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Geboren am: 16. Mai 1995
Matrikelnummer: 1540550

Abgabedatum: 29.10.2019
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MPI-based multi-GPU LBM

Zusammenfassung

In dieser Bachelorarbeit wird eine Methode vorgestellt, um die Lattice Boltzmann Methode
durch Kopplung mit dem Message Passing Interface (MPI) auf mehreren Grafikprozessoren zu
parallelisieren. Diese Aufgabe stellt sich v.a. im Hinblick auf den begrenzten Speicherplatz eines
einzelnen Grafikprozessors und der Speicherintensität der Lattice Boltzmann Methode. Es wird
ein konkreter Algorithmus für die Simulationssoftware FluidX3D gezeigt und validiert. Dieser
weist die Flexibilität auf, mit verschiedenen Erweiterungen der Lattice Boltzmann Methode
zu funktionieren: neben komplexen geometrischen Randbedingungen, Wärmeflüssen und Kon-
densationsprozessen ist auch die Simulation von freien Oberflächen möglich. Eine besondere
Herausforderung ist dabei, die funktionsorientierte MPI-Kommunikation mit dem objektorien-
tierten Ansatz von FluidX3D sinnvoll zu vereinen.

Im Verlauf der Arbeit werden verschiedene Optimierungen der multi-GPU Erweiterung
erläutert: einerseits greifen diese auf Wissen über die Programmiersprache OpenCL und die
Hardware von GPUs zurück, andererseits wird der Algorithmus selbst dahingehend erweitert,
dass ein Überlapp von Berechnung und Speichertransfer stattfinden kann. Die Optimierungen
werden dabei durch Laufzeitmessungen auf zwei verschiedenen Clustern mit bis zu 4 GPUs
gleichzeitig bestätigt. Der multi-GPU Algrithmus erreicht fast unabhängig von der Anzahl ver-
wendeter GPUs 95% seines theoretischen Optimums im weak-scaling, im strong-scaling ergibt
sich bei 4 GPUs einer Effizienz von 77%. Es wurden bis zu 13600 MLUPs mittels 4 Radeon
VII GPUs für ein würfelförmiges benchmark setup erreicht.
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MPI-based multi-GPU LBM

Abstract

This bachelor thesis presents a method to parallelise the Lattice Boltzmann method on several
graphics processing units by coupling it with the Message Passing Interface (MPI). This task
is mainly related to the limited on-board memory of a single graphics processing unit and the
memory intensity of the Lattice Boltzmann method. A concrete algorithm for the simulation
software FluidX3D is shown and validated. This has the flexibility to work with different ex-
tensions of the Lattice Boltzmann method: besides complex geometric boundary conditions,
heat flux and condensation processes, the simulation of free surfaces is also possible. A special
challenge is to combine the function-oriented MPI communication with the object-oriented ap-
proach of FluidX3D.

This thesis wil explain various optimizations of the multi-GPU extension: on the one hand,
they rely on knowledge about the programming language OpenCL and the hardware of GPUs,
on the other hand, the algorithm itself is extended in such a way that an overlap of calculation
and memory transfer can take place. The optimizations will be confirmed by runtime measure-
ments on two different clusters with up to 4 GPUs at the same time. The multi-GPU algrithm
reaches 95% of its theoretical optimum in weak-scaling almost independent of the number of
GPUs used. In strong-scaling the efficiency of 4 GPUs is 77%. Up to 13600 MLUPs when using
4 Radeon VII GPUs were achieved for a cubic benchmark setup.
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1 Introduction MPI-based multi-GPU LBM

1 Introduction

The Lattice Bolzmann Method (LBM) is a quite novel approach in computational fluid dynam-
ics (CFD), that is gaining increasing popularity [1]. This is especially due to its properties:
as opposed to classical Navier-Stokes Solvers, the LBM can easily handle complex boundary
conditions and is compatible with a large amount of application-oriented extensions (e.g. heat
diffusion, multiphase and multicomponent flows, immersed boundary methods for simulation
of deformable boundaries [2]). Furthermore, its algorithm is highly parallelizable, so for large
and runtime intensive setups speedup can easily be reached by computing on multiple CPU
(central processing unit) cores or by using GPUs (graphics processing units). Because GPUs
were originally developed to process geometric data in parallel and quickly, their architecture is
superior to CPUs in computing power and memory bandwidth. However, since accuracy does
not play such a major role in graphics processing, in contrast to CPUs they are only optimized
for 32-bit floating point values. Fortunately, float accuracy is usually sufficient for the LBM.
Another difference to CPUs is the amount of available memory: while the RAM available to a
CPU can be several hundred gigabytes, the memory space on GPUs is very limited. The GPUs
used for this thesis had 16 GB (Radeon VII) or 12 GB (Nvidia Tesla P100) available. Because
the LBM is memory-intensive while at the same time the memory on GPUs is quite limited,
this directly restricts the size of the simulation box. Multi-GPU implementations of the LBM
are able to widen this limitation as well as to gain even bigger speedup.

Many multi-GPU implementations of the LBM have been realized, trying to reduce its
communication overhead to a negligible size. In the weak scaling, the efficiency reaches from
69.9 % using 32 GPUs with a total performance of about 2000 MLUPs (see [3]) to 98.5 % us-
ing 64 GPUs with a total performance of about 35000 MLUPs (see [4]). However, the latter
implementation - as well as [1], [5], [6], [7], [8] - is limited to a subdivision of the domain
along a preferred axis. [4] does not provide a strong scalability test for cubic domains, while
[1] reaches an efficiency of 91 % with 8 GPUs and a total performance of about 3000 MLUPs
here. [3] is the only one of the references mentioned above that can subdivide the domain along
all three spatial directions. All of them use halo nodes to organize the data to be transferred
between the GPUs. While [4] runs with CUDA as well as OpenCL via the wrappers PyCUDA
and PyOpenCL, all other references only work with CUDA. In order to manage the different
computational devices, POSIX, MPI or ZeroMQ is used in the different implementations.

For Bayreuths new LBM software - FluidX3D - multi-GPU support is provided and evalu-
ated together with this thesis. That therefore larger systems can be simulated is particularly
important for a project in the context of the Collaborative Research Centre 1357 Microplastics
(german: Sonderforschungsbereich Mikroplastik). In this project, the exchange of microplastic
particles at the air-water interface is studied. Because of the buoyancy many microplastic par-
ticles might swim directly under the water surface. Processes such as the impact of a raindrop
on the surface of the water cause small droplets to be thrown into the air. These could serve
as carriers for the micropastic particles and thus explain a potential migration path from the
hydro- to the atmosphere. In order to understand the properties of this complicated fluid me-
chanical mechanism, the LBM is right now extended by the immersed boundary method and a
module for the simulation of free surfaces.
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2 Theoretical and methodical Background

2.1 Kinetic theory - basis of the LBM

The LBM can be derived from kinetic theory, which is valid on a scale that lies between the
microscopic scale (looking at the motion of individual molecules) and the macroscopic scale
(considering only macroscopic quantities as e.g. density, velocity, temperature) and therefore
is called mesoscopic scale.

The simplest case in kinetic theory is that of a dilute monoatomic gas. It is a justified as-
sumption here that molecules only collide in pairs and have a long mean free path. This is not
true for an actual fluid with far bigger density, and additional considerations have to be done:
the intermolecular attracting forces, the inner degrees of freedom of multiatomic molecules (ro-
tational and vibrational). Nevertheless the theoretical foundation of the LBM equations can
be understood when we look at the kinetic theory of a dilute monoatomic gas. Here the funda-
mental variable is the particle distribution function f(~x, ~ξ, t), which lives in the six-dimensional

phase space and denotes the density of particles with velocity ~ξ at position ~x at time t.

Macroscopic variables can be found as moments of f . The moments are weighted integrals
of f over its entire velocity space, where the weights are functions of ~ξ. The most important
ones are:

ρ(~x, t) =

∫
f(~x, ~ξ, t)d3ξ (mass density), (1)

ρ(~x, t)~u(~x, t) =

∫
~ξf(~x, ~ξ, t)d3ξ (momentum density). (2)

Further moments, like the internal energy density e(~x, t), have a similar structure. Due
to the collisions of the particles, their velocity distribution soon converges into an equilibrium
distribution f eq, if there are no external forces present. This equilibrium distribution can be
found as the Maxwell-Boltzmann distribution

f eq(~x, ~ξ, t) = f eq(~x,~v, t) = ρ

(
3

4πe

)3/2

e−2|~v|/(4e), (3)

with ~v = ~ξ − ~u.

For the evolution of f in time, one has to consider (note the Einstein notation):

df

dt
≡ Ω(f) =

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xα

)
dxα
dt

+

(
∂f

∂ξα

)
dξα
dt

. (4)

Carrying out the total differentials on the right-hand side we get dt/dt = 1, dxα/dt = ξα
and dξα/dt = Fα/ρ. ~F denotes the specific body force. This leads to the Boltzmann equation

Ω(f) =
∂f

∂t
+ ξα

∂f

∂xα
+
Fα
ρ

∂f

∂ξα
. (5)
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The terms on the right hand-side describe the advection of f and how forces affect f . The
source term Ω(f) describes the redistribution of f due to particle collision and is therefore
called collision operator. Boltzmann’s original collision operator has the form

Ω(f) =

∫
W (~ξ1, ~ξ2, ~ξ3, ~ξ)(f(~x, ~ξ1, t)f(~x, ~ξ2, t)− f(~x, ~ξ3, t)f(~x, ~ξ, t))d~ξ1d~ξ2d~ξ3. (6)

W (~ξ1, ~ξ2, ~ξ3, ~ξ) describes the probability per time unit that two particles have the velocities
~ξ1, ~ξ2 before and ~ξ3, ~ξ after their collision and is dependent of the underlying model.

By integrating the Boltzmann equation and its moments over velocity space it can be shown
that for media with short mean free path, the Boltzmann equation becomes the macroscopic
Navier-Stokes equation (NSE). While the NSE is much simpler from a analytical point of view,
the Boltzmann equation is superior when being solved numerically for complex boundaries
on mesoscopic scales, especially when considering its comparatively easy implementation and
parallelization. The numerical approach to the Boltzmann equation for CFD purposes will be
seen now.

2.2 The main equations of the LBM

The LBM works with discrete-velocity distribution functions fi(~x, t), also called populations.
Analog to the kinetic theory it describes the density of particles with velocity ~ci at position ~x
at time t, but now {~ci, wi} are a small discrete set of velocities and its corresponding weighting
coefficients. The first moments of fi are the discrete version of equations 1 and 2:

ρ(~x, t) =
∑
i

fi(~x, t), (7)

ρ(~x, t)~u(~x, t) =
∑
i

~cifi(~x, t). (8)

In addition, fi is only defined on a discrete square lattice in space with spacing ∆x and on
discrete times with intervals ∆t. A common choice is ∆x = ∆t = 1 (lattice units). This also
affects the Boltzmann equation 5, which in the force-free case reduces to the lattice Boltzmann
equation

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t) + Ωi(~x, t). (9)

For the purposes of the LBM, much simpler collision operators than in equation 6 can be
used, e.g. the BGK collision operator 1:

Ωi = −fi − f
eq
i

τ
∆t. (10)

The constant τ determines the speed of relaxation and is called relaxation time. The collision
operator has to conserve mass, momentum and internal energy. In FluidX3D, available colli-
sion operators are - in ascending order of accuracy - BGK, the two-relaxation-time (TRT) and
multi-relaxation-time (MRT) collistion operator.

1names after its inventors Bhatnagar, Gross and Krook
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In the LBM, the equilibrium distribution f eq in equation 3 is replaced by the discretised
version of its Hermite Series expansion:

f eqi (~x, t) = wiρ

(
~u ◦ ~ci
c2s

+
(~u ◦ ~ci)

2

2c4s
+ 1− ~u ◦~u

2c2s

)
. (11)

Here c2s = (1/3)∆x2/∆t2 is the speed of sound, which also describes the relation p = c2sρ be-
tween pressure p and density ρ. During a simulation, for stability reasons all occurring values
of |~u| should stay below cs. f

eq
i is chosen such that its moments are the same as those of fi.

The connections between the LBM and the NSE is determined by the Chapman-Enskog
analysis. It yields that the results of the LBM follow the solutions of the NSE with

ν = c2s

(
τ − ∆t

2

)
(kinematik shear viscosity) and (12)

νB =
2

3
ν (kinematic bulk viscosity). (13)

Realize that ν is still given in lattice units. So how is the link between the LBM’s lattice units
and the real world physical units? Which parameters are to choose, if e.g. for a given time tp
you want to simulate a fluid of given viscosity νp in a canal of given diameter lp represented by
a given number of lattice nodes N , while a given constant force Fp effects the fluid? For the
given mechanical system, three independent conversion factors have to be found, that connect
between lattice and physical units. Normally one first determines Cx = ∆xp/∆x, Ct = ∆tp/∆t
and Cρ = ρ0,p/ρ0. They are given by:

Cx =
lp

N∆x
, (14)

Cρ =
ρ0
ρ0,p

, (15)

Ct =
C2
x

Cν
= c2s(τ − 0.5∆t)

C2
x

νp
. (16)

It is common to set ∆x = ∆t = ρ0 = 1 and τ > 0.5 should be used for stability reasons.
The first expression for Ct in equation 16 can be found by considering the unit of its associ-
ated physical value: [t] = s = m2/(Pa s) = [∆x2/ν]. All other relevant conversion factors can
be constructed as products of these three conversion factors by analogous unit considerations.
In the further course of this thesis all occurring simulation parameters are given in lattice units.

It is worth mentioning that the law of similarity plays an important role in fluid dynam-
ics: ”two incompressible flow systems are dynamically similar if they have the same Reynolds
number and geometry” ([2], p. 268). With l and u being typical length and velocity scales in
the system, the Reynolds number is defined as

Re =
lu

ν
=
ρlu

η
, (17)

where ν is the kinematic and η the dynamic viscosity of the fluid.
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2.3 Some hardware and software details concerning GPUs, OpenCL
and MPI

Before we can take a closer look at the implementation of the LBM in FluidX3D, we have to
present some details about graphics processing units. This is important to understand, why
FluidX3D is implemented the way it is. Runtime tests in this and the following sections were
conducted on two different clusters: On the one hand on the chair’s own cluster called SMAUG,
whereupon as GPUs up to 4 Radeon VII from AMD could be used simultaneously. On the
other hand on a cluster of the University of Bayreuth named btrzx4, which is equipped with
5 nVidia Tesla P100 GPUs.

2.3.1 OpenCL and GPUs

In FluidX3D the GPU side code and the communication between host and GPU is implemented
in OpenCL. OpenCL is an industrial standard framework for programmming heterogeneous
platforms consisting of a combination of CPUs and GPUs. Because working with GPUs is so
different to CPUs, OpenCL even created a whole new programming model around their frame-
work [9]. In FluidX3D the version OpenCL 1.2 is used, which is the latest compatible with the
vendors AMD as well as nVidia.

There are in general two ways an algorithm can be parallelized: by taking advantage of its
task parallelism or its data parallelism. In the former case, the programmer searches for tasks
that can be executed independently of each other at the same time. Optimal execution time is
reached, when the load of the tasks is balanced between the processing elements (PE). With
the latter, on the other hand, the same calculation rules can be applied to large amounts of
data simultaneously, so the parallelism lies in the data itself. This is called single-instruction
multiple-data (SIMD) execution scheme and is the case for the LBM-algorithm itself. The two
parallelism paradigms are shown in 1. Both find application when it comes to multi-GPU LBM.

(a) data parallelism

(b) task parallelism

Figure 1: Visualisation of data vs. task parallelism ([9], p. 10)

An OpenCL platform consists of a single host and one or several OpenCL devices. The
OpenCL device is further divided into compute units made up of processing elements (PEs).
The PEs have their hardware equivalent in the cores of the GPU or CPU.
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FluidX3D consists of a host program and a collection of kernels. The host program is
coded in C++ (extended by the OpenCL C++ API) and runs on the host, while the OpenCL
programs (kernels) are coded in the OpenCL C programming language (basically a reduced
version of C99 extended by OpenCLs memory model) and run on the OpenCL devices. In
order to meet the heterogenous requirements of the platform the kernels are built from source
at runtime. The host program interacts with the OpenCL devices via a command-queue. There
are three types of commands:

• Kernel execution commands

• Memory commands (data transfer between host and device)

• Synchronization commands

There are two ways how commands in a queue are executed:

• In-order execution: Commands are launched in the order the host defines. Before a new
command begins execution, the prior must have finished.

• Out-of-order execution: Commands are launched in the order the host defines, but don’t
have to complete before the next command is executed.

In the latter case, the programmer has to explicitly synchronize the queue if needed. FluidX3D
uses an in-order queue in the single- as well as multi-GPU implementation. Synchronization
points may also be needed to enforce the host program to wait for a queue command to finish.
Otherwise the host program runs in parallel to the execution of the command-queue.

When kernel execution begins on a OpenCL device, the OpenCL runtime system creates an
integer index space I ⊂ ND. The kernel enqueuement command specifies the dimensionality
D ∈ {1, 2, 3}, the global ranges rig and local ranges ril (i = 0, ..., D − 1) of the index space. In
FluidX3D only D = 1 is used2. We will therefore further refer to r0g as rg (rl analogously).
Each instance of an execution kernel (work-item) is assigned a global ID n ∈ [0, rg − 1] and
a group ID w ∈ [0, rl − 1], which expresses the organisation of work-items in work-groups. A
kernel is always executed by blocks of threads simultaneously, with rl being the thread-block
size (TBS). It must apply

rg mod rl = 0 , (18)

so all work-groups are full. Each work-item has a local ID l within its work-group. It applies:
n = rlw + l, so each work-item can be identified by its global ID or by knowing the group ID
and local ID. If a command only applies to a subset of the group (e.g. an if-statement), all
unaffected work-items have to wait for the command to be finished. This is called branching
and should be avoided for performance reasons. During a kernel execution, work-groups are
launched asynchronously - synchronization can only be ensured by performing multiple kernel
launches.

OpenCL defines five different memory regions:

2The three-dimenional position in simulation space is computed starting from this one-dimensional index,
as will be seen later.
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• Host memory: This region is visible only to the host.

• Global memory: All work-items in all work-groups have read/write access to it. On GPUs
this is the video memory, where access latency is quite high3. Although in FluidX3D
latency is completely hidden by computations, the program is its bandwidth limit due to
the low arithmetic intensity of the LBM. Memory bandwidth is the typical bottleneck of
LBM implementations [10].

• Constant memory: This denotes a global memory region with read-only access.

• Local memory: This region is shared only by the members of the work-group. Compared
to global memory, access is a lot faster for GPUs, because local memory is represented
by L1 and L2 cache on hardware side. It is not used in FluidX3D right now.

• Private memory: Every work-item has its own private memory. After caching data from
global memory, computation should be done here, because the access speed is several
hundred times faster (also faster than local memory access). On GPUs, private memory
has its hardware equivalent in registers.

In figure 2 can be seen how they interact with the platform model of OpenCL. In order to
transfer data to the host, it must first be written to the global memory. This is also the only
way to preserve data between two kernel calls.

Figure 2: Summary of OpenCL’s memory model ([9], p. 23).

From a memory point of view, data exchange between host and OpenCL device runs via
buffer objects, which are just some contiguous block of memory made available to the kernel.
Every block of global or constant memory used in a kernel corresponds to a buffer object at

3One memory transfer needs about 400-800 clock cycles, while computational operations like add or multiply
only take 4 clock cycles.
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host side.

When using GPUs, a buffer is transferred from Device to Host via the direct memory
access (DMA) protocol, which only works on pinned memory4. Since pinned memory is a
scarce resource on GPUs, normal buffer transfers need two copies: from the actual array
of global memory to the pinned memory region and then from the pinned memory region
to the Host (for transfers from Host to Device analogously). The pinning-process can only
happen in whole pages, which typically contain 4096 bits. However, in OpenCL, the flag
CL MEM USE HOST PTR can be set when creating the buffers. In the future we will then
say, that host pointer is activated. As a result, the buffer object uses a fixed memory region as
storage bits on Host side (see [11]). On Device side, it is likely (but not guaranteed) that the
buffer corresponds to a region of pinned memory. This avoids an additional internal copy (see
[12]). The impact on the buffer access times is quite big, as can be seen in the figure 3: without
host pointer the memory bandwidth of the device itself is quite high, while the memory transfer
to the host via PCI Express (PCIe) has much lower bandwidths. If host pointer is enabled, de-
vice side access to the buffer via PCIe is required, while the buffer for the host can be provided
very quickly, since its bandwidth is mainly limited by the latency of the transfer command. If
a buffer is written (read) only once during a kernel call, and is afterwards (previously) made
available for the host, using a buffer with host pointer enabled is about twice as fast as using
no host pointer.

OpenCL provides two routines to organize the buffer exchange between host and device.
Buffers (or related parts thereof) can be accessed from the host after calling the enqueueMap-
Buffer function (read or write access depending on the arguments). While the buffer is mapped,
it may not be used on the device side (e.g. by a kernel). This would lead to undefined behavior.
Only a call of enqueueUnmapMemObject with corresponding arguments terminates the access
possibilities by the host and makes them available for the devices. We call this routine map-
ping. The second possibility is to call enqueueReadBuffer and enqueueWriteBuffer (read-write
routine). Here buffers are read into certain host-memory areas or written from host-memory
areas into buffers. No undefined behavior can occur here.

When host pointer is active, both options make one internal copy from the host to the
device or vice versa, and should therefore have similar runtimes. This is also the case in 4.
How exactly they are implemented, however, is vendor specific, which is why in the multi-GPU
version of FluidX3D both possibilities are selectable. When host pointer is not active, the
mapping routine would be superior to the read-write routine when small disjointed parts of
the buffer should be accessed on Host side. This is, because in the mapping routine the GPU
memory is only pinned once, while in the read-write routine every call of enqueueReadBuffer
and enqueueWriteBuffer would lead to new pinning of a page with the required part of the
buffer within it.

2.3.2 MPI

The Message Passing Interface (MPI) is an industrial standard, that provides routines for par-
allel computing architectures to send messages across it. In concrete terms, this means that

4Page-locked memory is an equivalent term.

13



2 Theoretical and methodical Background MPI-based multi-GPU LBM

1.0e-04

1.0e-02

1.0e+00

1.0e+02

1.0e+04

1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 1.0e+03

host pointer (buffer mapping)
no host pointer (buffer mapping)
GPU Memory Bandwidth read: +
GPU Memory Bandwidth write: x
Buffer Transfer Bandwidth send to host: o
Buffer Transfer Bandwidth recieve from host: □

B
an

d
w

id
th

 /
 G

B
/s

buffer size / MB

CPU Copy Bandwidth

Figure 3: Runtime measurements concerning host pointer, conducted on the Cluster SMAUG.
For small buffers, bandwidth is limited by latency. For large buffers and a process consisting
of write (send) and read (recieve), the bottleneck is normally the Buffer Transfer Bandwidth,
while for host pointer activated it is the GPU Memory Bandwith. Additionally, the CPU Copy
Bandwidth of a normal array is depicted.
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Figure 4: Runtime measurements concerning buffer mapping, conducted on the Cluster
SMAUG. Host pointer is activated for these measurements. It can be seen that there are
no significant performance differences between the map routine and the read-write routine.
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data packages can be sent between CPU cores using MPI. If these are not part of the same
compute node, a network must be set up between the cores. On btrzx4, for example, all used
GPUs are on different nodes and there is an Intel Omni-Path network to connect the nodes.
On SMAUG, on the other hand, all GPUs are on the same node. MPI communication can be
blocking (e.g. MPI Send(), MPI Recv(), MPI Sendrecv()) or non-blocking (e.g. MPI Isend(),
MPI Irecv()). Non-blocking functions return immediately, which allows CPU-communication
and CPU-computation to overlap, but you must call additional functions (e.g. MPI Waitall())
to see whether the communication has finished. Since the multi-GPU implementation will be a
grid splitting algorithm, two MPI communication patterns are in question: the Sendrecv Pat-
tern and the Exchange Pattern. In both cases the group of processes forms a periodic chain.
Applying the Sendrecv Pattern two times in a row, where the second time the roles of the
right and left neighbour in the chain are switched, is equivalent to the Exchange Pattern as
far as data exchange is concerned (see figure 5). But on figure 6a you can see that they can
differ as it concerns the bandwidth: on the cluster btrzx4 the Exchange Pattern is preferable,
while on the cluster SMAUG the Sendrecv Pattern yields slightly better performance. More
importantly, the bandwidth depends on the size of the message sent, similar to the GPU buffer
transfers above. In addition, there are latency times that are approximately constant across
all message sizes in figure 6b. As can be seen here for the cluster btrzx4, the latency time for
messages exchanges between nodes is higher than that between cores on the same node. The
latency times mainly determine the performance for message sizes of 4 kB and below, so the
bandwidth (at least for the Exchange Pattern) is nearly the same on both clusters. For message
sizes between 32 kB and 4 MB, the shared node can explain the high bandwidth on SMAUG.
It is not yet clear why the performance drops above 4 MB.

Figure 5: Sendrecv Pattern vs. Exchange Pattern: in both patterns the cores are ordered in
periodic chains. The figures were taken from [13].

(a) Sendrecv Pattern: only blocking functions
are called. When used two times in a row with
switched neighbours, it has the same effect as the
Exchange pattern.

(b) Exchange Pattern: the communication is
non-blocking, so synchronization must explicitly
be ensured.

Overall, it is clear from all the benchmarks shown that unnecessary latency times can be
avoided and bandwidth can be optimized by using one large buffer or message transfer operation
instead of several small ones.
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Figure 6: MPI bandwidth and latency depending on the message size.
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(a) On MPI systems, over large ranges the data transfer rate rises exponentially with the message
size. On SMAUG, all used cores are on the same node, while on btrzx4 they are on different nodes.
The measurements were carried out with the Intel MPI Benchmarks software [13]. The average over
at least 125 measurements per data point is shown. All measurements for one data point differ from
each other only in the sixth significant place.

(b) Point-2-point MPI latency, measured on cluster btrzx4. The latency time is nearly independent of
the message size. The measurements were provided by [14]. Messages can be sent between processes
on the same socket (by core), different sockets on the same node (by socket), and different nodes (by
node).
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2.4 Relevant aspects of the LBM and FluidX3D for the muli-GPU
implementation

The velocity sets {~ci, wi} mentioned above have to be further specified: a velocity set consist-
ing of q different velocities that are elements of a d-dimensional vector space is denoted DdQq.
FluidX3D has implemented the D2Q9, D3Q7, D3Q13, D3Q15, D3Q19 and D3Q27 velocity sets.
They are depicted in figure 7 and their velocities and corresponding weighting coefficients are
found in table 1.

Table 1: Properties of the velocity sets available in FluidX3D. The speed of sound is cs = 1/
√

3
for all these sets. Conditions on a velocity set are conservation of mass and momentum, and
”rotational isotropy” (see [2], p. 85).

velocity set ~ci number |~ci| wi

D2Q9 (0,0) 1 0 4/9
(± 1,0),(0,± 1) 4 1 1/9

(± 1, ± 1) 4
√

2 1/36

D3Q7 (0,0,0) 1 0 1/4
(± 1,0,0),(0,± 1,0),(0,0,± 1) 6 1 1/8

D3Q13 (0,0,0) 1 0 1/2

(± 1,± 1,0),(± 1,0,± 1),(0,± 1,± 1) 12
√

2 1/24

D3Q15 (0,0,0) 1 0 2/9
(± 1,0,0),(0,± 1,0),(0,0,± 1) 6 1 1/9

(± 1,± 1,± 1) 8
√

3 1/72

D3Q19 (0,0,0) 1 0 1/3
(± 1,0,0),(0,± 1,0),(0,0,± 1) 6 1 1/18

(± 1,± 1,0),(± 1,0,± 1),(0,± 1,± 1) 12
√

2 1/36

D3Q27 (0,0,0) 1 0 8/27
(± 1,0,0),(0,± 1,0),(0,0,± 1) 6 1 2/27

(± 1,± 1,0),(± 1,0,± 1),(0,± 1,± 1) 12
√

2 1/54

(± 1,± 1,± 1) 8
√

3 1/216

We also have to give equation 9 a closer look. It says, that the collision operator Ωi affects the
populations fi(~x, t) and causes them to redistribute themselves among their neighbouring point
~x+ ~ci∆t along the direction ci. This all happens in the timeframe ∆t. So the discretizations of
time and space are not isolated to each other but related through the discretization of particle
velocity. This allows to break the LBM down into two elementary steps: the populations move
to their new lattice-position (streaming) and the populations collide (collision):

fi(~x+ ~ci∆t, t+ ∆t) = f ∗i (~x, t) (streaming), (19)

f ∗i (~x, t) = fi(~x, t) + Ωi(~x, t) (collision). (20)

In order to take advantage of the massive parallelism of GPUs, each lattice node is assigned
to one thread. Note that the streaming-step affects the neighbour populations and therefore will
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Figure 7: The six different velocity sets with indexing like in the FluidX3D-implementation. Op-
posite vectors ~ci have consecutive numbering in order to facilitate the implementation. Larger
velocity sets increase accuracy, but require more memory and computing power. Many thanks
to Moritz Lehmann for providing this figure.

be challenging for a LBM multi-GPU implementation, whereas the collision-step only depends
on the populations of one lattice node5. For the streaming itself there are several implementa-
tion possibilities: the populations could be shifted along their directions in a procedural way
by only using a small temporary buffer. Of course this approach can’t make use of the GPUs
PEs executing in parallel. The better option here is to stream to a new distinct memory adress
by reading data from fAi (~x) and writing to fBi (~x+ ~ci∆t). f

A
i and fBi have to be swapped after

each time step. This approach needs twice the memory, but is parallizable: each node can be
streamed independently from the others. Let’s have a closer look, how this double-memory
method is implemented in FluidX3D.

Great optimization efforts with regard to the streaming-step have already been taken in
the single-GPU version of FluidX3D. This is, because the performance of the basic LBM is
mainly limited by the time the memory-update takes. We therefore say the GPU is in its
memory bandwidth limit, whereas it would be in its compute limit when the execution time of
the computing operations was much longer than memory transfer time. For the streaming-step
two implementations are possible, the push-scheme and the pull-scheme. In the push-scheme,
each node uses the populations located on its position fA to conduct the collision-step and then
writes the resulting populations in memory of the adjacent nodes of fB. In the pull-scheme
every node in fB fetches the populations from its adjacent nodes of fA, that are needed to
conduct the collision-step.

5Although the notations suggests that Ωi only depends on population i, it actually depends on all populations
on the corresponding lattice-node, because feqi depends on ~u.
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Figure 8: Visualization of the underlying arrays of fA and fB. The populations before streaming
are colored black, the ones after streaming red. In the push-scheme, collision is performed before
streaming, in the pull-scheme after streaming (from [15], p. 101).

In both schemes, the algorithm has to read from and write to global memory only once
during one LB-step. All computational intersteps can be saved to the GPUs registers, where
data access is cheap. This procedure is called One-Step-Algorithm ([15], pp. 98-100). Although
the push-scheme might seem a bit more intuitive, in FluidX3D the pull-scheme has been cho-
sen. Again, this has to do with the hardware properties of GPUs: when consecutive threads
read from or write to consecutive memory addresses in video memory, the memory transfer is
coalesced into one. As can be seen in figure 9, the performance penalty for misaligned reads
is smaller than for misaligned writes. So when the LB-algorithm is parallelized over the fluid
nodes, writing the results of the collision into global memory can happen coalesced in the pull-
scheme, if additionally the Structure of Array (SoA) schema is used as underlying memory
layout. If a lattice consists of sx lattice nodes in the x-direction and sy and sz nodes in the y-
and z-direction, respectively, the position p in the buffer where fi is stored is calculated from
the global ID n and the total number of nodes s = sxsysz ≡ rg using p = s · i + n for a kernel
call. An alternative memory layout would be Array of Structures (AoS) with p = q · n + i (q
being the number of discrete velocities in the used velocity set), which optimizes data locality
and should be preferred for CPU implementations.

Since FluidX3D parallelizes over the whole lattice, but only uses a one-dimensional index
space, the coordinates (x, y, z) of the lattice node to be calculated and the global ID n are
connected by the following bijection:

n = x+ sx(y + syz). (21)

Without extensions FluidX3D needs the following buffers: one float buffer each for the f-
populations fA and fB, one float buffer each for the density ρ and velocity ~u, and finally a
unsigned char (uchar) buffer called flags, which stores information about boundary conditions.
The buffers ρ and ~u are only needed for initialization and for enforcing fixed boundary conditions
- for the majority of the fluid velocity and density are recalculated at each simulation step from
the f-populations and do not have to be updated in the buffer at all. Currently, FluidX3D also
implements (incompatible) extensions:

• temperature: simulation including the temperature-dependent density behaviour of liq-
uids.

• shanchen: simulation of evaporation and condensation processes.
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Figure 9: Performance for coalesced vs. misaligned read/write measured for the nVidia Quadro
K5000M (maximal memory bandwidth according to specification sheet: 96GB/s). Performance
penalty is smaller for misaligned read (from [16], p. 2570).

• surface: simulation of free surfaces adjacent to gas.

For implementing a multi-GPU for the LBM, the only important thing here is that some of
these require additional buffers. These can be seen in the table 2.

Table 2: Overview of the buffers that FluidX3D needs for the various extensions. The extension
shanchen does not need any additional buffers.

extension additional buffer meaning

temperature T temperature of each lattice node
temperature gA, gB field for thermal propagation, that uses

discrete directions analog to the D3Q7 scheme
surface ϕ fill level
surface mex excess mass
surface mass fluid mass

Finally, boundary conditions should be taken into consideration here. FluidX3D without
extensions has two kinds of boundary conditions. Without special adaption measures, periodic
boundary conditions prevail on the surfaces of the domain, i.e. fi(sx) = fi(0) and analogously
for all other data fields and surfaces. In the implementation of the single-GPU version of
FluidX3D the periodicity is achieved by means of the arithmetic operation modulo. The co-
ordinates (xdiag, ydiag, zdiag) of the diagonal neighbours of a lattice node at (x, y, z) are thus
calculated as follows:

xdiag = (x+ sx ± 1) mod sx, ydiag = (y + sy ± 1) mod sy, zdiag = (z + sz ± 1) mod sz. (22)

In addition, lattice nodes can be marked as solid in the buffer flags. If you apply non-slip
boundary conditions, this means that at the streaming step the f-populations are calculated

20



2 Theoretical and methodical Background MPI-based multi-GPU LBM

through

f ∗i (~x, t) =


fi+1(~x, t+ ∆t), i odd, ~x+ ~ci solid

fi−1(~x, t+ ∆t), i even, i 6= 0, ~x+ ~ci solid

fi(~x+ ~ci∆t, t+ ∆t), else

(23)

instead of equation 19. So the velocities are inverted at the solid boundaries.
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3 Multi-GPU LBM: main idea and implementation de-

tails

3.1 Overview FluidX3D single- vs. multi-version

Firstly, an overview of FluidX3D with emphasis on initialization and communication processes
will be provided. The kernel stream collide, which actually executes the individual simulation
steps of the LBM, is mostly treated as a black box, since only minimal interventions had to
be made for the implementation of the multi-GPU version of the LBM. Figure 10 shows the
program flow of FluidX3D for the single-GPU version. The class Lattice was created during the
development of the multi-GPU version. It manages the most important simulation parameters
as well as data fields, which are filled with values during initialization (figure 10, step (6)) and
can be read out at any time step6. Here it should be emphasized once again that the kernels
are not necessarily executed at the time of enqueuement - the end of their execution must be
synchronized (figure 10, step (9.1)).

(Re-)Start

End

simulation 
finished?

(1)
Give main simulation 

parameters (                     )

(2)
find appropriate OpenCL 

Device

(3)
initialize class Lattice

(4)
generate and compile 

OpenCL Code

(5)
allocate OpenCL buffers 
and set them as kernel 

arguments

(6)
set initial and boundary 

conditions of fields 
(                     )

(7)
transfer fields to OpenCL 

Device

(8)
enqueue kernel 

initialize

(9)
LBM step

No

Yes

(9.1)
finish queue

(9.0)
enqueue kernel 
stream_collide

Figure 10: Initialization and communication processes of the single-GPU version of FluidX3D
(without extensions). Kernels that appear in the program with this name are printed in bold
type.

The most obvious difference of the multi-GPU version is that it uses multiple processor
cores and GPUs. Figure 11 shows how they are organized: if n GPUs are used, FluidX3D
needs n + 1 cores. One core (master) is used to coordinate the other cores (slaves), which
hold the corresponding OpenCL context. The master is also used to initialize the data fields,
which are then passed on to the slaves according to the sub-domain of the lattice for which
the individual slave is responsible. Which slave is responsible for which sub-domain clearly
determined by the coordinates assigned to it and by the sub-domain’s sizes. The class Lattice
automatically determines the slave coordinates and sizes of the sub-domains depending on the
user input for the variables dx, dy and dz (see 12, step (1.0)). Those variables determine in

6It does not explicitly contain f, because this can be calculated in the initialization process (by the kernel
initialize from ρ and ~u.)
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how many sub-domains the lattice will be split along the corresponding axis. By default, the
simulation box is split equally, but there is a possibility to change the sub-domain sizes along
one axis7. It is also important that each slave is assigned a different GPU. The buffer sizes on
the GPUs differ slightly from the sizes of the sub-domains, since halo nodes are introduced.
The following chapter will explain this in further detail.

Master Core

MPI ID 2

Sizes of total 
lattice

256 x 256 x 252

Slave Core

MPI ID 0

Coordinates of 
sub-domain

(0, 0, 0)

Sizes of 
sub-domain

256 x 256 
x 126

ID of used 
OpenCL Device

1

MPI MPI

MPI

GPU

OpenCL Device 
ID

1

Buffer sizes
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x 128

GPU

OpenCL Device 
ID

0

Buffer sizes
256 x 256 
x 128

Slave Core

MPI ID 1

Coordinates of 
sub-domain

(0, 0, 1)

Sizes of 
sub-domain

256 x 256 
x 126

ID of used 
OpenCL Device

0

PCIePCIe

Figure 11: Communication structure of the multi-GPU version of FluidX3D. The easiest case
of two GPUs splitting the lattice along z-direction is shown.

The initialization and communication processes, as they occur in the multi-GPU version of
FluidX3D, are shown in Figure 12. How the LBM step (9) works, what is meant by ”template”-
kernels and what the kernel setget layer does will be explained later.

3.2 Harmonization of MPI and OOP

Now a process in the course of the initialization is to be singled out first, which caused quite
large difficulties on the implementation side, i.e. how MPI can brought into line with the object-
oriented programming (OOP) approach of FluidX3D. Objects have to be dispatched over MPI,
which is the case in the steps (3.1) and (6.1). In addition, no 1:1 copies of the lattice class are
sent here, but rather adapted copies containing only for the slave relevant parts of the data
fields and updated simulation parameters (e.g. the sizes of the respective sub-domains ss,x, ss,y,
ss,z instead of the total box size sx, sy, sz). Since the kernel expects stream-collide 1D buffers
to be indexed according to equation 21, the Lattice-class therefore contains objects of another
class called Tensor3 for storing data fields. These can manage 1D arrays as effective 3D arrays
and in particular easily allow copies of parts of the effective 3D array. The class Tensor3 itself
is based on the container std::vector. So it must be possible to send several nested objects via
MPI. However, MPI itself is purely function-oriented - only basic data types can be sent and it
must always be specified how many of them are sent to which slave. Basically, there are three
ways to send objects via MPI:

a Functional MPI: encode all MPI transfers explicetly

b Use the C++ source library serialization from Boost.

c Own solution with modern C++.

7This is useful if e.g. GPUs with different memory limits or performance characteristics are used.
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Figure 12: Initialization and communication processes of the multi-GPU version of FluidX3D
(without extensions). Master processes are marked red, slave processes blue, processes involving
masters and slaves purple. Kernels and buffers that appear in the program with this name are
printed in bold type.
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Option a) always offers the highest performance and is therefore used for communication
in step (9). However, the runtime is not essential for sending Lattice-objects, since this only
occurs during initialization. In this case, repeating code, as it is generated during functional
programming, would be a disadvantage. In addition, the MPI communication protocol on the
master and slave side must match exactly and therefore has a relatively large bug potential.

Boost’s C++ source libraries from option b) are relatively well known, but still their use
would restrict the portability of FluidX3D. The library serialization makes it possible to con-
vert objects into archives and reconstruct them. The archives have a string representation and
could easily be sent via MPI. For this only a few interventions in the respective class itself are
necessary - all members of the class to be archived have to be listed in only one place in the
code. The members themselves must also be compatible with serialization, which is already the
case for all basic data types and containers from the C++ standard. However, the conversion of
objects into strings is very inefficient: text archives have to be used instead of binary archives,
because according to Boost only these are portable across platforms. For a double with 15
decimal digits of precision each digit would be represented as char in the string. When testing
this implementation method, waiting times of several minutes were already observed during
the initialization of medium-sized lattices.

Option c) is an independently developed solution that is not noticeably disadvantaged in
terms of performance compared to a). Its implementation can be seen in the listings 1 and
2 in Appendix A. In the classes Tensor3 and Lattice an instance of the template-class Vari-
ant Container (listing 1, ll. 12-21) is created and in it inside a std::vector with elements of the
type std::variant (C++17) references to class members to be sent are saved (for class Lattice see
listing 1, ll. 84-93). The method Variant Container<T>::visit (listing 1, ll. 158-169) iterates
through this vector and calls for each entry std::visit together with the type-matching visitor
consisting of lambda-functions. For each data type that can occur in the vector, a lambda-
function must exist. For example, if Lattice::mpi send (listing 2, ll. 4-6) is called, all contained
Tensor3 - and std::vector -objects will be sent recursively. Since the order of the references in the
vector is clearly defined, the send order matches the recieve order of Lattice::mpi recv. In listing
1 the type-matching visitor is implemented using lambda templates (C++20). In FluidX3D a
version compatible with C++17 can also be selected, which writes out the templates for each
used data type. The class LBM Data3 inheriting from Tensor3 was introduced to be able to dis-
tinguish LBM data fields from Tensor3 objects, which only store simulation parameters, on the
basis of the data type. This is important for the call Variant Container<T>::visit LBM Data3
(listing 1, ll. 70-82), in which a process analogous to the one above for all LBM data fields
creates the corresponding sub-domains for the slaves from the total lattice or inserts them in
the correct position.

The big advantage of option c) over a) is that when introducing further data fields (see
extensions of the LBM, which are not shown in the listings) the multi-GPU code only has to
be changed at one single position in the Lattice class compared to the single-GPU code - a cor-
responding reference has to be inserted into the Variant Container -instance inside the Lattice
class at any position. Its only disadvantage is that it requires at least compiler compatibility
with C++17.

25



3 Multi-GPU LBM: main idea and implementation details MPI-based multi-GPU LBM

3.3 Main idea of halo transfer

A multi-GPU LBM faces the challenge that in step (9) in figure 12 f-populations of the neigh-
bours must be accessible during streaming. However, at the surface of the sub-domains these are
possibly stored on the GPU with adjacent coordinates. Therefore, a transfer of f-populations
has to take place before each streaming - a process that directly influences the performance
of the overall simulation and therefore has to be as efficient as possible. In a naive approach,
when using the velocity set D3Q19 together with a domain split at least three times along
each axis, from one GPU memory transfers to 18 different neighbouring GPUs would have to
be performed. If extensions are added, some of which have to read out scalar values from
neighbouring nodes in each simulation step (see table 4), there would even be transfers to 26
neighbouring GPUs. Between GPUs which are aligned diagonally to each other with respect
to their coordinates, only one direction of a single f-population has to be exchanged - this
would be highly inefficient due to the latency times and the bandwidth depending on the buffer
or message size (see chapter 2.3) both for the transfer between device and host and for the
MPI transfer between hosts. In addition, many case distinctions based on the corresponding
velocity set would be necessary. Another critical point is that the streaming itself should re-
main unchanged. If case distinctions for marginal populations are included, branching occurs.
Furthermore the question arises how to deal with periodic boundary conditions: if the neigh-
bourhood calculation through equation 22 remains unchanged, this can lead to periodicity of
the sub-domains instead of the total domain.

To all these problems there is an answer as shown in figure 13 for the case of 6 GPUs and
the velocity set D2Q9. As can be seen in figure 13a, at each outer surface of the sub-domain
that is facing another sub-domain, a one lattice node thick halo is introduced. This is imple-
mented by increasing the size of all buffers of the sub-domains as it was exemplified in figure
11. Which lattice node is a halo-node can easily be calculated from its coordinates. During
memory transfer, the layers directly behind the halo layer on both sides of the sub-domains
(sub-halo layer) are copied into the halo layers of the adjacent GPUs (see figures 13b and
13c). Since this sub-halo layer may also include halo nodes of halo layers perpendicular to it,
4 transfers (two per direction) are sufficient in the example. For the 3D case this means a
maximum of 6 transfers independent of the velocity set selected. It is sufficient to copy only
f-populations, which have a component in positive direction of the neighbouring GPU (with
velocity set D3Q19 5 instead of 19 f-populations). After all transfers have taken place and the
buffers have been unpacked into the halo layer, the kernel stream collide can be called. If all
halo-nodes are returning immediately at the beginning of the kernel, the rest can be executed
without changes compared to the single-GPU version: all other lattice nodes can access the
required f-populations of their neighbours during streaming. Furthermore, the memory trans-
fers, which are based on periodic neighbourhood, automatically result in periodic boundary
conditions. The operation mod from equation 22 has no effect for outer surfaces consisting
of halos (since they were already returned), but is retained to avoid case distinctions. For the
LBM without extensions the non-slip boundary conditions work as in the single-GPU version,
if the data field flags is transferred in a analogous manner to the neighbouring halos during the
initialization process (see figure 12, step (8.1)).

Figure 14 shows what happens in detail in step (9) of figure 12. The indices 0, 1 and 2 are
assigned to the axes x, y and z. Let ax(i) be the function that does this assignment and iax(i)
its inversion. For each direction involved, a kernel named setget layer[i] is called twice. For
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Figure 13: Visualization of the halo transfer. Coordinates are assigned to the slaves which
manage the devices. The data exchange takes place via MPI and PCIe. f-populations located
in the corners (edges) of the sub-domains need no special treatment: through the special scheme
they are transferred thrice (twice) and end up at the right position.
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(a) f-populations before halo transfer.
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(b) f-populations after transfer in x-direction.
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(c) f-populations after transfer in y-direction.

(d) Pull: Array A. (e) Pull: Array B.
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i ∈ {3, 4, 5}, the kernel writes for the direction iax(i − 3) all f-populations and scalar values
(needed by the extensions) to be transferred to a single transfer buffer called buffer trans send.
Which scalar values have to be transmitted for which extensions can be found in table 4. In
order to handle the different occuring data types, they are cast to uchar before being stored.
For optimal performance, the memory layout SoA is used in this buffer. In addition, the buffer
divides into two halves: the first half contains all values of the sub-halo layer iax(i) = 1, in the
other half the values of the sub-halo layer iax(i) = siax(i)− 2. All data can be passed from host
to device in a single transfer, which promises optimal bandwidth. The two halves of the buffer
are then sent one after the other via MPI to the two neighbouring hosts by using the Sendrecv
Pattern. All cores that are in a row along the iax(i)-axis according to their coordinates form
a periodic chain. The message simultaneously received from the neighbouring cores is stored
in the corresponding half of the buffer buffer trans recv.8 This buffer is then transferred to
the device and its entries are copied to the right positions in the halo with another call of
setget layer[i] with i ∈ {0, 1, 2}.

(9.1) s
i=0

(9.2.0) s
enqueue kernel 

setget_layer[i+3]

(9.2.1) s
transfer 

buffer_trans_send 
from Device to Host

multiple 
GPUs along 

i?

(9.2.2) s
send 

buffer_trans_send 
over MPI to neighbour 
Hosts while recieving 
buffer_trans_recv 

from them

(9.2.3) s
transfer 

buffer_trans_recv 
from Host to 

Device

(9.2.4) s
enqueue kernel 
setget_layer[i]

(9.3) s
enqueue kernel 
stream_collide

(9.4) s
finish queue

(9.2.5) s
increment i

i >2? Yes

No

Yes
No

Figure 14: Detailed illustration of step (9) in figure 12. The axes x, y and z are assigned to the
indices 0, 1 and 2. Kernels and buffers that appear in the program with this name are printed
in bold type.

As already indicated, setget layer is an array of kernels. Due to the symmetry of both
processes a function could be developed, which - depending on its control parameters - either
prepares a transfer buffer for the selected direction or writes one back into the halo (see listing
3, ll. 29-59). If the parameters in the loop (9.2) in figure 14 were set by the host, additional
buffer transfers would be necessary. Even if the parameters were integrated into the buffer
buffer trans recv by means of a fixed protocol, they would have to be read from the global
memory when setget kernel is called. Therefore a different way is chosen here: At runtime
before compiling the OpenCL code, kernels are automatically generated which already contain
the control parameters as a fixed part of their code (see listing 3, ll. 44-47). So a kind of
”template”-kernel was constructed and its instances explicitly created9. The position of each

8Since memory is not shared among processors in MPI, these copy processes can not be avoided, even if the
MPI cores are on the same node.

9In contrast to CUDA there is no real template kernel in OpenCL.
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template instance in the kernel array indicates the control parameters it contains.

It is also important that the functions assign float and assign uchar in setget layer contain
an if-else-statement - but since all group-members call them with the same transfer parameter
set, there is no branching.

Furthermore, it should be mentioned that setget kernel does not parallelize over whole sub-
domain during creation/readout of the transfer buffer, but over the required layers themselves.
Let sh,x be the length of the sub-domain in x-direction, which (in contrast to ss,x) may include
the halo (sh,y and sh,z analogously). Then the equation 21 no longer applies to the indexing,
but (in the case of D3Qq):

n = ax(i) + sh,ax(i)ax((i+ 1) mod 3) + b · sh,ax(i)sh,ax((i+1) mod 3), i ∈ {0, 1, 2}. (24)

The boolean b is 0 for the front layer and 1 for the back layer. This approach has the advantage
that fewer work-groups have to be executed and less branching takes place within them than
when parallelizing over the sub-domain.10

Let hx be 1, if halo x-layers exists in the sub-domains, and 0 otherwise (hy and hz analo-
gously). Then the number of a sub-domain’s lattice nodes Nc involved in the data communi-
cation can be calculated by

Nc = 2(hxsh,ysh,z + hysh,zsh,x + hzsh,xsh,y). (25)

It is worth mentioning that in order to exchange front layer and back layer consisting of 416 x
416 nodes each, as it can occur with large boxes (see chapter 5), 2 ·4162 ·5 ·4 Byte ≈ 7 Megabyte
have to be sent, if the D3Q9-scheme and no extensions are used (one float needs four Bytes; five
f-populations per layer are sent). Figures 4 and 6a show, that GPU Memory Bandwidth and
MPI data transfer rate are on the plateau of optimal performance for this amount of data.11

The Exchange Pattern for the MPI communication would only be beneficial for layers consist-
ing of 60 x 60 nodes and below. It is therefore not implemented in FluidX3D.

At this point it should be mentioned that many comparable multi-GPU implementations
of the LBM use halo-nodes - all of them except [4] working with CUDA instead of OpenCL.
But [5], [1], [4] and [7] are limited to arrange the sub-domains along a preferred axis (which
here would be the z-axis), so the memory areas to be exchanged are already contiguous and
therefore the call of further kernels (here setget kernel) can be omitted. Only [3] can divide the
lattice into sub-domains along all 3 spatial directions by using a transfer system similar to the
one described here.

Why have the special scalar values from table 4 to be exchanged? Table 3 yields the applied
criteria: data fields have to be exchanged in the main simulation loop if in stream collide

a neighbouring positions are read out whose values can change during the simulation or

b neighbouring positions are written to.

10Additionally, the query of whether the work-item in question is on the desired layer is saved.
11The MPI transfer consists of 2 messages 3.5MB each in this example.
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Except for the extension surface, the entries in the data field flags are constant during the
simulation, so criterion a) is not met. For the surface-module already in the single-GPU version
several kernels are called in the simulation loop. The procedure for the multi-GPU version can
be found in table 5, where the above mentioned criteria are applied again. Further arrays of
”template”-kernels analogous to setget layer are necessary here, each implemented to transfer
a specific combination of scalar values.

3.4 Optimization strategies

All optimizations described until now are a fixed part of the multi-GPU implementation of
FluidX3D. The following optimizations can be activated by the user:

a use of host pointer

b use of vendor specific buffers (alternatively to a)

c compute-transfer overlap

d load balancing (building upon c)

3.4.1 Use of task-specific buffers

In optimization a) the flag CL MEM USE HOST PTR is set when creating the buffers
buffer trans send and buffer trans recv. The use of host pointer is advantageous here, be-
cause before (after) each transfer from (to) the device the buffer is written (read out) only
once. Alternatively, depending on the vendor of the GPU, special flags can be set when cre-
ating the buffer. For nVidia this is the flag CL MEM PINNED NV, which promises guar-
anteed pinned host memory on mapping (see [17]). The memory is prevented ”from being
swapped out and provides improved transfer speeds” ([18]). For AMD GPUs, the use of the
flag CL MEM USE PERSISTENT MEM AMD would be conceivable. If the use of virtual
memory is possible on the driver side, the buffer corresponds to a host-visible device memory,
which also increases the transfer speed here (see [19]). Although both vendor specific buffers
are implemented, they could not be tested because they are quite new and a corresponding
driver for the operating systems of the clusters was not available.

3.4.2 Compute-transfer Overlap

The idea to overlap LBM computation and buffer transfers is not new (see [5], [1], [7] for multi-
GPU along one axis and [4] for multi-GPU along all three axes). The required task parallelism
must explicitly be created in the implementation. The main idea (here explained in the push-
scheme) is that all nodes streaming in halo-nodes are calculated first. After filling the buffers
to be exchanged, they are transferred, while the rest of the nodes are calculated at the same
time. However, there are difficulties with the above mentioned transfer scheme: the individual
layers cannot generally be transferred independently from each other - as shown in figure 13
for the velocity set D2Q9, the transfer buffer for the transfer of the second layer can only be
filled after the transfer of the first layer. This ensures that the populations in the corner of
the sub-domain are transferred two times in a row. The required kernel (here setget layer)
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Table 4: When using extensions, scalar fields have to be transferred additionally to the f-
populations. ~u can be treated as a scalar from an algorithmic point of view.

extension additional scalar buffers to transfer

- -
temperature gc
shanchen ρ
surface ~u, ρ, flags, mex, ϕ

Table 5: The extension surface requires a complex sequence of transfers and kernel calls.
step execute kernel transfer layers of buffer

1 - f, flags, mex, ϕ
2 stream collide -
3 - flags
4 surface 1 -
5 - ρ, ~u, flags
6 surface 2 -
7 - flags
8 surface 3 -

must access some buffers also needed for the LBM simulation (here kernel stream collide).
OpenCL explicitly prohibits two kernels from using the same buffer at the same time. Pos-
sibly [3] does not mention the implementation of a compute-transfer overlap for similar reasons.

The multi-GPU implementation of FluidX3D overcomes these difficulties by assigning one
of 4 compute numbers to each node. Having compute number 0 means that the lattice has
a subdivision into sub-domains along the x-axis and at least one work-item of the own work-
group is part of a layer with x ∈ {0, 1, sh,x − 2, sh,x − 1} - i.e. part of the corresponding halo
or sub-halo layer. The same applies to compute number 1 (y) and 2 (z). The work-groups
are considered instead of single work-items to avoid branching. If a node meets the conditions
for multiple compute numbers, the following descending priority exists: 2, 1, 0. All remaining
nodes get compute number 3. For the implementation see listing 3, ll. 91-115.

Instead of a single kernel an array of ”template”-kernels is now used for stream collide. They
are created the same way as the ”template”-kernels for setget kernel. Kernel stream collide[i]
executes the LBM simulation step only for nodes with compute number i. All other nodes
return immediately. For a lattice split in sub-domains along all three axes, figure 16 shows
the resulting procedure within one simulation step. It can be seen, that one group (here com-
pute group 2; if not present descending priority 2,1,0) isn’t used for overlapping communication.

In figure 15 the compute-numbers for a GPU arrangement 1 x 2 x 2 are visualized. You can
nicely see that because of the consideration of whole work-groups also nodes with y = sh,y − 3
are provided with compute number 1. Here it is also easy to notice that the computational load
is not distributed equally between compute groups that overlap MPI communication (compute
groups 3 and 1 in figure 15). An equal distribution would be desirable, because with cubic
sub-domains MPI communication takes approximately the same time for each transfer.
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Figure 15: Visualization of the distribution of compute numbers in a sub-domain for a GPU
arrangement 1 x 2 x 2. Each node is represented by a colored sphere. For a better overview
only a part of the sub-lattice is shown, where compute-groups are always left intact.

Figure 16: Procedure for a lattice split in sub-domains along all three axes, if compute-transfer
overlap is activated. An overlap of Host-Device communication could not be achieved.
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3.4.3 Load-balancing

To achieve a more equal distribution of the compute numbers, load balancing can be done
in addition to compute-transfer overlap. The nodes that used to have compute number 3
(from now on called inner nodes) are distributed between all compute groups involved in the
communication overlap (in figure 16 this are compute groups 3, 0 and 1). The one compute
group left (in figure 16 it is compute group 2) is not assigned more nodes, so that it can be
calculated as fast as possible at the end of the communication process. The division of the
inner nodes is based on their z-position (z-distribution, see listing 3, ll. 61-91). This is shown
in figure 17a for the same setup as in figure 15. Figure 17b shows that load balancing (and
compute-transfer overlap in general) for lattices with subdivisions along the x-axis does not
work well if sh,x is in an order of magnitude less than or equal to the TBS b. Because x is the
linear index, work-groups containing work-items with x ∈ {0, 1, sh,x − 2, sh,x − 1} extend far
into the inner of the sub-domain. As a result, compute group 0 occurs much more often than
compute groups 3 and 1 in the example. For certain sh,x (e.g. sh,x = b or sh,x = 2b) there are
no nodes with compute number 3. Therefore splitting the lattice along the z- and y-axis should
be preferred.

Figure 17: Possible distributions of compute numbers in a sub-lattice, if load balancing is
activated.

(a) The domain shown here has the same mea-
sures and GPU arrangement as in figure 15.

(b) Lattice with sub-domains 2 x 2 x 2. Split-
ting the lattice along the x-axis can decrease per-
formance compared to splitting along the other
axes.

More sophisticated balancing algorithms for distributing the inner nodes to compute num-
bers could be used. One more was tested: be m ∈ {1, 2, 3} the number of axes with multiple
GPUs. Then distribute the inner nodes by their group ID w according to w mod n (mod-
distribution). This would have the advantage that the compute numbers would be distributed
more homogeneously over the sub-lattice12. However, this algorithm proved to be inefficient for
AMD GPUs (see figure 26). It should also be mentioned that the division into compute-groups

12This is particularly relevant for the extension surface, where the computational effort of stream collide for
some parts of the domain differs drastically from the rest.
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could be calculated before the main simulation and stored in a buffer, since it doesn’t change
during the simulation. However, it is more efficient to calculate the compute-numbers in each
simulation step than to read them from the global memory.

In the current implementation of the compute-transfer overlap only the MPI communica-
tion is overlapped. An overlap with the buffer transfers Host-Device and Device-Host would
be desirable and should be theoretically possible, but could not be proven in a benchmark pro-
gram created for its measurement13. Altogether it would be conceivable to reverse the whole
compute-transfer process, i.e. to transfer already calculated parts and to calculate the inner
part at the end. However, this procedure does not harmonize so well with the surface module
(see table 5: instead of step 1 and 2, step 2 would only overlap with a transfer of ρ, ~u, flags).
A compute-transfer overlap with possible load-balancing has also been implemented for the
kernels surface 1, surface 2 and surface 3. Due to the low computational effort of the kernels,
the performance gain is balanced with the overhead of compute-transfer overlap.

4 Validation of the multi-GPU implementation

Validating the multi-GPU implementation of the LBM is conceptually simple. The simulations
run deterministically, so it’s sufficient to compare the results of the multi-GPU version against
the results of the single-GPU version at certain simulation steps: there should be no deviation.

This kind of binary comparison has been applied to all setups in this chapter. The procedure
was as follows: First, a domain size must be found that satisfies equation 18 for the single GPU
version with rg = sxsysz and at the same time for all sub-domains of the multi-GPU version
with rg = sh,xsh,ysh,z. Then the chosen setup is first executed in the single-GPU version and
the resulting data fields ~u and flags for the whole domain are stored in files after 1000 and 9000
simulation steps. Then the same setup is executed in the multi-GPU version. The data fields
~u and flags after 1000 and 9000 steps are collected and stored by the master with the help of
the Lattice class. The halo is removed during the collection process. Finally, the result files of
the multi-GPU version are bitwise compared with those of the single-GPU version. The binary
comparison is only passed if all values in the entire domain match exactly for both data fields
and both simulation steps.

As test-setup, the lid-driven cavity setup was used for all simulations except when validat-
ing the extensions (see table 9) and when testing the D2Q9 scheme (poisseuille setup). In the
lid-driven cavity setup all surfaces of the domain except the surface z = sz − 1 have no-slip
walls. On the face z = sz − 1 there is the boundary condition uy = 0.5. All other velocities
are initialized with zeros. The viscosity of the fluid is ν = 0.0149. In the poisseuille setup for
D2Q9, there are no-slip walls at y = 0 and y = sy − 1. The viscosity is ν = 1/6 and there is a
constant volume force in x-direction with Fx = ν/

√
0.5 · sy − 1. Along a line with x = const.

a quadratic velocity profile should result.

All computational options, where the multi-GPU version could differ from the single-GPU
version, were tested, beginning with the different velocity sets (D2Q9, D3Q7, D3Q13, D3Q15,

13Different GPUs and drivers were tried.
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D3Q19, D3Q27). The way, how the lattice was divided into sub-domains for the multi-GPU
version (denoted by dx, dy, dz) was varied as well as the size of the lattice (denoted by sx, sy,
sz). Table 6 lists the tests for D2Q9, table 7 tests conducted for the D3Qq-schemes.

Table 6: Parameters for the D2Q9-scheme, that were validated via binary comparison. All
parameters have been applied to the poisseuille setup. These parameters were constant during
all simulations below: dz = 1, sz = 1, TBS = 256. These options were activated during all
simulations below: compute-transfer overlap, buffer-mapping, load-balancing.

dx dy sx sy

2 1 444 256
1 2 256 252
2 2 384 256
2 2 252 1020

Table 7: Parameters that were validated via binary comparison for the following schemes:
D3Q7, D3Q13, D3Q15, D3Q19, D3Q27. All parameters have been applied to the lid-driven
cavity setup. These parameters were constant during all simulations below: TBS = 256. These
options were activated during all simulations below: compute-transfer overlap, buffer-mapping,
load-balancing.

dx dy dz sx sy sz

2 1 1 50 32 32
1 2 1 32 60 32
1 1 2 32 32 70
2 2 1 28 28 32
2 1 2 60 32 60
1 2 2 64 50 60

For all following validations as well as performance measurements, the D3Q19 scheme is
used, since it is the most common one. FluidX3D was tested using different TBS. The cor-
responding validation tests are equal to the ones listed in table 7, only this time always the
D3Q19 scheme was used and instead TBS took the following values: 32, 64, 128, 256.

The multi-GPU LBM implementation of FluidX3D has different computation options which
impact the performance. Table 8 shows their validation.

Finally, the different LBM extensions (no extension, temperature, shanchen, surface) have
been validated. For each of them, a different setup had to be used. Table 9 shows, which other
parameters were varied. For the module surface, conducting an additional compute-transfer
overlap for the kernels surfacei, i ∈ {1, 2, 3} (further referred to as surface overlap) was vali-
dated here as well.

Domains with no-slip walls on all faces were chosen to test the temperature module (temperature-
setup). Lattice nodes with y = 1 have constant temperature T = 1.5, nodes with y = sy − 2
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Table 8: Validation of the computation options via binary comparison. These parameters
were constant during all simulations below: TBS = 256. These options were activated during
all simulations below: D3Q19. Tests with compute-transfer overlap active, buffer mapping
deactivated, load-balancing active and compute-transfer overlap surface deactivated are denoted
1010.

dx dy dz sx sy sz tested compute options setup

2 1 1 124 64 64 0000, 0100, 1100, 1110 lid-driven cavity
1 2 1 64 100 64 0000, 0100, 1100, 1110 lid-driven cavity
1 1 2 80 40 124 0000, 0100, 1100, 1110 lid-driven cavity
2 2 1 124 60 64 0000, 0100, 1100, 1110 lid-driven cavity
2 1 2 60 32 124 0000, 0100, 1100, 1110 lid-driven cavity
1 2 2 64 124 60 0000, 0100, 1100, 1110 lid-driven cavity
2 2 2 124 128 136 0000, 0100, 1100, 1110 lid-driven cavity
2 2 2 36 192 60 1110, 1111 drop
2 2 2 128 124 128 1110, 1111 drop
2 2 2 444 444 448 1110, 1111 drop

Table 9: Extensions validated via binary comparison: no extension, temperature, shanchen,
surface. These parameters were constant during all simulations below: dx = dy = dz = 2, TBS
= 256. These options were activated during all simulations below: D3Q19, compute-transfer
overlap, buffer-mapping, load-balancing.

sx sy sz

36 192 60
128 124 12
444 444 448
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have constant temperature T = 0.5. All other nodes have an initial temperature of T = 1.0.
The viscosity is ν = 0.02.

In the setup for shanchen (shanchen-setup) there is a cylinder of length l = 50 lattice nodes
with radius r = 25 lattice nodes aligned along the y-axis in the center of the domain. Its density
is ρ = 2. All other lattice nodes have a density of ρ = 0.1. On all surfaces of the domain there
are no-slip walls. The viscosity is ν = 0.01, furthermore there is a constant volume force in
z-direction with Fz = −0.0001.

The drop-setup was chosen to validate the surface module: at initialization there is a drop
with radius r = 19 in the center of the domain, where it is shifted down in z-direction by r+ 2
and has an initial velocity in z-direction with uz = −0.2. In addition, the box is filled with
resting liquid up to a filling level of h = 40. All other lattice nodes are of type gas. All surfaces
of the domain except z = sz−1 have no-slip walls. The viscosity is ν = 0.02, there is a constant
volume force in z-direction with Fz = −0.0002.

The figures 18, 19 and 20 show the time evolution of the setups lid-driven cavity, temper-
ature and shanchen for concrete box sizes. They are rendered with FluidX3D’s own graphics
at runtime, which is currently only possible in the single-GPU implementation and a Windows
operating system.

(a) step 500 (b) step 2000 (c) step 5000

Figure 18: Lid-driven cavity simulation at different simulation steps for a box 128 x 128 x
128. The colors of the streamlines depict the velocity. Many thanks to Moritz Lehmann for
providing the pictures.

To visualize the drop setups in figure 21 box sizes were chosen which were not possible with
the single-GPU implementation so far due to memory limitations. They were rendered with
Paraview. Here you can see why a multi-GPU LBM is necessary: even with these domain sizes
small droplets stick to the faces of the simulation box. The ring-shaped waves also break at
the faces of the simulation box after approx. 7000 steps. A further enlargement of the lattice
would reduce these unwanted effects.

The different collision operators had not to be validated, as they do not interfere with data
communication. For all validations and performance measurements, the TRT collision operator
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(a) step 1000 (b) step 2000

(c) step 5000

Figure 19: Setup for testing the temperature module. The boundary conditions induce a
convection flow. Sizes of the lattice: 32 x 196 x 60. The colors of the streamlines depict the
temperature. Many thanks to Moritz Lehmann for providing the pictures.

(a) step 100 (b) step 600 (c) step 2000

Figure 20: Setup for testing the shanchen module. The condensing process of a cylindric drop
can be observed. Sizes of the lattice: 128 x 124 x 128. The colors depict the density. Many
thanks to Moritz Lehmann for providing the pictures.
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(a) step 250 (b) step 1250

(c) step 2250 (d) step 2750

(e) step 3250 (f) step 7000

Figure 21: Setup for testing the surface module. When the drop hits the surface of the fluid,
it generates a back-jet. Sizes of the lattice: 912 x 912 x 448. The colors depict the fill level
ϕ ∈ [0, 1] of the lattice nodes.
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was used.

5 Performance measurements

For LBM-simulations performance is typically computed by dividing the number of nodes
n = sxsysz of a lattice by the time t one simulation step takes. If the resulting value is
scaled by 10−6, performance is given in units of mega lattice updates per second (MLUPs).
First, time-resolved performance measurements were made. Figure 22 shows two single-GPU
measurements of different setups. Since the computational effort in the drop-setup depends
essentially on the size of the fluid surface, the performance increases with running simula-
tion time, while the water surface calms down after impact of the drop. Oscillations in the
performance can also be observed in the long-term course. For the future performance mea-
surements, the benchmark setup was used instead. The benchmark setup simply consists of
a domain completely filled with fluid, with no external forces acting on it and for which no
additional modules are activated. As a result, the performance remains constant over wide
ranges. Only after about 75 s it decreases, because the clock frequency of the GPU is slowed
down due to thermal throttling.
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Figure 22: single-GPU time resolved performance characteristics: benchmark vs. surface setup
(SMAUG), sizes: 448 x 448 x 442, GPU arrangement: 1 x 2 x 2.

In figure 23a the time resolved performance of the benchmark setup of the single-GPU
version is compared to two types of the multi-GPU versions (one with compute-transfer over-
lap and load balancing, one without these optimizations). All were measured on the cluster
SMAUG. In addition to the eye-catching performance increase due to the multi-GPU version
and the optimizations, the density of peak-like performance drops increases along with the
complexity of the transfer protocol. The same measurements are shown on the cluster btrzx4
(due to a more limited memory size for a smaller lattice). Here, performance drops are much
rarer, and there is no initial decrease in the clock rate. The phenomenological differences could
be attributed either to vendor-specific hardware properties or different driver characteristics.
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For all further measurements, the performance is determined as the mean value over the
time interval 100 - 200 s (drawn as a dashed line in figure 23). Let d be the standard deviation
of the performance over said interval and m the number of contained values. The error of the
mean value is then calculated by d/

√
m.
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(a) SMAUG, lattice sizes: 448 x 448 x 444.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  50  100  150  200

Pe
rf

or
m

an
ce

 / 
M

LU
Ps

computing time / s

single-GPU
multi-GPU, overlap and load balance

multi-GPU, no overlap

(b) btrzx4, lattice sizes: 256 x 256 x 252.

Figure 23: multi-GPU vs. single-GPU time resolved performance characteristics. Arrangement
multi-GPU: 1 x 2 x 2. The dashed line represents the mean performance over the time interval
100 - 200 s, the transparent areas the corresponding standard deviation.

Figure 24 shows the performance for different, approximately cubic box sizes and different
work-groups sizes (≡ TBS). It is noticeable that with the exception of TBS 32, all TBS are
approximately equivalent in terms of their performance. For large lattices, TBS 256 seems to
be advantageous in the multi-GPU measurement.
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Figure 24: performance characteristics: tread-block size. GPU arrangement for multi-LBM: 1
x 2 x 2, no compute-transfer overlap, cluster: SMAUG.

In figure 25 you can see the performance effect of host pointer. For the cluster SMAUG
there is no performance difference between the mapping routine and the read-write routine,
if host pointer is active. This was already observed in figure 4. For the cluster btrzx4, host
pointer apparently has only an advantage in combination with buffer mapping. The differences
may be due to the vendor specific compiler on GPU-side. Therefore, buffer mapping and host
pointer are now the default settings of the multi-GPU version of FluidX3D.
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Figure 25: Performance characteristics: buffer mapping and host pointer. GPU arrangement:
1 x 1 x 2, cubic boxes, compute-transfer overlap and load balancing activated. For btrzx4, the
red and orange graph are nearly overlapping.

Figure 26 shows the performance improvement gained by compute-transfer overlap and load
balancing. The improvement is bigger for the cluster SMAUG - the MPI communication seems
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here more of an bottleneck than on the cluster btrzx4. On SMAUG, determining the compute
groups by the mod-distribution caused a performance loss. On btrzx4 this method yields equiv-
alent perfomance to determining them via the z-position. In order to meet both systems, the
latter method is preferred in FluidX3D.
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Figure 26: Performance characteristics: old (mod-distribution) vs. new (z-distribution) load-
balancing. GPU arrangement: 1 x 2 x 2, cubic boxes.

The next step is to investigate how large the performance gain from load-balancing is for
different constellations. In figure 27a sy = 256 and sz = 508 was kept constant, while sx was
varied. The box is being split along the x- and z-axis, while along the y−axis there is no
splitting. Only for the red graph, the roles of x and y are changed. Overall it can be observed
that the load-balancing does not work as well when splitting along the x-axis as when splitting
along the y-axis. The reason for this is - as explained above - that x is the linear index. For
sx ∈ S = {508, 636, 764, 1020}, TBS = 256 and a division along the x-axis the inner nodes are
all assigned to compute group 2 (for example for sx = 1020 follows: sh,x = 512 = 2 · 256).
In fact, in figure 27a there are performance drops at the corresponding places (see blue graph
with symbol +). As expected, for TBS=64 these are not visible at the positions sx = 636 and
sx = 1020 (see green graph with symbol +). However, the fact that there are performance
drops at sx = 508 and sx = 1020 with TBS=64 cannot be explained by the load-balancing, nor
that there are also drops at s ∈ S if the domain is not split at all along the x−axis (see red
graph with symbol +).

One possible explanation is that for certain combinations of TBS and (sub-)lattice size there
is a loss in performance. Figure 28 confirms this, for this effect also occurs for the single-GPU
version. Since the effect cannot be seen in figure 27b for the cluster btrzx4, it is GPU specific.
However, this would also mean that performance losses due to unfavorable distribution of the
inner nodes in figure 27a could not be resolved. Nevertheless, it becomes clear that a distribu-
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Figure 27: multi-GPU performance characteristics: load-balancing. Two sizes s ∈ {sx, sy, sz}
have been hold fixed for each measurement series, while the third one has been varied.
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tion along the axis of the linear index is to be avoided in principle. In addition, there is now
a greater difference in performance between the TBS than before in figure 25. One reason for
this could be that compute-transfer overlap is now activated - since the performance is now
closer to the optimum, the overhead caused by a smaller TBS is more significant. It is therefore
recommended to use TBS 256 if possible.
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Figure 28: Performance characteristics (SMAUG): regular performance drops. For the lattice,
sx = sy = 448 was chosen, while sz was varied. The drops occur in both graphs for the same
(sub-)lattice size, if the halo is taken into account. For the multi-GPU measurement host
pointer, buffer mapping, compute-transfer overlap and load-balancing were activated.

Now the behaviour of FluidX3D in weak-scaling and strong-scaling shall be investigated.
For the weak-scaling a cubic simulation box is examined in single-GPU mode, while in multi-
GPU mode n (with n being the number of used GPUs) of such cubic boxes are lined up along
the z-axis. In table 10 the performance for large lattices is shown as well as the efficiency
compared to the theoretical optimum. With 4 GPUs, an efficiency of 81.8 % could be reached
on SMAUG, for btrzx4 an efficiency of 94.8 %.

In strong-scaling, always cubic lattices are used and subdivided according to the number of
GPUs. Figure 30a shows that a performance increase due to the use of multiple GPUs only
occurs when the domain sizes are chosen big enough. In the measurement series this is for the
first time the case with a domain of 96 x 92 x 96 for btrzx4 and with a domain of 256 x 252 x 258
for SMAUG. Table 11 can explain the big difference between the clusters: The cluster btrzx4
does the MPI transfer much faster. In the example, on both clusters the MPI-communication
is overlapped - but for smaller lattices (where the stream collide’s duration is much shorter)
this is not the case for SMAUG. Regarding the transfer speed of PCIe both clusters are nearly
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Figure 29: Weak scaling. All possible optimizations for the multi-GPU version are activated.

Table 10: Performance and efficiency for the weak scalability test. n denotes the number of
GPUs used. For the cluster btrzx4 the box size 416 x 416 x 412 was used, for the cluster
SMAUG the box size 448 x 448 x 444. Statistical errors are below 0.1% of the respective
measured value.

n Perf. / MLUPs (SMAUG) Eff. (SMAUG) Perf. / MLUPs (btrzx4 ) Eff. (btrzx4 )

1 4351 1.0000 2311 1.0000
2 7677 0.8822 4383 0.9483
3 11284 0.8644 6574 0.9482
4 14229 0.8175 8764 0.9481
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equivalent: the duration of all processes involving PCIe (4x setget kernel14, 2x transfer Device
→ Host, 2x transfer Host → Device) is 3.01 x 10−3 s for SMAUG and 2.81 x 10−3 s for btrzx4.
The high standard deviation for all activities on SMAUG is conspicuous. A glance at the
data (see 31 for setget kernel(4) and y-transfer MPI ) shows two reasons for this: on the one
hand, there are occasional kernel durations of up to 0.6 seconds, which are associated with the
performance drops from figure 23. As already suspected above, they are probably related to
hardware-specific properties or special driver characteristics. They occur for both setget kernel
and stream collide. For table 11 these are a total of 20 failures of 0.1 s or longer. On the other
hand, the duration of the MPI communication fluctuates strongly: It oscillates between 0.3 x
10−3 and 0.9 x 10−3 seconds. Additionally, the MPI communication reaches durations of up
to 0.1 seconds for several times. For the transfer in y-direction, in 838 out of 9000 cases MPI
communication is not completely overlapped by computation, for the transfer in z-direction in
7837 cases. This is in strong contrast to 6a, where the MPI transfer on SMAUG was fast and
stable. The reason for these discrepancies could not yet be found.

Table 11: Execution times of the simulations sub-steps (mean over 9000 steps). A lattice 416
x 828 x 828 with sub-domains 1 x 2 x 2 was used. All optimizations were enabled. Note how
the MPI Communication is overlapped completely.

sub- activity time / s stddev / s time / s stddev / s
step (SMAUG) (SMAUG) (btrzx4 ) (btrzx4 )

1 setget kernel(4) 9.18 x 10−4 8.96 x 10−3 1.91 x 10−4 1.44 x 10−6

2 y-transf. Device → Host 1.25 x 10−5 4.61 x 10−6 5.43 x 10−4 2.12 x 10−5

3a y-transf. MPI 5.17 x 10−3 6.13 x 10−3 1.17 x 10−3 6.17 x 10−5

3b stream collide(3) 9.89 x 10−3 1.52 x 10−2 1.58 x 10−2 5.81 x 10−5

4 y-transf. Host → Device 1.30 x 10−5 4.40 x 10−5 6.04 x 10−4 1.78 x 10−6

5 setget kernel(1) 7.23 x 10−4 5.93 x 10−4 2.27 x 10−4 1.78 x 10−6

6 setget kernel(5) 6.51 x 10−4 1.48 x 10−4 4.95 x 10−5 1.23 x 10−6

7 z-transf. Device → Host 1.16 x 10−5 2.46 x 10−6 5.42 x 10−4 2.01 x 10−6

8a z-transf. MPI 9.85 x 10−3 6.22 x 10−3 1.16 x 10−3 3.70 x 10−5

8b stream collide(1) 1.09 x 10−2 1.31 x 10−2 1.59 x 10−2 4.42 x 10−5

9 z-transf. Host → Device 7.73 x 10−6 1.41 x 10−5 6.04 x 10−4 1.89 x 10−6

10 setget kernel(2) 6.78 x 10−4 3.52 x 10−3 5.09 x 10−5 1.12 x 10−6

11 stream collide(2) 7.96 x 10−4 3.35 x 10−4 8.80 x 10−4 1.67 x 10−6

Table 10 shows the performance and efficiency for the largest lattices that were compati-
ble with the memory limitations of the single-version. With 4 GPUs, an efficiency of 53.3 %
could be reached on SMAUG, for btrzx4 an efficiency of 76.8 %. On SMAUG the performance
increases drastically in ranges where no single-GPU version can be used for comparison. The
maximum performance for a cubic lattice 704 x 704 x 708 is here (13600± 70) MLUPs.

14When host pointer is active, writing to global memory may involve the PCIe.

48



5 Performance measurements MPI-based multi-GPU LBM

Figure 30: Strong scaling. Cubic boxes are used. All possible optimizations for the multi-GPU
version are activated.

 10

 100

 1000

 10000

 10000  100000  1x106  1x107  1x108

Pe
rf

or
m

an
ce

 /
 M

LU
Ps

sx*sy*sz

SMAUG-8, dx=dy=dz=1
SMAUG-8, dx=dy=1, dz=2
SMAUG-8, dx=dy=1, dz=3
SMAUG-8, dx=1, dy=dz=2

btrzx4, dx=dy=dz=1
btrzx4, dx=dy=1, dz=2
btrzx4, dx=dy=1, dz=3
btrzx4, dx=1, dy=dz=2

(a) Double-logarithmic plot over a wide measuring range.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 5x107  1x108  1.5x108  2x108  2.5x108  3x108  3.5x108

Pe
rf

or
m

an
ce

 /
 M

LU
Ps

sx*sy*sz

SMAUG-8, dx=dy=dz=1
SMAUG-8, dx=dy=1, dz=2
SMAUG-8, dx=dy=1, dz=3
SMAUG-8, dx=1, dy=dz=2

btrzx4, dx=dy=dz=1
btrzx4, dx=dy=1, dz=2
btrzx4, dx=dy=1, dz=3
btrzx4, dx=1, dy=dz=2

(b) Zoom to the range where the multi-GPU version is superior to the single-GPU version. Some
series of measurements are stopping at smaller box sizes than others due to memory limitations.
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Figure 31: Selected activities from table 11 are shown time-resolved. On btrzx4, the performance
for both setget kernel(4) and y-transfer MPI is nearly constant. On SMAUG, on the other
hand, the bandwidth of the MPI-communication oscillates between 0.3 x 10−3 and 0.9 x 10−3

seconds. Additionally, there are several drastic performance drops both in setget kernel(4) and
y-transfer MPI.

Table 12: Performance and efficiency of selected measuring points in the strong scalability test.
For the cluster btrzx4 the box sizes 416 x 412 x 420 was used, for the cluster SMAUG the box
sizes 448 x 444 x 450. Statistical errors are less than 0.1% of the respective measured value.

n Perf. / MLUPs (SMAUG) Eff. (SMAUG) Perf. / MLUPs (btrzx4 ) Perf. (btrzx4 )

1 4513 1.0000 2322 1.0000
2 6810 0.7544 4147 0.8929
3 9250 0.6832 5892 0.8457
4 9618 0.5328 7137 0.7683
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6 Conclusion

The multi-GPU implementation presented in this thesis was precisely tailored to the require-
ments of GPUs and MPI: via host pointer it uses spezialized buffers for a fast transfer between
host and device; the memory layout SoA ensures coalesced data access when writing to / read-
ing from the transfer buffers; by ”template”-kernels unnecessary readout from global memory
can be saved; setget kernel parallelizes over layers instead of sub-domains, so viewer thread
blocks must be launched; data to be transferred is combined into a single buffer for optimal
bandwidth; branching is avoided where possible; the MPI-communication is overlapped by
computations; special characteristics of the used GPUs are taken into account (z-distribution
instead of mod-distribution; host pointer in combination with the read-write routine); the
transfer scheme needs 6 MPI communications instead of 26 in the naive approach. This pays
off through a nearly linear weak-scaling on btrzx4 and a performance up to 13600 MLUPs on
SMAUG. Two possible approaches to a further increase in performance are possible: on the
one hand, an overlap of PCIe communication between Host and Device would be desirable and
theoretically possible; on the other hand, a faster and more stable MPI communication on the
SMAUG cluster should be aimed at.

Besides its high-performance properties this multi-GPU implementation proves its flexibil-
ity: it works with several extensions; any arrangement of sub-domains is possible; it is possible
to send objects over MPI; only a single reference must be set in the Lattice-class to make new
data fields available to all MPI slaves. This makes it easy to use for future development.
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A Code examples from FluidX3D

Some slightly adapted code examples from FluidX3Dare shown here. Note that only the case
D3Q19 without extensions and without C++17-compatibility is presented. The single- and
multi-GPU versions are shown side by side (all multi-GPU specific code is encapsulated in the
define MULTIPLE DEVICES).

1 template <class T>
2 class Tensor3 ;
3 template <class T>
4 class LBM_Data3 : public Tensor3 <T> { // mark Tensor3 - Objects containing lbm fields by using a different class
5 using Tensor3 <T >:: Tensor3 ; // inherit constructors
6 };
7 class Lattice ;
8
9 # ifdef MULTIPLE_DEVICES

10 template < class ... Ts > struct overloaded : Ts ... { using Ts :: operator () ...; };
11 template < class ... Ts > overloaded (Ts ...) -> overloaded <Ts ... >;
12 template <typename T>
13 class Variant_Container {
14 public :
15 const vector <T> references ;
16 Variant_Container ( initializer_list <T> l) : references (l) {}
17 Variant_Container ( const Variant_Container & t) { ∗this = t; }; // copy- constructor has no effect so classes with

↪→ Variant_Container as members are able to use default copy- constructor
18 const Variant_Container & operator =( const Variant_Container & t) const { return ∗this; }; // operator = has no effect for

↪→ similar reasons
19 void visit ( const bool send , const uint mpi_id ) const ; // send / recieve class over MPI
20 void visit_LBM_Data3 ( const bool set , Lattice & lat , uint xfirst , uint xlast , uint yfirst , uint ylast , uint zfirst , uint zlast

↪→ ) const ; // set sub- subdomai lat into domain ∗this / get copy lat containing only sub- domain of ∗this
21 };
22 # endif // MULTIPLE_DEVICES
23
24 template <class T>
25 class Tensor3 {
26 protected :
27 uint sizex , sizey , sizez , sized ; // sizes of Tensor3 : sd denotes the data depth at one Tensor3 position
28 uint length ; // total number of data entries
29 uint size; // size = sx∗sy∗sz
30 vector <T> vec; // contains data
31 # ifdef MULTIPLE_DEVICES
32 Variant_Container <std :: variant <uint∗, vector <T>∗>> reference_collection { &sizex , &sizey , &sizez , &sized , &length , &size , &

↪→ vec };
33 # endif // MULTIPLE_DEVICES
34 public :
35 // contructors and destructor
36 Tensor3 () = default ;
37 Tensor3 (uint sx , uint sy , uint sz , uint datadepth =1);
38 Tensor3 ( const Tensor3 & t) = default ;
39 ~ Tensor3 () = default ;
40 // operators
41 Tensor3 & operator =( const Tensor3 & t) = default ;
42 T& operator []( uint i); // n = sx∗(sy∗z+y)+x + d∗sx∗sy∗sz
43 const T& operator []( uint i) const { return ( const_cast <Tensor3 <T>∗>(this))->operator [](i); }; // const - version
44 template <class U>
45 friend ostream & operator <<( ostream & os , const Tensor3 <U >& t);
46 // get and set
47 T∗ get_ptr () { return vec.data (); }; // returns the begin of the internally maintained 1D- array
48 const T∗ get_ptr () const { return ( const_cast <Tensor3 <T>∗>(this))->get_ptr (); }; // const - version
49 uint sx () const { return sizex ; };
50 uint sy () const { return sizey ; };
51 uint sz () const { return sizez ; };
52 uint sd () const { return sized ; };
53 uint len () const { return length ; }; // length == size∗sized
54 uint s() const { return size; };
55 Tensor3 <T >& resize (uint sx , uint sy , uint sz , uint datadepth =1);
56 T& at(uint x, uint y, uint z, uint d=0); // alternative to operator []
57 const T& at(uint x, uint y, uint z, uint d=0) const { return ( const_cast <Tensor3 <T>∗>(this))->at(x,y,z,d); }; // const -

↪→ version
58 T& at(uint n, uint d=0); // == at(x, 0, 0, d)
59 const T& at(uint n, uint d=0) const { return ( const_cast <Tensor3 <T>∗>(this))->at(n,d); }; // const - version
60 void copy_into (Tensor3 <T> & t, uint xfirst , uint xlast , uint yfirst , uint ylast , uint zfirst , uint zlast );
61 void set_values ( const T∗ arr , uint xfirst , uint xlast , uint yfirst , uint ylast , uint zfirst , uint zlast );
62 void set_values ( const T∗ arr); // set all data entries of the Tensor3 - Object via an existing array
63 void set_values ( const T∗ arr , uint d); // set all data entries of depth d via an existing array
64 void set_values ( const T& v); // set all data entries of the Tensor3 - Object to the same value
65 void set_values ( const T& v, uint d); // set all data entries of depth d to the same value
66 void write_vtk ( const string path);
67 void write_dat ( const string path);
68 # ifdef MULTIPLE_DEVICES
69 void mpi_send ( const uint mpi_id_to );
70 void mpi_recv ( const uint mpi_id_from );
71 # endif // MULTIPLE_DEVICES
72 };
73
74 class Lattice { // class containing all lattice parameters and some lbm data fields
75 private :
76 void test_box_sizes (); // test , if each simulation box is divisible by THREAD_BLOCK_SIZE
77 void fill_positions (); // fills device_positions
78 void fill_offsets (); // fills box_offsets
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79 # ifdef MULTIPLE_DEVICES
80 void get_box (uint mpi_id , Lattice & lat); // fill lat with parameters and data for the simulation box corresponding to its

↪→ mpi_id
81 void set_box (uint mpi_id , Lattice & lat); // fill the part of the simulation box of (∗this) corresponding to mpi_id with data

↪→ from lat
82 template < class T>
83 friend class Variant_Container ;
84 Variant_Container <std :: variant <uint∗, bool∗, float∗, Tensor3 <uint >∗, Tensor3 <uchar >∗, Tensor3 <float >∗, Tensor3 <short >∗,

↪→ LBM_Data3 <uint >∗, LBM_Data3 <uchar >∗, LBM_Data3 <float >∗, LBM_Data3 <short >∗>> reference_collection {
85 & step_count ,
86 &rho , &u, &flags ,
87 & config . device_order , & config .box_sizes , & config . device_positions , & config . box_offsets ,
88 & config .size_x , & config .size_y , & config .size_z , & config . point_number ,
89 & config .mem_sx , & config .mem_sy , & config .mem_sz , & config . mem_number ,
90 & config .total_x , & config .total_y , & config .total_z , & config . total_point_number ,
91 & config .devices_x , & config .devices_y , & config .devices_z ,
92 & config .tau , & config .w, & config .viscosity , & config .Re , & config .Fx , & config .Fy , & config .Fz , & config .set
93 };
94 # endif // MULTIPLE_DEVICES
95 struct Config {
96 Tensor3 <uint > device_order ; // contains the corresponding mpi_id at each spatial position
97 Tensor3 <uint > box_sizes ; // contains the box size of each Device at the position of its mpi_id
98 Tensor3 <uint > device_positions ; // contains the spatial position of each Device at the position of its mpi_id
99 Tensor3 <uint > box_offsets ; // communicate between global and local lattice points : corresponding offsets at the position

↪→ of its mpi_id
100 uint size_x , size_y , size_z , point_number ; // local lattice size , number of lattice points of one Device
101 uint mem_sx , mem_sy , mem_sz , mem_number ; // measures of the local lattice ( including halo if any)
102 uint total_x , total_y , total_z , total_point_number ; // global lattice size , number of lattice points of whole simulation

↪→ box
103 uint devices_x , devices_y , devices_z ; // denotes in how many sub- domains the domain is split along each axis
104 float tau , w, viscosity , Re; // further simulation parameters
105 float Fx , Fy , Fz; // constant volume force
106 uint set; // velocity set
107 };
108 struct Config config ;
109 public :
110 uint step_count = 0;
111 LBM_Data3 <float > rho , u; // density and velocity fields
112 LBM_Data3 <uchar > flags ; // flags for each lattice node ( cl_bool is not supported as kernel argument ), from 0 to 7: [wall

↪→ boundary , equilibrium boundary , temperature boundary ]
113 Lattice () = default ;
114 Lattice ( const uint sx , const uint sy , const uint sz , const float viscosity , const float Fx =0.0f, const float Fy =0.0f, const

↪→ float Fz =0.0f, const uint dx=1, const uint dy=1, const uint dz =1);
115 Lattice ( const Lattice & l) = default ;
116 ~ Lattice () = default ;
117 Lattice & operator =( const Lattice & l) = default ;
118 uint size_x () const { return config . size_x ; }; uint mem_sx () const { return config . mem_sx ; }; uint total_x () const { return

↪→ config . total_x ; }; // getter
119 uint size_y () const { return config . size_y ; }; uint mem_sy () const { return config . mem_sy ; }; uint total_y () const { return

↪→ config . total_y ; };
120 uint size_z () const { return config . size_z ; }; uint mem_sz () const { return config . mem_sz ; }; uint total_z () const { return

↪→ config . total_z ; };
121 uint devices_x () const { return config . devices_x ; }; uint devices_y () const { return config . devices_y ; }; uint devices_z ()

↪→ const { return config . devices_z ; };
122 uint point_number () const { return config . point_number ; }; uint mem_number () const { return config . mem_number ; }; uint

↪→ total_point_number () const { return config . total_point_number ; };
123 float tau () const { return config .tau; }; float w() const { return config .w; }; float viscosity () const { return config .

↪→ viscosity ; }; float Re () const { return config .Re; };
124 float Fx () const { return config .Fx; }; float Fy () const { return config .Fy; }; float Fz () const { return config .Fz; }; uint

↪→ set () const { return config .set; };
125 const Tensor3 <uint >& device_order () const { return config . device_order ; }; const Tensor3 <uint >& box_sizes () const { return

↪→ config . box_sizes ; };
126 const Tensor3 <uint >& device_positions () const { return config . device_positions ; }; const Tensor3 <uint >& box_offsets () const

↪→ { return config . box_offsets ; };
127 # ifdef MULTIPLE_DEVICES
128 bool halo_x () const { return config .devices_x >1; }; bool halo_y () const { return config .devices_y >1; }; bool halo_z () const

↪→ { return config .devices_z >1; };
129 void mpi_distribute_lattices (); // MPI communication
130 void mpi_collect_lattices ();
131 template < class T>
132 void mpi_collect (Tensor3 <T> &t);
133 void mpi_send ( const uint mpi_id_to );
134 void mpi_recv ( const uint mpi_id_from );
135 # endif // MULTIPLE_DEVICES
136 };
137
138 // ######################################### implementation of class Variant_Container ######################################
139
140 # ifdef MULTIPLE_DEVICES
141 template <class T>
142 static void vector_MPI ( const bool send , const uint mpi_id , vector <T>∗ _v) {
143 uint size;
144 if(send) {
145 size = (uint)_v->size ();
146 if (( long unsigned int)size∗sizeof (T) >(long unsigned int)std :: numeric_limits <int >:: max ()) {cout << " Maximum amount of data

↪→ elements for MPI_Send exceeded ." << endl; wait (); exit(-1); } // if needed , MPI_Send could be splited in smaller
↪→ portions dynamically ...

147 MPI_Send (& size , 1, MPI_UNSIGNED , mpi_id , 0, MPI_COMM_WORLD );
148 MPI_Send (_v->data () , size∗sizeof (T), MPI_BYTE , mpi_id , 0, MPI_COMM_WORLD );
149 } else {
150 MPI_Recv (& size , 1, MPI_UNSIGNED , mpi_id , 0, MPI_COMM_WORLD , MPI_STATUS_IGNORE );
151 _v->resize (size);
152 T∗ arr = new T[size ];
153 MPI_Recv (arr , size∗sizeof (T), MPI_BYTE , mpi_id , 0, MPI_COMM_WORLD , MPI_STATUS_IGNORE );
154 _v->insert (_v->begin () , arr , arr+size);
155 delete [] arr;
156 }
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157 }
158 template <class T>
159 void Variant_Container <T >:: visit ( const bool send , const uint mpi_id ) const {
160 for(auto & ref : references ) {
161 std :: visit ( overloaded {
162 [send , mpi_id ]< class U >(U∗ _u) { if(send) MPI_Send (_u , sizeof (U), MPI_BYTE , mpi_id , 0, MPI_COMM_WORLD );
163 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/ else MPI_Recv (_u , sizeof (U), MPI_BYTE , mpi_id , 0, MPI_COMM_WORLD , MPI_STATUS_IGNORE

↪→ ); },
164 [send , mpi_id ]< class U >( vector <U>∗ _v) { vector_MPI (send ,mpi_id ,_v); },
165 [send , mpi_id ]< class U >( Tensor3 <U>∗ _t) { if(send) _t->mpi_send ( mpi_id ); else _t->mpi_recv ( mpi_id ); },
166 [send , mpi_id ]< class U >( LBM_Data3 <U>∗ _t) { if(send) _t->mpi_send ( mpi_id ); else _t->mpi_recv ( mpi_id ); }
167 }, ref);
168 }
169 }
170 template <class T>
171 void Variant_Container <T >:: visit_LBM_Data3 ( const bool set , Lattice & lat , uint xfirst , uint xlast , uint yfirst , uint ylast ,

↪→ uint zfirst , uint zlast ) const {
172 for(uint i=0; i< references .size (); i++) {
173 auto & ref = references [i];
174 std :: visit ( overloaded {
175 [i,set ,&lat ,xfirst ,xlast ,yfirst ,ylast ,zfirst , zlast ]< class U >( LBM_Data3 <U>∗ _t) {
176 if(set) _t->set_values (get <LBM_Data3 <U>∗>(lat. reference_collection . references [i])->get_ptr () ,xfirst ,xlast ,yfirst ,

↪→ ylast ,zfirst , zlast );
177 else _t->copy_into (get < LBM_Data3 <U>∗>(lat. reference_collection . references [i])->resize (lat. size_x () , lat. size_y () ,

↪→ lat. size_z () , _t->sd ()),xfirst ,xlast ,yfirst ,ylast ,zfirst , zlast );
178 },
179 []< class U >(U _u) { return ; }
180 }, ref);
181 }
182 }
183 # endif // MULTIPLE_DEVICES
184
185 // ############################################ implementation of class Tensor3 ###########################################
186
187 # ifdef MULTIPLE_DEVICES
188 template <class T>
189 void Tensor3 <T >:: mpi_send ( const uint mpi_id_to ) {
190 reference_collection . visit (true , mpi_id_to );
191 }
192 template <class T>
193 void Tensor3 <T >:: mpi_recv ( const uint mpi_id_from ) {
194 reference_collection . visit (false , mpi_id_from );
195 }
196 # endif // MULTIPLE_DEVICES

Listing 1: Classes Lattice and Tensor3 (only implementations of some of their methods are
shown) and how the MPI send-recieve process via class Variant Container works. Minor
changes compared to the original file lattice.hpp have been made.

1 // ########################################## implementation of class Lattice ##########################################
2
3 # ifdef MULTIPLE_DEVICES
4 void Lattice :: mpi_send ( const uint mpi_id_to ) {
5 reference_collection . visit (true , mpi_id_to );
6 }
7 void Lattice :: mpi_recv ( const uint mpi_id_from ) {
8 reference_collection . visit (false , mpi_id_from );
9 }

10 void Lattice :: mpi_distribute_lattices () {
11 int mpi_id , n_mpi ;
12 MPI_Comm_rank ( MPI_COMM_WORLD , & mpi_id ); // get my rank
13 MPI_Comm_size ( MPI_COMM_WORLD , & n_mpi ); // get the total number of processors
14 if( mpi_id == n_mpi -1) { // master
15 Lattice temp;
16 for(int i=0; i< n_mpi -1; i++) {
17 get_box (i, temp);
18 temp. mpi_send (i);
19 }
20 } else { // slaves
21 this->mpi_recv ( n_mpi -1);
22 }
23 }
24 void Lattice :: mpi_collect_lattices () {
25 int mpi_id , n_mpi ;
26 MPI_Comm_rank ( MPI_COMM_WORLD , & mpi_id ); // get my rank
27 MPI_Comm_size ( MPI_COMM_WORLD , & n_mpi ); // get the total number of processors
28 if( mpi_id == n_mpi -1) { // master
29 Lattice temp;
30 for(int i=0; i< n_mpi -1; i++) {
31 temp. mpi_recv (i);
32 set_box (i,temp);
33 }
34 } else { // slaves
35 this->mpi_send ( n_mpi -1);
36 }
37 }
38 # endif // MULTIPLE_DEVICES

Listing 2: Some methods of Class Lattice from file lattice.cpp that have to do with the MPI
communication.
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1 string get_opencl_code () { return
2 # ifdef MULTIPLE_DEVICES
3 R(
4 uint __attribute__ (( always_inline )) determine_surf_size ( const uint∗ t_s , const uint c) { // calculate surf_size
5 return t_s [(c+1) %3]∗t_s [(c+2) %3];
6 }
7 void __attribute__ (( always_inline )) assign_float ( global float∗ buff_value , global float∗ field_value , const bool set) {
8 if(set) ∗field_value = ∗buff_value ;
9 else ∗buff_value = ∗field_value ;

10 }
11 void __attribute__ (( always_inline )) assign_uchar ( global uchar∗ buff_value , global uchar∗ field_value , const bool set) {
12 if(set) ∗field_value = ∗buff_value ;
13 else ∗buff_value = ∗field_value ;
14 }
15 void __attribute__ (( always_inline )) fill_xyz ( const uint n, const bool set , const uint c, const uint surf_size , const bool

↪→ offset , const uint∗ s_xyz , uint∗ xyz) { // calculate x,y and z
16 const bool get = !set;
17 xyz[c ] = offset ? s_xyz [c] - 1 - get : 0 + get; // e.g. for c=0, xyz [0] in {0,1, def_sx -2, def_sx -1}
18 xyz [(c+1) %3] = n % s_xyz [(c+1) %3]; // n = xyz [(c+1) %3] + s_xyz [(c+1) %3] ∗ xyz [(c+2) %3] + get∗surf_size ;
19 xyz [(c+2) %3] = offset ? (n - surf_size ) / s_xyz [(c+1) %3] : n / s_xyz [(c+1) %3];
20 }
21 void __attribute__ (( always_inline )) fill_n (uint∗ setget_n , uint∗ lbm_n , const uint n, const uint∗ xyz , const uint surf_size ,

↪→ const bool offset ) {
22 ∗setget_n = n - offset∗surf_size ; // indices of the second half and of the first half are the same , in the buffer they are

↪→ separated by b ∗ surf_size ∗ def_∗_data_depth
23 ∗lbm_n = xyz [0] + def_sx ∗ (xyz [1] + def_sy ∗ xyz [2]); // in stream_collide , the indices are computed : n = x+(y+z∗sy)∗sx
24 }
25 void __attribute__ (( always_inline )) fill_c_set (uint∗ c, bool∗ set , const uint c_setget ) {
26 if(c_setget >2) { ∗c= c_setget -3; ∗set= false ; } // c in {0 ,1 ,2} with 0=x, 1=y, 2=z
27 else /∗∗∗∗∗∗∗/ { ∗c= c_setget ; ∗set=true ; }
28 }
29 void __attribute__ (( always_inline )) setget_layer ( const uchar c_setget , global uchar∗ buff_recv , global uchar∗ buff_send ,

↪→ global fpXX∗ fc) {
30 const uint surfDir [2∗def_n_dim∗def_n_trans_per_surf ] = { // D3Q19
31 2, 8 ,10 ,14 ,16 , // x=0
32 1, 7, 9 ,13 ,15 , // x=sx-1
33 4, 8 ,12 ,13 ,18 , // y=0
34 3, 7 ,11 ,14 ,17 , // y=sy-1
35 6 ,10 ,12 ,15 ,17 , // z=0
36 5, 9 ,11 ,16 ,18 // z=sz-1
37 };
38 const uint n = get_global_id (0);
39 const uint t_s [3] = {def_sx , def_sy , def_sz };
40 uint t_xyz [3] , c;
41 bool set;
42 fill_c_set (&c ,&set , c_setget );
43 const uint surf_size = determine_surf_size (t_s , c);
44 if(n >= 2∗surf_size ) return ; // return indices that only fill up THREAD_BLOCK_SIZE
45 const bool b = (n >= surf_size ); // the layer in the back is represented by the second half of the buffer and the second

↪→ half of the global index range
46 fill_xyz (n, set , c, surf_size , b, t_s , t_xyz );
47 uint setget_n , lbm_n ;
48 fill_n (& setget_n , &lbm_n , n, t_xyz , surf_size , b);
49 global uchar∗ buff = set ? buff_recv : buff_send ; // use buff_recv or buff_send depending on which mode is selected
50 global fpXX∗ fcPtr = ( global fpXX∗) ((( global uchar∗) buff) +b∗surf_size∗def_layer_data_depth );
51 const uint∗ dir = & surfDir [(2∗c+( set-b)∗(set-b))∗def_n_trans_per_surf ]; // (set-b)∗(set-b) can be 0 or 1
52 if(set) {
53 # pragma unroll
54 for(uint i=0; i< def_n_trans_per_surf ; i++) store (fc , index (lbm_n ,dir[i]) , fcPtr [i∗surf_size + setget_n ]);
55 } else {
56 # pragma unroll
57 for(uint i=0; i< def_n_trans_per_surf ; i++) fcPtr [i∗surf_size + setget_n ] = load(fc , index (lbm_n ,dir[i]));
58 }
59 }
60 bool __attribute__ (( always_inline )) work_groups_turn ( const uint work_group , const uchar control ) {
61 if( def_load_balancing ) {
62 const uint n_first = work_group∗def_thread_block_size , n_last = n_first + def_thread_block_size -1;
63 bool z_surface =false , y_surface =false , x_surface = false ;
64 uint t_first , t_last ;
65 const uint z_first = n_first /( def_sx∗def_sy ), z_last = n_last /( def_sx∗def_sy );
66 if( def_halo_z ) {
67 z_surface = (z_first <2 || z_last >= def_sz -2); // true if group is part of the first or last two layers in z- direction &&

↪→ z-halo activated
68 }
69 if( def_halo_y || def_halo_x ) {
70 t_first = n_first %( def_sx∗def_sy ); t_last = n_last %( def_sx∗def_sy ); // disassemble 1D index to 3D coordinates (n -> x,y,

↪→ z)
71 }
72 if( def_halo_y ) {
73 const uint y_first = t_first /def_sx , y_last = t_last / def_sx ;
74 y_surface = (y_first <2 || y_last >= def_sy -2 || y_first > y_last || def_sx∗def_sy < def_thread_block_size ); // true if group

↪→ is part of the first or last two layers in y- direction && y-halo activated
75 }
76 if( def_halo_x ) {
77 const uint x_first = t_first %def_sx , x_last = t_last % def_sx ;
78 x_surface = (x_first <2 || x_last >= def_sx -2 || x_first > x_last || def_sx < def_thread_block_size ); // true if group is

↪→ part of the first or last two layers in x- direction && x-halo activated
79 }
80 const bool inner = !( z_surface || y_surface || x_surface );
81 const uchar balance = def_halo_x + def_halo_y + def_halo_z ; // number between 1-3
82
83 const bool balance_y = def_halo_y && def_halo_z && inner && z_first < def_sz / balance ; // z- distribution
84 const bool balance_x = def_halo_x && balance >1 && inner && (( balance ==2 && z_first < def_sz / balance ) || balance ==3 &&

↪→ z_first > def_sz / balance && z_first >( def_sz / balance )∗2);
85
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86 /∗∗/ if( control ==2 && z_surface ) return true; // true if part of z_surface
87 else if( control ==1 && (( y_surface && ! z_surface ) || balance_y )) return true; // true if part of y_surface and not

↪→ computed already || selected by load balance
88 else if( control ==0 && (( x_surface && !( y_surface || z_surface )) || balance_x )) return true; // true if part of x_surface

↪→ and not computed already
89 else if( control ==3 && inner && !( balance_y || balance_x )) return true; // true if not part of activated surface
90 else return false ;
91 } else { // no load balancing
92 const uint n_first = work_group∗def_thread_block_size , n_last = n_first + def_thread_block_size -1;
93 bool z_surface =false , y_surface =false , x_surface = false ;
94 uint t_first , t_last ;
95 if( def_halo_z ) {
96 const uint z_first = n_first /( def_sx∗def_sy ), z_last = n_last /( def_sx∗def_sy );
97 z_surface = (z_first <2 || z_last >= def_sz -2); // true if group is part of the first or last two layers in z- direction &&

↪→ z-halo activated
98 if( control ==2 && z_surface ) return true;
99 }

100 if( def_halo_y || def_halo_x ) {
101 t_first = n_first %( def_sx∗def_sy ); t_last = n_last %( def_sx∗def_sy ); // disassemble 1D index to 3D coordinates (n -> x,y,

↪→ z)
102 }
103 if( def_halo_y ) {
104 const uint y_first = t_first /def_sx , y_last = t_last / def_sx ;
105 y_surface = (y_first <2 || y_last >= def_sy -2 || y_first > y_last || def_sx∗def_sy < def_thread_block_size ); // true if group

↪→ is part of the first or last two layers in y- direction && y-halo activated
106 if( control ==1 && y_surface && ! z_surface ) return true;
107 }
108 if( def_halo_x ) {
109 const uint x_first = t_first %def_sx , x_last = t_last % def_sx ;
110 x_surface = (x_first <2 || x_last >= def_sx -2 || x_first > x_last || def_sx < def_thread_block_size ); // true if group is

↪→ part of the first or last two layers in x- direction && x-halo activated
111 if( control ==0 && x_surface && !( y_surface || z_surface )) return true;
112 }
113 if( control ==3 && !( z_surface || y_surface || x_surface )) return true; // true if not part of activated surface
114 return false ;
115 }
116 }
117 void __attribute__ (( always_inline )) stream_collide ( const uchar control , const global fpXX∗ fc , global fpXX∗ fs , global float∗

↪→ rho , global float∗ u, const global uchar∗ flags ) {
118 )+
119 #else // MULTIPLE_DEVICES
120 R(
121 kernel void stream_collide ( const global fpXX∗ fc , global fpXX∗ fs , global float∗ rho , global float∗ u, const global uchar∗

↪→ flags ) {
122 )+
123 # endif // MULTIPLE_DEVICES
124 R(
125 const uint n = get_global_id (0); // n = x+(y+z∗sy)∗sx
126 )+
127 # ifdef MULTIPLE_DEVICES
128 R(
129 if( def_compute_transfer_overlap ) {
130 const uint work_group = get_group_id (0);
131 if (! work_groups_turn ( work_group , control )) return ;
132 }
133 const uint tz = n/( def_sx∗def_sy ); // disassemble 1D index to 3D coordinates (n -> x,y,z)
134 const uint tt = n%( def_sx∗def_sy ); // n = x+(y+z∗sy)∗sx
135 const uint ty = tt/ def_sx ;
136 const uint tx = tt% def_sx ;
137 if ((( tx ==0 || tx == def_sx -1) && def_halo_x ) || (( ty ==0 || ty == def_sy -1) && def_halo_y ) || (( tz ==0 || tz == def_sz -1) &&

↪→ def_halo_z )) return ; // node is halo node
138 # endif // MULTIPLE_DEVICES
139 R(
140 // proceed with normal stream_collide
141 );}
142
143 # ifdef MULTIPLE_DEVICES
144 string get_setget_code ( const unsigned int i) { return // generate 6 different setget_∗- kernels : 0= set_x , 1= set_y , 2= set_z , 3=

↪→ get_x , 4= get_y , 5= get_z
145 "\n kernel void setget_layer_ "+ to_string (i)+"( global uchar∗ buff_recv , global uchar∗ buff_send , global fpXX∗ fc) { \n"
146 "\n setget_layer ("+ to_string (i)+"u, buff_recv , buff_send , fc); } \n"
147 ;}
148 string get_lbm_code ( const unsigned int i) { return // generate 4 different stream_collide - kernels : 0= compute_x_surface , 1=

↪→ compute_y_surface , 2= compute_z_surface , 3= compute_inner
149 "\n kernel void stream_collide_ "+ to_string (i)+"( const global fpXX∗ fc , global fpXX∗ fs , global float∗ rho , global float∗ u,

↪→ const global uchar∗ flags ) { \n"
150 "\n stream_collide ("+ to_string (i)+"u, fc , fs , rho , u, flags ); }\n"
151 ;}
152 # endif // MULTIPLE_DEVICES

Listing 3: Some content of kernel.cpp relevant for the buffer transfers. The rest of kernel
stream collide is left out after line 139. All variables beginning with def are constants, that are
set at runtime (before compiling the OpenCL Code). The macro R(...) converts its content to
string. The words global and kernel are keywords of the OpenCL C language. The function call
get global id(0) returns the global ID of the thread, the function call get group id(0) returns
the group ID.
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