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Abstract / Kurzdarstellung

English
High-precision tracking of nanoparticles via fluorescence-optical methods is a current re-
search area with many applications. While optical methods are usually characterized by
causing minimal damage to the sample, their ability to resolve the sample spatially is lim-
ited. Therefore, many modern measurement methods make use of tricks to circumvent the
diffraction limit and to obtain information at the nanometer scale.

In this dissertation, a fluorescence optical method for tracking single nanoparticles,
called single-particle orbit tracking (SPOT), is further developed, investigated, and ap-
plied. One focus of those new developments was to update the existing experimental
setup so that three-dimensional localization can take place instead of only two-dimensional
tracking. Another important point of improvement was the extension of the control logic to
include additional parameters and signals. The required technical modifications demanded
a renewed mathematical modeling of the method, as well as analysis of the measurement
errors and setup performance. While the temporal resolution of the experimental setup
could be improved, an axial localization of the particles was only achievable at the expense
of the accuracy in the lateral direction.

Reference samples were used to experimentally validate the upgraded technique and to
point out existing issues. A major problem in the application of SPOT lies in measurement
artifacts, which can, for example, mask existing anomalies in the diffusion behavior of the
tracked nanoparticles and would lead to misinterpretations in unknown systems. Parameter
studies with variation of easily accessible quantities, such as the solvent viscosity, the
particle, size or the considered time scales, offer possible remedies and concurrently show
the importance of reference systems.

A new field of research is the investigation of the diffusion behavior of nanoparticles
in complex filter materials. In this work, SPOT was used to study nanoparticles in a
nanoporous triblock terpolymer-based membrane. Using conventional methods, the non-
destructive characterization of such a system at room-temperature and in a liquid-filled
state, is a great challenge. With SPOT, however, the size distribution of the voids could
be determined non-invasively. For this purpose, nanometer-sized polymer particles were
tracked during their thermal movement through the pore structure of the filter material. At
the same time, indications of a suitable statistical model for the description of the particle
motion were collected. Theoretical parameters for normal and anomalous diffusion in
harmonic potentials were explicitly compared with experimentally determined values. It
was shown that the particle motion can be described mainly by confined Brownian motion,
but there exists a weak influence of anomalous diffusion components, which can be best
described by the so-called fractional Langevin equation.
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Deutsch
Die hochpräzise Nachverfolgung von Nanopartikeln mittels fluoreszenzoptischer Verfahren
ist ein aktuelles Forschungsgebiet mit vielen Anwendungsbereichen. Während optische
Verfahren sich meist dadurch auszeichnen, der Probe nur wenig zu schaden, so ist ihr
räumliches Auflösungsvermögen begrenzt. Viele moderne Messmethoden bedienen sich
daher Tricks, um die Beugungsgrenze zu umgehen, um dennoch Informationen auf der
Nanometerskala zu gewinnen.

In dieser Dissertation wird eine fluoreszenzoptische Methode zur Verfolgung einzelner
Nanopartikel, das sogenannte single-particle orbit tracking (SPOT), weiterentwickelt, näher
untersucht und angewendet. Ein Schwerpunkt der Weiterentwicklung bestand darin, den
bestehenden Versuchsaufbau derart zu modifizieren, sodass statt einer lediglich zweidimen-
sionalen Nachverfolgung eine dreidimensionale Lokalisierung stattfinden kann. Eine weit-
ere wichtige Verbesserung war die Erweiterung der Steuerungslogik um weitere Kenngrößen
und Signale. Die erforderlichen technischen Modifikationen machten eine erneute mathe-
matische Modellierung der Methode, sowie Analyse der Messfehler und Leistungsfähigkeit
des Aufbaus notwendig. Während die zeitliche Auflösung verbessert werden konnte, so
wurde eine axiale Lokalisierung der Teilchen nur auf Kosten der Genaugigkeit in lateraler
Richtung erreicht.

Anhand von Referenzproben wurde eine experimentelle Validierung der weiterentwick-
elten Technik durchgeführt und auf bestehende Probleme hingewiesen, bevor die Meth-
ode auf unbekannte Systeme angewendet wurde. Ein großes Problem in der Anwendung
von SPOT, stellen Messartefakte dar, die beispielsweise vorliegende Anomalien im Diffu-
sionsverhalten der verfolgten Nanopartikel überdecken können und bei unbekannten Sys-
temen zu Fehlinterpretationen führen würden. Parameterstudien mit Variation von leicht
zugänglichen Größen, wie der Lösungsmittelviskosität, der Teilchengröße oder der betra-
chteten Zeitskalen, bieten Lösungsansätze und zeigen gleichzeitig die Wichtigkeit von Ref-
erenzsystemen auf.

Ein aktives Forschungsfeld ist die Untersuchung des Diffusionsverhaltens von Nanopar-
tikeln in komplexen Filtermaterialien. In dieser Arbeit wurden mithilfe von SPOT Nanopar-
tikel in einer nanoporösen Triblock Terpolymer-basierte Membran untersucht. Bei der
Verwendung herkömmlicher Methoden stellt die zerstörungsfreie Charakterisierung eines
solchen Systems bei Raumtemperatur und in flüssigkeitsgefülltem Zustand eine große Her-
ausforderung dar. Mit SPOT konnte jedoch die Größenverteilung der Hohlräume auf nicht-
invasive Art und Weise ermittelt werden. Hierzu wurden nanometergroße Polymerpar-
tikel bei ihrer thermischen Bewegung durch die Porenstruktur des Filtermaterials verfolgt.
Gleichzeitig konnten Indizien für ein passendes statistisches Modell zur Beschreibung der
Teilchenbewegung gesammelt werden. Explizit wurden theoretische Kenngrößen für nor-
male und anomale Diffusion in harmonischen Potentialen mit experimentell ermittelten
Werten verglichen. Hierbei zeigte sich, dass die Teilchenbewegung zwar hauptsächlich
durch eingeschränkte Brownsche Bewegung beschrieben wird, es jedoch einen kleineren
Einfluss anomaler Diffusionskomponenten geben kann, der am besten mit der sogenannten
Fractional Langevin Equation beschrieben wird.
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1 | Introduction

In every breath, every drink, or every meal, a large number of nanometer-sized particles
is taken up into our body. Even by touching things, nanoparticles can penetrate our
organism, our cells. Skin, lungs, or the gastrointestinal tract are constantly exposed to the
environment and the most likely entry points for those foreign substances. After entering
the circulatory and lymphatic system, the particles may distribute in the entire body tissue
and organs. Even if the vast majority causes little or no health effects, some intruders will
occasionally cause appreciable harm to the organism depending on their composition and
size.[1]

On earth, nanoparticles are produced by many natural processes like photochemical
reactions, volcanic eruptions, fires, or erosion. But also extraterrestrial dust and living
organisms (e.g., shedding of skin) are sources of nanoparticles. Moreover, some living beings
are ”nanoparticles” themself, like bacteria and viruses, causing diseases like influenza[2], the
acquired immunodeficiency syndrome[3], kidney stones[4], the severe acquired respiratory
syndrome[5], or cervical cancer[6]. In particular, viruses appear as villainous intruders as
they can exploit cellular processes to replicate themselves. However, also non-biological
particles show toxic effects on cellular functions such as proliferation or metabolism.

While nature has been generating nanoparticles since the beginning of time, technology
has only learned its intentional synthesis and use in modern times. While the proportion
of human-made nanomaterials is steadily growing[7, 8], science still has many unanswered
questions about the influences of nanometer-sized substances and the pathways they take.

This is for the reason that the nanometer scale is both rewarding and challenging at
the same time. It corresponds approximately to the size of larger molecules, in particular
proteins, those functional units that operate cell biology. But the scale is smaller than
the length scale that can be resolved with light microscopy. Consequently, the complex
mechanisms that underlie the essence of life remain hidden from direct observation.

Nowadays, this is no longer true. Modern microscopic techniques have opened up
the sub-diffraction limit length scale with tricky detours and ingenious concepts. There
are numerous examples that show how the diffraction limit can be circumvented, and
nanoscopic effects can be studied. In the following, several of those examples will be
introduced containing the method of single-particle orbit tracking (SPOT) that is central
to this thesis.

Highlighted techniques, that circumvent the Abbe limit [9, 10] are photoactivated local-
ization microscopy (PALM)[11], stochastic optical reconstruction microscopy (STORM)[12],
stimulated-emission-depletion (STED)[13], or reversible saturable/switchable optical (fluo-
rescence) transitions (RESOLFT)[14]. Those methods do not obey the diffraction limit
anymore as they are driven by single-molecule/particle detection or the depletion of flu-
orescent states in a particular region. The new limitation is essentially the number of
photons collected and the noise inherent to the detection process. Consequently, it is fair
to call those microscopic techniques noise-limited. Very recent progress was achieved in
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1. Introduction

the research group of Stefan W. Hell. They enhanced the resolution limit to 1 nm
by (minimal) emission flux microscopy (MINFLUX)[15], a method that is based on the
absence of photons and will be explained in more detail in section 1.2. However, there
are also more established methods that uncover dynamics below the length scale of the
diffraction limit.

For example, measuring the efficiency of fluorescence resonance energy transfer (FRET)
between two chromophores can resolve inter-chromophore distances with nanometer accu-
racy. The energy transfer can be recorded as a function of time and on the single-molecule
level, but the method provides only relative positions. Moreover, there are special require-
ments for the spectral properties of the chromophores and, in practice, only a few molecule
combinations, so-called ”FRET-pairs”, are relevant.

Another prevalent method is the fluorescence correlation spectroscopy (FCS). It is based
on the acquisition of a fluctuating fluorescence signal that is (auto)correlated for further
analysis. This kind of mathematical signal analysis reveals the time scale of the processes
that are the source of the fluctuations. FCS was introduced in 1972 by Madge, Elson,
and Webb for an experiment, where the chemical reaction rates of DNA-drug intercalation
was reported.[16]The application of this technique was immediately extended in a series
of publications so that it served to determine particle concentrations and to calculate
translational and rotational mobility.[17–20] However, FCS is not restricted to these origins
of fluorescence fluctuations. It is sensitive to every process that causes temporal variations
in the photon counting statistics, like blinking, bleaching, triplet-state dynamics, energy
transfer or photon antibunching.[21–23] Usually, the spatial resolution of FCS is diffraction-
limited, and it is often doubted whether this is a one-particle method in the strict sense
because only the dynamics of ensemble means of one-particle movements are accessible.
But the FCS-type of analysis can be applied to signals recorded with other methods like
STED[24], near-field scanning optical microscopy (NSOM)[25], and super-resolution optical
fluctuation imaging (SOFI)[26] providing dynamical information from nanoscale regions
(∼ 50 nm)[27]. The high temporal resolution (< 1 µs), the high sensitivity to fluorescence
level changes, as well as the possibility to study environmental influences have made FCS
a popular and influential method to investigate molecular or single-particle dynamics not
only in the life sciences[28, 29] but also in the material science[30].

Closely related to FCS is a wide-field technique, called image correlation spectroscopy
(ICS)[31] that analyzes not a single focal point but a whole image series recorded by an
(electron-multiplying) charge-coupled device ((EM)CCD) or complementary metal-oxide-
semiconductor (CMOS) technology based camera. ICS appears in many flavors, depending
on whether pixels are correlated in space, time, k-space, combinations of them, or between
different color channels (ICS, tICS, kICS, STICS, ICCS)[32]. A remarkable variation of this
method is raster image correlation spectroscopy (RICS), which uses the temporal informa-
tion used in the construction of a confocal rasterized image to investigate fast correlations
additionally.[33]
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1.1. Single-particle tracking

1.1 | Single-particle tracking
More direct access to nanometer dynamics is gained via single-particle tracking (SPT)
approaches. Robert Brown’s microscopic observation in 1828 of the thermally driven
motion of pollen grains suspended in water is considered the first experiment of this cate-
gory.[34] Apart from this exception, the actual use of SPT is much more recent, and the
first video-based experiments are attributed to Brabander et al. in the late 1980s.[35,
36] They visualized the Rayleigh scattering of 40 nm-sized gold nanoparticles in living cells
with video-enhanced differential interference contrast microscopy and extracted the par-
ticle tracks by image processing.[37] This approach became very popular due to the fact
that bigger particles (e.g., polystyrene beads[38], latex beads[39], or silica particles[40],
size range: 200 nm - 1 µm) could be easily imaged with standard optical microscopy. Con-
sequently, the technique was available to an extremely large number of research groups,
which improved the data-extraction part of the experiment.[27] While the used particles
could be detected with high temporal and spatial resolution due to their large scattering
cross-section, their unwieldy size limited the accuracy with which biological processes could
be investigated, and the next big step for SPT was the detection of single fluorescent mole-
cules with conventional fluorescence microscopy at room temperature done by Schmidt et
al.[41] The usage of single molecules as labels for proteins, DNA strands, mRNA, polymer
chains, antibodies, and many other targets was quickly adapted to SPT experiments.

Since those days, the method has developed further and is now well established. How-
ever, the area remains dynamic and still brings new variants to light. In fact, SPT can also
be conducted on absorption or scattering images. For example, a trending technique is a
label-free method, called interferometric scattering microscopy (iSCAT) [42–45] or coherent
bright field microscopy (COBRI)[46, 47].

Basically, single-particle tracking methods can be divided into two classes: Firstly, im-
age series analyzed to extract the particle pathways ex post facto and secondly, measure-
ment setups in which feedback loops have been implemented that track a single-particle in
real-time. Methods of the second type are called active single-particle tracking approaches.

The most likely first experiment in which single microscopic particles were actively
tracked using optical methods was carried out by Howard Berg in 1971.[48] He imaged
individual Escherischia coli (E. Coli) bacteria onto six optical fibers. Each pair of fibers
covered a spatial direction and was offset along the corresponding axis but still overlapping.
The other ends of the fibers led to one photomultiplier each, whose analog signals were
compared electronically so that movements of the bacterium were detected by differences
of the signal pairs. A negative feedback loop controls the position of the specimen holder
so that the image of the bacterium on the fibers remains locked. Compared to modern
experiments, the object under investigation was gigantic and the resolution miserable, but
one has to admit that the fundamental concepts have not changed much.

The microscopic method used in this thesis belongs to the active single-particle tracking
approaches, and is named single-particle orbit tracking (SPOT). It inherits the concepts of
Howard Berg’s approach of localizing a particle optically and keeping it mechanically in
a defined region. More elaborated considerations by Jörg Enderlein at the millennium
change initialized the modern implementation, that was first realized by Enrico Grat-
ton’s group.[49] The new idea was to use a circular scanned laser focus to encode the
particle position in a modulated fluorescence signal. It turned out that nanoparticles can
be localized very precisely in this way and that they can be tracked with the assistance of
feedback loops even in real-time.
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1. Introduction

1.2 | State-of-the-art in active single-particle track-
ing

There are various alternatives to SPOT-approach that will be described in the context
of this thesis, some of which differ only in the hardware implementation or other details,
but also those that pursue fundamentally new concepts. Here, some highlights of the
achievements of other groups are summarized, providing a state-of-the-art overview about
active SPT.

Berlund and McHale from the Mabuchi group described theoretically and in great
detail a feedback controller design for single-particle tracking in a confocal microscope. [50,
51] Moreover, they worked out analytic expressions for the occurring fluorescence fluctu-
ations recorded while tracking.[52] Finally, they called their analysis of the autocorrela-
tion function from the recorded fluorescence signal tracking-FCS.[53] With tracking-FCS,
Mabuchi and co-worker decoupled the timescales of diffusion and blinking of CdSe/ZnS
quantum dots, which would otherwise avert an accurate analysis of the photon statis-
tics in a classical FCS experiment. By doing this, they showed the suppression of short
timescale fluorescence intermittency by 2-mercaptoethanol.[54] Furthermore, they stud-
ied intramolecular motion of single freely diffusing fluorescence-labeled double-stranded
λ-phage DNA molecules with tracking-FCS.[55]

In the early days of developing feedback-based approaches for 3D-tracking of fluores-
cent particles, the mentioned Mabuchi group competed with the team of Gratton in
the field of experimental implementation. While the first mentioned have created an ex-
tremely useful and detailed theoretical framework for the method, the latter shone with
inventiveness in applying and modifying the technique. Gratton and co-workers called
their approach scanning-FCS and were able to track fluorescent beads of 500 nm in agarose
with 64 ms temporal and 20 nm spatial resolution already in 2003.[56]

The localization step of scanning-FCS differs to that of tracking-FCS in the way the
demodulation is calculated. Instead of a continuous position calculation using lock-in sum-
mation, Gratton’s approach utilizes the fast Fourier transformation to extract positional
information from the fluorescence signal. This algorithm is fast enough to perform the nec-
essary calculations in real-time. A detailed analysis of the capabilities of scanning-FCS in
its early stage was published in [49], where they measured the distances between (static)
fluorescent particles with nanometer accuracy.

Gratton’s hardware implementation varies from the Mabuchi’s group version in
the way the orbit is created. Gratton’s group used Galvano mirrors instead of acusto-
optical deflectors for the lateral deflection and an objective linear piezo scanner for the z-
modulation. Since they excited their sample by two-photon excitation from a mode-locked
titanium-sapphire laser, they could forgo detection pinholes and use wide-area detectors
like photomultiplier tubes without impairing the signal-to-noise ratio significantly. Con-
sequently, they did not need descanning of the detection beam path. In a more recent
version of the setup, they were the first to use an electrically tunable lens to speed up the
axial localization of 3D-orbital tracking.[57]

In addition, Gratton and co-workers designed a variant of active SPT that can be
implemented on many commercially available microscopes with only a few modifications
needed. In this cost-efficient but slow version of orbital tracking, the particle was directed
on circular paths around a fixed laser beam to achieve fluorescence modulation.[58]

The bandwidth of application is vast in the Gratton group but mainly located in the
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1.2. State-of-the-art in active single-particle tracking

field of biology. They monitored the phagocytosis of fluorescent protein-coated beads by
fibroblasts[59] or used the orbital tracking to move single gold nanoparticles systematically
along collagen fibers and actin filaments inside Chinese hamster ovary K1 living cells,
thereby mapping the biological fibers 3D topography with nanometer resolution.[60] In the
scanning-FCS approach, the particles are not only tracked but also their photon emission
traces are used to calculate correlation functions. Gratton et al. set their photon counts
in relation to the laser focus scan position by constructing two-dimensional photon carpets,
where the first axis represents the total number of points along the orbit and the second
axis represents the time of acquisition. Therefore, the complete photon counting trace,
binned to scan positions, can be reconstructed by reading the photon carpet representation
line by line. The benefit of this representation is that spatial and temporal information is
encapsulated simultaneously. For example, the transport of single molecules through single
nuclear pores complexes in intact cells was monitored by tracking the center of mass of the
nuclear pores complex and autocorrelating the photon emissions from single scan positions
and cross-correlating that of opposed one.[61, 62] This method was further applied to
visualize the transcription kinetics variance of highly mobile identical genes. Therefore,
Gratton’s group tracked a broad transgene array as a model system and resolved at
distinct regions the synthesis of mRNA, which was only possible due to the high spatial
and temporal resolution of the system.[63, 64]

The group of Lamb often cooperated with Gratton and used a 3D orbital tracking
approach for the study of biological problems as well. Their setup varied from the previ-
ously mentioned methods in the way the z-resolution was achieved. Instead of excitation
in different planes, multiple detection planes were used that were generated by slightly
misaligned detection pinholes.[65] Special to their implementation was an additional wide-
field imaging channel and an incorporated stepping motor positioning stage that expanded
the accessible tracking range to several centimeters.[66]

With these features available, they investigated not only processes within single living
cells but also in entire organisms. The translational and rotational diffusion of single-walled
carbon nanotubes in live HeLa cells was studied[67], the difference between 2D and 3D
data analysis of trajectories occurring from anomalous diffusion of polyplexes in roundish
amoeba or flattened HuH-7 human cells was pointed out[68], and the pathway of single
prototype foamy viruses as they infect living cells was recorded.[69] In a more recent pub-
lication, they studied the mitochondrial trafficking in sensory neurons of zebrafish larvae
over distances larger than 100 µm and imaged the environmental context in the superim-
posed wide-field channel. With their high spatial and temporal resolution, they were able
to discriminate the already known fast components during active motion and a previously
undetected motional state of slow velocity in antero- and retrograde direction.[66]

While the Lamb group achieved axial resolution with spatially separated detection vol-
umes, this type of detection can also be utilized for the entire localization purpose. Yang
and Werner localized particle with a static laser and multiple detection volumes.[70–74]
They compared signal heights from multiple detectors and used a nanopositioning stage to
close the feedback loop. A technically demanding experiment was conducted by Yang and
Welsher.[75] They used two detector pairs for lateral localization and another one for the
particle’s axial position. By combining their real-time tracking with a three-channel two-
photon laser confocal scanning microscope (2P-LSM), they randomly sample image planes
of the environment on a coarser time and larger length scale. After sophisticated image
reconstruction, they achieved a multi-resolution visualization of the early stages of cellular
uptake of peptide-coated nanoparticles as a model system for cellular delivery strategies or
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1. Introduction

viral trafficking. This refined experiment combined nanometer/microsecond accuracy with
a detailed mapping of the surrounding landscape.

Later, Welsher used a different approach in his own research group. He and his
collaborators generated a dynamically moving laser spot in three dimensions using a two-
dimensional electro-optic deflector and a tunable acoustic gradient lens.[76] The estimation
filters used for the particle localization in their method, called 3D dynamic photon local-
ization tracking (3D-DyPLoT), are based on those developed for Moerner’s ABEL trap
which will be explained in more detail later in this section.[77] While the short-time local-
ization originates from the squared area that is pegged from the laser focus scan path, a
2D piezoelectric stage expands the tracking range in the lateral direction and a high-speed
objective lens positioner in the axial direction. For the detection, only one avalanche pho-
todiode is necessary, which means that the optical setup is strongly simplified compared to
setups like those of Mabuchi, Lamb, Gratton and Yang. However, the main advantage
of this method is the large observation area (1 µm× 1 µm× 4 µm) that allows a particle to
do large diffusive steps or intermediate timescale transitions into dark states without the
tracking algorithm to lose it. Therefore, the piezoelectric stage has more time to execute
the feedback step and the bandwidth limitation is less important. In a recent publication,
the method was further developed to adaptively expand the size of the lateral scan path for
changing diffusive conditions.[78] The authors called the method precision adaptive real-
time tracking (3D-PART) and applied it to monitor viral first contact of virus-like particles
to the surface of live cells.

A method called tracking single particles using nonlinear and multiplexed illumination
(TSUNAMI) capable of tracking in highly scattering environments was developed in the
group of Dunn. [79] The particle localization of TSUNAMI is based on a barely over-
lapped tetrahedral arrangement of excitation volumes. The excitation volumes are created
successively by laser pulses that are separated in time by 3.3 ns each. By time-correlated
single-photon counting detection, each detected photon is assigned to a time gate that
corresponds to a certain excitation volume, which can be used to calculate the particle
position in three dimensions. The triangulated position is fed to a control loop that steers
Galvano mirrors and an objective z-piezo scanner to the particle position. What must be
guaranteed for this method to work is that the emitter’s lifetime is shorter than the time
gate of 3.3 ns. Otherwise, strong channel leakage would decrease the localization precision.
Since TSUNAMI needs only one photomultiplier tube for localization, the technical com-
plexity does not increase excessively if several color channels are detected simultaneously.
The authors state an axial accuracy of better than 100 nm at a penetration depth of about
200 µm due to the used two-photon excitation.

Using this technique, the trafficking dynamics of epidermal growth factor receptors
were measured in live cells at 16 nm lateral and 43 nm axial resolution, with track duration
ranging from 2 to 10 min and vertical tracking depth of several micrometers.[80]

In contrast to the previously discussed methods, where either the sample system is
moved or the optics follow the particle’s trajectory, in the next mentioned method external
forces act on a particle to keep it within the detection volume. Cohen and Moerner
invented the anti-Brownian electrokinetic (ABEL) trap, which uses time-dependent elec-
trical fields applied in a microfluidic cell to induce electrokinetic drifts that canceled out
the thermal motion.[81, 82] It was shown that the ABEL trap is capable of tracking sin-
gle biomolecules in aqueous buffer solutions down to the 1 nm limit.[83] The localization
happens optically but it technical implementation changed over time. In the zeroth ver-
sion, video-tracking was used and quickly replaced by a circular-scanned laser beam as
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1.2. State-of-the-art in active single-particle tracking

used in 2D-SPOT.[84, 85] After that, the scan path was optimized, considering the maxi-
mum information content of single photon detection.[83, 86] Digital signal filters had been
introduced to yield a (near-)optimal single photon based localization algorithm.[77]

Cohen trapped single molecules of fluorescently-labeled λ-DNA and recorded the in-
ternal conformational dynamics inside the trap, which allowed them, for the first time,
to measure the spectrum of internal conformational modes of a single relaxed polymer
molecule. More recently, the Moerner lab has trapped individual chaperonin molecules
with the ABEL trap.[87] Incubating the chaperonins with fluorescently labeled ATP en-
abled the counting of bound ATP, molecule-by-molecule, and thus provided a detailed
picture of the ATPs cooperative binding. The ABEL trap’s major advantage is the dra-
matically enhanced acquisition time of emission from non-immobilized single proteins. In
another recent study of the Moerner group, the photophysical heterogeneity of phyco-
bilisomes quenched by orange carotenoid protein.[88]

Finally, there is the method of minimal emission fluxes, called MINFLUX, with its
fundamentally different localization approach. While all previously mentioned methods
need photons to localize a particle, in MINFLUX the absence of photons is used to tell
about the particle’s position. The excitation energy minimum of the doughnut-shaped
excitation beam, known from the STED approach is placed at a known set of spatial
coordinates around the molecule’s proximity. The closer the distance between the minimum
and the molecule’s position, the fewer photons are detected. Iteratively decreasing the
doughnut size and distance to the molecule increases the localization accuracy. Using,
MINFLUX, the inventing group of Hell obtained the molecule’s position with nanometer
resolution.[15] Currently, MINFLUX is developing quickly. In 2018, it was able to resolve
rapid molecular jumps in an artificial system with 2 nm resolution in about 400 µs.[89] Very
recently, experiments in fixed and live cells are conducted with about the same resolution,
but in three dimensions and with two color channels.[90] As it is used for imaging and for
tracking, it is assumed that the number of applications will increase significantly in the
next years.

Summarizing this section, there are plenty of methods available for tracking single
particles in real-time. As those methods differ in implementation, the basic concepts are
the same. There is always a localization step consisting of probing for fluorescence at or
from different spatial positions, the recorded fluorescence is processed to obtain the particle
position, which is then finally fed back to compensate for the particle’s motion. The major
limitation of the temporal resolution is the number of detected photons from the emitter,
whereas some methods also suffer from inertia effects of moving hardware components.
Excluding MINFLUX, the spatial resolution resides in the same range of some tens of
nanometer, depending on the integration time and sophistication of the filtration method.
Almost all groups fight against correlations of tracking errors, which in principle should be
avoided to get correct diffusion statistics.[51, 59, 74, 75, 91]
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1.3 | Challenges in the characterization of nano-
porous filter materials

The removal of plastic debris, especially from aquatic habitats, has recently attracted a
lot of attention.[92] While the problems caused by larger pieces of plastic are obvious to
everyone, in particular the so-called microplastics or nanoplastics are a hidden, but serious
health problem.[93] There are many studies published that examine their harmful effect to
living organisms.[94–96] The cleaning of liquids and gases that contain such particles is a
difficult task. One important method to remove micro- or nanoparticles from a liquid or
gas is membrane filtration.[95, 97, 98]

Of course, for effective filtration, the size of the membrane pores must be similar to or
even smaller than that of the particles to be retained (see fig. 1.1). This means that the
filter material that is meant to remove nanoparticles, must have a micro- or nanostruc-
ture of voids and pores. Therefore, the exact characterization of those materials and the
examination of transport processes within them is challenging.

Figure 1.1.: Sketch of the different membrane filtration regimes and examples of particles that can be
retained. Microfiltration uses pore sizes smaller than 1 µm and is capable to retain particles like zoo-
plankton, algae, larger bacteria and microplastic. Smaller particles that are only hardly visible under a
light microscope, like little bacteria, virions or large colloids are able to pass a mircofiltration membrane.
However, they are hold back by ultrafiltration. Ultrafiltration is performed by membranes with pore sizes
in the 10 to 100 nm range. Therefore, they can also be used for bigger proteins, but not to sort out smaller
molecules or aggregates. Here, nanofiltration with pore sizes as small as 10 nm down to 1 nm comes into
play. Those membranes are capable to remove smaller colloids, organic compounds and even multivalent
ions from the feed. Reverse osmosis membranes exhibit the smallest pore sizes. Thus, all membranes with
pores smaller than 1 nm are attributed to this category that is used to fully deionize water, even from
monovalent ions.

Generic methods for characterizing micro- or nanoporous structures are atomic force mi-
croscopy (AFM) or scanning electron microscopy (SEM), that allow for imaging with high
spatial resolution.[99–103] However, those methods, in particular SEM, need harsh prepa-
ration conditions, like drying, metal-coating, slicing or freezing and, moreover, both afore-
mentioned techniques are restricted to the surface of the membrane material. In con-
trast, solvent flow experiments or solute rejection tests provide information about domi-
nant length scales within a porous system in a liquid-filled state without having to destroy
it.[104] Yet, those approaches reveal only ensemble averaged results, and, thus, the macro-
scopic transport properties of the system. A non-invasive approach that allows to obtain
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1.3. Challenges in the characterization of nanoporous filter materials

the three-dimensional structure of a porous material without destruction is optical mi-
croscopy. One approach is to monitor the fluorescence of a concentrated dye solution that
permeates a membrane by confocal laser scanning microscopy. High signals are obtained
from observation volumes recorded from the void structure and a map of the porous net-
work is obtained.[105, 106] Unfortunately, the resolution of such a map corresponds to the
diffraction limit of light setting hard boundaries for the size of the structures that can be
investigated by standard microscopy. For this reason, fluorescence-based high-resolution
microscopy offer an attractive route to follow and is applied in the present work to a spe-
cial category of membranes from the field of ultrafiltration. The experiments and results
are described in chapter 8 and show that fluorescence-based high-resolution methods, like
SPOT, offer an attractive approach to study nanoparticle motion on the nanometer length
scale.
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2 | Nanoparticle diffusion

The temporal evolution of the spatial distribution of two or more substances with respect to
each other is known as diffusion. By diffusion, a concentration gradient of two substances
will be balanced out in time. The reason for that is the thermal motion of the molecules.
They wiggle, rotate, and move from one place to another, and by doing this, they hit and
strike each other (see fig. 2.1) redistributing their momentum and energy constantly. Even
if a system is macroscopically in equilibrium, there are small scale fluctuations of energy
and concentration.

Thermal motion of micro- and nanoscopic particles is a long known and extensively
studied phenomenon. Since the very beginning with the stochastic description of normal
diffusion, also known as Brownian motion, the development of the field was always con-
nected to the experimental methods available to verify the predictions. Modern microscopic
techniques, simulation methods, and mathematical approaches have accelerated the growth
of this vast field. Changing from a thermally equilibrated system of mesoscopic particles
and simple fluids to non-equilibrium systems of nanoscopic particles in more complex and
even biological environments has uncovered significant deviations from normal diffusion.

Figure 2.1.: Schematic illustration of the idea behind the Langevin equation. A single particle experiences
a massive number of kicks. The directions and amplitudes of the kicks are randomly distributed and sum
up to a single stochastic force that acts on an inertial particle that experiences friction when moving.

2.1 | Brownian motion
A microscopic description of the diffusive pathway of a single particle that undergoes
Brownian motion can be given with the help of a famous stochastic differential equation,
called the Langevin equation.[107] It relates the acceleration of a particle of mass m to two
forces. First, to a stochastic fluctuating force of random kicks that pushed the particle into
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2. Nanoparticle diffusion

random directions and with random magnitude and second, to a dissipative damping force
that counteracts the accelerative kicks. In one dimension and with the friction coefficient
ξ and the fluctuating kick-magnitude νbm(t), the Langevin stochastic differential equation
can be written as

mr̈(t) = −ξṙ(t) + νbm(t) . (2.1)
Here, the kick term νbm(t) is a zero-mean, white noise process with covariance amplitude
vbm and obeys the following two statistical properties:

E(νbm(t)) = 0 , and (2.2)
E(νbm(t)νbm(t′)) = vbmδ(t− t′) . (2.3)

The notation E(x) is used to express the expectation value of the variable x and δ(x) is the
Dirac delta distribution. Eq. (2.1) is a second-order stochastic differential equation that
can be converted to a first-order stochastic differential equation system, which is, in fact, a
state-space representation of the Langevin equation. A linear time-invariant system (LTI)
in standard notation is written as

ẋ(t) = Ax(t) +Bvu(t) . (2.4)

A detailed introduction into system theory and the occurring notation is given in the
appendix A. In brief, x(t) is the system state variable, A is the system matrix and Bv

the input matrix. The vector u(t) is the input, which is often identified with noise terms.
The input (noise) covariance is expressed by V . Comparing eq. (2.1) with eq. (2.4) and
appendix A.8, the system state x, as well as the system matrices, are easily identified as:

x(t) =
(
r(t)
ṙ(t)

)
, u(t) = νbm(t), A =

(
0 1
0 − ξ

m

)
, Bv =

(
0
1
m

)
and V = vbm .

(2.5)
The kicks serve as the noisy input into the system, and the state variables contain the
particle’s position and velocity. Using the time-dependent Lyapunov equation (see ap-
pendix A.8),

Q̇(t) = A(t)Q(t) +Q(t)AT (t) +Bν(t)V (t)BT
v (t) , (2.6)

the temporal development of the process variance can be calculated. The system’s process
variance matrix (see appendix A.8) is written as

Q(t) = E
(
x(t)xT (t)

)
=
(
E(r2(t)) E(r(t)ṙ(t))
E(r(t)ṙ(t)) E(ṙ2(t))

)
(2.7)

After inserting Q(t) into eq. (2.6), one obtains the following three differential equations:

d

dt
E
(
r2(t)

)
= 2E(r(t)ṙ(t)) (2.8)

d

dt
E(r(t)ṙ(t)) = − ξ

m
E(r(t)ṙ(t)) + E

(
ṙ2(t)

)
(2.9)

d

dt
E
(
ṙ2(t)

)
= −2ξ

m
E
(
ṙ2(t)

)
+ vbm

m
(2.10)
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2.1. Brownian motion

Provided that the inital conditions for the system are E(r2(0)) = 0, E(r(0)ṙ(0)) = 0 and
E(ṙ2(0)) = vbm

2ξm , theses equations can be integrated. The solutions are

E
(
r2(t)

)
= vbm

ξ2

{
t− m

ξ

[
1− exp

(
− ξ

m
t

)]}
, (2.11)

E(ṙ(t)r(t)) = vbm

2ξ2

[
1− exp

(
− ξ

m
t

)]
and (2.12)

E
(
ṙ2(t)

)
= vbm

2ξ2m
. (2.13)

Comparing the equations above with the corresponding mathematical framework reveals
that physical Brownian motion is indeed the integral of an Ornstein-Uhlenbeck process.[108]
An Ornstein-Uhlenbeck process is a stochastic process of random steps with a small ten-
dency to move back to its origin.[109] Several features of simple diffusion systems are easy
to derive from eqns. (2.11)–(2.13).

From the fluctuation-dissipation theorem, it is known that the white-noise covariance
is connected to the temperature T and the friction ξ by[110]

vbm = 2ξkBT . (2.14)

The symbol kB, represents the Boltzmann constant. Consequently, the average squared
velocity of a diffusing particle is a constant value E(ṙ2(t)) = kBT

ξm
. For short times t� m

ξ
,

the particle moves like a free particle with E(r2(t)) = 2kBT
ξ
t2. For long times t� m

ξ
or in

the overdamped case, the scaling of the positional variance is proportional to time

E
(
r2(t)

)
= vbm

ξ2 t = 2kBT
ξ
t = 2Dt . (2.15)

For the last identity, the common definition of the diffusion coefficient was used[111]

D = kBT

ξ
. (2.16)

In many applications, it is a good approximation to use the friction coefficient of a spherical
particle with diameter a in a medium of the dynamic viscosity η given by

ξ = 3πηa. (2.17)

For the long time limit or the overdamped case, the statistical process that describes Brow-
nian motion merges from the integral of an Ornstein-Uhlenbeck process to an integral of a
Wiener process, which is a stochastic, continuous-time process with normally distributed
and statistically independent increments.[112] The corresponding Langevin equation is

ṙ(t) = ξ−1νbm(t) (2.18)

and immediately solved by integration over the noise term

r(t) = r0 + ξ−1
∫ t

0
dt′νbm(t′) . (2.19)

This equation can be used in computer simulations based on random number generation
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2. Nanoparticle diffusion

to imitate a diffusive process (e.g., fig. 2.2). It should be noted that on a computer, the
integration of a nowhere differentiable process is not straightforward, and errors are only
small if the quantities to compute are observed on a time scale much larger than a single
simulation step.

Figure 2.2.: Normalized example of a random walk. (a) Brownian noise term νbm that drives the particles
motion. (b) Time series of the particle position in the overdamped case. (c) Two-dimensional (normalized)
trajectory appearing as the typical irregular pathway. A green circle in the background represents the
square-root of the mean squared displacement (MSD, see section 2.3) from the trajectory start position
(violet sphere). An orange sphere marks the trajectory’s last position.

2.2 | Diffusion equation
The equations mentioned above described the realization of a process from a stochastic
point of view. A different framework to handle such processes is the modeling of the
evolution of probability distributions in time. Therefore, consider now the conditional
probability density function P (r, t|r′, t′) of finding a particle at position r at time t pro-
vided that it resides in r′ at time t′. In the overdamped case, the time evolution of this
probability density function can be calculated with the so-called Fokker-Planck equation,
which was already derived by Albert Einstein and which is known as the diffusion
equation[111]

∂

∂t
P (r, t|r′, t′) = D

∂2

∂r2 P (r, t|r′, t′) . (2.20)

From a macroscopic point of view, P (r, t|r′, t′) can be replaced by a concentration profile,
and therefore it connects the micro- with the macroscale. The solution of the diffusion
equation for a particle precisely located at r′ = 0 for t′ = 0 is

P (r, t) = P (r, t|0, 0) = 1√
4πDt

exp
(
− r2

4Dt

)
(2.21)

An illustration of the propagation of this probability density function in time and space is
shown in fig. 2.3. Being the fundamental solution to the diffusion equation, eq. (2.21) can be
utilized to calculate the solution of eq. (2.20) for other boundary or initial conditions as well.
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2.3. Mean squared displacement

In the literature, eq. (2.21) is linked to the self-part of the Van Hove correlation function
known from condensed matter physics and used to analyze particle step distributions.[113,
114]

Figure 2.3.: Propagation of the probability density function (solid black line) of an overdamped Brownian
diffusion process in time and space. In the t-r-plane a large number of Brownian walks are drawn in blue.
Red lines show the square-root of the mean squared displacement (MSD, see section 2.3), indicating the
growing standard deviation of the probability density function in time. The majority of the trajectory
realizations accumulate within the area stacked out by the square-rooted MSD.

2.3 |Mean squared displacement
A frequently investigated quantity resulting from diffusion experiments is called the mean
squared displacement (MSD). It measures the average squared distance that a particle
covers with (lag) time (see fig. 2.2). Mathematically, the MSD is the second statistical
moment of the particle position r(t),

MSD(t) = E
(
r2(t)

)
=
∫ ∞
−∞

r2(t)P (r, t) dr . (2.22)

A theoretical expression for the MSD of overdamped Brownian motion was already cal-
culated with the Langevin equation resulting in eq. (2.15), but can also be obtained by
inserting eq. (2.21) into eq. (2.22). Experimentally, this quantity is approximated by an
ensemble-average over many trajectories from (identical) particles. For the one-dimensional
trajectories ri(t) of particles i ∈ [0, Nparticle], the ensemble-averaged MSD is written as

〈
∆r2(t)

〉
N

= N−1
particles

Nparticles∑
i=1

[ri(t)− ri(0)]2 . (2.23)

In some single-particle experiments, only a minimal number of particles Nparticles are
present, but the trajectories of the particles are very long. This is the situation present
for SPOT. Therefore, temporal averaging of the displacements of a single pathway is more
evident than the ensemble averaging. The time-averaged MSD of particle i is given by

〈
∆r2(τ)

〉
T,i

= 1
T − τ

∫ T−τ

t=0
[ri(t+ τ)− ri(t)]2 . (2.24)
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2. Nanoparticle diffusion

Here, the temporal variable was changed from absolute time t to lag time τ emphasizing
the insignificance of the position measurement start time. For the statistics of a Brownian
particle, both averages are related to the positional variance of a particle given by eq. (2.15).
Note that for finite measurement times T and particle numbers N , the experimental MSDs
are statistical measures. Provided that the measurement time T is long, and the particle
number Nparticles is large, their expectation value is

E
(〈

∆r2(τ)
〉
N

)
= E

(〈
∆r2(τ)

〉
T,i

)
= 2Dτ (2.25)

The definition of an ergodic process is that long-time averages and ensemble averages are
identical[110], and it is seen that Brownian motion can be considered as an ergodic process.

2.4 | Anomalous diffusion
In general, the term ”anomalous diffusion” denotes any deviation from the linear lag time
dependency of the MSD, including phenomena like ultraslow diffusion, where the MSD
scales with [log (τ)]α̃ with very different values for the exponent α̃[115] or diffusion with
correlated jump length, where the MSD scales even faster than ballistic motion.[116] Most
frequently, anomalous diffusion is identified by a power-law scaling of the MSD with respect
to time

MSDanomal(τ) = 2Dατ
α, (2.26)

with Dα being the generalized diffusion coefficient of physical dimension m2 s−α and α being
the anomaly parameter.[110] The anomaly parameter ranges between 0 and 2 and helps to
categorize the type of diffusion. The regimes are subdiffusion α ∈ [0, 1[, normal diffusion
α = 1, superdiffusion α ∈ ]1, 2[, and ballistic motion α = 2. Examples for the different
scaling regimes are shown in fig. 2.4. The empirical definition of anomalous diffusion does
not specify the underlying physical processes, and different theoretical models can produce
a power-law dependence of τ with the same α. In the appendices B.1–B.3, a small selection
of anomalous diffusion models frequently encountered in literature are briefly introduced,
focusing on the most important equations. Namely those anomalous diffusion models
are the continuous-time random walk (CTRW), fractional Brownian motion (FBM) and
motion according to a fractional Langevin equation (FLE).

Figure 2.4.: Illustration of the different scaling of the MSD with respect to time in linear (a) and double-
logarithmic (b) representation.
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2.5 | Confined diffusion
Many biological and technical important chemical or physical processes take place in finite
domains, like the corralled motion of membrane proteins[117–121], diffusion inside the cell
nucleus[122], substance mixing in microfluidic devices[123], or chemical reaction catalysis
within constrained space.[124–127] While the confinement of molecular motion is often
required by technology[128], it can also be counted as a key factor in the origin of life.[129]
Some authors attribute the genesis of cells to the presence of a reaction container in the
form of a primitive cell membrane.[130–132]

The space available for diffusion may be confined by geometrical obstacles and barriers
or repulsive or attractive potentials. Depending on the complexity of the system, the
particle undergoing confined diffusion may experience additional influences on its motion
creating anomalous confined diffusion. One can think of a so-called crowded fluid (see
[133]) inside a structured environment that is moving and interacting with the particle at
the same time, creating arbitrarily complex diffusion characteristics.

As the confinement restricts the free expansion of the particle’s trajectory, the cor-
responding MSD course flattens to a plateau value. For confined Brownian motion, the
general expression for the MSD is given by

MSDconfined
bm (τ) = L2

2

[
1− A1 exp

(
−A22Dτ

L2

)]
. (2.27)

Here, L measures the length scale of the confinement and A1 and A2 are factors depending
on the confinement shape. For τ � L2/ (2A2D), the particle-wall interaction is negligible
and the MSD scales like in the free-diffusion case proportional to the lag time τ . In [134],
expressions for the MSD of Brownian motion confined in simple geometries with hard
walls of varying dimensionality (one-dimensional diffusion on a straight, two-dimensional
diffusion within a circle and three-dimensional diffusion within a sphere) are computed.
All of those expression can be approximated by eq. (2.27) with a proper choice of A1 and
A2.

In many physical systems, hard walls and simple geometric shapes are not an ade-
quate representation of reality. Instead, a particle exposed to a harmonic potential can
be described by a Langevin equation modeling much softer confinement while keeping the
equation as simple as possible. Assuming the origin-centered potential Uω(r) = kωr

2/2
with spring constant kω, the not-overdamped particle position dynamic is given by

mr̈(t) = −ξṙ − kωr + νbm(t) (2.28)

In [135], the state-space formalism is used to compute the MSD for a particle governed by
these dynamics, yielding

MSDharm.pot
bm,full (τ) = 2kBT

kω

{
1− exp

(
− ξτ2m

)[
cos(ω̃τ) + ξ

2mω̃ sin(ω̃τ)
]}

(2.29)

with the frequency ω̃ =
√
kω/m− ξ2/(4m2). In the overdamped case, the MSD is not

oscillating anymore and becomes

MSDharm.pot
bm (τ) = 2kBT

kω

[
1− exp

(
−kωτ

ξ

)]
. (2.30)
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For long lag times, the MSD plateaus to the thermal value 〈r2〉th = kBT /kω, which does
not depend on the particle properties but on the steepness of the potential. Evaluating the
exponential term as a Taylor series for short lag times and stopping after the first order
component, the MSD scales as 2Dτ again. Hence, the basic properties of the MSD are
algebraic identical to the hard wall case.

The question arises, how would the MSD look like, if a Brownian law does not describe
the particle’s dynamics for short times. Indeed, more or less subtle discrepancies of the
previously described behavior are observed for anomalous diffusion. A brief overview of the
(time-averaged) MSDs for selected anomalous diffusion models (CTRW, FBM and FLE)
is given to show the different scaling behavior. A more comprehensive review about this
topic can be found in [136, 137], where most of the here presented results are extracted
from.

For subdiffusive CTRW, the MSD does not converge to the thermal plateau, but grows
according to [138]

MSDharm.pot
ctrw (τ) ≈

(〈
r2
〉
B
− 〈r〉2B

) 2 sin (πα)
(1− α)απ

(
τ

T

)1−α
(2.31)

with the first two moments of the Boltzmann distribution

〈rn〉B =
∫∞
−∞r

n exp {−Uω(r)/(kBT )}dr∫∞
−∞ exp {−Uω(r)/(kBT )}dr . (2.32)

This is a power-law scaling that continues growing, even if the confinement is engaged.
With this result being very counterintuitive, it was, however, proven with simulations[139]
and found in experiments from optical tweezers[140]. Remarkably, eq. (2.31) does not
require to know the detailed shape of the confining potential as it is incorporated into the
moments of the Boltzmann distribution. In [141], analytical results for a cubic hard-wall
potential are in accordance with the presented scaling.

The MSD for FBM in a harmonic potential was derived in [136] as

MSDharm.pot
fbm (τ) = 2D̃αΓ(α + 1)

kαω
+ 2D̃ατ

α − D̃α

kαω

[
ekωτΓ(α + 1, kωτ) + e−kωτΓ(α + 1)

]
− kωD̃α

α + 1τ
α+1e−kωτM (α + 1, α + 2, kωτ) , (2.33)

using the Gamma function Γ(x), the complementary incomplete Gamma function Γ(z, x)
and the so-called Kummer function M(a, b, x), defined as

Γ(x) =
∫ ∞

0
e−ttx−1dt , (2.34)

Γ(z, x) =
∫ ∞
x

e−ttz−1 dt , and (2.35)

M(a, b, x) = Γ(b)
Γ(b− a)Γ(a)

∫ 1

0
extta−1(1− t)b−a−1 dt , (2.36)

respectively. The MSD converges to the thermal value 2 〈r2〉α,th = 2D̃αΓ(α+1)/kαω for large
lag times. The approached level is α-dependent since the noise is external. The relaxation
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2.5. Confined diffusion

dynamics can be approximated at τ →∞ to uncover the asymptotic scaling law as

MSDharm.pot
fbm (τ) ≈ 2

〈
r2
〉
α,th
− D̃αΓ(α + 1)

k2
ω

e−kωτ − 2α (α− 1) D̃α

k2
ωτ

2−α . (2.37)

The second term is of leading order around α ≈ 1, for which the third term vanishes, and
FBM converts to Brownian motion. Elsewhere, the MSD scales according to a power-law
with the exponent α− 2. Therefore, the MSD levels-off, but very slowly for superdiffusion
and slightly faster for subdiffusion.

Motion following the subdiffusive FLE in the presence of a harmonic potential yields
the MSD of shape

MSDharm.pot
fle (τ) = 2kBT

kω

{
1− E2−α,1

[
− kω
ξΓ(α− 1)τ

2−α
]}

, (2.38)

valid only in the overdamped limit. The appearing generalized Mittag-Leffler function
Ea,b(x) is defined by

Ea,b(x) =
∞∑
n=0

xn

Γ(an+ b) . (2.39)

This two-parameter Mittag-Leffler function interpolates between purely exponential and
power-law-like scaling.[142] For b = 1, the second parameter can be suppressed in notation,
and the resulting function is called the ordinary Mittag-Leffler function Ea(x) = Ea,b(x).

Eq. (2.38) approaches the same α-independent thermal value for large lag times as in
the Brownian motion case. At intermediate lag times, the MSD grows approximately as

MSDharm.pot
fle ≈ 2

〈
r2
〉

th

(
1− ξ

kωτ 2−α

)
. (2.40)

and for short lag times, subdiffusive scaling is recovered.
Summarizing the MSD behavior for confined motion, there are two basic types of scal-

ing. First of all, the exponential approaching to a constant plateau value and secondly a
power-law that relaxes algebraically a lot slower. The generalized Mittag-Leffler function
handles intermediate behavior that is not strictly captured by one of the two extremes.
The timescale on which the MSD settles depends on the system’s friction while the noise
is considered internal by the underlying model. The plateau value contains information
about the extent of the space between the surrounding barriers. An exotic exception of
the two cases is the CTRW model, where the MSD does not level-off at any lag-time.
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3 | Method

The following is a description of the basic concepts of SPOT, with the technical and
mathematical details saved for later.

Repetitive scanning of a laser focus on a known pathway, for example the mentioned
circle line, is used to imprint a carrier frequency onto the fluorescence rate of a particle
such that the detected signal contains information on the particle’s position. Once the
focus is in close proximity to the particle, the fluorescence rate is high, and when the focus
is far away, the number of detected photons per time bin decreases. In fig. 3.1 (a-c), this
principle is illustrated for an orbital focus scan and a fixed particle emitting deterministic
signals.

Figure 3.1.: (a-c) Sketch of the fluorescence rate modulation in an orbital scanning approach for lateral
position estimation. Three scenarios are displayed (a,b,c) in which the position of a particle (orange sphere)
is varied. A laser focus (blurry green disc) with a Gaussian intensity profile with 1/e2-beam width wxy is
moved on a circle with radius R (black dotted line) starting at position (R, 0). The angular frequency of
the rotation is ω0. In scenario (a), the particle is located in the coordinate systems origin. The associated
detected fluorescence signal F (t), displayed on the plot below as a red line, is constant and resides between
the peak fluorescence rate F0 and the background signal FB . Once the particle is displaced, the signal
becomes modulated. In scenario (b), F (t) describes a cosine-like shape with a deep modulation because
the particle is positioned with a big displacement along the x-axis. In scenario (c), F (t) progresses π/2-
phase shifted and with a less pronounced modulation depth corresponding to the smaller displacement just
along the y-axis. (d) Sketch of the concept of a control loop that tries to minimize the distance between a
diffusing particle and the orbit center. (e) Overview about the basic steps of the SPOT method, arranged
in a feedback loop.
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As the particle is in the orbit center (see fig. 3.1 (a)), the distance between the laser focus
and the particle stays the same over a complete rotation cycle and a constant signal is
detected. For the particle being displaced with respect to the orbit center (seefig. 3.1(b)
and (c)), the signal becomes modulated with the modulation amplitude containing data
about the particles radial displacement and the modulation phase defined by the angular
position of the particle. Extracting this information with demodulation techniques provides
an estimator for the particle’s lateral position.

The modulation/demodulation idea can be extended to three dimensions (3D-SPOT)
by switching quickly between two light orbits that are shifted with respect to each other
along the common optical axis. Here, the reference position of the particle corresponds to
the midpoint between the two orbits. This procedure is able to localize a mobile particle
only for the time it diffuses through the detection volume.

By implementing of a feedback loop, that compensates for the particle’s motion, the
measurement time and trajectory length can be dramatically increased (fig. 3.1 (d)). The
realization of a feedback loop can take various forms. The detection volume and excitation
scan path may be shifted to be centered on the particle, external forces can be applied
that act directly on the particle to move it back, or the sample cell may be driven to
follow a mirror-inverted pathway and trap the freely moving particle within the laboratory
coordinate system. The latter approach was embarked upon here.

Thus, SPOT is a control-theoretical problem, consisting of a position measurement
through fluorescence modulation that is fed back to the sample holder to lock on this
position, as displayed in fig. 3.1(e).

3.1 | Position-sensitive fluorescence rate modulation
First of all, an expression for the fluorescence signal F (t) that is measured from a moder-
ately excited distribution of chromophores with the concentration profile c (t, r) must be
developed.

Following literature, the recorded fluorescence signal depends on a so-called molecule
detection efficiency function (MDF) that simultaneously considers the microscope’s collec-
tion efficiency and excitation profile (see appendix C.1 for a brief motivation). A suitable
expression for the MDF in a confocal microscope is developed in [143] by assuming a di-
verging Gaussian laser beam. Dertinger et al. called it a modified Gaussian-Lorentz
profile, which can be written as

MDFmGL (r) = κ(z)
w2(z) exp

[
− 2
w2(z)(x2 + y2)

]
, (3.1)

with the Cartesian z-coordinate co-aligned with the optical axis and the collection efficiency
amplitude κ(z) given by

κ(z) = 2
∫ a�

0
dρ

ρ

R2(z) exp
(
− 2ρ2

R2(z)

)
= 1− exp

(
−

2a2
�

R2(z)

)
. (3.2)

The radial integration limits are chosen to reach from zero to a�, which is the projection
of the detection aperture diameter into the sample plane. The function w(z) describes the
axial dependency of the lateral beam diameter (1/e2-width). R(z) has an analog meaning
but for the geometrical extend of the detection volume. Both functions are defined similarly
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3.1. Position-sensitive fluorescence rate modulation

as

w(z) = wxy

1 +
(
λexcz

πw2
xyñ

)2
1/2

= wxy

[
1 +

(
z

wz

)2
]1/2

and (3.3)

R(z) = R0

1 +
(
λemz

πR2
0 ñ

)2
1/2

= R0

[
1 +

(
z

Rz

)2
]1/2

. (3.4)

In this definition λexc and λem describe the central excitation and central emission wave-
length, respectively. Furthermore, the refractive index of the immersion medium ñ appears
in both definitions. The parameters wxy and R0 are generally unknown model parameter
and should be determined by fitting the model equations to a confocal scan of a single static
particle. The characteristic length scales for axial beam divergence wz = λexc/

(
πw2

xyñ
)

and Rz = λem/ (πR2
0 ñ) are defined for simpler notation. There are many publications

where this profile of the MDF was proven.[143–146] An example of a modified Gaussian-
Lorentzian profile is shown in fig. 3.2.

Figure 3.2.: Example of a modified Gaussian-Lorentzian computed for the parameter: λexc = 520 nm,
λem = 630 nm, wxy = 190 nm, R0 = 100 nm, ñ = 1.33 and a� = 50 µm/60. For comparison, the
collection efficiency amplitude κ(z), the axial dependency of the lateral beam width w(z) and an unmodified
Lorentzian profile 1/w2(z) are added.

Ultimately, the fluorescence rate detected from the chromophore distribution in the pres-
ence of a homogeneous background fluorescence rate FB is

F (t) = FB +
∫

MDF(r′) c (t, r′) d3r . (3.5)

In a SPOT setup, the laser beam intensity profile is not centered at the same point as
the collection efficiency, and the MDF has to be modified for a moving excitation profile.
If the Gaussian-Lorentzian laser beam focus follows a prescribed trajectory written as
rL(t) = (xL(t), yL(t), zL(t)), the MDF becomes time-dependent, written as

MDFmGL (t, r) = κ(z)
w2(z − zL(t)) exp

{
− 2 [x− xL(t)]2

w2(z − zL(t)) −
2 [y − yL(t)]2

w2(z − zL(t))

}
. (3.6)

Considering a very sharp-peaking chromophore distribution like it is realized by a single
immobilized molecule or nanoparticle, c(t, r) can be approximated by a Dirca-delta function
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δ(r − rp) peaking at the particle position rp. Inserting this and eq. (3.6) into eq. (3.5)
yields in the detected fluorescence rate

F (t, rp) = FB +
F0w

2
xyκ(zp)

w2(zp − zL(t)) exp
{
−2 [xp − xL(t)]2

w2(zp − zL(t)) −
2 [yp − yL(t)]2

w2(zp − zL(t))

}
(3.7)

The focus scan path rL(t) will now be specified for the 3D-SPOT case, where it consists
of two concentric rings shifted by dz with respect to each other and created alternatingly.
This can be written as two sinusoidal and π/2-phase shifted pathways of amplitude R
and angular frequency ω0 in lateral directions and a square wave shaped switching of the
z-coordinate with frequency ω0/2. Hence, the laser scan path is

rL(t) =

xL(t)
yL(t)
zL(t)

 =

 R cos(ω0t)
R sin(ω0t)

dz/2 sqw(ω0t/2)

 . (3.8)

The used square wave function sqw(x) can be defined for instance by a Fourier series as

sqw(x) = 4
π

∞∑
k=1

sin((2k − 1)x)
2k − 1 . (3.9)

Consequently, a pass of the total scan pattern takes 2T with T = 2π/ω0. An important
characteristic of the functions for the particular spatial directions is that they are orthog-
onal functions so that the particle coordinates can be determined independently of each
other through demodulation. With the scan path eq. (3.8), the fluorescence rate turns
eq. (3.7) into

F (t, rp) = FB+
F0w

2
xyκ(zp)

w2
(
zp − dz

2 sqw
(
ω0
2 t
)) exp

−2 [(xp −R cos(ω0t))2 + (yp −R sin(ω0t))2]
w2
(
zp − dz

2 sqw
(
ω0
2 t
))

 . (3.10)

This is the fluorescence rate detected from a single particle significantly smaller than the
laser beam waist and given for a beam scan path described by two parallel circle lines in a
microscope where the MDF can be expressed by a modified Gaussian-Lorentzian profile.

3.2 | Demodulation of the detected photon trace
While the fluorescence rate is a deterministic function depending on the time and the actual
particle position, the detected photon trace is a stochastic quantity. The random number
Υ(t) records the arrivals of single photons and peaks to one (per second) every time ti a
photon is registered by the detector chip. A photon trace is therefore given as

Υ(t) =
∑
i

δ(t− ti) . (3.11)

With the chosen approach, a digital processor counts the rising edges of the voltage pulses
emitted by the detector once a photon hits the active surface area of the APD chip.

Since a photon trace realization is random, its statistical properties must be defined.
Because the probability of detecting a given number of photons in a given time interval is
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3.2. Demodulation of the detected photon trace

Poisson distributed, Υ(t) can be related to the time-dependent fluorescence rate F (t) by
[147]

E(Υ(t)) = F (t) , and (3.12)
E(Υ(t1)Υ(t2)) = F (t1)F (t2) + F (t1)δ(t1 − t2) . (3.13)

In practice, a small signal chunk Υ(t′) for t′ ∈ [t0; t0 + τ ] is recorded, and further processed.
For example, the total number of detected photons Nph(t) is calculated. Mathematically,
Nph(t) can be expressed as an integral over the photon trace

Nph(t) =
∫ t0+τ

t0
Υ(t′, rp)dt′ . (3.14)

The expected number of detected photons Nph is finally given by

Nph = E(Nph(t)) =
∫ t0+τ

t0
F (t′, rp)dt′ (3.15)

Due to the fluorescence rate modulation during the signal acquisition, information about
the particle position are enclosed in the photon trace and extracted by phase-senstive
lock-in integration. An estimator r̂p for the particle position rp can be constructed by a
transformation of the shape

r̂p(t) = N−1
ph

∫ t0+τ

t0
Υ(t′, rp)demod(t′) dt′ , (3.16)

where the demodulation vector function demod(t) was introduced. The detailed realization
of demod(t) depends on the MDF and the beam scan pattern that is used to modulate
the fluorescence. For the present geometry and integration times of an integer multiple nsp
of the modulation period 2T , the demodulation vector function is written as

demod(t) =


w2
c

2R cos(ω0t)
w2
c

2R sin(ω0t)
w4
cw

2
z

dzw2
xy(w2

c−2R2)sqw
(
ω0
2 t
)
 , (3.17)

where an abbreviation of the lateral laser beam waist in the center plane of a two orbit
geometry wc = w(dz/2) was used. In the appendix, these equations are derived explicitly
(see appendix C.2) and it is shown how to implement such a transformation on a real-time
processor saving computation time (see appendix C.3).

The estimator of the particle position is a random variable, as it is based on probing
the statistical quantity Υ(t′, rp). However, the estimator’s expectation value is, in fact, the
particle position

E(r̂p(t)) ≈ rp . (3.18)
The variance of the estimator is determined by several factors. First of all, the integrated
peak number of photons

Nmax = 2TF0 (3.19)
influences the estimator’s accuracy. Moreover, the variance scales quadratic with the laser
focus intensity profile’s characteristic length scale along the corresponding axis wxy or wz
and is further influenced by an externally controllable, dimensionless function representing
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the geometry of the scan pattern in lateral direction as

Λxy(ξρ, ξz) = (1 + ξ2
z/4)3/2

√
8ξρ

exp
(

ξ2
ρ

1 + ξ2
z/4

)
, (3.20)

and in axial direction as

Λz(ξρ, ξp) = (1 + ξ2
z/4)5/2

ξz(1 + ξ2
z/4− 2ξ2

ρ)
exp

(
ξ2
ρ

1 + ξ2
z/4

)
. (3.21)

Thus, the lateral and axial variance of the position estimator reads

Var(ŷp) ≈ Var(x̂p) ≈
wxyΛxy(R/wxy, dz/wz)√

Nmaxnsp

2

and (3.22)

Var(ẑp) ≈
(
wzΛz(R/wxy, dz/wz)√

Nmax

)2

. (3.23)

While the operator of the setup is free in the choice of Λxy(ξρ, ξp) or Λz(ξρ, ξp), the number
of counted photons is only indirectly controllable. Thus, a suitable scan path geometry
should be worked out to minimize the estimator’s positional variance (see section 6.1). A
detailed computation of the corresponding expressions can be found in the appendix C.2.

3.3 | Feedback controller
In the previous section, a fluorescence modulation technique was introduced to determine
the position of a static particle with respect to the center of a laser focus scan path. If the
particle moves slowly compared to the time needed for its localization, a moving particle
can be localized. Sequential localization yields an estimate for the particle’s trajectory r̂(t).
The measurement time of the trajectory is restricted to the residence time of the particle
within the detection volume. To obtain trajectories rich in data points, long experimental
times are needed.

One way to achieve this is to apply feedback to the system that compensates for the
particle movement. As already mentioned, the approach here is based on the stage scanner
that has the sample chamber attached to it. To track the particle, the sample scanning
must happen in the reverse direction with respect to the particle movement, resulting in
non-invasive trapping of the particle within a fixed detection volume. The interplay of the
sample coordinate system that is attached to the stage and the laboratory reference frame
is illustrated in fig. 3.3.

In this section, the feedback controller will be presented that allows for the trapping.
For a basic introduction into system theory and control systems, a brief overview is given
in the appendix A.

The transfer function formalism will be used in the following and therefore, the Laplace
transformation will be defined first. The Laplace transformation of a function f(t) is defined
as

F (s) = L{f(t)} =
∫ ∞

0
f(t) e−stdt , (3.24)
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Figure 3.3.: Illustration of the relation between the sample stage and the laboratory coordinate system
(not drawn to scale). The green coordinate system is fixed in space with its origin in the center of the
detection volume. The orbital laser focus scan is centered around the laboratory coordinate systems
origin. The sample coordinate system (blue) is fixed to that of the nanopositioning stage and moves on
manipulation of the stage position rs. Here the origin is selected arbitrarily in the lower left corner. The
particle movement r takes place within the sample coordinate system, but the particle position is measured
with respect to the laboratory coordinate system origin r̂p.

with the complex frequency s ∈ C. The inverse Laplace transformation obeys

L{F (s)}−1 = 1
2πi

∫ c+j∞

c−j∞
F (s) estds =

f(t) for t > 0
0 for t < 0

. (3.25)

If available, Laplace transformed quantities are written as capital letters of the correspond-
ing time domain variables.

In order to model, the feedback control system, the spatial particle coordinates and the
stage axis are assumed to be completely independent from each other. Consequently, all
equations in this section act on scalars and the final three-dimensional controller consists
of three independent copies of the one-dimensional instances. In fig. 3.4, a block diagram
helps to overview the control system.
The position of a particle r(t) following Brownian motion in the overdamped regime is
the integral over a Wiener process νbm(t) (see eq. (2.19)). The stage position rs(t) should
follow this motion, and the error signal e(t) is defined as

e(t) = r(t)− rs(t) . (3.26)

The position estimator r̂p (see eq. (3.16), not drawn in fig. 3.4) measure this error signal
corrupted by noise n(t), which is modeled as Gaussian white noise given as the derivative

29



3. Method

Figure 3.4.: Block diagram of the implemented feedback controller. Integration (1/s) of the driving
Wiener process νbm yields the particle position r(t). The difference between the particle’s position and
the stage position rs(t) is the error signal e(t) that is influence by counting noise n(t). The error signal is
used to determine the target control signal utar(t) that is fed into a second control loop consisting of the
stage controller with transfer function C(s) and the stage itself with transfer function S(s). The controller
converts the target control signal utar to a control voltage uv(t). The stage responds with rs(t) to the
control voltage which couples back to the error signal in the next loop iteration (inner and outer).

of a Wiener process νn(t) scaled with a noise density n

n(t) = n
dνn(t)
dt

. (3.27)

Hence, the signal that enters the stage controller, represented by the transfer function C(s),
is

utar(t) = e(t) + n(t) . (3.28)
The controller converts this input signal to a voltage that drives the nanopositioning stage
to the set point. This stage is represented by the transfer function S(s), and its target
is the particle position measurement in laboratory coordinates. In a second and faster
control loop, the stage position is measured and fed back to the stage controller, where an
internal proportional–integral–derivative (PID) controller is utilized to keep the stage on
target. The combined stage-stage controller system is therefore represented by the transfer
function Gsc(s).

Continuing using the transfer function formalism, the input noise that drives the par-
ticles and influences the error signal translates to the stage position according to

Rs(s) = Gsc(s) [E(s) +N(s)]
= Gsc(s) [Rs(s)−R(s) +N(s)]
= Gsc(s)Rs(s)−Gsc(s)s−1L{νbm(t)}+Gsc(s)N(s) . (3.29)

After rearrangement, a direct relationship between the stage position and the noise sources
is obtained

Rs(s) = Gsc(s)
s [1 +Gsc(s)]

L{νbm(t)}+ Gsc(s)
1 +Gsc(s)

N(s) . (3.30)
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3.4 | Trajectory reconstruction and analysis
A measured particle trajectory r̂[k] = r̂(k∆t) with k ∈ {0, 1, 2 . . . Npos} is given as a se-
quence of Npos positions recorded in equidistant time intervals ∆t. A single position,
written in Cartesian coordinates, is given as

r̂[k] = (r̂x[k], r̂y[k], r̂z[k]) . (3.31)

The convention is used that discrete-time series are highlighted by an argument in rectan-
gular brackets, that is the index of multiples of the sampling time interval.

The question arises, how to reconstruct the particle trajectory from the data generated
by the SPOT measurement process? A SPOT measurement results in a file stored on
a computer and looks like the example given in the appendix D.8. Besides the meta-
information given in the file header, time series of the nanopositioning stage target position
utar[k], the stage sensor output rs[k] and the particle position with respect to the detection
volume center r̂p[k], the detected photon number per channel, and the temperature and
photodiode readout are stored as columns. The measured particle trajectory is defined
by transforming the particle position from the laboratory reference frame to the sample
chamber coordinates by

r̂[k] = r̂p[k]− rs[k] . (3.32)
The particle trajectory is used to compute further statistical quantities like the step-size
distribution, the MSD or the (normalized) velocity autocorrelation function (nVACF).

The enumerated functions depend not on the absolute particle position, but on the par-
ticle displacements. Those displacements are represented by the increment vector specified
for a particular lag time τ = k∆t and calculated as

∆r̂k[i] = r̂[i+ k]− r̂[i] , (3.33)

with i ∈ [0;Npos − k]. A histogram of all occurring displacements is called step size distri-
bution. The step-size distribution considers the frequency of steps of a specific size and thus
the average particle ”velocity”. However, it ignores temporal dependencies of the steps.

Those temporal dependencies are frequently studied with the help of the normalized
velocity autocorrelation function (nVACF). According to [148, 149], the nVACF can be
calculated as the averaged scalar product of successive increments vectors normalized by
their absolute value via

nVACFk[q] = nVACFτ (∆τ = q∆t) = 1
Npos − q

Npos−q∑
i=0

∆r̂k[i]
|∆r̂k[i]|

· ∆r̂k[i+ q]
|∆r̂k[i+ q]| . (3.34)

Positive values of nVACF indicate consecutive steps in the same direction, negative values
in opposing directions. However, the most important function to elucidate the temporal
evolution of the step sizes is the time-averaged MSD, that is calculated from a single
trajectory as

MSD[k] = MSD (τ = k∆t) = 1
Npos − k

Npos−k∑
i=0

(∆r̂k[i])2 . (3.35)

A fast way to compute the MSD for equally spaced lag-times is possible by splitting the
sum in eq. (3.35) into correlation functions that can be calculated with the help of the
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fast Fourier transformation (see appendix C.4 for more details).[150] Sometimes it may be
interesting to investigate each spatial dimension separately. A three-dimensional MSD can
therefore be dissected into three one-dimensional MSDs

MSD[k] = MSDx[k] + MSDy[k] + MSDz[k] , (3.36)

or one two-dimensional and one one-dimensional MSD, e.g.,

MSD[k] = MSDxy[k] + MSDz[k] . (3.37)

Thus, the dimensionality of the MSD is named after the number of spatial dimensions of
the underlying trajectory and labeled with the corresponding axis name.
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The experimental setup of 3D-SPOT is basically a extension of a home-built fluorescence
microscope that is controlled in real-time by feedback application. The optical setup is
sectioned into four parts: A light sources unit, a beam deflection unit, a confocal microscope
and a detection unit.

A schematic representation of the relevant components is illustrated in fig. 4.1. While
a detailed technical description of the setup is given in the appendix D, the conceptual
functioning will be explained in the following.

4.1 | Optical setup
The light source unit consists of an application-depended selection of lasers that are coupled
into an optical single-mode fiber that transmits the laser light into a beam deflection unit.
By doing this, lasers can be exchanged with a minimum of manual alignment needed in
the remaining microscope units. Additionally, multiple lasers can be combined to a single
beam that is perfectly co-aligned.

The beam deflection unit is required for creating two coaxial light orbits that are shifted
with respect to each other along the optical axis in the detection volume. Therefore,
the light path is split and combined again before it is guided to the confocal microscope
body. On this way, three single-axis acusto-optical deflectors (AODs, see appendix D.2 for
technical details) scan the beam in electronically controlled patterns. In each of the light
pathways one of the two light orbits is generated. To switch back and forth between the
orbits, the respective other beam is directed against the rim of an aperture with the help
of the AODs. The desired axial displacement of the two light orbits along the optical axis
is achieved by a slight deadjustment of two lenses within each branch. A detailed analysis
of the relation between the angular deflection via the AODs, the (de-)adjustment of the
lenses and the focus position within the sample plane is conducted with the help of ray
transfer matrix analysis (see appendix D.3).

After entering the confocal microscope via a side-port, the deflected beam is guided
by a dichroic mirror into an infinity-corrected microscope objective that focuses the light
onto the sample that is mounted on a three-axis nanopositioning stage. The sample’s
fluorescence is collected by the same objective, passes the dichroic mirror and is imaged
into the detection unit through a pinhole onto two avalanche photodiode (APD) based
single-photon counting modules. Both detectors generate TTL pulses on the detection of
a single-photon. Those pulses are counted by the electronics.
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Figure 4.1.: Schematic representation of the optical setup for 3D-SPOT (not drawn to scale). The optical
axes of the excitation beams are indicated by the green, red, and yellow bar representing its wavelength(s).
The optical axis of the emission beam is drawn as a violet bar. Lenses with focal length fi are indicated
by Li. Optical devices like lenses, objectives, filters, wave plates, etc. are drawn as white shapes. Several
beam splitter/combiner are used: The excitation beam combiner (BC), non-polarizing 50:50 beam splitter
cubes (BS1, BS2 and BS3), the polarizing beam splitter (PBS), and the dichroic mirror (DBS). Mirrors
M or apertures like irises or pinholes are represented by black lines. Blue geometries indicate wired
devices like the acousto-optical deflectors (AODs), a photodiode measuring the laser power for reference
(PD), single-photon counting modules (APD 1 and 2), a charged-coupled device camera (CCD) and the
nanopositioning stage. Dashed lines express the optional character of the wide-field lens (WFL) and wide-
field mirror (WFM). A Pt1000-sensor element is used to record the room temperature next to the sample
cell. Further explanations are given in the main text. A complete overview about the setup’s electronics
was waived in this figure for the sake of visual clarity, but it is illustrated in fig. D.9 in the appendix
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4.2 | Nanopositioning stage
A critical component of the SPOT setup is the nanopositioning stage realized by a three-
axis sample holder moved by piezoceramic actuators. Unfortunately, piezoceramic actua-
tors suffer from several effects that hamper their usage in application.[151] For instance, the
applied voltage is related to the displacement of the piezoceramic actuator by a hysteresis.
Frequency components in the driver signal may excite mechanical vibrations. Furthermore,
drift motion, known as creeping, occurs in situations where voltages are constantly applied
over a long period of time, and limit the positional accuracy in the low-frequency range.

Because the positioning stage is so essential for the tracking performance, the initially
used device was upgraded within this work’s time span. A closed-loop device from PI -
physik intrumente (P-545.3D8S, PInano Trak Piezo Tracking System, Physik Instrumente
(PI) GmbH & Co. KG) replaced an open-loop system from piezosystem jena (Tritor 102,
Piezosystem Jena). While many devices on the market are optimized in terms of spatial
accuracy, which may be specified in the range below one nanometer, the application of
SPOT requires fast response behavior. Long travel ranges enable simple usage and possibly
long trajectories to record. This and some aspects concerning the type of construction
and communication interfaces lead to the currently used device. The stage controller is
equipped with a 20 kHz proportional–integral–derivative (PID) control loop and a notch
filter removing frequencies in the range of the stage’s resonance frequency from the driving
signal.

More technical information and a detailed characterization of the stage is found in the
appendix D.4 and appendix D.5, where also the stage-stage controller transfer function
was identified.

4.3 | Setup controller
The core component of the setups control logic is an ADwin system (ADwin Gold II, Jäger
Computergesteuerte Messtechnik GmbH). The ADwin is a self-sufficient, programmable
digital signal processor that communicates with a PC (Windows 10, 64 bit), where a
home-written graphical user interface (QtSPOT) enables the experimenter to configure
the setups settings and to interact with the hardware without disturbing the real-time
processing that happens on the ADwin’s computation unit. The ADwin system sends
the driver signals for the beam deflection to the AODs, sets the target values for the
nanopositioning stage, receives the readout from the stage’s position sensors and counts
the photons detected by the APDs. Furthermore, it performs all computation needed for
the localization and feedback application of the SPOT procedure and buffers the data,
before they are transferred to the PC’s hard drive.

More technical details about the ADwin system and the software realization can be
found in the appendix D.6 and appendix D.7, respectively.

4.4 | Comments about the setup
The available hardware is sufficient to execute several further measurement methods, while
switching between them needs on almost no manual intervention. For instance, FCS (with
one, two, or moving laser beam foci), and 3D confocal scanning microscopy are already im-
plemented. Just by pushing a button in the control software (QtSPOT), the setup changes
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its operation mode. The AOD settings can be used to select an excitation wavelength by
software. Switching to wide-field mode is just as easy and opens the door for camera-based
SPT.

The addition of the axial fluorescence modulation increases the complexity of the setup
tremendously. While 2D-SPOT needs only the focus width and orbit radius to be cali-
brated, 3D-SPOT requires the axial focus profile and the orbit distance. Especially be-
cause of the orbit separation being manipulated manually, time-consuming adjustment
procedures are needed. Furthermore, the symmetry of both the excitation scan path and
its arrangement in the detection volume must be guaranteed. It is necessary to check the
properties of two foci and two orbits to match with high precision. Changing between
excitation colors increases the number of calibration parameters.

Therefore, standardized calibration methods are an essential ingredient for the reliable
operation of this setup. Some automated protocols are already implemented in the existing
software.
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In general, the sample systems that are used for SPOT experiments consist of two ma-
jor ingredients. The first component is the fluorescent tracer which is the particle to be
tracked by the method. Its properties like size, photo-physics and surface chemistry di-
rectly impacts the measurement accuracy and a proper particle choice is advised. The
second component of the SPOT sample is the particle’s environing medium. The medi-
ums composition and its internal structure affects the diffusion behavior of the fluorescent
probe. Depending on the experiments objective either a particle with known properties
can be used to inspect its ambient conditions or the other way around.

In the context of this thesis, two different types of samples are employed: Isotropic
nanoparticle suspensions, where individual fluorescent polystyrene spheres diffuse freely
within homogeneous fluids and a nanoporous polymer membrane that is filled with a
nanoparticle suspension and that confines the particles motion.

In this chapter, the fluorescent probes are explained and characterized first. Then,
the polymer membranes used for the experiments in chapter 8 are introduced. In the last
sections of this chapter, the actual sample preparation steps for the different experiments
are summarized.

5.1 | Fluorescent probes
First, it needs to be specified what types of particles can and cannot be tracked by SPOT.
An illustrative overview about the particle categories discussed in the following is given in
fig. 5.1.

Organic dyes, for example, are synthetic molecules of low molecular weight and present
in a wide variety of excitation and emission spectra. Dyes with very high quantum yields
and extinction coefficients are available, like the very common fluorescein or rhodamine
dye molecules.[158] Generic compounds like these have derivatives with tailored properties
such as water solubility or photo-stability. Besides the flexibility of their photo-physical
characteristics, dyes excel in their labeling properties. Due to their small size (∼ 1 nm),
labeling with an organic dye has minor influence on its target’s biological function, for
instance. In contrast, their small size (diffusing too fast) and limited photo-stability (photo-
bleaching and blinking) hampers their usage as tracer particle for SPOT.

Naturally occurring fluorophores, like the green fluorescent protein (GFP)[159] and its
many derivatives with tailored photo-physical properties (e.g. emitting in different spectral
ranges, like the UV, yellow, orange, red, or infrared, showing enhanced photophysical
properties like eGFP and eYFP or being even photo-activatable or -switchable [158, 160–
165]) are in general larger than organic dyes and may be tracked with SPOT under the
right experimental conditions. But in general, their applicability for SPOT is restricted
similarly to organic dyes by their photo-stability.
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Figure 5.1.: Examples of fluorescent probes (not drawn to scale). The chemical structures of (a) fluores-
cein[152], (b) Nile red[153], and the two rhodamine derivatives, (c) rhodamine 6G[154] and (d) rhodamine
B[155], are shown in the top row. In the bottom row, there is (e) the 3D structure of GFP (graphic
taken from protein data bank with PDB ID: 1EMA[156, 157]) and schematic sketches of (f) a core-shell
quantum dot and a (g) nano-/microsphere. As an example of the core-shell quantum dot, a CdSSe/ZnS
compound was drawn and for the microsphere, a polystyrene bead labeled with Nile red and a carboxyl-
modified surface. For near-neural pH values, some carboxyl groups are charged (COO−), and some are
not (COOH).

However, there is a particle class of similar size that is very photo-stable. Quantum dots
are nanoscale crystals (2-20 nm) of semiconductor materials with remarkable electronic and
optical properties.[166, 167] In practice, samples containing quantum dots must be handled
with care, as they contain heavy metals that are cytotoxic and may endanger the health
of the experimenter or the investigated sample.[168–171] For experiments on the single
nanocrystal level, it must be considered that quantum dots show similar blinking behavior
like those of single-molecules.[172]

Less hazardous and not influenced by blinking are so-called nano- or microspheres.
Those synthetic particles, sometimes also called nanobeads, are of spherical shape with a
diameter in the nanometer or micrometer range. The used materials can vary strongly, but
two important classes are silica-based or polymeric nanospheres. Both are not fluorescent
and therefore have to be loaded with dyes for the purpose of fluorescence microscopy. In
the case of polymeric particles, physical adsorption is a popular method to attach fluores-
cent dyes to preformed polymer particles.[173] As this adsorption is potentially reversible,
dye leakage may occur, and copolymerization with reactive dyes has been developed to
overcome this problem.[174] Today, many different fluorescent nanobeads are available
commercially, leaving their exact preparation unknown as a business secret. In this thesis,
fluorescent polymeric spheres significantly smaller than 1 µm and made of polystyrene are
used. Polystyrene nanobeads are nontoxic and fairly biocompatible, disregarding the con-
temporary micro/nanoplastic debate. Furthermore, they are highly hydrophobic and can
consequently be doped with a wide range of apolar fluorophores. However, their flexibility
about surface modification is limited.[175] To stabilize nanospheres in aqueous environ-
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ments, modification with carboxy groups are common because it allows for surface charge
control via pH and ionic strength.[176] Carboxylated polymer particles are capable of form-
ing amide bonds with amino groups of bioligands, which is a frequently used strategy to
label proteins. But also other functional molecules like streptavidin can be coated on poly-
styrene particles.[177] Being loaded with large amounts of dye and with a flexible choice
of size, nanobeads appear as the favorite tracer particle class for SPOT experiments.

The fluorescent probes that are used as tracer particles for SPOT experiments are listed
in table 5.1 with the information provided by the respective manufacturer.

Table 5.1.: Listing of the used fluorescent particles and their specifications. Central excitation (exc.)
and emission (em.) wavelength are defined by their spectral maximum. The nominal diameter �nom is
provided by the manufacturer.

product exc./ em./ �nom/
number name manufacturer material nm nm nm
F8786 FluoSpheres Nile

Red, Fluorescent
Microspheres

Thermo
Fisher
Scientific

polystyrene,
carboxylate-
modiefied

535 575 27± 4

F8783 FluoSpheres Dark
Red, Fluorescent
Microspheres

Thermo
Fisher
Scientific

polystyrene,
carboxylate-
modiefied

660 680 25± 4

T10711 TransFluoSpheres Thermo
Fisher
Scientific

polystyrene,
streptavidin-
labeled

488 645 48± 6

CAF-050NM Red Fluorescent
Particles

Magsphere Inc. polystyrene,
carboxylate-
modiefied

538 584 50± 18

CAF-100NM Red Fluorescent
Particles

Magsphere Inc. polystyrene,
carboxylate-
modiefied

538 584 100± 20

The actual size distributions of a subset of the listed particles were determined by dy-
namic light scattering and the CONTIN analysis.[178] The obtained particle distributions
are given in fig. 5.2. Measured diameters differ from the information provide by the manu-
facturers, which is not an unusual finding. Similar deviations between nominal and actual
particle diameters have been found before.[179, 180]

Figure 5.2.: Particle diameter distribution determined via the CONTIN analysis of dynamic light scat-
tering experiments
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Figure 5.3.: Spectra recorded with a fluorescence spectrophotometer (Cary Eclipse fluorescence spec-
trophotometer, Varian Inc.) in buffered water. Excitation spectra are shown as solid blue lines and
emission spectra as solid red lines. For a detailed description of the particles see table 5.1.

Figure 5.4.: Excitation (solid blue line) and emission (solid red line) spectrum of the TransFluoSpheres
(see table 5.1) recorded with a fluorescence spectrophotometer (Cary Eclipse fluorescence spectrophotome-
ter, Varian Inc.) in buffered water. In section 9.2, TransFluoSpheres are excited with two different laser
wavelength (dashed green and red line), while maintaining the optical filter set (dichroic beam splitter:
zt633rdc, Chroma Technology Corp., gray line; longpass detection filter: z633 RDC, AHF analysentechnik
AG, light gray area)
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Fluorescence emission and excitation spectra are recorded with a fluorescence spectropho-
tometer (Cary Eclipse fluorescence spectrophotometer, Varian Inc.) in buffered water
(Phosphate-buffered saline, pH = 7.4) and shown in fig. 5.3. Obviously, the FluoSpheres
labeled with the dye nile red (fig. 5.3 (a)) and the particles purchased from Magsphere Inc.
(fig. 5.3 (c) and (d)) can be used with the same excitation wavelength (here: λexc = 519 nm)
and optical filters (dichroic mirror: DBS, z532 RDC, AHF analysentechnik AG; detection
filter: HQ545LP, AHF analysentechnik AG). For the FluoSpheres labeled with the dye
dark red a different spectral setting is necessary (excitation wavelength: λexc = 635 nm;
dichroic mirror: zt633rdc, Chroma Technology Corp.; detection filter: BLP01-633R-25,
AHF analysentechnik AG).

In section 9.2, TransFluoSpheres are used in a dual-color excitation experiment, because
of their special spectral characteristics (see fig. 5.4). Because of their special labeling
with multiple dyes, energy transfer takes place and a broad band excitation spectrum
is accompanied by a plain emission spectrum in the red spectral range. The particle’s
fluorescence spectrum in fig. 5.4 is supplemented with the spectral design of the dual-color
experiment.

5.2 | Nanoporous triblock terpolymer membranes
In chapter 8, membranes formed via self-assembly and non-solvent induced phase separation
(SNIPS [181], see below) from polystyrene-block-polyisoprene-block-poly(N-isopropylacryl-
amide) (PS43-b-PI40-b-PNIPAAm17, subscripts denote the weight fractions of the corre-
sponding segments, see fig. 5.5(a)) are used. This amphiphilic triblock terpolymer with a
molar mass of 61 100 g mol−1 and a dispersity of 1.27 was synthesized via nitroxide-mediated
polymerization in the group of Felix H. Schacher. One reason for the choice of this
material was that the PNIPAAm part is also known to show stimuli-responsive behavior.
In future applications, such a system may not only serve as a static ultrafiltration sub-
strate, but also as a stimuli-responsive gating membrane (see fig. 5.5(b)). With a lower
critical solution temperature (LCST) between 30 ◦C and 40 ◦C in water, this polymer block
expands to a relaxed chain for temperatures below the LCST and collapses to a dens coil
for higher temperatures widening the membranes pores (see fig. 5.5(b)).[182, 183]

Figure 5.5.: (a) Structure of polystyrene-block-polyisoprene-block-poly(N-isopropylacrylamide). The two
hydrophobic blocks are colored red, the hydrophilic block is drawn in blue. (b) Concept of a stimuli-
responsive gating membrane inspired by [184]. Steric repulsion prevents a diffusing nanoparticle to pass
the membrane pore. Heating the system above the LCST opens the pore, because the stimuli-responsive
polymer chains collapse.
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SNIPS is the combination of self-assembly of diblock copolymers with a industrially im-
portant production process of membranes for pressure-driven separation purposes, that is
the non-solvent-induced phase separation (NIPS). In the fast process of isothermal NIPS,
introduced by Loeb and Sourirajan 50 years ago [185], a concentrated solution (10 -
25 wt%) of a polymer is cast on a substrate and subsequently immersed in a non-solvent
bath. The residence time between the casting and the immersion in the bath is called
the open-time. In the immersion bath, an exchange of the solvent and non-solvent results
in a phase separation, where the polymer-rich phase forms the matrix structure and the
polymer-poor phase becomes the voids during coagulation. In presence of a highly volatile
solvent as a significant part of the casting solution, the formation of a dense skin on top
of the porous structure is promoted. Membranes prepared by NIPS are therefore inte-
grally asymmetric. In filter applications, the top or skin layer carries out the separation,
while the substrate provides resilient mechanical properties with negligible resistance to
the transmembrane flow. Parameters that influence the cross-section morphology are the
used polymer, the selection of solvents and non-solvents, the selection of additives, the
open-time and environmental parameters like ambient temperature and humidity.

Is the phase-inversion carried out with a block copolymer, the porous bulk material is
formed as usual for the homopolymer case by liquid-liquid demixing. Furthermore, self-
assembly occurs in the skin layer and produces an ordered structure, suitable parameter
settings provided. That means a highly-ordered and thin top layer is supported from
underneath by a non-ordered sponge-like bulk material.

5.3 | Sample preparation
In the following two sections, the actual sample preparations are described for the 3D-
SPOT experiments presented in chapter 7 and chapter 8. All samples are applied as
small drops (in general of about 25 µl) to a rectangular precision cover glass (24×50 mm,
thickness: (0.170± 0.005) mm, Paul Marienfeld GmbH & Co. KG) and sealed with vacuum
grease (SGM494 Silicone Grease, ACC silicones) and a round coverslip (�25 mm, thickness:
1.5H, Carl Roth GmbH + Co. KG). Thin rings punched out of a polydimethylsiloxane
(PDMS) stamp resign served as spacers between the cover glass and the coverslip. Care
was taken that the total weight of a sample cell resides in the range of 0.8 g to 1.0 g. A
constant sample cell weight is important to maintain a reproducible response behavior of
the nanopositioning stage which is mass dependent.

5.3.1 | Nanoparticle suspensions for reference experiments
In chapter 7, reference experiments are conducted with nanoparticle suspensions in dif-
ferent aqueous solution media. Therefore, fluorescent polystyrene nanoparticles with a
carboxylate-modified surface and nominal diameters of (27± 4), (50± 18) and (100± 20) nm
(F8786, FluoSpheres Fluorescent Microspheres, Thermo Fisher Scientific; CAF-050NM,
Red Fluorescent Particles, Magsphere Inc.; CAF-100NM, Red Fluorescent Particles, Mag-
sphere Inc.) are diluted in glycerol/water concentration series ranging from 50 vol% to
99 vol%, in dextran (15 wt% and 30 wt%), saccharose (60 wt%) and polyethylene glycol
(30 wt% and 50 wt%) solutions. All samples were prepared with nominal nanoparticle
number concentrations varying between 5 pm and 25 pm depending on the particle size.

For the glycerol solutions, pure glycerol (92.09 g mol−1, product number: G5516, Sigma-
Aldrich, Inc.) was mixed with high-purity water (Milli-Q). Powders of dextran (from Leu-

42



5.3. Sample preparation

conostoc spp., 500 kDa, product number: 31392, Sigma-Aldrich, Inc.), saccharose (D(+)-
Saccharose, 342 Da, product number: 4621.1, Carl Roth GmbH + Co. KG ) and polyethy-
lene glycol (Poly(ethylene glycol), 5000 to 7000 g mol−1, product number: 81255, Sigma-
Aldrich, Inc.) were solved in buffered water. The used buffer solution was a phosphate-
buffered saline (0.01 m phosphate buffer, 0.0027 m potassium chloride, 0.137 m sodium chlo-
ride) with a pH of 7.4 at 25 ◦C that was prepared by solving 1 buffer tablet (phosphate
buffered saline tablet, product number: p4417, Sigma-Aldrich, Inc.) in 200 ml high-purity
water (Milli-Q).

5.3.2 | Polymer membranes infused with nanoparticle suspen-
sions

In chapter 8, triblock terpolymer membranes are infused with a aqueous mixture containing
the fluorescent nanoparticles. To prepare such samples several steps are needed.

First, the PS43-b-PI40-b-PNIPAAm17-membranes with an area of several square cen-
timeters were cut into small pieces (≈ 0.5 cm × 0.5 cm) with a scalpel and stored in high-
purity water (Milli-Q) at 4 ◦C. Later on, some cuttings were used for electron microscopy,
as described in section 8.2, and for the SPOT experiments maintaining exactly the same
batch.

In total, three different classes of fluorescent polystyrene nanoparticles with a carboxy-
late-modified surface are used, which all differ in size. Their nominal diameter were
(25± 4) nm, (50± 18) nm and (100± 20) nm (F8783, FluoSpheres Fluorescent Microspheres,
Thermo Fisher Scientific; CAF-050NM, Red Fluorescent Particles, Magsphere Inc.; CAF-
100NM, Red Fluorescent Particles, Magsphere Inc.), respectively.

Nanoparticle were suspended in 2,2’-tiodiethanol (TDE, 122.19 g mol−1, product num-
ber: 166782, Sigma-Aldrich, Inc.) mixed with an aqueous buffer in a ratio of about 1:1
vol/vol. The aqueous portion of the final buffer had a pH of 8 (sodium phosphate saline)
at an ionic strength of 15 mm and the final mix showed an additional concentration of the
non-ionic detergent Triton X-100 (Triton X-100, product number: 10789704001, Sigma-
Aldrich, Inc.) of 0.1 vol%. The dynamic viscosity of the final mixture was determined
to 4.9 mPa s with a rolling-ball viscometer (AMVn, Anton Paar GmbH) and density and
sound velocimeter (DSA 500 M, Anton Paar). The temperature dependency of the dy-
namic viscosity for pure TDE and the aqueous buffer containing 53 vol% TDE are depicted
in fig. E.2 in the appendix E.1). Using this buffer solution, nanoparticle suspensions with
number concentrations of 7 pm were prepared.

Before infusing the membranes void space with the nanoparticle suspension, a piece of
the membrane was taken out from its storage box filled with high-purity water and dried
gently under nitrogen flow. Subsequently, a droplet (≈ 10 µL) of sodium phosphate buffer
at a pH of 8.0 was placed on top of the membrane and allowed to soak in for 5 minutes. The
membrane was dried again under nitrogen, wetted with 5 µL of the nanoparticle suspension.
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6 | Errors, limitations and
artifacts

3D-SPOT is a method that is affected by a number of error sources. Ignoring the occurring
inaccuracies and problems leads to misinterpretations and reduces the ease of applying
the method. For this reason, a closer examination of the error sources and performance
constraints of the setup is indispensable.

In this chapter, it will be differentiated between localization and tracking errors. While
a localization error is present even for a single estimation of the particle position, the
tracking error describe the discrepancies between the real and measured particle position
for repeated measurements. The inspected errors are the localization error due to photon-
counting noise, the systematic localization error intrinsic to the used estimation equations,
and the dynamic localization error occurring because of the particles movement during
signal acquisition. Furthermore, the tracking error is considered that is produced by the
interplay of all those localization errors. Finally, the system’s feedback response behavior
and its effects on the tracking error are studied.

The analysis is based on a comprehensive simulation of the measurement process. Tech-
nical details about the simulation are described in the appendix C.5. The simulation is
a modularized implementation of the model described in chapter 3 incorporating nonlin-
earities in the signals and making it possible to switch individual effects on and off for
separated discussion. In contrast to a real experiment, not only the measured particle po-
sition r̂[k] is known, but also the ”real” particle position rp[k]. This allows for a direct and
quantitative observation of the localization errors. For feature-rich results, the real particle
position is simulated on a finer time scale than the measurement sampling time. In order
to compare the particle position estimate with the real particle position, the average real
particle position r[k] is computed for the trajectory part of a single scan path cycle (see
eq. (C.68)). The tracking error vector χ[k] is the difference between this averaged particle
position and the reconstructed particle position.

χ[k] = r̂[k]− r[k] (6.1)

The square root of Pythagorean sum over the components of the tracking error vector χ[k]
is the tracking error

χ[k] =
√
χx[k]2 + χy[k]2 + χz[k]2 . (6.2)

It is helpful to look at the results of a single simulation run, as this shows more di-
rectly what is later studied in a systematic examination at a more condensed level. In
fig. 6.1, an example of a simulated trajectory is shown. The simulation of SPOT generates
a ”measured ” trajectory that successfully approximates the real particle trajectory. The
error of the reproduced particle trajectory appears larger in axial than in lateral direction.
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Figure 6.1.: Example of a simulation with 5× 103 loop iterations. The real particle trajectory consists
therefore of 160× 103 positions. For a realistic view, all spatial quantities are scaled with the lateral
beam width assuming wx = wy = wxy and wz = 3wxy. The input parameter were D = 0.0035∆tw−2

xy ,
F0∆t = 500, and Fb∆t = 1. The optimal focus scan path was used (see section 6.1). In (a), the real
particle position ri (black) and the estimated trajectory r̂i (x: blue, y: red, z: green) is plotted versus
time. The temporal progress of (b) the number of detected photons per estimation cycle Nph and (c) the
tracking error amplitude χ are drawn. (d) Three-dimensional view of the real particle trajectory r (black)
and the measured one r̂ (red). Projections on two-dimensional planes are plotted with higher transparency.

This is expected due to the different spatial extent of the laser focus profile and shows
that a separate analysis of the lateral and axial dimensions is needed. In the example,
the number of detected photons Nph per position estimation fluctuates around 350 with
about 7.5 % variation and is less than the input peak photon number F0∆t = 500. This is
reasonable since the particle is kept in the center of the scan path and will not be excited
by the maximum focus intensity. The dependency of the measured photon count rate on
the focus scan path shape is analyzed in section 6.1. The averaged tracking error of the
entire track is (0.128± 0.054)wxy, which would amount to 30 to 40 nm in a real experi-
ment. This value is expected to vary strongly with the input parameter of the concrete
measurement/simulation scenario. The quantitative analysis of these dependencies is one
of the purposes of the following chapters. Here, however, the approximate range of res-
olution becomes apparent, which is a two figure nanometer number that correspond to a
length scale one order of magnitude lower than the classical diffraction limit.

A granular view about simulation results is given in fig. 6.2, where the actual particle
position, the averaged real particle position of single signal acquisition interval and the
estimated particle position are drawn alongside the inverted stage target position and its
actual (inverted) response. Perfect localization accuracy would be reached if the estimated
particle position would coincide with the averaged real particle position. However, the
random nature of photon counting-based position estimation results in an inevitable lack
of accuracy. Two important aspects can already be seen here. The position averaging
smooths the path actually covered by the particle and the imprecision of the localization
leads to an apparently stronger position fluctuation. The stretched laser focus size in the
axial direction and the simultaneously worse position accuracy amplifies this overestimation
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for the z-direction, as evident in a comparison of fig. 6.2 (b) to the lateral accuracy derived
from fig. 6.2 (a). Because the (inverted) stage target position is set to the last known
particle position, the target signal trajectory is compulsorily shifted by a total feedback
period. According to the simulation settings a feedback period corresponds to three position
estimation cycles. The lagging of the stage movement behind the target positions is striking
and clearly visible in the inset of fig. 6.2 (a). This delayed motion is characterized by the
stage-stage controller’s frequency response and discussed in section 6.3.2. It is easy to
deduce that the moving stage strongly influences the first position estimation after setting
a new target. For this reason, the acquired fluorescence signal was ignored for position
estimation in this period of time in the previous implementation of SPOT.[186]

Figure 6.2.: Zoomed view on a simulation example generated with the same parameter as in fig. 6.1. (a)
and (b) are the traces along the x-axis and z-axis, respectively. The real particle trajectory r is plotted as a
solid gray line, the averaged real trajectory r̄ as blue dots connected with a dotted line, and the estimated
particle trajectory r̂ is given as red crosses also connected by a dotted line. The stage follows the particle
trajectory in an inverted coordinate system, therefore, the stages target position utarget (dash-dotted line)
and the stages response u are multiplied by -1 before drawing. The inset in (a) provides a closer look at a
smaller time window visualizing the stage response noise.

6.1 | Beam scan path optimization
In order to achieve the highest possible degree of measurement accuracy of the particle
position, even the smallest position deviations from the center point must show up in a
strong modulation of the emission signal. The setscrew for this is the shape of the path on
which the laser light focus is directed. It must be optimized to set the center point residing
on the steepest flank of the intensity profile integrated over a total scan period. For 2D-
SPOT, it turned out that an optimal choice of the orbit radius is Ropt,(xy) = wxy/

√
2.[51]

The naive assumption for 3D-SPOT is that the same ratio between the (larger) lateral beam
waist in the center plane wc and the orbit radius still applies. But apparently, the linear
dependency on the particle’s z-position vanishes for R = wc/

√
2, and axial localization

becomes impossible (see eq. (3.17)). For 3D-SPOT with the assumed modified Gaussian-
Lorentzian MDF and chosen scan pattern, a different parameter set will be the optimal
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choice considering all particle coordinates. The lowest possible estimator variances are
found by minimizing the lateral and axial scan path geometry functions Λxy(R/wxy, dz/wz)
and Λz(R/wxy, dz/wz) mentioned in section 3.2.

The minimum of Λxy(R/wxy, dz/wz) is, in fact, obtained for an orbit radius of Ropt,(xy) =
wxy/

√
2 and a inter-orbit distance of dz,opt,(xy) = 0 and the minimum of Λz(R/wxy, dz/wz)

for Ropt,(z) = 0 and dz,opt,(z) = 2wz/
√

2. In fig. 6.3, the logarithm of the squared beam
geometry functions are plotted, and the optimal parameter sets are marked in red. Some
exemplary values are summarized in table 6.1.

Figure 6.3.: Landscape of the functions (a) Λxy(R/wxy, dz/wz) and (b) Λxy(R/wxy, dz/wz). The same
color map applies to both plots. Deep blue areas indicate small function values and, therefore, good choices
of parameters. For better visualization, the decadic logarithm of the squared scan path geometry functions
is depicted, and values above 5 are cropped. The thin bright line in (b) breaches through areas of small
function values indicate the singularity for R = wc/

√
2

Table 6.1.: Examples of parameter settings for the scan path and corresponding geometry-function values.
R/wxy dz/wz Λxy Λz
1/
√

2 0 0.82 ∞
0 2/

√
2 ∞ 1.30

1/
√

2 2/
√

2 1.28 5.44
0.30 1.20 1.99 1.62

The different scaling of the variances with wxy and wz does not allow for a direct
comparison of the results of the beam geometry functions for the different spatial directions.
The axial variance of the estimator is always larger because wz > wxy due to optical reasons.
Accepting this fact, one can follow different strategies and optimize, for example, just a
single direction for a experiment where this direction is of higher relevance. In the following,
a minimal total variance of the estimated particle position is aimed at. Therefore, the total
variance is defined as the square root of the sum of the single coordinate variances√

Var(r̂p) =
√

Var(x̂p) + Var(ŷp) + Var(ẑp) . (6.3)
For a theoretical analysis of this quantity, it is necessary to connect the lateral and

axial variances using a beam widths ratio like wz/wxy = 3, which is typical for practical
applications. The final results are scaled with respect to wxy and plotted in fig. 6.4(d)
for comparison with simulation results shown in fig. 6.4(a-c). Simulation parameters are
described in the figures captions.

The coincidence of the simulation and analytical results yield an optimal parameter
choice of Ropt = 0.3wxy and dz,opt = 1.2wz. For this parameter set, the scan path geometry
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Figure 6.4.: Estimator variance of the particles (a) x- and (b) z-coordinate and (c,d) the total estimator
variance for different choices of the orbit radius and orbit distance. (a, b, c) are the results of the same set
of simulations with 500 signal and 1 background photon per scan period, a particle fixed at a randomly
selected position close to the origin rp = (0.05wxy, 0.1wxy, 0.2wz), and no feedback applied. Each of the
30 × 30 simulations consists of 1000 localizations. The ratio between lateral and axial focus width was
selected as wz/wxy = 3. For comparison, the theoretical results from eq. (6.3) are plotted in (d). All
plots obey the same color scale with deep blue areas indicating zero and light yellow as 1. Values above
1 are cropped for better visualization. The red circled cross marks the parameter set of R = 0.3wxy and
dz = 1.2wz, which appears as an optimal choice.

functions amount to about 2 for the lateral and 1.6 for the axial coordinates. This is a
significant reduction of the maximal possible lateral accuracy for the benefit of higher axial
reliability. Since the scaling length scale wz is intrinsically larger than then wxy, it makes
sense to arrive at a compromise at the expense of lateral resolution. In all subsequent
simulations, these ratios will be used and referred to as the ”optimal scan path”. The term
”optimal” relates to its parameter set, creating this two parallel orbits, but it refers not to
the laser focus pathway’s general shape. It is expected that a different scan path is able to
increase the accuracy further (see [78] or [187]).

In fig. 6.5(c) the integrated number of photons Nph(t) extracted from the simulations
and its theoretical equivalent are plotted. The figure again reveals an exceptional agree-
ment between the full signal simulation and the linear approximation. For the optimal
parameters marked as a green circled cross, a reduced number of photons is detected. The
factor between the number of photons that would be detected, if the laser focus and par-
ticle are centered in the middle of the detection volume and the integrated emission rate
for the scanned laser focus is 0.64. When comparing photon detection rates measured with
SPOT with related techniques like FCS, this is an important fact to know.
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Figure 6.5.: Number of detected photons (color-coded) for (a) the same simulation as in fig. 6.4 and (b)
calculated from eq. (C.33). The green cross marks the parameter set of R = 0.3wxy and dz = 1.2wz.

6.2 | Localization error
The localization error eloc[k] is the discrepancy between the estimated particle position
and the position of the particle at the end of the measurement cycle. This can be written
as

eloc[k] = r̂[k]− rp(k∆t+ ∆t) =

eloc,x[k]
eloc,y[k]
eloc,z[k]

 =

r̂x[k]− rp,x(k∆t+ ∆t)
r̂y[k]− rp,y(k∆t+ ∆t)
r̂z[k]− rp,z(k∆t+ ∆t)

 , (6.4)

with the positive integer k indicating the measurement time interval of duration ∆t. In
the context of this thesis, this term excludes errors that are generated by the application
of feedback and iterative position measurement. The localization error can be divided into
a part that occurs even when the particle is not moving rp(t) = rp and a part that arises
only from the particle motion,

eloc[k] = estatic[k] + edynamic[k] . (6.5)

Those contributions are called static estatic[k] and dynamic localization errors edynamic[k],
respectively. The latter will be discussed in section 6.2.3. The static localization error is
influenced by the statistic of the position estimator, which are already explicitly mentioned
in section 3.2. But obviously, the demodulation of the emission signal for the determina-
tion of the particle position introduces an additional systematic localization error due to
the neglection of higher harmonics in the fluorescence signal (see eqns. (C.30)–(C.32) in
appendix C.2). The static localization error, therefore, consists of both a deterministic esys
and a random estat[k] contribution

estatic[k] = esys + estat[k] . (6.6)

An illustration of this two localization error components is given in fig. 6.6.
The static localization error varies in time due to its statistical contribution, while the

systematic part depends parametric on the particle position. While the mean of estat[k]
is zero, its variance is mainly affected by the previously discussed estimator variance, but
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Figure 6.6.: Sketches of the static localization error that appears even for a not moving particle. Due
to approximations in the position estimator equations, the real particle position is different from the
estimated one. This systematic error is further intensified by the uncertainty due to the photon-counting
noise, leading to a distribution of possible position estimation outcomes. The estimator variance shrinks
with increasing integration time ∆t.

also pointing instabilities of the laser beam and the deflection optic take part. Another
statistical error source is the nanopositioning stage’s positional noise. For the next sections,
those additional statistical error sources are neglected, and only the photon-counting noise
is considered so that

Var(estat,i) = Var(r̂p,i) , (6.7)
is valid.

A pure statistical error given by the variance Var(estat) = σ2 appears as an offset of 2σ2

in the MSD in tracking applications.[188] The expected measured MSD in three dimensions
is

E
(〈

∆r̂2[k]
〉)

= 6Dk∆t+ 2σ2 . (6.8)
In fig. 6.7, simulation results visualize this relationship for two distinct statistical errors of
σ1 = 0.1 and σ2 = 0.2, respectively. Notably, the offset yields in an apparent subdiffusion
for short time scales.[189]

Figure 6.7.: MSD of two simulated particle trajectories with diffusion coefficient D = 1 and static lo-
calization variances σ2

1 = 0.1 and σ2
2 = 0.2 in (a) linear and (b) logarithmic representation. Trajectories

consist of 3× 103 positions. Blue dots represent the MSD from the actual particle trajectory, and orange
and red those, measured with σ1 or σ2, respectively. The solid light green line is a theoretical curve that
follows 6Dτ , the solid orange and red lines contain an offset of 2σ2

1 or 2σ2
2 , respectively.
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6.2.1 | Photon counting noise
The dependency of the localization error on the integrated photon detection rate is in-
spected by simulations (see appendix C.5). The particle is fixed in the origin, but Nmax =
2TF0 is varied between 0 and 1× 105 photons. Each simulation is repeated 1000 times.
The ratio wz/wxy = 3 and the optimal scan path is set. Any stage movement or feedback
is deactivated. The results are fitted with√

Var(r̂p,i)
wxy

= pi,0√
Nmax

, (6.9)

and shown in fig. 6.8(a).

Figure 6.8.: (a) Square-root of the estimator variance
√

Var(r̂p,i) due to photon counting noise for a
particle staying in the center of the detection volume. Blue, red, and green dots represent the standard
deviation in x-, y-, and z-direction, respectively. Black dots are the Pythagorean sum of the single-axis
standard deviations. Fits are drawn as solid black lines. Black dotted lines indicate the level of 1 and 3,
which correspond to an uncertainty that is as big as the beam waist in the lateral and axial direction. The
gray shaded area is the regime relevant in practical applications since more than 10 photons are needed for
a position determination with an accuracy worth mentioning, and more then the limit of 10× 103 photons
per estimation cycle will hardly be exceeded if APDs are used and a temporal resolution in the millisecond
range is targeted at. (b) Total estimator variance for different (static) particle positions. The variance is
shifted to larger values for increasing particle displacements from the reference frame origin.

The error along the z-axis is larger than for the lateral particle coordinates and the three-
dimensional particle position is, of course, more uncertain than the one-dimensional compo-
nents. Moreover, it is clearly seen that the particle position estimator’s standard deviation
scales proportional to 1/

√
Nmax over the complete plotting range. The only exception from

this is the very low photon number-range where no positional information is gained and
the localization uncertainty exceeds maximum estimator outcome. The obtained fitting
parameters pi,0 are listed in table 6.2 and can be identified with the value of the scan
path geometry functions Λxy(0.3, 1.2) ≈ 2, Λz(0.3, 1.2) ≈ 1.6 and the Pythagorean sum
for the total variance. In order to get a feeling for the practical significance of the photon
number, the standard deviation of the estimator is calculated for different beam waists and
maximum photon numbers in table 6.3.

A typical parameter set with a beam waist of wx = wy = 300 nm and wz = 900 nm
and a number of Nmax = 1000 photons per localization period results in a localization
uncertainty of about 19 nm in lateral and 46 nm in the axial direction. For a localization
period of 4 ms, this requires the detection count rate to be as high as about 370 kcps, which
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is a reasonable value for tracer particles like fluorescent beads or quantum dots, but not
for most of the available single dye molecules or single fluorescent proteins.

Table 6.2.: Prefactors taken from the fitted relation between the estimator variance
√

Var(r̂p,i) and the
integrated count rate Nmax (see eq. (6.9)).

Coordinate pi,0

r̂p,x 1.9932± 0.0008
r̂p,y 1.9994± 0.0008
r̂p,z 1.6313± 0.0009
r̂p 5.6411± 0.0007

Table 6.3.: Standard deviation of the estimator
√

Var(r̂p,i)/nm for typical beam waists and a varying
number of maximal photon numbers

Number of photons Nmax
Coordinate wi/ nm 1 10 100 1000 10000 100000√
V ar(x̂p) / nm, 200 399 126 40 13 4 1√
V ar(ŷp) / nm 300 599 189 60 19 6 2

400 799 253 80 25 8 3√
V ar(ẑp)/nm 600 977 309 98 31 10 3

900 1465 463 146 46 15 5
1200 1953 618 195 62 20 6

In the next step, the localization of SPOT is simulated for multiple systematically varied
particle positions, which individually remain fixed during a single simulation run. The
results are plotted in fig. 6.8(b). Evidently, the estimator variance is shifted to larger
uncertainties, if the particle is further away from the origin, while the scaling with the
square root of the maximum photon number is conserved. Since the estimator can only
reach certain maximum values depending on the prefactors of the demodulation vector
function eq. (3.17), there is a cutoff at very large variances at insufficient photon numbers.
The particle-position dependent growth of the estimator variance is a systematic error that
is not handled by eqns. (3.22)–(3.23), but will be examined in the next section.

6.2.2 | Systematic localization error
The demodulation of the emission signal for particle position estimation is based on a
first-order Taylor series approximation, which neglects higher harmonics in the modulated
fluorescence signal and introduces a systematic localization error (see appendix C.2). This
error occurs even in the absence of photon counting noise. The systematic localization error
was already discovered for 2D-SPOT, where it yields in an increasing underestimation of
the radial distance of the particle from the orbit center as this radial distance becomes
larger.[51, 186]

If calculating the higher-order terms of the demodulation transformation, the increased
complexity of 3D-SPOT outcrops as mixed terms of the radial ρp and axial zp particle
position component. Since the particle position estimator is a first-order approximation
for particle positions near the origin, systematic errors will occur if the particle is located
farther away. Simulations will help to identify the systematic error for the optimal focus
scanning path in 3D-SPOT. Forgoing photon counting noise, the signals are assumed as
smooth and deterministic. Stage movement and feedback are still kept deactivated.
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Furthermore, the position of a static particle is varied along the x-axis for multiple fixed
axial positions (see fig. 6.9 (a)) and then along the z-axis for multiple fixed radial displace-
ments (see fig. 6.9 (b)). For each position, a full-order signal is calculated and consecutively
demodulated with the lock-in detection based only on the first-order approximation of the
photon emission rate. Due to the symmetry of the problem, results are presented in cylin-
drical particle coordinates. In fig. 6.10, the ”measured” particle position r̂p = (ρ̂p, ϕ̂p, ẑp)
is shown in dependency of the actual particle position rp = (ρp, ϕp, zp). In the top row of
fig. 6.10, the calculated particle coordinates are shown as a function of the particle’s radial
position ρp and in the bottom row, as a function of the particle’s axial position zp. Due to
the correlated dependencies, the other coordinate is varied parametrically. The azimuthal
angle is always equal to 0.

Figure 6.9.: Illustration of the simulation scenarios (not drawn to scale). (a) First, the distance of the
particle to the optical axis is increased within multiple horizontal planes . So only the radial coordinate
ρp is varied for a fixed axial position zp. (b) In the second scenario, the particle is shifted axially along
lines parallel to the optical axis.

Focusing on the estimated azimuthal angle of the particle position ϕ̂p (fig. 6.10(b) and (e)),
the estimator works perfectly. For zero radial displacement ρp = 0, the azimuthal angle is
not defined, and ϕ̂p diverges, but elsewhere the angle is correctly identified (Note that the
measured positions for ρp = 0 are, therefore, not within the plotting range in fig. 6.10(b)
and (e)). This is not surprising as the higher harmonic components in the fluorescence
signal do not contribute to its phase (see eq. (C.20) in the appendix C.2).

Nevertheless, systematic errors occur in the estimation of the particle’s radial distance
from the origin ρ̂p. As in the 2D case, 3D-SPOT underestimates large radial displacements.
Unfortunately, this underestimation is dependent on the z-plane of the particle position.
More considerable distances from the central plane in the z-direction yield larger devi-
ations from the real radial coordinate (fig. 6.10 (a)). This influence can be visualized in
fig. 6.10 (d). Small radial and axial distances from the origin yield a correct match between
real and computed coordinates. However, for larger radial distances from the center, the
axial particle position contributes stronger to the measurement of ρp, yielding a stronger
underestimation.

Similar behavior is obtained for the estimation of the axial particle position ẑp. For a
particle shifted along the optical axis, the real z-position agrees well with the estimated
one, at least within the ranges limited by zp ∈

[
−dz

2 ; dz2
]

(see fig. 6.10(f)). Interestingly, the
z-coordinate of a particle displaced randomly within the central plane is always correctly
detected. But problems start if neither ρp nor zp is zero. The influence of the radial particle
coordinate is very strong outside of the central plane. For ρp = wwxy, there is even a change
in signs, and the SPOT algorithm would move away the particle from from the detection
volume in subsequent feedback steps.

In the previous realization of 2D-SPOT, the non-linearity of the particle’s radial position
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Figure 6.10.: Representation of the systematic localization error in (a, d) radial (b, e) azimuthal and
(c, f) axial direction. The position resulting from the estimator equations is shown as a function of the
actual particle position rp = (ρp, ϕp, zp). The results in the first row (a-c) show the simulation output for
a particle shifted along the x-axis to vary only its radial distance ρp while keeping a fixed z-coordinate.
Different colors correspond to different values of zp. Figures in the second row (d-f) represent the outcome
of simulations, where the axial position is varied for fixed radial displacements. Different radial distances
are color-coded. The dark gray area labels the parameter range that is encapsulated by the laser focus
centroid. The light gray area indicates the range of a cigar-shaped focal volume characterized by the length
scales wxy and wz. In graphs (a) and (f), a black dotted line indicates the targeted linear relationship.

Figure 6.11.: (a) Systematic axial localization error in dependency of the estimated particle position
ẑp (dots) for different radial displacements ρp (color-coded). The legend on the right-hand side applies.
Solid lines in the same color represent the three-parameter fits of shape p1(ρ̂p/wxy)ẑp + p3(ρ̂p/wxy)ẑ3

p +
p5(ρ̂p/wxy)ẑ5

p. Blue dots in figure (b), (c), and (d) are the coefficients p1, p3, and p5 for the different radial
displacements. Solid red lines are polynomial fits of fourth-degree to the data.
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was corrected in real-time with the help of a fourth-order polynomial. In 3D-SPOT, there
is the dilemma that both, zp and ρp, influence the localization error in the axial and radial
direction. A correction function that would map the estimated particle position to the
real one is not injective and, thus, dependent on the sequence in which the correction is
applied.

Due to the intrinsically worse resolution in the axial direction, the here chosen approach
will neglect the radial error, and only correct the z-coordinate of the particle. The axial
error ∆zp = ẑp − zp is fitted with a polynomial of shape

∆zp
wz

(ρ̂p/wxy, ẑp/wz) = p1(ρ̂p/wxy)
(
ẑp
wz

)
+p3(ρ̂p/wxy)

(
ẑp
wz

)3

+p5(ρ̂p/wxy)
(
ẑp
wz

)5

. (6.10)

Each coefficient pi(ρ̂p/wxy) is again modeled as a polynomial of fourth-order. The results
of this analysis are summarized in fig. 6.11, and table 6.4. Provided that ρ̂p and ẑp is
measured, fig. 6.11(a) shows the value ∆zp that must be added to ẑp to obtain the correct
axial position of the particle.

Table 6.4.: Fitting results of the fourth-degree polynomials of shape p̃a (ρ̂p/wxy)4 + p̃b (ρ̂p/wxy)3 +
p̃c (ρ̂p/wxy)2 + p̃d (ρ̂p/wxy) + p̃e to determine the coefficients p1, p3, and p5 of the z-correction polynomial.

p̃a p̃b p̃c p̃d p̃e
p1 30.0908 -29.6365 12.9802 -1.6896 0.0510
p3 -336.5471 368.3876 -164.8898 27.5561 -0.3175
p5 1064.9361 -990.7676 466.5779 -84.1741 4.6803

The determined parametrization is applied to the simulation data, repeating the two
scenarios illustrated in fig. 6.9. The results for ẑp are shown in fig. 6.12. One can see,
that this correction yields a reduced influence of the radial and axial coordinate on the
measurement accuracy for a wide range of particle positions. But for radial displacement
greater than 0.85wxy, the fits do not converge properly, and the correction even increases
the systematic error.

Figure 6.12.: (a) Estimate of the axial position ẑp of a particle shifted parallel to the x-axis for different
axial displacements (color-coded) with the z-position correction applied. (b) Estimate of the axial position
of a particle shifted parallel to the z-axis for different radial displacements (color-coded) with the z-position
correction applied. The graphs relate to fig. 6.10 (c) and (f).
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6.2.3 | Dynamic localization error
The errors in determining the particle’s position discussed so far are valid for an immobile
particle. In contrast, the dynamic localization error considers a moving particle.[190] Due
to the ongoing motion during signal acquisition, the center of mass position is measured
instead of the actual one, yielding a reduced distance between successive localizations. In
fig. 6.13, an illustration of the particle motion during signal acquisition shows the difference
between the particle’s actual position at the end of the measurement interval and the
measured center of mass position.

Figure 6.13.: Sketches of the dynamic localization error. Because of the finite photon counting integration
time and the ongoing particle movement, the center of mass of a trajectory section is measured instead
of the actual particle position. This so-called averaging error increases with integration time. While the
particle covers a distance of

√
6D∆t, the measured position differs by

√
6D∆t/3 from the position at the

end of the trajectory section.

In the overdamped limit, the particle position is given as an integral over the Wiener
process νbm(t) (see eq. (2.19)). The position measured within the measurement time ∆t is
the center of mass of the trajectory for t ∈ [(k − 1)∆t; k∆t] and written as

r̂[k] = 1
∆t

∫ k∆t

(k−1)∆t
r(t)dt = 1

∆tξ

∫ k∆t

(k−1)∆t

∫ t

0
νbm(t′)dt′dt . (6.11)

The variance of the center of mass is

Var(r̂[k]) = E
(
r̂[k]2

)
= 1

∆t2ξ2

∫ k∆t

(k−1)∆t

∫ t

0

∫ k∆t

(k−1)∆t

∫ t′′

0
E(νbm(t′)νbm(t′′′)) dt′′′dt′′dt′dt

= 6D∆t/3 . (6.12)

This is equal to the expected distance between the measured position and the actual
position of the particle at the end of the measurement interval. In literature, it was shown
that this averaging error leads to a systematic underestimation of the particles MSD.[191,
192] Hence, for three-dimensional Brownian motion, the expected measured MSD is

E
(
∆r̂2[k]

)
= 6D (k∆t−∆t/3) . (6.13)

This effect is modeled with a simple simulation. A trajectory consisting of 3× 106 three-
dimensional data points was generated with Brownian motion statistics. Each segment of
1× 103 positions is averaged to a single center of mass position, which entirety represents
the measured trajectory. Afterwards, the MSD of the full trajectory is compared to that of
the averaged one in fig. 6.14. In a linear representation (see fig. 6.14(a)), the measured MSD
is just shifted towards smaller displacements but maintains its slope. Thus, the diffusion
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coefficient can be extracted from the slope, making it is easy to correct for this artifact.[186]
However, on a double-logarithmic representations (see fig. 6.14(b)) it is clearly seen that a
simple offset appears at an apparent superdiffusion on short time scale and care must be
taken in the respective discussion, if an actual anomaly is present.

Figure 6.14.: MSD of a particle motion simulated according to the Brownian law, displayed in (a) linear
and (b) logarithmic representation (blue dots) and the MSD of the same trajectory, but averaged for
segments of 1000 positions (red dots). Green and red lines are the corresponding theoretical curves.

6.3 | Tracking error
In feedback-based tracking, localization errors yield a finite distance of the particle position
and the origin after the movement compensation step. Thus, the next localization is
influenced by the preceding measurement error, and those errors can accumulate or cancel
each other out. The setup’s overall ability to follow the motion is called total tracking
error σt and defined via a root mean square relation

σt = 1
Npos

√√√√√Npos∑
k=0

(r̂[k]− r[k])2 = 1
Npos

√√√√√Npos∑
k=0

χ[k]2 . (6.14)

which compares the measured particle position r̂[k] with the averaged actual particle po-
sition r[k] (see eq. (C.68)). Unfortunately, this quantity is not accessible in practice as
the real particle position is hidden. Therefore, simulations are used again to inspect the
dependencies of this quantity. An example of serial measurement error-affected particle
localization is illustrated in fig. 6.15. In the sketch, only the dynamic localization error
is considered and it is seen that its relative contribution shrinks on larger time intervals.
However, there are more effects to consider, especially the inertia of system components,
such as the nanopositioning stage, that forces the tracked position to lag behind the real
particle motion. In the following the interplay of photon counting noise, the systematic
localization error and the averaging effects due to the finite duration of signal integration
are analyzed first, and expanded by the influence of the system components’ inertia in a
second step.
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Figure 6.15.: Sketch of the tracking error, which occurs for serial particle localization. For example, finite
measurement time intervals produce averaging effects and the resulting distance between the particle’s
initial and final position is reduced.

6.3.1 | Localization errors induced tracking error
The simulation described in the appendix C.5 is used with particle trajectories obeying
Brownian motion statistics. The particle’s maximum photon emission rate and diffusion
coefficient are varied. The stage feedback is activated, but the stage position is still con-
sidered free of noise and infinitely fast responding. For each parameter pair a SPOT mea-
surement of 300 position estimation cycles was simulated to compute the tracking error σt
with eq. (6.14).

Figure 6.16.: Photon number dependency of the tracking error for various diffusion coefficients (color-
coded, in units of squared lateral beam waists per estimation time). Results are from simulations of
trajectories with 1× 103 positions per data point and (a) z-correction active and (b) inactive. Focus
width ratio wz/wxy = 3 is selected, and the stage response is instantaneous. Feedback was applied after 3
estimations. The dashed line represents the estimator variance limitation due to photon counting noise.

Figure 6.16 (a) shows the photon number dependency of the tracking error for various
diffusion coefficients, where three intervals of peak photon numbers are distinguished. For
less than Nmax = 50 photons (interval (I)), SPOT cannot estimate the particle position
correctly. In interval (II), the range between 50 and 1000 peak photons per estimation
cycle, the tracking error scales like the estimator standard deviation with 1/

√
Nmax, but

only if the diffusion coefficient is slow enough (D < 1× 10−2w2
xy∆t−1). For higher photon
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numbers, the shot noise becomes smaller than the random motion error, and a photon
count rate independent level is reached that is specific for the respective diffusion coefficient
(interval (III)). Particles with diffusion coefficients greater than 1× 10−2w2

xy∆t−1 are too
fast to be followed, and their mean tracking error is outside the acceptable range.

Figure 6.16 (b) shows the same simulation but with the z-correction (see section 6.2.2)
applied. The same trend with 1/

√
Nmax as in fig. 6.16 (a) is obtained, but with highly

increased errors for weak emitting and fast particles. However, for peak detection rates
of several thousand photons per estimation cycle (interval (III)), the tracking error is
only determined by shot noise, and a great enhancement compared to the uncorrected
case is recognized. Consequently, the worked out z-correction is capable to increase the
tracking accuracy for mobile particles as well, but the controller has a higher demand for
photons and lacks robustness for unfavorable conditions. Hence, the correction procedure
is beneficial only in the count rate and diffusion coefficient range where tracking is already
stable without its application.

Now, the tracking error is plotted against the diffusion coefficient for different peak
photon numbers. Thus, fig. 6.17 (a) displays the same simulation as fig. 6.16 (a), but in a
different representation.

Figure 6.17.: (a) Dependency of the tracking error on the diffusion coefficient for various peak photon
numbers (solid color-coded lines) based on the identical simulations shown in fig. 6.16. The purple dotted
line corresponds to simulations with the z-correction applied and a peak photon number of Nmax = 1× 105.
Furthermore, there are some auxiliary lines drawn. The dash-dotted black line corresponds to a distance
that a freely diffusing particle would cover within the total simulation time, while the black dotted line
corresponds to the averaging error. The shot noise limit for a peak photon number of Nmax = 1× 105 is
plotted as a magenta dash-dotted horizontal line. (b) Ratio of the axial and the radial error.

No matter how slow a particle is, the peak photon number sets a fundamental limit to the
accuracy, which decreases for increasing photon numbers. The diffusion coefficients are
again categorized into three intervals. Interval (I) contains diffusion coefficients that are
smaller than 1× 10−2w2

xy∆t−1. Particles with a diffusion coefficient D in this range are
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slow enough for the method to be followed, and the tracking error is a combination of the
averaging error and the estimator uncertainty.

Diffusion coefficients in the range between 1× 10−2w2
xy∆t−1 and 1× 10−1w2

xy∆t−1 are
assigned to interval (II). Here, the particle motion is likely to cover a distance of at least
50 % of the lateral beam width within 3 estimation cycles, and the probability of losing
it becomes very large. Thus, the obtained errors in the simulation correlate with the
remaining trajectory length after a particle losing event. Particles with diffusion coefficients
higher than 1× 10−1w2

xy∆t−1 are in interval (III) and far too fast to be tracked. They
behave like free particles right from the beginning of the simulation, and consequently,
escape the detection volume according to free diffusion statistics with an error growing
approximately like

√
6D∆t.

Notably, if the real particle trajectorie’s MSD would grow slower than proportional
to τ , the ”trackable” range of diffusion coefficients would shift to higher values, and the
application range of SPOT is expanded. It is not surprising that depending on Nmax and
D, there is a transition of tracking errors mainly given by shot noise or mainly affected
by the averaging error. For less photons detected, the transition occurs at higher diffusion
coefficients because the shot noise error is larger.

If the z-correction is applied (purple dotted line), the error introduced by diffusion is
canceled out over a extensive range of diffusion coefficients, but the domain of diffusion
coefficients that are too large to be tracked sets in earlier. For D > 1× 10−2w2

xy∆t−1

(interval (II)), a remarkably increased tracking error in the z-direction is present (see
fig. 6.17 (b)), and the axial particle coordinates become unreliable. From the purple dotted
line, it is clear that the z-tracking error increases dramatically and for smaller D with
an active z-correction compared with an uncorrected axial localization. Apparently, the
correction method enhances the axial error within this range, which is an observation that
agrees well with the results in section 6.2.2. Here, the correction downgrades the axial
accuracy for large lateral distances from the optical axis, which is, on average, the case for
larger diffusion coefficients.

Summarizing, the diffusion coefficient of normally diffusing particles should not exceed
1× 10−2w2

xy∆t−1. For instance, if wxy = 200 nm and ∆t = 1.33 ms, this diffusion coefficient
limit would amount to 300 nm2 ms−1 in real units or 675 nm2 ms−1 for wxy = 300 nm and
∆t = 1.33 ms. Including more noise and error sources may reduce this limit even further.
Because robustness is given priority over accuracy, the z-correction should generally be
omitted. Its use is only recommended for very stable tracking conditions to push accuracy
to the extreme.

6.3.2 | Stage vibration induced tracking error
In this section, the analysis is expanded by including the feedback dynamics considering
the behavior of the nanopositioning stage and its controller. Time delays in the digital
signal processing and the influence of the controller’s notch filter are ignored since little is
known about the technical details. Instead, the closed-loop feedback system consisting of
the stage itself and the PID controller is regarded as a linear time-invariant subsystem with
the stage target position utar(t) as input and the actual stage movement rs(t) as output.
This system was accurately identified (see appendix D.5) with a four-parameter transfer
function which is cumbersome to deal with in a parameter study. To gain insight into the
influence of the stage-stage controller system on the SPOT results, the forced oscillator
transfer function (see eq. (A.29)) is used instead, reducing the number of parameters to
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two, namely the natural frequency ωn and the damping coefficient λ.
In fig. 6.18, the identical realization of a particle trajectory is plugged into simulations

(see appendix C.5) using different parameter sets for the stage-stage controller transfer
function. Inspecting the (inverted) stage motion reveals that the stage indeed follows the
particle’s movement but features strong oscillations for weak damping and low resonance
frequencies. The same is true for the reconstructed particle trajectory, but the oscillation
appear more irregular.

Figure 6.18.: Results for the x-coordinate of a 3D-SPOT simulation with deactivated photon counting
noise or stage noise, but with a damped oscillatory transfer function used for the stage movement, char-
acterized by the (dimensionless) resonance frequency ωn∆t and the damping coefficient λ. The particle’s
diffusion coefficient was set to 0.01w2

xy∆t−1. The inverted stage coordinate (colored lines) is compared
with the real particle motion (black line) for (a) a fixed λ = 0.2 and a varying frequency ωn∆t and (b) a
fixed frequency ωn∆t = 1.5 and varying coefficient λ. In (c) and (d), the respective reconstructed particle
trajectories are shown. Data sets are offset by 1 for better visibility.

In fig. 6.19, simulation results of a systematic variation of ωn and λ for different diffusion
coefficients are presented by plotting the tracking error. Because the computational effort
is high, only short trajectories (300 estimation cycles) were simulated for varying diffusion
coefficients. The same trend of the tracking error is obtained for all diffusion coefficients,
but smaller D yield smaller tracking errors as already known. Careful interpretation of
fig. 6.19 (a) is necessary. A system with a natural frequency multiple times higher than the
reciprocal time of position estimation ∆t−1 produces small. However, in practice, there is
only little influence possible on ωn, which can be understood as a setup-specific constant.
Therefore, it is the position estimation time that must exceed the resonance time ω−1

n .
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The behavior for ωn∆t ≈ 1 is characterized by a high volatility of the tracking error to
the exact parameter configuration. For ωn∆t ≈ 2, a dip in the curves for small diffusion
coefficients indicates another setting where vibrations in the system are excited increasing
the tracking error. From fig. 6.19 (b), the simple fact can be derived that a stiffer system
(higher λ) reduces the susceptibility to oscillate and serves the purpose of tracking error
reduction.

Figure 6.19.: Results of SPOT-simulations of a diffusing particle, including a damped oscillatory feedback
response of the controller-stage system. The tracking error στ is plotted versus (a) the natural frequency
ωn (fixed λ = 0.2) or the (b) damping coefficient λ (fixed ωn = 1.5) for different diffusion coefficients of
the particle motion. Trajectories consisted of 300 position estimation cycles of duration ∆t. Feedback is
applied after each third localization period.

A more complicated transfer function of the stage-stage controller system would yield more
complex parameter dependency, but two aspects are maintained. A system that can be
pushed very fast, for example due to a higher resonance frequency and a stiff system that
does not show large overshoot, reduces the tracking error. These two aspects have been
addressed in the parameter configuration of the stage-controller (see appendix D.4).

6.4 |Mean squared displacement in a feedback sys-
tem

The stage vibrations yield oscillations in the measured particle and stage trajectory and
consequently also in derived quantities like the MSD. The problem with this is that those
oscillations can be easily misinterpreted as transient step correlations of the actual particle
motion physics. Hence, anomalous diffusion can be confused with stage oscillations. This
problem is tackled by calculating the expected response statistics of the entire SPOT system
actively tracking a normal diffusing particle with a realistic stage-stage controller transfer
function. Berglund et al. developed the necessary mathematical framework which is used
in the following.[52, 193] In section 3.3, the SPOT system feedback loop was modeled with
transfer function formalism driven by white noise kicks νbm(t) and photon counting noise
as input n(t). All spatial axes are treated independently to reduce the analysis on a single
spatial dimension. The stage position rs(t) is split into two parts, one that results from
the particle motion rs|p(t) and one that results from the counting noise signal contribution
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rs|n(t). With reference to eq. (3.30), the following equations are valid:

rs(t) = rs|p(t) + rs|n(t), (6.15)

Rs|p(s) = Gsc(s)
s (1 +Gsc(s))

L{νbm(t)} and (6.16)

Rs|n(s) = Gsc(s)
1 +Gsc(s)

N(s) . (6.17)

State-space realizations of these two systems are obtained by converting the transfer func-
tion to the system An,p, input Bn,p, and output matrices Cn,p in controller canonical form
(see appendix A.5). The feed-forward matrix Dn,p is not necessary within this context and
can be set to zero. The state and output equations are written in typical notation as

ẋn(t) = Anxn(t) +Bnun(t) , (6.18)
ẋp(t) = Apxp(t) +Bpup(t) , (6.19)
yn(t) = Cnxn , and (6.20)
yp(t) = Cpxp . (6.21)

The index n refers to the measurement noise-driven system, while the index p denotes
the system attributed to the particle motion. The meaning of the state vectors xn(t) and
xp(t) are unknown at first hand, but not crucial for further discussion. The inputs are
un(t) = n(t) and up(t) = νbm(t), and the outputs are yn(t) = rs|n(t) and yp(t) = rs|p(t),
respectively. All of those quantities are scalar functions. The steady-state process variances
Q∞|p and Q∞|n are calculated by solving the Lyapunov equation (see eq. (A.75) in the
appendix A.8) with the matrices defined above, and by using the covariance amplitudes
Vp = 2D (non-bold D is the diffusion coefficient, not to be confused with the feed-forward
matrix) or Vn = n2. For the photon counting noise part, the following statistical properties
can be derived[52]

E
(
rs|n(t)

)
= 0 , (6.22)

E
(
rs|n(t+ τ)rs|n(t)

)
= Cne

AnτQ∞|nC
T
n . (6.23)

Note the occurrence of the matrix exponential function eXt that is defined by its series
expansion

eXt =
∞∑
k=0

Xktk

k! . (6.24)

Unfortunately, the system attributed to the particle position noise is only marginally stable
due to the transfer functions pole at the origin (s = 0 in eq. (6.16)). Therefore, it is wise
to build the state-space model not for the actual stage position rs|p(t) but for its first time
derivative ṙs|p(t). Technically, this requires a multiplication by s removing the pole at the
origin of Rs|p(s). The modified system is denoted by the matrices Ãp, B̃p, C̃p and Q̃∞|p.
The equation for the statistics of this marginally stable process are slightly more complex
due to the required additional integration and can be written as[52]

E
(
rs|p(t)

)
= 0 , (6.25)

E
(
rs|p(t+ τ)rs|p(t)

)
= C̃pÃ

−2
p

(
eÃp(t+τ) + eÃpt − eÃpτ − 2Ãpt− 1

)
Q̃∞|pC̃

T
p . (6.26)
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Using these statistics, the contributions to the stage positional MSD are

MSDn(τ) = E
([
rs|n(t+ τ)− rs|n(t)

]2)
= 2Cn

(
1− eAnτ

)
Q∞|nC

T
n , (6.27)

MSDp(τ) = E
([
rs|p(t+ τ)− rs|p(t)

]2)
= 2C̃pÃ

−2
p

(
eÃpτ − Ãpτ − 1

)
Q̃∞|pC̃

T
p . (6.28)

The total MSD of the stage position is therefore given as the sum of eq. (6.27) and
eq. (6.28). This equation can be validated for example by reproducing the MSD for under-
damped Brownian motion eq. (2.11) from section 2.1 by using eq. (6.28), x = ṙ, Ap =
−ξm−1, Bp = m−1, Cp = 1, and Vp = vBM.

6.4.1 | Oscillator driven by Brownian motion and measurement
noise

The transfer function of a forced oscillator (see eq. (A.29)) should be considered as a model
for the stage-stage controller system. It will turn out in this section that a closed analytical
form of the MSD equation can be found. The state-space model of a driven oscillator is
defined in controller canonical (see appendix A.5) form by

An = Ãp =
(

0 1
−ω2

n −2λωn

)
, Bn = B̃p =

(
0
1

)
and Cn = C̃p =

(
ω2
n 0

)
(6.29)

with yn(t) = rs|n(t) and ỹp(t) = ṙs|p(t). Hence, the steady-state process variance is calcu-
lated as

Q∞|n =
 n2

4λω3
n

0
0 n2

4λωn

 and Q∞|p =
(

D
2λω3

n
0

0 D
2λωn

)
. (6.30)

Evaluation of the MSD for the forced oscillator by eq. (6.27) and eq. (6.28) yields

MSDn,FO(τ) = n2ωn
4λ

1− e−λωnτ
cosh

(
ωnτ
√
λ2 − 1

)
+
λ sinh

(
ωnτ
√
λ2 − 1

)
√
λ2 − 1

 (6.31)

and

MSDp,FO(τ) = 2Dτ + D (4λ2 − 1)
λωn

[
e−λωnτ cosh

(
ωnτ
√
λ2 − 1

)
− 1

]
+ De−λωnτ

ωn
√
λ2 − 1

sinh
(
ωnτ
√
λ2 − 1

) (
4λ2 − 3

)
, (6.32)

respectively. For large τ , the oscillatory influence of the stage response is expected to
vanish and indeed, MSDFO,n(τ) approaches a constant value characterized by the noise
density n

lim
τ→∞

MSDn,FO(τ) = n2ωn
4λ (6.33)

and MSDFO,p(τ) converges to linear scaling observed for Brownian motion

lim
τ→∞

MSDp,FO(τ)
τ

= 2D . (6.34)
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6.4.2 | Modeling of the simulated mean squared displacement
The described technique of calculating the MSD of the stage motion should be applied to
simulation results like those shown in fig. 6.18. As already mentioned, the computational
effort is high, and calculation time exceeded an acceptable level for more than 500 estima-
tion cycles per trajectory. Thus, ensembles of 50 trajectories per parameter configuration
are computed and processed to get their corresponding (time-averaged) MSD. Ensemble-
averages of those time-averaged MSDs are compared with a model function by non-linear
least-squares fitting. The fitting results, keeping the diffusion coefficient constant, are
shown in fig. 6.20.

Figure 6.20.: One-dimensional MSD of the nanopositioning stage coordinates resulting from 3D-SPOT
simulations with deactivated photon counting noise or stage noise, but with a damped oscillatory transfer
function converting target positions to actual stage movements. The particle’s diffusion coefficient was
set to 0.01w2

xy∆t−1, target changes happen each three position estimation cycles, and the stage transfer
function parameters are varied. In the top row, the damping coefficient is kept constant at λ = 0.2, while
the frequency varies from ωn∆t = 0.5 to 1.5. In contrast, in the bottom row, ωn∆t is fixed at 1.5, and the
damping varies from λ = 0.3 to 0.9. Solid light blue lines show single simulation runs consisting of 500
estimation cycles, while blue dots represent the average of 50 simulations each. The solid black and red
solid line are the best fits by the forced oscillator and PI-controlled oscillator model, respectively. Green
dotted lines are the standard result for the MSD of free Brownian motion scaling with 2Dτ .

A comparison with the free diffusion result shows that the simulated MSD converges to
the linear scaling for large τ but deviates for smaller τ significantly. The MSD shows
strong oscillations for small damping coefficients, mostly surpassing the free diffusion case.
Large damping coefficients yield an MSD that approaches the free diffusion limit from
below. The time scale on which the oscillations occur correlates with the inputted ωn.
Contrary to Berglund et al., a second-order model appears not sufficient to represent
the full SPOT simulation in all details, even if it was a second-order transfer function
used to simulate the stage-stage controller subsystem. The occurring modulation of the
MSD is underestimated for certain parameter configurations. The model of a PI-controlled
oscillator (see eq. (A.66), with Kd = 0 and kdc = 1) is utilized containing four parameters,
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namely the natural frequency ωn, the damping λ, and the controller gains Kp and Ki. Such
a transfer function is a third-order system written as

GPI,osci(s) = (Kps+Ki)ω2
n

s3 + 2λωns2 + (ω2
n +Kpω2

n) s+Kiω2
n

(6.35)

and represents the conversion of the particle motion and measurement noise input by
the entire SPOT system (Gsc(s)/ (1 +Gsc(s))) on the stage coordinate. The state-space
realization in controller canonical form is defined by

An = Ãp =

 0 1 0
0 0 1

−Kiω
2
n −ω2

n −Kpω
2
n −2λωn

 (6.36)

Bn = B̃p =

0
0
1

 and Cn = C̃p =
(
Kiω

2
n Kpω

2
n 0

)
, (6.37)

while the feed-forward matrices Dn = Dp = 0 are again not required. The simulation does
not include photon counting noise, thus only the particle motion-based system is considered.
The steady-state process variance solves the corresponding Lyapunov equation with

Q∞|p =


− 2λD
Kiωnβ1

0 D
β1

0 −D
β1

0
D
β1

0 (1+Kp)ω2
nD

β1

 . (6.38)

using the abbreviation β1 = Kiω
2
n − 2 (1 +Kp)λω3

n. Due to the complicated matrix ex-
ponential expression, it is not easy to obtain an analytical formula for the stage position
MSD. However, eq. (6.28) can be evaluated numerically, making use of the Padé approx-
imation.[194] The PI-controlled oscillator model is able to reproduce the simulation data
with high accuracy while keeping the damping and diffusion coefficient at fixed values that
are equal to the input data. In table 6.5, the parameters of the two different fitting models
are contrasted.

Table 6.5.: Overview of the fitting results of the forced oscillator and PI-controlled oscillator model.
Starred values (*) are kept fixed while fitting.

Input Forced oscillator model PI-controlled oscillator model
ωn∆t λ ωn∆t λ adj. R2/% ωn∆t λ (fixed) Ki Kp adj. R2/%
0.50 0.20 0.482 0.02 99.35 0.159 0.20* 0.453 8.182 99.82
1.00 0.20 1.057 0.06 97.93 0.643 0.20* 0.547 1.642 99.96
1.50 0.20 1.398 0.19 99.04 0.767 0.20* 0.423 1.100 99.83
1.50 0.30 1.693 0.33 93.65 0.729 0.30* 0.477 1.491 99.98
1.50 0.60 2.026 0.99 99.92 1.500* 0.60* 0.714 0.309 99.92
1.50 0.90 0.780 0.66 99.99 1.500* 0.90* 0.517 0.090 99.98

The adjusted R2 value indicates the almost perfect correspondence between the PI-con-
trolled oscillator model and the simulation results, while already, the forced oscillator
model yields only small deviations. Unfortunately, it was not possible to reproduce the
simulation input parameter accurately. The resonance frequency deviates strongly from
the input settings. For large damping coefficients λ ≥ 0.6, this is not crucial as the
model is almost independent of ωn, and the same result can be reproduced with different
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resonance frequencies. For those cases, the second-order forced oscillator model is sufficient
and coincides perfectly with the third-order PI-controlled oscillator model. To account for
that, the resonance frequency ωn was kept constant in the third-order model. However, for
smaller damping coefficients λ < 0.6 where oscillations are present in the MSD, ωn becomes
important. The fitting displays smaller ωn than originally inputted. The conclusion is that
the full simulation covers more aspects than the linear model. For example, the discussed
nonlinearities of the localization step and discrete-time stage position updates are not
included.

Another important result of this section is that the first four MSD points that appear
as the most meaningful in some studies (see [195]), are influenced most heavily by the
stage-stage controller transfer function. Fitting a straight line or power-law to those points
may yield falsified results for the diffusion coefficient and/or anomaly parameter. The best
fitting range for a straight line or power-law is a use-case dependent compromise between
the short lag time range influenced by measurement artifacts and the long lag time range
characterized by a worse data basis for averaging.

68



7 | Reference experiments

The large number of error sources and measurement artifacts discovered in theoretical
considerations and computer simulations imply the conduction of reference measurements.
Studying samples with known properties helps to identify which conclusions can or cannot
be drawn from measurements about unknown systems.

For this purpose, a large set of trajectories of fluorescent polystyrene nanoparticles
with nominal diameters of (27± 4) nm, (50± 18) nm and (100± 20) nm is recorded with
3D-SPOT in different aqueous solutions. Experiments are performed in a glycerol/water
concentration series ranging from 50 vol% to 99 vol%, in dextran, saccharose and polyethy-
lene glycol solutions (see section 5.3.1 for more details).

An example of a trajectory resulting from 3D-SPOT is depicted in fig. 7.1. It was a
50 nm sized particle in a 90 vol% glycerol/water mixture that was tracked for more than
2 minutes yielding 1× 105 positions and a trace of the detected fluorescence (fig. 7.1 (c)).
The three-dimensional particle trajectory (fig. 7.1 (a)) appears random, undirected and not
bound to a certain region. Thus, its general appearance corresponds to that of a Brownian
walk and meets the expectation. At first glance, the position variance of the three single-
coordinate traces (fig. 7.1 (b)) appear similar, but slightly enlarged on intermediate time
scales for the z-coordinate. The detected photon count rate is about 44 kcps on average. In
fact, it is not constant in time, but decreases due to photo-bleaching. Single spikes of the
fluorescence trace (e.g., at t ≈ 63 s) may indicate an unstable tracking period arising from
a second particle approaching the detection volume or a random accumulation of incorrect
localizations.

Data like these are measured for the different nanoparticle/solution medium combina-
tions. To achieve a successful tracking, smaller particles need more viscous solvents and,
in consequence, it was not possible to test all combinations of solution medium and par-
ticle sizes. While the presented example does not suffer from obvious drift motion, some
trajectories do. To correct for that, a straight line is fitted to each coordinate trace and
subtracted subsequently. Additionally, positional oscillation with the frequency given by
the stage’s feedback period are removed by phase-sensitive lock-in analysis as described in
[186]. From each recorded and corrected trajectory, the one-dimensional and time-averaged
MSD is calculated for the x-, y-, and z-direction. MSDs are averaged for each concentra-
tion and particle size separately, where all spatial dimensions are considered equivalent as
the solvents are isotropic.
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Figure 7.1.: Example of a trajectory recorded with 3D-SPOT. A 50 nm sized particle was followed in
a 90 % glycerol/water mixture for about 134 s with 1.3 ms temporal resolution. (a) Three dimensional
representation of the recorded particle positions. The time is color-coded (dark blue to yellow) and two-
dimensional projections are plotted alongside. (b) Time series of the particle coordinates. (c) Detected
photon count rate with the same color-code as in (a).
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7.1 | Dynamic viscosities of different aqueous solu-
tions

In order to confirm the quantitative use of the measured trajectories, the dynamic viscosity
of the suspension fluids are determined and compared with reference values. For this
purpose, it is necessary to derive the diffusion coefficient of the particles from the MSD.
In this context, the results, in particular the MSDs, are examined with regard to artifacts
of the measurement method. In fig. 7.2, the mean MSDs measured in the glycerol/water
mixtures are shown with glycerol content increasing from (a) to (h).

Figure 7.2.: Mean MSDs of trajectories in glycerol/water mixtures of various concentrations. Shaded
areas indicate minimum-to-maximum ranges that contain the course of all individual MSDs from the data
set. The gray region indicates the fitting range.

Simple linear scaling is expected for Brownian motion, but is not observed in the mea-
surement data. Instead, for τ < 10 ms, the averaging error yields to apparent subdiffusive
scaling that transits to a linear scaling for larger lag times. Closer observation of the MSD
course reveals a bending for the lowest and highest glycerol concentration at τ ≈ 100 ms.
Figure 7.3 shows the MSDs for the sugar and polymer solutions in a matrix representation,
where each row corresponds to a specific particle size and each column summarizes the
result for a different substance. Lower concentrations (dotted lines) yield steeper MSDs.
Once again, the bending for τ ≈ 100 ms is present and is strongly pronounced for the
30 wt% dextran and 50 wt% polyethylene glycol solution.

In the case of Brownian motion, the diffusion coefficient of a single particle can be
determined from its MSD by straight line fitting. Due to the more complex course of
the MSDs, the result will depend on the selected time range and a proper choice is very
important. Here, the MSDs are fitted in the interval of 100 ms to 500 ms because this
range is less affected by the short time measurement errors but still satisfactorily averaged.
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Figure 7.3.: MSDs for particles of different size (rows) solved in different media (columns): (a) Dextran,
25 nm; (b) saccharose, �25 nm; (c) polyethylene glycol, �25 nm; (d) dextran, �50 nm; (e) saccharose,
�50 nm; (f) polyethylene glycol, �50 nm; (g) dextran, �100 nm; (h) saccharose, �100 nm; (i) polyethylene
glycol, �100 nm. Shaded areas indicate minimum-to-maximum ranges that contain the course of all MSDs
before averaging.

Moreover, the final outcome in this range is only weakly influenced by the MSD bending
at τ ≈ 100 ms.

The slope of the linear model is converted to the individual diffusion coefficient D
by eq. (2.15). Using the mean particle diameter measured with dynamic light scattering
(see section 5.1), this diffusion coefficients are used to compute the dynamic viscosities η
with the help of the Stokes-Einstein equation for spheres (combination of eq. (2.16) and
eq. (2.17)). Those values obtained for η are compared in fig. 7.4 with data found in liter-
ature. References for glycerol are taken from Sheely and Cheng[196, 197], a formula to
calculate the viscosity of dextrans in aqueous solutions was extracted from Carrasco[198],
Swindells and Migliori provided the references for saccharose[199, 200], and data from
Regupathi and Holyst are used for comparison with the polyethylene glycol/water mix-
tures[201, 202]. Furthermore, a interpolation equation for the dynamic viscosity of glycerol
was derived from rolling-ball viscometer measurements (see appendix E.1) and added to
fig. 7.4 (a).

The viscosities resulting from 3D-SPOT do not show smooth curves, but the expected
trends are visible for all three particle sizes. The scattering of some data points is large
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due to the ensemble sizes and the width of the particle size distribution. Because slow
particles are easier to catch in the initial particle search procedure of a 3D-SPOT mea-
surement, 3D-SPOT has a bias towards slower (bigger and brighter) particles. This bias is
pronounced for more difficult experimental situations which explains the deviation for the
100 nm particles in less viscous environments and produces an overestimation of the real
viscosity. Provided that even literature data differ, the correspondence of the 3D-SPOT
results and the reference curves are satisfactory.

Figure 7.4.: Concentration dependency of the dynamic viscosity η of different aqueous solutions. 3D-
SPOT results are depicted as dots with error bars in blue (25 nm), green (50 nm) and orange (100 nm) for (a)
glycerol (b) dextran (c) saccharose and (d) polyethylene glycol, respectively. Literature resources are shown
as solid and dash-dotted black lines. In the case of glycerol, also rolling-ball viscometer measurements are
given (dashed black line).

7.2 | Anomaly detection
As seen in previous chapters, the intrinsic oscillations of the tracking procedure generate
deviations from the linear scaling of the MSD even when measuring Brownian motion.
These deviations can easily be misinterpreted as anomalous diffusion, which is why it will
now be tested to what extent anomalies can be detected by 3D-SPOT. To infer the degree
of anomaly on the time scale of interest, a straight-forward approach is to calculate the
time-averaged MSD’s logarithmic derivative as

α(τ) = d

d log10 (τ) log10 (MSD (τ)) . (7.1)

In order to gain smooth varying α(τ), the numerical fluctuations are removed following
the procedure described in [203]. As an example, the MSDs that are created by simulation
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of the SPOT method in the context of section 6.4 are converted to α(τ) and plotted in
fig. 7.5. While the curves approache the limit α(τ) = 1 for longer lag times, they differ
from normal diffusion scaling depending on the setups transfer function parameters and
not on the actual particle’s diffusion characteristics.

Figure 7.5.: Lag time dependent anomaly parameter determined for the simulation results presented in
fig. 6.20(e)-(f). The light blue shaded area indicates the minimum-to-maximum range of the individual
α(τ) courses determined for each simulated MSD curve.

Figure 7.6.: Anomaly α(τ) extracted from the MSD shown in fig. 7.3. Shaded areas represent the
minimum-to-maximum ranges that contain the course of all α(τ) before averaging.

In the same way, the reference experiments for 3D-SPOT are analyzed. In fig. 7.6, the
lag time dependent anomaly parameter is shown for the glycerol concentration series mea-
surement. While there are no reasons for the particle motion in glycerol/water mixtures
to deviate from the linear τ -scaling of the MSD, there are significant anomalies detected.
Especially in the short time regime (τ < 100 ms), where the weighting of the localization
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error is more severe, the MSD runs subdiffusive. Most concentration show an α(τ) close to
1 in the range 100 ms to 1 s, a regime that is less influenced by the localization and tracking
errors but still properly averaged. Lower particle diffusion coefficients (higher viscosities of
the solution medium or larger particle diameter) lead to a later reach of the normal diffu-
sion scaling. As already seen in fig. 7.2, the 50 vol% and 99 vol% glycerol/water mixtures
show the strongest apparent anomalies.

It is not easy to quantitatively compare the complicated curves for α(τ) and conclude
which substance shows stronger anomalies than another. Therefore, an average anomaly
ᾱ is defined for the analogous lag time range of the diffusion coefficient determined in
section 7.1. Hence, α(τ) is averaged in the range τ ∈ [100 ms; 500 ms] for each individual
one-dimensional MSD

ᾱ =
∫ 500 ms

100 ms
α(τ)dτ , (7.2)

and presented in fig. 7.7 as box-and-whiskers plots.

Figure 7.7.: Box-and-whiskers plots of the individual averaged anomalies extracted from the particles
one-dimensional MSDs along (a) the x-direction, (b) the y-direction, and (c) the z-direction. A gray
shaded area indicates a 10 % interval around the normal diffusive scaling range (ᾱ = 1, dotted black line).
Whiskers corresponds to 1.5 of the interquartile range and outliers are displayed as diamonds.

The majority of the averaged anomaly parameters lies within a 10 % interval around ᾱ = 1
for the lateral coordinates (ᾱx and ᾱy, see fig. 7.7 (a) and (b)). Most of the axial mean
anomaly parameter (ᾱz, see fig. 7.7 (c)) differ significantly from the ᾱ- interval accepted
as normal diffusion. Hence, it is concluded that the larger tracking/localization error in
z-direction compared to the lateral directions impede its usage for anomaly detection.

Repeating the same type of analysis on the aqueous sugar and polymer solutions, but
ignoring the z-direction, the results shown in fig. 7.8 are obtained. For short lag times,
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Figure 7.8.: Anomaly α(τ) extracted from the lateral one-dimensional MSDs shown in fig. 7.3. (a) 15 wt%
(dotted lines) and 30 wt% (solid lines) of dextran solved in water (b) 60 wt% saccharose solved in water
and (c) 30 wt% and 50 wt% of polyethylene glycol solved in water. Shaded areas indicate minimum-to-
maximum ranges that contain the course of all individual α(τ).

subdiffusive scaling due to localization uncertainties is observed. For 15 wt% dextran,
60 wt% saccharose, or 30 wt% polyethylene glycol, the course of α(τ) is close to 1 indicating
Brownian motion. However, the anomaly parameter differs recognizably from 1 for the
30 wt% dextran solved in water. This is true for all used particle sizes. The 50 wt%
polyethylene glycol solution show similar deviations from normal diffusion. But in contrast
to the dextran measurements, α(τ) approaches 1 within a few hundred millisecond.

Now, the averaged anomaly parameter is calculated and plotted in fig. 7.9, but only the
lateral coordinates are considered. Since ᾱlat is less sensitive to short time discrepancies
form normal diffusion, but highly susceptible to α(τ) for larger τ , the anomaly detections
are slightly modified. In this representation, there is no detectable anomaly for both
measured polyethylene glycol concentrations, but the broader scattering of the data for
15 wt% foreshadows concentration dependent diffusion anomalies in dextran solutions. In
the case of 30 wt% dextran solved in water, stronger deviations from normal diffusion are
obtained.

Figure 7.9.: Box-and-whiskers plots of the individual averaged anomalies extracted from the particles’
one-dimensional MSDs in lateral directions. A gray-shaded area indicates a 10 % interval around the
normal diffusive scaling (ᾱ = 1, dotted black line). Whiskers corresponds to 1.5 of the interquartile range
and outliers are displayed as diamonds.
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These findings reproduce the results of 2D-SPOT experiments that were published by
Ernst et al. in [133, 203]. However, the greater knowledge of the measurement errors of the
experimental setup demonstrates that such conclusions should be drawn only cautiously.
The selection of the parameter ranges and the applied corrections significantly influence
the results. With the present implementation for axial localization, the measurements are
only of limited use for the identification of anomalies in the diffusion behavior. The benefit
of the third dimension of SPOT, in this respect, is simply that longer trajectories can be
obtained even under more difficult conditions than 2D-SPOT would allow for.

7.3 | Conclusions from the reference experiments
Concluding this section, 3D-SPOT can be successfully used to measure dynamic viscosi-
ties of aqueous fluids. By choosing an appropriate particle size, there is some flexibility
regarding the range of viscosities that are able to be determined, but high viscosities are
beneficial. While an increased number of measurements and an elongated acquisition time
per trajectory can increase the accuracy, the precision in the determination of absolute
values of SPOT is not outstanding. The reason for this is the high sensitivity regarding
the exact measurement and evaluation conditions, e.g., the particle size or the analyzed
time interval. Therefore, series of measurements should always be carried out with system-
atic parameter variation to eliminate a misleading parameter choice. Furthermore, only
well-defined materials like particle with a sharply peaking size-distribution should be used.

Nevertheless, 3D-SPOT is recommended for the use in viscosimetry when other mea-
surement methods fail. For example, if the total sample volume is very small (∼ 10 µL) or
only a few probe particles are present or allowed to be inserted. Very specific problems,
such as the determination of local viscosities in volumes down to one picoliter or changes
over time, can also be addressed.

The abundance of data points measured by 3D-SPOT tempts to the evaluation of
diffusion anomalies. This is quite justified, but should only be evaluated very prudently.
Active particle tracking with mechanical systems has an intrinsic predisposition to oscillate,
resulting in residues in the particle trajectories that cannot be easily filtered out. However,
verified parameter selection allows for qualitative comparisons in particular, which produce
clear results. Unfortunately, the accuracy along the z-axis is currently still too low to serve
the evaluation of diffusion anomalies.
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8 | Diffusion behavior of
nanoparticles in complex

filtration media

In the previous sections, the method and implementation of 3D-SPOT, its pitfalls and
shortcomings, and its application to samples of known properties was described. In this
section, however, the focus is shifted to its application on a new system. The diffusion
behavior of nanometer-sized colloidal particles will now be investigated in a nanoporous
polymer membrane following the motivation given in the introductory section 1.3.

To put it in a nutshell, this part of the thesis will first consist of a characterization
of the membrane material. Therefore, its morphology is studied with environmental scan-
ning microscopy (eSEM) and collated with the expectation generated from the formation
process. After that, 3D-SPOT is used to measure the confined diffusion of nanoparticles
inside the membrane’s porous network. Tracking results are processed to obtain the void
volume that is accessible to the particle’s motion, which can be compared to the electron
microscopy outcome. Finally, the measured motion is inspected in more detail and related
to theoretical models describing the diffusion behaviorof the particle best.

Parts of the results presented in this chapter are published in [204]. Moreover, this
chapter is connect to studies reported in my master’s thesis. For this reason, a review of
the preliminary work on which this study is based will be given in the following.

8.1 | Preliminary work
Porous membranes derived from block copolymers are promising materials for controlled
separation and there are many preparation pathways available.[97, 205] Our coopera-
tion partner, the group of Felix H. Schacher at the Friedrich-Schiller-University of
Jena, used the method of self-assembly and non-solvent induced phase separation (SNIPS
[181], see section 5.2) to obtain membranes from block copolymers like polystyrene-block-
poly(N,N-dimethylaminoethyl methacrylate) (PS81-b-PDMAEMA19, subscripts denote the
weight fractions of the corresponding segments, see fig. 8.1(a) for the chemical struc-
ture).[206, 207]

They characterized the polymer and the finally created membranes with established
methods. In particular, they showed that the prepared membranes exhibited a defect-free
surface over several 100 µm2 of a porous polystyrene matrix.[206] The morphology appeared
asymmetric in the membranes cross section according to SEM micrographs and in agree-
ment with the expectations generated from the preparation method. It was shown by water
flux and silica particle filtration measurements that the pH and the temperature responsive
minority block, PDMAEMA, is capable of changing the permeability of the entire mem-
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Figure 8.1.: (a) Chemical structure of polystyrene-block-poly(N,N-dimethylaminoethyl methacry-
late).[206] (b) Illustration of the conformational changes PS-b-PDMAEMA undergoes for changing envi-
ronmental conditions. In the low temperature and/or pH range, the PDMAEMA-chain (blue line) charges
positively and stretches due to intra-molecular repulsion. By increasing the ambient temperature or pH the
chain loses its charges and relaxes to a random coil. The PS-block (red line) remains unaltered.

brane. It was assumed that the PDMAEMA block covers the surface of the polystyrene
scaffold in the nanoporous separation layer and that the switching of permeability was due
to a swelling of this block (Similar to the illustration given in fig. 5.5(b)). The PDMAEMA
chains collapse for high pH and/or temperature and enlarge for low pH and/or temperature
(see fig. 8.1(b)). The conformational changes of the macromolecule causing the stretching
result from an electrostatic charging of the chains for decreasing pH value. As those chains
become charged, the macromolecules repels themselves and expand. For higher tempera-
tures, more charges are necessary to reach the same intramolecular repulsion. While one
can be relatively sure about the structure and surface properties of the skin layer, no reli-
able information on the detailed structure of the macroporous bulk material is available.
However, it seems likely that the minority block is partly incorporated into the membrane
scaffold and that there is no well defined surface composition.[206]

This is the point where SPOT attempts to extract information about the membrane
morphology. In my master thesis, I tried to reproduce the work of Haramagatti et al.
using 2D-SPOT instead of camera-based SPT to track fluorescently labeled polystyrene
beads in PS81-b-PDMAEMA19 membranes.[208] Due to slightly different preparation pa-
rameters, the more recently used membranes, exhibit significantly bigger pore sizes as those
discussed in [206] and [208]. The pore diameter was extracted from scanning electron mi-
crographs of the skin layer and amounted to about 3 µm compared to 20−80 nm in the
aforementioned references.

It turned out that there are two major problems with SPOT measurements in this
system. The first one is an unfavorable autofluorescence of the polymer combined with
a strong light scattering at the membrane scaffold. This leads to a very inhomogeneous
background signal that hampers the particle localization significantly. By using polystyrene
spheres with a large stokes shift (TransFluoSpheres, see table 5.1 and fig. 5.4 for the spec-
trum), a suitable spectral design of the experiment was achieved, in which the particles
emit at longer wavelengths than those where the membrane’s autofluorescence occurs. The
second major problem with the PS81-b-PDMAEMA19 system was strong electrostatic in-
teraction between the tracked particles and the membrane wall. In contrast to [208], a
saturation of adsorption sites was not achieved by immersing the membrane in a diluted
silica nanoparticle solution. This approach fails for SPOT, because pure water is here an
unfeasible solution medium due to its low viscosity. The changed environmental conditions
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compared with Haramagatti’s SPT experiments may either lead to a release of the silica
nanoparticles from the membrane or an increase of the number of adsorption sites for the
probe particle. The key to reduce this problem was the neutralization of either the tracer
particle or the membrane wall. Therefore, the pH was adjusted via the buffer composi-
tion and detergent was added to increase the particle stability. Nevertheless, the tracer
particle adsorption was very severe due to the PDMAEMA block. For the experiments
to be presented in this thesis, the severe tracer particle adsorption problem was avoided
by exchanging the polymer. Here, the nanoporous membranes were formed from the tri-
block terpolymer PS43-b-PI40-b-PNIPAAm17. In the material section (see section 5.2 and
section 5.3.2), those membranes and their preparation are described in detail.

8.2 |Morphology inspection by environmental scan-
ning electron microscopy

For reference purposes, the membranes have been investigated by environmental scanning
electron microscopy (eSEM). Resulting micrographs are analyzed with a digital image
processing technique, called chord length analysis (CLA), to characterize the length scales
of the occurring voids.

Water inflated and cooled pieces of the membrane were placed in the sample chamber
of an electron microscope (FEI Quanta FEG 250, Thermo Fisher Scientific) that was
operated in the environmental scanning electron microscopy (eSEM) mode. The chamber
was chilled to 2 ◦C for 20 min and flushed twice with water vapour. After that, it was
stabilized at a pressure of 715 Pa corresponding to a humidity of about 100 %. Under these
conditions, the membrane pores are completely filled with water and therefore, cannot be
imaged by the electron microscope. In order to reveal the pores and to ensure that the
drying process itself does not alter the structure, the moisture was gradually reduced by
lowering the pressure within the sample chamber. An example of an eSEM micrograph of
the membrane surface is shown as a function of the humidity in fig. 8.2.

Figure 8.2.: eSEM micrograph of the membrane surface for the ambient humidity decreasing from 98 %
to 62 % (left to right). The humidity was controlled by reducing the pressure from (a) 697 Pa via (b)
560 Pa to (c) 437 Pa at a constant temperature of 2 ◦C. (Voltage: 10 kV, Magnification: 40 000×)

The contrast and richness of the surface details were sufficiently enhanced at a humidity of
62 %, while the membrane’s structure remains unaltered. This ensured sample conditions
that are, although not fully identical, but at least comparable to those prevailing during
SPOT experiments. The morphology of the membranes was inspected under these condi-
tions at different locations. An example for a side view, a top view, and a bottom view
of a membrane are shown in fig. 8.3. The thickness varies in the range of 20 µm to 35 µm
(here: (33± 2) µm, but see also fig. E.5(a) and (b)), and it consists of a sponge-like bulk
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structure capped with a thin, a few hundred nanometres wide top layer. This observed
structure fulfills the expectation generated from the SNIPS formation process. For the
top layer, the top-view (fig. 8.3(b)) reveals a relatively homogeneous distribution of pores
with diameters clearly smaller than 1 µm. This is in contrast to the structure of the bulk
material as shown in the bottom view (fig. 8.3(c)). Further eSEM micrographs showing
cross sectional views (see fig. E.5), high magnifications (see fig. E.6) or membrane areas
with defects (see fig. E.7) can be found in the appendix E.3.

Figure 8.3.: Environmental scanning electron micrograph of a (a) side (b) top and (c) bottom view of
the PS43-b-PI40-b-PNIPAAm17 triblock terpolymer membrane.

In order to quantify the pore sizes from the eSEM images, CLA was applied, a digital
image processing technique for characterizing the length scales occurring within an inho-
mogeneous structure. It is based on a binarized image, where black areas represent the
membrane wall and white areas indicate void spaces. Within the void space a given num-
ber (actually some hundreds or thousands) of points are randomly selected. From these
starting points, straight lines are expanded pixel by pixel in different directions until they
hit the membrane wall. Lines leading in opposite directions are merged into one single, so-
called, chord. A histogram over the length L of this chords is interpreted as the membrane’s
morphological pore size distribution PCLA(L).

The benefit of this fully automatized evaluation is often hampered by the difficulty of
correctly binarizing the image. After enhancing the contrast of the images, binarization is
usually done by thresholding. Several algorithms like the Otsu method are available for
determining a suitable greyscale level.[209] Best results have been obtained by choosing
the threshold as the midpoint between the maximum of the gray scale histogram and its
steepest descent. This value is feed into the adaptive binarization method of the used
MATLAB (The Mathworks, Inc., Version R2016a) scripts. After that, all void areas that
touch the boundary of the micrograph region are removed because their areas are artifi-
cially cropped. Then the method still might lead to misinterpretations concerning what
is recognized as a wall or a void. Therefore, for each region assigned as a void, the area
Avoid and the perimeter uvoid are determined from the pixelated image and the parameter
mvoid = 4πAvoid/u

2
void is calculated. Given the membrane formation process, it is expected

to deal with round pores. Structures with irregular contours featuring mvoid ≤ 0.5 are
rejected from the analysis. For a perfect circular void the circularity parameter mvoid be-
comes 1. Note that that this criterion is independent of the size of the pores which are
discriminated exclusively according to their shapes.

The so-called k-Gamma distribution PkΓ(L) describes the void size distribution in dis-
ordered pores spaces and is given as

PkΓ(L) = kk

Γ (k)L
k−µcµ−kc exp

(
−kL
µc

)
, (8.1)
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where µc denotes the first statistical moment and k is used for the definition of the second
moment σc via σ2

c = µ2
c/k.[210] The symbol Γ(x) represents the gamma function with argu-

ment x. Fitting this model to chord size distributions was already successfully applied to in-
spect disordered macroporous-mesoporous silica monoliths[211], porous polymer films[180]
and packed glass bead beds[212]. The CLA results for the membrane at hand are shown
in fig. 8.4 and described well by the k-Gamma distribution with µc,bulk = (360± 10) nm
and σc,bulk = (212± 7) nm for the bottom-view micrograph, and µc,top = (81.0± 1.3) nm
and σc,top = (44.0± 0.7) nm for the top-view micrograph.

This analysis testifies that a significant fraction of the pores would not be accessible by
conventional optical microscopy because they feature sizes that are in the order or smaller
than the classical diffraction limit of light.

Figure 8.4.: Distribution of chord length PCLA,top(L) (magenta colored dots) and PCLA,bulk(L) (blue
dots) extracted via CLA from eSEM micrographs with top-view or bottom-view, respectively, and the
corresponding fits PkΓ,top(L) (green line) and PkΓ,CLA,bulk(L) (red line) with the k-Gamma distribution.

8.3 | 3D-SPOT within the porous bulk structure of
the polymer membranes

With the help of 3D-SPOT, the behavior of fluorescent nanospheres within the porous bulk
structure of the introduced membranes is inspected. Having prepared the nanoparticle
suspensions of polystyrene spheres that are (25± 4) nm, (50± 18) nm and (100± 20) nm
in nominal diameter (see section 5.3.2 for details), each of them was used separately to
conduct 3D-SPOT experiments.

In contrast to the approach taken in the preliminary works described in section 8.1,
the signal-to-noise ratio of the fluorescence recordings was enhanced by the reduction of
the laser light back-scattering via refractive index matching and not by suppression of the
autofluorescence detection as it turned out to be more effective. The refractive index of the
membrane material is approximately that of polystyrene (ñmembrane ≈ ñPS ≈ 1.62)[213] and
must be compared with that of the solution medium (ñbuffer = 1.43) which was increased
with the help of 2,2’-tiodiethanol (TDE, ñTDE = 1.52). This is not a perfect match, but
sufficient to increase the transparency of the membrane to a useful level (see fig. E.4 in the
appendix E.2). Refractive indices were checked by a refractometer (Abbemat, Anton Paar
GmbH) at several wavelengths (see fig. E.3 in the appendix E.2). The amount of TDE was
kept as low as possible to conduct the experiments under conditions that are close to pure
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water applications. TDE was used, because it is polar, miscible with water and already
successfully applied in similar situations.[180]

Trajectories are recorded with 3D-SPOT from multiple micrometers inside the mem-
brane material and as long as none of several predefined measurement termination criteria
are met. Those termination criteria are the loss of the particle, unexpected changes in the
photon detection rate or a stage scanner target position out of range. Trajectories that
are too short are excluded from further processing. Finally, 32 trajectories of the 25 nm,
17 trajectories of the 50 nm, and 28 trajectories of the 100 nm particles are left for further
analysis. Unfortunately, experiments suffered from drift as was double checked via the
microscope’s wide-field mode. Therefore, drift-correction has been applied.

Five trajectories of the 25 nm nanobeads are displayed as an example in fig. 8.5. Along-
side the diffusive pathways, a 3D-SPOT record of a particle that was immobilized on
a glass surface is shown that features variations in the spatial positions along all three
dimensions that are consistent with Gaussian distributions with standard deviations of
σ̂t ≈ (8 nm, 8 nm, 12 nm). This provides a measure for the localization accuracy with the
used setup settings. The other diffusive particle traces feature a great variety in their
shapes but differences from free diffusion (see e.g., fig. 7.1) or the static case (fig. 8.5 (f))
are already visible by eye.

Figure 8.5.: (a–e) Examples of five different 3D-trajectories (dark blue) and their plane projections (light
blue) from fluorescent nanoparticles of 25 nm in diameter recorded with 3D-SPOT. (f) A trajectory recorded
from a fluorescent nanoparticle that was immobilized on a glass surface for reference. All trajectories are
shown within a cube of 2 µm edge length.
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8.4 | Accessible void space distribution
After those qualitative observations, quantitative results will be extracted from the recorded
particle trajectories. In the last section, it became clear that the trajectories recorded with
3D-SPOT show very inhomogeneous results that are not unexpected considering the elec-
tron microscopic elucidation of the membrane morphology in section 8.2.

In the following, the membrane’s porous space that is accessible for diffusion will be
determined and compared with the findings from the electron microscopic morphology
analysis. Therefore, the void space accessible for diffusion is derived for each particle
size utilizing the MSD without any model assumptions about the underlying diffusion
dynamics. In accordance with literature, the accessible void space should shrink with
increasing particle size[180] and it should be smaller than what is known from the eSEM.
Figure 8.6 illustrates the differences in accessible void space for particle with different
diameters.

Figure 8.6.: Illustration of the void space accessible for particles that differ in diameter. The orange
particle (b) is four times larger than the blue (a), and, therefore, it is closer confined in its motion.

The measured trajectories are given again as time series of estimated positions r̂[k] =
(r̂x[k], r̂y[k], r̂z[k]) and used to compute the time-averaged MSDs for each spatial dimension
separately. The typical curves of MSDs for confined motion is observed for all three particle
sizes as can be seen in fig. 8.7, starting with a steady growth that levels-off and ends in a
plateau. The initial rise appears approximately linear in τ . The plateaus are not perfectly
flat and decrease on average with increasing particle diameter. Since the level of the plateau
scales with the squared size of the confining void (see section 2.5), the MSD can be used
to to determine an estimate of the pore size distribution within the bulk structure of the
triblock terpolymer membrane. The MSD values are averaged over the range τ ∈ [1 s; 4 s]
indicated by the gray shaded area in fig. 8.7.

These plateau levels are associated with the confinement lengths L̂ by the arithmetic
average of Nτ MSD-points in the lag time interval τi ∈ [1 s; 4 s] given by

L̂ = 2
Nτ

Nτ∑
τi∈[1 s;4 s]

√
MSD [i] , (8.2)

and τi = iδt. Hence, each trajectory results in three confinement lengths L̂ in analogy to
the CLA, where a void space’s size is also probed along different directions simultaneously.
Since the particle diameter is not of negligible size compared with the expected void sizes,
the apparent confinement lengths L̂ must be corrected by the particle diameter a. The
actual estimated confinement length is given as

L̂ = L̂ + a . (8.3)
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Figure 8.7.: Single-coordinate MSD curves from fluorescent nanoparticles of (a) 25 nm, (b) 50 nm, or (c)
100 nm in diameter. As a guide for the eye, the dotted black line indicates a linear scaling of the lag time
τ . The shaded area corresponds to the range from which the confinement lengths are calculated. .

For each particle size, a histogram is constructed from the set of estimated confinement
length and compared with the results from the CLA of the eSEM experiments in terms
of the distributions first and second moment provided in table 8.1. The comparison is
depicted in fig. 8.8.

Figure 8.8.: Normalized histograms of the confinement lengths L̂ obtained from the MSDs for particles
of (a) 25 nm, (b) 50 nm, and (c) 100 nm in diameter, respectively. The black dots refer to the normalized
probability density of the pore sizes L obtained from the CLA for the bottom-view eSEM micrograph and
the corresponding fitted k-Gamma distribution (solid black line), which already had been shown in fig. 8.4.

The SPOT results for the 25 nm and 50 nm sized particles are about similar, and in rea-
sonable agreement with the results from the CLA, whereas the results obtained for the
particles of 100 nm in diameter show larger deviations. This might reflect that the non-
accessible void space increases with increasing particle size, which misleadingly leads to
an underestimation of the total available pore sizes. Comparing the results obtained with
particles of different sizes, a rule of thumb can be stated that the ratio of the size of the
tracers and the pore diameters should be about 1 : 10 for reliably mapping out the void
spaces in the membrane. Continuing this train of thought, the filtration features of this
membrane should show increased separation capabilities for particles larger and smaller
than a threshold in between 50 nm and 100 nm.
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Table 8.1.: Comparison of the (bottom-view) pore size distributions obtained from eSEM and 3D-SPOT
for the different particle sizes. The mean values and distribution widths are measured in terms of the
moments of the k-Gamma distribution.

CLA (bottom) �25 nm �50 nm �100 nm
Mean pore size / nm 360 300 270 200
Width of the distribution / nm 212 170 130 60

8.5 | Diffusion characteristics
Having characterized the porous void space that is available for the particle motion in a
model-free manner just by looking at the saturation level of the MSDs, a closer look at the
particle’s motion will be presented in this section. Since the database is not large enough
considering the complex system observed, it is not possible to point out the underlying
theoretical diffusion model for sure. Instead, it should be described which statistical prop-
erties are observed and which models may be at least candidates to describe the particles
diffusion characteristics.

Figure 8.9.: Van Hove function of the absolute value of particle displacements normalized by the trajec-
tories individual standard deviation. (a) Distributions calculated for a lag time of τ = 12 ms. Results of
single trajectories of the 25 nm, the 50 nm and the 100 nm are displayed as blue, green and orange lines, re-
spectively. As all curves fall nicely together, they are used independent of the particle size to compute their
common average (circles), which is fitted with the model of a Gaussian with an exponential tail (feG, solid
red line ) and a stretched Gaussian (fsG, solid light green line). (b) Averages over all (size-independent)
Van Hove functions calculated for different lag times (color-coded). A black dotted line in both plots is
not a fitted function, but a standard Gaussian distribution.

The first quantity to look at is the particle’s step size distribution calculated from the
increment vectors eq. (3.33) and also known as the self-part of the Van Hove correlation
(see section 2.2). While the distribution’s width measures the average velocity of the
particle motion, the shape helps to identify the diffusion model. Similar to the MSD
analysis, each spatial dimension of the increment vector is analyzed individually, which is
expressed by using the scalar notation ∆r̂k[i]. A broad scattering of diffusion coefficient and
therefore step size distribution widths are expected by looking at differences in the MSDs
initial slopes. In order to compare the individual shapes of the Van Hove correlations, all
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8. Diffusion behavior of nanoparticles in complex filtration media

trajectories are normalized by their standard deviation

σ∆r[k] = σ∆r(τ = k∆t) =

√√√√ 1
Npos − k − 1

Npos−k−1∑
i=0

[∆r̂k[i]− E(∆r̂k[i])]2 , (8.4)

before computing the step size distribution for a lag time of τ = k∆t = 12 ms. This lag time
is chosen to reduce the influence of measurement artifact as it corresponds to three stage
position update cycles, but at the same time staying in a regime where the void boundaries
do not hinder the particle’s movement significantly. Remarkably, the individual particle
displacement distributions collapse to a single unique curve as can be seen in fig. 8.9 (a).

The average of all Van Hove correlation functions is compared with a Gaussian standard
distribution (see black dotted line in fig. 8.9). Indeed, the Gaussian distribution is in good
agreement with the experimental data for displacements as large as about 3σ∆r. However,
the discrepancy for larger particle displacements is also clearly visible. Similar results
are observed for other systems, e.g., non-Gaussian behavior of nanoparticles in polyethy-
lene oxide solutions[214], semidilute hydrolyzed polyacrylamide solutions in bed structures
created by large glass beads[212], or of micron-sized tracers in hydrogels of mucin poly-
mers[215]. Inspired from the mentioned references, the model functions feG (|∆r̂k|/σ∆r[k]),
a Gaussian with an exponential tail, and fsG (|∆r̂k|/σ∆r[k]), a stretched Gaussian curve,
are fitted to the SPOT data. The models are written as

feG(x) = a1 exp
(
−x

2

b2
1

)
+ a2 exp

(
−|x|
b2

)
and (8.5)

fsG(x) = a1 exp
(
−x

c1

bc1
1

)
(8.6)

and parametrized according to table 8.2.

Table 8.2.: Overview about the fitting results of the Gaussian with exponential tail feG and stretched
Gaussian model fsG.

Model a1 b1 c1 a2 b3 adj. R2 / %
feG 0.319± 0.056 1.471± 0.032 - 0.292± 0.179 0.586± 0.047 99.83
fsG 0.709± 0.184 0.977± 0.121 1.374± 0.093 - - 99.52

Both models describe the data equally well as indicated by the coefficient of deter-
mination (adjusted R2 values). Fitting by means of an ordinary Gaussian was waived,
since it would require the restriction of the data range for fitting the distribution of small
displacements properly. In this case a direct comparison of adjusted R2 values would be
misleading. In fig. 8.9 (b), the Van Hove function is also computed for varying lag times.
With increasing τ , the exponential tail sets in earlier and decays slower.

The analysis leads to the conclusion that for short time scales a Gaussian distribution of
displacements is dominant. Only exceptional large steps (|∆r̂k| > 3σ∆r[k]) occur with up
to about 100 times higher probability than would be predicted by a plain Gaussian distri-
bution of steps. The non-Gaussianity increasing with time indicates that the confinement’s
influence is reasoning the exponential tails.

The standard deviation σ∆r(12 ms) used to normalize the particle trajectory can be
converted to a diffusion coefficient estimate by

D̂ = σ∆r(τ)
2τ . (8.7)

88
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Results are shown as box-and-whisker plots in fig. 8.10 and listed in table 8.3 for the
different nominal particle diameter.

Table 8.3.: Overview about the measured diffusion coefficients D̂ for particles of different diameters con-
fined in the membranes porous structure.

diameter / nm Dfree / nm2 ms−1 axial D̂ / nm2 ms−1 lateral D̂/ nm2 ms−1

25 3516 46± 28 88± 53
50 1758 41± 18 39± 19
100 879 29± 17 31± 17

Figure 8.10.: Box-and-whisker plot illustrating the distribution of diffusion coefficients categorized by
particle size and diffusion direction. Whiskers corresponds to 1.5 of the interquartile range and outliers
are displayed as diamonds.

The data are further grouped by their spatial direction resolving anisotropies induced by
the membrane’s structural asymmetry. Apparently, diffusion coefficients decrease with in-
creasing particle diameter as expected by the ordinary Stokes-Einstein relation eq. (2.16).
In fact, the measured diffusion coefficient is about two orders of magnitude smaller com-
pared to the free-diffusion expectation Dfree. For the 25 nm sized particles, lateral motion
is almost twice that fast as the axial movement. The two larger particle categories show
similar diffusion coefficients for lateral and axial trajectory coordinates.

The reason for the drastic slow-down is not included in the data and mere conjectures
are left. Skaug et al. discovers in a similar system a larger than expected slow-down of
particle motion due to hydrodynamic forces.[180] In their study, the reduction was less than
one order of magnitude, but the accessible space was less restricted and the porous medium
had no ”hairy” surface. Here, an additional contribution to the particle-wall friction may
be introduced by the PNIPAAm polymer chains covering the membrane scaffolds surface.
Simulation of such a system could confirm or refute this idea, but exceeds the frame of this
thesis.

The Van Hove correlation does not consider temporal dependencies of the particle dis-
placements, which play an important role in several anomalous diffusion models. Such tem-
poral correlations can be inferred from the normalized velocity autocorrelation nVACFτ (∆τ)
(see eq. (3.34)). Figure 8.11 shows that there is no such increment correlation for short
time scales but an increasing anti-correlation for increasing τ with the deepest point of
the curves located at ∆τ = τ . For τ = 80 ms, a strong anti-correlation is present and
likely caused by the confinement of the motion since the MSD has already shown signifi-
cant flattening in this time range. The behavior is similar for all three particle diameters
with no clear trend for different particle sizes. Unfortunately, the nVACF is not a good
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8. Diffusion behavior of nanoparticles in complex filtration media

diagnostic tool to differentiate between the anomalous confined diffusion models consid-
ered in this thesis, namely the FBM and subdiffusive CTRW.[216] Indeed, even confined
Brownian motion shows anti-correlation of steps as demonstrated in a simple simulation
in the appendix C.6. Thus, no useful information is gained by this analysis.

Figure 8.11.: Normalized velocity autocorrelation function nVACFτ (∆τ) calculated for different lag
times τ and averaged for particles with a nominal diameter of (a) 25 nm, (b) 50 nm, and (c) 100 nm.
The shaded area indicate the respective standard deviation.

More information is sought by inspecting the shape of the MSD. In section 8.4, the MSD
was used to extract the distribution of accessible void space in a model-free manner. But
the same question can be tackled by using model predictions for diffusion in confined space
as worked out in section 2.5. Essentially, there are three general scaling laws to test, namely
an exponential law

fexp(τ) = L̂2

2

[
1− b exp

(
−aτ
L̂2

)]
, (8.8)

a scaling law described by the Mittag-Leffler function

fml(τ) = L̂2

2

[
1− E2−α

(
− a

Γ (α− 1)τ
2−α

)]
(8.9)

and a power-law

fpl(τ) = L̂2

2

[
1− a

τ α̃

]
. (8.10)

The exponential law would correspond to a confined Brownian walk without defining the
exact geometry of the confining potential. The parameters a and b will adjust their values
accordingly (see section 2.5). The exponents α and α̃ are the anomaly parameter (Note the
different ranges for sub- and superdiffusion in the models). The power-law may represent
a CTRW walk in a harmonic potential eq. (2.31) and the Mittag-Leffler model is the result
for fractional Langevin equation motion in a harmonic potential eq. (2.38).
The models are fitted one after the other to the single-coordinate MSDs of the individual
SPOT measurements. The fitting results are grouped by particle diameter and the corre-
sponding spatial direction (lateral or axial) to take track not only of size effects but also to
consider the membranes inherent asymmetry. First of all, the adjusted R2 values of the fit-
ting process are shown in fig. 8.12 to check which model is the most adequate. Apparently,
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Figure 8.12.: Swarmplots of the adjusted R2 values of the fitting process with different models. Each dot
represents the result of a single coordinate of an individual particle trajectory. Individual analysis results
are grouped according to the direction (lateral in blue, axial in red) and the particle diameter. Thus, there
are twice as many blue dots then red. A dotted black line indicates a perfect model.

the Mittag-Leffler function fml(τ) yields the highest coefficient of determination, which is
not surprising as the function has the highest degree of flexibility for adapting to the data.
Because the Mittag-Leffler function interpolates between a power-law and an exponential
law, it will be able to generate high adjusted R2 values for measurements, where only one of
the other models would fit well. The exponential model fexp(τ) represents the data slightly
worse. Both models are suited better for the axial than the lateral direction. This is not
the case for the coefficients of determination of the power-law, which are distributed a lot
broader and where it is not clear if the MSD in lateral or axial directions is approximated
better by fpl(τ). There is a group of lateral MSDs for the 100 nm particles that are very
badly fitted by the exponential model. A similar cluster of data points appears for the
fml(τ) but with improved coefficients of determination, and there are no such outliers for
the power-law model.

In a second step, the distributions of the resulting confinement lengths L̂ are compared.
To do so, the parameter L̂ is converted to L̂ with the help of eq. (8.3). Box-and-whisker
plots in fig. 8.13 illustrate the distribution with the whiskers set to 1.5 of the interquartile
range. Additionally to the fitting results, the confinement length distributions that were
determined model-free in section 8.4 are plotted alongside. In contrast to fig. 8.8, the
differences between lateral and axial coordinate traces are shown separately. Table 8.4
lists mean values and standard deviations for direct comparison.

Apparently, the estimated confinement length in z-direction is distributed around larger
values. This is not only true for the model-free results independent of the particle size,
but also for all other methods. For the 25 nm and 50 nm particles, the distributions and
standard deviations of the specific methods are in great accordance. But the MSDs of the
100 nm particles yield confinements that are distributed sharper around smaller L̂k. This
finding is even more pronounced along the axial direction. Comparison of the different
methods reveals an increased broadening and shifting to larger void sizes from the expo-
nential model to the Mittag-Leffler model, further to the model-free method, and to the
power-law. Because the power-law model fits the data not with high precision, the result-
ing distributions are not very trustworthy. The fits with fexp(τ) and fml(τ) are determined
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8. Diffusion behavior of nanoparticles in complex filtration media

Figure 8.13.: Box-and-whisker plots of the pore sizes L̂ for different particle diameters determined with
different methods from the same SPOT data set. Whiskers corresponds to 1.5 of the interquartile range
and outliers are displayed as diamonds. Lateral and axial coordinates are grouped and displayed in blue
and red, respectively. (a) Results from the model-free approach that considers the MSD plateau values in
the range τ ∈ ]1 s; 4 s[ and that was already shown in fig. 8.8. Results from (b) the exponential model, (c)
the Mittag-Leffler model and (d) the power-law fitted to the MSD data. Void sizes are corrected for the
actual particle diameter.

Table 8.4.: Mean and standard deviation of the estimated confinement length L̂ for the different models
and the MSD plateau-value based method.

nom. Model-free Exponential Mittag-Leffler Power-law
diameter/ nm direction L̂ / nm L̂ / nm L̂ / nm L̂ / nm

25 axial 379± 168 120± 42 274± 124 800± 368
lateral 280± 166 94± 42 203± 119 435± 483

50 axial 407± 163 138± 43 291± 113 887± 329
lateral 206± 82 86± 21 160± 62 315± 265

100 axial 257± 82 135± 21 206± 58 456± 240
lateral 185± 49 116± 13 158± 41 184± 16

Figure 8.14.: Box-and-whisker plot of the anomaly parameter α for different particle diameters resulting
from the Mittag-Leffler model. Lateral and axial coordinate data are grouped and displayed in blue and
red, respectively. Whiskers corresponds to 1.5 of the interquartile range and outliers are displayed as
diamonds. According to the definition of α in the model eq. (8.9), subdiffusive motion is indicated by
α ∈ ]1; 2[.
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with higher confidence and yield results comparable to the model-free method. The broad
parameter distributions of the model-free method are not surprising as this approach lacks
any numerical stiffness. Due to the high agreement between the Mittag-Leffler model and
the measured data, this description is preferred.

Analysis of the anomaly parameter α extracted from the Mittag-Leffler model yields
no significant deviations from normal diffusion (see fig. 8.14 and table 8.5).

Table 8.5.: Anomaly parameter determined by fitting the Mittag-Leffler model to the single-coordinate
MSD data. Results are grouped by particle diameter and direction

nom. Anomaly parameter α
diameter / nm lateral axial

25 1.08± 0.11 1.06± 0.07
50 1.08± 0.15 1.02± 0.03
100 1.09± 0.20 1.09± 0.10

The detected anomaly is about 10 % higher than 1, which is a value that was counted
as normal diffusion in section 7.2. Considering that the model eq. (8.9) is inspired by the
MSD for FLE motion inside a harmonic potential eq. (2.38), an α between 1 and 2 indicates
subdiffusion. Summarizing, small adjustments of the anomaly parameter are sufficient to
obtain almost perfect coincidence with the MSD data. To emphasize this, averages of the
MSDs in lateral and axial direction are shown for the three particle sizes in fig. 8.15. The
diffusion of the nanoparticles inside the membrane’s void structure shows mainly Brownian
characteristics with minor indications of the motion described by the subdiffusive FLE.

Figure 8.15.: Averages (dots) of the single-coordinate MSDs taken from fig. 8.7 for the axial (top row)
and lateral (bottom row) direction and a corresponding fit of the Mittag-Leffler model fml. Shaded areas
indicate the minimum-to-maximum range of the MSDs that build-up the data basis for the averaging.
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8.6 | Disscusion of the 3D-SPOT experiments on com-
plex filtration materials

Tracking nanoparticles within nanoporous filtration material like triblock terpolymers is a
challenging task, where many problems have to be solved even before the first trajectory
can be recorded. Lacking material transparency and particle adsorption are accompanied
by the difficulty of infusing the porous structure with the nanobead suspensions avoiding
air pockets. With the presented preparation method and used materials, light scattering
has been reduced significantly and the particle mobility ensured.

Using eSEM and appropriate analysis of the associated micrographs, the intricate mor-
phology of the membrane and its void size distribution were determined. These prior
studies helped to interpret the consecutive 3D-SPOT measurements correctly.

Here, not only the results from electron microscopy could be reproduced, but the vari-
ation of the particle size revealed the difference between the actual and the accessible void
space. This proves that even if a special type of electron microscopy capable of handling wet
materials was used, particle-tracking based structure elucidation provides valuable comple-
mentary results. In this context, the advantage of 3D-SPOT, is not only its non-invasive
approach but also its high three-dimensional spatial resolution and the chance to inspect
the material in a liquid-filled state. Moreover, microscopic data about material transport
within the nanoporous system is supplied.

These transport data have been evaluated in the preceding chapter. Despite a detailed
analysis and the complexity of the system, no dominant diffusion anomalies have been
detected. However, minor traces of motion described by the (subdiffusive) FLE were
found, but its origin is still obscured. One speculative explanation might involve particle-
wall interactions arising from a memory effect in the ambient viscosity mediated by the
polymer chains. But for further clarification, more experiments need to be performed with,
for example, a PNIPAAm block that has either been extended during synthesis or stretched
by sample heating.
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9 | Extensions of SPOT:
Proof-of-concept experiments

While the complexity of SPOT data is rather high and only small ensembles of particles
are possible to investigate, there are strong arguments needed not to use an alternative
approach instead. Especially, the very straightforward method of camera-based SPT is
often sufficient as it is easily able to record tens to hundreds of trajectories simultaneously
and without great concerns about measurement artifacts. Nevertheless, the 3D-SPOT
setup offers a bunch of possibilities to modify or extend the resulting information. Some
raw ideas that came across, will be introduced in the following.

9.1 | Confined-space imaging with SPOT
Trajectories within confined spaces can be used to create binary images (images consisting
of only two color values) of the surrounding structure. Therefore, one can divide the three-
dimensional space where the motion takes place into a regular grid. The boxes limited
by the grid points, so-called voxels, are identifed as void spaces, if they are visited at
least once by the particle. Voxels that are not visited at any time may belong to the
constraining structure, but not necessarily have to. Likewise localization errors may yield
to false identification of void voxels. Thus, the duration of trajectory acquisition must be
sufficiently long and the voxel size sufficiently large. Stricter requirements for the void
identification like a repetitive visiting or a correlated high photon count rate may help
preventing identification errors. Previous knowledge about the confining structure can
also be incorporated into the data analysis.

A trial run of this type of data analysis was done on particle trajectories recorded in the
triblock terpolymer membrane in the context of the experiments discussed in section 8.3.
Voxels with 20 nm edge length are created and identified as voids by the described pro-
cedure. A penetration of the nanoparticles into the membranes scaffold structure is not
anticipated and localization errors are disregarded. By 3D-rendering with the ImageJ
software, images of the particles accessible void space like those shown in fig. 9.1 are gen-
erated and provide a three-dimensional structure resolved with a spatial accuracy below
the diffraction limit of light.

Having mapped the accessible void space that way, the motion of the particle can
be set into spatial reference. Since the full trajectories contain too much information to
discover particle dynamics by eye, an different visualization technique is more insightful.
An image time series of z-slices overlaid by 250 ms long sub-trajectories constitute a flip
book-like clip of the particle movement with respect to the pore walls. An example of such
a trajectory clip is visualized in fig. 9.2. Here, the membrane wall structure is displayed
in the background in a symmetric 80 nm slice around the central z-position of the sub-
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Figure 9.1.: Three-dimensional rendering of single nanopores of the triblock terpolymer membrane. Data
basis are two 3D-SPOT measurements of particles of 25 nm in diameter that are processed in z-slices. For
each slice the outer boundary of the places visited by the particles diffusive walk are used to compute the
voids surface. The depicted pore volume is not corrected by the particle diameter and, therefore, represents
the are the void space accessible for the particle’s center of mass.

trajectory. Furthermore, the void area was convolved by an Gaussian kernel to smooth the
volume projection to a more realistic shape.

This very detailed representation of the SPOT data may help to investigate single
event-based effects in future experiments, but it is, of course, not suited for a statistical
analysis of the particle dynamics.

9.2 | Dual-Color 3D-SPOT
A big drawback of SPOT is that the technique focuses just on the inspected detection
volume and is unaware of the surrounding conditions in the first place. One way to cir-
cumvent this is to insert an independent wide-field channel.[66] But in a scenario where the
interaction of two particles should be studied with high spatial resolution, this method is
not always gainful. Some research groups implemented measurement routines that record
multiple particle trajectories with a SPOT-like technique with interparticle-distances sig-
nificantly larger than the detection volume.[217, 218] They scan the laser light focus sequen-
tially on different places within the sample and remember the last known particle position
for the following scan cycle before proceeding to the next tracking location. Hence, the time
between two position estimations of the same particle increases linear with the number of
particles to be tracked in parallel and so does the escape probability. This restricts SPOT
to studies of very slow dynamical processes and clearly separated particles. Moreover, the
particle identification becomes ambiguous if particle approach each other.

The here introduced attempt addresses exactly the situation, where the particles are in
a proximity that is closer than the detection volume. SPOT with only one detection channel
registers such interaction events only indirectly via changes in the particle’s mobility or
fluorescence rate.

Detection of two photon counting channels in a SPOT experiment provides the possibil-
ity to acquire two independent position measurements per estimation cycle simultaneously,
even though only one at a time can be followed. Pictorially speaking, a dual-detection-
channel-SPOT method sits on the back of a single particle and experience its ride through
a foggy area. Once a second particle approaches the limited field of view, its behavior, and
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Figure 9.2.: Sequence of sub-trajectories of a single particle (�25 nm) diffusing in the triblock terpolymer
membrane reading from left to right an top to bottom (a)→ (o). Each frame corresponds to a 250 ms time
gate. Boundaries of the accessible void space (void: orange, not-visited/wall: yellow) are generated for a
80 nm z-slice around the sub-trajectories mean z-position form the entire particle trace.
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interaction with the tracked particle become visible. Technically, the two simultaneously
recorded detection channels are demodulated separately, and the operator has to specify
which channel should be used for feedback. The limitation is that both particles must
be excited with the same wavelength, possibly yielding in large crosstalk between the de-
tection channels. In time-correlated single-photon counting experiments, the method of
pulsed interleaved excitation is a common way to get rid of that crosstalk.[219, 220]

In the style of pulsed interleaved excitation, therefore, the technique of dual-color three-
dimensional single-particle orbit tracking (2C3D-SPOT) with two distinct excitation colors
and detection channels was developed in the context of this thesis. It was a by-product
resulting from the improved way of storing the scan path and the demodulation pattern
within the memory of the ADwin system (see appendix C.3). Both functions are pre-
calculated on the PC and transmitted to the ADwin memory via QtSPOT. Therefore,
complex functional relations can be implemented without an increase in the ADwins work-
load.

The concept of 2C3D-SPOT is illustrated in fig. 9.3. The scan path used for 3D-SPOT
is maintained, but now each of the two parallel orbits is sequentially created by one of
two different laser wavelengths. For instance, assuming a red and a green excitation laser
wavelength, first, the lower orbit is created in red and then in green, followed by the
creation of the upper orbit in red and in green. For each laser scan position, photons from
two detectors (detector 1 and 2, recording different spectral ranges of the emission light)
are registered and multiplied by the corresponding value in the demodulation matrix (see
eq. (C.60)). Using one demodulation matrix per physical detector enables the independent
acquisition of two independent detection channels, one for the red excitation and detection
from detector 1 and one for the green excitation and detection from detector 2. In fact,
this approach makes it possible to create even more complicated detection schemes, with,
for example, a total channel that contains all detected photons (detector 1 and 2 and
excitation in red and green) and a second channel filtering only those photons detected
from detector 2 and for the time interval of the green excitation.

Figure 9.3.: Sketch of the localization procedure used for 2C3D-SPOT. Nested scanning of laser foci
of different wavelength yields in the temporally separated excitation with two distinct wavelengths and
recording with two physical detector enables the assembly of two (virtual) detection channels that may
contain the positions of two types of particles.

The two detectors do not necessarily have to map spectral intervals but also polarization
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axes. In this case, two excitation color channels can be recorded polarization-resolved with
only two physical detectors. The concept can be generalized to three or more excitations
and an increased number of detectors. But already by using two colors, many interesting
experiments are possible. FRET may be measured and correlated with the position of two
types of particles that may be stitched together with a linker like a polymer chain or a big
aggregate.

Implementation and excessive testing of 2C3D-SPOT was not a focus of this work, so
only some proof-of-concept experiments have been performed.

The creation of the differently colored orbits is very straightforward to be integrated
into the setup at hand. As described in section 4.1 and D.1, two laser sources are combined
and coupled into a fiber to generate a light beam consisting of two distinct wavelengths.
Beam scanning is performed with AODs that show wavelength-dependent deflection char-
acteristics (see fig. D.1). Therefore, the first AOD and the iris placed behind it (see fig. 4.1)
are used as an AOD/AOTF (AOTF: acusto optical tunable filter) combination deflecting
and filtering spectrally, provides that the used wavelengths are clearly separated in space
within the occurring distances.

Figure 9.4.: Example of the measurement results of a 2C3D-SPOT measurement. (a-c) x-, y- and z-
coordinate of the estimated particle position for channel 1 (solid red line) and channel 2 (solid green line).
(d) Detected fluorescence rates for channel 1 and 2. (e-f) 3D-trajectory reconstructed from channel 1 or 2,
respectively. (g) Overlapped 3D trajectories for channel 1 (red line) and channel 2 (green line yielding a
mixed color impression. Light gray lines are the 2D projections of the 3D trajectories on the corresponding
planes in graphs (e) to (g).

The ability to track two positions per position estimation cycle was tested with a fluorescent
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polystyrene particle, called TransFluoSpheres, that allows for very broadband excitation
(see table 5.1). The demodulation functions are modified so that both APD signals are
fused, and the channels are just separated by the time intervals corresponding to the
different excitation wavelengths. Excitation color 1 was created with λexc,1 = 635 nm
(Radius 635-25, Coherent Inc.) and excitation color 2 with λexc,2 = 532 nm (Monopower-
532, ALPHALAS GmbH). As the dichroic beam splitter (see DBS in fig. 4.1), a single band
longpass filter was used (zt633rdc, Chroma Technology Corp.) accepting some losses of
intensity for the second excitation color, which was no problem since this laser was able
to emit with higher power. Clean detection signals are achieved with a single longpass
detection filter (z633 RDC, AHF analysentechnik AG). The emission spectrum of the
TransFluoSpheres is centered around 645 nm and independent of the laser wavelength (see
fig. 5.4). Detection channel 1, which is the overall photon detection during excitation
with λexc,1, is used for feedback. The second channel is the signal acquired with both
detectors during excitation with λexc,2. Ten trajectories of different particles and varying
measurement times are recorded. An example of a 2C3D-SPOT measurement is depicted
in fig. 9.4, more are shown in the appendix E.4.

At first glance, the two trajectories resulting from a single measurement coincide very
well. This is expected as the same particle is recorded in both detection channels. A
quantitative analysis of all trajectories yields a constant mean displacement of the channel 2
trajectory with respect to channel 1 of δx = (−34.45± 15.81) nm, δy = (49.52± 15.03) nm
and δz = (4.39± 9.01) nm (see fig. 9.5 (a)). As the displacement is independent of the
particle or time, it is attributed to a small shift of the two differently colored orbit scan
path. This may be reduced by improved alignment and calibration or simply be subtracted
from the data.

For the sake of completeness, the two fluorescence rate channels are plotted in fig. 9.4
(d) as well and relate to each other in fig. 9.5 (b).

Concluding this chapter, 2C3D-SPOT is already possible with the existing soft- and
hardware tools and tested experimentally. While in practice, the calibration procedure of
the beam width and orbit diameter is twice that laborious as in single-color 3D-SPOT, a
stable setup will maintain the settings over weeks up to months. The approach makes use
of the advantages of AOD-based beam scanning compared to mirror-based devices and may
be further expanded to three or even more colors. Consequently, 2C3D-SPOT expands the
field of applications for an orbital tracking setup dramatically without interfering with the
existing one-color method.

Figure 9.5.: Histogram of the shift between the trajectory from channel 2 compared to that from channel
1 for all ten trajectories shown in fig. 9.4 and fig. E.9. δx = (−34.45± 15.81) nm,δy = (49.52± 15.03) nm
and δz = (4.39± 9.01) nm
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9.3 | Fluorescence lifetime 3D-SPOT
Another extension of 3D-SPOT arises by using a pulsed laser source and photon detection
with picosecond accuracy. Correlating the detection time of a photon to the point in time
of the excitation of the corresponding chromophore yields the fluorescence lifetime, a sensi-
tive measure for changes in the electrostatic environment of the probe particle. Laser pulse
repetition rates higher than 1 MHz are a lot faster than the fluorescence modulation rate
used for 3D-SPOT, which is in the kHz regime. That means that both processes, particle
localization, and fluorescence decay measurement, are clearly distinguished by their char-
acteristic time constants and measurements can be executed simultaneously. Hence, the
information of a measured particle trajectory and the corresponding level of the fluores-
cent rate can be extended by the lifetime of the fluorophore’s excited electronic state. This
technique will be called fluorescence lifetime three-dimensional single-particle orbit tracking
(FL3D-SPOT) and proof-of-concept experiments have been conducted leaving the detailed
implementation of this technically and financially very demanding method to future use
cases.

While 2C3D-SPOT is seamlessly integrated into the existing soft- and hardware archi-
tecture of the setup, FL3D-SPOT needs several modifications. First, a pulsed laser source
must be used (here: SC400, Fianium Ltd.), and second, the electronic pulse(s) generated
by the detector(s) and indicating the detection of a photon must be split and transmitted
to a time-correlated single-photon counting-card (TCSPC-card, here: TimeHarp 200, Pico-
Quant GmbH) which gets its synchronization pulses by a wired connection to the pulsed
laser source. Via splitting of the electronic signals, the photon counting executed by the
ADwin is left unaffected by the ps-accurate single-photon counting which is conducted
independently from SPOT by an additional PC with a TCSPC-card plugged in. In the
proof-of-concept experiment, measurements were started and stopped on the second PC
manually. Consequently, there is no exact assignment between position and lifetime. Life-
time measurements took place over time spans of seconds. In a systematic implementation
of this method, the ADwin should send start and stop pulses to the TCSPC-card, trigger-
ing short fluorescence decay recordings that are synchronized with the trajectory positions
yielding time series of fluorescence lifetimes.

Results of the experiments on fluorescent microspheres (CAF-100NM, Red Fluorescent
Particles, Magsphere Inc., �nom. = 100 nm) tracked while diffusing in a glycerol/water
mixture are shown in fig. 9.6.

Even though there is still a lot to be done to implement this technique, some basic
questions have already been answered. Tracking is possible with a pulsed laser source
and no severe dispersive influence of the acusto-optical crystals on the pulse width was
observed. Moreover, the splitting of the electronic signals stemming from the APDs does
not influence the low time resolution photon counting of SPOT and an independent TC-
SPC experiment can be conducted, simultaneously. The detectors and electrical signals
are yet not optimized for fast timing behavior and the performance margins are not dis-
cernible. Unfortunately, the synchronization necessary to correlate particle position and
lifetime measurements is currently lacking, but a straightforward way to implement is was
suggested. The advantage of FL3D-SPOT is that fluorescence decays of a single particle in
solution are accessible with high signal-to-noise ratios due to the long measurement time
or that the temporal variation of the fluorescence lifetime may be recorded and correlated
with the particles diffusing characteristics.

101



9. Extensions of SPOT: Proof-of-concept experiments

Figure 9.6.: (a) Fluorescence decay and mono-exponential tail fit of an FL3D-SPOT experiment on a sin-
gle fluorescent microsphere diffusing in a glycerol/water mixture and captured with 3D-SPOT. The particle
was excited at 519 nm with a repetition rate of about 40 MHz. (b) Residuals of the mono-exponential model
function. (c) Synchronously measured trajectory of the tracked particle (time is color-coded according to
(d)). (d) Photon count rate measured with the coarser time resolution of the SPOT electronics and using
the same color-code as in (c).
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This work dealt with active single-particle tracking in three dimensions. For this purpose,
not only comprehensive theoretical modeling of the method was presented, but also a better
understanding of the measurement results was created by means of simulations. Further-
more, the technique was validated on reference systems and applied to a new research
topic.

The technical and methodological improvements, especially the addition of the third
dimension to the tracking data, have increased the method’s complexity significantly. But
on the other hand, it has also enhanced its stability and performance range yielding longer
trajectories even under more unfavorable conditions. The technical novelties with reference
to the nanopositioning stage and its controller rendered the method more understandable,
reproducible and accurate.

While the temporal resolution of the setup was enhanced from 4 ms to 1.33 ms, the 3D-
spatial resolution was only achievable at the expense of the accuracy in the lateral direction.
Because the spatial resolution is highly case-dependent (fluorescence rate, particle speed,
background signal, laser wavelength) no particular value can be fixated for that, but a
range of 10 nm to 50 nm is realistic for normal experimental conditions. The developed user
interface and control software work stable, high-performing, and was designed for flexible
extensions. Some of such conceivable extensions have already been unveiled and tested. In
particular, the technique of 2C3D-SPOT is a promising add-on. Already being seamlessly
integrated into the existing setup, the options for further experiments are dramatically
increased.

Looking back at the presented results, a variety of options appear interesting for future
research projects.

For example, now that 2C3D-SPOT has been tested on broadband excitable particles,
further attempts should be made to track two particles that are labeled with different dyes
and connected via a linker molecule. The diffusive motion of such a particle tandem could
reveal interesting dynamics, especially if the environment is patterned or anisotropic.

Future research could also repeat the presented 3D-SPOT experiments on nanoparticle
diffusion inside the filtration membrane from chapter 8 but switching the stimuli-responsive
polymer block by a change of the environmental temperature. Initial experiments in this
direction revealed problems with the mechanical temperature stability of the sample holder.
These difficulties are technical, not conceptual, and should be able to be overcome for
example by using a sample holder material with a negligible coefficient of thermal expansion
or by heating only very locally.

Not only switchable environments are interesting sample systems, but also nanoparti-
cles with thermoresponsive coatings. Quantum dots or gold particles covered with PNI-
PAAm[221, 222] are attractive objects to be studied with 3D-SPOT as they are potential
drug delivery systems.[223] One would try to heat the sample while tracking a single par-
ticle and watch a drug, e.g., represented by a dye, be released. Here, the second detection
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and/or excitation color-channel may become useful.
Precisely fabricated micro- or nanostructured environments, such as inverse opals[103,

105] or microfluidic devices[123] are very instructive sample systems. The strictly specified
geometry would remove some uncertainties introduced by the characterization of inhomo-
geneous materials like nanoporous polymer membranes and allow experiments with a well-
defined horizon of expectation. Consequently, more subtle differences in diffusion modes
could be extracted from nanoparticle trajectories within these kinds of environments.

The tracking of self-propelled nanoparticles, like so-called Janus particles[224], poses an
ambitious project. One half of the surface of Janus particles consists of a material different
from the other half and that, e.g., catalyzes a chemical reaction in the surrounding medium.
This chemical reaction drives the particle forward and creates complicated dynamics[225,
226] that may be measured with 3D-SPOT on the nanoscale. However, their high mobility
and the need for fluorescence labeling could constitute practical hurdles.

The transition to increasingly complex sample systems also requires increasingly sophis-
ticated evaluation methods. The use of numerical simulations and modeling with the tools
of system theory are certainly still promising approaches. But also more recent trends in
data analysis should be kept in mind: there are already first studies on the use of machine
learning algorithms, in particular (convolutional) neural networks and deep learning, for the
evaluation of particle trajectories.[227–230] To utilize a machine learning model, one would
simulate realizations of the theoretical particle motion with the help of the underlying sta-
tistical laws. Then, those simulation results would be used as the input of a simulation of
the SPOT method to obtain the corresponding measured trajectory. Having done so for
several different theoretical particle motion frameworks, the machine learning model could
be trained with those data. The finally educated analysis model could then be applied
to real-world measurements to differentiate between the learned theoretical laws. Perhaps
another promising approach is to train the computer algorithm not with simulation data
but from measurement results in reference systems.

In summary, already this incomplete list of possible research projects is long and aspi-
rational, but 3D-SPOT and its extensions are technically and experimentally demanding
and require diligent data analysis. However, no matter what projects are tackled, what
particles are used, or what analysis is applied, I am sure that there are plenty of situations
where fluorescence-based high-resolution tracking of nanoparticles is beneficial and may
help to solve future scientific questions.
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A | System theory and control
systems

System theory is an abstract, general, and mathematical approach to describe and calculate
the behavior of physical systems in time. In control engineering, physical systems are
frequently described in the formalism of state-space models and/or with transfer function
(matrices). Both methods are suitable for different purposes and have their respective
limitations regarding validity and applicability. Especially in linear time-invariant systems,
both formalisms are reduced to a fundamental framework that can be easily applied to
various applications. In addition, there are algebraic expressions on how to calculate
transfer functions from state-space models and vice versa. In this thesis, tools and concepts
from system theory are used frequently and for different purposes. They can describe the
vibrational behavior of a nanopositioning stage, create simulations that imitate the results
of the SPOT method or help solving the Langevin equation in diffusion theory. Because
of its importance for this work, basic elements of system theory will be outlined in this
section. The entire chapter is mainly based on [231], where more detailed derivations and
explanations can be found.

A.1 | State-space formalism
In the formalism of the state-space models, a state of the system at time t is summarized
in the elements of a vector x(t) ∈ Rn. The most fundamental state-space model describes
the system with a set of dynamic equations:

ẋ(t) = f(x(t),u(t)), (A.1)
y(t) = g(x(t),u(t)) . (A.2)

Eq. (A.1) is called the state equation because it describes the temporal evolution of the sys-
tem state itself in dependency of the current state x(t) and of an input vector u(t) ∈ Rm.
Examples for system inputs are external forces, light irradiation or applied voltages. Eq. (A.2)
is the output equation, relating the input and system state to an output vector y(t) ∈ Rr.
The system output can be understood, for instance, as a measurement of a system property.
In general, the vector functions

f(x(t),u(t)) = (f1(x(t),u(t)), f2(x(t),u(t)), . . . , fn(x(t),u(t))) and (A.3)
g(x(t),u(t)) = (g1(x(t),u(t)), g2(x(t),u(t)), . . . , gr(x(t),u(t))) (A.4)
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are nonlinear functions, with fi and gj being scalar functions. If f and g are linear, the
eqns. (A.1)–(A.2) reduce to

ẋ(t) = A(t)x(t) +B(t)u(t) and (A.5)
y(t) = C(t)x(t) +D(t)u(t). (A.6)

Note that any linear ordinary differential equation of arbitrary order can be converted into
a system of coupled first order differential equations like eq. (A.5). The occurring matrices
are called the system or dynamic matrix A(t) ∈ Rn×n, the input matrix B(t) ∈ Rn×m, the
output matrix C(t) ∈ Rr×n and the direct transfer or feed forward matrix D(t) ∈ Rr×m.

If all these matrices are constant in time, the system is called a linear and time invari-
ant (LTI) continuous-time system that is written as

ẋ(t) = Ax(t) +Bu(t) and (A.7)
y(t) = Cx(t) +Du(t) . (A.8)

The state variables x(t) are a (minimum) set of variables that fully describe the system
at a given time, A is a representation of the system’s intrinsic dynamics, and B defines
how external energy is added into the system. The outputs y(t) of the system are not
necessarily the system’s state vector, but a linear combination of the states and the inputs.
The matrix D allows the inputs to bypass the system dynamics and feed-forward to the
output.

Once a system is modeled in state-space, its dynamics can be calculated from equations
with general validity. First, the solution of the system dynamics needs the definition of
the initial state x(t0 = 0) = x0. Then eq. (A.7) can be solved via Laplace transformation
in s-space as

X(s) = (s1−A)−1 x0 + (s1−A)−1BU (s) and (A.9)
Y (s) = C (s1−A)−1 x0 +C (s1−A)−1BU (s) +DU(s) . (A.10)

Here, 1 is the identity matrix. The occurring term (s1−A)−1 is called the resolvent matrix
and can also be calculated as

(s1−A)−1 = adj (s1−A)
det (s1−A) (A.11)

The inverse Laplace transformation of the resolvent matrix is called the state transition
matrix

L
{

(s1−A)−1
}−1

= eAt. (A.12)

and it makes use of the matrix exponential eXt that is defined by its series expansion

eXt =
∞∑
k=0

Xktk

k! . (A.13)

Consequently, the solution of the state and output equation can be written in the time-
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domain as

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ and (A.14)

y(t) = CeAtx0 +C
∫ t

0
eA(t−τ)Bu(τ)dτ +Du(t) . (A.15)

A.2 | Transfer function matrix formalism
For a system at rest, in particular if the initial state is the zero state x0 = 0, eq. (A.10)
shrinks to the form

Y (s) = G(s)U(s) (A.16)
with the transfer function matrix

G(s) = C (s1−A)−1B +D . (A.17)

Provided that the transfer function matrix is known, the system’s response to an arbitrary
input signal is easily calculated by eq. (A.16). For systems consisting of a single input
and a single output (SISO), the transfer function matrix collapses to a scalar, called the
transfer function. Thus the transfer function matrix is a generalization of the scalar trans-
fer function for multi-input/multi-output (MIMO) systems and bridges the formalism of
transfer functions with state-space models. This theoretical framework was first proposed
by Howard H. Rosenbrock in 1966 [232] and is especially useful in computer-aided ap-
plications such as simulations or electronically controlled plants. While for systems, where
only the relation between the input and the output of the system should be described
efficiently, transfer functions are the right choice. System modeling via state equations
is superior to the transfer function matrix formalism in that it allows insights into the
internal state variables. One of the advantages of the transfer functions formalism is that
simple multiplications of transfer functions describe sequences of LTI systems. For in-
stance, if the output of system (I), denoted as Y(I)(s), serves as the input of system (II),
written as U(II)(s), the total transfer function is that of (II) times that of (I) or short
G(I),(II)(s) = G(II)(s)G(I)(s) and the final output is

Y(II)(s) = G(II)(s)U(II)(s) = G(II)(s)G(I)(s)U(I)(s) = G(I),(II)U(I)(s) . (A.18)

If a mth order differential equation represents a linear and time-invariant SISO system,
it is easy to represent it in transfer function form. Consider the differential equation with
u(t) as input and y(t) as output

a0y(t) + a1
d

dt
y(t) + · · ·+ an−1

dn−1

dtn−1y(t) + dn

dtn
y(t) =

b0u(t) + b1
d

dt
u(t) + · · ·+ bm

dm

dtm
u(t) . (A.19)

Assuming that the system is in rest for t = 0. After taking the Laplace transform, each
differentiation in the time domain can be replaced by multiplication with the complex
frequency s in the Laplace domain, and the differential equation transforms to(

a0 + a1s+ · · ·+ an−1s
n−1 + sn

)
Y (s) = (b0 + b1s+ · · ·+ bms

m)U(s) . (A.20)
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Making use of eq. (A.16), the transfer function is easily seen to be

G(s) = Y (s)
U(s) = b0 + b1s+ b2s

2 + · · ·+ bms
m

a0 + a1s+ a2s2 + · · ·+ an−1sn−1 + sn
. (A.21)

For n ≥ m ≥ 1, the system is proper and non-trivial. A proper transfer function will never
grow unbounded as the frequency approaches infinity:

|G(±i∞)| <∞ (A.22)

A.3 | System modeling of a driven oscillator
As an example for a SISO system, a damped and driven oscillatory system is modeled in
state-space first and then transformed to the transfer function formalism with the help of
eq. (A.17).

Consider an object of mass m that oscillates along the coordinate q. The movement of
the mass is damped with λ. The natural frequency of the system is ωn. For an external
driving force Fext that acts on the and damped oscillator, Newtons second law takes the
form

q̈(t) + 2λωnq̇(t) + ω2
nq = Fext(t)/m . (A.23)

This second-order differential equation can be rewritten to maintain the matrix notation
as a system of two coupled first order differential equations

d

dt

(
q
q̇

)
=
(

0 1
−ω2

n −2λωn

)
·
(
q
q̇

)
+
(

0
1/m

)
· Fext . (A.24)

Using the previous notation, this equation can be identified as the state equation of the
system with the state x(t) =

(
q q̇

)T
as the position and speed of the moving mass, and

the input vector as the applied acceleration affects only the speed u(t) = u(t) = Fext/m.
The system and input matrices are

A =
(

0 1
−ω2

n −2λωn

)
and B =

(
0

1/m

)
(A.25)

respectively. In this example, the output should be a direct measurement of the position
of the oscillator. Thus, the output equations are

y =
(
1 0

)(q
q̇

)
, (A.26)

and a comparison with the previous notation yields in C =
(
1 0

)
and D = 0. The

resolvent matrix can be calculated as

(s1−A)−1 = adj (s1−A)
det (s1−A) =

(
s+ 2λωn 1
−ω2

n s

)
s(s+ 2λωn) + ω2

n

, (A.27)
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and the transfer function matrix reduced to a scalar

Gforced osci.(s) = C(s1−A)−1B +D = 1
(s2 + 2ωnλs+ ω2

n)m (A.28)

Sometimes it is more convenient to express this transfer function with the so-called DC gain
kdc, which is the ratio of the magnitude of the steady-state step response to the magnitude
of the step input. For the second-order system, the DC gain is kdc = (mω2

n)−1, and the
transfer function can be written as

Gforced osci.(s) = kdcω
2
n

s2 + 2ωnλs+ ω2
n

(A.29)

Alternatively, the transfer function Gforced osci.(s) could be obtained from eq. (A.23) directly,
by using eq. (A.19) and eq. (A.21).

A.4 | System identification
Assume a complicated physical or technical system that should be modeled mathematically,
but it is not possible to obtain a model on first principles (white-box model) for some reason.
In this case, a standard method to handle such black-box systems is to measure its behavior
y(t) on applying an external stimulus u(t). Black-box modeling is very challenging, but
sometimes there are some insights into the system dynamics that allow for a sophisticated
guess of the model equation containing free parameters that have to be identified. In this
case, one speaks of a grey-box model. There are elaborated tools like Volterra series models,
NARMAX models (nonlinear autoregressive moving average model with exogenous inputs),
or neural network models for nonlinear systems.[233]

For linear or/and SISO systems, there is a more straightforward way for system iden-
tification. Therefore, specifically shaped input signals are applied to the system, and the
system response is measured and identified with a characteristic function. Typical input
signals are rapid impulses, steps, or sinusoidal excitations, yielding in the so-called unit
impulse response (matrix), the unit step response (matrix), and the frequency response
(matrix), respectively. Each of them is closely related to the transfer function (matrix)
and has its merits describing a system or in the simplicity with which it can be measured.
Since this assessment varies depending on the respective question’s focus, all these func-
tions appear in practical applications. Therefore, they and their relation to the transfer
function are enumerated in the following section.

A.4.1 | Unit impulse response (matrix)
If the input u(t) is a Dirac delta impulse δ(t) and the initial state is the zero state x0 = 0,
the output of the system is given as

ỹ(t) = CeAtB +Dδ(t) . (A.30)

Transforming this into s-space and using that the Laplace transform of the Dirac delta
distribution is L{δ(t)} = 1, one obtains that ỹ(t) is the inverse Laplace transform of the
transfer function matrix,

Ỹ (s) = C (s1−A)−1B +D = G(s) . (A.31)

111



A. System theory and control systems

Following the literature convention, ỹ(t) will be written as g(t) = L{G(s)}−1 and called
unit impulse response (matrix) (UIR). The UIR is the time-domain equivalent to the trans-
fer function providing a vivid picture of the functioning of LTIs. Using that multiplication
in the s domain is a convolution in the time domain, (A.16) can be rewritten as

y(t) =
∫ t

0
g (t− τ)u(t)dτ. (A.32)

Therefore, the picture conveyed by the convolution integral is a good illustration of the
mathematical properties of linear systems. The system’s response to an arbitrary input
u(t) can be calculated with the help of the UIR by segmenting the input u(t) into an
infinite number of delta pulses of given amplitudes. The system responds to each of those
delta pulses with its UIR but scaled by the corresponding amplitude. Consequently, the
actual system response is the superposition of all individual scaled UIRs.

A.4.2 | Unit step response (matrix)
One crucial point is that a delta impulse is impossible to realize in real-world systems. A
real physical pulse is only a valid approximation if its pulse width is significantly smaller
than the smallest typical timescale of the system to be described. Instead of applying a
delta-like impulse to the system, sometimes it is technically more convenient to change the
input signal ”instantaneously” from one constant level to another. The system’s reaction
to a stepped shaped input of step size 1 is the unit step response (matrix) (USR), denoted
as yUSR(t) and mathematically related to the UIR by integration:

yUSR(t) =
∫ t

0
g (τ) dτ ⇐⇒ g(t) = d

dt
yUSR(t) . (A.33)

With this relationship, the USR is quickly converted to a transfer function using G(s) =
L{g(t)} = sL{yUSR(t)}.

A.4.3 | Frequency response (matrix)
If an LTI is excited with a sinusoidal shaped input, the steady-state solution is sinusoidal
again, but depending on the input frequency, the amplitude and phase of the output are
modified. The frequency response (matrix) describes this behavior. Its relation to the
other characteristic responses becomes apparent by inserting a sinusoidal wave as an input
u(t) = ejωt into eq. (A.32):

y(t) =
∫ ∞

0
g(τ)ejω(t−τ)dτ = ejωt

∫ ∞
0

g(τ)e−jωτdτ = ejωtF {g(t)}

= ejωtG(ω) = u(t)G(ω) . (A.34)

Now it is obvious that G(ω) is the Fourier transform of the impulse response and a complex
scaling factor for the reproduced input signal. This means the amplitude and phase of the
input exponential are modified while the remaining shape is retained. The frequency
response is the sub-set of transfer function for purely imaginary arguments,

G(ω) = G(s)|s=jω . (A.35)

112



A.5. Controller canonical form

One can write the frequency response as a complex number in amplitude/phase notation
G(ω) = |G(ω)| exp(j G(ω)). A Bode plot displays the amplitude gain |G(ω)| and the phase
G(ω) against a logarithmic frequency scale in two separate plots that are called the Bode

magnitude and Bode phase plot, respectively. It is therefore, an intuitive representation of
the dynamical behavior of the system under periodic excitation.

A.5 | Controller canonical form
When a system is defined by a transfer function of shape eq. (A.21), it can be transformed
into a state-space representation. The problem with this conversion is that the state
variables do not appear in the transfer function formalism, and one does not intrinsically
know which quantities should be used for this purpose.

The following systematic strategy is one way to solve this problem. First, the pro-
cedure to obtain a transfer function from a single differential equation of mth order in
appendix A.2 is reversed. Once a single differential equation is found, it can be dissected
into a set of coupled first-order differential equations. In the next step, the state variables
must be defined. A suitable selection of x(t) helps to transform the set of first-order differ-
ential equations into a standard form of the state-space formalism.[231] For G(s) defined
by eq. (A.21), the so-called controller canonical form of the state-space model can be
constructed by selecting the state variables as

ẋ1(t) = x2(t),
ẋ2(t) = x3(t),
ẋ3(t) = x4(t),

...
ẋn−2(t) = xn−1(t),
ẋn−1(t) = xn(t),
ẋn(t) = −a0x1(t)− a1x2(t)− · · · − an−2xn−1(t)− an−1xn(t) + u(t). (A.36)

These selected states are often called the phase variables of the system. The state-space
representation of the system is now written as

ẋ =



0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−a0 −a1 −a2 . . . an−1

x+



0
0
...
0
1

u and (A.37)

y =
(
b0 − a0bn b1 − a1bn . . . bn−2 − an−2bn bn−1 − an−1bn .

)
x+ bnu (A.38)
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A.6 | Linear time-invariant discrete-time systems
Nowadays almost all measurement and control tasks are performed by computers, and
system modeling must be performed on a discrete-time scale. With the help of the solution
of the continuous-time LTI system eqns. (A.14)–(A.15), and the assumption that all signals
are constant between sample instants, it is possible to derive the discrete-time state and
output equations as

x[k + 1] = Adx[k] +Bdu[k] (A.39)
y[k] = Cx[k] +Du[k] (A.40)

with Ad = eA∆t and Bd =
∫∆t

0 eAtdt. This transformation is called step-invariant transfor-
mation. Here, the frequently used notation applies that uses square brackets for quantities
that are given on equidistant and discrete points in time [. . . ] and round brackets (. . . ) for
continuous-time measures. For instance, the discrete-time state vector x[k] corresponds to
the continuous-time vector x(k∆t), with k being a positive integer. In this notation, the
solution of the discrete-time system is

x[k] = Ak
dx0 +

k−1∑
i=0
Ak−1−i
d Bdu[i] (A.41)

y[k] = CAk
dx0 +

k−1∑
i=0
CAk−1−i

d Bdu[i] +Du[k] (A.42)

For time-discrete signals the role of the Laplace transformation is played by the z-trans-
formation, which is defined for the discretely sampled function f [k] as

F [z] =
∞∑

k=−∞
f [k]z−k (A.43)

with z ∈ C. The inverse z-Transformation is given as

f [k] = 1
2πi

∮
C
F [z]zk−1dz . (A.44)

Consistent notation requires the z-transformed of a quantity to be expressed with capital
letters and squared brackets.

Using the z-transformation, the solution of the discrete-time LTI system can be written
in z-domain as

X[z] = (z1−Ad)−1 zx0 + (z1−Ad)−1BdU [z] (A.45)
Y [z] = C (z1−Ad)−1 zx0 +C (z1−Ad)−1BdU [z] (A.46)

(A.47)

For the particular case of a system at rest x0 = 0, the system’s output is

Y [z] = G[z]U [z] (A.48)
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with the discrete transfer function matrix, defined as

G[z] = C (z1−Ad)−1Bd +D . (A.49)

Eq. (A.48) can be rewritten in the time domain as the discrete convolution of the discrete
UIR with the input function

y[k] =
k∑
i=0
g[k − i]u[i] . (A.50)

The discrete UIR is
g[k] =

{
D for k = 0
CAk−1

d Bd for k ≥ 1 (A.51)

A.7 | Control systems
Proceeding now with the continuous-time systems, it should be considered that a trans-
formation to a discretized time scale is possible, yielding analog equations. Often, there
is the desire to prescribe the manner of the system’s response in the presence of distur-
bances. The central element to achieve this is feedback. A system with feedback is called
a closed-loop system, while a system without feedback is an open-loop system. A control
system can be both, but in a closed-loop system, the system state or output is able to
compensate for errors due to external disturbances. While the field of control systems is
vast, this section will be limited to a few basic control schemata.

A.7.1 | Full state feedback
If an accurate linear state-space model of the system is available, it is possible to design a
closed-loop control system that stabilizes it with respect to a reference utar(t). Therefore,
the state itself feeds back to the input and compares with a reference signal, utar(t). The
feed-forward term is not present, so that the system’s output is just a measurement of the
states themselves or linear combinations of them.

Therefore, eqns. (A.7)–(A.8) are redefined as

ẋ(t) = Ax(t) +Bu(t) and (A.52)
y(t) = Cx(t). (A.53)

Now a linear feedback law around the system is established as

u(t) = −Kx(t) + utar(t) , (A.54)

with the feedback matrix (or gain matrix) K ∈ Rn×m and the reference input utar(t) of
the same dimension as u(t). Inserting the feedback law (A.54) into (A.52) yields the
closed-loop system with full state feedback

ẋ(t) = Akx(t) +Butar(t), (A.55)

with Ak = (A−BK). To reach stability, the eigenvalues of Ak must be located in the left
half-plane. Placing the eigenvalues in the desired position yields the values of the elements
in the gain matrix K. This procedure is called pole placement and requires sufficient
knowledge about the system dynamics.
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A.7.2 | Feedback based on the systems output
Similar to full state feedback, a control loop can be constructed based on the output of the
system and comparing it with a reference utar(t). The feedback law is simply given by

u(t) = −Ky(t) + utar(t) . (A.56)

Inserting this into a state-space model like eqns. (A.52)–(A.53), yields

ẋ(t) = Ax(t)−BKy(t) +Butar(t) and (A.57)
y(t) = Cx(t)−DKy(t) +Dutar(t) . (A.58)

By solving the output equation for y, this system becomes

ẋ(t) =
[
A−BK (1 +DK)−1C

]
x(t) +B

[
1−K (1 +DK)−1D

]
utar(t) and (A.59)

y(t) = (1 +DK)−1Cx(t) + (1 +DK)−1DKy(t) +Dutar(t) . (A.60)

For D = 0, this simplifies to

ẋ(t) = [A−BKC]x(t) +Butar(t) and (A.61)
y(t) = Cx(t) , (A.62)

which is very similar to the full state feedback system, despite the appearance of the matrix
C in the state equation. A block diagram of such a controlled system is given in fig. A.1.

Figure A.1.: Block diagram of a control loop in state-space that feeds back the system’s output. A
reference signal utar(t) enters the system, where it is balanced with the output y(t) to generate the control
input u(t). The integration of the system state changes ẋ(t) to x(t) is represented by the box labeled by
1/s. The boxes labeled by A, B, C, D, and K are the matrices that act on the variables. The green box
represents the complete closed-loop system.

A.7.3 | PID Controller
A ubiquitous controller is the proportional–integral–derivative controller (PID Controller)
as it lacks the necessity of insights into the system dynamics. Instead, it operates just on
the system’s output compared with a reference signal utar(t). u(t) is the control voltage
that drives the plant, which can be described by the transfer function P (s). The plant
has the response y(t), which is fed back to be compared with the reference/target signal
utar(t). The difference between the target and the plant’s response is the tracking error
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e(t) = −y(t) + utar(t). The PID controller tries to minimize this error by generating the
control voltage of the plant u(t) scaled by the error itself (P), the integral over it (I), and
sensitive to the amount by which the error changes (D). Each part of the control voltage
has its own proportionality constant Kp, Ki, and Kd respectively. Thus, the input of the
system P (s) is constructed from the corresponding mathematical operation on the error
signal or written as

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kdė(t) . (A.63)

The transfer function Cctrl(s) of the PID controller can be obtained via the Laplace trans-
form of eq. (A.63) to

Cctrl(s) = U(s)
E(s) = Kds

2 +Kps+Ki

s
. (A.64)

Figure A.2.: Block diagram of a feedback loop like it appears in a PID controller. A reference signal
utar(t) enters the system, where it is balanced with the plant’s output y(t) to obtain the tracking error
e(t). A controller with transfer function Cctrl(s) converts the tracking error into a control signal u(t) for a
plant with transfer function P (s). The green box represents the system that is described by the transfer
function Y (s)/Utar(s).

A simple feedback loop is presented in fig. A.2, where a controller with transfer function
Cctrl(s) evaluates the tracking error e(t) = utar(t) − y(t) to generate a control signal u(t)
that is the input of a plant with transfer function P (s), the controlled system response is
given in s-space as

Y (s)
Utar(s)

∣∣∣∣∣
feedback

= P (s)Cctrl(s)
1 + P (s)Cctrl(s)

. (A.65)

For example, an oscillatory system with the plant’s transfer function given by eq. (A.29)
that is controlled by a PID controller has the control system transfer function

GPID, osci(s) = (Kds
2 +Kps+Ki) kdcω2

n

s3 + (2λωn +Kdkdcω2
n) s2 + (ω2

n +Kpkdcω2
n) s+Kikdcω2

n

. (A.66)

In fig. A.3, the frequency and step response of a driven and damped oscillator system
given by eq. (A.29) and its PID controlled version defined by eq. (A.66) is presented as
an example for the influence of the controller on the systems dynamical behavior. With
the selected control parameter, the large amplitude gain around the resonance frequency
and the phase lagging is flattened. In total, the controlled system appears to respond a lot
faster and less prone to oscillate.
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Figure A.3.: (a) Bode magnitude and (b) Bode phase plot of an open-loop (solid blue line) system of a
driven and damped oscillatory system and a PID-controlled one (solid red line). The oscillator’s natural
frequency ωn/ (2π) = 200 Hz is indicated as a black dotted line. (c) Step response of the same open-loop
and PID-controlled system. The black dotted line marks the target position. The damping coefficient was
λ = 0.25 in both systems and the control parameter are set arbitrarily to Kd = 0.02, Kp = 2,Ki = 400.

A.8 |White noise in dynamical systems
One can ask the question, what happens to a random process if it transmits a dynamical
system or more specific, what happens to its statistical measures like the expectation values
and variances? An answer to the properties of white noise propagating through a time-
dependent linear system is found by the Lyapunov equation, which should be motivated in
this section. Consider the linear but time-dependent system of the form

ẋ(t) = A(t)x(t) +Bν(t)ν(t) . (A.67)

Here, the driving term of the system is ν(t), a wide sense stationary, white noise with
zero mean and covariance Rν(τ) = V (τ)δ(τ). V (τ) is called covariance amplitude. The
time-dependent process variance matrix is written as

Q(t) = E
(
x(t)xT (t)

)
, (A.68)

and the initial conditions are given by a finite expectation value and covariance,

E(x(t0)) = m0 and (A.69)
E
(
x(t0)xT (t0)

)
= Q(t0) . (A.70)

For a time-dependent linear process, the solution is

x(t) = φ(t1, t0)x(t0) +
∫ t

t0
φ(t, τ)Bν(τ)ν(τ)dτ , (A.71)
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with the state transition matrix φ(t, τ) = eA(t−τ).[231] Using eq. (A.71) the following prod-
uct can be calculated

x(t1)xT (t2) = φ(t1, t0)x(t0)xT (t0)φ(t2, t0) + φ(t1, t0)x(t0)
[∫ t2

t0
φ(t2, τ)Bν(τ)ν(τ)dτ

]T
+
[∫ t1

t0
φ(t1, τ)Bν(τ)ν(τ)dτ

]
xT (t0)φT (t1, t0)

+
[∫ t1

t0
φ(t1, τ)Bν(τ)ν(τ)dτ

] [∫ t2

t0
φ(t2, τ)Bν(τ)ν(τ)dτ

]T
. (A.72)

Taking the expectation value and making use of the delta function in the noise term, the
process variance matrix is

Q(t) = E
(
x(t)xT (t)

)
= φ(t, t0)Q(t0)φT (t, t0) +

∫ t

t0
φ(t, τ)Bν(τ)V (τ)BT

ν (τ)φT (t, τ)dτ . (A.73)

This can be converted to a differential equation, called the time-dependent Lyapunov equa-
tion, by differentiation with respect to time as

Q̇(t) = A(t)Q(t) +Q(t)AT (t) +Bν(t)V (t)BT
v (t) . (A.74)

The time-dependent Lyapunov equation describes the propagation of white noise through
a dynamic system. However, non-white noise processes may behave differently. For time-
invariant, stable systems, eq. (A.74) reduces to the Lyapunov (matrix) equation

AQ∞ +Q∞AT +BνV B
T
v = 0 . (A.75)

The solution Q∞ of eq. (A.75) is the steady-state value of the process variance, and it is
equal to the long time limit of Q(t) written as

Q∞ = lim
t→∞

Q(t) =
∫ ∞

0
eAτBνV B

T
ν e

Aτdτ . (A.76)
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B.1 | Continuous-time random walk
The continuous-time random walk (CTRW) model is a direct generalization of the stan-
dard random walk. It was initially developed in the field of amorphous semiconductors
to describe the motion of charge carriers.[234, 235] Today, CTRW is frequently used to
describe phenomena in very different scientific fields, e.g., microscopic particle motion in
actin networks[236], (macroscopic) tracer motion in hydrogeological formations[237, 238],
or single share prices in high-frequency trading[239]. Like the ordinary random walk, steps
∆r in a CTRW are independent and identically distributed with the probability density
function λctrw(∆r). The extension to Brownian motion lies in the introduction of an ad-
ditional random variable, which is a waiting time τ between consecutive steps drawn from
the waiting time distribution ψctrw(τ). One can define a characteristic waiting time as

τ̃ = E(τ) =
∫ ∞

0
τψctrw(τ) dτ , (B.1)

which diverges for an underlying asymptotic power-law distribution ψctrw(τ) ∼ 1/τ 1+α with
α ∈ ]0; 1[.[110] Free motion obeying these statistics appears subdiffusive in the ensemble
average indicated by an ensemble-averaged MSD scaling with ∼ τα. This can be viewed
from that point that as time passes, more and more long waiting times accumulate, and
the particles under investigation freeze in their movement. Due to this aging effect, the
prerequisites for ergodicity are violated, and time-averages may differ. In fact, the time-
averaged MSD of particles undergoing CTRW in free space scales linearly in lag time τ .
CTRW obeys the diffusion equation written as

∂

∂t
Pctrw(r, t) = Dα

∂1−α

∂t1−α
∂2

∂r2 Pctrw(r, t) , (B.2)

This is a fractional partial differential equation, called fractional diffusion equation, using
the Riemann-Liouville fractional operator, which is defined by its influence on a time-
dependent function f(t) as

∂−λ

∂t−λ
f(t) = 1

Γ(λ)

∫ t

0

f(t′)
(t− t′)1−λ dt

′ (B.3)

with the real number λ ∈ ]0; 1[. Note the validity of the property ∂1−λ

∂t1−λ
f(t) = ∂

∂t
∂−λ

∂t−λ
f(t).[240]

As eq. (B.2) contains a memory kernel, its solution Pctrw(x, t) is non-Gaussian. The exact
result was expressed in terms of a Fox H-function or a one-sided Lévy stable distribu-
tion.[241, 242] However, its easier to write down the transformation into s-space, where
the propagator appears as a stretched Gaussian with the distinct features of a cusp at
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r = 0, noted as[243]

Pctrw(x, s) = sα/2−1
√

4Dα

exp
{
−|r|s

α/2
√
Dα

}
. (B.4)

The connection between the waiting-time ψctrw(τ), the jump length distribution λctrw(∆x),
and the particle’s joint probability density function satisfying eq. (B.2) can be found in
[244].

In fig. B.1, an example of a single CTRW realization is depicted. Data are simulated
according to the algorithm proposed in [245], yielding a trace with periods of no motion
and sudden large steps. Those long, fully immobilized time periods that appear in an
ideal CTRW are not observed in all experimental scenarios. For example, in SPT data,
localization uncertainties overlay the stalled particle motion. In theoretical models or sim-
ulations, Ornstein-Uhlenbeck noise may be added to a native subdiffusive CTRW process
to attribute to that localization noise. The associated expectation of the time-averaged
MSD becomes

MSDnoisy-ctrw(τ) ≈ 2Dα

Γ(1 + α)
τ

T 1−α + 2ν2
ouD

kou

(
1− e−kouτ

)
(B.5)

with noise amplitude νou and the inverse noise relaxation time-scale kou.[246]

Figure B.1.: Normalized example of a continuous-time random walk. (a) Noise term νctrw = ∂r/∂t that
drives the particle’s motion. (b) Time series of the particle position following subdiffusive CTRW. (c)
Two-dimensional (normalized) trajectory resulting in the typical random pathway with large steps. A
violet and orange sphere mark the first and the last position of the trajectory, respectively.
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B.2 | Fractional Brownian motion
Long-term memory of time series is often measured with the Hurst exponent H = α/2
going back to the British physicist Harold Edwin Hurst. His study on measuring
the long-term storage capacity of water reservoirs, particularly the River Nile, inspired
Mandelbrot and van Ness to their pioneering work on fractional Brownian motion
(FBM).[247] The usage of FBM is not only restricted to hydrology, but also for the de-
scription of data traffic in local area networks[248–250] or for particle motion in viscoelastic
or crowded environments[133, 251]. However, the suitability of FBM for economic modeling
is still discussed.[252, 253] Originally, FBM was defined in terms of a stochastic integral

r(t) = 1
Γ
(

1+α
2

) {∫ t

0
(t− t′)(α−1)/2 dB(t′) +

∫ 0

−∞

[
(t− t′)(α−1)/2 − (−t′)(α−1)/2dB(t′)

]}
,

(B.6)
with the ordinary Brownian motion process B(t). As it is difficult to interpret an integral
with a random integrator, a more intuitive representation is given by a Langevin equation
for the overdamped case,

ṙ(t) = νfgn(t) . (B.7)
Here, fractional Gaussian noise νfgn(t) is introduced that is normally distributed, but
power-law correlated in time[110] written as

E(νfgn(t)) = 0 and (B.8)
E(νfgn(t)νfgn(t′)) = αD̃α |t− t′|α−2 + 2αD̃α |t− t′|α−1

δ(t− t′) . (B.9)

For α ∈ ]1, 2[, the noise is positively correlated or called persistent and for the opposite case,
α ∈ ]0, 1[, it is negatively correlated or called antipersistent. Thus, FBM is subdiffusive if
the noise is antipersistent.[254] From eq. (B.9), the position autocorrelation can be derived
as

E(r(t)r(t′)) = D̃α

(
tα + t′α − |t− t′|α

)
. (B.10)

The diffusion equation for FBM is given as

∂

∂t
Pfbm (r, t) = αD̃αt

α−1 ∂
2

∂x2 Pfbm(x, t) . (B.11)

This equation is, in fact, local in time containing no memory kernel. Instead, a time-
dependent diffusion coefficient D̃(t) = αD̃αt

α−1 creates non-Markovian behavior. It turns
out that the probability density function of FBM is of Gaussian shape

Pfbm (r, t) = 1√
4πD̃αtα

exp
(
− r2

4D̃αtα

)
. (B.12)

Using eq. (B.12) and eq. (B.10), the time- and ensemble-averaged MSD can be calculated
and compared. Both scales according to eq. (2.26) and ergodicity is fulfilled. In fig. B.2,
a realization of a subdiffusive FBM pathway is generated with the simulation method
proposed by Hosking.[255] Due to the antipersistent noise, the motion appears a lot more
corralled than Brownian motion.
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Figure B.2.: Normalized example of a fractional Brownian motion walk. (a) Normalized fractional Gaus-
sian noise νfgn that drives the particles motion. Hurst exponent H was set to 0.3, corresponding to
antipersistent noise (α = 0.6) (b) Time series of the particle position following subdiffusive FBM. (c) Two-
dimensional (normalized) trajectory resulting in the typical random pathway with large steps. A violet
and orange sphere mark the first and the last position of the trajectory, respectively.

B.3 | Fractional Langevin equation
For FBM, the fractional Gaussian noise is considered external, and thus, the fluctuation-
dissipation theorem breaks down. In the work by Lutz, a fractional Langevin equation
(FLE) is introduced that describes similar non-Markovian behavior, but obeys a gener-
alized version of the fluctuation-dissipation theorem.[256] Starting with a random-matrix
Hamiltonian approach, Lutz et al. derived a generalized Langevin equation for a particle
of mass m exposed to correlated noise ν̃(t)

mr̈(t) = −ξα
∫ t

0
K(t− t′)ṙ(t′)dt′ + ν̃(t) . (B.13)

Here, the generalized friction coefficient ξα of physical dimension kg s−α was introduced.
The memory kernel K(t− t′) satisfies the second fluctuation-dissipation theorem

E(ν̃(t)ν̃(t′)) = kBT ξ̃K(t− t′) , (B.14)

connecting the friction and memory kernel with the correlation of the noise. For fractional
Gaussian noise, the memory kernel becomes Kfgn(t− t′) = (t− t′)α−2, and the generalized
Langevin equation can be written as a fractional Langevin equation

mr̈(t) = −ξα
∂α−1

∂tα−1 ṙ(t) + η̃νfgn(t) . (B.15)

For the sake of consistency, the Riemann-Liouville fractional operator (see eq. (B.3)) was
used, instead of the Caputo fractional derivative definition that appears favored by many
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other authors.[110, 254, 257] The coupling constant η̃ imposed by eq. (B.14) is

η̃ =
√√√√ kBT ξα

D̃αα(α− 1)
(B.16)

with the physical dimension kg s−1. Utilizing the FLE to calculate a particle’s MSD in free
space, ergodic behavior is obtained, and the MSD arises as

MSDFLE = 2kBT

m
τ 2Eα,3

(
−Γ(α− 1)ξα

m
τα
)
. (B.17)

The appearing generalized Mittag-Leffler function Ea,b(x) is defined by

Ea,b(x) =
∞∑
n=0

xn

Γ(an+ b) . (B.18)

On short time scales τ � (m/ξα)1/α, the MSD scales ballistically with τ 2 and proportional
to τ 2−α for longer lag times τ � (m/ξα)1/α. In contrast to FBM, subdiffusive behavior is
obtained for persistent noise α ∈ ]1; 2[.
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C.1 |Molecule detection efficiency function
In section 3.1, a representation of the molecule detection efficiency function (MDF) as
a modified Gaussian-Lorentzian profile was introduced and used to model the detected
particle emission rate within the SPOT setup . Here, its emerge in the description of
fluorescence signals will be motivated.

The intensity profile of a laser beam focused to position rL is given as Iexc (rL, r) and
moderately excites a distribution of chromophores described by the concentration profile
c (t, r) to emit fluorescence with the rate distribution

F (rL, r, t) = ηQIexc (rL, r) c (t, r) . (C.1)

Here, the symbol ηQ accounts for absorbance and quantum yield of the chromophores.
The emission signal is partially collected by the microscope optics and projected to an
image plane. Those optical components can be described by the microscopes point-spread
function PSF(r − r′), assumed to be normalized with the factor ζ−1

PSF. The fluorescence
rate distribution in the image plane is

F̃ (rL, r, t) = ζ−1
PSF

∫
F (rL, r′, t) PSF(r − r′) d3r′ . (C.2)

By placing a circular optical aperture (pinhole) in the image plane, the detectable fluores-
cence rate is cropped sharply, and the remaining fluorescence signal is

F (rL, t) =
∫

circ (r/a�) F̃ (rL, r, t) d3r

= ηQζ
−1
PSF

∫
circ (r/a�)

∫
Iexc (rL, r′) c (t, r′) PSF(r − r′) d3r′dxdy . (C.3)

Here, a is the radius of the image of the aperture projected to the sample plane accounting
for the microscope’s magnification, and the disk function circ (r) is defined by

circ (r) =
{

1 for
√
x2 + y2 ≤ 1

0 for
√
x2 + y2 > 1 , (C.4)

using that r = (x, y, z). Rearranging eq. (C.3) allows to identify functions defined in
the literature. Qian et al.[258] and Rigler et al.[259] defined the collection efficiency
amplitude κ(r′) as

κ(r′) = ζ−1
PSF

∫
circ (r/a) PSF(r − r′) dxdy . (C.5)

The collection efficiency amplitude can be concatenated with the laser excitation profile
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to an apparent excitation profile or better-called molecule detection efficiency function
MDF(rL, r′)[143, 258, 259] and is written as

MDF(rL, r′) = ηQκ(r′) Iexc (rL, r′) . (C.6)

Inserting this into eq. (C.3) yields a simple relation between the detected fluorescence rate
and the chromophore distribution in the sample plane

F (t) =
∫

MDF(rL, r′) c (t, r′) d3r . (C.7)

C.2 | Statistical properties of the position estima-
tor

In section 3.2 the particle position estimator is introduced without a proper derivation,
which should be now be made up for. Starting with the statistical properties of a mea-
sured photon trace realization, the expectation value of its sine, cosine and square wave
transformed are calculated for the SPOT scenario. Those transformed quantities of the
photon traces can be obtained in an experiment and relate to the particle position. Thus,
they can be rearranged to constitute the desired position estimator. For the readers con-
venience, some expression from the main text in section 3.2 are repeated in the following
section.

A photon trace Υ(t) = ∑
i δ(t− ti) (see section 3.2) is characterized by the expectation

value and covariance

E(Υ(t)) = F (t) , and (C.8)
E(Υ(t1)Υ(t2)) = F (t1)F (t2) + F (t1)δ(t1 − t2) . (C.9)

A Fourier integral defines the signal component at angular frequency ω as

Υt(ω) =
∫ t0+τ

t0
Υ(t′)e−jωt′dt′ . (C.10)

The index t indicates that the frequency component of the signal depends on the selected
time interval [t0; t0 + τ ] since Υ(t) is a random process. Eq. (C.8) can be used to calculate
the expectation value of Υt(ω) as

E(Υt(ω)) =
∫ t0+τ

t0
E(Υ(t′)) e−jωt′dt′ =

∫ t0+τ

t0
F (t′)e−jωt′dt′ = Ft(ω) . (C.11)

In practice, a small signal chunk Υ(t′) for t′ ∈ [t0; t0 + τ ] is recorded, and phase-sensitive
lock-in integration provides the cosine and sine transformation of the signal as the in-phase
and quadrature signals for a particular frequency ω. Dissecting the Fourier transformation
into cosine and sine transformation as the real and imaginary part of a complex number
(imaginary unit: j) with the Euler formula,

ejz = cos(z) + j sin(z) , (C.12)
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helps to relate the calculated expectation value to the experimentally accessible quantities

Υt(ω) =
∫ t0+τ

t0
Υ(t′) cos(ωt′) dt′ − j

∫ t0+τ

t0
Υ(t′) sin(ωt′) dt′

= C {Υ(t′)} (ω)− iS {Υ(t′)} (ω) . (C.13)

For 3D-SPOT, the fluorescence rate of the particle fixed at rp is modulated externally
and position-dependent with carrier frequencies ω0 and ω0/2. A laser focus scanned specifi-
cally along the pathway eq. (3.8) creates the modulation. The microscopes MDF is modeled
with the modified Gaussian-Lorentzian shape eq. (3.1) yielding the fluorescence-rate given
by eq. (3.10). Thus, the integration time is selected to τ = 2Tnspwith nsp being the number
of total beam scan periods of duration 2T = 4π/ω0. One looks for a closed-form expression
of

FS,t(ω, rp) =
∫ t0+2Tnsp

t0
FS(t′, rp)e−jωt

′
dt , (C.14)

for the integer numbers of the carrier frequency ω = kω0. Therefore, the fluorescence
rate expression for 3D-SPOT (see eq. (3.10) in the main text) is converted to cylinder
coordinates rp = (xp, yp, zp) = (ρp cos(ϕp) , ρp sin(ϕp) , zp) with the help of an addition
theorem.

FS(t, rp) =
F0w

2
xyκ(zp)

w2(zp − dz
2 sqw

(
ω
2 t
)
)

exp
−2

[
ρ2
p + 2Rρp cos(ϕp − ω0t) +R2

]
w2(zp − dz

2 sqw
(
ω
2 t
)
)

 (C.15)

The notation is easier after defining constant beam waists and amplitudes,

w1,2(zp) = wxy

√√√√√1 +

(
zp ∓ dz

2

)2

w2
z

and (C.16)

Al(ρp, zp) =
F0w

2
xyκ(zp)

w2
l (zp)

exp
[
−

2(ρ2
p +R2)
w2
l (zp)

]
. (C.17)

Using these four definitions, the integral over the fluorescence rate is split into time inter-
vals, where the z-coordinate of the laser focus is constant:

FS,t(kω0, rp) = nsp

[
A1(ρp, zp)

∫ t0+T

t0
exp

[
−4Rρp cos(ϕp − ω0t)

w2
1(zp)

]
e−ikω0tdt

+ A2(ρp, zp)
∫ t0+2T

t0+T
exp

[
−4Rρp cos(ϕp − ω0t)

w2
2(zp)

]
e−ikω0tdt

]
. (C.18)

A useful integral,

1
2π

∫ 2π

0
exp {p cos(ξ) + q sin(ξ) + jmξ}dξ = exp {jm p+ iq}Im

(√
p2 + q2

)
, (C.19)

will help to evaluate eq. (C.18). Here, Im(x) is m-th order modified Bessel function of
first kind and argument x. The symbol z notes the phase angle of the complex number
z. Substituting the integration variable with ω0(t′ − t0) in eq. (C.18) and selecting t0 such
that cos(ω0t0) = 1 and sin(ω0t0) = 0, these integrals are solved with the help of eq. (C.19)
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as

FS,t(kω0, rp) = Tnspe
−ikϕp

[
A1(ρp, zp)I−k

(
4Rρp
w2

1(zp)

)
+ A2(ρp, zp)I−k

(
4Rρp
w2

2(zp)

)]
. (C.20)

The two signal parts that do not depend on the particle’s azimuthal angle ϕp will be defined
as

Ω(k)
l,t (ρp, zp) = Al(ρp, zp)Ik

(
4Rρp
w2
l (zp)

)
, (C.21)

to shorten the notation further. Now the expectation of the cosine and sine transformation
of the measured photon traces are written in a closed analytical form as

E(C {Υ(t, rp)} (ω0)) = Re {FS,t(ω0, rp)} = Tnsp cos(ϕp)
[
Ω(1)

1,t (ρp, zp) + Ω(1)
2,t (ρp, zp)

]
,

(C.22)
E(S {Υ(t, rp)} (ω0)) = Im {FS,t(ω0, rp)} = Tnsp sin(ϕp)

[
Ω(1)

1,t (ρp, zp) + Ω(1)
2,t (ρp, zp)

]
.

(C.23)

For the localization of the particle in the z-direction, demodulation with a square wave is
introduced

Sq {Υ(t, rp)} (ω0) =
∫ t0+2Tnsp

t0
Υ(t′, rp)sqw

(
ω0

2 t
′
)
. (C.24)

By splitting the integral into sections of duration T starting at t0, which is arbitrarily
defined as the beginning of a square wave period, the expectation value can be calculated,
and the integration becomes easy. Using eq. (C.19) with m = 0 on obtains

E
(

Sq {Υ(t, rp)} (ω0)
)

= nsp

[∫ t0+T

t0
E(Υ(t′, rp)) dt′ −

∫ t0+2T

t0+T
E(Υ(t′, rp)) dt′

]

= nsp

[∫ t0+T

t0
FS(t′, rp)dt′ −

∫ t0+2T

t0+T
FS(t′, rp)dt′

]

= Tnsp

[
A1(ρp, zp)I0

(
4Rρp
w2

1(zp)

)
− A2(ρp, zp)I0

(
4Rρp
w2

2(zp)

)]
= Tnsp

[
Ω(0)

1,t (ρp, zp)− Ω(0)
2,t (ρp, zp)

]
. (C.25)

The expression Ω(k)
l,t (ρp, zp) can be approximated for k = 0, k = 1, and k = 2 by expanding

it as a multidimensional Taylor series around (ρp, zp) = 0 that is aborted after the first-
order terms of ρp and zp.

Ω(0)
l,t (ρp, zp) ≈ F0

w2
xy

w2
c

exp
(
−2R2

w2
c

)[
1 + (−1)l+1dzw

2
xy

w4
cw

2
z

(w2
c − 2R2)zp

]
, (C.26)

Ω(1)
l,t (ρp, zp) ≈ F0

w2
xy

w2
c

exp
(
−2R2

w2
c

)
2R
w2
c

ρp , and (C.27)

Ω(2)
l,t (ρp, zp) ≈ F0

w2
xy

w2
c

exp
(
−2R2

w2
c

)
2R2ρ2

p

w4
c

[
1 + (−1)l+1dzw

2
xy

w4
cw

2
z

(4w2
c − 6R2)zp

]
. (C.28)
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Here, the lateral beam waist in the central plane of the detection wc was defined as

wc = w(dz/2) = w(−dz/2) = wxy

√√√√1 + d2
z

4w2
z

. (C.29)

Using these approximations, the cosine, sine, and square wave transformed of the fluores-
cence rate become linear in the radial and axial particle displacement ρp and zp:

E(C {Υ(t, rp)} (ω0)) ≈ F0Tnsp
w2
xy

w2
c

exp
(
−2R2

w2
c

)
4R
w2
c

ρp cos(ϕp) , (C.30)

E(S {Υ(t, rp)} (ω0)) ≈ F0Tnsp
w2
xy

w2
c

exp
(
−2R2

w2
c

)
4R
w2
c

ρp sin(ϕp) , and (C.31)

E
(

Sq {Υ(t, rp)} (ω0)
)
≈ 2TnspF0

w2
xy

w2
c

exp
(
−2R2

w2
c

)
dzw

2
xy

w4
cw

2
z

(
w2
c − 2R2

)
zp . (C.32)

The terms ρp cos(ϕp) and ρp sin(ϕp) are immediately identified as xp and yp. Because
the approximations are only valid for ρp/wxy � 1 and R ≈ wxy, wrong estimates of the par-
ticle’s radial and axial coordinate are obtained on violation of this condition. Nevertheless,
the particle’s azimuthal angle ϕp is not affected by the linearization.

Some of the prefactors in eqns. (C.30)–(C.32) can be summarized to a quantity that is
easy to interpret. Defining

Nph = 2TnspF0
w2
xy

w2
c

exp
(
−2R2

w2
c

)
, (C.33)

and calculating the integral over the entire fluorescence rate signal in the same way as
before, one obtains∫ t0+2Tnsp

t0
FS(t, rp)dt′ = Tnsp

[
Ω(0)

1,t (ρp, zp) + Ω(0)
2,t (ρp, zp)

]
≈ 2TnspF0

w2
xy

w2
c

exp
(
−2R2

w2
c

)
= Nph . (C.34)

Here, the linear approximation of Ω(0)
l,t (ρp, zp) was used again. The meaning of Nph as the

total number of photons if the particle would stay fixed within the origin for the entire
acquisition period, is clear now. A similar definition is applied for the integral over the
recorded photon trace

Nph(t) =
∫ t+2Tnsp

t
Υ(t, rp)dt′ . (C.35)

The expectation value of the detected number of photons is E(Nph(t)) = Nph. This is very
useful because Nph is a quantity that is experimental accessible than F0 and can be used to
substitute some of the prefactors in eqns. (C.30)–(C.32). One obtains estimator equations
for the particle position based on a transformed acquisition of the detected photon stream.
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The estimated particle position r̂p = (x̂p, ŷp, ẑp) is defined as

x̂p(t) = w2
c

2RNph

∫ t+2Tnsp

t
Υ(t′, rp) cos(ω0t

′) dt′ , (C.36)

ŷp(t) = w2
c

2RNph

∫ t+2Tnsp

t
Υ(t′, rp) sin(ω0t

′) dt′ , and (C.37)

ẑp(t) = w4
cw

2
z

dzw2
xy (w2

c − 2R2)Nph

∫ t+2Tnsp

t
Υ(t′, rp)sqw

(
ω0

2 t
′
)
dt′ . (C.38)

Rearrangement yields

r̂p(t) =

x̂p(t)ŷp(t)
ẑp(t)

 = N−1
ph

∫ t0+τ

t0
Υ(t′, rp)


w2
c

2R cos(ω0t)
w2
c

2R sin(ω0t)
w4
cw

2
z

dzw2
xy(w2

c−2R2)sqw
(
ω0
2 t
)
 (C.39)

= N−1
ph

∫ t0+τ

t0
Υ(t′, rp)demod(t′) dt′ , (C.40)

by defining the demodulation vector function demod(t′) as

demod(t) =


w2
c

2R cos(ω0t)
w2
c

2R sin(ω0t)
w4
cw

2
z

dzw2
xy(w2

c−2R2)sqw
(
ω0
2 t
)
 . (C.41)

In the last section, the expectation values of the estimated particle position r̂p are calcu-
lated from the expectation values of the transformed recorded photon traces Υ(t, rp). Now
the photon counting statistics should be used to calculate an expression for the variance of
r̂p. Starting with the lateral coordinates, the variance of Υt(ω0, rp) will be calculated first

Var(C {Υ(t, rp)} (ω0)) = E
(
[C {Υ(t, rp)} (ω0)− E(C {Υ(t, rp)} (ω0))]2

)
= E

(
[C {Υ(t, rp)} (ω0)]2

)
− E(C {Υ(t, rp)} (ω0))2 , (C.42)

Var(S {Υ(t, rp)} (ω0)) = E
(
[S {Υ(t, rp)} (ω0)]2

)
− E(S {Υ(t, rp)} (ω0))2 and (C.43)

Var
(

Sq {Υ(t, rp)} (ω0)
)

= E
([

Sq {Υ(t, rp)} (ω0)
]2)
− E

(
Sq {Υ(t, rp)} (ω0)

)2
. (C.44)

The real and imaginary part of the Fourier transformed photon traces Υt(ω0, rp) can be
expressed by its complex conjugated Υ∗t (ω0, rp) as

C {Υ(t, rp)} (ω0) = Re {Υt(ω0, rp)} =
[

Υt(ω0, rp) + Υ∗t (ω0, rp)
2

]
, and (C.45)

S {Υ(t, rp)} (ω0) = Im {Υt(ω0, rp)} =
[

Υt(ω0, rp)−Υ∗t (ω0, rp)
2i

]
. (C.46)

Because it is necessary for the following considerations to express the expectation value of
the square of the transformed photon trace and the absolute squared photon trace by the
transformed fluorescence rates, this calculation will be conducted first. One obtains for the
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expectation value of the square of the transformed photon trace

E
(
Υt(ω0, rp)2

)
= E

(∫ t0+2Tnsp

t0
Υ(t′, rp)e−iω0t′dt′

∫ t0+2Tnsp

t0
Υ(t′′, rp)e−jω0t′′dt′′

)

=
∫ t0+2Tnsp

t0
e−jω0t′

∫ t0+2Tnsp

t0
e−jω0t′′E(Υ(t′, rp)Υ(t′′, rp)) dt′′dt′

=
∫ t0+2Tnsp

t0
e−jω0t′

∫ t0+2Tnsp

t0
e−jω0t′′ [FS(t′, rp)FS(t′′, rp)

+ FS(t′, rp)δ(t′ − t′′)] dt′′dt′

=
∫ t0+2Tnsp

t0
FS(t′, rp)e−jω0t′dt′

∫ t0+2Tnsp

t0
FS(t′′, rp)e−jω0t′′dt′′

+
∫ t0+2Tnsp

t0
e−j2ω0t′FS(t′, rp)dt′

= FS,t(ω0, rp)2 + FS,t(2ω0, rp) (C.47)

and analogously for the absolute square

E
(
|Υt(ω0, rp)|2

)
= E

(∫ t0+2Tnsp

t0
Υ(t′, rp)e−iω0t′dt′

∫ t0+2Tnsp

t0
Υ(t′′, rp)eiω0t′′dt′′

)
= |FS,t(ω0, rp)|2 + FS,t(0, rp) . (C.48)

Using eq. (C.45), eq. (C.46) and eq. (C.48) the expectation of the squared real part becomes

E
(
Re {Υt(ω0, rp)}2

)
= 1

4
[
E
(
Υt(ω0, rp)2

)
+ 2E(|Υt(ω0, rp)|) + E(Υ∗t (ω0, rp))2

]
= 1

4
[
FS,t(ω0, rp)2 + FS,t(2ω0, rp) + 2 (|FS,t(ω0, rp)|+ FS,t(0, rp))

+F ∗S,t(ω0, rp)2 + F ∗S,t(2ω0, rp)
]
, (C.49)

and an analogous equation holds true for the imaginary part. Finally, the variances for the
cosine and sine transformed signal is

Var(C {Υ(t, rp)} (ω0)) = 1
4
[
FS,t(2ω0, rp) + F ∗S,t(2ω0, rp) + FS,t(0, rp)

]
, and (C.50)

Var(S {Υ(t, rp)} (ω0)) = 1
4
[
FS,t(2ω0, rp) + F ∗S,t(2ω0, rp)− FS,t(0, rp)

]
. (C.51)

These equations can be used to calculate the variance of the lateral particle position es-
timator. The integration rule eq. (C.19) helps again for the evaluation of the occurring
integrals, and eq. (C.26) and eq. (C.28) can be used to simplify the expressions for particles
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close to the origin:

Var(x̂p) =
(

w2
c

2RNph

)2 [
E
(
[C {Υt(ω0, rp)} (ω0)]2

)
− E(C {Υt(ω0, rp)} (ω0))2

]

=
(

w2
c

2RNph

)2
Tnsp

2
{[

Ω(2)
1,t (ρp, zp) + Ω(2)

2,t (ρp, zp)
]

cos(2ϕp)

+
[
Ω(0)

1,t (ρp, zp) + Ω(0)
2,t (ρp, zp)

]}
≈

 w2
c

R
√

8Nph

2

. (C.52)

Before inserting the expression for Nph, two definitions are handy, first the integrated peak
number of photons per scan period

Nmax = 2TF0 , (C.53)

and second the lateral scan path geometry function

Λxy(ξρ, ξz) = (1 + ξ2
z/4)3/2

√
8ξρ

exp
(

ξ2
ρ

1 + ξ2
z/4

)
. (C.54)

This dimensionless function only depends on the modulation distances scaled by the charac-
teristic laser focus length scale along the corresponding axis. Inserting eqns. (C.53)–(C.54)
into eq. (C.52) yields the localization variance in lateral direction

Var(ŷp) ≈ Var(x̂p) ≈
wxyΛxy(R/wxy, dz/wz)√

Nmaxnsp

2

. (C.55)

This is an intuitive three-dimensional generalization of the results obtained in [51]. Next,
the variance of the z-coordinate estimator has to be calculated. It traces back to evaluating
the variance of the square wave transformed photon trace, which is again calculated by
splitting the integrals into sections where the focus’ axial position is constant. Several
expectation values are necessary to calculate, beginning with the expected value for the
squared photon trace of the first time interval:

E

[∫ t0+T

t0
Υ(t′, rp)dt′

]2
 =

∫ t0+T

t0

∫ t0+T

t0
E(Υ(t′, rp)Υ(t′′, rp)) dt′′dt′

=
∫ t0+T

t0

∫ t0+T

t0
[FS(t′, rp)FS(t′′, rp) + FS(t′, rp)δ(t′ − t′′)] dt′′dt′

=
[∫ t0+T

t0
Υ(t′, rp)dt′

]2

+
∫ t0+T

t0
Υ(t′, rp)Θ(t′ − t0) Θ(T + t0 − t′) dt′

=
[
TΩ(0)

1 (ρp, zp)
]2

+ TΩ(0)
1 (ρp, zp) . (C.56)

A similar result is obtained for the second time interval. Furthermore, the expectation
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value for the product of both time intervals is calculated the same way yielding

E
(∫ t0+T

t0
Υ(t′, rp)dt′

∫ t0+2T

t0+T
Υ(t′, rp)dt′

)
= T 2Ω(0)

1 (ρp, zp)Ω(0)
2 (ρp, zp) . (C.57)

Therefore, the estimator variance in the axial direction is,

Var(ẑp) =
(

w4
cw

2
z

dzw2
xy (w2

c − 2R2)Nph

)2

Tn2
sp

(
Ω(0)

1 (ρp, zp) + Ω(0)
2 (ρp, zp)

)

≈
(
wzΛz(R/wxy, dz/wz)√

Nmax

)2

, (C.58)

where the axial scan path geometry function was defined as

Λz(ξρ, ξp) = (1 + ξ2
z/4)5/2

ξz(1 + ξ2
z/4− 2ξ2

ρ)
exp

(
ξ2
ρ

1 + ξ2
z/4

)
. (C.59)

C.3 | Demodulation on a digital signal processor
The strength of the presented demodulation technique for real-time application and digital
signal processing is that the transformation function demod(t) (see section 3.2) can be
calculated in advance and stored as a matrix M in the processors random access memory,
saving computation time when the experiment is running. Furthermore, the integrals are
converted to sums that can be added simultaneously to the signal acquisition with very
few calculation operations needed. For this purpose, the modulation period 2T = 4πω−1

0
is dissected into ns equidistant sampling points. This creates the discretized time scale
t = k∆t with the integer k ∈ [0;nsnsp] used to sample the photon trace nph[k] = F (t, rp)∆t.
With these parameter settings, the transformation matrix has shape nsnsp×3 and is defined
as

M =

demodx(0) demodx(∆t) . . . demodx(nsnsp∆t)
demody(0) demody(∆t) . . . demody(nsnsp∆t)
demodz(0) demodz(∆t) . . . demodz(nsnsp∆t)

 . (C.60)

The matrix element in the kth column and jth row is therefore

M [k, j] = demodj(k∆t) . (C.61)

Estimated particle positions at times t = i∆t and coordinate j are written as

r̂p[i, j] = Nph[i]−1
i+nsnsp∑
k=i

M [k, j]nph[k] . (C.62)

In this notation, the number of detected photons is simply

Nph[i] =
i+nsnsp∑
k=i

nph[k] . (C.63)
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C.4 |Mean squared displacement computation based
on fast Fourier transformation

For a measured trajectory given as discrete positions written as r̂[k], the time-averaged
MSD can be calculated as eq. (3.35) (see section 3.4). But this sum can also be split into
a sum of correlation functions:

MSD[k] = 1
Npos − k

Npos−k−1∑
i=0

(
r̂2[i+ k] + r̂2[i]

)
− 2
Npos − k

Npos−k−1∑
i=0

(r̂[i] · r̂[i+ k])

= P1[k]− 2P2[k] (C.64)

Thereby, the second term P2[k] is the autocorrelation function of the position. By the
Wiener-Khinchin theorem, the power spectral density is the Fourier transform of the auto-
correlation function. Consequently, the power spectral density can be quickly calculated
with the fast Fourier transformation (FFT) algorithm and then Fourier-inverted to obtain
P2[k]. To handle the non-periodicity of the discrete input signal, the data has to be zero-
padded to twice the length of the signal. By doing this, the non-cyclic autocorrelation
function is computed as required. The described procedure is mathematically expressed as

P2[k] = F−1 {F {r̂} · F∗ {r̂}} . (C.65)

A recursive relation holds for P1[i] that is given by

P1[k] = P1[k − 1]− r̂2[k − 1]− r̂2[Npos − k] and (C.66)

P1[0] = 2
Npos−1∑
i=0

r̂2[i] . (C.67)

While a straightforward computation of the MSD scales proportional to N2
pos, the FFT-

based algorithm reduces the number of multiplications by using symmetries in the calcula-
tion. The FFT-based computation time, therefore, scales proportional to Npos log2(Npos),
which is advantageous for large data sets, namely large Npos.

C.5 | Simulation of the 3D-SPOT method
Simulations are run on a Dell XPS 15 (2.2 GHz Intel Core i7-3632QM quad core, 8 Gbyte
DDR3 RAM) with a 64-bit Windows 10 operating system. Code is written in Python 3.7.6
and makes extensive use of the Numpy 1.18.1[260], SciPi 1.4.1[261], lmfit 1.0.0[262], and
Pandas 1.0.0[263] libraries. The SPOT setup simulation is strongly related to the block
diagram in fig. C.1, and an overview of the occurring time scales is illustrated in fig. C.2.
The time resolution of the simulation is chosen to correspond to a single photon sampling
point of duration δt. The duration of four lateral and two axial laser focus cycles is dissected
into ns = 32 sampling points (Note that in the real world implementation of SPOT, the
number of sampling points per position estimation cylce is ns = 64). The general idea is to
simulate all relevant measures on this high-resolution time scale in a loop, where each pass
corresponds to a single particle position estimation. A particle is localized after each time
interval of ∆t = ns ·δt, which defines the simulation result time scale that can be compared
to real-world measurements. The generation of the trajectory is independent of the rest of
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Figure C.1.: Block diagram of the simulation. For simplicity not all input and output data (e.g. the
particle’s maximum photon emission rate or the beam diameter) are shown, focusing only on the main
data flow.

the simulation, and therefore different scenarios can be analyzed. For the observation of a
static particle, the trajectory consists of a constant position. Using the Langevin equation,
the trajectory of a Brownian motion can be simulated. But also anomalous or restricted
diffusion can be modeled and fed into the simulation. No matter which mode of motion
should be studied, the complete trajectory is sequentially cut into subsections of ns particle
positions. The average of this partial trajectory is used to build up a trajectory of mean
particle positions,

r[k] = 1
ns

(k+1)·ns∑
i=k·ns

r[i] . (C.68)

Those averaged particle positions rp[k] are introduced to obtain a benchmark for the ”mea-
sured” particle position r̂p[k]. Furthermore, the ns particle positions are used to generate
the particle’s fluorescence signal F [i] during the particle position estimation cycle using
eq. (3.10) assuming a Gaussian-Lorentzian laser profile. Therefore, each particle position
is related to each position of the focus scan and the movement of the nanopositioning stage
rs[i]. Thus, in eq. (3.10) the following substitution takes place:

rp → rp + rs (C.69)

The actual emission signal is generated with Poisson photon counting statistics with the
time-varying mean value F [i]. This fluorescence emission signal is demodulated with the
lock-in technique eq. (3.16) using sums instead of integration, resulting in an estimate for
the particle position r̂p[k] that is used after a given number of position estimation cycles
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Figure C.2.: Scheme of the various time scales of the simulation. A complete position estimation period
is divided into ns equally spaced intervals (here: ns = 32). Within a single position estimation period,
the laser focus is scanned along the two parallel orbits twice. That means the position estimation period
consists of four lateral modulation periods and two axial modulation periods. As the nanopositioning stage
is slower than the desired duration of a position estimation cycle, ncycles localizations are summarized to
a single feedback period (here: ncycles = 3). This defines the frequency, which is used to change the target
position of the stage to a new level. Fluorescence signals, particle, and stage trajectory are simulated
on the micro time scale defined by the interval δt. Since the outcome, namely the estimated trajectory,
is sampled on a macro time scale defined by the position estimation period ∆t = nsδt, the real particle
trajectory is averaged.

nsp to set the feedback signal. The updated target of the stage is given as

utar[k + 1] = utar[k]− r̂p[k] . (C.70)

With the help of the stage-stage controller’s transfer function Gsc[q], the stage target can
be converted to the (deterministic) stage response r̃s[i] for the next ncycles loop iterations
using convolution in Fourier space and taking only the real part

r̃s[i] = Re
{
F {Gsc[q]Utar[q]}−1

}
. (C.71)

Discrete Fourier transformation is used, and the Fourier transformed of the stage target
Utar[q] is calculated from a window of the stage target positions history. The window length
matches the slowest frequency in Gsc[q] and is filled with zeros if utar[i] is not long enough.
It should be noted that also the high-frequency content must match. Consequently, utar[i]
is generated on the δt time scale even if it varies a lot slower. As a simulation input for
the stage-stage controller transfer function Gsc[q] either a model function like eq. (D.19)
or eq. (D.20) can be used, or a real measurement can be inserted. Because a real stage
trajectory is noisy, random numbers εs take from a Gaussian distribution with zeros mean,
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and a standard deviation σs are added to the deterministic response, and the actual stage
position is

rs[i] = r̃s[i] + εs[i] with εs[i] ∈ N (0,σs) . (C.72)
The estimated particle positions are combined with the position of the sample stage to
reconstruct the particle trajectory. Therefore the stage positions have to be averaged over
ns positions of the estimation cycle

rs[k] = 1
ns

(k+1)·ns∑
i=k·ns

rs[i] . (C.73)

Hence, the reconstructed particle trajectory is calculated as

r̂[k] = r̂p[k]− rs[k] . (C.74)

C.6 | Simulation of Brownian motion inside a sphere
with hard walls

Brownian motion is simulated inside a sphere with hard walls. Eq. (2.19) is used to
calculate new positions, iteratively. The boundary effects are treated very unpretentious.
Once a newly generated particle position is outside of the sphere, the simulation step
is repeated until the new position is valid. Results of multiple simulations with varied
diffusion coefficient are shown in fig. C.3.

All one-dimensional MSDs (see fig. C.3 (a)) approach the limit L2/10 derived in [134]
irrespective of the diffusion coefficient. Note that the limit of a single-coordinate MSD
inside a sphere is divided by 3. Naturally, the MSD of faster particle reaches the plateau
value earlier. This is intimated by two equally long trajectories of differently fast particles
plotted in fig. C.3 (b) and (c). The simulated trajectory of the faster particle (fig. C.3 (c),
D∆t/L2 = 40) fills out the sphere more complete, leaving no doubts where the accessible
space ends.

The nVACFs, given in fig. C.3 (d-f), reveal an increasing anti-correlation for increasing
diffusion coefficient. In the simulation results with the diffusion coefficient D∆t/L2 = 100,
a slight anti-correlation is present even for ∆τ/∆t = 1. The restriction of possible step-
directions next to the sphere’s boundary hampers the cancellation of step-correlation by
averaging. Faster particles inside spheres of equal size are more likely to step towards
the boundary within the same period of observation. A step that theoretically moves the
particle outside of the sphere is replaced by one that move it to the center. Refining
the sampling rate/time resolution weakens this effect because less steps are in danger of
interacting with the wall.
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Figure C.3.: Results from simulations of Brownian motion confined in a spheres with hard walls. (a)
Single-coordinate MSDs for simulation with different (normalized) diffusion coefficients and the asymptotic
limit (dashed red line). (b, c) Examples of trajectories with a diffusion coefficients of D∆t/L2 = 4 and
40. (e-f) nVACF calculated for trajectories simulated with three different diffusion coefficients and with
the same period of observation.
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D.1 | Optical setup
To enable easy and flexible switching between different lasers or combining multiple at
the same time, the optical alignment is decoupled between the light source unit and the
beam deflection path via a polarization-maintaining optical single-mode fiber (polarization-
maintaining patch cable, PANDA, 405 nm, FC/PC, 2 m long, P1-405BPM-FC-2, Thorlabs
Inc.). To couple the light into the fiber, an infinity-corrected objective (40x Olympus plan
achromat objective, 0.65 NA, working distance 0.6 mm, RMS40X, Thorlabs Inc.) mounted
on a fiber launch (fiber launch with FC-connectorized fiber holder, MBT613D/M, Thorlabs
Inc.) is used. While light sources may differ depending on the conducted experiment, the
setup’s standard configuration is a continuous-wave green laser diode (iBeam-SMART-
515-S, λexc = 519 nm, continuous-wave with pulse option, Toptica Photonics AG) that is
combined via a dichroic laser beam combiner (BC, 552 nm cut-on wavelength, #86-393,
Edmund Optics GmbH) with a red laser (Radius 635-25, λex = 635 nm, continuous-wave,
Coherent Inc.). Coupling efficiencies achieved with these lasers’ beam profiles were about
50 %.

The laser light enters the beam deflection unit from the single-mode fiber via an achro-
matic collimator (protected silver reflective collimator,λexc.: 450 nm - 20 µm, RC02FC-P01,
Thorlabs Inc.) that creates an output beam of 2 mm in diameter in the TEM00 mode. At
this position, the light power was always chosen to range between 10 and 20 mW depending
on the use case. High powers are required by the microscope’s wide-field imaging mode,
whereas the SPOT or FCS-mode could be operated with significantly less. Furthermore, a
mechanical shutter can block the light transmitted by the fiber to protect the sample from
irradiation. AOD 1 deflects the light in a sinusoidal function of time and oriented vertically
to the table plane. The non-adjustable diffraction order of the beam deflected from the
optical axis by the AODs crystal cut is blocked by an iris. An optical relay unit (L1 and
L2, f1 = f2 = 250 mm, #32-919, Edmund Optics GmbH) projects the first-order diffracted
light to the second and third AOD. Therefore, the light path is split into two branches by
a non-polarizing 50:50 beam splitter cube (BS2, BS016, Thorlabs Inc.) placed behind lens
L2. The secondary AODs are oriented perpendicular with respect to the primary one, and
superimpose a deflection horizontal to the optical tabletop. Those secondary deflection
patterns are phase-shifted by π/2 on the initial deflection of the light beam resulting in
two laser beams that each rotate on a cone with its apex inside the second deflector crys-
tals. In both light arms, a telecentric lens system (L3, L4 and L5, L6, f3 = f5 = 50 mm,
f4 = f6 = 300 mm, #32-323 and #45-215 Edmund Optics GmbH) expands the beam
diameter and maps the apex of the deflection cone into a plane that corresponds to the
back focal plane of the microscope objective. The necessary axial displacement of the
two light orbits along the optical axis is achieved by a slight de-adjustment of each of the

141



D. Technical details

second telecentric lenses (L4 and L6) in opposite directions. Within the focal lengths of
the last telecentric lens the two beams are combined with a polarizing beam splitter cube
(PBS, PBS251, Thorlabs Inc.) which requires an achromatic half-wave plate (λ/2-WP,
AHWP05M-600, Thorlabs Inc.) in one of the paths. Afterwards, the combined beams
are directed through a quarter-wave plate (λ/4-WP, #48-497, Edmund Optics GmbH) for
generating circularly polarized light.

Within the first telecentric lens system (L1 and L2), a small percentage of the laser light
intensity is reflected by a thin coverslip (BS1) towards a photodiode (PDA55, Thorlabs Inc.)
that measures the laser power for reference purposes.

For wide-field excitation, an optical lens (WFL, fwfl = 150 mm, #L32-494, Edmund
Optics GmbH) is flipped into the beam path between L3 and L4. focusing the excitation
light into the back focal plane of the microscope objective, and illuminating the sample
with parallel light rays. The flipping mechanism of the WFL is electrically controlled
(MFF101, Thorlabs Inc.) to facilitate a rapid change between imaging and SPOT mode.

The microscope body is a home-build inverted assembly with a fixed filter cube holder
with the objective revolver. The sample is mounted on a nanopositioning stage that ap-
proaches the objective plane from above during focusing. The excitation light enters the
input port of the filter cube holder and is deflected by a dichroic mirror (DBS, z532 RDC,
AHF analysentechnik AG) to the aforementioned infinity-corrected water-immersion ob-
jective (UPLSAPO 60x, NA = 1.2, Olympus Corp.) The fluorescence from the sample is
collected by the same objective, passes the dichroic, and finally reaches the detection unit.

In the detection unit, optical filters remove residual laser light. The selection of those
detection filters depend on the used light sources (HQ545LP, AHF analysentechnik AG for
the green laser or BLP01-633R-25, AHF analysentechnik AG for the red laser of the stan-
dard configuration). Behind the detection filters a motorized flip mirror holder (KSHM-
40-LI-MDS, Owis GmbH) switches a mirror to deflect the emission light for wide-field
imaging or to let it pass for the confocal detection. In the wide-field detection branch,
an infinity-corrected tube lens (L10, f10 = 200 mm, TTL200, Thorlabs) focuses the fluo-
rescence collected from the sample onto a CCD camera (pixelfly usb, PCO AG). In the
confocal detection mode, the emission light from the sample is focused by a lens (L7,
f7 = 200 mm, #32-917, Edmund Optics GmbH) mounted on a linear translation stage into
a pinhole (P50S, Thorlabs Inc., (50± 3) µm pinhole diameter). In front of the pinhole,
a detection shutter is able to darken a box containing the following optical components,
including the two avalanche photodiodes (APD), completely. After the pinhole, the light is
distributed by a 50:50 beam splitter cube (BS3, BS016, Thorlabs Inc.) via two lenses (L8
and L9, f8 = f9 = 50 mm, #49-356 and #32-323, Edmund Optics GmbH) on the chips of
two avalanche photodiode based single-photon counting modules (APD 1: COUNT-100C,
Laser Components GmbH and APD 2: SPCM-AQR-14, PerkinElmer Inc.). This 50:50
beam splitter cube can be exchanged by a dichroic or polarizing beam splitter to measure
two color- or polarization-channels, respectively (see section 9.2). Both APDs emit TTL-
pulses on the detection of a single photon. These TTL-pulses are transmitted separately
to the counting electronics.
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D.2 | Acusto optical deflector
As mentioned before, the laser beam is deflected with the help of three AODs (DTSX-400-
532, Pegasus Opik GmbH) that made use of an acoustic wave in shear mode. The crystal
material is tellurium dioxide (TeO2) showing an acoustic velocity of 650 m s−1.

AODs are used in the so-called Bragg configuration. Here, only the zero and first
diffraction orders are existent because all others are annihilated by destructive interference.
An wedge angle between the input and output face of the crystal is used to ensure that
the zero order beam is deflected from the optical axis with a fixed angle necessary to
keep the scanning beam propagating co-linearly with the incident beam. For this co-linear
alignment of the first-order diffraction beam, the acoustic wave in created with the so-called
central radio frequency, enabling symmetric linear deflection in both directions. While the
intensity of the first order beam depends directly on the power of the applied signal, the
deflection angle θdefl is connected to the frequency of the acoustic wave νs itself via

θdefl = λexcνs
ñecs

, (D.1)

with the laser wavelength λexc, the crystals refractive index ñe (for the extraordinary ray),
and the speed of sound cs inside the crystal.

The AODs have a 7.5×7.5 mm aperture for beam diameters up to 6.7 mm. The duration
of deflecting the beam from one arbitrary point in space to another is called access time,
and depends on the beam diameter. For the largest input beam diameter, the access time is
about 10.3 µs and decreases for narrower beams. The electrical radio frequency that drives
the AOD is generated by a voltage controlled oscillator (VCO, DRFA10Y-B-0, Pegasus
Optik GmbH) and passes an amplifier (AMPA-B-30, Pegasus Optik GmbH) first before it
reaches the AOD. The combination of VCO and amplifier serves as the AOD’s driver unit
that is easily addressable by analog voltages.

The VCO has two inputs, the MOD IN and the FREQ IN. Applying a voltage between
0 and 5 V to the MOD IN channel, the power of the electrical radio frequency signal,
and consequently, the fraction of the laser intensity of the first-order beam is controlled.
This dependency is nonlinear, and calibration is necessary. The FREQ IN channel adjusts
the frequency of the electrical driver signal between 57 and 107 MHz on application of
voltages between 0 and 10 V. The VCO’s conversion of input voltages Udefl to electrical
radio frequencies νRF was measured and is displayed in fig. D.1(a).

A very accurate linear relation was obtained that follows

νRF(Udefl) = 5.85 MHz V−1 · Udefl + 56.67 MHz . (D.2)

By adjusting the radio frequency, the angle of the beam deflection is controlled. Voltages
applied to the MOD IN and FREQ IN channel will be called intensity voltages Uintensity and
deflection voltages Udefl, respectively. The electrical radio frequency signal is constantly
amplified by 33 dB before it reaches the crystal.

For orbital scanning of the laser beam, a sinusoidal deflection voltage has to be applied
to the AOD driver. The offset and amplitude of this sinusoidal voltage signal depends
on the laser wavelength λexc to be deflected (see eq. (D.1)). But also for the alignment
of a non-moving beam co-linear with the optical axis, the laser wavelength has to be
considered. Therefore, a super-continuum laser (SC400, Fianium Ltd.) was used as the
light source, because its wavelength can be selected with the build-in acusto optical tunable
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filter (AOTF). This enables measuring of the voltage used to bring the beam back to the
optical axis for a defined laser wavelength λexc. The results are shown in fig. D.1(b) for all
three AODs showing approximately the same relationship. A polynomial parametrizes the
central deflection voltages dependency on the laser wavelength according to

Udefl,c(λexc) = −4.807× 10−4 mV nm−3 · λ3
exc + 0.9025 mV nm−2 · λ2

exc

− 587.6 mV nm−1 · λexc + 134 V . (D.3)

Figure D.1.: (a) The radio frequency emitted by the VCO was measured with an oscilloscope for different
deflection voltages applied to the VCO. The zero voltage data point was excluded from the fit because it
might be affected by a small leakage voltages of the plant. (b) The deflection voltage necessary to align
the laser beam along the optical axis is plotted versus the laser wavelength. The laser wavelength was
chosen by an AOTF in front of a super-continuum laser (SC400, Fianium Ltd.).

D.3 | Ray transfer matrix analysis
In this section, a systematic formalism or ray-tracing will be used to determine important
parameters of the SPOT setup. The used technique is called ray transfer matrix analysis
(RTMA) and it is based on geometrical optics describing the propagation of light in terms
of straight rays that propagates under small angles and small displacements with respect
to the optical axis (paraxial approximation). Since the implementation of SPOT requires
only minimal beam displacement and angles, the paraxial approximation is appropriate
and the ray transfer matrices of the setup can be constructed.

For RTMA, the beam path is characterized by a state vector b that contains its dis-
placement b and angle ϕ with respect to the optical axis. Optical components and their
influence on the beam path are described as 2 × 2 matrices. Two elementary optical ma-
trices are the matrix of a thin lens Lf with focal length f and the matrix of free space
translation T d with a distance d defined by

Lf =
(

1 0
−1/f 1

)
, and T d =

(
1 d
0 1

)
, (D.4)

respectively. Arrangements of optical components centered along the optical axis can be
calculated by matrix multiplication in the correct sequence. For example, the system
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Figure D.2.: (a) Two identical lenses placed in twice the distance of their focal length constitute a relay
system that inverts the image from the front to the back focal plane without magnification. (b) Group of
two lenses with a short a long focal length, that are placed in a distance of the sum of their focal length.
This system fulfills multiple purposes as it expands the beam diameter, scales the incoming angles, and
relays the incoming beam deflection into the output plane with inverted signs.

depicted in fig. D.2(a) that consists of two identical lenses placed in twice the distance of
their focal length f can be written as

R = T fLfT 2fLfT f =
(
−1 0
0 −1

)
= −1 . (D.5)

This corresponds to an inversion of all ray directions while maintaining all other features.
A deflection that leads away from the optical axis in the front focal plane will be reversed
and projected in the rear focal plane. Therefore, the arrangement R is an option to create
a so-called relay system.
The system shown in fig. D.2(b) is essentially a copy of fig. D.2(a), but with lenses of two
different focal length. The focal length of the first lens is fs (short) and of the second one
is fl (long). Therefore, this composition of optical elements serves as a lever for angles and
can be called beam-expander. The beam-expander increases the diameter of an incident
light beam by a factor corresponding to the ratio of the focal lengths and simultaneously
flattens the angles of propagation with the inverted factor. The ray transfer matrix of the
beam-expander optics Bfs,fl is written as

Bfs,fl = T flLflT fs+flLfsT fs =
(
− fl
fs

0
0 −fs

fl

)
. (D.6)

In the setup for SPOT (see fig. 4.1), the output plane of the beam-expander optic is
identical to the back focal plane of the objective. The y-deflection occurs in the front
focal plane of the beam-expander optics (L3 and L4 or L5 and L6 in fig. 4.1), and the final
matrix that describes the optical system starting from AOD 2 or 3 up to and inclusive the
objective lens is called Sy.

The beam deflected along the x-axis is first lead through other optical components
before entering the Sy system. Those additional optical components (L1 and L2 in fig. 4.1)
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Figure D.3.: Set of rays with different deflection angles ϕin. Focal lengths are set according to the values
of the experimental implementation. Five rays with offsets in the range between −0.5 mm and 0.5 mm are
used as input. Black dotted lines indicate the plane in which the rays intersect and the orbit radius. For
these deflection angles, the resulting orbit radius amounts to R = 250 nm.

are a relay system used to join the orthogonal deflection directions into a single point
residing in AOD 2 or AOD 3, respectively. The x-deflection system starting in the center
of AOD 1 up to the objective lens will be called Sx. Both systems are written as

Sy = LfobjT fobjBfs,fl and (D.7)
Sx = SyR = −Sy . (D.8)

Finally, the beam propagation behind the objective lens should be described.
The distance to the objectives focal plane is noted as z and obtained by multiplying an

additional translation matrix T fobj+z(z) to the system matrices. The result is the system

Mx,y(z) = T fobj+z(z) Sx,y =
(
∓flz/(fsfobj) ±fobjfs/fl
∓fl/(fsfobj) 0

)
, (D.9)

The input rays are described in x- and y-direction, independently, and are given as state
vectors bx,yin = (bx,yin , ϕ

x,y
in (t)). With the help of Mx,y(z), the output rays bx,yout(z, t) can be

calculated as

bx,yout(z, t) =
(
bx,yout(z, t)
ϕx,yout(z, t)

)
= Mx,y(z)bx,yin =

∓ fl
fs
bx,yin z ± fobjfs

fl
ϕx,yin (t)

∓ fl
fsfobj

bx,yin

 . (D.10)

In fig. D.3, the rays of three different input angles are propagated by eq. (D.10) in the
range around the focal plane.
It is easy to see that for the central beam, defined by bx,yin = 0, the output beam is parallel
to the optical axis but displaced by fobjfs

fl
ϕx,yin (t). Therefore, a harmonic deflection of the

central beam by ϕx,yin (t) = ϕampl sin (ω0t+ φx,y) yields in a circular beam scan with radius

R(ϕampl) = fobjfs
fl

ϕampl , (D.11)
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focused in the focal plane of the objective. The phase φx,y of the sinusoidal deflections
influences only the starting point of the scan along the circular line. In summary, an
orbit of z-independent radius can be generated in the optical system described by the ray
transfer matrix Mx,y(z) by varying only the deflection angle.

The generation of a axial focus offset to the objective’s focal plane is more complex to
describe. The offset is created by shifting the long focal length-lens in the beam-expander
unit Bfs,fl towards the objective. Therefore, the beam-expander matrix becomes

Bfs,fl,p = T fl−pLflT fs+fl+pLfsT fs =
−f2

l +p2

fsfl

fsp
fl

p
fsfl

−fs
fl

 . (D.12)

Hence, the new matrix of the complete system will depend parametric on the lens shift p

Mx,y
p (z) = ∓T fobj+z(z)LfobjT fobfBfs,fl,p =

∓f2
objp+(f2

l +p2)z
fsflfobj

±fs(f2
obj+pz)
flfobj

∓ f2
l +p2

fsflfobj
± fsp
flfobj

 . (D.13)

The question arises on how to calculate the z-position of the laser beam focus in such a
system. Therefore, the intersection point of two beams with the same deflection angles
ϕin,1 = ϕin,2 but opposite distances to the optical axis bin,1 = −bin,2, must be searched for.
Thus, this condition is expressed as

bx,yout,1(zfocus) = bx,yout,2(zfocus) , (D.14)

and is true for
zfocus(p) = −

f 2
objp

f 2
l + p2 . (D.15)

Moving the long focal length-lens of the beam-expander unit towards the objective lens
moves the laser beam focus closer to the objective lens and vice versa. This calculation
also includes the case of a not modified beam-expander unit for p = 0 , where the laser
beam focus resides in the objective focal plane.

From eq. (D.15), for a symmetric and opposite displacement of the lenses by the distance
p0, the orbital distance dz can be determined as

dz(p0) = zfocus(−p0) + zfocus(p0) =
2f 2

objp0

f 2
l + p2

0
. (D.16)

The influence of the lens shift on the orbit radius can be checked. Therefore, the inter-
section points of rays with different bin are considered in the plane z = zfocus. The beam
displacement from the optical axis in this plane is independent from bin by definition, but
it depends on the deflection angle amplitude ϕampl and (weakly) on the lens shift p:

R(ϕampl, p) = fsflfobj

f 2
l + p2ϕampl ≈

fl�p

fsfobj

fl
ϕampl . (D.17)

For small lens shifts p compared to the focal length of the second lens in the beam-expander
unit fl, the same orbit radius as in the unshifted case is obtained. In fig. D.4, two opposed
lens shifts and three deflection angles are inputted into eq. (D.13) and propagated in the
range next to the focal plane (z = 0) to illustrate the course of the rays, the z-shift and
the orbit radii.
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Figure D.4.: Set of rays with different deflection angles ϕin and with a lens shift of p. Focal lengths are
set according to the values of the experimental implementation. Five rays with offsets from the optical
axis in the range between −0.5 mm and 0.5 mm are used as input. Vertical black dotted lines indicate the
plane in which the rays of one deflection angle intersect and horizontal black dotted lines correspond to
the orbit radius created for sinusoidal deflection with 0.5 mrad as amplitude. For these deflection angles,
the resulting orbit radius amounts to R = 250 nm, as before. The lens shift was set to p = ±5 mm, which
corresponds to an orbit distance of dz = 1000 nm.

Inspecting the beam deflection properties of the AODs and the connected electronics makes
it possible to determine the beam scanning resolution and scanning range of the setup. Ac-
cording to the manufacturer datasheet, the AODs have a laser light wavelength-dependent
full deflection range of about 40-50 mrad. This is twice the maximum deflection amplitude
around the zero deflection and results in a maximum orbit radius of about 10 µm. The
static resolution (ratio of the range of scan angles to the beam divergence) of the AODs
themselves is given as about 400 for λexc = 519 nm. This corresponds to clearly separable
(1/e2-width criterion) beam scan positions at a distance of 50 nm within the sample plane.

It is also helpful for the calibration of the setup if there is a theoretical relationship
between the orbit radius and the deflection voltage. Using eqns. (D.1), (D.2) and (D.11),
one obtains the scaling factor

dR

dUdefl
(λexc) = dR

dϕ

dϕ

dνs

dνs
dUdefl

= fsfobj

fl

λexc

ñecs

dνRF(Udefl)
dUdefl

. (D.18)

For the laser light wavelength λexc = 519 nm, the obtained scaling factor is dR/dUdefl =
0.946 nm mV−1. Moreover, it can be checked if the scan resolution is restricted due to the
discretized voltage level outputted from the ADwin. While the quantization of the voltage
level from the ADwin is ∆UDAC = 305.175 µV (see appendix D.6), the theoretical accuracy
in the adjustment of the orbit radius is about 0.3 nm, and consequently not a technical
limitation of the deflection capabilities.
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D.4 | Nanopositioning stage
The P-545.3D8S stage is equipped with piezoresistive strain sensors that are read out by
the internal control unit with 20 kHz. The controller consists of a PID controller with
a subsequent set of two notch filters, and it converts the sensor readout and the target
position to a control voltage that is applied to the actuators moving the stage. The
maximum control signal slew rate was left at manufacturer settings to prevent accidental
damage by large and rapid voltage changes. The notch filter must be set to the system’s first
resonance frequency. To determine those system resonances, the UIR (see appendix A.4.1)
is measured in open-loop mode, and Fourier transformed to the frequency response (see
appendix A.4.3). Because the resonances are load-dependent, a representative sample cell
is mounted on top of the stage. In a Bode plot, the resonance becomes noticeable as a
peak in the amplitude amplification. For the present stage, only one dominant resonance
frequency at 1.7 kHz, 1.6 kHz, and 0.8 kHz were measured for the x-, y-, and z-direction,
respectively (see fig. D.5 (b) and (c)).

Figure D.5.: Comparison between the stages response in the closed-loop (CL, dark blue line) and open-
loop (OL, marine blue line) mode. (a) Unit impulse response (UIR) and (b,c) frequency response depicted
as a Bode plot with the magnitude given in (b) and phase in (c). Additionally, the magnitude amplification
and the phase roll-off in the closed-loop case are shown as red dots from experiments with repetitive
sinusoidal excitation.

With the notch filter frequencies set to the resonance values of the respective axis, the
PID control parameters are optimized to reduce the overshoot and to shorten the rise-
and settling time of the USR (see appendix A.4.2) in the closed-loop mode. Established
tuning methods, such as those of Ziegler-Nichols[264] or Cohen-Coon[265], could either
avoid large overshoots or generate fast response times, but not both at the same time.
Manual settings are cumbersome but proven to be superior in terms of the reaction time
and overshoot amplitude. Therefore, P, I, and D gains are set to 0 and changed iteratively
until optimum. Once an optimum parameter set was found, the reproducibility of the
step response is checked by recording the step response for steps of different height in the
positive and negative direction. Relevant step sizes are smaller than about 500 nm, which
corresponds to the maximum expected stage step size during a SPOT experiment, where
the setup should perform best. Most of the system’s unit step response functions agree well
with each other when normalized and displayed in fig. D.6. But the responses to target
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Figure D.6.: Unit step responses of the nanopositioning stage (a) x-axis, (b) y-axis, and (c) z-axis for
different step heights (color-coded according to the legend indicating the step height). The responses to
steps in the negative direction are subtracted from 1 for a clear representation.

steps larger than the relevant range, especially in the z-direction, do not maintain the fast
rise time and small overshoot. For small steps, the noise seems to increase, but in fact,
this is only due to normalization. Crucial is the slow rise time of the stage response along
the y-axis for small steps and setting should be improved. Despite of these exceptions, the
step response rises in less than 2 ms with an overshoot smaller than 10 % in all directions
and for step responses smaller than or equal to 500 ms.

However, a characteristic of the manufacturer’s design of the nanopositioning stage
becomes apparent in fig. D.6. A scan pattern often desired in confocal scan applications
is to scan lines in the x-direction and vary the y-axis after each line. Once a xy-plane is
completely scanned, the z-axis of the stage is adjusted. Therefore, the x-, y-, and z-axis of
the stage are required to be increasingly faster. This is visible in fig. D.6 as it was possible
to achieve an increasingly better quality of response of the z-axis, y-axis, and x-axis in
terms of rise time and overshoot.

After the dynamic operating mode has been optimized, a characterization for static
and dynamic operation can be performed. First, a long trace of the stage positions is
recorded and analyzed for that reason. While the closed-loop response (fig. D.7 (a)) is
stable over the entire record, the open-loop response (fig. D.7 (b)) is dominated by a
strong and non-linear creeping of about (20± 10) nm s−1. By subtracting the backbone of
the drifted position trace (fig. D.7 (b), inset), a histogram can be formed that represents
the short-term position noise, which is identical to the closed-loop case (fig. D.7 (c)). The
backbone of the drifted stage trajectory was obtained by a moving average over a window
of 201 positions. The histogram for the closed-loop mode is further broken down to show
the accuracy of the individual coordinates (fig. D.7 (d)). The positional noise is given by
the standard deviation of those data and amount to 1.3 nm, 1.1 nm, and 0.9 nm for the
x-, y-, and z-axis, respectively. Hence, the position noise of the stage small enough to be
neglected for further considerations.
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Figure D.7.: (a) Position stability of the piezo stage in the closed-loop mode. The black dotted line is the
target value, which can be held well. (b) Position stability of the piezo stage in the open-loop mode. A clear
drift of the position is visible. The average drift velocity is (20± 10) nm s−1. The black dotted line is the
target value, the solid magenta line the backbone of the drifted position. An inset represents the positional
noise of the stage (in nm) with respect to the drift trajectory. (c) Histograms of the positions with respect
to the target value for the closed-loop case and with respect to the drift trajectory for the open-loop case.
(d) Histogram of the positions with respect to the target value for all three axes in the closed-loop case.
The standard deviation for x-, y-, and z-direction is 1.3 nm, 1.1 nm, and 0.9 nm, respectively.

D.5 | System identification of the nanopositioning
stage-stage controller

In order to characterize the performance of the SPOT setup in the dynamic mode, the
transfer function of the closed-loop system must be identified. Therefore, the step response
of the stage is recorded for steps of different height and direction as described before.
According to eq. (A.33), those responses are normalized and averaged to obtain the unit
step response, which is converted to the unit impulse response. In fig. D.5 (a) the UIR in
the close-loop and open-loop mode are compared. While the closed-loop response shows
only a single strong peak followed by small-amplitude oscillations, there is a slowly damped
oscillation in the open-loop case that vanishes at a level that is different from the start
position.

The UIR can be converted to the frequency response by Fourier transformation, as
discussed before. The result is plotted as a Bode plot in fig. D.5 (b) and (c). A flat
magnitude of the frequency response for an extended low-frequency regime is desired. It
is reached in the close-loop case for frequencies up to about 600 Hz. In the open-loop case,
this flat regime shows less magnitude, a small dip at about 1 kHz, and a strong amplitude
amplification at around 1.6 kHz. The phase shift is instructive about the time that is needed
to reach the target position. It shows that in the open- and close loop case, significant
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Figure D.8.: (a-c) Magnitude amplification and (d-f) phase roll-off for the closed-loop nanopositioning
stage determined from the averaged unit step response. Each column corresponds to an axis of the stage.
The solid black line is a multi-parameter fit designed to yield an accurate representation of the real response
in the relevant frequency regime. The multi-parameter fit shows a phase wraps at about 785, 718, and
698 Hz for the x-, y-, and z-axis, respectively. Parameters of the fit are given in table D.2. The solid
fuchsia line is a two-parameter fit with the model function of a driven oscillator. The parameters are listed
in table D.1. The fitting range was always restricted to frequencies below 1 kHz to remove the fast phase
switching influence in this regime. In addition, the data points have been logarithmically coarsened for
the fitting purpose to allow uniform numerical weighting across all frequencies.

phase shifts are observed for frequencies higher than 100 Hz. Between 700 and 800 Hz, the
closed-loop response phase switches signs indicating that the stage cannot be controlled
that fast. The open-loop response shows a similar switching at higher frequencies in the
range of 1 kHz.

To check the calculations of the conversion from a step response to a frequency response,
a frequency response is recorded directly for the closed-loop case. Therefore, the stage is
excited with sinusoidal signals of varying frequencies. The stages oscillatory response is
fitted with a sinus function, and the amplitude gain and phase shift is extracted from the
fitting parameter. The result is displayed in fig. D.5 as red dots. While the phase shift
is very well reproduced, the amplitude gain decays slightly earlier. There are numerous
reason for this behavior, like errors in the amplitude fitting of the sine responses or a
stronger influence of the notch filter for the data acquired with a real repetitive driving
signal. Nevertheless, the different approaches to determine the frequency response deviate
not much and the calculated frequency response seems reliable.

For SPOT, the nanopositioning stage is externally controlled with 250 Hz. This means
that the target value can be reached, but a significant phase shift must be considered. For
theoretical examinations of its influence on the SPOT process, a closed-form representation
of the transfer function is a useful tool. Therefore, real measurement data are compared
with a model function. A complete representation of a piezoelectric positioning system
would require modeling the electrical circuit, the mechanical components of the system,
and the control logic.[266] Such a comprehensive model would account not only for the
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D.5. System identification of the nanopositioning stage-stage controller

damped oscillatory behavior, but also for creeping, hysteresis and time delays. Numer-
ous publications dedicate their efforts to this task and found clever ways to increase the
controller’s performance and the accuracy of the model.[267–274] Nevertheless, the main
aspects of a closed-loop piezoelectric nanopositioning stage are covered by using a highly
simplified model of a unity-gain, second-order low-pass system.[275] The transfer function
of such a driven oscillatory system (see appendix A.3), can be written as

Gforced osci.(s) = ω2
n

s2 + 2λωns+ ω2
n

, (D.19)

But this section’s main purpose is not to fully understand and optimize the chained system
of positioning stage and control loop, but to find an accurate numerical representation of
its response. Thus, the number of fitting parameter can be increased by using a multi-
parameter transfer function given by

Gmulti-parameter(s) = b1a
2
ωs+ b0a

2
ω

s3 + 2aλaωs2 + (1− b1)a2
ωs+ b0a2

ω

. (D.20)

The mathematical structure of this fit model in terms of the polynomial order of the nu-
merator and denominator is justified by comparing it with a PI-controlled driven oscillator
model (see eq. (A.65)).

In fig. D.8 each nanopositioning stage axis response is fitted with both model functions.
Therefore, the transfer function is used to calculate the model’s frequency response as
magnitude and phase shift. The residuals between the model’s output and the measurement
data are calculated and used to optimize the transfer functions input parameter according
to a Levenberg-Marquardt non-linear least-squares solver [276, 277]. It is necessary for
computational reasons that amplitude amplification and phase shift are numerically in the
same range. Therefore, the magnitude is handled in units of 1

20dB, and the phase shift
in units of 1

180°. In addition, the data points have been logarithmically coarsened for the
fitting purpose to allow uniform numerical weighting across all frequencies. Furthermore,
the fitting range was restricted to frequencies below 1 kHz, removing the influence of the
fast phase switching and magnitude noise in this regime. The obtained fitting parameters
for the forces-oscillation and multi-parameter model are listed in table D.1 and table D.2,
respectively.

Table D.1.: Fitting results of the forced-oscillation model to the frequency response of the different
nanopositioning stage axes

Axis λ ωn / Hz adj. R2

x 0.599± 0.017 2791± 62 0.9835
y 0.632± 0.022 2831± 83 0.9754
z 0.573± 0.016 2615± 55 0.9832

Table D.2.: Fitting results of the multi-parameter model to the frequency response of the different
nanopositioning stage axes.

Axis b0/ Hz b1 aλ aω / Hz adj. R2

x 2287± 104 −0.259± 0.038 0.787± 0.043 5707± 214 0.9986
y 1702± 32 −0.118± 0.013 0.541± 0.010 4694± 40 0.9991
z 1554± 32 −0.013± 0.011 0.590± 0.012 4424± 39 0.9991
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The highly simplified forced-oscillation model is only a rough approximation for the
transfer function. Damping constants around 0.6 are observed and resonance frequencies
of about 2.8 kHz for the lateral axes and 2.6 kHz for the z-axis. The adjusted R2 values are
higher than 0.97 and indicates the suitability of the model. Nevertheless, it underestimates
the frequency at which the magnitude decays and ignores the phase switching, where it
overestimates the decay constant. The multi-parameter model instead is an outstanding
representation of the transfer function in the considered frequency range. It matches the
magnitude and the phase shift behavior perfectly for frequencies below 700 Hz with adjusted
R2 values higher than 0.998. For higher frequencies, especially those larger than the phase
switching frequency, the model’s accuracy decreases.

Summarizing, the forced-oscillation model is helpful in obtaining parameters like the
damping constants and resonance frequencies that approximate the behavior of the stage
roughly. The multi-parameter model follows the structure of a PI-controlled oscillatory
system and fits the frequency response exceptional well in the frequency regime of interest.
Therefore, the multi-parameter model serves as a closed-form representation of the systems
transfer function.

D.6 | ADwin
The core component of the control logic of the SPOT setup is an ADwin system (ADwin
Gold II, Jäger Computergesteuerte Messtechnik GmbH). The ADwin hardware consists
of a fast digital signal processor (ADSP TS101S, 300 MHz, 31 bit TigerSHARC, Analog
Devices Inc) with real-time capabilities, analog and digital inputs and outputs (18 bit
analog-digital-conversion, 16 bit digital-analog-conversion) and a communicational link to
a PC. The range of the analog input and output channels is−10 to 10 V corresponding to 216

digits, which corresponds to a quantization of the voltage levels to ∆UADwin = 305.175 µV.
The manufacturer states the timing accuracy of the processes running on the ADwin as
better than 1 µs. Nevertheless, rising or falling flanks of TTL-like voltage signals at the
digital input channels are registered with a temporal resolution of 10 ns, and the limitation
that it is only possible to buffer 254 of these events in memory.

A schematic map of the communication and wiring network of the setup is shown in
fig. D.9. It illustrates the fact, that the ADwin communicates directly via Ethernet with a
separate network card installed on the PC with a maximum transfer rate of 100 Mbit s−1.
The communication takes place via shared memory addresses that are physically located
on the ADwin but do not interfere with the timing of the ADwin processes. A code loop of
fixed process time checks for values changes at specific memory addresses and triggers the
execution of programmed tasks on demand. Besides the exchange of data and commands
with the PC, several other communication pathways originate from the ADwin. Analog
voltages are emitted to control the AOD drivers’ inputs (two channels per AOD) and the
three target value control voltages of the nanopositioning stage axes. Because there are in
total 9 voltages necessary to generate, one of the driver voltages to AOD1 (MOD IN, see
appendix D.2) is not provided by the ADwin system but by a manually adjustable power
supply.

While the ADwin’s analog output sockets are fully occupied, only a few of the available
analog inputs are used. A resistance thermometer based on a Pt1000 sensor (TEMOD-
I2C, B+B Thermo-Technik GmbH) measures the ambient temperature next to the sample
cell, and a photodiode (PDA55, Thorlabs Inc.) returns the relative excitation laser power.
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Furthermore, the nanopositioning stage position sensors are monitored via these analog
connections.

The digital input and output channels receive TTL-pulses from both APDs and send
trigger pulses to the wide-field lens flipper. The excitation and detection shutter are open
and closed by switching between the low and high TTL-level of the corresponding con-
nection. TTL-level switching changes the position of the motorized wide-field mirror. To
enable this, a dedicated controller box (ELUB 5/393/9) crafted by the university’s elec-
tronics workshop, is interposed.

Figure D.9.: Layout of the communication pathways and the wiring of the devices.
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D.7 | Software
The SPOT setup is controlled by the ADwin system that communicates with a PC (Win-
dows 10, 64 bit), where a graphical user interface enables the operation. That means
specific programs running on the ADwin and the PC are necessary likewise.

The communication pathways are illustrated in fig. D.9. The core component that
controls the current state of the setup is the main process (main.TB1 ) running on the AD-
win system and supported by an additional process (secondary fast.TB2 ) that runs faster.
These two processes read and write into memory addresses that are physically located on
the ADwin but also accessible from the PC without interfering with the ADwin’s timing
behavior. The shared memory is used for communication with a C++/Qt program and
running on the PC. The PC control program is developed by myself and called ”QtSPOT”.
It provides a graphical user interface (GUI) that enables the experimenter to view and ad-
just the setup parameters. QtSPOT serves as a platform to configure and display the setup
and measurement state but also to inspect and analyze resulting data, directly. In fig. D.10,
a screenshot of the QtSPOT interface while executing a FCS experiment is presented as
an example. The measurement procedures are hardcoded into the software for high repro-
ducibility, and the individual setting is written into the header of each measurement file
(see appendix D.8 for a real example).

The source code is written in object-oriented C++ making extensive use of the Qt
framework (Qt 5.12.6, MinGW 64-bit) not only for the creation of the GUI but also for
string processing, timing, or hyper-threading. Special care was taken on performance and
accuracy, especially for handling large photon arrival-time data sets, which are sometimes
larger than 1 Gbyte due to the large amount of very high numbers (Minutes measured in
ns). QtSPOT uses a lot of pointer arithmetic and fast algorithms taken from literature for
this reason.[278]

Complex dependencies are avoided and, thus, the project depends only on the Qt frame-
work, the ADwin driver class, and on the third-party widget ”QCustomPlot” that is meant
for data visualization. QCustomPlot (Version 2.0.0) is written by Emanuel Eichham-
mer and distributed over the internet under the GNU General Public Licence (Version
3).[279] The Qt framework was used, because it is very common and freely available for
non-commercial purposes. This means that support will be guaranteed for a long period
of time without having to rewrite the entire project to a new framework. Since Qt runs on
all platforms, the program code could also be changed to another operating system, such
as Linux, in a very short amount of time. Only a few file system related functions of the
existing source code are Microsoft Windows specific.

Despite QtSPOT’s claim to control the complete experimental setup, additional pro-
grams are necessary for secondary tasks. The CCD camera, some aspects of the nanopo-
sitioning stage, and the communication with the TOPTICA laser are controlled by third-
party software.

The CCD camera is not used for the SPOT algorithm, but only for simple time-lapse
recordings or live-views of the sample. Therefore, the effort to integrate it properly into
QtSPOT, maintaining all the features that are provided by the manufacturer software, was
not reasonable. Currently, the camera is directly interfaced from the PC via USB 2.0 and
the program Camware (V3.05, 64 bit, PCO AG).

The analog outputs of the ADwin adjust the nanopositioning stage’s target, and the
analog inputs read the position sensors. Therefore, all data transfer necessary for SPOT
is executed by the ADwin system. However, the stage controller configuration is not
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integrated into QtSPOT and the ADwin system, but a direct link from the PC via USB
2.0 and the third-party software PIMikro Move (2.20.016, Physik Instrumente (PI) GmbH
& Co. KG) is utilized.

Figure D.10.: Screenshot of the main window of QtSPOT. The user interface is structured into three
columns. The left and middle column are the general setup control and operator input features, present-
ing functionalities of universal usage. Both columns are again structured into modules serving different
purposes, e.g., switching the shutter states, monitoring count rates, laser power or ambient temperature
or controlling devices like the AODs. A dialog box reports on the current process status, error messages
and successfully completed actions. In contrast, the right column is structured into tabs which provide
control elements tailored for the specific measurement tasks. In the figure, the time-tagged single-photon
counting (TTSPC) tab is selected yielding the control elements for a photon trace acquisition task. In
the example, the operator has selected to record 10 photon traces of 60 s each and to compute the fused
detection channel autocorrelation function providing a FCS curve.
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D.8 | Example of a SPOT measurement file
SPOT measurements are stored on hard disc as ASCII-files consisting of a header and a
tab-delimited table of the recorded data. All header lines start with a hash mark (#) and
contain automatically generated information about the software and setup configuration.
Additionally, manually entered notes about the sample and comments about the setup that
are not recognized by the electronics are integrated as well. In the table-like tab-delimited
file part, each line corresponds to a single particle localization step of the SPOT procedure
starting with the earliest point in time.

# 3D DUAL COLOR SPOT FILE
# Tracking type: 3D, 15.0
#
# Filename: D:\QtSPOT\Daniel_Zalami\spot\2019-12-05\S64-I-25nm-messreihe1_0034.traj
# Version: 15.0
# Date: Thu Dec 05 13:41:30 2019
#
# Photon Counting Mode: Time Tagged Single-Photon Counting (TTSPC)
# Temperature / C: 21.673
# ==================================================================
# LASER FOCI AND ORBITS PROPERTIES
# Laser Wavelength / nm: 519.00 635.00
# Waist X / nm: 200.00 200.00
# Waist Y / nm: 200.00 200.00
# Waist Z / nm: 1000.00 1100.00
# Radius X / nm: 160.00 190.00
# Radius Y / nm: 160.00 190.00
# Orbit distance / nm: 1000.00 1000.00
# ==================================================================
# PIEZO STAGE SETTINGS
# Unit of digit XYZ / nm: 1.068 1.068 0.763
# Used piezo sensor calibration parameter settings:
# Function: position / micrometer = p0+p1*x+p2*xˆ2+p3*xˆ3 with x in digit
# p0, p1, p2, p3 of
# X: -3.02867375e+005 1.42141399e+001 -1.66563972e-004 1.33171718e-009
# Y: -2.57020516e+005 8.29910564e+000 4.30092914e-005 -8.48165260e-010
# Z: -3.95800562e+005 1.96430740e+001 -2.79246538e-004 2.26451657e-009
# ==================================================================
# AOD SETTINGS
# Scanpattern file: D:\QtSPOT\Daniel_Zalami\aodpattern\2017-12-12-standard.orbit
# Transmission 1 / V: 4.500 (manually set, maybe wrong)
# Transmission 2 / V: 0.250
# Transmission 3 / V: 0.250
# Offset 1 / V: 4.950
# Offset 2 / V: 4.950
# Offset 3 / V: 4.950
# Block 1 / V: 0.000
# Block 2 / V: 0.000
# Block 3 / V: 0.000
# =================================================================
# PHOTONTRACE SETTINGS
# Number of Photon Traces: 1
# Acquisition time / s: 9
# ==================================================================
# SPOT SETTINGS
# Feedback Frequency / Hz: 250.00
# Feedback Period / ms: 4.00
# Timeresolution / ms: 1.33
# Scale Factor XYZ C1 / nm: 125.000 125.000 125.000
# Scale Factor XYZ C2 / nm: -1.000 -1.000 -1.000
# Number of orbit cycles per position: 3
# Stop count rate threshold / Hz: 500.000000
# ==================================================================
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# ==================================================================
# SETUP COMMENTS:
# > Lichtquelle: 519 nm iBeam Smart von TOPICA, im CW Modus
# > 10mW nach Faser
# > Exc.: Lambda/4 Platte
# > Objektiv: Olympus UPlanSApo 60x, NA = 1.2, Wasserimmersionsobjektiv
# > Strahlteiler: LP 532 (Datenbank No.:778)
# > Detect.: LP542(Datenbank No. 786); 2APDs (50:50 BS, Datenbank No. 1122)
# > Piezo: P-545.3D8S PInano Trak Piezo Tracking System,
# > Physik Instrumente, mit PI(D)-Regelung:
# > X ( Notch 0.05(at) 1700 Hz, P = 2.00, I= 60 e-5, D=2 e-4)
# > Y ( Notch 0.05(at) 1640 Hz, P = 2.70, I= 80 e-5, D=3 e-4)
# > Z ( Notch 0.05(at) 1700 Hz, P = 4.50, I= 120 e-5, D=3e-4)
# ==================================================================
# SAMPLE COMMENTS:
# > keine Angaben
# ==================================================================
# Has photon arrival times file: no
# ==================================================================
# Structure of the follwing data:
# stage position target x / digits
# stage position target y / digits
# stage position target z / digits
# stage position sensor x / digits
# stage position sensor y / digits
# stage position sensor z / digits
# particle positon with respect to orbits center x / digits
# particle positon with respect to orbits center y / digits
# particle positon with respect to orbits center z / digits
# emitted photons channel 1/ number
# emitted photons channel 2/ number
# temperature next to sample / C
# photodiode that detects laser power / V
# ==================================================================
30988 40798 26200 31016 40827 26196 8 -28 -104 9 13 21.67 0.651666
30988 40798 26200 31016 40802 26196 -34 -38 -22 58 51 21.67 0.651666
30988 40798 26200 31031 40810 26222 -26 -23 -11 46 68 21.67 0.651666
31014 40821 26211 31039 40852 26230 -6 -18 -26 55 52 21.67 0.651666
31014 40821 26211 31047 40835 26222 -22 -25 -28 68 84 21.67 0.651666

: : : : : : : : : : : : :
: : : : : : : : : : : : :
: : : : : : : : : : : : :
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E.1 | Rolling-ball viscometry
The dynamic viscosity of glycerol/water mixtures was measured in dependency of temper-
ature and weight concentration with a rolling-ball viscometer (AMVn, Anton Paar GmbH)
and density and sound velocimeter (DSA 500 M, Anton Paar, used to determine the cor-
responding density). The resulting parametrization is presented in fig. E.1. Similar mea-
surements are conducted to determine the dynamic viscosity of 2,2’-thiodiethanol (TDE)
and 53 vol% TDE diluted in an aqueous buffer (see fig. E.2).

Figure E.1.: (a) Dynamic viscosity of different glycerol/water mixtures in the temperature range 16 ◦C to
30 ◦C. The measurement data are shown as colored dots, with the color code indicating the concentration in
wt%. The natrual logarithm of the viscosity of each mixture was fitted with a straight line, being equivalent
to a monoexponential decay of the form ηglycerol-water(c, T ) = η0(c) exp {−T/T0(C)}. The concentration
dependent fit-parameter, namely the amplitude η0(c) and temperature constant T0(c), are plotted in (b)
and (c), respectively. The natural logarithm of the amplitude follows a fourth order polynomial given by
log η0(c) = 36.2860 ·c4−33.2703 ·c3 +18.53548 ·c2 +5.6071 ·c−0.1254 and the concentration dependency of
the decay temperature is represented by a straight line parametrized as T0(c) = −32.5154 K ·c+43.6899 K.
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Figure E.2.: Dynamic viscosity of (a) 2,2’-thiodiethanol (TDE) and (b) TDE diluted with buffered water
to 53 vol%, both solutions are measured for different temperatures with a rolling-ball viscometer (AMVn,
Anton Paar GmbH). Exponential decay fit functions are drawn as red dotted lines and are given by the
equations ηTDE,100 vol%(T ) = (3.20± 1.01)× 109 mPa s · exp(−T/(16.39± 0.32) K) + (8.93± 0.55) mPa s
and ηTDE,53 vol%(T ) = (2.610± 0.431)× 109 mPa s · exp(−T/(21.28± 0.28) K) + (1.21± 0.03) mPa s.

E.2 | Refractive index matching
The refractive index of 2,2’-thiodiethanol (TDE) and a respective mixture with water are
characterized with a refractometer (Abbemat, Anton Paar GmbH) at multiple wavelength
(see fig. E.3). In order to visualize the mechanism of refractive index matching of the solvent
with the PS43-b-PI40-b-PNIPAAm17 membrane used for the experiments in chapter 8, a
membrane cutting was immersed in TDE and pure water and photographed from top view
(see fig. E.4).

Figure E.3.: Refractive index of (a) 2,2’-thiodiethanol (TDE) and (b) TDE diluted with buffered water
to 53 vol%, both solutions are measured at 20 ◦C with a refractometer (Abbemat, Anton Paar GmbH) at
multiple wavelengths. Errorbars are too small to show. The refractive at λ = 520 nm is 1.53 for pure
TDE and 1.43 for the diluted solution. Polynomial fit functions are drawn as red dotted lines and are
given by the equations ñTDE,100 vol%(λ) = 211.3× 10−9 nm−2 · λ2 − 309.8× 10−6 nm−1 · λ + 1.630 and
ñTDE,53 vol%(λ) = 143.5× 10−9 nm−2 · λ2 − 216.1× 10−6 nm−1 · λ+ 1.507.
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Figure E.4.: Photography to illustrate the effect of refractive index matching on the light scattering of
the PS43-b-PI40-b-PNIPAAm17 membrane. In (a) the membrane is immersed in 2,2’-thiodiethanol (TDE)
with a refractive index of ñTDE = 1.5 and in (b) in pure water with a refractive index of ñH20 = 1.33 in
the visible wavelength range.
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E.3 | Environmental scanning electron microscope
micrographs

Figure E.5.: Cross sectional view of the PS43-b-PI40-b-PNIPAAm17 triblock terpolymer membrane show-
ing a thickness of (a) (20± 1) µm and (b) (19± 5) µm.
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Figure E.6.: Highly magnified (top-view) sections of the PS43-b-PI40-b-PNIPAAm17 triblock terpolymer
membrane reavealing an additonal nanostructure in the 20 nm range corresponding approximately to the
contour length of the used polymer.
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Figure E.7.: (a) Membrane cutting of the PS43-b-PI40-b-PNIPAAm17 triblock terpolymer membrane
with defects appearing as large macropores with sizes in the range of 10 µm to 30 µm. (b) Zoom onto a
single macropore.
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E.4 | 2C3D-SPOT trajectories

Figure E.8.: Recorded 2C3D-SPOT trajectories. Each graph is a single measurement of two color chan-
nels, with channel 1 drawn in red and channel 2 in green. For the eye, the overlap of both channels is
perfect and due to the slight transparency of the channels, the visual impression is that of a mixed color
in ocher.
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Figure E.9.: Detected fluorescence rates of the respective trajectories in fig. E.8. The alphabetic labeling
of the experiments as (a), (b), etc. is the same as in the trajectory overview.
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Abbreviations, symbols and
conventions

Conventions
• Bold symbols x are multidimensional variables like vectors or matrices; Non-bold

symbols x are scalars or scalar functions.

• The dependency of a function on a continuous-time variable is expressed in round
brackets, e.g., f(t); The dependency on a discrete-time variable is expressed in square
brackets, e.g., f [k].

• A symbol with an hat, for example f̂ represents the measured or estimated value of
the corresponding variable f .

• Time-derivatives are expressed by a dot on top of the symbol. The time-derivative
of f(t) is writtens as ḟ(t), for instance.

• Cartesian coordinates are symbolized by x, y and z, where the first two are the lateral
coordinates and the z-direction is the axial direction

• The complex conjugate of a number z is noted as z∗

• Cylinder coordinates are symbolized by the radial distance ρ, the azimuthal angle
ϕ and the height z. Cylinder coordinates are related to Cartesian coordinates via
x = ρ cosϕ, y = ρ sinϕ and z = z.
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List of abbreviations and acronyms
AOD Acusto optical deflector
AOTF Acusto optical tunable filter
APD Avalanve photodiode
CLA Chord length analysis
CTRW Continuous-time random walk
eSEM Environmental scanning electron microscopy
FBM Fractional Brownian motion
FCS Fluorescence correlation spectroscopy
FFT Fast Fourier transformation
FLE Fractional Langevin equation
FRET Fluorescence resonance energy transfer
GUI Graphical user interface
LCST Lower critical solution temperature
LTI Linear time-invariant system
MDF Molecule detection efficiency function
MIMO Multiple input/multiple output system
MINFLUX Minimal emission flux microscopy
MSD Mean squared displacement
NIPS Non-solvent induced phase separation
nVACF Normalized velocity autocorrelation function
PD Probability density
PID Proportional–integral–derivative (controller)
SEM Scanning electron microscopy
SISO Single input/single output system
SNIPS Self-assembly and non-solvent induced phase separation
SPOT Single-particle orbit tracking
SPT Single-particle tracking
STED Stimulated-emission-depletion
TDE 2,2’-thiodiethanol
TTL Transistor–transistor logic
UIR Unit impulse response
USR Unit step response
VCO Voltage controlled oscillator
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List of symbols
1 Unity matrix
A, A(t) System or dynamic matrix
A1, A2 Confinement geometry factors
Al(ρp, zp) Auxiliary variable, constant signal amplitude
Avoid Void area
a Particle diameter
a� Aperture diameter (projected into the sample plane)
adj(X) Adjugate matrix X
B, B(t) Input matrix
B(t) Brownian motion process
Bν , Bν(t) Input matrix of a noise term
Bf1,f2 Ray transfer matrix of a beam-expander system
bx,yin , bx,yout Input and output beam state vectors along x- or y-direction
C Output matrix
cs speed of sound cs inside a crystal
C {f(t)} (ω) Cosine transformation of function f(t) into ω-domain
c(t, r) Concentration profile of a substance
circ (r) disk function
D Feed forward matrix
D Diffusion coefficient
Dα, D̃α Generalized diffusion coefficient
dz, dz,opt Axial orbit distance and optimal axial orbit distance
demod(t) Demodulation function
det(X) Determinant of a matrix X
Ea,b(x), Ea(x) (Generalized) Mittag-Leffler function
E(x) Expectation value of x
e(t), E(s) Error signal and its Laplace transform
edyn[k] Dynamic localization error
eloc[k] Localization error
estatic[k] Static localization error
estat[k] Statistical localization error
esys[k] Systematic localization error
F (t) Fluorescence rate
F0 Peak fluorescence signal
FB Background fluorescence rate
FS(t, rp) Time- and particle position dependent fluorescence rate
Ft(ω) Time-dependent complex frequency component of a fluorescence rate at ω
F (p, r, t) , F̃ (p, r, t) Auxiliary symbol for the fluorescence rate distribution
F {f(t)}, F {f(t)}−1 Fourier and inverse Fourier transformation of function f(t) into ω-domain
fi Focal length of lens Li
feG(x) Gaussian curve with exponential tail
fsG(x) Streched Gaussian curve
fexp(τ) Exponential saturation law
fml(τ) Mittag-Leffler function based saturation law
fpl(τ) Power-law based flattening law
G(s), G[z] Transfer function (matrix) and discrete transfer function (matrix)
G(ω) Frequency response (matrix)
Gsc(s),Gsc(s) Stage- stage controller transfer function (matrix)
Gmulti-parameter(s) Multi-parameter model of a transfer function
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Abbreviations, symbols and conventions

Gforced osci.(s) Transfer function of a forced oscillator
GPID, osci(s) Transfer function of a PID controlled oscillator
g(t) Unit impulse response (matrix), UIR
H Hurst exponent
Iexc(p, r) Laser excitation profile centered at p
In(x) Modified Bessel function of the nth kind of order one and argument x
i Running index
Jn(x) Bessel function of the nth kind of order one and argument x
jl(x) Spherical Bessel function of the lth kind of order one and argument x
j Imaginary unit or running index (dependent on context)
K Gain matrix of a feedback system
Kfgn(t− t′) Fractional gaussian noise memory kernel
Kp, Ki, Kd Proportional, integral and derivative controller gain
k Running index
kB Boltzmann constant, 1.380 649× 10−23 J K−1

kdc DC gain of a second order system
kou Inverse Ornstein-Uhlenbeck noise relaxation time
kω Spring constant
L, L̂, L̂ Confinement size, Measured and corrected confinement size
Lf Ray transfer matrix of a thin lens with focal length f

L{f(t)}, L{f(t)}−1 Laplace and inverse Laplace transformation of function f(t) into s-domain
M(a, b, x) Kummer function
M Demodulation matrix
Mx,y(z) Ray transfer analysis matrix for x- or y-deflection
MDF(r) Molecule detection efficiency function
MDFmGL (t, r), Modified Gaussian-Lorentzian molecule detection efficiency function
MSD(τ) Mean squared displacement
m Mass
mvoid Circularity parameter
NA Numerical aperture
Nparticles Particle number
Nph Integrated fluorescence signal
Nmax Integrated peak fluorescence signal
Npos Number of recorded positions
Nτ Number of MSD points within a given interval for τ
N (a, b) Normal distribution with mean a and standard deviation b
nph[k] Binned photon trace
ñ Refractive index
n Noise density
n(t) Time-dependent noise density
ncycles Number of position estimation cycles before feedback application
ns Number of photon counting sampling points per scan period
nVACF∆τ (τ) Normalized velocity autocorrelation function
nsp Number of scan periods
P1, P2 Position correlation functions
PkΓ k-Gamma distribution
PCLA Morphological pore size distribution
P (r, t), P (r, t|r′, t) Positional probability density function
Pctrw (r, t) Positional probability density function of a continuous-time random walk
Pfbm (r, t) Positional probability density function of a fractional Brownian motion
PSF (r) Point-spread function
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List of symbols

pi Coefficients of a polynomial
Q(t), Q∞ Time-dependent and steady-state process variance matrix
R, Ropt Orbit radius and optimal orbit radius
Rν(τ) Covariance vector
R Ray transfer matrix of a relay system
R(z) ”Detection waist” function
R0 Minimal ”detection waist”
Rz Characteristic length scale of ”detection waist” divergence
r, r, r̂,r̂ Particle position (three or one dimensional) and its estimate
rp, r̂p Particle position with respect to the center point and its estimate
rs, r̂s Stage position and its estimate
r̃[i] Noise-free stage response
r[k] Mean particle position of a scan period〈
r2〉

th,
〈
r2〉

α,th mean thermal squared position
rL Scan path of a laser focus
rν Covariance of the Brownian kick-term ν(t)
S(s) (Pure) stage transfer function
Sx,Sy Ray transfer matrix for x- and y-beam deflection
S {f(t)} (ω) Sinus transformation of function f(t) into ω-domain
Sq {f(t)} (ω) Square wave transformation of function f(t) into ω-domain
s Laplace space variable, complex frequency
sqw(x) Square wave function with argument x
T d Ray transfer matrix of a translation by d
T Duration, time span
T Temperature
T d Ray transfer matrix of a free space translation by a distance d
t Time
Udefl Voltage applied to the FREQ IN input of the AOD driver
Uintensity Voltage applied to the MOD IN input of the AOD driver
Uω(r) Harmonic potential
u(t), U(s) Input vector and its Laplace transform
utar(t),Utar(s) Reference/target signal and its Laplace transform
uv(t) Stage control voltage
V , V (τ) Covariance amplitude
w(z) Laser beam waist function
wc Lateral 1/e2-laser beam waist in the center plane of a two orbit geometry
w1,2(zp) Auxiliary variable, beam waist in orbit plane
wn Wiener process for photon counting
wp,Wp(s) Wiener process for particle position noise and its Laplace transform
wxy Lateral 1/e2-laser beam waist
wz Axial laser beam waist
x(t), X(s) System state and its Laplace transform
x[k], X[z] Discrete system state and its z-Transform
y(t),Y (s) Output vector and its Laplace transform
y[k], Y [z] Discrete output vector and its z-Transform
yUSR(t) Unit step response (matrix), USR
z z-space, variable, complex frequency
zfocus Focus position with respect to focal plane
α, ᾱ, α(τ) Anomaly parameter and averaged and lag time-dependent anomaly
Γ(x) Gamma function
Γ(z, x) Complementary incomplete Gamma function
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Abbreviations, symbols and conventions

δ(t) Dirac-delta distribution
∆r∆τ (t) Increment vector
∆t Time difference, time step of a single position estimation cycle
δt Photon-sampling time bin in simulation and experiment
εu Nanopositioning stage noise vector
ζPSF Auxiliary normalization factor
η, η̃ Dynamic viscosity and generalized dynamic viscosity
ηQ Fluorescence quantum yield
θdefl Beam deflection angle with respect to the optical axis
κ(z) Collection efficiency amplitude
Λxy(ξρ, ξz) Lateral scan pattern geometry function
Λz(ξρ, ξz) Axial scan pattern geometry function
λ Damping coefficient
λctrw Increment distribution of a continuous-time random walk
λexc Central excitation wavelength
λem Central excitation wavelength
ν(t) Stochastic noise term
ν̃(t) Correlated noise term
νbm(t) Stochastic kick-magnitude of Brownian motion
νfgn(t) Fractional Gaussian noise
νou Ornstein-Uhlenbeck noise amplitude
νRF (Electrical) radio frequency
νs Acoustic wave frequency
ξ, ξα Friction coefficient and generalized friction coefficient
π Archimedes’ constant, 3.141 592 653 59....
ρ Radial coordinate
σ Standard deviation of a particle localization
σt Total tracking error (Average over a trajectory)
σu Standard deviation of nanopositioning stage noise
σ∆r Standard deviation of particle displacements
τ Lag time
τ̃ Characteristic waiting time of a continuous-time random walk
Υ(t) Stochastic record of the fluorescence rate
Υt(ω) Time-dependent complex frequency component of Υ(t) at frequency ω
Φ(s) Resolvent matrix
φ(t, τ) State transition matrix
ϕin, ϕout Input and output deflection angle
ϕampl Deflection amplitude
φx,y Deflection phase in x or y-direction
χ, χ Tracking error vector and tracking error
ψctrw(τ) Waiting time distribution of a continuous-time random walk
Ω(k)
l,t (ρp, zp) Auxiliary variable, azimuthal angle independent fluorescence signal part

ω, ω̃ Angular frequency
ω0 Lateral orbit scan frequency
ωn Natural/resonance frequency
|x| Absolute value of x
z Phase value of a complex number z
∇ Nabla operator, gradient
∆ Laplace operator
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[58] L Lanzanò and Enrico Gratton. Orbital single particle tracking on a commercial
confocal microscope using piezoelectric stage feedback. Methods and Applications in
Fluorescence 2.2 (2014), p. 024010.

[59] Valeria Levi, QiaoQiao Ruan, and Enrico Gratton. 3-D Particle Tracking in a Two-
Photon Microscope: Application to the Study of Molecular Dynamics in Cells. Bio-
physical Journal 88.4 (2005), pp. 2919–2928.

[60] Laura C. Estrada and Enrico Gratton. 3D nanometer images of biological fibers by
directed motion of gold nanoparticles. Nano Letters 11.11 (2011), pp. 4656–4660.

[61] Francesco Cardarelli, Luca Lanzano, and Enrico Gratton. Fluorescence Correlation
Spectroscopy of Intact Nuclear Pore Complexes. Biophysical Journal 101.4 (2011),
pp. L27–L29.

[62] Francesco Cardarelli, Luca Lanzano, and Enrico Gratton. Capturing directed molec-
ular motion in the nuclear pore complex of live cells. Proceedings of the National
Academy of Sciences of the United States of America 109.25 (2012), pp. 9863–9868.

[63] Paolo Annibale and Enrico Gratton. Advanced fluorescence microscopy methods for
the real-time study of transcription and chromatin dynamics. Transcription 5.May
(2014), pp. 1–9.

[64] Paolo Annibale and Enrico Gratton. Single cell visualization of transcription kinetics
variance of highly mobile identical genes using 3D nanoimaging. Scientific Reports
5.1 (2015), p. 9258.

[65] Yoshihiko Katayama, Ondrej Burkacky, Martin Meyer, Christoph Bräuchle, Enrico
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