse peak temperature for PC, 2-picoline and salol. Data are compared with 
dielectric measurements of the thermally activated peak of silica [125]. 

 

Eq (III.19) describes the evolution of the dielectric loss within the Gilroy-

Phillips model: 

  0)(),('' 0
0

V
Tk

B
B

V
TkT ωτωε ∝             ωτ0 <<1                                                         (III.19) 

where τ0 ∼ 10-12 -10-13 sec is a typical molecular attempt time. A peak in ε’’(T) 

is expected that follows the Arrhenius law. The derivation of Eq. (III.19) leads 

to: 

                 (V.4) )/exp( max0
1

0max kTV−= −τω

Tmax is the temperature corresponding to the maximum in ε’’(T). The value for 

the peak amplitude is given by: 

 0maxmax /'' VkT∝ε                                     (V.5) 

According to Eq. (V.4) and (V.5), one expects that the maximum of ε’’ (or 

tanδ) shifts to higher temperatures with increasing frequency and that the 

maximum's value ε’’max increases with temperature. Clearly, the evolution of 

the peak observed in molecular systems resembles the predicted behavior 

(see Fig. V.12 for 2-picoline). From the shift of the maximum, the mean 

activation energy V0 can be estimated, cf. Eq. (V.4). Accordingly, one may 

plot the frequency versus inverse peak temperature Tmax, as done in Fig. V.12 

(b) for PC, 2-picoline and salol. Here are also added the results obtained for 

silica [125]. Though the accessible frequency range provided by the bridge is 

relatively small, an approximate value for V0/kB can be extracted for each 
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V. Results; Low temperature relaxations  in molecular glasses (T << Tg) 

 

system. As indicated by the values in Fig. V.12 (b), V0 is similar among the 

molecular systems and within a factor 2 smaller than the value for silica. 

Having an estimation for the mean activation barrier V0, one can calculate the 

spectra ε’’(ν) for different temperatures by using the Gilroy-Phillips model. In 

Fig. V.13 (a), some spectra calculated accordingly are plotted for few 

temperatures between 10 K and 30 K. The mean activation energy was 

chosen V0 = 300 K. For comparison, the spectra of PC measured at similar 

temperatures are presented in Fig. V.13 (b). Clearly, the model predictions 

resemble the measured spectra ε’’(ν). 

Within this model the susceptibility is obtained by integrating over the 

distributions of barrier heights g(V) and the distribution of asymmetries f(Δ) of 

the ADWPs. If f(Δ) is considered flat with a cut-off Δmax ∝ T,  the loss is given 

by Eq (III.19). Using the change of the variable as V = kTln(x/ωτ0), with x=ωτ, 

one may rewrite the integral as [72]: 

 ∫
∞

+
∝

0

)()(
1

),('' 2
ωτ

ωε xdVg
x

xTT                  .                    (V.6) 

Assuming a broad distribution g(V), the Debye term can be ignored in the 

convolution, thus ε’’(ω) in (V.6) yields directly the distribution of barriers g(V): 

 

 

 

 

 

 

  

 
 

 
 
Fig. V.13 (a) ε’’(ν) curves calculated using Eq. (III.25); the chosen frequency range matches 

the one experimentally accessed in this Work. (b) spectra of PC at similar (indicated) 
temperatures. 

 
 TVgVTg /'')()('' εε ∝⇒∝                         (V.7)  

 )/ln(/ 0 ννTkV =                                                   (V.8) 

where ν0 = 1/(2πτ0). 
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Thus, as long as g(V) is broad enough and, by definition, temperature 

independent, one should be able to scale the spectra in order to directly 

obtain g(V). Explicitly, the ε’’-axis is divided by T and the logν-axis is multiplied 

with T (cf. Eq. V.7 and V.8).  

The data for PC, 2-picoline and salol are scaled accordingly in Fig. V.14. Here 

the results are compared with the ones obtained for CKN by light scattering 

investigations [70]. As observed, the scaling works well for the three 

molecular systems in the temperature range above 10 K up to TCL, and even 

above, as discussed next. The only parameter necessary for the scaling is the 

attempt frequency ν0. For all three glasses a value of ν0 = 1012 Hz was used to 

collapse more than ten spectra for every system. While the distribution g(V) is 

exponential in the case of CKN, for the molecular systems g(V) appears more 

stretched. 
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Fig. V.14 Distribution of activation barriers g(V) extracted from the spectra for PC, 2-picoline 

and salol. The scaled data of CKN obtained in GHz range are added from ref. [70].  
 

One should keep in mind that the dielectric measurements presented here are 

performed in the kHz range, therefore the thermally activated ADWP 

dynamics and, implicitly the g(V) distribution are accessed only at very low 

temperatures (cf. Eq. V.4). This is not the case for the light scattering 

investigations that are performed in the GHz range. The low investigating 
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frequencies may not yield the correct g(V), since at low temperatures, say 

below 30 K, influence from the tunneling contribution might play an important 

role. If true, the tunneling contribution should also affect the temperature 

evolution of the power-law exponent γ characterizing the spectra in this 

temperature range. In Fig. V.3 one can observe that in the small temperature 

range below the minimum in γ(T), the exponent γ is linear in T but not 

proportional with T, as expected from the Gilroy - Phillips model (γ ∝ kT/V0 cf. 

Eq. III.25). 

It is theoretically not well established how to describe the crossover from the 

tunneling regime to the thermally activated dynamics. Some attempts have 

been made but none of them fully successful. One important assumption is 

that both processes are statistically dependent and the total transition rate is 

simple given by the sum of the individuals [126]. In order to single out the 

individual contribution of the thermally activated dynamics, one can proceed 

with subtracting from the overall spectra the spectrum measured in the 

tunneling regime, i.e. at the lowest temperature, say at 4 K. This additive 

approach can be tested only for few spectra at temperatures around the 

maximum in ε’’(T). As indicated by Fig. V.9 (a) and V.12 (a) this is due to the 

decrease of the signal amplitude in the minimum range (at temperatures 

above Tmax) below the value of the tunneling plateau, thus the subtraction 

analysis becomes obsolete here. For this reason, the analysis for PC is 

practically impossible, yet it can be tested for 2-picoline and salol.   

One example of how such a subtraction works is given in Fig. V.15 (a) for the 

2-picoline spectrum measured at 16 K. As observed here, ε’’(ν) measured at 

the lowest temperature (3 K) shows a weak frequency dependence, typical for 

the tunneling regime, as discussed. The spectrum at 16 K can be interpolated 

by a power-law with exponent γ ≈ 0.05, not much higher than the one of the 

tunneling spectrum. However, the exponent changes by a factor 2 when the 

latter is simply subtracted (cf. Fig. V.15 a).  

In Fig. V.15 (b) the exponent γ characterizing the spectra before, and after this 

subtraction, is plotted for the two molecular glasses 2-picoline and salol. As 

clearly observed, the temperature dependence -γ(T) strongly changes after 
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subtraction and the exponent γ appears now as proportional with T, in 

accordance with the Gilroy-Phillips model.  
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Moreover, the extracted spectra yield a distribution g(V) close to exponential 

(cf. Fig. V.16).  
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Fig. V.16 The g(V) scaling for 2-picoline and salol after the subtraction of the tunneling 

spectrum (see text). The dashed lines are interpolations with an exponential law 
 g(V)∝exp(-V/V0). 

 

One can interpolate the newly obtained g(V) ∝ exp(-V/V0), yielding the values 

V0 = 103 K for salol and V0 = 193 K for 2-picoline. These values are lower than 
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those estimated from the shift of the peak maximum in ε’’(T), indicated in Fig. 

V.12 (b). However, they are consistent with those extracted from the slope of 

the temperature dependence of γ(T) after the subtraction of the tunneling 

spectrum. The slopes of the dashed lines (γ = kT/V0) in Fig. V.15 (b) gives the 

values of V0 = 150 K for 2-picoline and 100 K for salol.  

 

V.3.2 Systems with strong β-contribution 
 

The scaled distribution g(V) appears as stretched for molecular glasses. As 

shown above, one reason may be the influence of the tunneling. One the 

other hand, as the β-process is also a thermally activated process, its 

presence may also manifest at high barriers V. Note that the main difference 

between the thermally activated ADWP process and the β-process is given by 

the characteristic activation heights. For the former process the barriers V (in 

K) are in the order of hundreads of K [65,70], while for the latter in the order of 

thousands of K [26].     

As discussed in IV.1.2, for the systems with pronounced β-contribution, the 

spectra below TCL are very similar among different glasses and highly 

resemble the behavior observed for glycerol, cf. Figs. V.7 and V.1 (d). 

Explicitly, there are no direct indications for thermally activated ADWP 

dynamics, as no maximum in ε’’(T) nor a minimum in γ(T) is observed below 

TCL.  

However, since for a given system the ADWP peak maximum ε’’max depends, 

via Tmax, on the investigated frequency (cf. Eq. V.4 and V.5), for a certain 

(low) frequency εmax can reach the value observed for the tunneling plateau 

ε’’plateau, and the maximum cannot be resolved. Thus, the appearance of the 

peak in ε’’(T) dependence is favored by the situations of small V0, high 

investigating frequencies and sufficiently small value of the tunneling plateau 

(dictated by the molecular dipole moment, as discussed). This may explain 

why no peak in ε’’(T) is observed below TCL in the data of these systems when 

measured in the kHz range. Thus, it is difficult to draw any conclusion 

regarding the absence or the presence of thermally activated ADWP 
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dynamics, especially for systems that clearly exhibit contribution from the 

other thermally activated process (β-process) at higher temperatures.  

We recall that if the spectra appear as the manifestation of thermally activated 

ADWP dynamics, one should be able to scaled them yielding directly the 

distribution of activation barriers g(V), as demonstrated for the type A glasses 

2-picoline, PC and salol in the previous paragraph. Next the same procedure 

is tested for m-FAN spectra starting from the lowest temperature close to 4 K. 

The result of the scaling is presented in Fig. V.17. Surprisingly, this scaling 

works well in the temperature range from 4 K up to temperatures above TCL 

(TCL = 54 K for m-FAN, see Table V.1), close to 100 K where the relaxation is 

dominated by the β-process, cf. Fig. V.7 (a). 
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Fig. V.17 Distribution of activation barriers g(V) extracted from the spectra for m-FAN below 
Tg. Temperatures are indicated for few scaled spectra. For temperatures above 100 K the 

open symbols are obtained by the scaling of the raw broadband data and the full triangles are 
the same data scaled after the subtraction of the EW (see text for details). The scaled data at 

TCL = 54 K are highlighted by larger size, open triangles.  
 
 

If the distribution g(V) is flat, this corresponds to a flat spectrum, as observed 

at temperatures close to TCL. For example, in Fig. V.17 the minimum of g(V) 

for m-FAN corresponds to the spectra measured at 54 K, i.e. TCL. Note that for 

barriers V larger than the ones at the minimum in g(V) is obtained by scaling 

the spectra measured at T > TCL. 
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The scaling fails above 100 K (plotted with open symbols in Fig. V.18). As 

discussed in IV.3.2, within approach II, at similar temperatures (close to 100 

K) the EW starts to significantly contribute to the overall spectra as a power-

law spectrum ε’’EW = Aν-γ with a temperature independent exponent γ = 0.2 

and the prefactor A increasing exponentially with temperature. The same 

behavior was discussed for glycerol, the only difference to m-FAN being the 

smaller amplitude of the β-process. One may attempt to scale the m-FAN data 

for temperatures above 100 K after the subtraction of the EW contribution (as 

presented in Fig. IV.18 b). As shown in Fig. V.17, after the subtraction of this 

EW one can collapse now, according to Gilroy-Phillips model, all the spectra 

measured from 4 K up to temperatures close to Tg. 

For large V’s, the distribution g(V) has a Gaussian shape as indicated by the 

interpolation of the data for V > 2000 K (dashed line in Fig. V.17). This result 

is in concordance with previous investigations suggesting that in the glass the 

β-process can be described by a Gauss distribution of activation energies 

[26]. However, for m-FAN the symmetric Gaussian shape is clearly revealed 

only after the subtraction of the EW contribution in the spectra. The Gaussian 

interpolation gives a value of the mean activation energy of Ea = 3115 K ≈ 18 

Tg, in agreement with the result obtained in IV.3.2 applying approach II.   

The fact that the g(V) scaling works must be a consequence that the relation 

(V.6) holds. However, this equation is derived under the assumption that the 

thermally activated jumps are taking place within the asymmetric double well 

potentials. According to the model, the distribution of the asymmetries f(Δ) is 

considered flat with a cut-off Δmax ∝ T. Only under this condition the prefactor 

of the integral in Eq. III.19, i.e. the dielectric strength of the thermally activated 

process becomes temperature independent. Since this temperature 

invariance of Δεβ is indeed observed experimentally for the β-peak in the glass 

[26], the scaling indicates that the Gilroy-Phillips model can be extended to 

temperatures were the spectra are dominated by the β-process. Accordingly, 

the β-process is a thermally activated process within the asymmetric double 

well potentials with a flat distribution of the asymmetries f(Δ)= constant and 

Δmax ∝ kT, and with a Gaussian distribution of the barriers g(V).  
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Another interesting observation is that at low V’s (say V < 1000 K) the 

stretched g(V) appears as similar with the distribution obtained for the ADWP 

dynamics in type A glasses salol, PC and 2-picoline. In order to single out the 

contribution gADWP(V) at low V barriers we may consider the total g(V) as given 

by the sum g(V) = gADWP(V) + gβ(V), and than subtract the Gaussian 

contribution of the β-process (dashed line in Fig. V.18) from the overall 

distribution. The results for m-FAN after subtraction are plotted as solid line in 

Fig. V.18. The extracted gADWP(V) appears as exponential at high V. For 

comparison, the results of g(V) obtained for glycerol and salol, previously 

discussed and now extended to temperature above TCL are also added here.  
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According to Approach II, the NCL (observed in some systems with no well-

resolved β-peak below Tg) results from the contribution of both EW and β-

process, however with the EW dominating close to Tg. At lowest temperatures 

close to TCL, as the EW shifts stronger with temperature than the β-process 

(see IV.4.2), the spectra here are dominated here by the thermally activated 

β-contribution. As indicated by Fig. V.18, the data of glycerol and salol can be 

scaled in a restricted temperature range above TCL (for glycerol up to 135 K, 

cf. Fig. V.19). As approach II predicted, the spectra close to TCL are 

dominated by the β-process, and, as the EW contribution becomes stronger 

close to Tg, the latter spoils the g(V) scaling here.  
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V.4 Conclusions 

 
For all the molecular systems investigated three relaxation regimes can be 

identified for temperatures below Tg.  

Below 10 K we find clear indications that the tunneling regime is reached for 

the molecular glasses. Here the dielectric loss ε’’ as a function of temperature 

saturates to a plateau and its frequency dependence appears as universal. In 

particular, the spectra can be interpolated by power-laws with a temperature 

independent exponent -γ = 0.04 ± 0.002 for all systems, including inorganic 

glasses. As the plateau value appears to be controlled by the molecular dipole 

moment μmol, one can estimate that the effective dipole moment of the 

tunneling center μeff is proportional to μmol or, equivalently, scaling the ε’’ data 

by μ2
mol leads to a very similar values for the density of the tunneling centers. 

At lowest temperatures, below 0.1 K we find indications that the fastest 

tunneling relaxation occurs at 1 kHz for glycerol. The glass parameter A 

containing the coupling constants of the tunneling systems to the phonon bath 

can be estimated for glycerol and its value does not differ much from the one 

previously obtained (from acoustic experiments) for silica.  

At higher temperatures (10 K > T > 50 K) indications are found for thermally 

activated ADWP dynamics for the molecular systems. The data for 2-picoline, 

PC and salol display a peak as function of temperature ε’’(T) but not in the 

spectra ε’’(ν), in accordance with Gilroy-Phillips model. The distribution of the 

activation barriers g(V) can be determined by scaling the spectra in 

accordance with this model. However, g(V) does not appear exponential as 

predicted, but more stretched. The explanation may be that at lowest barriers 

tunneling contributions may play a significant role as the measurements are 

performed at relatively low frequencies, in the kHz range. On the other hand 

the thermally activated β-process may contribute to the g(V) shape for high 

barriers. As the Gilroy-Phillips scaling appears to work also for the spectra 

clearly dominated by the β-process, one may conclude that the latter is a 

thermally activated process within asymmetric double wells with barriers g(V) 

distributed as a Gaussian. The distribution of asymmetries for the β-process is 

also flat and only the wells with asymmetries Δ < kT contributes to the 
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dielectric response, as in the Gilroy-Phillips model. This may justify the 

temperature independence of the relaxation strength Δε of the β-process 

below Tg.                

Finally, at the highest temperatures close to Tg the secondary processes 

emerging above Tg and surviving in the glass give the main contribution to the 

spectra here. 
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VI. Results; A joint study of glycerol by dielectric 

spectroscopy, field cycling NMR and light scattering. 
 

 

As already discussed in Chapter IV, the nature of the excess wing (EW) and also the 

way to disentangle it from the dielectric spectral contribution of the α-process is not a 

priori clear, thus further experiments are needed to address this point. Two-

dimensional (2D) NMR techniques [50,101,128,129] suffer from the problem that in 

glass formers with no β-peak above the glass transition temperature Tg both α-

process and EW are not well separated in time, and below Tg the relaxation strength 

is too small and time scale too slow to be probed by 2D NMR. For example, in the 

systematic 2D NMR studies carried out by the Sillescu group, the reorientational 

process in molecular glass formers was identified by random walk simulations 

comprising a mixture of small (2 – 3o) as well as large angle (30 – 50o) jumps 

[50,130,131]. However, these experiments do not easily allow to explain the 

particular shape of the susceptibility with its characteristic high frequency tail. On the 

other hand, NMR spin-lattice relaxation data identified the EW, however, as typical 

for conventional solid-state NMR, relaxation data at only few frequencies were 

presented [132,133,134]. For instance, in the case of glycerol, Blochowicz et al. 

demonstrated that a quantitative comparison of dielectric and NMR spectroscopy is 

possible [42]. A broader range of frequencies may be covered by applying fast 

(electronic) field cycling (FFC) relaxometry, i.e. the frequency dispersion of the spin-

lattice relaxation is studied by fast switching the external magnetic field [135,136]. 

However, early experiments provided limited information and, in particular, did not 

address the phenomenon of the EW. With progress in instrumentation [137,138] and 

with the appearance of a commercial FFC spectrometer the situation changed. 

The approach II introduced in IV.3, allows keeping the frequency-temperature 

superposition (FTS) for the α-relaxation at all temperatures above Tg. Moreover, in 

strong contrast to previous approaches, the EW exponent γ is also chosen as 

temperature independent and the EW amplitude decreases with temperature, 

opposite to what is found for the β–process [114]. The above interpretation for the 

temperature evolution of the dielectric susceptibility in molecular glass formers will be 

tested in the following also for the relaxation data obtained by field cycling NMR and 
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light scattering (LS). This Chapter presents a systematic study of the paradigmatic 

glass former glycerol by dielectric spectroscopy (DS), FFC NMR and LS covering a 

broad temperature range of 75 – 360 K, i.e. the relaxation of glycerol is investigated 

above as well as below Tg = 186 K. By this means a comparison between the 

orientational correlation functions of rank l = 1 (probed by DS) and l = 2 (probed by 

FFC NMR and light scattering) is carried out. This Chapter is self contained and 

closely follows publication [150]. 

 

VI.1. Theoretical background – dispersion of spin-lattice relaxation 
 

The FFC method is based on measuring the dispersion of spin-lattice relaxation time 

T1(ω) by cycling the external magnetic field Bo. In the case of proton nucleus 1H, most 

often used in FFC NMR, the decay of magnetization expressed by T1 is due to 

fluctuations of the dipolar interactions of proton spins. Then, the interaction 

Hamiltonian involves a sum over all pairs of spins i, j in the sample. The interaction 

term of a particular pair of spins ij, separated by rij, depends on the polar (ϑ) and 

azimuthal (ϕ) angles with respect to the magnetic field, as well as on the distance rij. 

Generally, the sum can be separated into intra- and inter-molecular contributions 

that, assuming their statistical independence, contribute additively to the spin-lattice 

relaxation rate [137,143]:  

 
1/T1 = 1/T1

intra + 1/T1
inter                                     (VI.1) 

 

However, due to the short-range nature of dipole-dipole interaction, one expects that 

the main contribution to the interaction sum stems from the nearest protons 

belonging to the same molecular unit, and that inter-molecular terms are relatively 

unimportant, so that T1 ≈ T1
intra. Even if there is some intermolecular contribution, in 

super-cooled liquids the corresponding spectral densities of intra- and intermolecular 

fluctuations are expected to be similar. One thus assumes in the following that 

distinct intermolecular contributions are negligible in first approximation, so that the 

proton NMR data mostly reflect reorientation dynamics. One should note that the 

problem is similar with the one in dielectric relaxation where, in super-cooled liquids, 

the cross relaxation effects are usually ignored, cf. II.1. 
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Orientational dynamics enters the calculation of the relaxation rate 1/T1 via the 

correlation functions of the second rank spherical harmonics Y)(2 tF m
2,m(ϑ,ϕ): 

 
                    (VI.2) ><>=< −

2
,2,2,22 |),(|/),(),()( oomttmoom

m YYYtF ϕϑϕϑϕϑ
 

where <...> indicates the ensemble average, whereas the indices 0 and t refer to the 

initial and final times. The orientational average for a macroscopically isotropic 

system yields an m-independent expression for the reorientational correlation 

function, expressed through the second-rank Legendre polynomial P2(cosϑ) = 

½(3cos2ϑ -1) [134,137,144]:  

 
               (VI.3) ><>=< 2

2222 |)(cos|/)(cos)(cos)( oto PPPtF ϑϑϑ
 

with the corresponding spectral density 
 

                  (VI.4) dtetFJ tiωω −
∞

∫=
0

2 )(Re)(

The proton spin-lattice relaxation rate 1/T1 is related to the spectral density J(ω) 

through the well-known Bloembergen, Pound, Purcell expression [134,137,144,145]:  

 
[ ])2(4)()(/1 1 ωωω JJCT +=                 (VI.5) 

 

where ω = γ B0 is the Larmor frequency depending on the gyromagnetic ratio γ and 

the magnetic field BB0, whereas C is the NMR coupling constant, which depends on 

the nuclear separation rij of the relevant spin pairs and is connected to the second 

moment of the solid-state H NMR spectrum.  1

According to the fluctuation-dissipation theorem the spectral density of thermal 

equilibrium orientational fluctuations is related to the linear response of the molecular 

orientations to a weak external perturbation, i.e. to a response (susceptibility) 

function. Specifically, the loss (imaginary) part of the susceptibility is given 

by )()( ωωωχ J≈′′ . This "molecular orientation" susceptibility would be an (average) 

response of a molecule to external torque, and thus cannot be "measured" in a NMR 

experiment. However, several experimental techniques, such as the optical Kerr 

effect and dielectric spectroscopy, do access response functions that are related to 

molecular reorientation dynamics and therefore are comparable with the 
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"orientational" susceptibility discussed above. We therefore transform Eq. (VI.5) into 

the susceptibility form [112,146]:  

 
       (VI.6) )(])2(2)([/ ´´

1 ωχωχωχω NMRCCT ≡′′+′′=
 

 
where the object in square brackets is called "normalized NMR susceptibility", or 

simply "NMR susceptibility" in the following. Even though it is in fact a weighted sum 

of two susceptibility terms, for a broad relaxation spectrum it is barely distinguishable 

from the individual susceptibilities. Analyzing the NMR susceptibility rather 

than the relaxation rate 1/T

)(,, ωχ NMR

1(ω) itself allows a direct comparison with dielectric 

spectra the latter yielding  where εωεωχ Δ′′= /)()("
DS εΔ  denotes the relaxation 

strength of the slow dynamics. 

 
 

VI.2 Experimental results 
 

VI.2.1. Dielectric spectroscopy (DS) 
 

The dielectric measurements of glycerol discussed in this Chapter are performed in 

Bayreuth by employing five different spectrometers for data acquisition in the 

temperature range from 273 K down to 4 K. Four of them are discussed in II.2. In 

addition, the investigations below Tg, for temperatures 74 K < T < 173 K, are carried 

out by R. Kahlau in Bayreuth by applying a newly purchased Alpha-A spectrometer 

from Novocontrol. These measurements cover a broader frequency range as 

compared to those previously presented in V.1.1 and obtained with a Schlumberger 

spectrometer.  

The imaginary part of the dielectric permittivity ε’’ of glycerol is presented in Fig. VI.1 

(a) for temperatures above Tg, and in Fig. VI.9 for temperatures below Tg. Data in 

Fig. VI.1 (a) are normalized by the relaxation strength Δε = εs - ε∞, where εs is the 

static susceptibility, and ε∞ the dielectric constant at frequencies much larger than the 

main relaxation including α–peak and EW, is determined from the real part ε´(ν), cf. 

Fig. VI.1 (b). 

Usually, the spectra contain a rather strong contribution from ionic conductivity which 

is removed in most spectra of Fig. VI.1 (a), except for T = 233 K. Operating the time 

  110   



VI. Evolution of the dynamic susceptibility of glycerol  

 

domain spectrometer in the discharge mode allows to significantly suppress the 

conductivity contribution, cf. data at T = 194 K. Then, the low frequency flank of the 

main relaxation is well resolved which is needed for a comparison with the NMR 

data, as discussed later. 
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Fig. VI.1 (a) Imaginary part of normalized dielectric permittivity ε’’/Δε of glycerol above Tg. For T = 194 
K the results are obtained using the time domain spectrometer operating in the discharging mode. For 
T = 262 K comparison with the NMR susceptibility (dots) is shown; high-frequency power-law (EW) is 

indicated. (b) Real part of dielectric permittivity ε’ of glycerol at same temperatures as in (a).  
 

 
VI.2.2 1H Nuclear Magnetic Resonance (NMR) 
 

The dispersion of the 1H spin-lattice relaxation time T1 is measured in the 

temperature range 191 K – 360 K, cf. Fig. VI.2 (a) by employing a commercial fast 

field cycling spectrometer STELAR FFC2000 (“Bayreuth data”). The sample 

temperature is controlled by heating a flow of air or by cooling evaporated liquid 

nitrogen. Moreover, applying an another homebuilt electronic FFC spectrometer a 

temperature range 75 K – 314 K is covered (“Darmstadt data”, cf. Fig. 3a). For details 

of the involved magnet design and the unusual Darmstadt spectrometer performance 

one may consult [138,141]. Despite the special cryostat design involving the use of 

nonmetallic materials, wherever possible, eddy currents during field switching are a 

major problem. Nevertheless, spin-lattice relaxation times down to about 1 ms are 

accessible. In both applied FFC spectrometers the temperature stability is ± 0.3 K. In 

all cases exponential relaxation is observed. A frequency range of 10 kHz – 40 MHz 

is covered by the FFC NMR technique. 
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Fig. VI.2 (a) Dispersion of the spin-lattice relaxation time T1 as measured by the Bayreuth 

spectrometer for indicated temperatures (in K). (b) Conversion of the data in (a) along Eq. (VI.6) into 
the susceptibility representation; solid (red) lines: interpolation around the relaxation maximum 

applying a Cole-Davidson susceptibility. 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. VI.3 (a) Dispersion of the spin-lattice relaxation time T1 as measured by homebuilt Darmstadt 

spectrometer allowing to measure down to low temperatures. (b) Conversion of the data in (a) along 
Eq. (VI.6) into the susceptibility representation. 

 

VI.2.3. Light scattering (LS) 
 

The light scattering (LS) spectra were previously measured by applying a tandem-

Fabry-Perot interferometer and a double monochromator [142]. The susceptibility 

spectrum is obtained from the scattered light intensity I(ω) 

via  where n(ω) denotes the Bose factor. The susceptibility )1)(/()()(´´ += ωωωχ nILS
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spectra are normalized along the lines described in [142] and the data are displayed 

in Fig. VI.4.  
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Fig. VI.4 Normalized susceptibility spectra of glycerol as obtained from depolarized light scattering in 

the temperature range 160 K – 430 K. 
 
 

VI.3 Discussion 
 

VI.3.1. T > Tg 

 
As mentioned in the introduction, there are several approaches to describe the full 

slow response including the α-peak and the high frequency wing. The following 

analysis sticks to the approach II introduced in IV.3. However, one should emphasize 

that the conclusions drawn from the following spectral analysis do not rely on this 

particular choice. As mentioned in IV.3, this approach assumes that the FTS principle 

holds for all temperatures above Tg. The corresponding stretching parameter β is 

taken from the high-temperature spectra, as there the spectral analysis is not yet 

hampered by the appearance of the EW and thus can be determined unambiguously. 

Moreover, it has been demonstrated that the exponent γ of the EW contribution is 

temperature independent, too. In order to account for the minor changes of the slow 

dynamics spectra (α-peak and EW) one may allow for a change of the relative weight 

of the EW contribution with respect to that of the α-peak.  

In order to compare the relaxation data obtained by different techniques, the 

dielectric data displayed in Fig. VI.1 (a) are scaled by the relaxation strength Δε, i.e. 
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the temperature dependence described by the Curie law (see II.1) has been 

eliminated. The frequency range around the relaxation maximum of the dielectric 

spectra can be well interpolated by applying a CD susceptibility function, as 

demonstrated in IV.3. Applying a stretching parameter βCD = 0.64, the time constant 

τα is reliably determined and plotted in Fig. VI.5. Typical of glass forming liquids, a 

non-Arrhenius behavior is obtained. Given the time constant τα, the dielectric 

susceptibility data of Fig. VI.1 (a) can be displayed as a function of the reduced 

frequency ωτα. As shown in Fig. VI.6 (lines), the resulting master curve extends over 

12 decades in frequency for the dielectric spectra including the α–peak and the EW. 

Note that this scaling is nothing else than the “peak scaling” discussed in relation to 

Fig. IV.5.  
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Fig. VI.5 Time constants of the α-process obtained from the construction of the master curves in Fig. 
VI.6 and Fig. VI.8 applying s NMR (Bayreuth and Darmstadt), dielectric spectroscopy (DS) and 

depolarized light scattering (LS) 

 

Around the relaxation maximum, the master curve in Fig. VI.6 is well interpolated by 

a CD function with a width parameter βCD = 0.64 (dashed line). As typical for simple 

liquids, the low frequency flank (ωτα << 1) essentially follows a behavior, 

i.e. a slowest Debye limit is found. Due to the time domain measurements (at 194 K) 

suppressing the conductivity contribution, one can follow the low frequency flank 

down to an amplitude of 10

1)( ωωχ ∝′′

-3.  
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Fig. VI.6 Master curves obtained from dielectric spectroscopy (cf. Fig. VI.1a) and from NMR relaxation 
data (cf. Fig. VI.2b and Fig. VI.3b), spectra from the temperature range indicated were used; dashed 

line: interpolation of maximum with a Cole-Davidson function using βCD = 0.64. 
 

One may apply a similar procedure for the NMR data, as shown next. According to 

Eq. (VI.6) the T1
-1 data from Fig. VI.2 (a) and Fig. VI.3 (a) are converted into the 

susceptibility form and displayed accordingly in Fig. VI.2 (b) and Fig. VI.3 (b). For 

some temperatures, the susceptibility spectra exhibit a maximum which shifts 

towards low frequencies upon cooling. This maximum reflects the main relaxation 

process, i.e. the α–relaxation. On the high frequency side of the susceptibility peak 

the flank becomes progressively flatter upon cooling indicating that the relaxation is 

not of Debye type, but rather characterized by an asymmetric broadening, as 

typically observed for molecular glass formers (e.g. in the dielectric spectra displayed 

in Fig. VI.1 a). Below Tg = 186 K (cf. Fig. VI.3 b), a flat power-law dispersion is found 

with a small negative exponent, which is virtually not changing upon cooling. At 

lowest temperatures, an indication of a crossover to a positive exponent is observed 

at the highest accessed frequencies.  

A closer look to the low frequency side of the relaxation maximum (cf. Fig. VI.2 b) 

reveals an additional spectral feature usually not observed in the susceptibility 

dielectric spectra of simple glass formers: instead of a Debye behavior with 

, a shoulder is recognized in the NMR spectra which may indicate the 

presence of a further low frequency process. 

1" )( ωωχ ∝

In order to get an estimate of some NMR time constants we interpolated the NMR 

susceptibility curves which show a relaxation maximum by a CD function, cf. Fig. VI.2 

(b). Of course, the low frequency shoulder in the NMR data cannot be interpolated 

∝ ν 
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but still reliable time constants are extracted when fitting the peak region only. Then, 

the NMR susceptibility data are displayed as a function of ωτα and included in Fig. 

VI.6, where the amplitudes of the NMR spectra were scaled by a single factor for all 

temperatures to allow a direct comparison with the dielectric spectra. To justify this, 

note that the coupling constant C in Eq. (VI.6) is essentially temperature independent 

[144]. The other curves in Fig. VI.2 (b) which do not exhibit a relaxation maximum, 

were shifted horizontally to agree best with the others. A remarkable master curve 

results also for the NMR data covering about 15 decades, and the corresponding 

time constants (extracted from the shift factors) are included in Fig. VI.5. They closely 

follow those compiled from DS. The data sets from the two field cycling 

spectrometers employed in the present study agree well with each other, in particular 

at low reduced frequencies. At high frequencies the scatter increases somewhat and 

very small systematic differences are observed which may be considered not worth 

to be further discussed. Both NMR data sets show the low frequency shoulder 

already anticipated when discussing Fig. 2b and 3b. 

In order to inspect in detail the particularities at the low frequency side we display in 

Fig. VI.7 the NMR and DS master curves in a selected frequency range of 10-6 < ωτα 

< 1. Here are also included some LS data from Fig. VI.4. The low frequency shoulder 

is now well recognized in the NMR master curve, but not in the DS and LS data. 

However, we note that some very weak shoulder is recognized in the part of the 

dielectric master curve extending to lowest amplitudes respectively frequencies. It 

leads to a weak systematic excess intensity of the dielectric susceptibility with 

respect to the CD fit at ωτα < 10-2. Whether this feature is related to the much 

stronger relaxation feature observed in the NMR data is not yet clear. It follows that 

NMR probes an additional low frequency process which is essentially not reflected in 

the reorientation of the molecular dipole moment of glycerol. Regarding its spectral 

shape we note that the NMR master curve in the range 10-3 >> ωτα >> 1 can be 

interpolated by a power-law susceptibility, , with an exponent α = 0.65. At 

lower reduced frequencies the master curve crosses over to a Debye behavior with 

an exponent α = 1.0. The power-laws are indicated in Fig. VI.7.  

αωωχ ∝′′ )(
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Fig. VI.7 Susceptibility master curve of glycerol in the low frequency range as compiled by NMR, DS 
and LS; temperature range used for NMR is indicated; dashed lines show power-law interpolations. 

 

Though glycerol is a glass former being studied intensively since long, FFC NMR 

reveals a relaxation phenomenon with correlation times significantly longer than 

those of the structural relaxation, not recognized in simple liquids before. As other 

glass forming systems like o-terphenyl and tristytrene, recently also investigated by 

FFC NMR [146], do not show such a slow relaxation one may speculate that this 

special spectral contribution originates from particularities associated with the 

network of hydrogen bonds present in glycerol. Thereby, the formation of larger 

clusters may be a possibility. However, it is not easy to imagine a reorientational 

motion of the presumably rigid molecule glycerol (cf. below) probed by the 

fluctuations of dipolar couplings among the protons but essentially not by those of the 

dipole moment.  

Comparing the two master curves in Fig. VI.6, pronounced differences are observed 

not only at low frequencies but also at ωτα >> 1, in particular, regarding the high 

frequency wing. Although this EW appears to exhibit a similar exponent γ, its 

amplitude is significantly stronger for the NMR susceptibility; roughly a factor three is 

found for the difference of the amplitudes.  

In Fig. VI.8 we re-plotted the two master curves from DS and NMR (now only the 

NMR data from Fig. VI.2 b are taken) for ωτα > -1. In addition, we included the master 

curve obtained from the LS data in Fig. VI.4. In order to do this, CD fits were carried 

out for the high temperature LS spectra of glycerol [142] and the low temperature LS 
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data not showing a relaxation maximum are horizontally shifted to provide also a LS 

master curve after the static susceptibility is eliminated, cf. [142]. The extracted time 

constants match well with those from NMR and DS, cf. Fig. VI.5. Together, the three 

techniques provide correlation times covering the range 10-11s – 103 s. The high 

frequency envelope of the LS curve nicely agrees with the corresponding one 

measured by NMR. This demonstrates that the EW is also observed by LS and its 

amplitude appears to be the same as in the case of NMR. 

Although distinct from each other, at low as well as at high reduced frequencies, the 

master curves supplied by the different probing techniques, extending over many 

decades in frequencies, are a strong indication that the spectral shape of the 

dynamic susceptibility does virtually not change upon cooling, i.e. the FTS principle 

works very well in case of glycerol. Moreover, as is obvious from the data in Fig. VI.5, 

the time constants agree very well. This is explicitly shown in Fig. VI.1 (a) where the 

dielectric and NMR susceptibilities for T = 262 K are directly compared. It becomes 

clear that FFC NMR allows to reach much lower frequencies and/or amplitudes as 

compared to DS since in NMR there is no conductivity contribution to interfere at all. 
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Fig. VI.8 Comparison of the susceptibility master curves of glycerol compiled from NMR, dielectric 

spectroscopy (DS) and depolarized light scattering (LS); temperature range used as indicated; dashed 
(blue) lines: interpolations assuming a relaxation described by a Cole-Davidson function (βCD = 0.64) 

together with a power-law contribution with exponent γ = 0.20. 
 

The following question arises: is it possible to rationalize the difference of the master 

curves at high reduced frequencies among DS on the one side, and NMR and LS on 

the other? As shown next, the quantitative differences of the same relaxation feature 
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recognized in the spectra at high frequencies (EW) can be routed back to probing of 

the same reorientation by the different techniques. 

In first approximation, DS probes the reorientational correlation function of rank l = 1 

of the Legendre polynomial whereas FFC NMR as well as LS that of rank l = 2 (see, 

e.g., [128]). It is well established that different mechanisms of molecular 

reorientations may be differently reflected in the two correlation functions, l = 1 and l 

= 2, respectively. For example, in the case of rotational diffusion, i.e. small angular 

step rotation, the time constants are different by a factor of τl/τ2 = 3 whereas τl = τ2 

holds for the case of a random jump mechanism [50]. As demonstrated here, 

however, the time constants probed by the different techniques agree very well 

suggesting that the mechanism reflected in the low frequency part of the 

susceptibility spectrum in the super-cooled liquid is close to the random jump limit, or 

more precisely, close to the limit of large angle reorientations. In the following will be 

shown that given two processes the respective relaxation strengths in the correlation 

function may depend on the rank l, as well.  

For the context of the present discussion, one may assume that the reorientational 

process yielding α–process and EW can be described by two distinct processes, a 

slow one (α–process) and a fast one (EW). Moreover, one assumes that in first 

approximation they are statistically independent, as done in IV.3 within approach II 

discussion. Later it is shown that these assumptions do not spoil the conclusion. 

Then, a two-step correlation function results which can be described as follows:  

 
[ ] )()()1()()()( tftftCtCtC lfastlexcessl αα φφ +−==               (VI.7) 

 

1 – fl is the correlation losses brought about by the EW φfast(t→∞) = 0, and fl is the 

relaxation strength of the α–process. Note that 1-fl=1 is identical with 1-Sex in 

approach II considerations. As shown by Lebon et al. [134], Blochowicz et al. [42] or 

Brodin et al. [142], in the case of the fast process proceeding via small angular steps:  

)1(31 12 ff −=−                             (VI.8) 

leading to 

 )(3)( 12 ωχωχ ′′=′′                                                                    (VI.9) 

at high frequencies. 
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In order to describe quantitatively the master curves in Fig. VI.8 one may recourse to 

the approach II considerations. Yet, the chosen approach for interpolating the spectra 

does not change the overall interpretation.  

The master curves are fitted by a convolution of two Cole-Davidson functions, with 

the exponents fixed, as explained in IV.3. The model has only one free spectral 

shape parameter, the relative relaxation strength 1 – fex of the excess wing. It turns 

out that the fits are close to perfect, without any detectable systematic deviation from 

the data. This is demonstrated in Fig. VI.8 by the blue dashed lines. Both master 

curves are well interpolated by this approach, the only difference being the weight 1 – 

f of the excess wing. As in IV.3, β  = 0.64 and γ = 0.2 were used for both master 

curves. As a fitting result, only the amplitude of the EW differs by a factor 2.8, very 

close to the prediction cf. Eq. (VI.8). Thus, one may conclude that the EW 

contribution is associated with small angle reorientations. One should emphasize 

again that within this approach, the “apparent” width of the α–relaxation peak being 

clearly different from each other when probed by NMR and LS or DS, is solely 

controlled by the relaxation strength 1 – f of the EW.  

 
 
VI.3.2. T < Tg 

 

Concerning dielectric investigations at T < Tg, the static permittivity εs is not any 

longer accessible, i.e normalized dielectric spectra cannot be obtained. Therefore, in 

order to compare the NMR and dielectric spectra below Tg we use the raw dielectric 

spectra. The ε’’(ν) are displayed in Fig. VI.9 together with the NMR relaxation data 

divided by temperature T and scaled by a single factor for all temperatures. As the 

NMR coupling constant C, cf. Eq. (VI.6), is essentially temperature independent, the 

NMR spectrum ν/T1 is a kind of normalized susceptibility. According to the fluctuation 

dissipation theorem the temperature dependent susceptibility is given by  

)/(/1)( 1TTNMR ννχ ∝′′ .               (VI.11) 
 
Apparently, similar power-law spectra with amplitudes exhibiting the same 

temperature dependence are probed by NMR and DS. The DS spectra measured by 

applying the high precision bridge [139] (cf. also V.1.1) are included, as well as new 

broad band data benefiting from the better resolution of new instrumentation (Alpha-

A spectrometer).  
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Fig. VI.9 Dielectric (lines and crosses) and NMR susceptibility (red circles) spectra compared to each 

other at temperatures below Tg; the NMR data are scaled by a single factor k. 
 

As discussed in Chapter V, applying the high precision bridge, dielectric data down to 

cryogenic temperatures can be compiled and explained within the tunneling model at 

lowest temperatures. Up to this author’s knowledge the NMR data presented here 

are the first FFC data measured below Tg. Due to the strong local field determined by 

the dipolar coupling among the proton spins the frequency range covered in the glass 

is reduced to roughly three decades, cf. Fig. VI.3. 

Clearly, the NMR data match well with the dielectric spectra. One can conclude that 

the temperature dependence of the dynamic susceptibility probed by NMR and DS is 

the same, specifically we can write 

 
  ε”(ω) ≡ χ”glass(ω)   ∝   (ω/T1)/T             (VI.12) 

 

It appears that the EW emerging first well above Tg persists below Tg, and in the 

temperature interval investigated by both techniques NMR and DS, the susceptibility 

χ”glass(ω) can be approximated by a power-law with an exponent appearing to be 

frozen at a value γ ≅ 0.1. Explicitly,  

 
                 (VI.13) γωωχ −∝′′ )(glass

 

The slight curvature recognized in the spectra may be caused by the presence of a 

very weak β-process in addition to the EW (in the light of approach II). 
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In Fig. VI.10 (a) the temperature of the different susceptibilities at 4 MHz (NMR) and 

20 kHz (DS) are directly compared. The 1H NMR results from Akagi and Nakamura 

[147] measured at the same (single) frequency and reaching temperatures down to 4 

K are also added for comparison. The latter NMR data agree quite well with those 

compiled from FFC NMR of the present work. Regarding the NMR relaxation rate 

1/T1 (also included in Fig. VI.10a), a qualitatively different temperature dependence is 

revealed.  

At T ≤ Tg down to say 40 K the temperature dependence of )(Tglassχ ′′  may be 

approximated by an exponential law (dashed line in Fig. VI.10 a), 

 
     )/exp()( 0TTTglass ∝′′χ       (VI.14) 

  

as was shown previously for several glass formers by dielectric spectroscopy, cf. 

III.2.3. Accordingly, a value of T0 = 33 K is found.  

At lowest temperatures, )(Tglassχ ′′  bends over to a much weaker temperature 

dependence, characteristic for the tunneling regime (see V.2). 
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Fig. VI.10 (a) Temperature dependence of the NMR susceptibility (scaled by factor k´) as measured in 
the present work compared to one obtained from the data reported by Akagi and Nakamura [147] and 

the imaginary part of the dielectric permittivity ε´´(T); (b) Susceptibilities compared on logarithmic 
temperature scale. 

 

This regime is better recognized when the susceptibilities are displayed on a 

logarithmic temperature scale as done in Fig. VI.10 (b). Here the plateau is well 

recognized, i.e. below say 10 K the susceptibility virtually does not change any 

longer. Thus, it turns out that NMR and dielectric spectroscopy probe the same 

fluctuations, and as usually NMR data are compiled at higher frequencies as 
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compared to standard dielectric experiments, both techniques provide 

complementary information.  

 
VI.4 Conclusions 

 

Regarding the slow relaxation including the α–peak and its high frequency wing 

(EW), a systematic comparison between the reorientational correlation function of 

rank l = 1 (DS) and l = 2 (NMR and LS) becomes possible for the first time by 

converting relaxation data to the susceptibility representation. Since frequency 

temperature superposition (FTS) works quite well in the case of glycerol a master 

curve is obtained extending in frequency over 15 decades. 

Considering the temperatures T > Tg, significant differences in the spectral shape of 

the susceptibility of rank l = 1 and l = 2 are recognized at the low frequency (ωτα << 

1) as well as at the high frequency side (ωτα >> 1) of the susceptibility peak. In 

contrast, the time constants provided by NMR, DS and LS turn out to be the same 

within experimental error.  

An additional relaxation feature in glycerol at the low frequency side of the relaxation 

maximum is essentially only probed by FFC NMR. Regarding the systematic 

differences observed at high frequencies for the susceptibilities of rank l = 1 and l = 

2, one may explain them by assuming that the fast dynamics proceeds via small 

angles whereas the slow dynamics associated with frequencies close to the 

relaxation maximum is associated with large angle jumps. In such a case, the relative 

relaxation strength depends on the rank l of the reorientational correlation 

function. As experimentally found the relaxation strength of the fast respectively high 

frequency motion is by factor close to 3 three stronger for the l = 2 in comparison with 

the l = 1 susceptibility. Both NMR as well as LS spectra exhibit similar relative 

relaxation strengths of the EW.  

exf−1

In accordance with the approach II interpretation, a strong EW contribution, as is 

found in the NMR and LS data, broadens the overall relaxation peak, although the 

contribution of the α–process itself may be taken to follow FTS with a width 

parameter β being independent on the technique, as the underlying motional 

mechanism involving large angle reorientations. Since the scaling works well also for 

the LS data measure far above the melting point, this interpretation has an important 

consequence. As different strength of the EW controls the different apparent width of 

  123   



VI. Evolution of the dynamic susceptibility of glycerol  

 

the susceptibility, the latter has to be present already at highest temperatures (T > Tx) 

though obscured by the presence of the fast dynamics contribution. Then, the 

appearance of the excess wing at τα ≅ 10-8s may not be taken as a physically 

meaningful crossover temperature, in accordance with the discussion related to Fig. 

IV.21 (b). 

Regarding the temperatures range below Tg, the susceptibilities probed by NMR and 

DS reflect the same dynamics. Apparently, reminiscences of the EW, the latter 

emerging in the super-cooled liquid, also govern the susceptibility at T ≤ Tg. At still 

lower temperatures a crossover to the tunneling regime is expected, and, hopefully, 

in near future FFC NMR experiments will also reach this temperature regime.  
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VII. Results; Dielectric properties of 1,4 Polybutadiene 

 
Polybutadiene (PB) is a well-known glass forming polymer. Its monomer unit may 

appear in three different structural configurations as cis, trans and vinyl (displayed in 

Fig. VII.1), and their percentages depend on the chemical method used for the PB 

polymerization [109,110]. Previous studies revealed that in addition to its variation 

with the molecular weight (M), the glass transition temperature Tg of PB is strongly 

influenced by the content of vinyl units [109].    

The absence of the side-groups makes the PB chain structure rather simple, favoring 

numerous investigations by, e.g., light scattering [100,104], NMR [88.101], neutron 

scattering [102,103] or molecular dynamics simulations [105,106]. Nevertheless, up 

to now, a systematic study of the PB dynamics in the full temperature range from the 

melt down to cryogenic temperatures is missing.  

Some PB systems with high M were also investigated with dielectric spectroscopy 

[26,108]. These dielectric measurements are limited in the temperature range 

covered due to the relative small dipole moment of the cis and vinyl units. Due to 

their symmetry, the trans group has no dipole moment, thus it does not contribute to 

the dielectric response.  

 

 

 

 
Fig. VII.1. The isomers of PB monomer unit. Figure 

from [109]. 
 

 

 

 

 

 

The dielectric spectra of PB with M = 20 000 g/mol were discussed by Kudlik et al. 

[26] in the temperature range 203 K – 131 K. In addition to the α-peak reflecting the 

segmental dynamics, a secondary β-peak emerges at high temperatures close to 200 

K and survives below Tg (≈ 172 K). The time constants of the β-process follow an 

Arrhenius temperature dependence with an activation energy Ea ≈ 24*Tg. Hansen and 
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Richert investigated PB with Mw= 12 400 g/mol down to 25 K using a single 

frequency bridge and found indications for a third relaxation process below 100 K 

[108]. In the following we extend the measurements by applying the multifrequency 

bridge AH 2700 A in the temperature range down to 4 K. The study was motivated by 

NMR investigations in our group, indicating the presence of an additional relaxation 

process with a time constant much shorter than the one of the β-process [51,88].  

We present in Fig. VII.2 (a) the dielectric results for PB with Mw = 20 000 g/mol, 

extended now for temperatures down to 4 K. The dielectric loss ε’’ is presented as a 

function of both temperature and frequency, and two datasets are included: the 

broadband spectra previously measured by Kudlik et al. [26] and the high precision 

spectra measured in this Thesis. A good agreement is observed in the temperature 

range above 100 K, as the investigations below are possible only with the AH bridge.      

According to the broadband data, one recognizes at highest temperatures the α-

peak. Lowering temperature, the β-process evolves and below Tg the latter 

dominates the spectra. At temperatures close to 100 K the β-peak shifts out and a 

new relaxation feature enters in the frequency window provided by the bridge, in 

accordance with the single frequency measurements by Hansen and Richert [108]. 

However, as our bridge accesses a frequency interval of almost three decades, one 

can identify this relaxation feature, called γ-process in the following, now as a distinct 

peak in the spectra ε’’(ν), cf. Fig. VII.2 (b).  
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Fig. VII.2. Imaginary part of the complex permittivity ε’’ for 1,4 PB with Mw = 20 000 g /mol as function 

of frequency and temperature; stars: broadband data from [26], dots: high-precision data. (b) Dielectric 
spectra of the γ-process with corresponding log Gauss fits; indicated temperatures are in Kelvins. 

 

  126 



VII Dielectric properties of 1,4  Polybutadiene 

 

For a better understanding of the nature of the γ-process, we investigated a series of  

1,4 PB with different  M: 330 g/mol (PB-330), 557 g/mol (PB-557), 777 g/mol (PB-

777), 1450 g/mol (PB-1450), 2010 g/mol (PB-2010), 11 400 g/mol (PB-11400), 20 

000 g/mol (PB-20000) and 87 000 g/mol (PB-87000). The samples were purchased 

from Polymer Standards Service (Mainz). In addition, a PB sample with M = 25 000 

g/mol (PB-25000) was investigated (courtesy A.P. Sokolov). For comparing the 

results obtained for the different PB samples, we plot in Fig. VII.3 the temperature 

dependence for the dielectric loss normalized by its maximum value ε’’/ε’’max, 

obtained at a single frequency of 1 kHz. Note that scaling the data by the ε’’max 

(corresponding to the α-peak) we suppress the weak variation of Δεα within the 

different samples. This representation allows for a direct comparison of the relative 

dielectric strength of the secondary processes (β and γ) with respect to the relaxation 

strength of the α-process.       

 

 

 

 

 

 

 

 

 
 

0 50 100 150 200 250
10-4

10-3

10-2

10-1

100 γB 

γA 

α 

 

 

PB330

 

 

 

 
Fig. VII.3. The imaginary part of permittivity scaled by its maximum value ε’’/ε’’max measured at 

single frequency of 1kHz as function of temperature for different PB samples with indicated M.  
 

We observe that the γ-process is present in all the samples independent of the 

molecular weight, however with different relative relaxation strengths among the 

systems. Both β- and γ-peak heights do not show any systematic trend with changing 

M. Except for PB87000, it appears as the two processes are related: the higher is the 

amplitude of the β peak, the larger is the γ contribution. Concerning the peak 
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positions, we remark a weak variation for the α- and the β-peaks with M. The PB330 

sample shows a peculiar behavior, as for this system the corresponding α-peak 

appears at very low temperature (around 160 K). Since for PB330 (the solid line data) 

only one relaxation peak is observed in below Tg, similar, cf. Fig. VII.3 and the 

analysis below, with the γ-peak observed for the other samples, it appears that the α-

process “drowns” the β-contribution by its shift. This strong shift of the α-process 

reflects the fact that Tg(M) dependence gets stronger in the low M limit, in 

accordance with other studies by light scattering [111] and NMR [112]. 

Concerning the temperature dependence of the γ-process two groups can be 

distinguished: for PB11400, PB20000, PB2010, PB1450 and PB330 the peak 

maximum appears at temperatures around 60 K, while for the others PB87000, 

PB25000, PB777 and PB577 it is found at roughly 20 K higher. For convenience we 

denote the first group γB and the second γA. The groups are indicated in Fig. VII.3 by 

ovals. In order to obtain quantitative results for the time constants τγ we interpolated 

the spectra containing the γ-peak by a log Gauss function G(lnν). For the three 

samples with lowest molecular weights PB330, PB577 and PB777 the analysis was 

not possible because the γ-peak is not well-resolved.  

Examples of such interpolations are given in Fig. VII.2 (b) for PB20000 and in Fig. 

VII.4 for spectra of two different PB systems, representative for the γB / γA situations. 

Note that the spectra of the γ-process are much broader than a Debye peak and they 

are quite similar among each other, though measured at different temperatures.   

 

 

 

 

 

 

 
 
 

Fig. VII.4. Dielectric spectra of PB2000 at 55 K and PB25000 at 88.6 K on linear scale. Fits using a log 
Gauss function are included. A Debye peak is displayed for comparison. 

 

From the shift of the maximum νγ one obtains the temperature dependence of τγ 

calculated from τγ =1/(2πνγ). The results are presented in Fig. VII.5 together with the 
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time constants for α and β processes. The time constants of the α- and β-processes 

are similar within the different systems with M ≥ 557 g/mol. Concerning the well 

separated γ-process, its time constants τγ are very similar within one group (γA or γB), 

and exhibit a thermally activated behavior. Fits with an Arrhenius law provide the 

mean activation energy E

B

γ. We find 11 < EγB < 14 kJ/mol for the γB group and 17.5 < 

EγB < 20 kJ/mol for γA.  
For comparison, we included the time constants of the secondary process observed 

by Ding et al. in the light scattering experiments for PB25000 [111]. Inspecting the 

light scattering data one may tentatively assume that a γA process is observed for 

PB25000. However, as these measurements are performed at high temperatures, the 

straight line in Fig. VII.5 suggests that the Arrhenius dependence is preserved up to 

the melt. Note that this is one of the rare situations when a secondary relaxation 

maximum is identified by an experimental technique other than dielectric 

spectroscopy. 

.   

 

 

 

 
Fig. VII.5. The time constants 

for the various processes in PB. Data 
plotted as stars are obtained from light 
scattering by Ding et al [111]. The line 

is an Arrhenius interpolation.    
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To summarize our results, the dielectric investigations of PB below Tg clearly reveal, 

in addition to a typical β-process a further relaxation process at lower temperatures, 

here-called γ-process,. The relaxation peak associated with the γ-process is 

significantly broader than a Debye peak. Its relaxation strength Δεγ does not show 

any systematic change with molecular weight. The time constants τγ obey a weaker 

Arrhenius temperature dependence than the one of the β-process. The PB systems 

can be divided into two groups depending on the activation energy of the γ-process.  
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2H NMR studies of PB [88] indicated that the reorientational motion involved in the γ-

process is highly restricted and can be described by a cone model. For the PB87000 

sample, the upper limit for the cone semiangle was determined to be around 80 at T < 

Tg. However, one should keep in mind that the relaxation strength of the γ process 

strongly varies within the investigated polymers. The extreme case is PB11400, for 

which the amplitude of the γ-process is larger than the one of the β-process and only 

by a factor 3 smaller than the one of the α-process, cf. Fig. VII.3. 

Concerning the evolution of the spectra at lowest temperatures, below the ones 

associated with the γ-process, PB shows again an “exotic” behavior: the shift of the γ-

process is followed by the appearance of a fourth relaxation peak (δ) at lowest 

temperatures. One example is shown in Fig. VII.6 (a) for the PB2010 sample: at 

temperatures below 35 K the signal increases again as a curvature that develops into 

a peak at lowest temperature T = 4 K. This δ-peak is observed in all PB samples with 

Mw ≥ 577 g/mol (cf. Fig. VII.7) and it is responsible for the increase of the ε’’(T) at 

lowest temperatures in Fig.VII.2. The PB330 system is an exception again: cf. Fig. 

VII.6 (b) the spectrum at lowest temperature can be interpolated by a power-law with 

a small positive exponent, resembling the behavior of low molecular weight glasses 

discussed in Chapter V.  
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Fig. VII.6. Dielectric spectra of (a) PB2010 and (b) PB330. The high precision data (crosses) are 

compared with those measured by our broadband techniques (open circles). Few temperatures are 
indicated. Dashed lines in (b) are interpolations by power-laws.  
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Fig. VII.7. Dielectric spectra of some PB samples discussed above. The high precision data (crosses) 
are compared with those measured by our broadband techniques (open circles). Few temperatures 

are indicated. 
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VIII. Summary 
 
 

 

The main purpose of this Thesis is to extend the dielectric investigations of molecular 

glass forming systems down to cryogenic temperatures (2 K), but also to complement 

previous work above the glass transition temperature Tg. The measurements were 

performed on systems composed of simple, mostly rigid molecules. 

Having at hand a large collection of data, previously compiled in Bayreuth group, this 

work starts with analyzing the characteristic relaxation features in molecular systems 

above Tg. Here, secondary relaxation processes emerge on the high frequency side 

of the main (α) relaxation peak, namely the excess wing (EW) and the β-process. 

The EW manifests itself in the dielectric spectra as a power-law (∝ ν-γ), while β-

process as a second relaxation peak. A new approach is introduced to disentangle 

the different spectral contributions (α-process, EW and β-process). At variance with 

previous interpretations, the spectral shape of the α-process is assumed to be 

temperature invariant, obeying frequency temperature superposition (FTS) in the full 

temperature range above Tg. Its corresponding stretching parameter is taken from 

the high-temperature spectra, where the analysis is not hampered by the appearance 

of secondary processes. As a result of this constraint, the EW exponent γ turns out to 

be not only temperature, but also system independent, γ ≈ 0.2. Thus, the overall 

spectral evolution for systems with no β-peak above Tg (previously called type A 

glass formers) is simply described by a small variation of the relative weight of the 

EW with respect to the α-peak. This weight grows upon cooling, in contrast to the 

behavior of a β-process. These now called “type A characteristics” are always spoiled 

by a more or less pronounced manifestation of a β-process. Based on their different 

temperature changes, the EW and the β-process contributions are disentangled close 

to Tg, and aging experiments carried out in this work are interpreted within the new 

scenario. In the glass, the interplay of both EW and β-process determines the 

relaxation pattern. The β-process appears as the only feature spoiling the universality 

in the evolution of the dynamics in molecular glass formers, since its relaxation 

strength does not correlate with the molecular dipole moment. 
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Based on the above scenario, a consistent comparison between the orientational 

correlation functions of rank l = 1 (probed by dielectric spectroscopy) and l = 2 

(probed by field cycling NMR and light scattering) is carried out. As demonstrated for 

glycerol, the NMR and light scattering spectra above Tg are scaled according to FTS 

over 15 decades in frequency. Significant differences in the spectral shape of the 

susceptibilities of different ranks are recognized at the low, as well as at the high 

frequency side of the scaled relaxation peak. In contrast, the time constants provided 

by the three techniques turn out to be essentially the same. Regarding the systematic 

differences observed at high frequencies, they are explained by assuming that the 

fast dynamics (EW) proceeds via small angles. Below Tg, NMR and dielectric 

spectroscopy reflect the same dynamics for glycerol, i.e. an experimental 

temperature dependence of the susceptibility is revealed. 

The evolution of the secondary processes (EW and β-process) is monitored for 

temperatures well below Tg by applying a high-precision bridge. The bridge was 

employed to investigate extremely low losses (tanδ < 10-5), and, for the first time, the 

frequency dependence (within three decades) of the permittivity down to cryogenic 

temperatures was accessed for molecular glasses. Two additional relaxation regimes 

are identified: below 10 K clear indications are found that the tunneling regime is 

reached. Here the dielectric loss saturates to a plateau when plotted as a function of 

temperature and the corresponding weak frequency dependence appears as 

universal ε’’ ∝ ν-0.04, at variance with the standard tunneling model predicting no 

frequency dependence here. Scaling out the molecular dipole moment collapses the 

plateau heights to an approximately system independent value, indicating a common 

density of tunneling centers in molecular glasses. At higher temperatures (10 K > T > 

50 K) indications for thermally activated dynamics in asymmetric double well 

potentials are found for these systems. Here, for some systems, the dielectric loss 

displays a peak when plotted as a function of temperature but not as a function of 

frequency. This is in accordance with the Gilroy-Phillips model, previously used to 

interpolate the data for inorganic glasses in this regime. The distribution of the 

activation barriers g(V) is directly accessed by scaling the spectra in accordance with 

this model. However, g(V) extracted for molecular glasses appears as a stretched 

exponential.  
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Zusammenfassung 
 
 
 
Das Hauptanliegen dieser Arbeit ist sowohl die Ausweitung der dielektrischen 

Untersuchungen an molekularen Glasbildnern bis in den Tieftemperaturbereich (2K), als 

auch die Ergänzung bisheriger Ergebnisse oberhalb der Glasübergangstemperatur Tg. 

Die Messungen wurden an Systemen durchgeführt, die aus einfachen, meist starren 

Molekülen bestehen.  

Oberhalb von Tg weisen all diese Systeme sekundäre Relaxationsprozesse auf, die als 

„excess wing" (EW) bzw. β-Prozess auf der Hochfrequenzseite des α-Peaks 

hervortreten. Der EW manifestiert sich in den dielektrischen Spektren als Potenzgesetz 

(~ν-γ), während der β-Prozess als ein zweites Relaxationsmaximum zum Vorschein 

kommt. Die Analyse dieser Phänomene für eine Vielzahl von zum Teil bereits in 

früheren Arbeiten vermessenen molekularen Glasbildnern steht im Fokus des ersten 

Teils dieser Arbeit. Es wird hierbei ein neuer Ansatz vorgestellt, mit dem es möglich ist, 

die Temperaturabhängigkeiten der verschiedenen Spektralbeiträge (α-Prozess, EW und 

β-Prozess) quantitativ zu beschreiben. Im Widerspruch zu bisherigen 

Betrachtungsweisen wird angenommen, dass die spektrale Form des α-Prozesses 

temperaturunabhängig ist und somit im gesamten Temperaturbereich oberhalb von Tg 

der Frequenz-Temperatur-Superposition (FTS) genügt. Der Breitenparameter des α-

Prozesses wird aus den Hochtemperaturspektren gewonnen, deren Analyse nicht durch 

das Auftreten sekundärer Prozesse beeinträchtigt wird. Infolge dieser Randbedingung 

stellt sich heraus, dass der EW-Exponent γ nicht nur temperatur-, sondern auch 

systemunabhängig ist (γ ≈ 0.2). Folglich kann die Gesamtentwicklung der Spektren von 

Systemen ohne β-Peak (früher "Typ A" genannt) oberhalb von Tg durch kleine 

Variationen der relativen Gewichtung des EW bezüglich des α-Peaks beschrieben 

werden. Im Gegensatz zum Verhalten des β-Prozesses nimmt sein spektrales Gewicht 

während des Abkühlens zu. Diese nun "Typ-A-Charakteristika“ sind immer von einer 

mehr oder weniger ausgeprägten Manifestation des β-Peaks überlagert. In der Nähe 

von Tg sind EW- und β-Prozeß-Beiträge voneinander getrennt, und Aging-Experimente 

werden in diesem Szenarium interpretiert. Im Glas bestimmt das Zusammenspiel von 
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EW und β-Prozess das Relaxationsmuster. Der letztere ist der einzige Beitrag, der die 

Universalität der Evolution der Dynamik molekularer Glasbildner zu stören scheint, da 

seine Relaxationsstärke nicht mit dem molekularen Dipolmoment korreliert ist.  

Basierend auf dem oben erläuterten Szenarium wird für Glyzerin ein Vergleich der 

Orientierungskorrelationsfunktionen des Ranges l=1 (dielektrische Spektren - DS) bzw. 

l=2 (Field-Cycling NMR und Lichtstreuung - LS) durchgeführt. Wie gezeigt, werden die 

DS-, NMR- und LS-Spektren oberhalb von Tg gemäß des FTS über 15 Dekaden in der 

Frequenz skaliert. Sowohl an der Nieder- als auch an der Hochfrequenzseite des 

skalierten Relaxations-Peaks erkennt man signifikante Unterschiede in den spektralen 

Formen der Suszeptibilitäten verschiedener Ränge. Im Gegensatz dazu sind die von 

den drei Meßmethoden erhaltenen Zeitkonstanten im Wesentlichen gleich. Die bei 

hohen Frequenzen beobachtbaren, systematischen Unterschiede kann man durch die 

Annahme erklären, dass die schnelle Dynamik (EW) im Rahmen einer 

Kleinwinkelbewegung vonstatten geht. Unterhalb von Tg sondieren NMR und 

dielektrische Spektroskopie die gleiche Dynamik und weisen die gleiche exponentielle 

Temperaturabhängigkeit auf (im Fall von Glyzerin). 

Die Entwicklung der Sekundärprozesse (EW und β-Prozess) wird für Temperaturen 

deutlich unterhalb von Tg mit Hilfe einer Hochpräzisionsmeßbrücke verfolgt. Die Brücke 

deckt frequenzmäßig drei Dekaden ab und detektiert dabei äußerst kleine dielektrische 

Verluste (tanδ < 10-5), was die Untersuchung molekularer Gläser bis zu sehr tiefen 

Temperaturen erstmals ermöglichte. Zwei zusätzliche Relaxationsregimes werden 

identifiziert: unterhalb von 10K werden klare Anzeichen dafür beobachtet, dass das 

Tunnelregime in molekularen Gläsern erreicht wird. Der dielektrische Verlust erreicht 

hier als Funktion der Temperatur ein Plateau, und die schwache Frequenzabhängigkeit 

erweist sich als universell, d.h. ε’’(2 K – 4 K) ∝ ν0.04. Skaliert man die Daten mit dem 

molekularen Dipolmoment, erweisen sich die Plateauwerte als näherungsweise 

systemunabhängig, was auf ähnliche Tunnelzentrendichten in molekularen Gläsern 

hindeutet. Bei höheren Temperaturen (10K < T < 50K) werden Hinweise auf thermisch 

aktivierte Dynamik in asymmetrischen Doppelmuldenpotentialen gefunden. Für mache 

Systeme weist hierbei der dielektrische Verlust als Funktion der Temperatur ein 

Maximum auf, nicht aber als Funktion der Frequenz. Dies stimmt mit dem Gilroy-Phillips-

Modell überein, das bisher zur Interpolation der Daten anorganischer Gläser in diesem 
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Regime verwendet worden ist. Die Verteilung der Aktivierungsenergiebarrieren g(V) wird 

direkt gewonnen, indem man die Spektren gemäß diesem Modell skaliert. Die für 

molekulare Gläser gewonnene Verteilung g(V) erweist sich als gestreckt exponentiell. 
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Appendix 
 
 
A. Systems investigated in this work 
 
 
Type A systems 
 
 

                   Investigation details System Tg (K) Abbreviation   Temperature range Spectrometers 

Glycerol 189 GLY 316 K– 0.05 K 
HF, BB, TD, 
HPB, home 

build cryostat 
Propylene Carbonate 158 PC 170 K – 2 K TD, HPB 

2-Picoline 130 2-pic 144 K – 3 K HPB 
Propylene Glycol 168 PG 233 K – 53 K BB, TD, HPB 

4-tertbutyl pyridine 166 4-TBP 184 K – 7 K HPB 
m-tricresyl phosphate 205 m-TCP 232 K – 5 K HPB 

o-terphenyl 245 OTP 264 K – 190 K HPB 
Salol 220 SAL 237 K – 3 K HPB 

 
 
 
Type B systems 
 
 
 

Investigation details System Tg (K) Abbreviation Temperature range Spectrometers 
1,4 Polybutadiene - PB 200 K – 4 K BB. HPB 

Toluene 117 TOL 124 K – 4 K HPB 
m-Fluoroaniline 172 FAN 191 K – 3 K HPB 
Polybutadiene - PB 400 K – 4 K BB, HPB 

Trimethyl phosphate 136 TMP 230 K – 60 K HF, BB 
Cyano cyclohexane 134 CCH 70 K – 4 K HPB 

 
 
 

HF – high frequency Hewlet Packard 4291 B network analyzer. 

BB – broad band Impedance Analyzer Schlumberger SI1260 from Novocontrol. 

TD – time domain spectrometer. 

HPB – high precision bridge AH 2700 A from Andeen-Hagerling. 
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B. Dielectric response of  2-methyl tetrahydrofuran 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. B.1. Double logarithmic representation of the frequency-dependent dielectric 
loss ε’’ of  MTHF for temperatures of 60.1, 70.1, 79.9, 89.9, 

91.4, 92.5, 93.5, 94.5, 96.3, 98.3, 100.3, and 103.2 K. The lines are fits using 
the GGE function, in accordance with approach I. Figure taken from [80]. 
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C. The spectra analysis using approach I; scaling relations.  

.  
As discussed in IV.2, within approach I one identifies two temperature regimes for the 

evolution of the slow dynamics in type A glass-formers. They are easily identified 

when the parameters β and γ of the GGE function are discussed as functions of 

temperature. As seen in Fig. C.1 (a), whereas γ and β for glycerol and PC do not 

change at high temperatures T > Tx (i.e. FTS applies here), a linear decrease is 

recognized below the crossover temperature Tx.  

 

 

 

 

 

 

 

 

 

100 125 150 175 200 225
0.0

0.1

0.2

0.3

0.4

0.5

0.6

3.1

 

 

 

 
γ,β/c

2-pic
EG PG

m-TCP

T / K

3.2
3.2 3.5

2.9

TMP
(b)

Fig. C.1 (a) The parameters β and γ fixing the power-law exponents in the GGE distribution for 
glycerol and propylene carbonate (PC) as a function of temperature; β is divided by a factor c 

demonstrating that the exponents β and γ are proportional to each other in the low temperature 
regime; data of high-temperature regime from analyzing the spectra measured by Lunkenheimer et al. 

[25] for glycerol and PC are also included and the crossover temperature Tx is indicated. (b) the 
parameters γ and β/c for 2-picoline (PIC), ethylene glycol (EG), trimethyl phosphate (TMP), propylene 

glycol (PG) and tricresyl phosphate (m-TCP) (Figure from [43]). 
 

It appears that for each system β and γ  extrapolate to zero at a similar temperature 

therefore β and γ are proportional to each other. This is indeed the case, as seen in 

Fig. C.1. (b) where γ (T) is similar with β(T)/c, with c being a constant indicated in the 

figure for every system.  

In the low temperature regime T < Tx one finds: 

β/γ = c = 3.2 ± 0.3   

γ = A (T – Tγ )                            (C.1) 

where Tγ is the temperature for which γ(T) extrapolates to 0 in Fig. C.1 (b).  

Below Tx the spectral shape of the slow dynamics appears to change in a 

characteristic way: the excess wing emerges as a power-law with an exponent γ that 

shows a linear temperature dependence. The question arises how γ(T) and τα(T) are 
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related in detail. Interpolating the linear γ(T) dependency (the solid line in Fig. C.1 a) 

and using the Stickel linearization of the VFT, cf. Eq. (I.1):  

( )0
/

2/1lg
TTD=

dT
τd

=S 21α −⎟
⎠
⎞

⎜
⎝
⎛ − −

−

          

one can identify Tγ from Eq. (B.1) with T0, yielding a proportionality between the 

Stickel parameter S and the exponent γ [43]. This can be easily checked by plotting 

S* (the Stickel parameter normalized by its value at Tg) as function of γ. We observe 

in Fig. C.2 that, within the scatter, for all systems S* is proportional with the EW 

exponent γ.  
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Fig. C.2 The normalized Stickel (S*=S/ST=Tg) 
parameter as a function of the exponent γ. Dashed 
line: guide for the eye. 

 

 

 

 

It is well established that the low-temperature VFT equation fails above a certain 

temperature TS [23,24]. It becomes interesting to find whether there is a connection 

between TX marking the crossover in the evolution of the susceptibility line shape and 

the temperature TS separating different temperature dependences of the structural 

relaxation time τα(T). Using the Stickel representation it may be difficult to identify Ts 

because it involves the derivative dτα/dT that usually scatters strongly. To better 

determine Ts one may try a linearization of the VTF as following: defining Tg as the 

temperature at which τα(Tg) = τg = 100 s, one can rewrite the VFT equation (I.1) as: 

 
0

2
0

0 )1/(
log

KTTm
K

g +−
=

τ
τα                              (C.2) 

where K0 = log(τg/τ0) and m is the fragility, defined by Eq. (I.2). The values of Tg are 

given in Table C.I for every system used in the following analysis. Plotting lg(τα) as a 

function of z = m(T/Tg -1) a master curve is expected for all glass formers, type A as 

well type B, assuming that the time constants follow a VFT dependence and τ0 is 

similar for the systems under consideration. The results, before and after the scaling, 
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are shown in Figs. C.3 (a) and (b), respectively. The only parameter used for the 

scaling of all data in (b) is the fragility m. The values obtained for m are also given in 

Table C.I. For m-TCP and 2-picoline the time constants in the high temperature 

range were obtained using the DC conductivity and light scattering spectra [35].  

 

 

 

 

 

 

 

 

 
Fig. C.3 (a) The average relaxation times τα of all the systems investigated. (b) the effect of individual 
fragilities at Tg is removed and a master curve is obtained; solid line is calculated using Eq. (C.2)  with 

K0 = 17 (τ0 = 10-15 s). 
 

According to Fig. C.2 (b), it is clearly recognized that the time constants of all 

systems follow the master curve (C.2) up to a value of z around 25. At higher 

temperatures, some curves spread apart, indicating that deviations from the VFT 

behavior occur, maybe due by a system dependent τ0 parameter. Using that 

)/log()/log()/log( 00 ττττττ αα gg +=                           (C.3) 

eq. (C.2) can be rewritten as: 

0

0log
Kz

zK

g +
−=

τ
τα                             (C.4) 

Figure C.4 upper half shows the linearization of VFT equation, i.e ατ  now as a 

function of zK0/(z+K0). For every system K0 (implicitly τ0) is chosen in the way that the 

slope –1 is obtained in the low temperature regime. The corresponding values of τ0 

obtained as such are posted in Table C.1 They vary around τ0 ≈ 10-15 s for all 

systems discussed here. This analysis is more sensitive with respect to the Stickel 

one since no derivative of the data points is involved.  

In order to extract the value of τS that marks the crossover, we plot the values of 

lg(τα/τVFT) in the lower half of Fig. C.4. Here τVFT refers to the τα satisfying Eq. (C.4), 

i.e., the VFT law. 
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Fig. C.4 The master curve for all the 
systems under investigation. Upper 

part: the solid line represents Eq. (C.4). 
Lower part: the ratio log(τα/τVFT) 

indicates the deviations from the VFT 
behavior; dashed lines are guide for 

the eye. 
 

  

 

 

Comparing the upper and lower parts of Fig. C.4 one can easily read off a value for 

the crossover to the VFT failure at lgτS ≅ -9 for PC, glycerol and 2-PIC. This value 

corresponds to the crossover temperature Ts and is very similar with the one marking 

the crossover in the line shape of susceptibility spectra, cf. Figs. C.1. Similar 

temperatures (TS) with the ones obtained here were reported by applying the Stickel 

derivative analysis [24]. The crossover temperatures identified on the one hand from 

the changes of the relaxation spectra and on the other hand from deviations from the 

low temperature VFT behavior of τα(T) are found to coincide within the accuracy of 

the experimental data for the three type A systems glycerol, PC and 2-picoline. We 

included in our analysis the data for DGEBA and PGE (phenyl glycid ether [82]), even 

though a spectral shape analysis including a contribution from the excess wing 

cannot be performed for these two systems due to a strong β-process contribution. 

However, their time constants clearly show a deviation from the VFT behavior at lgτS 

≅ - 7, demonstrating that τS is an individual quantity. Accordingly, the so-called 

“magic relaxation time” discussed in [96] becomes obsolete. 

 
System GLY PC 2-PIC 4-TBP TMP PG m-FAN MTHF m-TCP EG DGEBA PGE 

Tg(K) 188.6 158 129.8 165.5 136.2 168 172.4 91.5 205.4 152 250.4 192.8 

m 53.4 101.5 81.8 102.6 80.6 51.3 94.6 101.4 76.4 50 124.2 81.3 

α 10 20 5 4 3 30 5 10 2 20 3 4 

lgτ0 -15 -14.5 -16 -15.3 -15 -14.3 -16 -14 -14.6 -15 -15 -20 

 

Table C.1. Parameters of the systems investigated with approach I. 
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D. Aging experiment on 4-tertbutyl pyridine (4-TBP) 
 

The peculiarity of 4-TBP is that at Tg (165 K) and slightly below it reveals in its 

spectra a stronger curvature with respect to the other type A systems, cf. Fig. IV.2. 

This strong curvature may indicate the presence of a faster or stronger β-process 

with respect to the α-process and offers the possibility to get completely resolved by 

aging.   
In Fig. D.1 we present the results for 4-TBP aged at 155 K, almost 10 K below Tg. At 

this temperature the structure fully relaxes within 150 h, as the spectrum does not 

change afterwards. The effect of the aging is stronger than in the case of the 

measurements in glycerol (cf. Fig. IV.11 a), as the spectrum at lowest frequencies 

changes horizontally by a factor 10. In the following we apply the same analysis as 

done for glycerol in IV.3.1. For determining the stretching parameter β of the α-peak 

we used the spectrum at 187 K, where the EW influence is assumed to be minimal. 

As shown in Fig. D.1, a value β = 0.54 is obtained.  
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Fig. D.1 Aging analysis of 4-TBP at 155 K. Inset: the derivative of the equilibrium spectrum. 
 

From both spectra measured at 155 K, aged and non-aged, respectively, we subtract 

the EW as a power-law with exponent γ, such that the remaining spectral 

contributions are the high-frequency flank for the α-peak as ν-0.54 and a symmetric β-

peak. The exponent of the EW was found, as for glycerol, γ = 0.21. The position of 

the β-peak indicates a value for its activation energy Ea ≈ 22 Tg (cf. discussion in 
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IV.3.1), a value close to the one found in type B glasses, and also in glycerol within 

the same analysis.   

In the inset of Fig. D.1 we plotted the derivative of the spectrum measured in 

equilibrium dlg(ε’’)/dlg(ν), i.e. the apparent exponent in the spectrum at different 

frequencies. Within the scatter, the value of the derivative gets close to 0 at 

frequencies around 100 Hz, as the aged spectrum gets almost flat here. As a 

maximum in the spectra is defined when the dlg(ε’’)/dlg(ν) curve exceeds the 0 value, 

one concludes that the β-peak could not be separated in this experiment. However, 

as the derivative of the measured data is very close to the 0 value (closer than the 

ones obtained by Schneider et al. for glycerol and PC aged for 5 weeks), it may be 

worthwhile, in order to separate the β-peak, to investigate 4-TBP at even lower 

temperatures and for longer aging times.          
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