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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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The increasing amount of available data in production systems is associated with great potential for process optimization. Due to lack of a data 
analytics methodology and low data quality within production these potentials often remain unused. Therefore, in this paper we present a model 
for data acquisition and data preparation including feature engineering for characteristic sensor signals of production machines. The model allows 
the extraction of relevant process information from the signal, which can be used for monitoring, KPI tracking, trend analysis and anomaly 
detection. The approach is evaluated on an industrial turning process. 
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1. Motivation 

The fourth industrial revolution causes a multitude of 
challenges for manufacturing companies. To ensure business 
success, workflows and processes within the value chain have 
to be optimized. [1-3] 

However, the rapidly growing volume of data and the use of 
information and communication technologies and cyber-
physical systems are creating promising opportunities. 

Data analytics, for example, offers the possibility of deriving 
knowledge from data and thus increasing process efficiency. [4-
6] Even though, the proportion of data utilized for analysis 
purposes in companies is very low (see Fig. 1) [7]. In particular, 
collected data within production environments is often 
incomplete and heterogeneous, as operating parameters and 
process states are frequently not transparent. [8,9] 

As a result, optimization potentials regarding prediction, the 
recognition of cause-effect relationships and the proactive 

control of processes in particular are not exploited and efforts 
made for data collection remain wasted. 

 

Fig. 1. Share of data used for analysis purposes within the company 

To overcome these barriers, this paper presents a step-by-
step model for addressing heterogeneous and incomplete data 
bases through data acquisition and data preparation. 

0%

10%

20%

30%

40%

50%

60%

70%

Less than 20%  20% to 50%  51% to 75% Starting from 75%

Share of data used for analysis purposes within the company

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2021) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

 

2212-8271 © 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System 

54th CIRP Conference on Manufacturing Systems 

Data Acquisition and Preparation – Enabling Data Analytics Projects within 
Production 

 Christoph Schocka,*, Jonas Dumlerb, Prof. Dr.-Ing. Frank Doeppera,b 
aFraunhofer IPA Project Group Process Innovation, Universitaetsstr. 9, 95447 Bayreuth, Germany 

bChair of Manufacturing and Remanufacuring Technology, University of Bayreuth, Universitaetsstr. 9, 95447 Bayreuth, Germany 
 

* Corresponding author. Tel.: +49 921-78516-314; fax: +49-921-78516-105. E-mail address: christoph.schock@ipa.fraunhofer.de 

Abstract 

The increasing amount of available data in production systems is associated with great potential for process optimization. Due to lack of a data 
analytics methodology and low data quality within production these potentials often remain unused. Therefore, in this paper we present a model 
for data acquisition and data preparation including feature engineering for characteristic sensor signals of production machines. The model allows 
the extraction of relevant process information from the signal, which can be used for monitoring, KPI tracking, trend analysis and anomaly 
detection. The approach is evaluated on an industrial turning process. 
 
© 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System 

 Keywords: Data Analytics, CRISP-DM, Data Acquisition, Data Preparation, Feature Engineering, Process Monitoring; Condition Monitoring 

 
1. Motivation 

The fourth industrial revolution causes a multitude of 
challenges for manufacturing companies. To ensure business 
success, workflows and processes within the value chain have 
to be optimized. [1-3] 

However, the rapidly growing volume of data and the use of 
information and communication technologies and cyber-
physical systems are creating promising opportunities. 

Data analytics, for example, offers the possibility of deriving 
knowledge from data and thus increasing process efficiency. [4-
6] Even though, the proportion of data utilized for analysis 
purposes in companies is very low (see Fig. 1) [7]. In particular, 
collected data within production environments is often 
incomplete and heterogeneous, as operating parameters and 
process states are frequently not transparent. [8,9] 

As a result, optimization potentials regarding prediction, the 
recognition of cause-effect relationships and the proactive 

control of processes in particular are not exploited and efforts 
made for data collection remain wasted. 

 

Fig. 1. Share of data used for analysis purposes within the company 

To overcome these barriers, this paper presents a step-by-
step model for addressing heterogeneous and incomplete data 
bases through data acquisition and data preparation. 

0%

10%

20%

30%

40%

50%

60%

70%

Less than 20%  20% to 50%  51% to 75% Starting from 75%

Share of data used for analysis purposes within the company



 Christoph Schock  et al. / Procedia CIRP 104 (2021) 636–640 637
2 Christoph Schock, et al. / Procedia CIRP 00 (2021) 000–000 

Therefore, the state of scientific knowledge in section two is 
followed by the description of a concept for data acquisition and 
processing in section 3. Both topics are described by using a 
schematic diagram, to be evaluated in section 4 by presenting 
an industrial case study. 

2. State of scientific knowledge 

Extracting information from data is accompanied with great 
potential regarding maintenance, fault detection and quality 
control. [10] Hence various applications of data analytics and 
data mining within manufacturing, engineering design and 
logistics were discussed since 2006. [10,11] 

Nevertheless, studies show that the level of data utilization 
within companies is still low, since companies are confronted 
with poor data quality, large data volumes and a lack of 
methodology. [2,3,12,13] 

These theses are supported by a survey among experts from 
manufacturing companies, conducted by the Fraunhofer Project 
Group Process Innovation in 2018, 2019 and 2020. It shows that 
companies (from small and medium sized to multinational 
enterprises) currently focus on data collection activities within 
production – and disregard the holistic analysis to gain benefits 
form collected data. As a result, most of the surveyed 
companies utilize only a small fraction of their data available 
and efforts for data collection often remain obsolete. This is 
primarily for two reasons: The lack of a methodology for data 
based projects and a poor data quality within production 
environments. 

For deducing information from data in general, data mining 
methods like the Knowledge Discovery in Databases (KDD 
[14]), the Sample, Explore, Modify, Model and Assess Process 
(SEMMA [15]) or the Cross Industry Standard Process for Data 
Mining (CRISP-DM [16]) provide a basis. Yet, data mining 
methods are not often utilized in manufacturing. Only 17 % of 
users solve existing potentials by applying data mining, 
according to a survey conducted by Rexer Analytics. [17] 

Fig. 2. Enhanced CRISP-DM based on Schock (2019) [9] 

Therefore, the CRISP-DM was enhanced to suit engineering 
(DMME [18]) and production needs [9] (see Fig. 2). However, 

both enhanced methodologies do not provide further 
information to address poor data quality. 

3. Data Acquisition and Preparation 

Since the second phase of the CRISP-DM only considers 
existing data sources, we extend it with the sub step 
“Derivation of Data Needs”. Thereby, we distinct between 
needs regarding attribute data (features) and event data (labels). 
Features are the descriptive attributes, i.e. data coming from the 
machine and process operation. The labels represent data for 
the assessment of the features, such as data from maintenance, 
product quality or tool wear. Accordingly, the label 
corresponds to a possible output variable of a supervised 
machine learning model. 

3.1. Data Acquisition 

In case data needs are derived and defined, the phase “Data 
Acquisition” starts. The phase is shown in Fig. 3. 

Fig. 3. Process for Data Acquisition 

First, the measurement object is defined. Potential objects 
are processes (consisting of several steps), machines, machine 
components or products. 

Subsequent, the measurement system is specified. First, 
suitable measured variables are defined. Regarding data mining 
projects within manufacturing, some of the most important 
measurands are: electric current and power, acceleration, 
temperature, pressure as well as airborne and structure-borne 
sound. The selection can be based on a benchmark of similar 
projects and in consideration of physical principles. 

Then the measuring points are defined. Next to the defined 
object itself, accessibility and the effort required for installation 
must be taken into account. 

Afterwards, the selection of the corresponding measuring 
equipment and sensors takes place. The selection of sensor 
types must include criteria such as resolution and bandwidth, 
environmental conditions and spatial dimensions, as well as 
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mounting options and connection types. In terms of 
measurement equipment, there can be significant differences 
between temporary test setups and long-term installations. 

Finally, the data format and the transmission must be 
described. All activities of the phase are documented in a 
protocol. 

Output of the phase “Data Acquisition” is a data set, 
consisting of 
• raw sensor signals as attribute data, matching existing event 

data, 
• raw event data matching existing attribute data, or 
• raw attribute and matching raw event data. 

3.2. Data Preparation 

In order to generate a final data set of high quality, “Data 
Acquisition” is followed by “Data Preparation”, which 
includes the sub step “Feature Engineering”. Furthermore, this 
phase covers standard activities like data exploration, 
cleansing, formatting, integration of different data sources, and 
data reduction. 

In the illustrated case of acquiring new data, raw signals 
from sensors in particular have to be processed. Usually, these 
signals are time series, often defined by a high temporal 
resolution, high data volume and low information density [19]. 
In order to cope with these characteristics, the sub-steps of the 
phase “Data Preparation” have to be adapted accordingly. The 
phase is shown in Fig. 4. 

Fig. 4. Redesigned Process for Data Preparation 

The first sub-step is “Data Exploration”, using methods of 
visualization and statistics. To initially interpret and enable 
further target-oriented processing, basic data properties are 
visualized. 

This is followed by the sub-step “Data Preprocessing”, 
which includes standard activities of data cleansing, such as the 
removal of erroneous measurements, unassignable and 
redundant data sets as well as the correction of formatting 
errors. In case of processing sensor signals, filtering is 

explicitly added in order to reduce signal noise or remove 
unintentional frequency components. Thereby, the signal 
quality is increased. 

“Feature Engineering” is used to compress information. At 
first, depending on the analytics goal and physical 
measurement objective, the signal has to be segmented. In 
continuous processes, a step-by-step segmentation into equal-
sized time segments can be performed, whereas in batch 
production a semantic segmentation is desired. Thereby, a 
continuous time signal can be subdivided and explicitly 
assigned to a specific work piece or a production process step. 

For this purpose, possibilities supporting the segmentation 
are iteratively assessed and integrated in the phase “Data 
Acquisition”, e.g. the recording of trigger signals. 

In order to derive specific features describing properties of 
the oscillation behavior, transformations can be applied. The 
most common methods are the Fast Fourier Transform (FFT), 
the Short-Time Fourier Transform (STFT) and wavelet 
transformations. 

The sub-step “Feature Construction” (or extraction) 
describes the extraction of new features through functional 
mapping. The objective is to create new attributes that contain 
more information than existing features or are easier to 
interpret with respect to the application. This can be achieved, 
for example, by ratio indicators, such as energy consumption 
per production unit. In General, both statistical key figures and 
features specifically designed for the application are calculated. 
For instance, physical correlations or empirical evaluations 
from process experts can serve as a basis. Redundancies within 
the feature set should be avoided. 

In order to improve the performance of the data analysis 
model in a later phase, the sub-step “Feature Reduction” is 
applied. The most common technique is feature selection. It is 
used to reduce the range of features to a specific subset with 
high discriminatory information and variance by removing 
redundant and non-relevant features. [19] 

Finally, all features are scaled, since the range of features 
can vary widely. Normalization is the most common method. 

In case of existing data, the new constructed, rich data set is 
merged with existing data from other sources. The phase “Data 
Synthesis” includes further steps of formatting data type 
structures. 

4. Evaluation 

For the purpose of incremental adjustment and evaluation, 
the presented model was applied step-by-step in several 
industrial case studies regarding predictive analytics within 
production. 

The evaluation case study objective is a multi-stage process, 
consisting of a turning machine and a subsequent honing 
machine (see Fig. 5). With this production process, barrel-
shaped work pieces are produced. Variations in tool wear 
during turning result in different surface roughness and finishes 
(Rz). This in turns has an influence on the machine parameters 
required for the honing process. To ensure highest quality 
standards, turning tools are changed after a defined life time 
with a priced in safety factor, even though tool cost as well as 
setup time and costs are high. In order to compensate for 
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variations in roughness after turning, a safety factor is also 
applied during honing, which results in increased machining 
times. 

Therefore, the goal of this evaluation case study was to 
detect tool wear automatically, increase the tool life cycle and 
thereby the availability of the turning machine, while 
maintaining the quality level of work pieces produced. 

The existing data consisted of both attribute and event data. 
Attribute data from machine operation was available batchwise 
with a time-delay. The structure of the existing data batches 
was not comprehensible. Regarding event data, specific surface 
characteristics of every produced work piece as well as the 
width of the wear mark on the tool surface were available. 

Fig. 5. Flowchart of evaluated production process and data acquisition 

4.1. Data Acquisition 

Since existing data was only partially reliable, data needs 
were defined. In order to detect tool wear automatically, 
attribute data for the model training had to be acquired. 
Therefore, the object – the first in line turning machine 
Hembrug Mikroturn® 100 – was defined and cross linked with 
a sensor-based infrastructure. 

For the purpose of attribute data acquisition, a NI cDAQ-
9188 Ethernet-Chassis with a simultaneous analog input 
module NI 9215 (4 channels, 50 kS/s, 16 bit, ±10 V) was 
connected to a laptop with a LabVIEW program. The electric 
current of the spindle drive was measured with Fluke i30s 
AC/DC Current clamps based on Hall Effect technology with 
BNC connector. They provide a measurement range up to 30 A 
at 100 mV/A. The measuring sequences were triggered by a 
digital signal from the machine control. 

During data acquisition, an overall number of 310 work 
pieces were produced. Flank wear of the tool was measured 
after the predefined tool life. 

4.2. Data Preparation 

Visual exploration was used to verify the plausibility of the 
signal amplitudes and of the measurement setup. “Data 
Preprocessing” included the elimination of faulty and 
incomplete measurements and renaming of files to ensure 
correct mapping between signals and wear data. 

Since the turning process consisted of several steps, 
segmentation was implemented using peak detection in the 
electric current signal of the internal tool changer. As a result, 
we were able to separate the single machining process for every 
produced work piece with the same signal length due to the 
constant processing speed over all measurements. 

In order to obtain features not only from time domain, but 
also from frequency and time-frequency domain, Fourier and 

wavelet transformations were conducted. This allowed a 
targeted analysis of specific frequency ranges. 

During feature construction statistical metrics were 
calculated from both the time domain signals and the 
transformed spectral data. In order to compress the data 
efficiently and to obtain more detailed insights, features were 
calculated over the entire machining process on the one hand, 
and over smaller time segments on the other hand. This 
procedure resulted in a set of 72 features in total for each 
machining process and for each of the smaller time segments. 

Feature reduction included a selection based on empirical 
evidence from similar applications and a selection based on a 
correlation analysis. 

During data synthesis we mapped the acquired event data to 
the calculated feature set. The final high quality data set 
consisted of 12 features including RMS, peak-to-peak 
amplitude and mean of band power spectrum for specific 
frequency ranges, as well as the attributes flank wear, tool life 
and Rz as corresponding event data. 

4.3. Case study results 

Fig. 6 shows that our model consisting of data acquisition 
and preparation including feature engineering was effective, 
since the correlation between attributes and tool life can be 
successfully demonstrated and modeled. 

Fig. 6. Linear regression of electric current over tool life 

Therefore, Fig. 6 illustrates the time course of the moving 
RMS (window size 1 s, overlap 0.9 s) of the spindle drive 
current during the finishing process plotted against the 
cumulated tool life after the respective turning process. The 
turning process takes 68 seconds. To illustrate the increasing 
current consumption, the RMS values are highlighted at three 
different positions of the process. The increasing power 
consumption can be modeled with a linear regression. The 
average R²-value for the shown measurement series is 0.95. 

In this case study we were able to demonstrate that data 
acquisition and data preparation including feature engineering 
enables the definition of a RMS-based threshold value for tool 
wear and the automated initiation of tool change. 
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5. Conclusion and further research 

The model represents a guideline, which consists of 
different sub-steps in subsequent order, but with an iterative 
approach. By applying the model, we were able to enrich and 
improve the quality of heterogeneous and incomplete data 
bases and thereby enable data analytics projects in several 
production environments, from small and medium sized to 
multinational enterprises. During the case studies, cooperation 
among specialized personnel was one of the success factors. 
The roles involved were subject matter experts regarding 
production technology, data science and analytics. To evaluate 
the beneficial use of data analytics, business experts were 
involved as well. 

In the future, we will work on a holistic methodology that 
empowers project teams in an end-to-end approach through 
data analysis projects. The research focus will be on project 
initiation, in which optimization potentials are identified and 
prioritized, the selection and evaluation of data bases, and the 
target- and hypothesis-based selection of analysis methods. 
Furthermore, a procedure for the derivation of hardware and 
software requirements for the implementation of a permanent 
application must be specified. 
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