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 Zusammenfassung 

Die in situ Untersuchung von Materialien unter Hochdruck- und Hochtemperaturbedingungen ist 

von großem Interesse für die moderne Festkörperphysik, Chemie, Material-, Geo- und 

Planetenwissenschaften. Die Diamantstempelzelle (DAC) ist das Forschungsinstrument, das den 

breitesten Druckbereich im Vergleich zu anderen statischen Druckerzeugungsmethoden 

ermöglicht. Gekoppelt mit einer Laserheizung (LH), erweitert die DAC-Technik den zugänglichen 

thermodynamischen Bereich dramatisch. Sie wird zu einem extrem leistungsfähigen Werkzeug 

für die Synthese und Untersuchung neuartiger Materialien unter extremen Bedingungen. 

Herkömmliche LH-Aufbauten, die in DAC-Experimenten bis zu etwa 200 GPa verwendet werden, 

ermöglichen die Fokussierung von Laserstrahlen auf Spots in der Größenordnung von 10 µm. 

Experimente jenseits von 200 GPa erfordern eine engere Fokussierung, da bei solch hohen 

Drücken die Größe der Proben auf wenige µm reduziert werden muss. Gleichzeitig ist eine 

qualitativ hochwertige Visualisierung der Probe ein Muss, um das Zeil beim Erhitzen zu erkennen. 

Um diesen Anforderungen gerecht zu werden, haben wir einen doppelseitigen Laser-Heizaufbau 

mit hoher Vergrößerung und hochauflösender Bildgebung für Inhouse- und Synchrotron-DAC-

Experimente entwickelt. Die Fähigkeiten des Aufbaus zum Heizen bei extrem hohen Drücken 

wurden in einer Reihe von Inhouse-Experimenten bei Multimegabar-Drücken erfolgreich 

getestet. 

Die Kompatibilität des Aufbaus mit Synchrotrontechniken wurde an der Beamline ID15B an der 

European Synchrotron Radiation Facility (ESRF) demonstriert. Wir haben es für die gleichzeitige 

Erwärmung und Visualisierung der Probe mittels Transmission-Röntgenmikroskopie (XRTM) 

eingesetzt. Unseres Wissens nach ist diese Arbeit die erste Demonstration der Kombination der 

LHDAC-Technik mit XRTM. Die Anwendbarkeit von XRTM-LHDAC für die in situ Schmelzdetektion 

wurde in einem Experiment zum Schmelzen von Platin (Pt) bei 22(1) GPa demonstriert. Der mit 

dieser Methode ermittelte Schmelzpunkt stimmt gut mit den Literaturdaten überein. 
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Außerdem wurde der entwickelte LH-Aufbau erfolgreich für DAC-Experimente an Carbiden bei 

moderaten und extrem hohen Drücken eingesetzt, die für die Geo- und Materialwissenschaften 

relevant sind. Ein neuartiges Nickelcarbid (Ni3C) mit einer Zementit-Typ Struktur wurde in einer 

DAC bei 184(5) GPa und 3500(200) K synthetisiert. Seine Kristallstruktur wurde mithilfe von 

Synchrotron-Einkristall-Röntgenbeugungsdaten (SC-XRD) gelöst und verfeinert. Es wurde 

festgestellt, dass Ni3C bis hinunter zu 84(5) GPa stabil ist. Die berechneten akustischen 

Ausbreitungsgeschwindigkeiten für Ni3C scheinen denen von Fe3C und Fe7C3 bis zu 400 GPa 

ähnlich zu sein. Es ist wahrscheinlich, dass die Anwesenheit von Ni im Fe-Ni-C-System die 

elastischen Eigenschaften bei hohem Druck nicht beeinflusst, aber möglicherweise die 

Kohlenstoffverteilung verändert. Aufgrund der Stabilität von Ni3C bei Drücken über 150 GPa 

sollte es zusammen mit Fe7C3 als möglicher Kandidat für kohlenstoffhaltige Phasen im Erdkern 

betrachtet werden. 

Bisher nicht berichtete kohlenstoffreiche Palladiumcarbide (PdCx) wurden bei etwa 50 GPa und 

2500-300 K in LH Diamantstempelzellen durch eine chemische Reaktion von Pd mit Kohlenstoff 

aus dem Diamantstempel synthetisiert. Die Proben wurden mittels XRD an der Beamline ID15B 

des ESRF charakterisiert. Das Kompressionsverhalten der Proben wurde bis zu 50 GPa untersucht 

und die Parameter der Zustandsgleichung (EOS) wurden als V0 = 65,1(1) Å3, K0 = 241(9) GPa, K0'= 

2,1(3) für PdC0.21 und V0 = 64,51(5) Å3, K0 = 189(8) GPa, K0' = 4,5(4) für PdC0.19 ermittelt. 

Die exzellente Qualität der mikroskopischen Bilder der Proben in DACs, die im Rahmen von LH-

Experimenten gewonnen wurden, inspirierte zur Weiterentwicklung des optischen Systems und 

dessen Einsatz als hochauflösendes optisches Mikroskop. Wir nutzten das System zur 

Untersuchung des EOS von amorphen Materialien, auf die herkömmliche XRD nicht anwendbar 

ist. Die entwickelte Methode beruht auf der Verfolgung der linearen Abmessungen der Probe bei 

ihrer Kompression in der DAC und ermöglicht eine präzise Bestimmung der volumetrischen 

Kompression. Die Methode wurde durch optische Messungen des EOS von Ti validiert und 

stimmte sehr gut mit den Ergebnissen überein, die zuvor mit Synchrotron-XRD-Messungen 

ermittelt wurden. Um noch einen Schritt weiter zu gehen, wurde diese Technik angewendet, um 

die bisher unbekannte EOS von amorphem Kohlenstoff zu bestimmen. Der Kompressionsmodul 

und seine Druckableitung wurden mit K0= 28,6(8) GPa und K0'= 5,5(2) bestimmt. Somit ist die 
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optische Mikroskopie sehr attraktiv für die Untersuchung des EOS von Festkörpern. Sie kann 

sowohl auf kristalline als auch auf nicht-kristalline Materialien angewendet werden und alle 

Messungen können im Haus durchgeführt werden, was solche Untersuchungen unabhängig von 

der Zugänglichkeit von Synchrotroneinrichtungen macht. 

Zusammenfassend lässt sich sagen, dass die in dieser Dissertation vorgestellten Arbeiten zur 

Entwicklung der Technik und Methodik von DAC-Experimenten und zur Untersuchung 

grundlegender Eigenschaften von Materialien unter extremen Bedingungen beitragen. Der Laser-

Heizungsaufbau, der zunächst für Hochtemperaturexperimente bei Multi-Megabar-Druck 

entwickelt wurde, hat eine wichtige Anwendung für die Bestimmung der EOS von amorphen 

Materialien mit hoher Genauigkeit auf Laboraufbauten gefunden. 
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Summary 

The in situ study of matter under high-pressure and high-temperature conditions is of great 

interest for modern solid-state physics, chemistry, materials, geological, and planetary sciences. 

The diamond anvil cell (DAC) is the research instrument, enabling the broadest pressure range 

compared to other static pressure generation methods. Coupled with laser heating (LH), the DAC 

technique dramatically expands the accessible thermodynamic space. It becomes an extremely 

powerful tool for the synthesis and studying of novel materials at extreme conditions. 

Conventional LH setups, used in DAC experiments up to about 200 GPa, enable focusing of laser 

beams to spots on the scale of 20 µm. Experiments beyond 200 GPa require tighter focusing, at 

a such high pressures, the size of samples has to be reduced to a few µm. Simultaneously, to 

recognize the target upon heating, high-quality visualization of the sample becomes a must. We 

have developed a double-sided laser-heating setup with high magnification and high optical 

resolution imaging for in-house and synchrotron DACs experiments to address these demands. 

The capabilities of the setup for heating at ultra-high pressures have been tested successfully in 

a series of in-house experiments at multimegabar pressures. 

The compatibility of the setup with synchrotron techniques was demonstrated on the beamline 

ID15B at the European Synchrotron Radiation Facility (ESRF). We applied it for simultaneous 

heating and visualization of the sample using X-ray transmission microscopy (XRTM). To the best 

of our knowledge, this thesis work is the first demonstration of combining the LHDAC technique 

with XRTM. The applicability of XRTM in LHDAC for in situ melting detection was showcased in 

an experiment on melting of platinum Pt at 22(1) GPa. The melting point determined using this 

method agrees well with the literature data. 

Further, the developed LH setup was successfully employed for DAC experiments on carbides at 

moderate and ultra-high pressures, relevant for geological and materials sciences. A novel nickel 

carbide (Ni3C) with the cementite-type structure was synthesized in a DAC at 184(5) GPa and 

3500(200) K. Its crystal structure was solved and refined using synchrotron single-crystal X-ray 
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diffraction (SC-XRD) data. Ni3C was found to be stable down to 84(5) GPa. The calculated bulk 

sound velocities for Ni3C appeared to be similar to those of Fe3C and Fe7C3 up to 400 GPa. Likely, 

Ni's alloying doesn’t affect the elastic properties of in the Fe-Ni-C system but potentially could 

change the carbon distribution. Due to the stability of Ni3C at pressures above 150 GPa, it should 

be considered a possible candidate to carbon-bearing phases in the Earth's core along with Fe7C3. 

Previously not reported carbon-rich palladium carbides (PdCx, 0.015(1) <x < 0.21(3)) were 

synthesized at about 50 GPa and 2500-300 K in LH DACs through the Pd chemical reaction with 

carbon from various precursors. The samples were characterized using powder XRD at the 

beamline ID15B of the ESRF. The compressional behavior of the samples was studied up to 50 

GPa and the equation of state (EOS) parameters were found to be equal to V0 = 65.1(1) Å3, K0 = 

241(9) GPa, K’= 2.1(3) for PdC0.21, and V0 = 64.51(5) Å3, K0 = 189(8) GPa, K' = 4.5(4) for PdC0.19. 

The excellent quality of the microscopic images of the samples in DACs, which were obtained 

within the course of LH experiments, inspired further development of the optical system and its 

use as a high-resolution optical microscope. We utilized the system for studying the EOS of 

amorphous materials, to which conventional XRD is not applicable. The developed method relies 

on tracking the sample's linear dimensions upon its compression in the DAC and enables precise 

determination of the volumetric strain. The methodology was validated through optical 

measurements of the EOS of ω-Ti which agreed very well with the results previously established 

with synchrotron XRD measurements. Pushing one step further, this technique was applied to 

determine the previously unknown EOS of glassy carbon. The bulk modulus and its pressure 

derivative were found to be K0= 28.6(8) GPa and K'= 5.5(2). Thus, optical microscopy is very 

attractive for studying EOSes of solids. It can be applied to both crystalline and none-crystalline 

materials and all measurements can be conducted in-house, making such investigations 

independent of the accessibility of synchrotron facilities. 

To summarize, the work presented in the thesis contributes to the development of DAC 

experiments' technique and methodology and the studies of fundamental properties of materials 

at extreme conditions. The laser-heating setup, first developed for high-temperature 

experiments at multi-megabar pressures, has found an important application for deriving the 

EOSes of amorphous materials with high accuracy on in-house facilities. 
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1. Introduction 

Modern science and technology are two complex, multifaceted, and closely related categories of 

human activities. Science creates the base of knowledge and ideas for technology. In turn, the 

impact of technology on science is, at least, equal. It provides the source of otherwise unavailable 

tools and methods that are necessary to address more complicated scientific problems 

efficiently. Furthermore, technology is a fruitful source of novel scientific questions itself. High-

pressure science is a good example of such fusion between science and technology. It has been 

heavily experimental since the first high-pressure experiments at the end of the 19th century and 

remains the same nowadays. Modern high-pressure science relies on advanced instrumentation 

and analytical techniques presented on large-scale facilities, such as synchrotrons or free-

electron lasers. 

Pressure and temperature are fundamental thermodynamic variables and, therefore, largely 

determine the state of the system. Expanding of accessible pressure and temperature limits is 

the most naturally applicable for geo- and planetary sciences (it allows simulating otherwise 

inaccessible conditions of the Earth's and other extrasolar bodies interiors (Dubrovinskaia et al., 

2016; Tateno et al., 2010)) but also founds many applications in material science, chemistry, and 

solid-state physics: for example to discover novel functional materials (L. S. Dubrovinsky et al., 

2001), high-pressure superconductivity (Drozdov et al., 2015), and new phases/compounds 

(Zhang et al., 2017). 

The generation of high pressures is a tradeoff between the highest achievable pressure and the 

size of the sample. There are two major principles of generation static high-pressure conditions: 

one can either increase the applied force or reduce the area where the force is applied. The first 

approach is implemented in the design of such devices as piston cylinder apparatuses and multi 

anvil presses (Kawai and Endo, 1970). They are mostly focused on maximizing applied force on 
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relatively large samples (approximately 0.1 - 3 mm in linear dimensions). These devices are 

routinely used for experiments with pressures up to 30 GPa and coupled with resistive heating 

that allows reaching temperatures up to ~2500K (Shatskiy et. al., 2011). The opposite approach 

is decreasing the sample dimensions to a micrometer scale, which is presented in diamond anvil 

cell devices (described in detail in section 3.1.1). The invention and technical development of the 

diamond anvil cell (DAC) technique (Basset, 2001) allowed to significantly enlarge accessible 

thermodynamic space in high-pressure studies. DAC technique has evolved into a powerful and 

routine experimental method at in-house laboratories and synchrotron beamlines and many 

scientific breakthroughs have been achieved in the last decades. DACs are routinely used for 

experiments up to 200 GPa, however, the size of the studied sample decreases dramatically with 

the raise of pressure. In a typical experiment at 200 GPa, the size of the studied sample is usually 

less than 5 µm. 

There are two major approaches for the generation of high temperatures in diamond anvil cell 

experiments: resistive (Dubrovinskaia and Dubrovinsky, 2003; Zha and Boehler, 1985; Zha et al., 

1986) and laser heating (LH). In the first case, diamonds with the gasket assemblage are 

surrounded by the external electrical resistive heater which provides homogeneous temperature 

distribution within the sample chamber. However, the maximum temperature is limited by the 

graphitization temperature of a diamond (1200 °C, in the inert atmosphere). Exotic internal 

resistive heating (where the micro heater is placed inside the DAC sample chamber) (Boehler et 

al., 1986; Liu and Bassett, 1975; Zha and Bassett, 2003) expands the maximum temperature up 

to 3000 K, but makes the preparation of the DAC extremely challenging and time-consuming. 

The technique of laser heating takes advantage of the transparency of a diamond in a wide 

spectral range of electromagnetic radiation and allows achieving significantly higher 

temperatures. The laser beam is focused on the sample placed inside the DAC and easily heats it 

up to several thousands of degrees Kelvin. Obviously, different materials absorb the laser 

radiation differently, and the absorption capability of the sample starts to play a significant role 

in the laser heating experiments. This problem is partially solved by using laser sources with 

different wavelengths depending on the studied material. Most metals and compounds non-
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transparent in visible light are usually heated using near-infrared (NIR) fiber and solid-state Nd-

doped YAG lasers with a central wavelength of around 1060 nm (Basset 2016). 

High power CO2 infrared (IR) lasers with a central wavelength of around 10 μm are usually utilized 

for heating of wide range of materials such as non-metallic compounds or materials transparent 

in the visible light. Metals also absorb infrared radiation well and can be heated with such types 

of lasers. However, the high wavelength of IR lasers restricts the focusing of a laser beam. 

Moreover, optical components for 10 μm IR lasers are much more expensive and less functional 

compared to those for NIR. 

Another drawback of laser heating compared to resistive heating is the less accurate temperature 

determination. Contrary to direct temperature measurements by a thermocouple placed close 

to the sample in resistive heating experiments, laser heating relies on spectroradiometry as a 

major method (Shen et al., 2010). This method is based on the fitting of the thermal radiation 

spectrum emitted by the heated sample to the Planck grey body radiation function. Therefore, it 

allows measuring only the highest temperature on the surface of the sample (Campbell et al., 

2007). The uncertainty in the temperature measurements using spectroradiometry is affected by 

optical distortion introduced by different optical components of the LH setup. Particularly, 

chromatic distortions cannot be compensated well on the stage of thermal emission spectra 

processing or laser heating setup calibration (Marini et. al., 2013). They should be minimized 

through a proper choice of optical system design and the use of optical elements with chromatic 

corrections. The typical value of uncertainties in the temperature measurements at 2000 K is of 

the order of ±100 K, and at 5000 K it is of about ±500 K which is acceptable for most of high 

pressure experiments. 

Despite the drawbacks, laser heating diamond anvil cells is the only method to generate 

temperatures above 3000 K in static high-pressure experiments, and has become very important 

for high-pressure chemistry, mineral and solid-state physics, Earth and material sciences (Bassett, 

2016, 2001). Over the last decades, it has been coupled with many other analytical methods such 

as X-ray diffraction (Meng et al., 2015; Schultz et al., 2005), Nuclear Inelastic Scattering (NIS), the 

Synchrotron Mössbauer Source (SMS) (Kupenko et al., 2012; Lin, 2004), and X-ray Absorption 

Near-Edge Structure spectroscopy (XANES) (Aquilanti et al., 2009; Marini et al., 2013) and many 
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of high-pressure synchrotron beamlines dedicated to DAC are equipped with laser heating 

systems. 

Laser heating experiments at multi-megabar pressures are especially challenging due to the 

extremely small size of the studied samples and, therefore, require an individual approach in the 

design of the laser heating system and the heating process itself. Such parameters as the high 

optical magnification of the laser heating system, quality of the observed image and deep 

focusing of the laser beam become extremely important. The present thesis focuses on the 

development of advanced laser heating for the multi-megabar pressure range. The developed 

system has been applied to the synthesis and study of materials relevant to Earth and material 

sciences at pressures up to 180 GPa, Pd and Ni carbides. Moreover, fascinated by the quality of 

the microscopic images obtained through the observation path of the laser heating system, we 

have developed the method for the study of the equation of state of amorphous materials based 

on high-resolution optical microscopy. 

1.1. The scope of the thesis 

In the course of the presented thesis, we have done both: extended the methodology of diamond 

anvil cell experiments and applied it for material and geo sciences problems. In particular, we 

have developed a new laser heating system for ultra-high pressure DAC experiments (section 5.A) 

and utilized it in combination with different analytical techniques. In the second study, we have 

designed a method for studies of the compressibility of amorphous materials (Section 5.B) using 

high-resolution optical microscopy and demonstrated its application to materials science 

problems. In two studies we investigate the synthesis and study of novel transition metal carbides 

relevant to the materials science (section 5.C) and Earth's sciences (section 5.D). 

1.1.1. Development of the Laser heating system for ultra-high 

pressure experiments 

Laser heating (LH) in diamond anvil cells (DACs) has been used for more than five decades 

(Bassett, 2016). There are many examples of its applications in geosciences for simulating the 
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conditions of deep Earth’s and planetary interiors, studies of physical and chemical processes at 

extreme conditions, and synthesis of novel materials (Lavina et al., 2011; Liu, 1974; Mao et al., 

2005; Meng et al., 2015; Zhang et al., 2014). The methodology of laser-heated diamond anvil cells 

(LHDAC) is well described in the literature (Boehler et al., 2009). Over the last decade, this 

technique has evolved into a useful and routine experimental method at synchrotron beamlines 

and has been coupled with various analytical techniques: powder and single crystal X-ray 

diffraction (Mezouar et al., 2007), X-ray Absorption spectroscopy (Aquilanti et al., 2009; Marini 

et al., 2013), nuclear inelastic scattering (Lin, 2004), and Synchrotron Mossbauer spectroscopy 

(Kupenko et al., 2012). 

Dynamic development of the LHDAC technique during recent years has resulted in the 

emergence of portable laser heating systems which can be used for in house experiments in 

different scientific environments (i.e. simultaneously with resistivity measurements, Raman or 

Brillouin spectroscopy, X-ray diffraction, etc.), easily moved between synchrotron beamlines and 

coupled with different analytical techniques. The first portable laser heating systems were 

introduced in 2009 by Boehler (Boehler et al., 2009) and Dubrovinsky (Dubrovinsky et al., 2009). 

Both setups were successfully used for in-house and synchrotron in situ experiments. However, 

single side LH (Dubrovinsky et al., 2009) limits the application due to large temperature gradients 

within the samples. The system presented by Boehler (Boehler et al., 2009) does not allow 

simultaneous X-ray diffraction and temperature measurements. 

The designs of the double-sided LH systems based on universal laser-heating heads (UniHeads, 

adapted finite cutting laser heads produced commercially by Precitec GmbH & Co. KG) (Kupenko 

et al., 2012; Aprilis et al., 2017), enable to decrease the size of a laser heating setup. The setups 

(Aprilis et al., 2017; Kupenko et al., 2012) are simple to install and can be used in experiments 

that require the rotation of DACs during data collection (particularly, for single-crystal XRD in 

laser-heated DACs). The UniHead-based LH setups allow varying the size of the laser beam from 

15 to 50 µm FWHM and providing 20-time magnification of the samples in DACs, which is 

sufficient for the majority of conventional experiments with laser heating. However, the modern 

trend on the extension of pressure range in DAC experiments to multimegabar has naturally 
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resulted in a dramatic decrease of the sample dimensions and corresponding challenges for its 

laser heating. 

The size of the studied sample in LHDAC experiments at 100 GPa is usually smaller than 15 µm, 

while at pressures above 200 GPa samples, as a rule, are about 3-4 µm in diameter. Thus, for 

precise heating of such small samples, it is necessary to localize the high-temperature zone and 

avoid heating of the gasket/pressure calibrant materials present in the sample chamber. 

Therefore, tight focusing of the laser beam, high optical magnification, and resolution are 

necessary. This part of the thesis project was aimed to design a new laser heating setup for DAC 

experiments at the multimegabar pressure range. 

1.1.2. Determination of Equation of state of amorphous solids by 

optical microscopy measurements 

Elastic properties of materials define the structural and electronic response of the system to 

applied stress that strongly depends on the nature of interatomic interactions. This makes 

knowledge of the elastic properties of materials as a function of pressure and temperature 

indispensable in materials science. The equation of state (EOS) of a system defines the 

relationship between the thermodynamic variables, such as volume (V), pressure (P), and 

temperature (T), through the bulk modulus and the thermal expansion coefficients. At a constant 

temperature, pressure-volume relations of a solid can be described by different types of 

analytical EOSes(Birch, 1947; Vinet et al., 1987), involving the isothermal bulk modulus (𝐾0 =

 −𝑉 ∙ (
𝜕𝑃

𝜕𝑉
)) and its pressure derivatives (𝐾′ =  𝜕𝐾/𝜕𝑃) at zero pressure. 

Investigating the EOSes of materials under pressure, require subjecting them to extreme 

conditions. X-ray diffraction (XRD) in DACs is the most common technique for deriving EOSes of 

crystalline materials through measuring the unit cell volume of a sample as a function of pressure, 

but it is not applicable to amorphous and glassy materials due to the presence of topological and 

chemical disorder (Yonezawa and Ninomiya, 1983). This explains why EOSes of crystalline 

materials have been well studied, but so far little is known about P-V relations for non-crystalline 

matter (melts, metallic glasses, and other amorphous solids and nanocrystalline ceramics). These 
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materials are currently at the focus of solid-state physics, chemistry, materials science, and 

geophysical research communities. In geosciences, glasses are considered as proxies for silicate 

melts whose properties are of great importance, as they control magmatic and volcanic activity 

and therefore play a central role in determining the chemical and physical evolution of the Earth 

throughout geologic time (Kushiro, 1976; Mysen and Virgo, 1994). Studies of the compressional 

behavior, local structures, and densification mechanisms of silicate glasses at deep mantle 

conditions can shed light on the dynamics of the Earth’s interior, which is still insufficiently 

understood (Lee et al., 2005). 

Elastic properties of both crystalline and amorphous materials can be studied in situ in DACs by 

utilizing such methods as X-ray absorption (Petitgirard et al., 2019), Brillouin scattering (BS) (Ko 

et al., 2017), ultrasonic measurements (US) (Jacobsen, 2002; Jacobsen et al., 2004), impulsive 

stimulated scattering (ISS) (Brown et al., 1989), inelastic X-ray scattering (IXS) (Fiquet et al., 2004), 

or by determining strain-stress relations using optical microscopy (Amin et al., 2012; Scott and 

Jeanloz, 1984). The sample density (and hence the EOS) can be obtained from high-pressure X-

ray absorption measurements (Katayama et al., 1998, 1996), but this method is hard to apply in 

DACs and it works reasonably well only for materials containing heavy elements (i.e. good X-ray 

absorbers). 

Determination of the strain-stress relations using optical microscopy (Amin et al., 2012; Scott and 

Jeanloz, 1984) requires measurements of the dimensions of an object observed under the high-

resolution optical microscope. The technique for studying EOS through the sample length 

determination in DAC using an image shearing device (Dyson, 1960) was firstly presented by Scott 

and Jeanloz (1984),s who reported the precision of measurements of about 0.065 µm (for the 

samples with the linear size of around 100 µm) and validated the technique through determining 

the EOS of Au. Deriving the EOS of GeO2 glass up to 12 GPa through the optical microscopy 

measurements was reported by Smith et al (1995). In 2012, a partially automatized algorithm for 

determination of EOSes through high-resolution optical microscopy have been firstly described 

(Amin et al., 2012). The methodology relied on two-dimensional image acquisition and its 

subsequent analysis to quantify changes in the sample surface area. The authors applied the 

Canny edge detection algorithm (Canny, 1986) to define the sample boundaries and calculate its 
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surface area. The method was applied to study the EOS of As2O3 and GeSe2 glasses, and 

amorphous red phosphorus at pressures up to 10 GPa. However, Amin et al. (2012) stated higher 

experimental uncertainties if compared to the method of Scott and Jeanloz (1984). The lower 

precision of the partially automatized measurements of Amin et al. (2012) could be potentially 

explained by applying Gaussian smoothing during the image processing with the Canny 

algorithm. Amin et al. (2012) chose samples of random shapes but applied smoothing algorithms, 

which blur out the corners and junctions, thus making it harder to detect their actual positions. 

Still, despite all obstacles, the method by Amin et al. (2012) performed reasonably well on several 

crystalline and amorphous compounds at pressures up to 12 GPa. 

One of the major problems of the EOS measurements using optical microscopy is the high 

uncertainty in sample dimensions: the observed sample length/area is strongly affected by the 

focus position of the sample and the definition of the length relies on the subjective perception 

of the operator. In order to make the method reliable and accurate, the measurements have to 

be performed at the same focus position at each pressure point. Defining the focus point by eye 

is inaccurate. Therefore, to minimize subjective perception, fully automated experimental and 

data analysis procedures are required. 

1.1.3. Synthesis of transition metal (Ni, Pd) carbides in laser-

heated diamond anvil cells 

Transition metal carbides are a large group of materials that possess outstanding physical and 

chemical properties such as high hardness and melting point, low compressibility, and high 

catalytic activity (Friedrich et al., 2011; Khandarkhaeva et al., 2020; Liang et al., 2000). The 

structure-property relation of transition metal carbides at pressures close to ambient have been 

intensively studied both experimentally and theoretically over the last decades (Friedrich et al., 

2011; Singh et al., 2009; Yeung et al., 2016). 

Studies of carbides at high pressure and temperature conditions in laser-heated diamond anvil 

cells are important not only for the synthesis of novel materials and investigation of their 

properties but also from a methodological point of view for understanding of underlying 

processes occurring during the laser heating. Diffusion of carbon from the diamond anvils to the 
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studied sample is possible and has been demonstrated in numerous experiments. In some cases, 

carbon contamination of the studied sample may be a reason for the large inconsistency in the 

experimentally measured melting curves of some materials. At the same time, the diamond anvil 

can be considered as a source of carbon for the synthesis of novel compounds in extreme 

conditions, and the studies presented in the following sections (5.C and 5.D) demonstrate that 

case. 

1.1.3.1. Nickel carbide 

Nickel is considered as the second most abundant element after iron in Earth’s core (Birch, 1952; 

Prescher et al., 2015). Modern cosmochemical models and meteorite’s studies propose that 

apart from Fe, the Earth’s core contains up to 5 wt. % of Ni (Litasov and Shatskiy, 2016; 

McDonough, 2003) and, in the outer core, up to 10 wt. % of light elements (Poirier, 1994; Torchio 

et al., 2020; Wood, 1993). A significant amount of carbon in iron meteorites (Bashir et al., 1996), 

its high solubility in liquid Fe at high PT conditions (Hirayama et al., 1993; Wood, 1993), and high 

abundance of carbon in the solar system (Wood, 1993) imply that carbon is one of the most 

abundant light elements in Earth’s core. Interest in the role of carbon in Earth’s core 

geochemistry and mineralogy resulted in numerous high-pressure studies of the Fe-C system 

over the last decades. Such intermediate Fe-C compounds as Fe3C and Fe7C3 were suggested to 

be the most likely candidates to the carbon-bearing phases in Earth’s core, as they were found 

at relevant pressures and temperatures (Chen et al., 2014; Lord et al., 2009; Nakajima et al., 2009; 

Prescher et al., 2015; Wood, 1993). At room temperature Fe3C was shown to be stable up to 187 

GPa, however, it decomposes into a mixture of solid Fe7C3 and hcp-Fe at pressures above 145 

GPa upon laser heating and transforms into Fe-C liquid and solid Fe7C3 at temperatures of above 

3400 K (Liu et al., 2016). Moreover, the high Poisson’s ratio of Fe7C3 at high pressures (Prescher 

et al., 2015) indicates that the presence of carbon may significantly affect the elastic properties 

of iron. This corroborates well with the Preliminary Reference Earth Model (PREM) (Dziewonski 

and Anderson, 1981), which suggests the material of Earth’s inner core also has a high Poisson 

ratio. 
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Contrary to the binary iron-carbon system, the Fe – Ni – C, and Ni – C systems at high PT 

conditions are still poorly understood. Nickel can strongly modify the physical properties of pure 

Fe at elevated pressures and temperatures. Recent studies have shown that Ni alloying with Fe 

doesn’t affect the melting temperature of Fe up to 100 GPa, however, modifies its phase 

boundary by shifting the hcp/fcc/liquid triple point to the higher pressure-temperature region 

(Torchio et al., 2020). For example, for Fe-20 wt.% Ni alloy the triple point was found to be at 

170(20) GPa and 4000(400) K (Torchio et al., 2020) as compared to 100(10) GPa and 3500(200) K 

for pure Fe (Morard et al., 2018). Pressure-induced Invar effect in Fe-Ni alloys was reported by 

Dubrovinsky et al. in 2001. The thermal expansion of the alloys Fe0.55Ni0.45 and Fe0.20Ni0.80 was 

found to be extremely low in the temperature interval of 291 K to 500 K at pressures of 7.7 and 

12.6 GPa, correspondingly (L. Dubrovinsky et al., 2001). It was also proven that alloys of Fe with 

Ni have significantly higher strength in comparison with pure Fe (Reagan et al., 2018). The mineral 

cohenite, (Fe, Ni)3C, which is isostructural to Fe3C, was found in iron meteorites (Brett, 1966) and 

predicted to be stable at high pressures (Ringwood, 1960), however, a pure-Ni end-member of 

solid solution, cementite-type phase (Ni3C) has never been reported. 

Understanding the properties of the Earth’s outer core relies on knowledge of its composition. 

Therefore, the synthesis of novel Earth-related materials and the study of their properties are of 

great interest of fundamental geoscience. Particularly, studying of Ni-C system helps to 

understand both: chemical distribution of carbon in the Earth’s core and the influence of carbon 

alloying on the elastic properties of the core itself. 

1.1.3.2. Palladium carbide 

Palladium is a transition metal well known for its exceptional ability to absorb hydrogen in a bulk 

(Adams and Chen, 2011; Manchester et al., 1994a). Moreover, palladium is one of the preferred 

catalysts for the hydrogenation of hydrocarbons in a petrochemical industry (Borodziński and 

Bond, 2006; Lazzarini et al., 2016; Pellegrini et al., 2011; Teschner et al., 2008). Thus, studies of 

palladium hydrides and carbides are of technological importance: their formation in palladium 

nanoparticles-based catalysts can significantly affect the activity and selectivity of the catalysts 

(Teschner et al., 2010; Tew et al., 2012). 
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Palladium hydride was found to exhibit superconducting properties (Tc = 8-10 K) (Skoskiewicz, 

1972; Stritzker and Buckel, 1972) that stimulated intensive studying of the Pd-H and Pd-D systems 

at extreme conditions (Brownsberger et al., 2017), while the behavior of the Pd-C system at high 

pressures has not been studied so far. 

Synthesis of PdCx at ambient pressure was firstly demonstrated by Cadevill and Lerner (1976). 

PdCx compound was synthesized by melting a mixture of palladium and graphite powders in an 

induction furnace under an argon atmosphere. However, the solubility of carbon in the palladium 

bulk was found to be extremely low (below x = 0.03). The higher carbon content (x = 0.13(5)) was 

reported in palladium carbide nanoparticles synthesized from palladium nanoparticles deposed 

on a carbon substrate (Bugaev et al., 2017). At a temperature of 400 K in acetylene and hydrogen 

atmosphere, either hydrides or carbides formed depending on the partial pressure of hydrogen 

and acetylene (Bugaev et al., 2017). 

The material science part of this Ph.D. project aimed to conduct the synthesis of carbon-rich 

palladium carbide in laser-heated diamond anvil cells and complement the study by investigating 

its physical properties using in situ synchrotron X-ray diffraction. 

1.2. Summary of the aims of the thesis project 

 The methodological part of this Ph.D. project was divided into two parts. The first part 

was aimed to develop a new laser heating setup for ultra-high pressure diamond anvil cell 

experiments and test it for materials science and geoscience applications. The second part 

aimed to develop a new method to study the equation of state of crystalline and 

amorphous solids in diamond anvil cells using advanced optical microscopy and test it on 

examples interesting for materials science applications. 

 The scientific case for the first application of laser-heating setup was the study of the 

behavior of the Ni-C system at pressures above 150 GPa. This part of the work has direct 

implications for the mineralogy and geochemistry of Earth’s core. 

 The material science part of this project aimed to conduct the synthesis of carbon-rich 

palladium carbide in laser-heated diamond anvil cells and to investigate its 

compressibility using in situ synchrotron X-ray diffraction. 
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2. Methods 

This chapter describes major experimental techniques used in this thesis: the generation of high 

pressure and temperature conditions, Raman spectroscopy, and X-Ray diffraction. 

2.1. Generation of high pressures 

Pressure is one of the fundamental thermodynamic variables and therefore in situ study of the 

sample at non-ambient pressure conditions is of great importance for geo and material sciences. 

It enables the discovery of novel materials and unknown physical properties as well as the 

simulation of the interiors conditions of Earth and planetary body. Pressure (P) is the force 

exerted over a surface per unit area and expressed by the following formula: 

𝑃 =  
𝐹
𝐴

 Eq.  (2.1.1) 

where F is the force applied to the normal of surface area and A is the area of that surface. 

According to this relation, to generate high pressures, it is necessary either to decrease the area 

to which external force is applied, or increase the force itself. These principles were implemented 

in the design of many high-pressure devices over the last decades. For example, piston-cylinder 

apparatuses and multi-anvil presses (Kawai and Endo, 1970) are large/massive devices in 

significant degree focused on maximizing of applied force on relatively large samples 

(approximately 0.1 - 1 cm in linear dimensions). The opposite approach is decreasing the sample 

dimensions to micrometer sizes is implemented in diamond anvil cell devices and found to be 

applicable for generation of significantly higher pressures up to 1 TPa (Dubrovinskaia et al., 2016). 

2.1.1. Diamond anvil cells 

The diamond anvil cell (DAC) is a very powerful technique introduced by Valkenburg et al. in 1959 

(Valkenburg et al., 1959). The transparency of the diamond in a wide range of electromagnetic 

radiation makes the DAC one of the most valuable tools for studies of materials under extreme 
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conditions using different emission, scattering, and absorption methods. The basic principle of 

the pressure generation in DAC is the compression of the material between the flat tips (culets) 

of two gem-quality diamond anvils precisely driven against each other. 

Many different DAC designs were invented over the last decades, but the basic idea remains the 

same, and different DAC types are sharing the same principle features. The common DAC (figure 

2.1) consists of the metal body with a couple of seats, diamond anvils, precisely positioned on 

them, and the metal gasket with a circular hole placed between that anvils. 

 

Figure 2.1. Schematic diagram of BX90-type DAC (Kantor et al., 2012). 

Seats are commonly made out of hard materials (such as tungsten carbide) and serve to transfer 

the load from the external metallic body onto the diamond anvils. The metal gasket with a circular 

hole compressed between the diamond tips forms the cylindrical space (figure 2.2) that allows 

confining the sample position over the compression and redistribute uniaxial stress when filled 

with (soft) pressure-transmitting medium. Many materials can be used as a gasket, however, 

rhenium is one of the most common due to its exceptionally elastic properties such as low 

brittleness, relatively high hardness, and chemical inertness at ambient temperature. 
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Figure 2.2. A microphotograph of the DAC sample chamber was taken under an optical 

microscope through the diamond anvil (top view). The culet diameter is 250 μm. 

The diamond anvil is an essential part of the DAC. The size of the anvil culet can vary from about 

a millimeter to tens of micrometers and mainly determines the maximum achievable pressure. 

Smaller culets usually have a beveled shape (figure 2.3) and allow reaching higher pressure, 

however, they restrict the size of the studied sample. 

 

Figure 2.3. Examples of the culet shapes. Diamonds with culets diameter below 150 µm are 

usually beveled. 
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In turn, the combination of the geometrical shape of the diamond cut, the shape of the seat, and 

the aperture of the metallic body are crucial parameters. In spectroscopic experiments, where 

the position of the DAC remains stationary over the measurements, standard brilliant cut anvils 

(figure 2.4 (a)) and seats are common. For experiments where sample rotation is required, such 

as X-ray diffraction, large aperture Boehler-Almax diamond anvils and seats (figure 2.4 (b)) are 

necessary. 

 

Figure 2.4. Different types of diamond anvils and seats. (a) Standard brilliant-cut diamond and 

seat for spectroscopic measurements; (b) Boehler-Almax designed diamond and seat for X-ray 

diffraction experiments. 

For the purposes of the thesis, we used BX90 type DACs (Kantor et al., 2012). Diamonds with 

different culet diameters (80 to 250 μm) were: of large aperture Boehler-Almax design (Boehler 

and De Hantsetters, 2004) for X-ray diffraction experiments and of brilliant-cut standard design 

for optical measurements. The choice of the culet size depends on the desired pressure range. 

We used anvils with 250 μm culet diameters for experiments at pressures 75 GPa, 120 μm - below 

120 GPa, and 80 μm culets to generate pressures up to 190 GPa. 

2.1.2. Pressure transmitting media 

By default, the DAC is a uniaxial compression device. Uniaxial compression of the sample results 

in high shear strains and doesn’t give access to pressure as a thermodynamic variable (pressure 

is thermodynamic variable only in the assumption of hydrostatic conditions). To transmit the 

uniaxial stress from the diamond anvil to the sample and achieve (quasi-) hydrostatic conditions 
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and homogeneous pressure distribution, pressure transmitting media are used (figure 2.5). The 

pressure transmitting media (PTM) fill the sample chamber and surround the sample helping to 

make the stress quasihydrostatic. Any known liquids (including alcohol mixtures and paraffin oil) 

solidify at ambient temperature at pressures exceeding ~15 GPa. To serve well, solid PTM should 

be materials with relatively low bulk and shear modulus and ultimately low tensile strength. 

 

Figure 2.5 Schematic representation of stress distribution in DAC. Red arrows designate vectors 

of applied stress. 

Some materials such as solid noble gases (He, Ne, Ar), and to a certain degree some alkali metal 

halides satisfy this criterion and can be used. In addition to uniform pressure distribution, PTM 

often play the role of a pressure gauge (Ne, Ar), the reactant in chemical reactions under extreme 

conditions (paraffin oil, O2, N2), or acts as a thermal insulation layer between sample and 

diamond surface during laser heating experiments (NaCl, KCl, LiF). The gases can be loaded into 

the DAC sample chamber using high-pressure gas loading apparatus (Kurnosov et al., 2008) or 

cryogenically, whereas solids and liquids PTMs (at atmospheric pressure) can be loaded manually. 

In this thesis different PTM were used: He and Ne loaded at ~1.2 kbar for precise measurements 

of the equations of state, NaCl and LiF for thermal insulation of the samples, and paraffin oil as a 

source of hydrogen for chemical reactions. 
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2.1.3. Pressure determination 

In situ determination of the pressure inside the DAC sample chamber is a crucial point in any DAC 

experiment. The common methods are based on the use of different pressure calibrants. The 

material with a well-known response on applied pressure can be loaded into the DAC along with 

the sample and probed by analytical techniques. Pressure dependence of the ruby (Cr-doped 

Al2O3) fluorescence is the most common technique in a pressure range up to 100 GPa (Syassen, 

2008). 

 

Figure 2.6. Typically ruby fluorescence spectrum. 

The microsphere of a ruby is placed in the DAC sample chamber along with the sample and 

pressure medium. Probing of the ruby with the laser light induces its fluorescence, which can be 

observed using an optical spectrometer. The following equation describes the relationship 

between the central position of the ruby R1 spectral peak with pressure (Shen et al., 2020): 
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𝑃(𝐺𝑃𝑎) = 𝐴
∆𝜆

𝜆0
∙ [1 + 𝐵 ∙ (

∆𝜆

𝜆0
)] Eq.  (2.1.3.1) 

where A and B are the calibration constants (A=1.87(1)∙103, B=5.5) and 𝜆0 is the position of R1 

peak (figure 2.6) at ambient pressure, and ∆𝜆 is the shift of R1 peak at pressure 𝑃 relative to 𝜆0. 

With the increase of pressure, the intensity of the ruby fluorescence signal dramatically 

decreases and is absent at pressures above 100 GPa. The ruby placed inside the DAC sample 

chamber can potentially be involved in chemical reactions and result in contaminations, 

especially in high-temperature experiments. Therefore, in our work, we used the ruby 

fluorescence technique only in ambient temperature experiments. 

The pressure dependence of the first-order Raman mode of a diamond culet is an alternative 

method of spectroscopic pressure determination (Akahama and Kawamura, 2006). At the center 

of the culet, normal stress is known to correlate with the high-wavenumber edge of the Raman 

band in the following way: 

𝑃(𝐺𝑃𝑎) = 𝐾0 (
∆𝑣

𝑣0
) [1 + 

1

2
(𝐾′ − 1) (

∆𝑣

𝑣0
)] (2.1.3.2) 

 

Where 𝐾0 = 547 GPa and 𝐾0
′ = 3.75 are calibration constants, 𝑣0 is the position of the high- 

wavenumber Raman edge at ambient pressure and ∆𝑣 is the difference in its positions at ambient 

and measured pressures. The position of the edge is defined as a local minimum of the first 

pressure derivative from the Raman spectra (figure 2.7). This method is less accurate compared 

to measurements of Ruby fluorescence due to its empirical nature, uncertainties introduced by 

focusing and positioning of the probing laser beam on the culet face surface. However, it is still 

preferable in experiments in a pressure range above 100 GPa or in the case of ruby is not 

desirable. 
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Figure 2.7. Typical Raman spectrum of the diamond anvil under applied stress and its first 

pressure derivative. The red dashed line indicates the position of the high-wavenumber edge. 

In-situ X-ray diffraction is the most precise technique for pressure determination. The small 

amount of pressure calibrant with the well-known equation of state (EOS) can be loaded into the 

DAC along with the sample and probed by X-ray diffraction. That allows determining the unit-cell 

parameters of the calibrant accurately resulting in high precision in pressure determination. 

Calibrants are usually chemically inert compounds with high crystal symmetry (such as Au, Pt, W, 

sometimes Re) (Dewaele et al., 2008b; Dorogokupets and Dewaele, 2007; Fei et al., 2007). The 

absence of the pressure-induced phase transitions is desired in the pressure regions of interest. 

Using the PTM as a pressure marker by itself is an alternative way: solids like Ne, Ar, NaCl, KCl, 

LiF, KBr, and MgO (Dewaele et al., 2012, 2008a; Tateno et al., 2019; Ye et al., 2018; Zhang et al., 

2014) have well-established equations of state in a wide range of pressures. 
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The equation of state of a system defines the relationship between the thermodynamic variables: 

volume (V), pressure (P), and temperature (T) through the bulk modulus and thermal expansion. 

At constant temperature, pressure-volume relations of matter can be described by different 

types of analytical EOSes (Birch, 1947; Vinet et al., 1987), if the bulk modulus (𝐾0 =  −𝑉 ∙

(𝜕𝑃/𝜕𝑉)) and its pressure derivatives (particularly, 𝐾′ =  𝜕𝐾/𝜕𝑃) are known. The third order 

Birch-Murnaghan EOS is one of the most common in high-pressure science and we widely used 

it in our experiments: 

P =  
3K0

2
∙ [(

V0

V
)

7
3

− (
V0

V
)

5
3

] ∙ {1 −  
3

4
(4 − K′) ∙ [(

V0

V
)

2
3

− 1]}  𝐸𝑞.  (2.1.3.3)  

2.2. Generation of high temperatures – laser heating in 

diamond anvil cells 

Transparency of the diamond in a wide range of electromagnetic radiation is one of significant 

advantages of the DAC technique and makes an observation and probing of the sample easy. It 

allows a high-power laser beam to be focused on the sample, while diamond anvils remain safe 

(Bassett, 2016). The choice of laser wavelengths mostly depends on the absorption 

characteristics of the sample. CO2-based infrared (λ = 10.6 μm) and Nd: YAG near-infrared lasers 

(NIR, λ ~ 1064 nm) are the most common in high-pressure science. Being close to the spectral 

region of visible light, NIR lasers are usually used for heating non-transparent materials such as 

metals, alloys, and various transition metal bearing oxides, while transparent materials are 

heated by CO2 infrared laser. 

Along with the high hardness, diamond has one of the best thermal conductivity among all 

materials found in nature. Intensive dissipation of the heat through the diamond anvil during 

laser heating is one of the major problems in DAC experiments. The temperature gradients along 

the compressional axis can be reduced by using double-sided laser heating systems, while the 

lateral gradients are usually reduced by shaping of the laser beam to a flat-top profile 

(Prakapenka et al., 2008). Insulation of the sample from the diamond anvil is the only method to 

achieve temperature stability during laser heating in DACs. Such solid compounds as NaCl, KCl, 
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KBr, LiF are often used as both pressure transmitting and thermal insulating media. In that case, 

the sample is loaded into the sample chamber being clamped between layers of insulation 

material forming a "sandwich" arrangement. 

The development of a new laser heating setup for ultra-high pressure studies was one of the 

subjects of this Ph. D. project. A detailed description of the technique is provided in the section 

5.A. 

2.3. Raman spectroscopy 

Raman spectroscopy is a technique based on the inelastic scattering of monochromatic radiation 

on the irradiated sample. The method found application in many scientific fields and provides 

information on the molecular vibrations and crystal structure. 

While the scattering of the light with no loss of energy (elastic, Rayleigh scattering) is dominant, 

a part of the incident laser radiation can be scattered inelastically with loss (Stokes Raman 

scattering) or gain (anti-Stokes Raman scattering) in energy. Absorbing the incident laser photon, 

the molecule moves from the ground to an excited (so-called "virtual") energy level. The virtual 

level is unstable and thus molecule seeks to turn back into the ground state. Stokes Raman 

scattering corresponds to the case when the molecule absorbs the incident photon and moves 

into final state which is higher in energy than the initial state and emit lower energy photon. If 

the final state of the molecule is lower in energy than an initial state, the scattered photon will 

be shifted to higher frequency region (anti-Stokes Raman scattering, figure 2.8). 

The intensity ratio between the Stokes and anti-Stokes scattering components depends on the 

population of vibrational levels described by Boltzmann’s law. Therefore, at ambient 

temperature, the Stokes component is dominant in the inelastic spectra and commonly the only 

one considered. 
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Figure 2.8. The principal scheme of Rayleigh and Raman scattering processes. A molecule is 

excited from the ground level to the virtual state absorbing a photon and returns to the ground 

state emitting a lower energy photon. The excitation energy, E0 = hν0, is the energy of the 

incident photon, h is Planck’s constant, and νvib is the frequency that corresponds to molecular 

vibrations. 

In this work, the Raman studies of the samples were performed using LabRam systems equipped 

with the He-Ne (632 nm) laser source. The He-Ne laser operates in CW mode with a constant 

power of 50 mW. Raman spectra were collected in the region of 200 –4000 cm-1 with a resolution 

of 0.5 cm-1. 
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2.4. X-Ray diffraction 

2.4.1. Basic principle 

X-ray diffraction is the non-destructive analytical method for the structural characterization of 

crystalline materials. It is based on the elastic scattering of X-ray photons on the electrons of 

atoms in the crystals. The wavelength of X-ray photons is usually relevant to the interatomic 

distances and therefore, an array of periodically arranged atoms scatter the incident 

monochromatic X-rays producing constructive interference at specific angles (Nespolo, 2011). 

 

Figure 2.9. The geometric principle of X-ray diffraction. Incident X-rays approach parallel planes 

of atoms in crystals and diffracted X-ray beam scattered on the lower plane traverses an extra 

length of 2dsinθ. Constructive interference occurs when the difference in the path lengths is 

equal to an integer number of the wavelength. 

As a consequence of the three-dimensional periodicity of a crystal structure, it is possible to 

construct sets of atoms arranged in layers with a constant spacing between them. If an incident 

X-ray beam makes an angle θ with such a set of planes, the “reflected” beam also makes an angle 

θ with the planes, as in the case of optical reflection (figure 2.9). Reflections from successive 

planes interfere constructively when the difference between path lengths of the two waves is 
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equal to an integer number (n) of the wavelength (figure 2.9). The condition of constructive 

interference is known as Bragg's law (Ladd and Palmer, 2013): 

2𝑑 ∙ 𝑠𝑖𝑛(𝜃) = 𝑛𝜆 𝐸𝑞. (2.4.1.1) 

where d is the spacing between the lattice planes, θ is the angle of the incident X-ray, n is an 

integer number, and λ is the wavelength of the incident X-rays. A graph showing the dependence 

of the intensity of scattered radiation as a function of the scattered angle is called a diffraction 

pattern, while peaks on the pattern, known as Bragg reflections, are the result of constructive 

interference corresponding to Bragg's law. The position of the Bragg reflections allows extracting 

information on the size and shape of a unit cell. Analysis of intensities of the Bragg reflections 

allows reconstruction of the distribution of electronic densities within the unit cell, which is 

essential for determining atomic positions, type of atoms and chemical bonds, crystallographic 

disorder, and other properties (Clegg et al., 2009). 

2.4.2. Powder and single crystal XRD 

The information that can be extracted from powder or single-crystalline samples is different. A 

powder sample consists of numerous randomly oriented tiny crystal grains and therefore scatters 

incident X-ray beam in the form of Debye-Scherrer rings (figure 2.10(a)). In high-pressure 

crystallography, powder X-ray diffraction (PXRD) is the common technique for phase 

identification and determination of the unit cell parameters for known phases. However, phase 

and structural identification of novel compounds, especially with complex crystal structures, has 

proven to be difficult and ambiguous (Bykov et al., 2020, 2018; Khandarkhaeva et al., 2020; Laniel 

et al., 2020). 

Single crystal samples produce XRD patterns consists of many diffractions spots (figure 2.10(b)) 

that appears on the XRD detector only at a specific angular orientation of the crystal. Thus, to 

obtain a dataset with a big number of reflections, diffraction should be collected at the different 

orientations of the sample. To do so, a sample is commonly placed on a goniometer and rotated 

with simultaneous collection of diffraction data. The intensities of the collected diffraction peaks 

from a single-crystal sample provides information on the exact content of the unit cell (i.e. the 
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type and coordinates of atoms, provide the information on the type of polyhedral, interatomic 

distance, bound angles, etc.). 

 

Figure 2.10. Example of X-ray diffraction (XRD) patterns produced by a powder (a) and a single 

crystal sample (b). The dotted red circles mark the beam stop shadow. Blue dotted circles 

highlight the intense reflections from the diamond anvil. The Debye-Scherrer rings on (a) 

correspond to the Pd powder sample. Non-highlighted spots on (b) are the Bragg reflections 

from the Mn3O4 crystal. 

The SCXRD and PXRD experiments within the scope of this thesis were performed at following X-

ray diffraction beamlines dedicated to extreme conditions: ID15b at ESRF (λ≈0.411 Å, ~10×10 

μm2 beam size, MAR555 flat-panel detector), ID11 at ESRF (λ = 0.30996 Å, 0.5 × 0.5 μm2 beam 

size, Frelon4M detector), and P02.2 at PETRA III (λ≈0.29 Å, ~2×2 μm2 beam size, PerkinElmer XRD 

1621 flat-panel detector). The SCXRD data were processed with the CrysAlisPro software (Rigaku 

Oxford Diffraction, 2018). The analysis procedure includes a peak search, finding reflections 
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belonging to a unique single-crystal domain, indexing, and data integration. The crystal structures 

were solved using ShelXT (Sheldrick, 2015) structure solution program and refined with the JANA 

2006 software (Petříček et al., 2016). Analysis of powder XRD data was done with the Dioptas 

(Prescher and Prakapenka, 2015) and TOPAS 4.2 packages. 
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3. Thesis synopsis 

This chapter provides a short overview of the results presented in Chapter 5, that have been 

published in peer-reviewed journals. Section 5.1 describes the design and development of laser 

heating setup for in situ synchrotron and in-house high and ultra-high pressure studies. The 

developed laser heating system has been coupled with synchrotron X-ray diffraction and X-ray 

transmission microscopy (XRTM) at high-pressure diffraction beamline ID15b of European 

Synchrotron Radiation Facility (Grenoble). Section 5.2 describes a novel method to study the 

equation of state of crystalline and amorphous solids using optical microscopy and a statistical 

approach to data analysis. Section 5.3 is devoted to the synthesis of carbon and hydrogen reach 

palladium alloys in laser-heated diamond anvil cells. Section 5.4 describes the first synthesis and 

compressibility of nickel carbide, Ni3C, at pressures of Earth’s outer core, and illustrates the 

application of the developed laser heating setup to experiments at multimegabar pressure range. 

3.1. Laser heating setup for diamond anvil cells for in-situ 

synchrotron and in house high and ultra-high pressure studies 

Our goal was to build up the double-sided laser heating set up for ultra-high pressure 

experiments in DACs. As soon as the concept of transportable setups was proven to be very 

productive (Aprilis et al., 2017; Kupenko et al., 2012), we decided to develop a system that can 

be used in different experimental environments in-house and at synchrotron facilities. Such a 

system had to allow focusing laser spot on the sample for precise heating in DACs at pressures 

above 200 GPa and at the same time provide accurate in situ temperature measurements. 

The designed setup consists of two identical parts which are schematically shown in figure 3.1.1. 
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Figure 3.1.1. Schematic diagram of the double-sided laser heating system for diamond anvil 

cells. LDMs are the long-pass dichromic mirrors; FOs are the focusing optics; BSs are 50/50 

beam splitters; SPFs are the short-pass filters with a cut off at 800 nm; CMOSes are the cameras 

for optical observation; MWHs are the mirrors with a hole; LPFs are the long-pass filters with a 

cut-on wavelength of 550 nm; NFs are the notch filters at 1064 nm; NDs are neutral density 

filters. 

Each of the parts includes the following nodes: 

 NIR Laser 

 Focusing and shaping optics 

 Power control module 

 Observation module 

 Temperature collection module 

All optical components are mounted on the breadboard and can be easily adjusted or modified 

depending on a type or specific needs of experiments. System flexibility allows the quick 

exchange of the laser sources for in-house or synchrotron experiments (i.e. laser sources do not 

need to be transferred together with the laser-heating setup). In our studies, we use two pairs of 

lasers: the first pair consist of SPI RedPower R4 Modulated Fiber Lasers with a maximum power 

of 100 W, the second one of SPI G4 Pulsed Fiber Lasers with a maximum output power of 50 W. 

Both laser pairs produce collimated randomly polarized Gaussian beam (TEM00) with central 

wavelength 1064 ± 10 nm. The SPI RedPower R4 lasers can be operated in a continuous-wave 

(CW) mode or modulated with a maximum frequency of up to 100 kHz. The G4 Pulsed Fiber Lasers 
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can be operated in both continuous-wave and pulsed mode with minimal possible laser pulse 

FWHM of 11 ns. To expand the output collimated laser beam with spatial Gaussian distributed 

intensity to a flattop π-shape profile, the LH setup is equipped with Focal-π Shapers (Focal-π 

Shaper_9_1064 by AdlOptica GmbH), specially designed for TEM00. 

In synchrotron experiments, we use a GeoHeat 40_NIR achromatic objective. The GeoHeat 

40_NIR is used for simultaneous temperature measurements and focusing the NIR laser beam 

(Aprilis et al., 2017) and minimizes chromatic aberrations in the spectral range of 600-900 nm. By 

adjusting the Focal-π Shaper we reach the smallest FWHM of the laser beam of 20 µm when the 

flat-top beam profile is used. 

For in-house experiments with ultra-high pressure DACs, we apply a Mitutoyo 20x objective 

(Mitutoyo NIR infinity-corrected M Plan Apo B 20x). It allows the focusing of the laser beam to ~ 

5 µm FWHM and provides higher magnification and better optical resolution which is crucial as 

the size of a sample could be less than 5 µm. 

The power of the laser beam for sample heating is controlled by polarizers (figure 3.1.2). 

 

Figure 3.1.2. Schematic diagram of the power control node. The module consists of two 

polarized NIR beam splitters (Thorlabs CCM1-PBS25-1064) and a half-wave plate (Thorlabs 

WPH05M-1064) mounted between them. The output power level is controlled by the rotation 

of the λ/2 wave plate in the range from 0 to 45 degrees to reach zero and maximum power, 

correspondingly. 
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Optical power control allows adjustment at laser power below 5 W (that is a common problem 

for fiber lasers) and allows for the independent adjustment of the laser pulse shapes and their 

energy while operating in pulse mode. 

The image of the sample inside the DAC is obtained either in transmitted light, if the material in 

the sample chamber is at least partially transparent, or/and in reflected light. The light passes 

through a set of lenses into a zoom objective (Nikon AF-S NIKKOR 28-300mm f/3.5-5.6G ED VR 

Lens) projecting the image of the sample on the matrix of a CMOS camera (EYE © UI-3240CP). 

Coupled with GeoHeat_40_NIR lenses, the system enables the magnification to be varied within 

approximately 20 to 35 times, while Mitutoyo 20x provides 80 to 320 times magnification. 

Temperature measurements are performed utilizing spectroradiometry. A 50/50 beam splitter 

(Thorlabs BSW10) installed on the observation path reflects half of the light intensity to the 

spectrometer for the temperature measurements, while the other half goes to the CMOS camera 

for simultaneous visual observations. The thermal radiation reflected by the beam splitter is 

focused on the optical fiber and guided into an IsoPlane SCT 320 spectrometer with a 1024x256 

PI-MAX 4 camera (Princeton Instruments, Inc.). Once the thermal emission spectra of the heated 

sample are collected, the temperature can be extracted by fitting spectra in a given wavelength 

range (typically 570-830 nm) to the grey body approximation of Plank’s law. 

Figure 3.1.3 shows the in-house configuration of the LH setup mounted on the optical table. 

 

Figure 3.1.3. Configuration of the LH setup for in house experiments 
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The setup was successfully tested in experiments with 40-µm culet size anvils (pressure chambers 

are about 10 to 20 µm in diameter, with characteristic sample sizes of about 5 µm) at pressures 

over 200 GPa. 

The transportability of the system has been demonstrated during a series of experiments at the 

synchrotron X-ray source coupled with LHDAC at the High-Pressure Diffraction beamline (ID15B) 

of the European Synchrotron Radiation Facility (ESRF). The system was transported to the ESRF 

and mounted in the experimental hutch of the beamline (figure 3.1.5) within a single day (8 to 

10 hours) prior to the experiment. 

 

Figure 3.1.5. Configuration of the LH setup mounted on ID15b beamline of ESRF. (1) X-ray beam 

pinhole; (2) DAC; (3) Mar555 detector; (4) Focusing and targeting optics; (5) upstream 

breadboard; (6) downstream breadboard. 

The flexible design of our setup allows the simple interchange of laser sources and focusing optics 

for application in different types of studies. We demonstrate the application of the setup for the 
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in-situ powder X-ray diffraction study on synthesis and stability of PdH (see Section 5.1). 

Moreover, we were able to couple our laser-heating setup with X-ray transmission microscopy 

(XRTM) at ID15b at ESRF. That allows visualizing the processes inside the DAC sample chamber at 

high temperatures. To the best of our knowledge, there were no experiments with XRTM LHDAC 

before. Particularly, we have observed the melting of platinum in a DAC at high pressures and 

demonstrated the applicability of this approach for in situ melting detection in DAC experiments 

(figure. 3.1.6). 

 

Figure 3.1.6. Example of the melting detection on platinum using XRTM in LHDAC. XRTM images 

of platinum foil were taken during the heating process with 1 second exposure time each. Red 

and blue dotted lines represent the shape of the Pt foil before and after melting respectively. 

The melting event was detected between 143th and 144th seconds by observation of the 

significant changes in the shape of the Pt foil. The melting temperature of Pt at 22 (1) GPa is 

2613±10 K. 
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3.2. Isothermal equation of state of crystalline and glassy 

materials from optical measurements in diamond anvil cells 

Here we developed a methodology to study the EOS of crystalline and amorphous materials in 

DAC. Our methodology exploits high-resolution optical microscopy in DACs, image analysis, and 

statistical data treatment. A significant advantage of our approach is that experiments do not 

require access to synchrotron facilities or specialized X-ray sources. At the same time, our 

method can be easily applied in combination with X-ray imaging and diffraction. The data analysis 

is fully automatized (i.e. the effect of the operator is negligible) and applicable to opaque 

crystalline and amorphous/glassy materials. 

The optical system is based on the laser heating setup describe in detail in the Section 5.A. The 

schematic diagram with the key components is presented in figure 3.2.1. 

 

Figure 3.2.1. Schematic diagram of the optical system. DM is the long-pass dichromic mirror; FO 

is the focusing optics; BS is the 50/50 beam splitter; CMOS is the camera for image observation. 

The image of the sample is formed by transmitted monochromatic light passing through a DAC 

sample chamber and collected from the opposite side by a long working distance objective. 

Further, the light passes through a set of lenses and projects the sample image on the matrix of 

a high-resolution CMOS camera. 
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The geometrical shape of a sample plays an important role in data acquisition and analysis. 

Simple and symmetrical shapes, such as balls or rectangular plates, allow multiple measurements 

of the sample length from a single image and therefore improves the statistics and reduces the 

random error. As samples, we use spheres of glassy carbon and rectangular plates made of Ti 

(figure 3.2.2). Spherical samples were directly purchased from Cospheric Microspheres Inc. while 

square plates were shaped by milling Ti foil using FEI - QUANTA 3D Focused Ion Beam (FIB). 

 

Figure 3.2.2. SEM images of the Ti sample. (a) A flattened microsphere of the initial diameter of 

about 25 µm; (b) A square plate-shaped by FIB. 

Before data collection adjustment of the optical system is necessary for reproducible and precise 

measurements. Such parameters as the intensity and angle of the incident light, CMOS camera 

parameters, and the sample position within the field of view must be kept constant during the 

whole set of measurements at different pressure points. To achieve stable illumination 

conditions during the whole experiment, the DAC was coupled with a membrane pressure 

controller and mounted on a 3-axis motorized stage. 

For correct determination of the sample dimensions using optical microscopy, it is necessary to 

perform length measurements with the sample in the right focus position (figure 3.2.3) at each 

pressure point. In our method, we implement the focus stacking approach, by collecting the 

sample images upon continuous movement of the DAC along the optical axis. 
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Figure 3.2.3. Illustration of focus stacking on the example of images of a titanium plate at 4 GPa. 

(a) The image was taken at -20 µm from the approximate in-focus position; (b) near the in-focus 

position as first determined by eye; (c) at + 20 µm from the approximate in-focus position. 

Further, all images are analyzed and only ones which are in focus positions are used for length 

determination (the algorithm for selecting in-focus images is described below). A typical number 

of images in a single dataset is up to 200. 

We have developed a fully automatic procedure for data analysis including selecting the in-focus 

images, length determination, and error analysis. The procedure includes the analysis of image 

intensity profiles at the edges of the sample. It allows to precisely determine the steepness and 

position of the edge, and to determine the length through those parameters (figure 3.2.4). 

We describe the edges of the intensity profile using the parametric sigmoid function: 

𝑆(𝑥) = 𝐴𝑜 +
𝐾 − 𝐴0

1 + 𝑒−𝛼(𝑥−𝑥0)
 𝐸𝑞. (3.2.1) 

(where 𝑥 is the pixel coordinate, 𝐴𝑜 is the lower asymptote, K is the upper asymptote, α is the 

growth rate (or steepness of the curve) and 𝑥0 is the value of the sigmoid's midpoint). Thereby, 

we define the sample length in pixels as a difference between the two sigmoid's midpoints taken 

along a single image cross-section (at the right and left edges of the sample) (𝑥0
𝑟𝑖𝑔ℎ𝑡

− 𝑥0
𝑙𝑒𝑓𝑡

). 

Such parametrization allows defining the positions of the edges with subpixel accuracy. 
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Figure 3.2.4. Image intensity profile for defining the edges of the sample. (a) Sample image with 

the cross-section line. The enlarged red dots mark the position of the sample edges, which 

define the sample length (in a horizontal direction); (b) image cross-section intensity profile. 

Grey dots are the measured intensity profile; red curves are the fit of the left and right edges 

regions to the parametric sigmoid functions; enlarged red dots are left and right sigmoid's 

midpoints, which define the position of the sample edges. 

If an object is not in focus, its edges look blur. It is obvious that the sharper the image, the steeper 

the edges of the intensity profile (figure 3.2.5). To select the images, which are in-focus, we 

analyzed every image of the set and plotted the steepness parameter (i.e. the growth rate 

parameter 𝛼 of the sigmoidal function, Eq. 3.2.1) vs the image number, which indicates the DAC 

position along the optical axis. An example of such a plot is shown in figure 3.2.6. Only the images 

with the highest absolute growth rate are selected as in-focus and further considered for length 

measurements. 
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Figure 3.2.5. The image cross-section intensity profiles and microphotographs of the sample. (a) 

Profiles; (b) out of focus position; (c) in-focus position. 

 

Figure 3.2.6. Growth rate (parameter α of the sigmoidal function) vs the image number. 

Since both vertical and horizontal cross-sections are used for in-focus image selection, the 

algorithm gives four, usually slightly different, focal positions. This can be attributed to slightly 

uneven illumination of different sample edges or minor inclination of the sample in the DAC. 

However, we found that for a set of 100 - 150 images (frames) the variations within up to 10 

frames do not introduce measurable errors in the length of the sample (see error evaluations 

section below). 
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Usually, four in-focus images are selected (one per top, bottom, left, and right edges of the 

sample). 

For each image, we made a cross-section mesh of 50 to 100 lines with a line spacing of 5 to 20 

pixels (figure 3.2.7). 

 

Figure 3.2.7. Schematic of the cross-section mesh for the length measurements. Green and 

purple lines represent image cross-sections. Length measurements are performed along each of 

vertical and horizontal cross-sections. The mesh size depends on the sample size and geometry, 

with a typical value of 50 to 100 cross-section lines per dimension with line spacing of 5 to 20 

pixels. 

For each cross-section line, the length of the sample was determined independently. All 

measurements for vertical and horizontal lines were averaged independently, and the standard 

deviation was calculated for both vertical and horizontal dimensions. 

Assuming that sample conditions in DAC are (1) quasi-hydrostatic; (2) the sample does not have 

voids in the bulk; (3) compression of the sample is isotropic, the sample strain (𝑓𝑒) can be 

described as Eulerian finite strain (Katsura and Tange, 2019): 
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𝑓𝑒 =
1

2
[(

𝑉𝑝

𝑉
)

2
3

− 1]  𝐸𝑞. (3.2.2) 

where 𝑉 is the sample volume at a given pressure, and 𝑉𝑝  is the sample volume at the reference 

pressure. Hence the following relationship is true: 

𝑉

𝑉𝑝
=  (

𝐿

𝐿𝑝
)

3

𝐸𝑞. (3.2.3) 

where 𝐿 is the average length at a given pressure, and 𝐿𝑝 is the average length at the reference 

pressure. To determine the bulk modulus (𝑲𝟎) and it's derivative (𝑲𝟎
′ ) the pressure–strain data, 

obtained by optical measurements, were fitted to the 3rd order Birch-Murnaghan EOS (Eq. 

2.1.3.3) (Anderson, 1995). 

The described method was validated by comparing of the results of optical measurements with 

the well-known EOS of the same material obtained by XRD. We chose Ti as the reference material, 

it undergoes the α-to- structural phase transition between 2 and 12 GPa at 300 K depending on 

the pressurization conditions (Errandonea et al., 2005) which result in the volume reduction of a 

few percent and provides a chance to test if the first order phase transition can be detected using 

the presented methodology. 

The sample of Ti rectangle plate was loaded into the DAC with Ne as a PTM and then studied on 

compression in the pressure range of 8 to 30 GPa (figure 3.2.8). 

 

Figure 3.2.8. Images of the Ti square plate at 11.1(1) and 30.5(1) GPa. The dashed line on the 

right image corresponds to the sample contour at 11.1(1) GPa. 
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The results of measurements, in form of the dependence of the relative volume on pressure, are 

shown in figure 3.2.9. Some irregularities in the compressional behavior of the sample were 

observed at around 11 GPa, which may be related to the α-to-ω Ti phase transition (Dewaele et 

al., 2015). However, the effect is hardly visible (figure 3.2.9, inset). 

 

Figure 3.2.9. The pressure dependence of the relative volume of ω-Ti. Our experimental points 

are shown by purple circles; the red dashed line is the fit of the experimental data to the 3rd 

order BM EOS with the following parameters 𝐾0 =  108 (2.6) GPa  GPa, 𝐾′ = 3.5(3). Blue 

diamonds are the experimental data from Dewaele et al (2015) obtained by XRD 

measurements. The inset shows the P region between 8 and 14 GPa. Different colors indicate 

the fields of α-Ti (pink) and ω-Ti (green). 

The data collected above 11 GPa corresponds to ω–Ti. Over the compression from 11.1(1) to 

30.5(1) GPa, a decrease in the average sample length of 48 pixels (~1µm) was observed, while 

the sample volume contracted by about 10%. The pressure – relative volume data (figure 4.2.10) 

were fitted to the 3rd order BM EOS with the parameters 𝐾0 =  108 (2.6) GPa  and 𝐾′  =
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 3.5(3), in good agreement with those obtained from XRD data of Dewaele et al. (2015) with 

𝐾0 = 107(3) GPa, 𝐾′ =  3.55(3)). 

Additionally, we applied the developed methodology to study the EOS of glassy carbon. A glassy 

carbon sphere (microspheres type-I, purchased from Alpha Aesar Inc.) with a diameter of about 

25 µm was loaded into the sample chamber and pressurized in a Ne pressure transmitting 

medium from 6.9(1) up to 30 GPa. Over the compression, we observed a decrease in the average 

sample length (the diameter of the sphere) of ~81 pixels (~1.7 µm), and the sample volume 

contracted by about 20%. The pressure-volume relation for glassy carbon is shown in figure 

3.2.10. As expected, the compressibility of glassy carbon appeared to be relatively high, with the 

bulk modulus found to be 𝐾0 = 28.6(8) GPa (𝐾′ =  5.5 (2)). Thus, the compressional behavior 

of glassy carbon was found to be very smooth, in agreement with the previous studies based on 

Raman spectroscopy (Solopova et al., 2013), which gave no evidence of a significant change in 

the type of chemical bonding in GC up to 60 GPa. 

 

Figure. 3.2.10. The EOS of glassy carbon. Our experimental points are shown by purple circles; 

the red dashed line is the fit of the experimental data to the 3rd order BM EOS with the 

following parameters: 𝐾0 = 28.6(8) GPa, 𝐾′ =  5.5 (2). 



- 54 - 
 

The EOS of glassy carbon reported in this work was determined for the first time. The significant 

advantage of the presented method is that experiments do not require access to synchrotron 

facilities or specialized X-ray sources (but it can be easily coupled with X-ray imaging and 

diffraction). 

3.3. Synthesis of palladium carbides and palladium hydride in 

laser-heated diamond anvil cells 

In order to detect the effect of possible carbon or hydrogen dissolution in palladium, we require 

data on the compressibility of pure Pd. Pd remains fcc structure (fm-3m space group) over a wide 

range of pressures. Known carbides and hydrides of palladium are rather alloys than ionic 

compounds (Manchester et al., 1994b): carbon or hydrogen atoms occupy octahedral interstitial 

sites of the fcc palladium structure that results in an increase of the lattice parameter without 

change of the symmetry (i.e., there are no extra Bragg reflections compare to pure Pd). Thus, to 

determine the composition we have to rely on the measured lattice parameters and therefore 

good EOS of pure Pd is needed. 

To determine EOS of pure Pd a piece of Pd foil was loaded into a sample chamber of a DAC along 

with Ne and stepwise pressurized up to 30 GPa. The experimental pressure-volume data were 

fitted (figure 3.3.1) using the third order Birch-Murnaghan EOS (BM3 EOS, Eq. 2.1.3.3) with the 

following parameters: V0= 58.868(2) Å3, K0 = 157(3) GPa, and 𝐾′ = 9.9(4). The volume of the Pd 

unit cell at ambient pressure is in good agreement with literature data: 58.85 Å3 (McMurdie et 

al., 1986), 58.9 Å3 (Rao and Rao, 1964). 
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Figure 3.3.1. The pressure dependence of the unit cell volume of Pd. Our experimental points 

are shown by circles. The solid curve is the fit of the experimental P-V data using the BM3 EOS 

with the following parameters: V0= 58.868(2) Å3, K0 = 157(3) GPa, and K0
′  = 9.9(4). Errors in 

experimental data are within the symbol size 

In the second experiment, the sample of Pd foil was pressurized in Ne pressure-transmitting 

medium to 52(1) GPa and laser heated up to 3000(200) K. 

The new phases that appeared after laser heating were indexed as fcc structured PdCx. The 

carbon content – x was estimated using Vegard’s law, and the known unit cell volumes of pure 

Pd and PdC0.03(Cadeville and Lerner, 1976). The phase with the largest amount of carbon was 

determined as PdC0.21(1), the smallest content of carbon was found to be PdC0.15(1). A possible 

explanation of that phenomenon is the temperature dependence of carbon solubility in 

palladium that leads to the formation of a plethora of PdCx compositions at the presence of large 

temperature gradients during laser heating. We followed changes in the lattice parameters of 

various PdCx phases with pressure (Figure 3.3.2) and determined the parameters of the BM3 EOS 

for PdC0.21(1): V0 = 65.1(1) Å3, K0 = 241(9) GPa and K0
′  = 2.1(3). 
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Figure 3.3.2. The pressure-volume dependence for a few PdCx. phases with different carbon 

content from x=0.15(1) to x=0.21(1). Green triangles and purple diamonds represent 

experimental results; the solid red curve is the BM3 EOS fit for PdC0.21(1) (V0 = 65.1(1) Å3, K0 = 

241(9) GPa and K0
′  = 2.1(3)). All error bars are within the size of the symbols. 

In the third experiment, a piece of Pd foil was clamped between two thin layers of NaCl and 

compressed up to 58(2) GPa. NaCl was used as a pressure transmitting medium to provide better 

thermal insulation compared to Ne (Uts et al., 2013), and reduce thermal gradients over the laser 

heating. Laser heating of the sample up to 2500(200) K results in the synthesis of PdC0.19(1). No 

peak splitting of PdCx was detected here. This supports our suggestion of the temperature 

dependence of carbon’s solubility in palladium. The P-V data obtained on PdC0.19(1) 

decompression were fitted to the BM3 EOS model and gave the following parameters V0 = 

64.51(5) Å3, K0 = 189(8) GPa, and K0
′  = 4.5(4). 

It is known that laser heating of metal in paraffin oil in a DAC may lead to the synthesis of carbides 

(sometimes together with hydrides) (Narygina et al., 2011). In the fourth experiment, a piece of 

Pd foil was loaded inside the sample chamber of a DAC along with paraffin oil, which served as 
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both a pressure-transmitting medium and a source of carbon and hydrogen. The sample was 

compressed up to 39(2) GPa (close to the pressure at which PdCx were synthesized) and laser-

heated at around 1500(200) K. The X-ray diffraction data of the temperature quenched sample 

reveals the presence of polycrystalline diamond and the unknown fcc-structured phase with the 

unit cell volume V = 60.18(5) Å3 at 39(2) GPa. Within the uncertainty the unit cell volume of the 

new fcc-phase, 60.18(5) perfectly matches with the unit cell volume, 60.1(1) Å3,of fcc PdH at the 

same pressure (Brownsberger et al., 2017). Thus we assume that the reaction of pure Pd and 

paraffin oil at ~39 GPa and ~1500(200) K results in the synthesis of PdH compound and diamond. 

In conclusion, we show that pure Pd metal reacts with carbon from the diamond anvil at high 

pressure and high-temperature conditions with the formation of fcc PdCx. We suggest that 

carbon solubility in palladium strongly dependent on temperature. Additionally, we have shown 

the possibility of the synthesis of PdH at high pressure in DACs by a direct chemical reaction of 

Pd and paraffin oil and found that when there is an excess of both carbon and hydrogen, PdH is 

the favorable reaction product. 

3.4. Synthesis and compressibility of novel nickel carbide at 

pressures of Earth’s outer core 

The sample of Ni foil was pressurized in LiF pressure-transmitting medium up to 184 (5) GPa and 

laser-heated up to 3500 (200) K. A direct reaction between Ni and carbon from the diamond anvil 

resulted in the synthesis of a new compound indexed as orthorhombic. The reaction product was 

identified using synchrotron single-crystal XRD. The structure solution and refinement revealed 

the presence of cementite-type orthorhombic structure (space group Pnma, #62; a = 4.520(3) Å, 

b = 5.8014(17) Å, c = 4.009(4) Å at 184 (5) GPa) with Ni3C composition (figure 3.4.1).  

https://en.wikipedia.org/wiki/Orthorhombic
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Figure 3.4.1. Crystal structure of the cementite type Ni3C at 184(5) GPa and room temperature. 

Purple and black spheres designate nickel and carbon atoms, correspondingly. 

The Ni3C sample was studied on a stepwise decompression and no diffraction pattern from Ni3C 

was observed at pressures below 84(2) GPa. The pressure-volume relation of Ni3C was fitted to 

the 3rd order Birch-Murnaghan (BM3) EOS and gave the following parameters: V0 = 147.7(8) Å3; 

K0 = 157(10) GPa, K´ = 7.8(6) (figure 3.4.2). 

 

Figure 3.4.2. The pressure-volume dependence of Ni3C. Red dots represent experimental data, 

the dashed red curve is the BM3 EOS fit (V0 = 147.7(8) Å3; K0 = 157(10) GPa, K´ = 7.8(6)). 
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Based on obtained data, we calculated the bulk sound velocity for Ni3C as a function of pressure 

at ambient temperature and compared it with those known for Fe, Ni, and possible carbon-

bearing components of Earth’s core (Fe3C and Fe7C3). We found that Ni3C exhibits similar bulk 

sound velocities as Fe3C and Fe7C3 at pressures up to 400 GPa (figure 3.4.3). Thereby, the 

presence of Ni in the alloy likely should not affect the elastic properties of the Fe-Ni-C system but 

potentially can change the carbon distribution. There is no experimental information regarding 

the behavior of the Fe-Ni-C system at conditions of Earth core, but the stability of Ni3C at 

pressures above 150 GPa may indicate that the addition of Ni stabilizes cementite-type phase 

over orthorhombic Fe7C3 (Liu et al., 2016; Prescher et al., 2015). Alternatively, our result may 

infer an immiscibility gap between Ni3C and Fe7C3. Further experimental work is needed to clarify 

the phase relations in the Fe-Ni-C system at multimegabar pressures. 

 

Figure 3.4.3. Calculated bulk sound velocity of Ni3C as a function of pressure (this study, black 

solid line with circles); Fe3C (green line with diamonds(Scott et al., 2001)) and Fe7C3 (blue line 

with squares (Prescher et al., 2015)); Ni (red line with triangles (Dewaele et al., 2008b)); Fe 

(purple line with pentagons (Fei et al., 2016)) at 293 K. 
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Abstract: 

The diamond anvil cell (DAC) technique combined with laser heating is one of the major 

methods for studying materials at high pressure and high temperature conditions. In this 

work, we present a transferable double-sided laser heating setup for diamond anvil cells 

with in situ temperature determination. The setup allows precise heating of samples inside 

a DAC at pressures above 200 GPa and could be combined with synchrotron beamline 

equipment. It can be applied to X-ray diffraction and X-ray transmission microscopy 

experiments. In the setup we use high-magnification and low working distance infinity 

corrected laser focusing objectives which enable us to decrease the size of the laser 

beam to less than 5 m and achieve a maximum optical magnification of 320 times. All 

optical components of the setup were chosen to minimize chromatic and spatial 

aberrations for accurate in situ temperature determination by multiwavelength 

spectroscopy in the 570 – 830 nm spectral range. The flexible design of our setup allows 

the simple interchange of laser sources and focusing optics for application in different 

types of studies. The setup was successfully tested in house and at the high-pressure 

diffraction beamline ID15B at the European Synchrotron Radiation Facility. We 

demonstrate an example of application of the setup for the high pressure - high 

temperature powder diffraction study of PdH and X-ray transmission microscopy of 

platinum at 22(1) GPa as a novel method of melting detection in DACs. 

                                                      
* Corresponding author, email: TimofeyFedotenko@gmail.com 
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1. Introduction  

Laser heating (LH) in diamond anvil cells (DACs) has been used for more than five 

decades1,2 and there are many examples of its applications in geosciences for simulating 

the conditions of deep Earth’s and planetary interiors, studies of physical and chemical 

processes at extreme conditions, and synthesis of novel materials3–7. The methodology 

of laser-heated diamond anvil cells (LHDAC) is well described in the literature8. Over the 

last decade, this technique has evolved into a useful and routine experimental method at 

synchrotron beamlines. The LHDAC technique has been coupled with different analytical 

methods such as powder and single crystal X-ray diffraction9 (XRD), X-ray Absorption 

Spectroscopy (XAS)10,11, nuclear inelastic scattering12, and Synchrotron Mossbauer 

source (SMS)13. 

Dynamic development of the LHDAC technique during recent years has resulted in the 

emergence of portable laser heating systems which can be used for in house experiments 

in different scientific environments (i.e. simultaneously with resistivity measurements, 

Raman or Brillouin spectroscopy, etc.), are easily moved between synchrotron beamlines 

and coupled with different analytical techniques in response to modern scientific 

challenges. The portable laser heating system was invented by Boehler in 20098 and was 

successfully tested in XRD and XAS experiments at a synchrotron source. The one-side 

LH setup developed by Dubrovinsky et al14 was successfully used for in house15 studies 

and synchrotron in situ X-ray absorption and single-crystal XRD experiments16. However, 

the single-side heating leads to large temperature gradients within the samples that limit 

applications of the set up for thin samples.  

The designs of the double-sided LH systems described by Kupenko et al. 13 and Aprilis 

et al. 17 are based on universal laser-heating heads (UniHeads, adapted finite cutting 

laser heads produced commercially by Precitec GmbH & Co. KG), which enable to 

decrease the size of a laser heating setup. The setups13,17 are simple to install and may 

be used in experiments that require the rotation of DACs during data collection 

(particularly, for single-crystal XRD in laser-heated DACs). 

The UniHead-based LH setups allow varying the size of the laser beam from 15 to 50 µm 

FWHM and providing 20 times magnification of the samples in DACs, which is sufficient 
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for the majority of conventional experiments with laser heating. However, in ultra-high 

pressure diamond anvil cells (with beveled anvils with small culet sizes, double-stage- or 

toroidal-type anvils, for example) the size of the pressure chamber is usually smaller than 

15 µm and above 200 GPa samples, as a rule, are of about 3-4 µm in diameter. This 

requires tighter laser beam focusing, higher magnification, and better optical resolution. 

Moreover, even when using specially designed objectives (like GeoHeat 40_NIR), it is 

hard to reduce chromatic and spatial aberrations introduced by commercial optical 

elements of UniHeads (especially in the case of tight focusing) that could be crucial for 

temperature determination in laser heating experiments at temperatures above 3000 K. 

In this paper, we present a transportable double-sided laser-heating setup for in-house 

and synchrotron experiments. It is designed to improve the accuracy of temperature 

measurements, to decrease the size of the laser spot focused on the sample, and to get 

higher magnification for precise heating in DACs at pressures above 200 GPa.  

We demonstrate its application on examples of an in situ powder X-ray diffraction 

experiment and in situ X-Ray Transmission Microscopy (XRTM) imaging at the ID15B 

beamline of the European Synchrotron Radiation Facility (ESRF) and a series of in house 

experiments with the heating of samples in DACs above 200 GPa. 
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2. Design overview 

2.1. General overview 

The system consists of two identical parts which are schematically shown in FIG. 1. 

 

FIG. 1. Schematic diagram of the double-sided laser heating system for diamond anvil 

cells. LDMs are the long-pass dichromic mirrors; FOs are the focusing optics; BSs are 

50/50 beam splitters; SPFs are the short-pass filters with a cut off at 800 nm; CMOSes 

are the cameras for optical observation; MWHs are the mirrors with a hole; LPFs are the 

long-pass filters with a cut-on wavelength of 550 nm; NFs are the notch filters at 1064 

nm; NDs are neutral density filters. 

Each of the parts includes the following nodes: 

 NIR Laser 

 Power control module based on two polarizing beam splitters and a half-

wave plate. 

 Focusing and shaping optics 

 Observation module 

 Temperature collection module 

All major nodes are mounted on the breadboard and all optical components can be 

easily adjusted or modified depending on a type or specific needs of experiments. 
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2.2. Lasers 

Independence of the different nodes of the system allows to quickly exchange the laser 

sources for experiments at a synchrotron facility or heating at the home institute (i.e. laser 

sources do not need to be transferred together with the laser-heating set up); however, 

the central wavelength of laser emission should be in the range of 1050-1070 nm, 

because all of the shaping and focusing optics described below are configured to work in 

this range. 

The setup was tested with two different pairs of lasers. Each of the two SPI RedPower 

R4 Modulated Fiber Lasers of the first pair, one with a maximum power of 100 W and the 

other with 50 W, emits a randomly polarized Gaussian beam (TEM00) with a full width at 

1/𝑒2 of 5 ± 0.5 mm (the central wavelength is 1070 ± 10 nm). The lasers can be operated 

in two modes: in a continuous-wave (CW) mode or a modulated with a maximum 

frequency of up to 100 kHz. The second pair of lasers are SPI G4 Pulsed Fiber Lasers 

with maximum output power up to 50 W and central emission wavelength at 1064nm ± 

10nm. Each one has a Randomly polarized Gaussian beam (TEM00) with an output beam 

diameter of 10 mm and divergence of 120 µrad. The lasers can be operated in both 

continuous-wave and pulsed modes. The minimum possible laser pulse FWHM 11 ns.  

For both laser pairs, the output power level can be controlled by an external GUI, provided 

by the manufacturer. However, working in a low-power CW mode (power below 5 W) or 

working in short-pulse mode significantly increase the power control error of the laser 

feedback loop and strongly demand an external power control. For accurate power 

control, we use an external analogous optical controller, which will be described in detail 

in part 2.4. 

Lasers are equipped with an additional low-power red laser source (630-680nm) for 

preliminary beam alignment and positioning on the sample. 

2.3. Beam shaping and focusing 

The setup demands focusing optics that can simultaneously operate in two spectral 

bands: NIR for focusing of the laser beam, and the optical range for collection of thermal 

emission and imaging of the sample.  
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Both sides of the LH setup are equipped with specially designed for TEM00 Focal-π 

Shapers (Focal-π Shaper_9_1064 by AdlOptica GmbH) to expand the output collimated 

laser beam and convert its initially spatial Gaussian distributed intensity to a flat-top π-

shape profile. 

To focus the laser beam in synchrotron experiments, we use a GeoHeat 40_NIR 

achromatic objective specially designed for laser heating applications in DACs. The 

GeoHeat 40_NIR working distance is 80 mm that provides enough space around a DAC 

for inserting additional optics to target the laser beam on a sample that is essential for in 

situ synchrotron X-ray diffraction and imaging in LHDAC studies. It minimizes chromatic 

aberrations in the spectral range of 600-900 nm used for temperature measurements and 

focuses the NIR laser beam17,18. 

By adjusting the Focal-π Shaper we reach the smallest FWHM of the laser beam of 20 

µm, for a flat-top profile is used, and 10 µm FWHM for a Gaussian-shaped laser beam. 

Experiments with ultra-high pressure DACs require tighter laser beam focusing, higher 

magnification, and better optical resolution as far as the size of a sample could be less 

than 5 µm. To overcome these challenges, we use a Mitutoyo 20x objective (Mitutoyo 

NIR infinity-corrected M Plan Apo B 20x) on both sides of the setup. Likewise, GeoHeat 

40_NIR, the Mitutoyo 20x objective works in optical and NIR spectral ranges and allows 

focusing the laser beam to 5 µm FWHM on a sample. However, the working distance of 

the Mitutoyo 20x is 25 mm that does not provide enough space between the end of the 

objective and a DAC, and makes it inapplicable for in situ synchrotron experiments. 

2.4. Power control node 

It is well known that in pulsed fiber lasers there is a strict relation between the pulse shape 

and the energy. Therefore, pulsed LHDAC experiments require independent control of 

the laser pulse shapes and the energy of the individual pulses to provide stable heating 

and to avoid damaging the diamond anvils. The hardware control of the laser power in 

the CW mode does not allow access to the low-power region (between 0 to 5 W). 
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FIG. 2. Working principle of the power control node. 

To resolve this problem, in our setup we used the polarization-based power control 

module schematically presented in FIG. 2. The module consists of two polarized NIR 

beam splitters (Thorlabs CCM1-PBS25-1064) and a half-wave plate (Thorlabs WPH05M-

1064) mounted between them. The output power level is controlled by the rotation of the 

λ/2 wave plate in the range from 0 to 45 degrees to reach zero and maximum power, 

correspondingly. The part of laser radiation rejected from the beam splitters is dissipated 

on graphite-based beam blocks (Thorlabs LB2/M) to satisfy the safety regulations. 

2.5. Observation  

For imaging of the sample, we use high-resolution EYE © CMOS cameras (UI-3240CP), 

while the sample is illuminated by the LED (Thorlabs MCWHLP1). The image of the 

sample is obtained either in transmitted light, if the material in the sample chamber is at 

least partially transparent, or/and in reflected light. The light passes through a set of 

lenses into a zoom objective (Nikon AF-S NIKKOR 28-300mm f/3.5-5.6G ED VR Lens) 

projecting the image of the sample on the matrix of a CMOS camera. A short pass filter 

(Edmund #47-586) with a cut-off at 800 nm is placed in front of the zoom objective to 

protect the CMOS camera from laser reflections. 

To determine the magnification of the optical system we imaged the Positive Test Target 

(Thorlabs R1DS1P, conformed to MIL-S-150A standard) with a maximum resolution of 

228 lines per millimeter. The images of the test target for both objectives (GeoHeat_40 

NIR and Mitutoyo NIR infinity-corrected M plan Apo B 20x) are presented in FIG. 3. 
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FIG. 3. The images of the test target plate at a minimum and maximum magnification for 

GeoHeat 40_NIR and Mitutoyo 20x objectives. 

GeoHeat_40_NIR enables the magnification to be varied within approximately 20 to 35 

times, while Mitutoyo 20x provides 80 to 320 times magnification. The spatial resolution 

of the final image with GeoHeat 40_NIR objective is limited to approximately 180 lines 

per millimeter at maximum magnification; Mitutoyo 20x provides spatial resolution higher 

than 228 lines per millimeter, which is the limit for the used test target. 

2.6. Thermal radiation collection 

Minimization of the optical distortions introduced by optical elements (lenses, beam 

splitters, filters) encountered by emitted radiation on the way to the spectrometer is 

necessary for precise temperature measurements in LHDAC experiments, and it is one 

of the primary goals for the designed setup.  

To separate laser and optical observation/collection paths, we use a Thorlabs DMLP900 

dichroic mirror, that reflects the visible wavelength light and transmits the laser-frequency 

light. The DMLP900 provides a flat top reflection spectral profile in the range of 600 – 850 

nm. A 50/50 beam splitter (Thorlabs BSW10) installed on the observation path reflects 

half of the light intensity to the spectrometer for the temperature measurements, and the 
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other half of the light intensity goes eventually to the CMOS camera for simultaneous 

visual observations. The thermal radiation reflected by the beam splitter is focused on the 

optical fiber by an additional lens (Edmund #45-220) and guided into an IsoPlane SCT 

320 spectrometer with a 1024x256 PI-MAX 4 camera (Princeton Instruments, Inc.). To 

prevent saturation of the detector by diffused laser radiation, we use a blocking notch filter 

with a central wavelength of 1064 nm (Edmund #86-128). For precise temperature 

measurements above 4500 K, a long-pass filter with the edge at 550 nm (Thorlabs 

FEL0550) is installed to avoid contamination of thermal emission spectra by second-order 

UV reflections. 

Calibration of the system’s response is performed by using calibrated tungsten lamps at 

temperatures of 1388, 1757, and 2361 K. The non-corrected spectra of a calibration lamp 

are presented in FIG. 4(a). Once the emission spectra are corrected and the effects 

introduced by optical components removed, the temperature can be determined by fitting 

the spectra in a given wavelength range (600-800 nm) to the Plank radiation function. 

Figure 4(b) demonstrates an example of fitting of thermal radiation spectra collected 

during heating of silicate perovskite (Fe0.5Mg0.5Si0.5Al0.5O3) at 65(2) GPa inside a DAC. 

 

FIG. 4. Temperature determination procedure. (a) Normalized spectra of a calibration 

lamp at 1388, 1757, and 2361 K. (b) Example of temperature determination of heated 

silicate perovskite (Fe0.5Mg0.5Si0.5Al0.5O3) at 65(2) GPa inside a DAC using the gray 

body approximation of Planck’s law. The error of measured temperature corresponds to 

the standard deviation from the fit. 
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3. Examples of application 

3.1. Ultra-high pressure LH 

In conventional LH-DAC experiments, the size of the laser beam is ranged from 10 to 50 

µm FWHM. However, LH- DAC experiments at pressures over 200 GPa require tighter 

focusing of the laser beam as far as the size of the sample is about 3-4 µm in diameter. 

Furthermore, to distinguish the sample from the environment during the heating it is 

necessary to have high magnification and optical resolution of the image projected on the 

camera sensor. 

During in-house LH experiments, the setup is mounted on the optical table as shown in 

FIG. 5. 

 

FIG. 5. Configuration of the LH setup for in house experiments 

The setup was successfully tested in DAC experiments with 40-µm culet size anvils 

(pressure chambers are about 10 to 20 µm in diameter, characteristic sample sizes of 

about 5 µm) at pressures over 200 GPa. FIG. 6 shows an image of the DAC pressure 
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chamber during laser heating of NiO in a Ne pressure medium at 230(5) GPa and 

2500±150 K. 

 

FIG. 6. Image of the sample chamber during laser heating of NiO in Ne as pressure 

transmitting medium at 230(5) GPa and 2700±150 K. Beveled diamond anvils have 

culet size of 40 µm in diameter. 

3.2. Combination with synchrotron techniques 

The transportability of the system was demonstrated during a series of experiments using 

X-ray diffraction and imaging at synchrotron X-ray source coupled with LHDAC at the 

High Pressure Diffraction beamline (ID15B) of the European Synchrotron Radiation 

Facility (ESRF). The system was transported to the ESRF and mounted in the 

experimental hutch of the beamline. The system’s assembling and alignment take 8 to 10 

hours before the experiment. To save experimental time the installation can be performed 

in advance, during a maintenance time, or shut down. 

The geometry of the system was partially modified for synchrotron use, (FIG. 7) to enable 

simultaneous XRD and LH. All major nodes of the LH setup from the upstream (labeled 

(5) in FIG. 7) and downstream (labeled (6) in FIG. 7) sides were mounted on optical 

breadboards and installed on movable 3-axis stages. In lack of free space close to the 

3D-stage with the DAC, focusing and targeting optics (labeled (4) in FIG. 7) were installed 

on rails and placed 300 mm away from the main breadboards. 
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FIG. 7. (1) X-ray beam pinhole; (2) DAC; (3) Mar555 detector; (4) Focusing and 

targeting optics; (5) upstream breadboard; (6) downstream breadboard. 

To direct the laser beam to the sample from both sides of the DAC, we used two graphite 

mirrors placed in front of each of the GeoHeat 40_NIR objectives (FIG. 8). As X-ray 

absorption of the carbon mirror is low, there is no problem if X-rays hit the mirror at the 

upstream side, which is positioned at ~45-degrees to both the laser beam and the X-ray 

beam. From the downstream side, the mirror is placed at ~40 degrees to the laser beam 

to prevent X-rays from heating the mirror and to avoid diffuse scattering from carbon. For 

precise positioning of the laser beam on the sample during the experiment, both mirrors 

were fixed on piezo mirror mounts (Newport 8821). 
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FIG. 8. Scheme of the laser beam targeting on the sample inside DAC in experiments 

with synchrotron X-ray radiation at ID15B (ESRF). The upstream carbon mirror is 

positioned at ~45 degrees to the laser beam. To prevent X-rays from hitting the mirror 

resulting in diffuse scattering from carbon on the detector, the downstream mirror is 

positioned at ~ 40 degrees to the laser. 

3.2.1. Synthesis and behavior of palladium hydride (PdH) at high P-T 

Palladium is a transition metal well known for its exceptional ability to absorb hydrogen in 

the bulk19,20, forming fcc–structured PdHx compounds. Along with some other transition 

metal polyhydrides, palladium hydrides PdHx are known for their superconducting 

properties.21–23 

As a part of our studies of the Pd-H system at high pressure, we investigated the behavior 

of PdHx at high P-T conditions using LHDAC with in situ synchrotron X-ray diffraction. To 

synthesize this palladium hydride, a piece of Pd foil was loaded inside a sample chamber 

of a BX90-type diamond anvil cell equipped with Boehler–Almax type diamonds (culet 

diameter 250 µm) and a rhenium gasket. To form the sample chamber, a rhenium gasket 

was pre-indented to 25 µm thickness and a hole of 100 µm in diameter was drilled in the 

center of the indentation. Paraffin oil was used as both a pressure-transmitting medium 

and a source of hydrogen for the synthesis. The sample was compressed up to 39(2) 

GPa and laser-heated from both sides at 1500±100 K. The fcc-structured PdHx formed 
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due to a reaction between Pd and paraffin oil. The unit cell parameter was found to be 

60.18 ± 0.05 Å3 from synchrotron X-ray diffraction data (FIG. 9) obtained at the ID15B 

synchrotron beamline at the ESRF (λ = 0.4117 Å, Mar555 flat panel detector). The X-ray 

diffraction images at ambient temperature were collected during continuous rotation of 

the DAC from – 20° to + 20° ω. 

Within the uncertainty of experimental data, the unit cell volume of synthesized PdHx 

(60.18 ± 0.05 Å3) is consistent with that for PdH (x=1) (60.1 ± 0.1 Å3) calculated from the 

PdH equation of state24, thus, we consider for our sample x to be equal to 1. As seen in 

FIG. 9, after heating, not only palladium hydride but also diamond could be detected in 

the pressure chamber. 

 

FIG. 9. A diffraction pattern of palladium hydride at 39 (2) GPa and ambient 

temperature. The fcc PdHx (x≈1) along with diamond was formed after laser heating of 

Pd in paraffin at 1500±200 K and 39(2) GPa. Indexes of the diffraction peaks of 

palladium hydride (PdH) and diamond (D) are designated (λ = 0.4117 Å). The unit cell 

volume of PdH is 60.18 ± 0.05 Å3. 

To check the stability of the synthesized PdH under high P-T conditions, we collect X-ray 

diffraction during LH at 2000±200 K and 39(2) GPa. The diffraction pattern of the sample 

at 2000±200 K (FIG. 10a) doesn’t have any other reflections aside from those of cubic 

PdH and diamond. The unit cell parameters of palladium hydride before and after heating 

appeared to be the same (FIG. 10b) that could give evidence that the amount of hydrogen 

in PdH didn’t change during heating and the shift of the position of the (111) reflection of 
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cubic PdH upon heating to 2000±200 K at 39(2) GPa was attributed only to the expansion 

of the PdH lattice. 

 

FIG. 10. (a) The diffraction patterns of the PdH sample at 39(2) GPa. (b) The shift of the 

position of the (111) reflection of the cubic PdH upon heating to 2000±200 K at 39(2) 

GPa. The position of the (111) reflection remains the same before and after heating. (λ 

= 0.4117 Å) 

According to the XRD, the unit cell volume increased from 60.18(5) A3 at room 

temperature (298 K) to 60.42(5) A3 at 2000±200 K. This gives for PdH at 39(2) GPa a 

volumetric thermal expansion coefficient of 2.3 (±0.4) 10-6 1/K, which is significantly lower 

than that of Pt (20.1(±0.5) 10-6 1/K)25 at similar conditions (39 GPa at heating up to 1900 

K). 

To our knowledge, the thermal behavior of Pd and Pd-hydrides at high pressure has not 

been studied so far, therefore we compare our data with those known for Pt, as the 

thermal expansion of Pt is close to that of Pd at atmospheric pressure. One of the possible 

explanations of the observed large difference in the thermal expansion coefficients of Pt 

and PdH at high pressure can be related to the chemical behavior of PdH on heating. 

Indeed, if PdH loses hydrogen at high temperature, this should lead to a decrease of the 

unit cell volume, compensating for the effect of the thermal expansion, and thus effectively 
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lower thermal expansion coefficient. During cooling, hydrogen can be accommodated up 

to the same amount as before. Thus, there is a possibility that the effect of the volume 

change under heating can not be exclusively attributed to the thermal expansion. 

3.2.2. In situ X-ray Transmission Microscopy in LH-DACs 

In this part, we describe the application of our transportable laser-heating setup for 

visualization of processes in DAC at high temperature using X-ray Transmission 

Microscopy (XRTM). Particularly, on the beamline ID15B (ESRF) we observed in situ 

melting of platinum in a DAC at high pressures. 

Several methods of detection of melting in laser-heated DACs are known. In particular, it 

can be done due to optical observations, XRD, X-ray absorption, or Raman 

measurements.8,26–28 Search for signs of melting on surfaces of recovered materials using 

Scanning Electron Microscope and Focus Ion Beam techniques, put forward by Boehler 

et al.29,30, is helpful, but time and labor-consuming. Moreover, distinguishing between 

melting and re-crystallization textures, and the analysis of possible chemical 

contamination by carbon are not always trivial. Considerable difficulties associated with 

the detection of melting at high pressures result in significant inconsistencies in reported 

melting curves for the same materials.31,32  

Each of the current methods of melting detection in LHDACs is associated with specific 

challenges, which can lead to ambiguities. In situ melting detection at temperatures above 

~2000 K is possible by visual observation of fluid motion in a speckle interference 

pattern33 but linked to the subjective judgment of the observer.34 The image analysis 

procedure for quantification of changes in speckle interference pattern appeared last 

years.35 Identification of melting using X-ray diffraction is in general possible at 

synchrotron beamlines with an appropriate setup27,28. In this case, melting is manifested 

either by the disappearance of Bragg reflections and/or by the appearance of diffuse 

scattering due to the short-range order in the liquid state. However, the disappearance of 

reflections on still X-ray images may be a result of re-crystallization (without melting) of 

the sample31. To produce a detectable signal, the amount of melted liquid in the sample 

should be significant, and the melt has to be stable for some time in a complex and highly 

thermally and chemically inhomogeneous environment of DAC. Moreover, experiments 
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can be complicated due to possible chemical reactions with the pressure medium or the 

diamond anvils36,37. The detection of melting using X-ray absorption suffers from at least 

the same problems. 

The development of XRTM using compound refractive lenses at ID15B opened up new 

perspectives for studies in DACs. We demonstrated38,39, particularly, that with XRTM it is 

possible to get an image with sub-micron resolution, which is hardly possible with 

conventional optics in the visual light. 

X-ray energy of 30 keV was selected using a cryogenically cooled Si (111) horizontally 

deflected monochromator with Δλ/λ ~ 10-4. Transmission X-ray Microscopy was realized 

using compound refractive lenses (CRL)40, according to the scheme shown in FIG. 11. 

The design of the beamline allows to translation of the diffraction detector out of the beam 

and introduces an additional X-ray objective lens to perform X-ray microscopy. The 

objective lens assembly consists of 66 aluminum and 45 beryllium parabolic refractive 

lenses. The lenses of both types have the radius of the parabola apex of 50 µm. The 

objective lens was placed on the stage with all necessary translations and rotations 

needed for the lens alignment. 

 

FIG. 11. Experimental layout for X-ray microscopy experiments 

The DAC was located at a distance of 50 cm in front of the objective. X-ray images were 

recorded with a high-resolution PCO X-ray CCD camera with 0.74 µm pixel size, which 

was installed at a distance of about 5 m from the DAC. Therefore, a magnification of about 

10 was achieved. The transfocator, which was located at 44 m from the undulator, was 

used to provide appropriate illumination on the sample.41–43 It should be noted that it is 

very important to match the illumination area on the sample with sample sizes during 

microscopy experiments. This was achieved by varying the number of lenses in the 

transfocator. Such an experimental arrangement allows to preserve beam coherence and 



- 93 - 
 

gives unique opportunities for the realization of X-ray phase contrast microscopy with a 

spatial resolution down to 200 nm 38,39,44–46. 

X-ray phase contrast microscopy allows to monitor the position and size of the sample; 

map the sample and find the area of interest; investigate the morphology of the sample 

during phase transitions, chemical reactions or melting of the sample and study 

mechanical stresses in DACs and a failure mechanism under ultra-high pressures. It is 

necessary to point out that the proposed beamline concept can be easily adapted for the 

upgraded Extremely Brilliant Source (EBS) simply by changing the number of individual 

lenses in the transfocators. 

To demonstrate the feasibility of in situ XRTM in LHDACs we performed an experiment 

aiming to detect the melting of Pt. Platinum was chosen, because it is chemically inert, 

and possible chemical reactions, that could affect the result, can be excluded. The 

relatively low melting temperature of Pt simplifies the experiment and its melting curve 

has been already experimentally established47. A piece of Pt foil was clamped between 

two thin layers of NaCl from both sides and loaded inside a sample chamber of a BX90-

type diamond anvil cell equipped with Boehler–Almax type diamonds (with culet diameter 

of 250 µm). To form the sample chamber, a rhenium gasket was pre-indented to 25 µm 

thickness and a hole with a 110-µm diameter was drilled in the center of the indent. NaCl 

was used as a pressure-transmitting medium and a thermal insulator to minimize the 

dissipation of heat through the diamonds. The sample was compressed up to 22(1) GPa. 

We heated the sample for 200 seconds simultaneously recording a series of XRTM 

images with 1-second exposure time and measuring the temperature using 

spectroradiometry. FIG. 12 represents the XRTM images of the sample during the 

heating, as seen the sample changes its shape and texture. 
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FIG. 12. XRTM images of the sample chamber taken during the heating process. Each 

image was collected with 1 second exposure time. Red and blue dotted lines represent 

the shape of the Pt foil before and after melting respectively. The melting moment was 

detected between 143th and 144th seconds by observation of the Pt foil shape. The 

melting temperature of Pt at 22 (1) GPa is 2613±10 K. Presented errors correspond to 

the standard deviation from the fit. 

For the first 143 seconds, the laser power was slowly increasing. Significant change of 

the shape of Pt foil caused by its melting was detected between 143th and 144th seconds. 

We observe the formation of Pt droplet (the size is around 10 µm) from initial Pt foil, which 

excludes simple recrystallization. XRTM tomography collected after LH proves the 

formation of a droplet is shown in FIG. 13 (Multimedia view). 

 

FIG. 13. XRTM images of the DAC sample chamber at different angular orientations of 

the DAC (Multimedia view). 
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Before the melting event, all visual changes in the texture and shape of the Pt foil were 

caused by the warming up of the sample chamber and its relaxation. The temperature 

collected at the last moment before melting was 2613 (10) K. After melting, the sample 

moved out of the laser beam and no thermal emission was present. 

The diffraction pattern of the heated area recorded after LH is presented in FIG. 14. It 

proves the absence of a chemical interaction between the Pt sample and its surrounding. 

The melting temperature of Pt at 22(1) GPa (2613 ±10 K) obtained in the experiment 

described above due to a combination of XRTM with LH-DACs is in good agreement with 

the literature data (2583±97 K)47. 

 

FIG. 14. The diffraction pattern was taken from the melted area of the sample at 22(1) 

GPa after heating. Pure Pt and B1-NaCl are the only materials detected by XRD. 

4. Conclusion 

A transportable double-sided laser heating system enabling simultaneous visual 

observation of a sample, its heating and temperature measurements have been 

developed. The configuration of the system can be easily changed: the geometry and 

optical components can be modified for any specific needs. The use of Mitutoyo 20x 

objectives as focusing optics for in-house experiments allows to decrease beam size of 

the laser beam to 5 µm and improves the optical quality of imaging that opens new 

opportunities in LHDAC experiments at pressures above 200 GPa. Using conventional 

Nikon camera lenses as a zoom objective allows varying the optical magnification of the 



- 96 - 
 

setup from 80 to 320 times with optical resolution significantly higher than 228 lines per 

millimeter. For accurate temperature determination by spectroradiometry method, optical 

components of the system were selected to minimize the optical distortions (such as 

chromatic aberrations, etc.), increase the bandwidth window of collected thermal 

radiation spectra to 570-830 nm. Due to external control of the laser power, the energy 

of the laser pulse can be changed independently on its shape, as necessary for pulsed 

LH experiments. The flexibility and transportability of the system, as well as the possibility 

to couple it with various techniques at synchrotron facilities, have been successfully 

tested in a study of PdH behavior at high P-T conditions by means of powder X-ray 

diffraction and development of melting detection by XRTM on the beamline ID15B at the 

ESRF. The system can be assembled and aligned by users after basic training. All 

components of the system are commercially available that making it a ready solution for 

duplication. 

5. Acknowledgments 

N.D. and L.D. thank the Federal Ministry of Education and Research, Germany (BMBF, 

grant no. 5K16WC1) and the Deutsche Forschungsgemeinschaft (DFG projects DU 954-

11/1, DU 393-9/2, and DU 393-13/1) for financial support. A.S., A.B., and P.E. are very 

grateful for financial support by Russian Science Foundation (Project N0. 19-72-30009).  

A.B. expresses gratitude to the Russian Academic Excellence Project at the Immanuel 

Kant Baltic Federal University for the financial support for his travel. 

6. References 

1 W.A. Bassett, Rev. Sci. Instrum. 72, 1270 (2001). 

2 W.A. Bassett, Laser Focus World (2016). 

3 L. Liu, Geophys. Res. Lett. 1, 277 (1974). 

4 Y. Meng, R. Hrubiak, E. Rod, R. Boehler, and G. Shen, Rev. Sci. Instrum. 86, 072201 

(2015). 

5 B. Lavina, P. Dera, E. Kim, Y. Meng, R.T. Downs, P.F. Weck, S.R. Sutton, and Y. 

Zhao, Proc. Natl. Acad. Sci. 108, 17281 (2011). 

6 L. Zhang, Y. Meng, W. Yang, L. Wang, W.L. Mao, Q.-S. Zeng, J.S. Jeong, A.J. 



- 97 - 
 

Wagner, K.A. Mkhoyan, W. Liu, R. Xu, and H. -k. Mao, Science (80-. ). 344, 877 (2014). 

7 W.L. Mao, Y. Meng, G. Shen, V.B. Prakapenka, A.J. Campbell, D.L. Heinz, J. Shu, R. 

Caracas, R.E. Cohen, Y. Fei, R.J. Hemley, and H. -k. Mao, Proc. Natl. Acad. Sci. 102, 

9751 (2005). 

8 R. Boehler, H.G. Musshoff, R. Ditz, G. Aquilanti, and A. Trapananti, Rev. Sci. Instrum. 

80, 045103 (2009). 

9 M. Mezouar, N. Rambert, G. Fiquet, D. Andrault, B. Sitaud, P. Loubeyre, S. Bauchau, 

W. Crichton, R. Boehler, E. Schultz, and G. Blattmann, High Press. Res. 25, 71 (2007). 

10 G. Aquilanti, S. Pascarelli, O. Mathon, M. Muñoz, O. Narygina, and L. Dubrovinsky, J. 

Synchrotron Radiat. 16, 376 (2009). 

11 C. Marini, I. Kantor, O. Mathon, and S. Pascarelli, High Press. Res. 33, 108 (2013). 

12 J.-F. Lin, Geophys. Res. Lett. 31, L14611 (2004). 

13 I. Kupenko, L. Dubrovinsky, N. Dubrovinskaia, C. McCammon, K. Glazyrin, E. 

Bykova, T.B. Ballaran, R. Sinmyo, A.I. Chumakov, V. Potapkin, A. Kantor, R. Rüffer, M. 

Hanfland, W. Crichton, and M. Merlini, Rev. Sci. Instrum. 83, 124501 (2012). 

14 L. Dubrovinsky, K. Glazyrin, C. McCammon, O. Narygina, E. Greenberg, S. Übelhack, 

A.I. Chumakov, S. Pascarelli, V. Prakapenka, J. Bock, and N. Dubrovinskaia, J. 

Synchrotron Radiat. 16, 737 (2009). 

15 T. Gu, X. Wu, S. Qin, and L. Dubrovinsky, Phys. Earth Planet. Inter. 184, 154 (2011). 

16 O. Narygina, L.S. Dubrovinsky, H. Samuel, C.A. McCammon, I.Y. Kantor, K. Glazyrin, 

S. Pascarelli, G. Aquilanti, and V.B. Prakapenka, Phys. Earth Planet. Inter. 185, 107 

(2011). 

17 G. Aprilis, C. Strohm, I. Kupenko, S. Linhardt, A. Laskin, D.M. Vasiukov, V. Cerantola, 

E.G. Koemets, C. McCammon, A. Kurnosov, A.I. Chumakov, R. Rüffer, N. 

Dubrovinskaia, and L. Dubrovinsky, Rev. Sci. Instrum. 88, 084501 (2017). 



- 98 - 
 

18 Series of Lenses combining functions of Focusing the Laser Heating beam and 

spectroradiometric temperature measurements. http://pishaper.com/geoheat.htm 

(Accessed 1 January 2019) 

19 B.D. Adams and A. Chen, Mater. Today 14, 282 (2011). 

20 F.D. Manchester, A. San-Martin, and J.M. Pitre, J. Phase Equilibria 15, 62 (1994). 

21 T. Skośkiewicz, M. Horobiowski, and E. Trojnar, J. Less Common Met. 101, 311 

(1984). 

22 T. Skoskiewicz, Phys. Status Solidi 11, K123 (1972). 

23 H.M. Syed, T.J. Gould, C.J. Webb, and E.M. Gray, (2016). 

24 K. Brownsberger, M. Ahart, M. Somayazulu, C. Park, S.A. Gramsch, and R.J. 

Hemley, J. Phys. Chem. C 121, 27327 (2017). 

25 C.-S. Zha, K. Mibe, W.A. Bassett, O. Tschauner, H.-K. Mao, and R.J. Hemley, J. 

Appl. Phys. 103, 054908 (2008). 

26 M. Santoro, J.F. Lin, V. Struzhkin, H.K. Mao, and R.J. Hemley, Advances in High-

Pressure Technology for Geophysical Applications (Elsevier, 2005). 

27 L. Yang, Chinese Phys. B 25, 076201 (2016). 

28 G. Shen and H.K. Mao, Reports Prog. Phys. 80, 016101 (2017). 

29 J. Ruiz-Fuertes, A. Karandikar, R. Boehler, and D. Errandonea, Phys. Earth Planet. 

Inter. 181, 69 (2010). 

30 L. Yang, A. Karandikar, and R. Boehler, Rev. Sci. Instrum. 83, 063905 (2012). 

31 S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, and G. Morard, Science (80-. ). 

340, 464 (2013). 

32 A. Salamat, R.A. Fischer, R. Briggs, M.I. McMahon, and S. Petitgirard, Coord. Chem. 

Rev. 277–278, 15 (2014). 

33 D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, and M. Ross, Phys. 



- 99 - 
 

Rev. B 63, 132104 (2001). 

34Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 354, 1279 (1996). 

35 R. Salem, S. Matityahu, A. Melchior, M. Nikolaevsky, O. Noked, and E. Sterer, Rev. 

Sci. Instrum. 86, 093907 (2015). 

36 G. Aprilis, I. Kantor, I. Kupenko, V. Cerantola, A. Pakhomova, I.E. Collings, R. 

Torchio, T. Fedotenko, S. Chariton, M. Bykov, E. Bykova, E. Koemets, D.M. Vasiukov, 

C. McCammon, L. Dubrovinsky, and N. Dubrovinskaia, J. Appl. Phys. 125, 095901 

(2019). 

37 G. Morard, D. Andrault, D. Antonangeli, Y. Nakajima, A.L. Auzende, E. Boulard, S. 

Cervera, A. Clark, O.T. Lord, J. Siebert, V. Svitlyk, G. Garbarino, and M. Mezouar, Earth 

Planet. Sci. Lett. 473, 94 (2017). 

38 N. Dubrovinskaia, L. Dubrovinsky, N.A. Solopova, A. Abakumov, S. Turner, M. 

Hanfland, E. Bykova, M. Bykov, C. Prescher, V.B. Prakapenka, S. Petitgirard, I. 

Chuvashova, B. Gasharova, Y.-L. Mathis, P. Ershov, I. Snigireva, and A. Snigirev, Sci. 

Adv. 2, e1600341 (2016). 

39 A. Snigirev, P. Ershov, I. Snigireva, M. Hanfland, N. Dubrovinskaia, and L. 

Dubrovinsky, Microsc. Microanal. 24, 238 (2018). 

40 A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996). 

41 G.B.M. Vaughan, J.P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and 

A. Snigirev, J. Synchrotron Radiat. 18, 125 (2011). 

42 A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. 

Curfs, J. Phys. Conf. Ser. 186, 012073 (2009). 

43 A. Narikovich, M. Polikarpov, A. Barannikov, N. Klimova, A. Lushnikov, I. Lyatun, G. 

Bourenkov, D. Zverev, I. Panormov, A. Sinitsyn, I. Snigireva, and A. Snigirev, J. 

Synchrotron Radiat. 26, (2019). 

44 A. Bosak, I. Snigireva, K.S. Napolskii, and A. Snigirev, Adv. Mater. 22, 3256 (2010). 

45 J.-M. Meijer, D. V. Byelov, L. Rossi, A. Snigirev, I. Snigireva, A.P. Philipse, and A. V. 



- 100 - 
 

Petukhov, Soft Matter 9, 10729 (2013). 

46 I. Snigireva, K.V. Falch, D. Casari, M. Di Michiel, C. Detlefs, R. Mathiesen, and A. 

Snigirev, Microsc. Microanal. 24, 552 (2018). 

47 A. Kavner and R. Jeanloz, J. Appl. Phys. 83, 7553 (1998). 

  



- 101 - 
 

Section 5.B. 

Isothermal Equation of State of Crystalline and Glassy Materials from 
Optical Measurements in Diamond Anvil Cells 

T. Fedotenko1,*, D.S. Souza2, S. Khandarkhaeva1, L. Dubrovinsky2 and N. Dubrovinskaia1, 3
 

1Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, 
University of Bayreuth, D-95440 Bayreuth, Germany 
2Bayerisches Geoinstitut Universität Bayreuth, D-95440 Bayreuth, Germany 
3Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, 
Linköping, Sweden 

Review of Scientific Instruments 92, 063907 (2021), June 2021 
DOI: 10.1063/5.0050190 

Abstract: 

Here we present a method to study the equation of state of opaque amorphous and 

crystalline materials in diamond anvil cells. The approach is based on measurements of 

sample dimensions using high-resolution optical microscopy. Data on the volumetric 

strain as a function of pressure allow deriving the isothermal equation of state of the 

studied material. The analysis of optical images is fully automatized and allows measuring 

the sample dimensions with a precision of about 60 nm. The methodology was validated 

by studying isothermal compression of -Ti up to 30 GPa in a Ne pressure transmitting 

medium. Within the accuracy of the measurements, the bulk modulus of -Ti determined 

using optical microscopy was similar to that obtained from X-ray diffraction. For glassy 

carbon compressed to ~30 GPa the previously unknown bulk modulus was found to be 

equal to K0= 28.6 (8) GPa (K´= 5.5(2)). 

  

                                                      
* Corresponding author, email: TimofeyFedotenko@gmail.com 
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1. Introduction 

Elastic properties of materials define the structural and electronic response of the 

system to applied stress that strongly depends on the nature of interatomic interactions. 

This makes knowledge of the elastic properties of materials as a function of pressure and 

temperature indispensable in materials science. The equation of state (EOS) of a system 

defines the relationship between the thermodynamic variables, such as volume (V), 

pressure (P), and temperature (T), through the bulk modulus and the thermal expansion 

coefficients. At a constant temperature, pressure-volume relations of a solid can be 

described by different types of analytical EOSes1,2, involving the isothermal bulk modulus 

(𝐾 =  −𝑉 ∙ (
𝜕𝑃

𝜕𝑉
)) and its pressure derivatives (𝐾′ =  𝜕𝐾/𝜕𝑃). 

Investigations materials’ EOSes under pressure require subjecting them to 

extreme conditions. The first studies of condensed matter under static compression in the 

gigapascal pressure range were done many decades ago3,4 in large volume presses. The 

invention and technical development of the diamond anvil cell (DAC) technique 

significantly enlarged accessible thermodynamic space in high-pressure studies, and the 

DAC technique has evolved in the powerful and routine experimental method at in-house 

laboratories and synchrotron beamlines5. X-ray diffraction (XRD) in DACs6 is the most 

common technique for deriving EOSes of crystalline materials through measuring the unit 

cell volume of a sample as a function of pressure, but it is not applicable to amorphous 

and glassy materials because of their topological and chemical disorder7. This explains 

why EOSes of crystalline materials have been well studied, but so far little is known about 

P-V relations for non-crystalline matter (melts, metallic glasses, and other amorphous 

solids and nanocrystalline ceramics). These materials are currently in the focus of solid-

state physics, chemistry, materials science, and geophysics research communities. In 

geosciences, glasses are considered as proxies of silicate melts whose properties are of 

great importance, as they control magmatic and volcanic activity and play therefore a 

central role in determining the chemical and physical evolution of the Earth throughout 

geologic time8,9. Studies of the compressional behavior, local structures, and densification 

mechanisms of silicate glasses at deep mantle conditions can shed light on the dynamics 

of the Earth’s interior, which is still insufficiently undersood10. 
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Elastic properties of both crystalline and amorphous materials can be studied in 

situ in DACs by utilizing such methods as X-ray absorption11, Brillouin scattering (BS)12, 

ultrasonic measurements (US)6,13, impulsive stimulated scattering (ISS)14, inelastic X-ray 

scattering (IXS)15, or by determining strain-stress relations using optical miscroscopy16,17. 

The sample density (and hence the EOS) can be obtained from high-pressure X-ray 

absorption measurements18,19, but this method is hard to apply in DACs and it works 

reasonably well only for materials containing heavy elements (i.e. good X-ray absorbers). 

Determination of the strain-stress relations using optical miscroscopy16,17 requires 

measurements of the dimensions of an object being observed under the high-resolution 

optical microscope. According to Abbe’s theory, the resolution limit of the optical system 

(assuming the absence of aberrations) is comparable with the size of the Airy disk17. 

However, it is possible to achieve a much higher resolution by taking into account the 

spatial distribution of the intensity in the Airy disk itself20. The technique for study EOS 

through the sample length determination in DAC using image shearing device21 was firstly 

presented by Scott and Jeanloz in 198417, who reported the precision of measurements 

of about 0.065 µm (for the samples with the linear size of around 100 µm) and validated 

the technique through determining the EOS of Au17. The isothermal bulk modulus (𝐾0 =

156(35) GPa) determined from the optical length measurements was found to be 

comparable with that known from high-precision XRD studies (𝐾0 = 167(5) GPa)22, and 

the high uncertainty was attributed to the limited pressure range of the investigations and 

small sizes of the samples used17. Deriving the EOS of GeO2 glass up to 12 GPa through 

the optical measurements was reported by Smith et al in 199523. In this work, the spacing 

between the lines deposited on the polished surface of the GeO2 sample was determined 

using a magnified image and the precision was reported to be about 0.5 µm for the 

maximum line spacing of 100 µm. Such precision is significantly worse than the one 

reported by Scott and Jeanloz17, but still reasonable for highly compressible glass 

samples23. One of the major problems of the approaches described above is the high 

uncertainty in the obtained sample dimensions: the observed sample length is strongly 

affected by the focus position of the sample and the definition of the length relies on the 

subjective perception of the operator. In order to make the method reliable and accurate, 
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the measurements have to be performed at the same focus position in each pressure 

point. Defining the focus point by eye is inaccurate. 

In 2012, Amin et al.16 described a partially automatized algorithm for determination 

of EOSes through high-resolution optical microscopy. The methodology relied on two-

dimensional image acquisition and its subsequent analysis in order to quantify changes 

in the sample surface area. The authors applied the Canny edge detection algorithm24 to 

define the sample boundaries and calculate its surface area. However, Amin et al.16 

yielded higher experimental uncertainties if compared to the method of Scott and 

Jeanloz17. The lower precision of the partially automatized measurements of Amin et al.16 

could be explained by the problem with a subjective choice of the focus point or/and with 

applying Gaussian smoothing during the image processing with the Canny algorithm. 

Amin et al.16 chose samples of random shapes but applied a smoothing algorithms, which 

blur out the corners and junctions, thus making it harder to detect their actual positions. 

Still, despite all obstacles, the method by Amin et al.16 performed reasonably well on 

several crystalline and amorphous compounds at pressures up to 12 GPa. 

Here, we describe the methodology of the EOS determination based on optical studies 

of materials in DACs at pressures up to 30 GPa. The data analysis is fully automatized 

(i.e. the effect of the operator is negligible) and applicable to opaque crystalline and 

amorphous/glassy materials. Our methodology exploits high-resolution optical 

microscopy in DACs, image analysis, and statistical data treatment. A significant 

advantage of our approach is that experiments do not require access to synchrotron 

facilities or specialized X-ray sources. At the same time, our method can be easily applied 

in combination with X-ray imaging and diffraction. 

2. Experimental details 

2.1. Instrumental setup overview 

In our experiments, we use the customized optical system based on the previously 

developed laser heating setup25. It is schematically shown in FIG 1. 
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FIG. 1. Schematic diagram of the optical system. DM is the long-pass dichroic mirror 

(Thorlabs DMLP505); FOs are the focusing optics (1 – Edmund optics #49-366-INK; 2 - 

Edmund optics #49-323-INK; 3 - Edmund optics #45-220); BS is the 50/50 beam splitter 

(Thorlabs DMLP505); CMOS is the camera for image observation. 

The image of the sample is formed by transmitted light passing through a DAC 

sample chamber and collected from the opposite side by a long working distance 

objective (Mitutoyo NIR infinity-corrected M Plan Apo NIR B 20x). To avoid chromatic 

aberrations, the sample is illuminated by the monochromatic LED (Thorlabs M455L2, λ = 

455 nm). The light passes through a set of lenses into a zoom objective (Nikon AF-S 

NIKKOR 28-300mm f/3.5-5.6G ED VR Lens) and projects the sample image on the matrix 

of a high-resolution CMOS camera (EYE © CMOS cameras, UI-3280CP, resolution 2456 

x 2054 pixels, sensor size ~ 8.4 x 7.0 mm, 12-bit depth). The setup provides variable 

magnification in the range of 80 to 320 times. At maximum magnification, the size of an 

image projected on the camera sensor from the sample of 25 µm is around 8 mm, while 

a single-pixel corresponds to approximately 0.22 µm. 

The pressure during the experiment is controlled by ruby fluorescence26 using a 

532 nm green laser (Laser Quantum, Inc. model gem 532) and an IsoPlane SCT 320 

spectrometer equipped with a 1024x256 PI-MAX 4 camera (Princeton Instruments, Inc.). 

2.2. DAC and sample preparation 

In our experiments, we utilize the BX90-type large aperture DACs equipped with 

Boehler-Almax type diamonds (culet diameters of 250 µm). For each DAC, the sample 
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chamber is formed by pre-indentation of a rhenium gasket to ~ 30-35 µm thickness and 

drilling a hole of 120 µm in diameter in the center of the indentation. Pressure is measured 

by ruby fluorescence, and Ne is used as a pressure transmitting medium. 

The geometrical shape of a sample plays an important role in data acquisition and 

analysis. Simple and symmetrical shapes, such as balls or rectangular plates, allow more 

measurements of the sample length to be made at every pressure point that improves the 

statistics and reduces the random error upon data analysis (this will be discussed in detail 

below, in section 2.4). 

In this study, metallic samples were prepared from titanium microspheres with a 

diameter of about ~ 25 µm (purchased from Cospheric Microspheres Inc.). The spheres 

were pressurized between two diamond anvils in a DAC to form a thin cylindrical plate 

with a thickness of about 5 µm. The obtained plates were given a square shape with an 

edge length of about 25-30 µm (FIG. 2) by milling using the FEI - QUANTA 3D Focused 

Ion Beam (FIB). 

 

FIG. 2. SEM images of the Ti sample. (a) A flattened microsphere of the initial 

diameter of about 25 µm; (b) A square plate is shaped by FIB. 

2.3. Data acquisition 

Setup adjustment 

Adjustment of the camera and the sample illumination is the key to obtaining high-

quality images and, hence, reproducible and precise measurements. Such parameters 

as the intensity and the angle of incidence of light, settings of the CCD camera, and the 

sample position within the field of view must be maintained constant during the whole set 
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of measurements at different pressure points. To achieve stable illumination conditions 

during the whole experiment, the DAC was coupled with a membrane pressure controller 

and mounted on a 3-axis motorized stage. Then we manually adjusted the angle of 

incidence of light to achieve a flat field background in both horizontal and vertical planes 

on the entire image (FIG. 3) 

 

FIG.3. Images of the sample before and after adjustment of the angle of incidence 

of light. Diagrams under the images schematically represent the distribution of the 

background intensity in the horizontal direction. 

Settings of the camera, which can affect the image representation (digital gain, 

automatic contrast/ brightness/ color adjustment, nonlinear LUT (Look-up table), white 

balance, black offset, infrared filter correction matrix) were disabled. At the last step, we 

adjusted the camera exposure time and the light intensity to use the complete dynamic 

range of the camera sensor. 

Data acquisition 

If the length of an object is measured under an optical microscope, the result 

depends on the focal position of the object. To avoid ambiguities, the measurements 

should be made on the images in focus. In order to choose the right image independent 

of the operator, we apply the focus-stacking technique by acquiring a set of optical images 

at different focal positions. At each pressure point, the images are collected upon 
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continuous movement of the DAC along the optical axis of the system. First, the best focal 

position is determined by the eye on the sharpness of the image. Then the DAC is moved 

in the range of about ±20 µm with a speed of ~2 µm/s, and a series of sample images is 

taken with ~100 ms exposure time (FIG.4). Typically, the total number of images for each 

pressure point is up to 200. Although a single set data collection for one pressure point 

takes less than a minute, the stabilization of pressure upon the relaxation of the metallic 

membrane requires ~5-10 min, and the total duration of an experiment with typically ~20 

pressure points takes approximately 6 hours. The algorithm for selecting the sharpest 

images is described in the next section. 

 

FIG. 4. Illustration of focus stacking on the example of images of a titanium plate 

at 4 GPa. (a) The image was taken at -20 µm from the approximate in-focus position; 

(b) near the in-focus position as first determined by eye; (c) at + 20 µm from the 

approximate in-focus position. 

2.4. Data analysis 

A fully automatic procedure (employing a custom Python script) has been 

developed for extracting the length of the sample from an acquired set of images at each 

pressure point. The procedure includes the analysis of image intensity profiles at the 

edges of the sample that results in unambiguous selections of in-focus images, whose 

intensity profiles are used for determining the exact positions of the sample edges (FIG. 

5). This enables to precisely measure the sample length at a given pressure point. 

Image intensity profile analysis 
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A digital image can be represented as a two-dimensional matrix of values of light 

intensities, where each element of the matrix corresponds to a pixel on the camera 

sensor. Considering rows or columns of that matrix, one can make the image cross-

section intensity profiles (FIG. 5). The dotted line in FIG. 5a is the cross section line in the 

image of the square-shaped titanium plate. The intensity profile in FIG. 5b shows the 

intensity values taken from regularly spaced points along the line path in the image. 

 

FIG. 5. Image intensity profile for defining the edges of the sample. (a) Sample 

image with the cross section line. The enlarged red dots mark the position of the sample 

edges, which define the sample length (in the horizontal direction); (b) image cross 

section intensity profile. Grey dots are the measured intensity profile; red curves are the 

fit of the left and right edges regions to the parametric sigmoid functions; enlarged red 

dots are left and right sigmoid's midpoints, which define the position of the sample 

edges. 

To describe the shape of the edges of the intensity profile, we used a parametric 

sigmoid function: 

𝑆(𝑥) = 𝐴𝑜 +
𝐾 − 𝐴0

1 + 𝑒−𝛼(𝑥−𝑥0)
 𝐸𝑞. (1) 

(where 𝑥 is the pixel coordinate, 𝐴𝑜 is the lower asymptote, K is the upper asymptote, α 

is the growth rate (or steepness of the curve) and 𝑥0 is the value of the sigmoid's 

midpoint). Thereby, we define the sample length in pixels as a difference between the two 
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sigmoid's midpoints taken along a single image cross section (at the right and left edges 

of the sample) (𝑥0
𝑟𝑖𝑔ℎ𝑡

−  𝑥0
𝑙𝑒𝑓𝑡

). Such parametrization allows defining the positions of the 

edges with subpixel accuracy. 

Selecting in-focus images 

If an object is not in focus, its edges look blured. It is obvious that the sharper the 

image, the steeper the edges of the cross section intensity profile (FIG. 6). 

 

FIG. 6. The image cross section intensity profiles and microphotographs of the 

sample. (a) Profiles; (b) out of focus position; (c) in-focus position. 

To select the in-focus images, we analyzed every image of the set and plotted the 

steepness parameter (i.e. the growth rate parameter 𝛼 of the sigmoidal function, Eq. 1) 

vs the image number, which indicates the DAC position along the optical axis. An example 

of such a plot is shown in FIG. 7. 
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FIG. 7. Growth rate (parameter α of the sigmoidal function) vs the image number. 

Since both vertical and horizontal cross-sections are used for in-focus images 

selection, the algorithm gives four, usually slightly different, focal positions. This can be 

attributed to slightly uneven illumination of different sample edges or minor inclination of 

the sample in the DAC. However, we found that for a set of 100 - 150 images (frames) 

the variations within up to 10 frames do not introduce measurable errors in the length of 

the sample (see error evaluations section below). 

Sample length measurements 

As said before, for each pressure point we collected a set of up to 200 images. 

Four in-focus images were selected as described above. In the case of rectangular shape 

samples for each of in-focus images, we made a cross section mesh of 50 to 100 lines 

with a line spacing of 5 to 20 pixels (FIG. 8(a)). For each line, the length of the sample 

was determined independently. All measurements for vertical and horizontal lines were 
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averaged independently, and the standard deviation we calculated for both vertical and 

horizontal dimensions. 

 

FIG. 8. Schematic of the cross section mesh for the length measurements. Green 

and purple lines represent image cross sections for rectangular (a) and spherical (b) 

shape samples. Length measurements are performed along each of vertical and 

horizontal cross sections. The mesh size depends on the sample size and geometry, 

with a typical value of 25 to 100 cross section lines per dimension with line spacing of 4 

to 20 pixels. 

For spherical shape samples, at each in-focus image cross section mesh was built 

around vertical and horizontal diameters (FIG. 8(b)). The length of the sample was 

determined as an average of the largest horizontal and vertical dimensions with error 

corresponds to the standard deviation. 

Independently on shape, the final dimensions of the sample at each pressure point 

were the average values obtained for all four processed images (with the final random 

error being the outcome of error propagation for each individual image). 

Data filtering and error evaluation 

Filtering of the data is required in the presence of edge defects of the samples, 

which can induce significant errors in the selection of in-focus images and the 

measurements of the sample length. A bulb-like defect on the top edge of the square-

plate sample is seen in FIG. 9. In such a case, we manually excluded the defect region 
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from further analysis and performed the focus position analysis along with length 

measurements only on defect-free regions of the sample (FIG. 9). 

 

FIG. 9. Example of the data filtering. The black error indicates the bulb-like defect on 

the top edge of the square plate sample. Green and purple lines represent the filtered 

cross-section mesh and excluded defect region is shown as a pink shaded area. 

FIG. 10 presents an example of the uncertainty in the length measurements of 

titanium square plate at different pressures. The average lengths of the sample, as 

measured at the first and the last pressure points, were 1217.2 and 1144.7 pixels, 

respectively. The maximum uncertainty in the sample length was less than three pixels 

that corresponds to the value of relative uncertainty of ~ 0.25% for the sample with the 

real size of 30 µm. 
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FIG. 10 Uncertainty in the length measurements at different pressures for the 

titanium square plate sample. Blue and yellow points correspond to the errors for 

length measurements in horizontal and vertical planes of the image. The average 

lengths of the sample at the first and the last pressure points were 1217.2 and 1144.7 

pixels, respectively. 

EOS determination 

In this work, the determination of the sample volumetric strain is based on several 

assumptions: (1) sample conditions in DAC are quasi-hydrostatic; (2) the sample does 

not have voids in the bulk; (3) compression of the sample is isotropic. Then, the sample 

strain (𝑓𝑒) can be described as Eulerian finite strain27: 

𝑓𝑒 =
1

2
[(

𝑉𝑝

𝑉
)

2
3

− 1]  𝐸𝑞. (2) 

where 𝑉 is the sample volume at a given pressure, and 𝑉𝑝  is the sample volume at the 

reference pressure, and the following relationship is true: 
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𝑉

𝑉𝑝
=  (

𝐿

𝐿𝑝
)

3

𝐸𝑞. (3) 

where 𝐿 is the average length at a given pressure, and 𝐿𝑝 is the average length at the 

reference pressure. To determine the bulk modulus (𝑲𝟎) and it's derivative (𝑲′) the 

pressure–strain data, obtained by optical measurements, were fitted to the 3rd order Birch-

Murnaghan EOS28. 

𝐏 = 3𝑲𝟎 ∙ 𝑓𝑒(1 + 2𝑓𝑒)
5
2 ∙ [1 +

3

2
(𝑲′ − 4)𝑓𝑒]  𝐸𝑞. (4) 

 

3. Examples of application 

EOS of ω-Titanium 

To validate the technique described above, the EOS of a material obtained on the 

basis of optical microscopy measurements should be compared with the known EOS of 

the same material, previously determined using well-established methods. Titanium is a 

transition metal with the EOS well studied using X-ray diffraction29, so we chose Ti as the 

reference material. It is known that Ti undergoes the α-to- structural phase transition30 

which takes place between 2 and 12 GPa at 300 K, depending on the pressurization 

conditions30. It results in a volume reduction of a few percent that provides a chance to 

test if the first order phase transition can be detected using optical microscopy. 

The sample was prepared by flattening of a Ti microsphere (Cospheric 

Microspheres Inc.) and shaped using FIB to a square plate with the edge size of about 

28 µm. After loading the DAC with Ne, the pressure was found to be ~8 GPa. The sample 

was then studied in the pressure range of 8 to 30 GPa (FIG. 11). 
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FIG. 11. Images of the Ti square plate at 11.1(1) and 30.5(1) GPa. The dashed line 

on the right image corresponds to the sample contour at 11.1(1) GPa. 

The images were collected and processed as described above. The results of 

measurements, in form of the dependence of the relative volume on pressure, are shown 

in FIG. 12. Some irregularities in the compressional behavior of the sample were 

observed at around 11 GPa, which may be related to the α-to-ω Ti phase transition29. 

However, the effect is hardly visible (FIG. 12, inset), and further experiments are needed 

to establish how sensitive the optical microscopy may be to detect phase transitions. 

The data collected above 11 GPa are related to ω–Ti. The sample was pressurized 

with a step of 1.5 - 2 GPa from 11.1(1) to 30.5(1) GPa that resulted in 24 data points (FIG. 

12). At each pressure point, a set of 100 to 150 images was collected by focus stacking. 

Four in-focus images were selected. The difference in their focal positions did not exceed 

2 µm. Determination of the length was performed on each of the four images by making 

100 cross-section intensity profiles in the horizontal and vertical directions. Therefore 200 

lengths measurements were made for each image, thus 800 measurements for four 

images in total. The standard deviation of the average length lays within 3 pixels that 

corresponds to approximately 60 nm. 

Over the compression from 11.1(1) to 30.5(1) GPa, a decrease in the average 

sample length of 48 pixels (~1µm) was observed, while the sample volume contracted by 

about 10%. The pressure – relative volume data (FIG. 12) were fitted to the 3rd order BM 

EOS with the parameters 𝐾0 =  108 (2.6) GPa  and 𝐾0
′  =  3.5(3), in good agreement with 

those obtained from XRD data of Dewaele et al. (𝐾0 = 107(3) GPa, 𝐾0
′  =  3.55(3))29. 
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FIG. 12. The pressure dependence of the relative volume of ω-Ti. Our 

experimental points are shown by purple circles; the red dashed line is the fit of 

the experimental data to the 3rd order BM EOS with the following parameters 

𝐾0 =  108 (2.6) GPa, 𝐾′ = 3.5(3). Blue diamonds are the experimental data from 

Dewaele et al30 obtained by XRD measurements. The inset shows the P region 

between 8 and 14 GPa. Different colors indicate the fields of α-Ti (pink) and ω-Ti 

(green). 

EOS of glassy carbon 

Here, two glassy carbon spheres (microspheres type-I, purchased from Alpha 

Aesar Inc.) with the initial diameters of about 12 - 14 µm were loaded into the sample 

chamber (FIG. 13) and pressurized in a Ne pressure transmitting medium up to 30 GPa. 
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FIG. 13. Microphotograph of DAC sample chamber with GC samples at 

ambient pressure (before Ne loading). The GC-1 and GC-2 are glassy carbon 

spheres with diameters of around 12 - 14 µm; R is the ruby pressure marker. 

Starting pressure (after Ne loading) was 6.9 (1) GPa. The sample volume at this 

pressure was chosen as the reference for further strain calculations. Like in the 

experiment with Ti, we performed the length measurements at each pressure step with 

an interval of 1.5 – 2 GPa (18 data points in total). A set of 100 to 150 images was 

obtained by the focus stacking at each pressure point, and four in-focus images were 

selected. The sample in-focus positions were found within the range of 2 µm. 

For GC-1 sphere (the smaller one), we observed a decrease in the average sample 

size (the diameter of the sphere) of ~81 pixels (~1.1 µm) with a volume contraction of 

about 20% upon compression from 6.9 to 30 GPa (FIG. 14). Similar compressional 

behavior was observed for GC-2 sphere (the larger one) up to 23 GPa (FIG. 14), but 

beyond its volume stayed unchanged within the error of size measurements. Considering 

the larger initial diameter of the GC-2 sphere, it might be a result of its bridging between 

the diamond anvils, therefore we excluded the corresponding data points from the further 

analysis. The fit of the experimental data to the 3rd order BM EOS gave the following 

parameters: 𝐾0 = 28(2) GPa, 𝐾′  =  5.5(5) (FIG. 14). As expected, the compressibility of 

glassy carbon appeared to be relatively high. According to the obtained EOS, the total 

volume contraction (relative to the ambient pressure) was of about 31%. Thus, the 
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compressional behavior of glassy carbon was found to be very smooth, in agreement with 

the previous studies based on on Raman spectroscopy35, which gave no evidence of a 

significant change in the type of chemical bonding in GC up to 60 GPa. 

 

FIG. 14. The EOS of glassy carbon. (a) Experimental P-V data obtained for two 

GC spheres, GC-1 (purple circles) and GC-2 (blue triangles); the red dashed line 

is the fit of the experimental data to the 3rd order BM EOS with the following 

parameters: 𝐾0 = 28(2) GPa, 𝐾′  =  5.5(5). (b) Enlarged view for the pressure 

region between 20 and 30 GPa. 

4. Conclusion 

In this work, we have developed the technique to determine the EOS of opaque 

crystalline and amorphous solids using high-resolution optical microscopy in DACs. Our 

methodology is based on acquiring sample images at variable pressure and determining 

changes in the sample linear dimensions upon compression with a very high precision 

down to 60 nm. The analysis of images is automatized that grants the results to be 

independent of the operator. 

The method was validated by studies of the EOS of ω-Ti up to 30 GPa. Our results 

agree well with the literature data obtained for ω-Ti on the basis of synchrotron XRD29. 

The EOS of glassy carbon reported in this work was determined for the first time.  
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The significant advantage of the presented method is that experiments do not 

require access to synchrotron facilities or specialized X-ray sources (but it can be easily 

coupled with X-ray imaging and diffraction). We are convinced that our work opens the 

way for wide investigations of opaque glasses, amorphous alloys, and crystalline 

materials at high pressures. 
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Abstract: 

The diamond anvil cell (DAC) technique is a powerful method for the synthesis and 

studying of novel materials at extreme conditions. In this work, we report on high-pressure 

high-temperature (HPHT) synthesis of palladium carbides (PdCx) and palladium hydride 

(PdH) in a laser heated diamond anvil cell. Formation of PdCx phases with a face-

centered cubic (fcc) structure resulted from a chemical reaction of Pd with carbon from 

the diamond anvils at a pressure of about 50 GPa and temperature of 2500-3000 K. The 

samples were analyzed in situ using synchrotron X-ray diffraction. The compressional 

behavior of the two phases, PdC0.19 and PdC0.21, was studied on decompression. The fit 

of the pressure-volume data using the 3rd order Birch-Murnaghan equation of state gave 

the following parameters: V0 = 65.1(1) Å3, K0 = 241(9) GPa and K0
′  = 2.1(3) for PdC0.21, 

and V0 = 64.51(5) Å3, K0 = 189(8) GPa and K0
′  = 4.5(4) for PdC0.19. The palladium hydride 

PdH was synthesized at P= 39(2) GPa and T= 1500(200) K through a direct reaction of 

Pd with paraffin oil. 

  

                                                      
* Corresponding author, email: TimofeyFedotenko@gmail.com 
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1. Introduction 

Palladium is a transition metal known for its exceptional ability to absorb hydrogen in a 

bulk [1,2]. The palladium hydride was found to exhibit superconducting properties (Tc = 

8-10 K) [3,4] that stimulated intensive studying of the Pd-H and Pd-D systems at extreme 

conditions [5]. As palladium is one of the preferred catalysts for hydrogenation of 

hydrocarbons in the petrochemical industry [6–9], studies of its possible hydrides and 

carbides are also of technological importance: their formation in palladium nanoparticles-

based catalysts can significantly affect the activity and selectivity of the catalysts [10,11]. 

The synthesis of PdCx by melting a mixture of palladium and graphite powders in an 

induction furnace under an argon atmosphere at ambient pressure was realized by 

Cadevill and Lerner (1976) [12]. The solubility of carbon in the palladium bulk was found 

to be below x = 0.03. The higher carbon content (x = 0.13(5)) was reported in palladium 

carbide synthesized from palladium nanoparticles deposed on a carbon substrate [13]. At 

a temperature of 400 K in acetylene and hydrogen atmosphere at 1 bar, either hydrides 

or carbides formed depending on the partial pressure of hydrogen and acetylene. 

Palladium carbides and hydrides are rather alloys than ionic compounds. Carbon or 

hydrogen atoms occupy octahedral interstitial sites of the fcc palladium structure that 

results in an increase of the lattice parameter without change of the symmetry. 

In this work, we report on the synthesis of carbon-rich Pd-alloys, PdC0.19 and PdC0.21, and 

palladium hydride (PdH) in a laser heated diamond anvil cell through a chemical reaction 

of Pd with either carbon or paraffin oil. The samples were characterized using powder X-

ray diffraction at the high-pressure diffraction beamline ID15B at the ESRF (the European 

Synchrotron Radiation Facility, Grenoble). The compressional behavior of the samples 

was studied up to 50 GPa. Reference data on the compressibility of palladium were 

obtained up to about 30 GPa. 

2. Experimental methods 

Here we present the results of four experiments. In all experiments, we used the BX90-

type large X-ray aperture DACs equipped with Boehler–Almax type diamonds (culet 

diameter 250 µm). The sample chamber was formed by pre-indenting of a rhenium gasket 
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to ~25µm thickness and drilling a hole of ~100 µm in diameter in the center of the 

indentation. 

In the first two experiments (DAC1 and DAC2), a Pd foil was loaded into the sample 

chamber along with a Ne gas (compressed to about 1.2 kbar), which was used as a 

pressure transmitting medium and a pressure marker. In the experiment DAC3, a piece 

of a Pd foil was clamped between two thin layers of NaCl inside the sample chamber in 

order to reduce the temperature gradients in the sample during laser heating. Paraffin oil 

was used in the experiment DAC4 as both a pressure-transmitting medium and a reagent 

for Pd hydride synthesis. The pressure was determined using the equations of states 

(EOSes) of NaCl[14] and Ne [15] and monitored additionally on the Raman signal from 

the diamond anvils [16]. 

The laser-heating (LH) of the samples was performed using an in-house laser heating 

setup [17]. The LH system is equipped with two YAG lasers (1064 nm central wavelength) 

and the IsoPlane SCT 320 spectrometer with a 1024x2560 PI-MAX 4 camera for the 

collection of thermal emission spectra from the heated spot. Temperatures were 

estimated by the fitting of thermal emission spectra of the sample to the grey body 

approximation of Planck’s radiation function in a given wavelength range (570-830 nm). 

X-ray diffraction experiments were carried out at the high-pressure diffraction beamline 

ID15B of the ESRF. Powder diffraction images at ambient temperatures were collected 

during continuous rotation of a DAC from – 20° to + 20° ω with an acquisition time of 2 

seconds under incident monochromatic X-ray beam (λ = 0.4117 Å, Δλ/λ ~ 10-4) using a 

MAR555 flat panel detector. Conventional diffraction patterns were obtained by 

integration of X-ray diffraction images to the intensity profile as a function of 2θ angle 

using Dioptas software [18] and were analyzed with the Le Bail fitting technique using 

TOPAS 4.2. The EOSes of the synthesized materials were obtained by fitting the 

pressure-volume dependence data using the EoSFit7-GUI [19]. 

3. Results and discussion 

3.1. EOS of Pd (DAC 1) 
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To detect the effect of possible carbon (or hydrogen) dissolution in palladium, data on the 

compressibility of pure Pd metal are required. A piece of Pd foil was loaded into a sample 

chamber of a DAC along with Ne and pressurized stepwise (with a step of 2-3 GPa) up 

to about 30 GPa. Table 1 presents the unit cell volume of Pd as a function of pressure. 

Table 1. The pressure dependence of the unit cell parameter of Pd. Pressure was 

determined using the EOS of Ne [15]. 

P, GPa V, Å3 

0 58.868(2) 

6.9(2) 56.709(3) 

7.9(2) 56.476(3) 

9.5(2) 56.121(3) 

11.2(2) 55.743(3) 

13.2(2) 55.324(3) 

15.6(2) 54.847(3) 

17.8(2) 54.448(3) 

19.6(2) 54.134(3) 

21.4(2) 53.828(3) 

23.3(2) 53.517(3) 

25.2(2) 53.246(3) 

27.2(2) 52.965(3) 

29.5(2) 52.667(3) 

31.2(2) 52.411(3) 

The experimental pressure-volume data of Pd were fitted using the 3rd order Birch-

Murnaghan equation of state (BM3 EOS) (Figure 1(a)): 

𝐏 =  
𝟑𝐊𝟎

𝟐
∙ [(

𝐕𝟎

𝐕
)

𝟕

𝟑
− (
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𝐕
)

𝟓

𝟑
] ∙ {𝟏 −  

𝟑

𝟒
(𝟒 − 𝑲′) ∙ [(

𝐕𝟎

𝐕
)

𝟐

𝟑
− 𝟏]} (1) 

where P is the pressure, V0 is the volume at ambient pressure, V is the volume at pressure 

P, K0 is the bulk modulus, and K0
′  is the pressure derivative of K0. 

The parameters of the equations were found to be: V0= 58.868(2) Å3  K0 = 157(3) GPa, 

and K′ = 9.9(4). The volume of the Pd unit cell at ambient pressure (58.868 Å3) is in good 

agreement with literature data (V0 = 58.85[20], 58.9 [21]). 
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Figure 1. The pressure dependence of the unit cell volume of Pd (a) and the Eulerian 

strain – normalized pressure (f-F) plot of the experimental data (b). Our experimental 

points are shown by circles. The solid curve is the fit of the experimental P-V data using 

the BM3 EOS with the following parameters: V0= 58.868(2) Å3, K0= 157(3) GPa, K’= 

9.9(4). Errors in experimental data are within the symbol size. 

 

The F-f plot shown in Figure 1(b) indicates a good quality of fit of experimental data with 

the BM3 EOS and confirms that there are no structural phase transitions in Pd on 

compression up to 30 GPa. The bulk modulus and its pressure derivative obtained in this 

work do not agree well with the values reported previously by Mao et al. (1978) (V0 = 

58.45 Å3,  K0 = 183 GPa, K′ = 5.28) [5,22]. A reason for the apparent inconsistency is 

unclear, but it might be due to Mao et al. had only 5 experimental points in the range of 0 

-100 GPa obtained in two different experiments, and water or methanol-ethanol mixture 

used as a pressure medium [22] created highly non-hydrostatic conditions above ~15 

GPa. If we fit our data using the K’ parameter fixed on the value reported in [22] (K’ = 

5.28), then we get K0=190(2) GPa that is reasonably close to the value reported in [22]. 

We admit that 𝐾′ = 9.9(4)  obtained in our work is rather unusual for transition metals (for 

most of the pure transition metals K0´ varies within the range of 3.5-6 [23]) and further 

studies are needed to clarify this phenomenon. 

3.2. The chemical reaction of Pd with a diamond anvil at high pressure 

and temperature  

3.2.1. Pd in Ne pressure transmitting medium (DAC 2) 
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In the DAC2, the sample of Pd foil was pressurized in Ne pressure-transmitting medium 

to 52(1) GPa. The sample was laser heated from both sides by scanning with a laser 

beam through the whole surface of the sample. During continuous-wave laser heating of 

the sample at constant laser power, the temperature varied from 2500(200) to 3000(200) 

K in different parts of the sample. The examples of high-pressure X-ray diffraction 

patterns of the sample before and after laser heating are shown in Figure 2. 

 

Figure 2. Diffraction patterns of the Pd sample in a Ne pressure transmitting medium 

before and after laser heating at 52(1) GPa. The fcc PdCx was formed after laser 

heating of Pd at 2500(200) – 3000(200) K. Indexes of the diffraction peaks of palladium 

(Pd), pallidum carbide (PdCx), and neon (Ne) are designated (λ = 0.4111 Å). 

 

The new peaks appearing after laser heating are readily indexed as those of the fcc 

structure. The unit cell volume of the new phase is significantly larger than that of pure 

Pd at a similar pressure and we interpreted this phase as palladium carbide, PdCx formed 

due to a reaction between Pd and carbon from the diamond anvil.  

Close examination of the individual reflections of PdCx shows that all of them are split 

(see Figure 3 featuring the (111) reflection of Pd and two split (111) reflections of PdCx). 

This fact makes us suggest that we are dealing with a material with a range of 

compositions (varying carbon content, x). 
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Figure 3. The (111) reflection of Pd and PdCx phases at 52(2) GPa. The unit cell volume 

of Pd is 49.738(5) Å3. The unit cell volumes of two different phases of PdCx with 

different carbon content are 52.85(2) Å3 and 54.31(2) Å3. 

 

A conventional chemical analysis (with a microprobe, for example) is impossible on the 

very small samples we synthesized in DACs, so we had to rely on our estimation of the 

chemical composition of PdCx using Vegard’s law and the known unit cell volumes of pure 

Pd and PdC0.03 [12].  The phase with the largest amount of carbon was determined as 

PdC0.21(1). The smallest content of carbon was found to be x=0.15(1). One of the possible 

explanations of the observed phenomenon is the temperature dependence of the 

solubility of carbon in palladium that leads to the formation of a plethora of PdCx 

compositions at conditions of large temperature gradients during laser heating. More 

homogeneous temperature distribution in the heated spot could probably promote the 

synthesis of a carbide of single chemical composition. 

Upon decompression to ambient pressure, all peaks of PdCx remain split and 

demonstrate similar behavior. We followed changes in the lattice parameters for various 

PdCx phases with pressure (Figure 4(a)) and determined the parameters of the BM3 EOS 

for PdC0.21(1).  The fitting of the P-V data  for PdC0.21(1) gives V0 = 65.1(1) Å3, K0 = 241(9) 

GPa and K′ = 2.1(3). The Eulerian strain-normalized pressure (f-F) plot of the data based 
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on the Birch-Murnaghan equation of state is shown in Figure 4(b). The solid line 

represents the linear fit which evidences an appropriate choice of the BM3 EOS. 

 

Figure 4. (a) The pressure-volume dependence for a few PdCx. phases with different 

carbon content from x=0.15(1) to x=0.21(1). Green triangles and purple diamonds 

represent experimental results;  the solid red curve is the BM3 EOS fit for PdC0.21(1) (V0 

= 65.1(1) Å3, K0 = 241(9) GPa and K′ = 2.1 (0.3)). All error bars are within the size of the 

symbol. (b) Eulerian strain – normalized pressure (f-F) plot of the synthesized PdC0.21 

phase based on the BM3 EOS. The circles and solid lines represent experimental data 

points and their fit, correspondently. 

 

3.2.2. Pd in NaCl pressure transmitting medium (DAC 3) 

A piece of Pd foil was clamped between two thin layers of NaCl inside the sample 

chamber of DAC 3 and compressed up to 58(2) GPa. NaCl was chosen as a pressure 

transmitting medium due to its better thermal insulating properties, as compared to Ne 

[24], which can reduce thermal gradients in the sample during its laser heating. An 

example of the diffraction pattern collected after laser heating of the sample at 2500(200) 

K is shown in Figure 5. 
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Figure 5. The diffraction pattern of the Pd sample in a NaCl pressure transmitting 

medium after laser heating at 58(2) GPa. The fcc PdCx (x=0.19(1)) was formed after 

laser heating of Pd at 2500(200) K. Indexes of the diffraction peaks of palladium (Pd), 

palladium carbide (PdCx), and B2-structured sodium chloride (NaCl) are designated (λ = 

0.4113 Å). 

 

Unlike the experiment DAC2, with Ne as a pressure-transmitting medium, no peak 

splitting of PdCx was detected here. This supports our suggestion of the temperature 

dependence of carbon’s solubility in palladium. 

The DAC3 was decompressed in several steps to ambient pressure; powder diffraction 

data were collected at each pressure point. The P-V data of the PdCx phase, identified 

as PdC0.19(1) on Vegard’s law, was fitted using the BM3 EOS (Figure 6) that gave V0 = 

64.51(5) Å3, K0 = 189(8) GPa, and 𝐾′ = 4.5(4). 
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Figure 6. (a) The pressure-volume dependence of PdC0.19(1). The dots represent 

experimental results, the solid curve is the fit to the BM3 EOS (V0 = 64.51(5) Å3, K0 = 

189(8) GPa and K′ = 4.5(4)). All error bars are within the size of the symbol. (b) Eulerian 

strain – normalized pressure (f-F) plot of the synthesized PdC0.19 phase based on the 

BM3 EOS. The circles and solid lines represent experimental results and their fit 

correspondingly. 

 

The EOS parameters of the two PdCx phases studied are presented in Table 2. There is 

an apparent difference in the elastic behavior of carbides with very similar compositions 

(Figure 6). Use of the BM3 EOS leads to quite different EOS parameters for Pd, PdC0.19, 

and PdC0.21, whereas the BM2 EOS (K0´ = 4) gives similar K0 values for all of them (Table 

2). 

 

Table 2. Parameters of the BM3 EOSes for pure Pd, PdC0.19 and PdC0.21. 

Sample V0, Å3 K0, GPa K’ K0, GPa (K’= 4) 

Pd 58.863(2) 157(3) 9.9(4) 203(3) 

PdC0.19(1) 64.51(5) 189(8) 4.5 (4) 203(5) 

PdC0.21(1) 65.1(1) 241(9) 2.1(3) 198(2) 

 

3.3.  The chemical reaction of Pd with paraffin oil at high pressure and 

high temperature (DAC 4)  
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It is known that laser heating of metal in paraffin oil in a DAC may lead to the synthesis 

of carbides (sometimes together with hydrides) [25]. In this experiment, a piece of Pd foil 

was loaded inside the sample chamber of a DAC along with paraffin oil, which served as 

both a pressure-transmitting medium and a source of carbon and hydrogen. The sample 

was compressed up to 39(2) GPa (close to the pressure at which PdCx were synthesized 

in DAC 2 and DAC 3), and laser-heated from both sides at 1500(200) K. Powder X-ray 

diffraction pattern of the temperature quenched sample (Figure 7) features two sets of 

reflections which were assigned to diamond (D) and the fcc-structured phase with the 

lattice parameter a=3.918(2) Å. 

 

Figure 7. A diffraction pattern of palladium hydride at 39 (2) GPa and ambient 

temperature. The fcc PdHx (x≈1) along with diamond was formed after laser heating of 

Pd in paraffin at 1500(200) K and 39(2) GPa. Indexes of the diffraction peaks of 

palladium hydride (PdH) and diamond (D) are designated (λ = 0.4117 Å). The unit cell 

volume of PdH is 60.18(5) Å3. 

 

The unit cell volume of the fcc-phase (60.18(5) Å3) at 39(2) GPa is too large to allow 

identifying it as an fcc-PdCx carbide, but within the uncertainty of the measurements, the 

volume agrees well with the unit cell volume (60.1(1) Å3) of fcc palladium hydride PdH at 

the pressure of 39 GPa [5]. Thus we could suggest that the reaction of pure Pd and 

paraffin oil at ~39 GPa and ~1500(200) K results in the synthesis of PdH compound and 

diamond. This observation shows a method of synthesis of PdH at high pressure in DACs 
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which does not require special equipment (like a high-pressure hydrogen gas loader) if 

the hydride is produced through a direct reaction between metal and hydrogen. 

4. Conclusion 

In the presented work we synthesized Pd carbides and Pd hydride in laser heated 

diamond anvil cells. We used synchrotron X-ray diffraction to determine the composition 

of the synthesized phases and study their equations of state at room temperature. It was 

shown that pure Pd metal reacts with carbon from the diamond anvil at high pressure and 

high temperature conditions that result in the formation of a number of PdCx phases of 

different compositions in the case of the use of Ne as a pressure medium. We interpreted 

this observation as to be due to inhomogeneous heating of the samples and the 

temperature dependence of carbon’s solubility in Pd. The use of NaCl as a pressure 

transmitting medium resulted in the formation of a single (PdC0.19) carbide. Additionally, 

we showed a possibility of the synthesis of PdH at high pressure in DACs by a direct 

chemical reaction of Pd and paraffin oil. 
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Abstract: We report the high-pressure synthesis and the equation of state (EOS) of a 

novel nickel carbide (Ni3C) It was synthesized in a diamond anvil cell at 184(5) GPa 

through a direct reaction of a nickel powder with carbon from the diamond anvils upon 

heating at 3500(200) K. Ni3C has the cementite-type structure (Pnma space group, a = 

4.519(2) Å, b = 5.801(2) Å, c = 4.009(3) Å), which was solved and refined based on in 

situ synchrotron single-crystal X-ray diffraction. The pressure-volume data of Ni3C was 

obtained on decompression at room temperature and fitted to the 3rd order Burch-

Murnaghan equation of state with the following parameters: V0 = 147.7(8) Å3, K0 = 

157(10) GPa and K0
′  = 7.8(6). Our results contribute to the understanding of the phase 

composition and properties of Earth’s outer core. 

 

Keywords: Nickel Carbide, High pressure, X-ray Diffraction, Equation of State, Earth’s 

outer core.  
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1. Introduction 

Nickel is known as the second most abundant element in Earth’s core after iron (Birch, 

1952; Prescher et al., 2015). Cosmochemical models and studies of meteorites suggest 

that Earth’s core apart of Fe contains also about 5 wt. % of Ni (Litasov and Shatskiy, 

2016; McDonough, 2003) and, in the inner core, up to 10 wt. % of light elements (Poirier, 

1994; Torchio et al., 2020; Wood, 1993). Which elements exactly and their amount is a 

subject of active discussions (Litasov and Shatskiy, 2016). A large amount of carbon in 

iron meteorites (Bashir et al., 1996), its high solubility in liquid Fe at high pressure 

(Hirayama et al., 1993; Wood, 1993), and high abundance in the solar system (Wood, 

1993), suggest carbon be one of the most important light elements in Earth’s core. 

Modern estimations of the inner core composition indicate up to 2.0 wt. % of carbon 

(Litasov and Shatskiy, 2016). All these facts resulted in numerous high-pressure studies 

of the Fe-C system over the last decades. The intermediate Fe-C compounds Fe3C and 

Fe7C3 were suggested to be the most likely candidates to the carbon-bearing phases in 

Earth’s core, as they were found at relevant pressures and temperatures (Chen et al., 

2014; Lord et al., 2009; Nakajima et al., 2009; Prescher et al., 2015; Wood, 1993). 

Although at room temperature Fe3C was shown to be stable up to 187 GPa, it 

decomposes into a mixture of solid Fe7C3 and hcp-Fe at above 145 GPa upon laser 

heating and transforms into Fe-C liquid and solid Fe7C3 at temperatures of above 3400 K 

(Liu et al., 2016). Moreover, the high Poisson’s ratio of Fe7C3 at high pressures (Prescher 

et al., 2015) indicates that the presence of carbon may significantly affect the elastic 

properties of iron. This corroborates well with the Preliminary Reference Earth Model 

(PREM) (Dziewonski and Anderson, 1981), which shows that Earth’s inner core also has 

a high Poisson’s ratio. 

Contrary to the binary iron-carbon system, the Fe – Ni – C, and Ni – C systems at high 

PT conditions are still poorly understood. Nickel can strongly modify the physical 

properties of pure Fe at elevated pressures and temperatures. Recent studies have 

shown that Ni alloying on Fe doesn’t affect the melting temperature of Fe up to 100 GPa, 

however, modifies its phase boundary by shifting the hcp/fcc/liquid triple point to the 

higher pressure and temperature region (Torchio et al., 2020). For example, for Fe-20 
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wt.% Ni alloy the triple point was found to be at 170(20) GPa and 4000(400) K (Torchio 

et al., 2020) as compared to 100(10) GPa and 3500(200) K for pure Fe (Morard et al., 

2018). Pressure-induced Invar effect in Fe-Ni alloys was reported by Dubrovinsky et al. 

in 2001. The thermal expansion of the alloys Fe0.55Ni0.45 and Fe0.20Ni0.80 was found to be 

extremely low in the temperature interval of 291 K to 500 K at pressures of 7.7 and 12.6 

GPa, correspondingly (Dubrovinsky et al., 2001). It was also proven that alloys of Fe with 

Ni have significantly higher strength in comparison with pure Fe (Reagan et al., 2018). 

The mineral cohenite, (Fe, Ni)3C, which is isostructural to Fe3C, was found in iron 

meteorites(Brett, 1966) and predicted to be stable at high pressures (Ringwood, 1960). 

However, a pure-Ni cementite-type phase (Ni3C) has never been reported before. 

Here, we report the synthesis and EOS of a novel high-pressure phase of nickel carbide 

(Ni3C) in a laser-heated diamond anvil cell (LHDAC) at 184(5) GPa and 3500(200) K. It 

has the orthorhombic cementite-type structure (Pnma, a = 4.519(2) Å, b = 5.801(2) Å, c 

= 4.009(3) Å), which was solved and refined using in situ synchrotron single-crystal X-ray 

diffraction. 

2. Materials and Methods 

In our experiments, we used the BX90-type large X-ray aperture Diamond Anvil Cell 

(DAC) equipped with Boehler–Almax type diamonds with 80 µm culet diameter. To form 

the sample chamber, a rhenium gasket was pre-indented to ~ 20 µm thickness and a hole 

of 40 µm in diameter was drilled in the center of the indentation. A nickel powder was 

clamped between two thin layers of LiF inside the DAC’s sample chamber. LiF played a 

role of a pressure transmitting and thermal insulating medium in order to decrease 

temperature gradients in the sample during laser heating. The pressure was determined 

using the equations of states (EOSes) of Ni(Dewaele et al., 2008) and monitored 

additionally using Raman signal from the diamond anvils (Akahama and Kawamura, 

2006). 

The laser-heating (LH) of the samples was performed using in house laser heating 

setup(Fedotenko et al., 2019). The double-sided LH system is equipped with two YAG 

lasers (1064 nm central wavelength) and the IsoPlane SCT 320 spectrometer with a 
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1024x2560 PI-MAX 4 camera for the collection of thermal emission spectra from the 

heated spot. Temperatures were determined by fitting of thermal emission spectra of the 

sample to the grey body approximation of Planck’s radiation function in a given 

wavelength range (570-830 nm). 

High pressure single-crystal and powder X-ray diffraction (SCXRD) experiments were 

carried out at the extreme conditions beamline P02.2 (DESY, Hamburg, Germany) 

(Liermann et al., 2015) and material science beamline ID11 (ESRF, Grenoble, France). 

The following beamline setups were used: At P02.2, λ = 0.29 Å, the beam size ~2 × 2 

μm2, a Perkin Elmer XRD 1621 detector; at ID11, λ = 0.30996 Å, the beam size ~ 0.5 × 

0.5 μm2, a Frelon4M detector. Single-crystal XRD data were collected during rotation of 

the DAC around the vertical ω-axis in a range ±35°. The diffraction images were collected 

with an exposure time of 5 seconds per frame with an angular step Δω = 0.5°. 

To analyze the SCXRD data we used the CrysAlisPro software (Rigaku Oxford 

Diffraction, 2018). The analysis procedure includes the peak search, finding reflections 

belonging to a unique single-crystal domain, indexing, and data integration. The crystal 

structure was solved using ShelXT (Sheldrick, 2015) structure solution program and 

refined with the JANA 2006 software (Petříček et al., 2016). 

Powder diffraction measurements were performed either without or upon continuous 

sample rotation about the ω axis of a diffractometer in the range of ±20°. The images 

were integrated into powder patterns with Dioptas software (Prescher and Prakapenka, 

2015) and analyzed with Le Bail fitting technique using TOPAS 4.2. The parameters of 

the equation of state were obtained by fitting the pressure-volume data using EoSFit7-

GUI software (Gonzalez-Platas et al., 2016). 

3. Results and discussion 

Sample of Ni foil was pressurized in LiF pressure-transmitting medium up to 184 (5) GPa 

and laser-heated up to 3500 (200) K by scanning the Ni sample with a laser beam. A 

direct reaction between Ni and carbon from the diamond anvil resulted in the synthesis of 

a new compound indexed as orthorhombic (figure 1). 

https://en.wikipedia.org/wiki/Orthorhombic
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Figure 1. Reconstructed reciprocal lattice planes of orthorhombic Ni3C compound with 

the cementite-type structure. 

To localize the point of interest, high-resolution two-dimensional X-ray diffraction mapping 

(40x40 steps of 1 µm each) through the whole sample was realized at the ID11 beamline 

at the ESRF (figure 2). 
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Figure 2. (a) Two-dimensional X-ray diffraction mapping of the sample chamber. The 

color map allowing to distinguish between the present phases. The intensity of the 

colors is proportional to the intensity of particular reflections: the dark purple region 

beyond the pressure chamber corresponds to the (100) and (101) reflections of the Re 

gasket; the blue region – the (200) reflection of the Ni; The orange region – the (111) 

reflection of LiF; (020) and (301) reflection of Ni3C for the red region. (b) A comparison 

view of the sample chamber under an optical microscope. (с) Powder diffraction pattern 

collected from the sample at the position highlighted by a black dotted square on the 

XRD color map. 

The reaction products consist of numerous single-crystalline grains that were identified 

using synchrotron single-crystal XRD. For one of such grains (one domain), we were able 

to collect 182 independent reflections and reduce the data with Rint = 7.3% at 184 (5) 

GPa. The structure solution and refinement (final R1 = 6.4%, see Table 1) revealed the 

cementite-type orthorhombic structure (space group Pnma, #62; a = 4.520(3) Å, b = 

5.8014(17) Å, c = 4.009(4) Å at 184 (5) GPa) and the Ni3C chemical composition (Table 

1). 
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Table 1. Crystallographic data for the Ni3C at 184(5) GPa and 293 K. 

Composition Ni3C Density(g·cm-3) 11.884 

Crystal system Orthorombic Radiation type synchrotron, λ = 0.2895 Å 

Space group Pnma µ (mm-1) 4.113 

temperature 
(K) 

293 Diffractometer P02.2 @DESY 

a (Å) 4.520(3) Absorption correction 
Multi-scan (ABSPACK, 

CrysAlis PRO 1.171.40.53) 

b (Å) 5.8014(17) 

No. of measured, 
Independent and 

observed [I > 3σ(I)] 
reflections 

366, 182, 83 

c (Å) 4.009(4) Rint 7.3% 

α (°) 90 θ range values() 3.1 to 16.8 

γ (°) 90 Refinement method Full matrix least squares on F 

β (°) 90 R[F > 3σ(F)], wR(F), S 6.43, 8.42, 1.43 

V (Å3) 105.12(13) No. of parameters 19 

Z 4 Δρmax, Δρmin(e·Å-3)  3.09, -3.51 

 

The structure can be described as built of distorted trigonal prisms formed by six nickel 

atoms coordinating a C atom (figure 3). The Ni – C distances in the prism vary from 

1.7931(11) to 1.8112(13) Å. 

 

Figure 3. Crystal structure of the cementite type Ni3C at 184(5) GPa and room 

temperature. Purple and black spheres designate nickel and carbon atoms, 

correspondingly. 
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The Ni3C sample was studied on a stepwise decompression. SCXRD data were collected 

at seven pressure points down to 84(2) GPa. Below 84(2) GPa no diffraction pattern from 

Ni3C was observed, however, a reason remained unclear. That makes the question if the 

quality of the sample deteriorated or the phase decomposed or amorphized, stays open. 

The pressure-volume data of Ni3C was fitted to the 3rd order Birch-Murnaghan (BM3) EOS 

and gave the following parameters: V0 = 147.7(8) Å3; K0 = 157(10) GPa, K´ = 7.8(6) (figure 

4). 

 

Figure 4. The pressure-volume dependence of Ni3C. Red dots represent experimental 

data, the dashed red curve is the BM3 EOS fit (V0 = 147.7(8) Å3; K0 = 157(10) GPa, K´ = 

7.8(6)). Solid purple, blue and green lines correspond to the EOSes of Fe3C from 

studies of Li et al. (K0 = 174(6) GPa, K´ = 4.8(8)) (Li et al., 2002), Prescher et al (K0 = 

161(2) GPa, K’ = 5.9(2)) (Prescher et al., 2012) and Scott et all (K0 = 165(4) GPa, K’ = 

5.99 (9))(Scott et al., 2001). 

Based on obtained data, we calculated the bulk sound velocity for Ni3C as a function of 

pressure at 293 K and compared it with those known for Fe, Ni, and possible carbon-

bearing components of Earth’s core (Fe3C and Fe7C3). 
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Figure 5. Calculated bulk sound velocity as a function of pressure for Ni3C (this study, 

black solid line with circles); Fe3C (green line with diamonds(Scott et al., 2001)) and 

Fe7C3 (blue line with squares (Prescher et al., 2015)); Ni (red line with triangles 

(Dewaele et al., 2008)); Fe (purple line with pentagons (Fei et al., 2016)) at 293 K. 

Figure 5 shows that within the errors Ni3C exhibits similar bulk velocities as Fe3C and 

Fe7C3 at pressures up to 400 GPa. Thereby, the presence of Ni in the alloy likely should 

not affect the elastic properties of the Fe-Ni-C system at high pressure but potentially can 

change the carbon distribution. Due to the stability of Ni3C at conditions of Earth’s outer 

core, it may be considered as one of the likely candidates to carbon-bearing phases in 

the core along with Fe7C3. 

4. Conclusion 

In the presented work, we have synthesized a nickel carbide yet unknown at ambient 

conditions. It was shown that Ni reacts with carbon at high-pressure and high-temperature 

conditions that result in the formation of an orthorhombic Ni3C compound (space group 
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Pnma, a = 4.520(3) Å, b = 5.8014(17) Å, c = 4.009(4) Å at 84(5) GPa) with the cementite-

type structure revealed using synchrotron single-crystal X-ray diffraction. The Ni3C was 

studied on decompression down to 84(2) GPa. We have shown that in the pressure range 

84(2) -185(5) GPa, Ni3C is less compressible than cementite (Fe3C); the calculated bulk 

sound velocities are similar to those known for Fe3C and Fe7C3 at pressures up to 400 

GPa and 297 K. Ni3C remains stable at pressure-temperature conditions relevant to 

Earth’s core and thus can be considered as one of the likely candidates to carbon-bearing 

phases in the core along with Fe7C3. 
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