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Summary: Assessing extinction risk from climate drivers is a major goal of conservation 

science. Few studies, however, include a long-term perspective of climate change. Without 

explicit integration, such long-term temperature trends and their interactions with short-term 

climate change may be so dominant that they blur or even reverse the apparent direct 

relationship between climate change and extinction. Here we evaluate how observed genus-

level extinctions of arthropods, bivalves, cnidarians, echinoderms, foraminifera, gastropods, 

mammals, and reptiles in the geological past can be predicted from the interaction of long-

term temperature trends with short-term climate change. We compare synergistic 

palaeoclimate interaction (i.e. a short-term change on top of a long-term trend in the same 

direction) to antagonistic palaeoclimate interaction such as long-term cooling followed by 

short-term warming. Synergistic palaeoclimate interaction increases extinction risk by up to 

40%. The memory of palaeoclimate interaction including the climate history experienced by 

ancestral lineages can be up to 60 myr long. The effect size of palaeoclimate interaction is 

similar to other key factors such as geographic range, abundance, or clade membership. 

Insights arising from this previously unknown driver of extinction risk might attenuate recent 

predictions of climate-change induced biodiversity loss.
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Main Text

Biodiversity and ecosystems are critically endangered by current climate change1,2. Reliable 

assessments of extinction risk are thus essential for the effective protection of biodiversity3,4. 

Whereas several assessments categorize extinction risk from climate change5,6, relatively few 

studies make use of the rich information on past biotic responses to climate changes provided 

by the fossil record7–9. Palaeontologically informed models have proven to be powerful in 

discerning biotic factors that determine future extinction vulnerability10–12. Numerous reports 

demonstrate that the impact of climatic changes increases with distance from the climatic 

conditions species are adapted to13–15. Additionally, a strong link between temperature stress 

and extinction risk is also known from the fossil record16–18. However, one potentially crucial 

factor of extinction dynamics, the interaction of long-term temperature trends with short-term 

temperature change, has not been investigated until now.

Here we quantify how the interaction of long-term temperature trends with short-term 

temperature change can affect temperature-related extinction probabilities. We expect 

temperature change to be more critical when it adds to previous trends in the same direction 

(i.e., synergistic interactions), because taxa then face conditions increasingly different from 

previous adaptations. To the contrary, current anthropogenic warming occurs after a 40 

million year cooling trend, raising the possibility that many modern clades are increasingly 

exposed to climates they experienced during their origination. Such change may be less 

harmful. Understanding the effect of this palaeoclimate interaction could hence provide 

crucial insights into extinction mechanisms and lead to improved mitigation efforts for 

biodiversity under current climate change.

We analysed eight fossil clades, both marine and terrestrial, each containing more than 400 

genera. We implemented generalised linear mixed effect models with binomial family error 

(GLMMs)19 to explain how survival and extinction on genus-level is affected by 
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palaeoclimate interaction (Fig. 1). Besides quantifying effect size, we also estimated the 

temporal memory of this effect. We then compared these models containing information 

about both long-term temperature trends and short-term changes to models including short-

term temperature changes only using model selection20.  

Results

Palaeoclimate interactions improved model performance in 7 out of 8 clades when compared 

to models including short-term temperature changes only, based on Akaike’s Information 

Criterion (AIC) (Fig. 2). Only mammals showed a deteriorating model performance for short-

term cooling when palaeoclimate interaction was included.  

Short-term climate change adding to a previous temperature trend in the same direction 

(synergistic palaeoclimate interaction) increased extinction risk in all significant models (Fig. 

3, Extended Data 1). Model predictions showed an increase in extinction risk between 10% 

and 40% after such a synergistic palaeoclimate interaction for arthropods, bivalves, 

foraminifera, mammals, and reptiles. The synergistic interaction of long-term cooling with 

short-term cooling yielded the most severe impact on extinction risk with a 40% increase for 

mammals and 33% for foraminifera. 

We observe a negative relationship between extinction risk predicted by the interaction 

models and the duration of genera (Fig. 4). The effect of palaeoclimate interaction on 

extinction is strongest for clades with short-duration genera, whereas clades with greater 

durations of genera experienced a lower change in extinction risk. The climatic history of 

each genus accounted for 37% variation of median and 40% of mean duration (Adjusted R2; 

based on F-statistics). 

The extinction risk of marine and terrestrial taxa is dependent on temperature trends extending 

over a period of 5 to 60 million years or up to 10 geological stages. For each genus within a 

clade, we calculated up to 10 long-term temperature trends interacting with short-term 
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temperature change. We subsequently determined the period of time, where the interaction 

resulted in the strongest change in intrinsic extinction risk (i.e. temporal memory, Extended 

Data 2). Some clades such as arthropods, foraminifera, and reptiles are more responsive to 

temperature changes with geologically short durations (5 to 24 million years), while bivalves, 

cnidarians, echinoderms, gastropods, and mammals respond more strongly to interactions 

with geologically long climate trends (24 to 60 million). The temporal memory of the 

interaction effect was independent from the durations of genera (Extended Data 3). 

Null models of temperature-independent extinction/survival processes were used to test the 

robustness of our analytical results (Extended Data 4, see Methods section). These 

simulations resulted in negligible changes of intrinsic extinction risk suggesting that we reveal 

biologically meaningful patterns. 

Discussion

We show that palaeoclimatic interactions can significantly elevate the temperature-related 

extinction risk of organisms, and that this increase is negatively linked to the durations of 

fossil genera. Our results are consistent with previous findings, revealing profound impacts of 

temperature change on extinction risk16–18. However, the effect of palaeoclimate interaction is 

so strong, that both neontological and palaeontological studies may either overestimate or 

underestimate the impact of short-term temperature change when ignoring the interaction with 

long-term trends. Incorporating long-term temperature trends, and thus climate history, 

generally improves model performance and can increase inferred extinction risk by up to 40% 

when compared to antagonistic palaeoclimate interaction. Considering the vast amount of 

additional biotic and abiotic factors that contribute to extinction risk21, the explanatory power 

of palaeoclimate interaction compared to traditional models is remarkable. Our results 

indicate that the effect size of palaeoclimate interaction is on par with other key factors such 

as geographic range8,11,22, abundance23,24, or clade membership7,21,25.  

4



Hypothetically, the effect of synergistic temperature change on extinction risk can be caused 

by three (or potentially more) ecological mechanisms: Niche conservatism13,26, migration 

lags27,28, and cascading effects14,15. All three mechanisms are based on the concept of niche 

stability over geological time scales and imply that synergistic temperature changes 

successively move taxa out of their adaptation space. An additional short-term perturbation in 

the same direction as the trend is thus expected to increase extinction risk. Although variable 

among major clades, evidence for niche stability abounds in the fossil record26,29.

Understanding the mechanisms of palaeoclimate interaction is particularly relevant for 

palaeontologically informed models to assess extinction risk under current climate change. 

Previous models7–9 were calibrated in a trend of long-term cooling during the Paleogene and 

Neogene. Within this nearly monotonic long-term cooling, only two types of palaeoclimate 

interactions can occur: Antagonistic short-term warming on top of a cooling trend and 

synergistic short-term cooling on top of a cooling trend, with the latter being more common. 

Based on our results, previous predictions may overestimate the extinction risk of modern 

taxa under current climate change (Fig. 5). 

Directly projecting palaeoclimate interactions into the near-time future is hampered by 

insufficient knowledge of underlying mechanisms and potential scaling effects. Our analysis 

covers long geological time spans and does not take short-scale climatic variations into 

account. Hence, assessing the effect of palaeoclimate interaction on extinction risk over 

shorter timescales (millennia or even centuries) should be the focus of future research. We 

show that the effect of palaeoclimate interaction can prevail over millions of years. However, 

niche stability has been ascertained over different spatial and temporal scales, as well as 

taxonomical hierarchies13,26,30. Likewise, our hypothesis that synergistic temperature changes 

successively move taxa out of their adaptation space and hence increase their extinction risk 

remains valid over ecological time spans such as centuries13–15,27,28. We thus expect 

palaeoclimate interaction to be a key mechanism of extinction risk over shorter time scales as 
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well. Besides contributing to improved baseline estimates of vulnerability for the future, our 

findings also provide insights into the past. As the palaeoclimatic history a clade has 

experienced is a strong determinant of its fate, studies about extreme climate change events in 

the geological past should take climatic developments before such an event into account. 

Hyperthermal events represent natural examples of abrupt climate changes31.  These abrupt 

climate changes may coincide with severe mass extinctions4,32, but not necessarily so. The 

Palaeocene-Eocene Thermal Maximum (PETM), for example, was not associated with 

profound extinctions31. The effect of palaeoclimate interaction could provide an explanation 

for this conundrum, as short-term warming in the PETM follows a general long-term cooling 

trend in the late Cretaceous (Fig. 5). This is particularly important, as the PETM is often used 

as an analogue of anthropogenic climate change and for testing climate models31. Major biotic 

turnovers during short-term cooling at the Eocene-Oligocene boundary33, on the other hand, 

were potentially amplified by a previous long-term cooling trend throughout the Paleogene 

(Fig. 5). 

By providing insights into an understudied key mechanism of extinction processes, our 

findings may hence facilitate the interpretation of temperature-driven extinction events. 

Without explicit integration, palaeoclimate interaction could blur or even reverse apparent 

extinction patterns and prevent useful predictions for future scenarios, as has been shown for 

other complex ecological interactions34,35. Current assessments of extinction vulnerability 

under future climate change neither include palaeoclimatic interactions nor a long-term 

temperature history of the studied taxa. Given the long-term cooling that most living taxa 

have experienced in their duration, extinction risk under future warming might be less severe 

than these assessments predict.
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Methods

Fossil data 

Occurrences of post-Cambrian arthropods, bivalves, gastropods, reptiles (including birds and 

dinosaurs), cnidarians, and echinoderms were downloaded from the Paleobiology Database 

(PaleoDB, paleobiodb.org) on 21 September 2020. We further downloaded occurrence data 

for Cenozoic mammals from the New and Old Worlds Database (NOW, 

www.helsinki.fi/science/now/) on 23 September 2020. We favoured NOW over the PaleoDB 

for mammal data, as mammal occurrences are continuously controlled and revised by NOW 

advisory board members. Stratigraphic range data for post-Cambrian large benthic 

foraminifera were compiled from a comprehensive reference work on larger foraminifera36 

and merged with occurrence data downloaded for planktonic foraminifera from the Neptune 

Database (nsb-mfn-berlin.de) accessed on 23 September 2020. For each download, we 

included all occurrences with current latitude and longitude, the actual taxonomic name by 

which the occurrence was identified, and additional information about the taxonomic 

classification. 

We included marine invertebrate clades (cnidarians, gastropods, bivalves, echinoderms, 

foraminifera, arthropods) known for their good fossil record37 in our analysis and added 

terrestrial vertebrate animals (reptiles, mammals) to ensure coverage of all possible lifestyles 

and habitats. Each clade contained more than 400 genera, adding up to more than 14, 900 

analysed genera in total after applying our cleaning protocol (Extended Data 5). 

All analyses were conducted at the genus level. This taxonomic level is a compromise 

between uncertainty in the species level taxonomy of fossils and data loss at coarser 

taxonomic resolutions38. To ensure uniformity of data sets, we applied a standardised cleaning 

protocol to all of them including removal of genera ranging to the Recent, uncertain 

taxonomical ranks, duplicates in bins, single-collection, and single-reference taxa as well as 
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missing higher-level taxonomy. We then transformed occurrence data into ranges congruent 

to a time series with one single origination and extinction event for each genus using the R 

package divDyn39.

We subsequently binned the data into one of 80 geological stages40, ranging from the 

Ordovician to the Pleistocene. The Holocene was excluded from the analysis. Additionally, 

taxa confined to a single stage (singletons) were excluded for all data sets as they tend to 

produce undesirable distortions of the fossil record41. 

Climate proxy data

To reconstruct temperature change over time, we used the tropical whole surface water 

(mixed layers < 300 m deep) oxygen isotope dataset from a compilation of marine carbonate 

isotopes42. The δ18O values of well-preserved calcareous shells are often considered as the best 

available temperature proxy for the fossil record43.To reduce bias while calculating 

palaeotemperature from the raw δ18O values, we followed the data processing of Reddin et 

al.37. This includes adjustments for the secular trend in oxygen isotopic composition of 

seawater using the equation: δ18Opw (‰) = t2 + 0.0046‰ t, with pw being Phanerozoic 

seawater in standard mean ocean water (SMOW) and t being age in Ma, as well as averaging 

of tropical and subtropical records. We subsequently binned temperature data based on 

isotope values to geological stages to provide global mean temperature for each of the 80 

stages. We emphasise that the interpretation of δ18O values in deep time is a subject of 

considerable debate42–46. Throughout our data processing, we follow the argumentation of 

Veizer and Prokoph42, inferring a secular increase in seawater δ18O values due to changes in 

how surficial oxygen reservoirs are exchanged with the vastly larger oxygen reservoir in crust 

and mantle silicates. 
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Generalised linear mixed effect models

All analyses were carried out in R47, using R version 4.0.2. We used the lme4 package48 to 

perform the analysis, and the ggplot2 package49 to visualise results. 

We quantified the effect of temperature change interacting with past temperature trends on 

extinction risk using generalised linear mixed effect models with a binomial family error 

(GLMMs, Fig. 1)19,50,51. The additive and multiplicative effects of cumulative temperature 

change were tested against the probability of extinction in each time interval in the form: 

glm (extinct ~ ∆Ttrend : ∆Tchange + (Stage | Genus), family = binomial). 

In a first step, we aligned the climate proxy data with the fossil data. Each genus was hence 

represented as a time series of repeated survivals followed by one extinction event. Each 

observation within this time series was associated with a specific magnitude in temperature 

change compared to the previous observation (∆Tchange), assessed by using the slope of a linear 

regression of these two observations. Additionally, we computed long-term temperature 

trends (∆Ttrend). Each of these long-term trends was evaluated by the slope of a linear 

regression across temperature estimates of 1-10 time intervals prior to a focal interval. In this 

way, ∆Tchange, defined as the change in temperature compared to the previous stage, was 

excluded from ∆Ttrend, enabling the independent calculation of palaeoclimate interaction.  

Each of the trends covered a successively growing time of temperature history: Trend.st1 

ranged one stage back, trend.st2 two stages, … , trend.st10 ten stages (Fig. 1).

We controlled for the fact that observations on the same genus are non-independent by 

including genus identity as a random effect. By also setting stage as a random effect, we 

allowed for a random slope of each stage within each genus with correlated intercept, 

accounting for the temporal structure of the data19,52. For each fossil clade, we calculated up to 

10 GLMMs for cooling-cooling and warming-warming interaction, respectively. Within these 
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models, ∆Tchange was fixed as the short-term temperature change leading up to the extinction 

event of a genus. ∆Ttrend varied for each model based on long-term trends. 

The model performance of GLMMs with different long-term trends were compared using 

Akaike’s information criterion (AIC)20, and for each group one final model was selected based 

on AIC for further analytical evaluation. Results remained the same when using Bayesian 

Information Criteria for model performance. We additionally determined the significance of 

palaeoclimate interaction on extinction risk for each model using maximum likelihood.

Model comparison

Palaeontological studies on temperature-related extinctions usually rely on the temperature 

change from the previous geological stage to the focal stage, defined here as short-term 

change. To test if models improve when long-term temperature trends are included, we 

compared GLMMs including short-term change only to GLMMs including the palaeoclimatic 

interaction of short-term change with long-term trends. For models taking only short-term 

change into account, we used the same data processing as aforementioned but excluded long-

term trends from the final model: 

glm (extinct ~ ∆Tchange + (Stage | Genus), family = binomial).

Quantifying change in intrinsic extinction risk

We extracted the results of each final GLMM using the predict() function. To quantify the 

effect of cumulative temperature change on extinction risk, we transformed the results from 

odds ratio to probability. We compared the effect of cooling-cooling interaction on extinction 

risk with every other possible interaction of short-term cooling, and vice versa the effect of 

warming-warming interaction with every other possible interaction of short-term warming 

(Extended Data 1). To do so, we used Wilcoxon rank sum tests with continuity correction to 

compare effect sizes. Results were recorded including 95% Wald confidence intervals derived 

from the Wilcoxon rank sum tests. 
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Finally, we compared these results to the simulated effect range of null models to test if 

results could be produced by a random structure (see Null models below). This significance 

testing approach was implemented with Wilcoxon rank sum tests with continuity correction 

comparing simulated distributions with results based on observed data. 

Assessing temporal memory of past climate change effects

By calculating one GLMM model for each long-term temperature trend (∆Ttrend), we were able 

to choose the trend explaining the most variation of extinction risk in interaction with short-

term change. The model with the lowest AIC also showed the highest effect of past 

temperature change on extinction risk. Effect size decreased with increasing AIC of the 

remaining models, enabling determination of the temporal memory of the effect based on the 

AIC (Extended Data 2). 

Null models

Estimating the parameters of a statistical model is a key step in statistical analyses. However, 

fitting fixed-effect parameters of a GLMM can lead to biased statistical inference19. To avoid 

this bias, we applied our model structure to randomly generated data (Extended Data 4). We 

then used the results of these ‘random’ models as a distribution to compare with empirical 

results. This approach enabled the determination of type I error rates of our models and the 

probability of obtaining results as strong as those observed from a random structure with 

intrinsic biases of non-fossil data, such as serial autocorrelation of climate proxy data. 

Incorporating this two-tailed null hypothesis testing in addition to the maximum likelihood 

framework renders our statistical inference highly robust and reliable53. This multiple testing 

approach is conservative at the cost of increased type II error rates54. Our analysis therefore 

tends to discard palaeoclimate interactions with moderate intensity as insignificant, even 

when these interactions had a measurable effect on extinction risk. 
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Null models started with generating First Appearance Datums (FAD) using a random number 

generator. We generated 3000 FADs from a uniform distribution. Last Appearance Datums 

(LAD) were assigned by drawing a number from the durations of all genera with replacement 

from our observed data and subtracting it from the FAD. Distributions of the generated 

datasets therefore simulated observed conditions (i.e. a log-normal distribution). For each of 

these genus ranges, we generated higher taxonomic ranks applying the same simulation 

approach as for genera and subsequently merged these two data sets. Again, we imitated the 

number of higher taxonomical ranks from observed data. Each observation in the generated 

dataset was then binned to one of 80 geological stages. We subsequently applied the same 

data processing to the simulated ranges as for the observed data including the calculation of 

short-term and long-term temperature trends for each genus based on our climate proxy data.  

Our simulations thus had random (i.e. independent from temperature) LADs and FADs but 

non-random numbers of higher taxonomic ranks and durations and were linked to our climate 

proxy data. Finally, we extracted 900 data sets with number of observations ranging from 

1000 to 30000 by sampling from the simulated data set with 3000 observations (with 

replacement). We then applied the GLMMs to these data sets and stored the results. For each 

data set, we calculated 10 models. Subsequently, we quantified the change in intrinsic 

extinction risk of each model based on the simulated extinction signal and observed climate 

proxy data. We repeated this step 100 times for each data set. The simulations hence captured 

intrinsic biases of both climate proxy data and our applied model structure. We then used the 

range of variation for the simulated models for significance testing (Fig. 3). 

Robustness testing

Our simulations have shown that a minimum number of 1000 observations are needed to 

produce statistically robust results (Extended Data 4). We therefore did not apply any 
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subsampling method or sampling standardization to the observed data, as reducing the number 

of observations used in our analysis could increase type II errors. Further, GLMMs do not 

depend on perfect time continuous data record19 and are thus suitable for the imperfect nature 

of deep-time biotic data used in our analysis. Subsampling all our data would hence only 

increase statistical uncertainty without improving our analysis. Nevertheless, we tested for a 

systematic bias in our results by applying two subsampling methods to two fossil clades 

which had a sufficient number of genera (bivalves, reptiles). Subsampling did not alter results 

for these two clades, as model comparisons for subsampled data still indicated an improved 

model performance when a long-term temperature perspective is included (Extended Data 6). 

As expected, subsampling increased statistical uncertainty resulting in lower differences 

between AIC values. 

We further tested if autocorrelation between the extinction signal and climate proxy data 

could bias our results (Extended Data 7). For this, we generated autocorrelated random time 

series for both extinction and climate proxy data and grouped them in a similar structure as 

our empirical data. We then processed these autocorrelated data sets using the same cleaning 

protocol as for our empirical data and applied our GLMM model structure to extract the 

simulated change in extinction risk for autocorrelated data. We did this for 900 data sets with 

directly correlated extinction/ climate time series (red noise) and for 900 data sets with 

inversely correlated time series (blue noise). The intensity of autocorrelation for both red and 

blue noise differed for each simulated data set. Results are within the same range as our null 

model with a mean change in extinction risk of 0 for red noise and 0.001 for blue noise (mean 

change of null model = - 0.001). This shows that our model framework accounts for 

autocorrelation of the underlying data, and that our null model simulation is appropriate to 

evaluate the probability of obtaining values as extreme as our empirical models. Additional to 

this, we tested for serial autocorrelation within each final empirical model. We simulated 
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residuals for each model and calculated the Durbin-Watson statistic for temporal 

autocorrelation55. No model showed values below 1 or above 3 for the Durbin-Watson 

statistic, indicating low serial autocorrelation throughout our analysis (Extended Data 7).

Further robustness testing included assessing the impact of mass extinctions on the observed 

effect. We fitted GLMMs on all fossil groups and all stages and compared these with models 

excluding stages where the big five mass extinctions occurred (End-Ordovician, Late 

Devonian, End-Permian, End-Triassic, and End-Cretaceous). Model comparison was based on 

the conditional coefficient for determination (pseudo-R2) for GLMMs56. Models without mass 

extinctions showed a slightly increased pseudo-R2, indicating that the effect of palaeoclimate 

interactions on extinction risk is more severe during background extinction events (Extended 

Data 8). 

Data and code availability: All scripts and data used to conduct analyses are available at 
https://github.com/Ischi94/pal-int-extinction. 

Figure legends:

Fig. 1: Schematic of analytical protocol. (a) For each geological stage, we calculated the 
magnitude in temperature change compared to the previous stage (∆Tchange) and long-term 
temperature trends with varying duration (∆TTrend). The extinction/survival signal from 
fossil range data (b), where 1 depicts the extinction of a genus, was combined with the 
palaeotemperature information using generalised linear mixed effect models (c). The figure 
illustrates this for one time slice illustrated by the dotted line. The implemented mixed 
effect models however integrate all time slices in one joint model. (d) In a last step, we 
quantified the effect of palaeoclimate interaction on intrinsic extinction risk for each 
palaeoclimate interaction using the results of our models. We subsequently applied the 
same model structure to simulated fossil data and compared them to our results for 
statistical inference.

Fig. 2: Model comparison. Model performance of traditional models (change only) was 
compared to model performance taking palaeoclimate interaction into account (change & 
trend). Model performance was evaluated using Akaike’s information criterion (AIC). The 
figure shows the proportional change in AIC of the traditional model compared to the 
performance of the model including palaeoclimate interactions, for each individual clade. 
Values above zero (blue dots) show a model improvement for palaeoclimate interactions, 
and values below zero (red points) a model deterioration.
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Fig. 3: Change in extinction risk due to palaeoclimate interaction of all studied fossil 
clades. Red data points show change in extinction risk of fossil taxa after warming-
warming palaeoclimate interaction compared to all antagonistic interactions of short-term 
warming. Blue points show change in extinction risk after cooling-cooling interaction 
compared to antagonistic interactions of short-term cooling. Points are placed at the 
median of results and error bars denote 95 % Wald confidence intervals as estimated by 
Wilcoxon rank sum tests (see Methods). Grey points and confidence intervals demarcate 
insignificant results based on simulated null models and F statistics, and the grey shaded 
rectangle shows the range of simulated null models (see Methods).

Fig. 4: Change in extinction risk of fossil clades related to median duration. Red points 
show change in extinction risk of fossil taxa with warming-warming palaeoclimate 
interaction. Blue points show change in extinction risk with cooling-cooling interaction. 
Grey area depicts the 95 % confidence interval of the regression slope. Trend line and R2 
value are based on univariate linear regression across all points and significance, indicated 
by the asterisks (P < 0.01), is based on F statistics.

Fig. 5: Palaeoclimate interactions through the Late Cretaceous and Cenozoic and 
potential implications for future climate changes. Moderate extinction rates during the 
Paleocene-Eocene Thermal Maximum (PETM) hyperthermal could be explained by a 
long-term cooling trend throughout the Late Cretaceous, as cooling-warming interaction 
potentially mitigates extinction risk. Contrarily, high extinction rates throughout the Late 
Eocene-Oligocene Cooling (LEOC) could be explained by a previous long-term cooling 
trend, reinforcing extinction risk. Current palaeontologically informed models did not 
consider long-term climate trends, which potentially overestimates extinction risk of 
modern taxa due to current climate change (cooling-warming interaction). Future 
temperature predictions are taken from the IPCC for surface air temperature57 and 
illustrated by the dotted line. Colours show the direction of temperature trends for both 
long-term trajectories and short-term change, where red illustrates warming and blue 
cooling.
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