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Summary 

 

The formation of magmas in subduction zones is the main mechanism for the growth of the 

continental crust today. Nevertheless, there is still no consensus concerning the mechanism that 

causes melting in the mantle wedge above the subducted plate. Most recent studies suggest that 

water-bearing sediment melts infiltrate the mantle wedge and reduce the solidus of the mantle 

peridotite. However, this idea is difficult to reconcile with the striking similarity of primitive 

arc basalt compositions in all subduction zones worldwide, irrespective of the presence, 

amount, and nature of sediment subducted. In this dissertation, I therefore investigated the 

hypothesis that aqueous fluids released from the basaltic portion of the subducted slab are the 

main trigger for melting in volcanic arcs. In order to test this hypothesis, I studied the 

composition of subduction zone fluids in high-pressure experiments and compared them with 

the trace element enrichment pattern seen in natural subduction zone magmas. In contrast to 

previous studies, I also investigated in detail the effect of fluid salinity (NaCl content) on the 

trace element enrichment pattern, as this may be strongly altered by selective complexing with 

chloride. 

For measuring fluid compositions at high pressures and temperatures, the “diamond trap” 

method was used, where a layer of diamond powder inside an Au or Pt capsule containing the 

charge is used to trap the fluid inside its pore space. The composition of the fluid is then 

determined by laser-ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) 

after quenching the run and freezing the charge. Since this method was essential for this study, 

a number of tests were carried out in simple and well-studied model systems to check the 

reliability of the results. In general, the method yields data within a factor of two of the expected 

value.  However, systems that are highly susceptible to dissolution and re-precipitation in 

temperature gradients may lead to erroneous results. Freezing the sample before analysis is 

essential for obtaining high-quality data.  

Experiments to determine the fluid/eclogite partition coefficients of a large suite of trace 

elements were carried out at 700 – 800 ˚C and 4 – 5 GPa in a piston cylinder apparatus. 

Additional experiments at 6 GPa were done in a multi anvil press. Starting materials were 
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synthetic glasses of MORB compositions and aqueous solutions with variable NaCl contents. 

By using periodic oscillations of temperature during the experiments, it was possible to 

enhance the grain growth of minerals due to Ostwald ripening, such that from all solid phases 

crystals large enough for laser-ablation ICP-MS analysis could be obtained.  

Under run conditions, the starting glasses converted to a well-crystallized eclogitic assemblage 

of omphacite and garnet, with minor rutile and kyanite. The coexisting aqueous fluid contained 

typically 30 - 40 wt. % of solutes, mostly silica. With increasing salinity (up to about 7 wt. % 

Cl), the fluid/eclogite partition coefficients of the large-ion lithophile elements (e.g. Cs, Rb, 

Ba, Sr), of the light rare earth elements (e.g. La, Ce), of U, Th, and Pb increased up to three 

orders of magnitude. On the other hand, the partitioning of the typical high-field strength trace 

elements (e.g. Ti, Nb, Ta) was unaffected by salinity. Attainment of equilibrium was 

demonstrated by truly reversed experiments; runs starting with the trace elements doped either 

in the solution or in the solid glass yielded consistent results. Increasing pressure and 

temperature generally enhances the partitioning into the fluid, but does not fundamentally 

change the enrichment pattern. 

The experimental data were used to quantitatively model the composition of partial melts of 

the mantle wedge after metasomatic enrichment by an aqueous fluid released from the basaltic 

part of the subducted slab after amphibole dehydration. The models show that trace element 

enrichment pattern of primitive arc basalts can be fully reproduced by adding just 2.5 wt. % of 

a saline fluid with 7 – 10 wt. % Cl to the source. Lower salinities would require higher fractions 

of fluid additions, while a purely aqueous fluid (without any Cl) is unable to produce the 

observed trace element enrichment pattern. In contrast to this finding, sediment melts generated 

under plausible slab-surface conditions have difficulties to yield the trace element pattern in 

primitive arc basalts. 

The present study therefore demonstrates that primitive arc basalts are produced by the partial 

melting of a mantle peridotite enriched by saline fluids released from the basaltic part of the 

subducted slab. The contribution of sediment melts to the petrogenesis of these magmas is 

likely negligible and the importance of sediment melts for magma formation in subduction 

zones has likely been grossly overestimated.  
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Zusammenfassung 

 

Die Bildung von Magmen in Subduktionszonen ist der Hauptmechanismus für das Wachstum 

der kontinentalen Kruste in der jüngeren geologischen Vergangenheit. Es besteht jedoch nach 

wie vor kein Konsens über den Mechanismus der Schmelzbildung im Mantelkeil über der 

subduzierten Platte. Neuere Arbeiten nehmen meistens an, dass wasserhaltige 

Sedimentschmelzen in den Mantelkeil aufsteigen und den Schmelzpunkt des Peridotits 

herabsetzen. Diese Vorstellung ist jedoch schwer vereinbar mit der weltweiten, auffallenden 

Ähnlichkeit in der Zusammensetzung von primitiven Magmen aus Inselbögen, unabhängig von 

der Gegenwart, der Menge und der Zusammensetzung von subduziertem Sediment. Diese 

Dissertation untersucht daher die Hypothese, dass Wasser-reiche Fluide aus dem basaltischen 

Teil der subduzierten Platte die Schmelzbildung in Subduktionszonen auslösen. Um diese 

Hypothese zu testen, wurde die Zusammensetzung von Fluiden in Subduktionszonen mit Hilfe 

von Hochdruckexperimenten im Labor untersucht und die Daten mit dem Spurenelement-

Muster in natürlichen Magmen aus Subduktionszonen verglichen. Im Gegensatz zu früheren 

Untersuchungen wurde auch der Effekt der Salinität des Fluids (d.h. des NaCl-Gehalts) auf das 

Spurenelement-Anreicherungsmuster untersucht, da dieses Muster möglicherweise sehr stark 

durch Komplexbildung mit Chlorid verändert werden könnte.  

Zur Bestimmung von Fluid-Zusammensetzungen bei hohem Druck und hoher Temperatur 

wurde die „Diamond-Trap“-Methode verwendet. Hierbei dient eine Lage von Diamantpulver 

in der Probenkapsel dazu, Teile des Fluids im Porenraum zwischen den Diamantkörnern 

einzufangen. Die Zusammensetzung des Fluids wird dann nach Abschrecken des Experiments 

zu Raumtemperatur und Einfrieren der Probe mit Hilfe von Laser-Ablations-ICP-MS 

(inductively coupled plasma mass spectroscopy) bestimmt. Da diese Methode für diese 

Dissertation essentiell war, wurden eine Reihe von Tests in einfachen und gut untersuchten 

Modellsystemen ausgeführt, um die Zuverlässigkeit der Messwerte zu überprüfen. Im 

Allgemeinen reproduziert die Methode die erwarteten Messwerte innerhalb eines Faktors von 

zwei. Bei Systemen, die sehr empfindlich sind in Bezug auf Auflösung und Wiederausfällung 

in einem Temperaturgradienten können jedoch systematische Fehler auftreten. Das Einfrieren 

der Proben vor der Analyse ist in jedem Fall essentiell, um zuverlässige Daten zu erhalten. 
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Experimente zur Messung der Fluid/Eklogit-Verteilungskoeffizienten zahlreicher 

Spurenelemente wurden bei 700 – 800 ˚C und 4 – 5 GPa in einer Piston-Cylinder-Apparatur 

ausgeführt. Für weitere Experimente bei 6 GPa diente eine Multi-Anvil-Apparatur. 

Ausgangsmaterialien waren synthetische Gläser mit MORB-Zusammensetzung sowie 

wässrige Lösungen mit unterschiedlichen NaCl-Gehalten. Während der Experimente konnte 

das Kornwachstum aufgrund von Ostwald-Reifung durch periodische Schwankungen in der 

Temperatur verstärkt werden. Von allen festen Phasen konnten dadurch Kristalle erhalten 

wurden, die groß genug waren für die Messung mit Laser-Ablations- ICP-MS.  

Während der Experimente bildete sich aus den Gläsern eine gut kristallisierte Eklogit -

Paragenese mit Omphacit, Granat und geringen Mengen von Rutil und Disthen. Die 

koexistierende wässrige Fluidphase enthielt typischerweise 30 – 40 Gew. % gelöste Stoffe, 

überwiegend SiO2. Mit steigender Salinität (bis etwa 7 Gew. % Cl) erhöhten sich die 

Fluid/Eklogit-Verteilungskoeffizienten der LILE (large-ion lithophile elements, wie Cs, Rb, 

Ba, Sr), der leichten seltenen Erden (wie La, Ce) sowie von U, Th und Pb um bis zu drei 

Zehnerpotenzen. Andererseits wurde das Verteilungsverhalten der typischen HFSE (high field 

strength elements, wie Ti, Nb, Ta) durch die Salinität nicht beeinflusst. Gleichgewicht wurde 

durch reversible Experimente nachgewiesen. Versuche, in denen die Spurenelemente 

ursprünglich nur im Glas oder nur in der Flüssigkeit vorhanden waren, lieferten konsistente 

Resultate. Steigende Temperatur und steigender Druck verstärken die Verteilung von 

Spurenelementen in das Fluid. Das grundsätzliche Verteilungsmuster ändert sich jedoch nicht. 

Mit Hilfe der experimentellen Daten wurde die Zusammensetzung von Teilschmelzen des 

Mantels nach metasomatischer Anreicherung durch wässrige Fluide aus dem basaltischen Teil 

der subduzierten Platte quantitativ modelliert. Die Modelle zeigen, dass das Spurenelement-

Anreicherungsmuster von primitiven Inselbogen-Basalten vollständig erklärt werden kann 

durch die Anreicherung der Schmelzzone mit 2.5 Gew. % eines Fluids mit 7 – 10 Gew. % Cl 

aus dem basaltischen Teil der subduzierten Platte. Niedrigere Salinitäten würden eine stärkere 

Fluid-Zufuhr erfordern. Fluide ohne Chlorid können das beobachtete Anreicherungsmuster 

nicht erzeugen. Im Gegensatz zu Chlorid-haltigen wässrigen Fluiden können 

Sedimentschmelzen, die unter plausiblen Bedingungen nahe der Oberfläche der subduzierten 

Platte gebildet wurden, das beobachtete Anreicherungsmuster in primitiven Inselbogen-

Basalten nicht voll reproduzieren.  
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Die vorliegende Arbeit zeigt daher, dass primitive Inselbogen-Basalte durch das partielle 

Schmelzen eines Mantel-Peridotits entstehen, der metasomatisch angereichert wurde durch 

salzhaltige Fluide aus dem basaltischen Teil der subduzierten Platte. Sedimentschmelzen sind 

an der Bildung dieser Magmen wahrscheinlich nicht beteiligt. Generell ist die Bedeutung von 

Sedimentschmelzen für die Bildung von Magmen in Subduktionszonen wahrscheinlich weit 

überschätzt worden. 
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1. Introduction 

 

 

1.1. Subduction zones 

 

In subduction zones, relatively dense oceanic crust is recycled into the mantle (Figure 1.1). The 

slab pull of the dense crust is one of the driving forces of global plate movements (e.g. Höink 

et al. 2011). Because of its lower density, continental crust is subducted only under exceptional 

circumstances (e.g. Zheng and Chen 2016). Since the subducted oceanic crust was in contact 

with seawater, it contains hydrous minerals that become unstable at greater depth (Schmidt and 

Poli 1998). The water released from these minerals must play an important role in magma 

formation in subduction zones, as they are colder than the surrounding mantle (Syracuse et al. 

2010) and therefore, some solidus depression due to water is required for melting (e.g. 

Kawamoto and Holloway 1997). Indeed, the water contents observed in basalts and andesites 

from volcanic arcs are much higher than those typically seen in mid-ocean ridge basalts 

(MORB) or in ocean island basalts (OIB; Métrich and Wallace 2008).  

 

Figure 1.1. Schematic diagram of a subduction zone, showing the stability range of various hydrous 

phases. Modified after Schmidt and Poli (1998) 
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While the modern concept of subduction zones is intimately connected to the theory of plate 

tectonics, some of the related geological observations were already familiar to geologists more 

than a century ago. Already Alfred Wegener (1920) noted the concentration of earthquake 

epicenters at the continental margins around the Pacific. However, he interpreted this as 

evidence for continents sliding over the ocean floor, rather than the ocean floor being subducted 

under the continents. The location of many volcanoes close to the sea also intrigued many 

geologists and made them believe that there may be some causal relationship. Svante Arrhenius 

(1900) assumed that the seafloor acts as some kind of semipermeable membrane, which allows 

seawater to enter the zone of melting below active arc volcanoes such as Stromboli. He referred 

to the water-rich nature of volcanic gases as additional line of evidence for this theory.  

Direct evidence for subducting slabs was first provided by the observations of Wadati-Benioff 

zones, i.e. of earthquake foci that are located on a dipping plane tracing the subducting slab 

(Benioff 1949). These earthquakes appear to arise in the cold, brittle interior of the slab 

(Brodholt and Stein 1988). With modern tomographic methods, subducting slabs can be 

imaged down to the lower mantle (e.g. van der Hilst et al. 1997). Strong geochemical evidence 

for the deep subduction of sediments is provided by the detection of 10Be in arc lavas (Brown 

et al. 1982). 10Be is radioactive and has a half-life of 1.39 million years. It is continuously 

produced on Earth´s surface by nuclear spallation reactions induced by cosmic rays.  

It is still uncertain at what time plate tectonics and therefore subduction started in Earth´s 

history. The TTG (tonalite-trondjemite-granodiorite) suite that was an important component of 

the Archean crust may have been produced by direct melting of a subducted basaltic slab (e.g. 

Rapp et al. 2003), but other interpretations are also possible (e.g. Johnson et al. 2017). Holder 

et al. (2019) recently suggested that the paired metamorphic belts, which are typical for 

subduction zones, gradually emerged in the Neoarchean. However, subduction in the Archean 

may have been short-lived and episodic due to frequent slab breakoff (Moyen and van Hunen 

2012). 
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1.2. Magma generation in subduction zones 

 

Magma generation in subduction zones is the main mechanism for the growth of the continental 

crust since the onset of plate tectonics (e.g. Hawkesworth et al. 2019). However, the process 

of subduction itself does not only create crust, but it may also destroy some existing crust by 

“subduction erosion”, essentially by scraping off some crustal material from the overriding 

plate and transporting it back into the mantle. The relative magnitude of crustal growth by the 

formation of new magmas and of subduction erosion is not always easy to assess (e.g. Huene 

and Scholl 1991). Magmas produced in subduction zones typically range from basaltic to 

andesitic compositions (e.g. Kelemen et al. 2005). However, at continental margins very large 

granitic plutons may be produced as well. These magmas, as well as at least some of the 

andesites, likely represent mixtures of mantle-derived melts with extensive crustal 

contamination (e.g. Hildreth and Moorbath 1988). For understanding magma generation in 

subduction zones, primitive arc basalts are of particular interest. They have high Mg-numbers, 

as well as high Ni and Cr contents suggesting that they are primary melts from the mantle, 

unaffected by fractional crystallization of crustal contamination. The major element 

composition of primitive arc basalts is not very different from mid-ocean ridge basalts (MORB) 

or ocean island basalts (OIB), but the trace element enrichment pattern is strikingly different. 

Figure 1.2 shows a compilation of trace element abundance data for primitive arc basalts after 

Kelemen et al. (2005), normalized to the “all MORB average” of Gale et al. (2013). Large-ion 

lithophile elements (LILE), such as Rb, Ba, or Sr are strongly enriched, as are the light rare 

earth elements (LREE), such as La and Ce. On the other hand, high field strength trace elements 

(HFSE, e.g. Nb, Ta, and Ti), are strongly depleted in the melt, the “negative Nb Ta anomaly” 

being a characteristic feature of these magmas.  

Compared to MORB or OIB basalts, the water and Cl contents of primitive arc basalts are much 

higher. Figure 1.3 compiles some data from undegassed melt inclusions (Métrich and Wallace 

2008). Water contents up to 6 wt. % and Cl contents up to 2000 ppm are common. In most 

cases, the Cl/H2O ratio could be explained by adding an aqueous fluid containing between 1 

and 15 wt. % NaCl to the melt. Subduction zone magmas are also relatively oxidized and the 

oxidation state appears to correlate with water (Kelley and Cottrell 2009). The high water 
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Figure 1.2. Trace element abundances in primitive arc basalts. This compilation includes data from 

the Kermadec, Lesser Antilles, Marianas, New Hebrides, Scotia, Tonga, Aleutian, Andean, Cascades, 

Central America, and Kamchatka arcs. Data are from Kelemen et al. (2005), normalized to the “all 

MORB average” of Gale et al. (2013). 

 

     

Figure 1.3. H2O and Cl contents in olivine-hosted melt inclusions from arc basalts. Modified after 

Métrich and Wallace (2008). G = Galungung, Indonesia, Guat = Guatamalan volcanoes behind 

volcanic front; Lau = Lau basin; Mar = Mariana trough basalts (dashed line); Stromb = Stromboli, 

Italy. Lines give the weight percentage of NaCl in aqueous fluids required to produces the observed 

Cl/H2O ratios. 
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content of the parental magmas is – together with the elevated viscosity of the andesitic or  

dacitic melts - the main reason why most of the explosive volcanic activity is concentrated at 

subduction zones. Prominent recent events include the 1980 eruption of Mt. St. Helens (e.g. 

Scandone and Malone 1985) and the 1991 eruption of Pinatubo. In particular for the Pinatubo 

eruption, the atmospheric effects have been carefully studied (McCormick et al.1995). They 

included a global cooling of surface temperatures by 0.5 ̊ C due to the injection of 17 Megatons 

of SO2 into the stratosphere, which was photochemically oxidized to sulfate aerosols. The 

aerosols effectively shielded sunlight for more than a year. 

Early models of magma formation in subduction zones assumed direct melting of subducted 

basaltic crust (Green and Ringwood 1968). According to current estimates of slab temperatures 

(Syracuse et al. 2010), this mechanism is likely not realistic today, except perhaps if very 

young, hot oceanic crust is subducted. Direct slab melting within steeper geothermal gradients 

may, however, have produced the Archean TTG (tonalite-trondjemite-granodiorite) suite that 

is a main component of the earliest continental crust (Rapp et al. 2003). Modern adakites may 

be analogues of the TTG. Adakites are a group of andesitic to rhyolitic magmas that occur in 

some subduction zones (e.g. Martin 1999). They have geochemical characteristics, such as high 

Sr/Y and La/Yb ratios that are consistent with partial melting of a basaltic source with garnet 

in the residue.   

Any model of magma formation in subduction zones obviously strongly depends on the 

inferred temperatures inside the slab. Since the slab was subducted from the surface, it is 

generally colder than the surrounding mantle. Slab temperatures cannot be directly measured 

and therefore, estimates of slab temperatures depend on geodynamic models. Figure 1.4 shows 

the range of inferred slab surface temperatures as calculated by Syracuse et al. (2010), using 

different assumptions. In general, the older the slab, the faster the subduction velocity and the 

steeper the angle of subduction, the colder is the slab interior at a given depth. These three 

variables are therefore sometimes combined in the slab thermal parameter  = t v sin , where 

t is the age of the slab, v is the subduction velocity and is the angle of subduction (see 

Maunder et al. 2019 for discussion). Inspection of Figure 1.4 shows that under most 

circumstances, at a pressure of 4 GPa, corresponding to a typical depth of the slab of 120 km 

below the volcanic front, temperatures are too low for melting.  
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Figure 1.4. Models of slab surface pressure-temperature paths in subduction zones using various 

assumptions. Modified after Syracuse et al. (2010). Global ranges of slab surface temperatures are 

given as colored areas, stars represent projections of the corresponding volcanic front on the slab 

surface. D80 assumes full mechanical coupling between plate and mantle wedge at a depth of 80 km; 

X25 assumes that this coupling occurs 25 km trenchward of the arc. W1300 is a model assuming that 

the maximum temperature directly below the arc is 1300 ˚C. T550 assumes that coupling between plate 

and mantle wedge occurs at a slab surface temperature of 550 ˚C. 

 

A widely accepted, alternative model to slab melting is that melting actually takes place in the 

mantle wedge above the slab. This is consistent with the geochemical characteristics of 

primitive arc basalts, such as their high Mg numbers, high Ni and Cr content (e.g. Kelemen et 
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al. 2005) that qualify them as partial melts of a mantle peridotite. A plausible mechanism for 

inducing melting in the mantle wedge is the addition of water released from the subducted slab, 

which causes a drastic melting point depression (Kawamoto and Holloway 1997). Many 

models therefore assume that aqueous fluids released by the breakdown of hydrous minerals in 

the subducted slab infiltrate into the mantle wedge and trigger melting (e.g. Gill 1981, Arculus 

and Powell 1986, Tatsumi 1989, Peacock 1990). This mechanism would be generally 

consistent with the typical trace element enrichment pattern seen in arc magmas, as LILE 

elements, such as heavy alkalis and alkaline earths are likely soluble in water, while HFSE, 

such as Nb, Ta or Ti, are not. However, a number of experimental studies that looked at the 

partitioning of trace elements between aqueous fluids and the minerals of the subducted slab 

appeared to indicate that aqueous fluids are rather inefficient in transporting most of the 

relevant trace elements (Brenan et al. 1994, 1995, Stalder et al. 1998, Johnson and Plank 1999, 

Kessel et al. 2005). This has led to the widespread notion that aqueous fluids are ”too dilute” 

to produce the trace element enrichment observed in arc magmas and therefore, melting in 

subduction zones must be caused by some other mechanism (e.g. Hermann et al. 2006, 

Spandler and Pirard 2013).  

Because of the perceived difficulty with the hypothesis of aqueous fluids triggering melting in 

subduction zones, in recent years another model has become popular, which assumes that 

sediment melts transport water from the subducted slab to the mantle wedge and cause the 

formation of arc magmas (e.g. Kelemen et al. 2005, Hermann et al. 2006, Hermann and Rubatto 

2009, Skora and Blundy 2010, Behn et al. 2011, Spandler and Pirard 2013, Skora et al. 2015). 

The “sediment melt hypothesis”, however, also has a number of problems:  

Sediment melting is often postulated by comparing water-saturated melting curves with 

inferred geotherms (e.g. Syracuse et al. 2010). However, at the depths below the volcanic front, 

the sediment is likely not water-saturated anymore, since most of the water is already lost by a 

series of dehydration reactions occurring at shallow depths (e.g. Hacker 2008). Some water 

may still be contained in minerals such as phengite. However, the solidus for “dehydration 

melting” of phengite-bearing metapelites is 200 – 300 ˚C above the water-saturated solidus 

(Schmidt et al. 2004). These temperatures would likely only be reached under very unusual 

circumstances. Sediment melting would therefore require supply of water from below, e.g. by 

serpentine dehydration. It is uncertain to what extent the peridotite below the oceanic crust is 
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actually hydrated to serpentinite. Estimates vary widely and the degree of serpentinization 

likely depends very much on the formation of deep fractures during the bending of the slab 

when it enters the subduction zone. These fractures allow deep circulation of seawater (e.g. 

Faccenda et al. 2009; Canales et al. 2017). Moreover, if the upward migration of water was 

mostly channelized, only a small fraction of the sediment layer would be affected. Indeed, 

while fluids may originally be released by diffusive flow near the source, with larger distance 

from the source the flow is likely to become channelized (e.g. Zack and John 2007, John et al. 

2012, Plümper et al. 2017). 

Another problem with sediment melting is the striking similarity in the trace element pattern 

of primitive arc basalts worldwide, irrespective of the presence, absence, nature, or amount of 

sediment present. Figure 1.2 includes data from arcs with little or no sediment subduction (e.g. 

Kamchatka) as well as arcs with massive sediment subduction. Also, the nature of the sediment 

subducted changes, from mostly pelites in some arcs (e.g. Tonga) to mostly carbonates in other 

arcs (e.g. Central America). If sediment melting was responsible for the formation of the trace 

element enrichment of these magmas, one would expect major variation in the enrichment 

patterns. This effect is not observed.  

“Supercritical fluids” intermediate in composition between silicate melts and aqueous fluids 

have sometimes also been discussed as possible agents for transporting water and trace 

elements from the subducted slab to the zone of melting. This is because at relatively high 

temperatures and pressures, silicate melts (particularly the silica-rich sediment melts) may 

become completely miscible with water, such that under some circumstances, the distinction 

between melt and aqueous fluid will disappear. This effect was first postulated by Niggli 

(1920), and directly demonstrated in experiments by Shen and Keppler (1997) and Bureau and 

Keppler (1999). These data suggest that for silica-rich systems (such as pelitic sediments), 

complete miscibility between silicate melt and fluid may indeed be reached in the deeper parts 

of the subducted slab. However, the study of Kessel et al. (2005) suggest that such 

“supercritical fluids” would have difficulties producing the strong fractionation between LILE 

and HFSE elements that is a hallmark of arc magmas.  
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1.3. Subduction zones and volatile fluxes 

 

In subduction zones, water, carbon, and nitrogen are recycled back into the mantle. This 

process is therefore important for controlling the evolution of sea level (Rüpke et al. 2004, 

Karlsen et al. 2019), atmospheric composition (Mallik et al. 2018), and climate in deep 

geologic time (Plank and Manning 2019). For water, current models suggest that the subduction 

efficiency very much depends on the stability of serpentine in the slab. Since lower mantle 

temperatures are favorable for the preservation of serpentine, the subduction efficiency for 

water may have increased over geologic time, leading to a secular decrease of sea level by 

several hundred meters in the Phanerozoic eon (Rüpke et al. 2004). These models are, however, 

possibly oversimplified as they for example do not consider water transport by nominally 

anhydrous minerals. 

The efficiency of carbon and nitrogen recycling depends very much on how water is 

transported from the subducted slab to the zone of melting. For nitrogen, aqueous fluids are 

much more efficient than silicate melts in returning nitrogen to the surface, therefore limiting 

the nitrogen flux back into the mantle (Mallik et al. 2018). While carbonates are thermally 

stable during a normal subduction path, the dilution of CO2 in the coexisting fluid phase by 

water could cause the breakdown of carbonates and therefore return carbon to the surface 

before it can be deeply subducted. A major possible mechanism for carbon release at shallow 

depth is therefore fluxing by aqueous fluids from below (Plank and Manning 2019). These 

examples show that the question whether sediment melts or aqueous fluids trigger melting in 

the mantle wedge has very important implications for the efficiency of volatile recycling and 

for the global volatile cycles in general. 

 

1.4. Aims of this thesis 

 

The aim of this thesis is to provide new experimental constraints on the chemical transport by 

aqueous fluids in subduction zones by measuring the partitioning of a large suite of trace 

elements between fluid and eclogite. These data will be used to answer the question whether 

aqueous fluids or sediment melts are responsible for the generation of arc magmas. 
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In contrast to previous studies, the experiments reported here will investigate the fluid/eclogite 

partitioning for aqueous fluids containing chloride at concentration levels compatible with 

those inferred from the Cl/H2O ratios of arc magmas (Métrich and Wallace 2008).  At the 

pressures and temperatures of the subducted slab, the dielectric constant of water is reduced to 

about half the value at ambient conditions (e.g. Keppler 2017). Therefore, solutes cannot easily 

be dissolved as dissociated species and the effective transport of trace elements may require 

some complexing by chloride. From experiments at lower pressures, it is very well known that 

chloride complexing can greatly enhance the partitioning of many trace elements into aqueous 

fluids. In the discussion about aqueous fluid transport in subduction zones, this effect has 

largely been ignored. 
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2. Experimental and analytical methods 

 

 

2.1. Measuring fluid/mineral partition coefficients 

 

The direct determination of fluid/mineral partitioning presents several challenges. One of the 

main difficulties is to attain chemical equilibrium between the fluid and the mineral phases in 

the typical timescale of an experiment. In most cases, it is impossible to reach equilibrium by 

solid-state diffusion in reasonable experimental durations (e.g. Keppler 2017). A possibility to 

establish equilibrium is to crystallize the solid mineral phases from the fluid and in equilibrium 

with it. However, due to the low solubility of most silicate minerals in aqueous fluids, complete 

dissolution and reprecipitation of the crystals is unattainable in experiments. One possible way 

to overcome this problem is to employ a metastable phase, such as glass, as solid starting 

material in order to promote dissolution and precipitation of the mineral assemblage stable at 

the run conditions. However, even this approach is not free of shortcomings and some 

complications may emerge when a glass is chosen as starting material, as discussed in further 

detail in Section 2.2. 

Another major issue in this kind of experiments is to accurately determine the composition of 

the fluid at high pressure and temperature while it is in equilibrium with the minerals. The 

difficulty arises from the compositional changes that the fluid experiences during quenching 

due to the precipitation of solid phases. In many cases, it is not straightforward to distinguish 

these precipitates, which should be regarded as fluid components as they were originally 

dissolved into the fluid, from those minerals that were actually stable at the conditions of the 

experiment. Several experimental techniques have been developed to overcome this problem. 

One possible approach is to try to determine fluid/mineral partitioning behavior avoiding direct 

measurements of the fluid phase. Brenan et al. (1995) for example, performed experiments with 

a large excess of fluid with respect to the amount crystalline starting material. Therefore, they 

only analyzed the recrystallized minerals, assuming for calculations that the fluid represent an 

infinite reservoir of trace elements and hence did not undergo any substantial compositional 

change during the experiment. Another method that allows to bypass fluid measurements is to 
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determine fluid/mineral partition coefficients through mineral solubilities. This can be 

achieved by accurately measuring the weight loss of crystals, usually inserted in an inner 

perforated capsule, loaded together with a large amount of fluid in an outer sealed capsule (e.g. 

Anderson and Burnham, 1965; Manning 1994, Tropper and Manning 2007). Generally, this 

method gives rather precise results for minerals that dissolve congruently. However, its 

application may be problematic in multi-component systems. The weight loss approach also 

has limitations when applied to minerals for which the solubility in water is strongly affected 

by temperature. In this case, temperature gradients along the capsule may cause dissolution of 

material in the hot portion and re-precipitation in the colder parts, leading to major errors in 

the solubility determination. One further possibility is to observe in-situ the complete 

dissolution of minerals of known weight in a known amount of fluid using externally heated 

diamond-anvil cells (Audetat and Keppler 2005). 

Despite the difficulties described, several techniques also enable a direct determination of the 

fluid composition. This is for example possible employing an externally heated diamond-anvil 

cell combined with in situ synchrotron-radiation X-ray fluorescence (e.g. Manning et al. 2008; 

Wilke et al. 2012). However, the applicability of this method is limited to the study of simple 

systems and only provides information about elements for which absorption energies do not 

overlap with those of diamond, thus precluding quantification of elements such as Si, Al, Cl, 

Na and Mg. Also, in most cases the detection limits are too high to adequately quantify trace 

element solubilities in the fluid. Lastly, as the duration of diamond-anvil cell experiments is 

typically limited to a few hours, this method can only be applied to those systems that require 

a short time for equilibration. Other methods that do not adopt in-situ measurements, have been 

proposed to overcome problems related to the precipitation occurring during the quench of a 

fluid. Such experiments mostly rely on the idea of physically separating a portion of the fluid 

from the solid phases, while ensuring that chemical exchange and equilibration is possible 

during the run. One way to achieve such separation is to synthesize fluid inclusions during the 

experiment (e.g. Spandler et al. 2007; Bali et al. 2011, 2012; Tsay et al. 2014, 2017). These 

inclusions are produced as dissolution and recrystallization of a host mineral (typically quartz 

or olivine) occurs. If the conditions of the experiments are close to the α-β quartz or the α 

quartz-coesite transition, it is also possible to control to some extent the time of formation of 

the fluid inclusions to ensure that equilibrium is achieved before the sealing (Zajacz et al. 2010; 

Tsay et al. 2016). By briefly crossing the phase transition boundary, extensive cracks can be 
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developed in-situ due to the large volume change between the two polymorphs. Bringing again 

the run to the initial conditions in the α quartz stability field, the cracks start to heal to minimize 

surface energy, trapping in the process several fluid inclusions. As the fluid is isolated by the 

host, the bulk fluid composition, including eventual solid precipitates formed upon quenching, 

can be analyzed at room conditions by Laser Ablation Inductively Coupled Plasma Mass 

Spectrometry (LA-ICP-MS). An advantage of this method is that it provides several separated 

samples of the fluid, allowing to eventually identify and discard contaminated inclusions. On 

the other hand, the synthetic fluid inclusion approach precludes any quantification of solutes 

contained in the host mineral (e.g. SiO2 if quartz is used). Moreover, for systems that reach 

chemical equilibrium slowly, it is not always possible to achieve equilibrium before the 

inclusions are isolated. In the framework of this thesis, an alternative experimental approach, 

the diamond trap method, was applied and tested for the direct measurement of fluid/mineral 

partition coefficients and of mineral solubilities. 

 

2.2. The diamond trap method 

 

The basic idea of the diamond trap method is to fill a portion of the capsule with a fine-grained 

diamond powder. Since diamond is mostly chemically inert and mechanically strong, this kind 

of trap provides some pores, preserved at high pressure, which are available for circulation of 

the fluid only. In this way, equilibration of the fluid with the mineral phases is facilitated as the 

system remains open for the entire duration of the experiment, unlike for synthetic fluid 

inclusions. At the same time, an efficient segregation of the fluid is attained since the solid 

starting material is unlikely to enter and contaminate the diamond trap if some precautions are 

taken. It is therefore reasonable to assume that in general, solid materials found inside the 

diamond trap represent fluid components precipitated upon quenching. This, however, may not 

be true in systems that are particularly sensitive to temperature. In these cases, the temperature 

gradients that typically develop in high-pressure experiments may lead to dissolution of 

minerals and their reprecipitation in the diamond trap. Moreover, this phenomenon is likely to 

be more severe when a metastable starting material is used, as a supersaturated solution that 

reaches equilibrium by precipitating crystals is expected to form during the early stages of the 

experiment. As these crystalline phases could also contaminate the diamond trap, they will be 
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erroneously considered to be fluid components, resulting in an overestimation of the solute 

concentrations in the fluid. This problem may be reduced, if the crystalline mineral assemblage 

stable at the experimental conditions is used as starting material. However, as discussed above, 

this would hinder the attainment of chemical equilibrium between fluid and minerals. 

The diamond trap technique was first proposed by Ryabchikov et al. (1989). These authors 

introduced diamond powder, enclosed in a perforated inner capsule, inside an outer capsule 

also containing the solid starting material and distilled water. A later development of the 

method was proposed to study the composition of low fractions of partial melting (e.g. Johnson 

and Kushiro 1992, Kushiro and Hirose 1992, Hirose and Kushiro 1993, Baker and Stolper 

1994, Baker et al 1995). In these experiments, to enhance the segregation of small amounts of 

melt, the diamond powder was inserted directly inside the outer capsule and different 

geometries were tested. The results from Kushiro and Hirose (1992) showed that one of the 

best designs is a thin layer of diamond sandwiched at the center of the capsule between the 

solid starting material. One important observation of this study is that the liquid must 

completely fill the pores between the diamonds in order to avoid the development of negative 

pressure gradients in the trap, which would prevent the attainment of equilibrium at the desired 

experimental conditions. Later, Stalder et al. (1997, 1998) used the diamond trap method 

combined with LA-ICP-MS for the determination of trace element partition coefficients 

between aqueous fluids and minerals. After high pressure experiments, the capsules were 

pierced and dried. Fluid compositions were therefore derived from analysis of the diamond trap 

portion containing the solid precipitates, assuming that none of the fluid components remained 

dissolved in the fluid that was lost from the capsule. However, this assumption is not always 

valid and may introduce large errors in the measured concentrations. This problem was largely 

solved by Kessel et al (2004), who introduced a new approach for the analysis of the diamond 

trap. These authors opened the capsules in frozen state and performed measurements of the 

diamond trap containing both the solid precipitates and the frozen fluid by LA-ICP-MS 

equipped with a freezing chamber. In this way, the bulk composition of the fluid, as it was at 

high pressure and temperature during the experiment, can be directly measured. This approach 

was tested through measurements of quartz solubilities in water by Aerts et al. (2010), who 

showed that for this system, the accuracy and precision of the method is similar to weight-loss 

experiments. 
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In the present study, the method developed by Kessel et al (2004) was used for the 

determination of fluid/eclogite partition coefficients. Moreover, in order to test the reliability 

of the method, the following three different analytical approaches were compared in simplified 

experiments conducted at 2 kbar and room temperature loaded with a fluid of known 

composition. Measurements of the diamond trap layer were performed in such experiments 

either: (a) after evaporation of the fluid at ambient condition, (b) after freeze-drying the sample, 

or (c) after opening the capsule in frozen state to directly analyze the fluid in solid state. In 

addition, mineral solubilities in simple and well-studied systems (quartz-water, forsterite-

enstatite-water, albite-water, rutile-water and corundum-water) were determined using the 

diamond trap technique and compared to literature values in order to assess the reliability of 

the method. (see Chapter 6 for further details). Moreover, to confirm that equilibrium was 

attained in the fluid/eclogite partitioning experiments, several reversed experiments were 

performed. In such experiments, the trace elements were completely doped into the fluid phase 

instead of the solid starting material. 

 

Figure 2.1. Picture of an experimental charge after a piston cylinder high-pressure and high-

temperature diamond trap experiment. After LA-ICP-MS analysis of the fluid in frozen state, the sample 

was mounted in epoxy and polished for mineral analyses. 
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2.3. Starting materials and capsule preparation 

 

For the solubility experiments conducted to test the diamond trap method, crystalline phases 

were used as starting materials. Both olivine (Fo90) and enstatite (En89Fs09Wo02Ac00) used for 

experiments in the forsterite-enstatite-water system are from San Carlos peridotite. Also for 

albite, a natural crystal from Brazil was selected. On the other hand, synthetic crystals were 

used for quartz, corundum and rutile solubility experiments. Powders were prepared from each 

of these crystals. 

For eclogite-water partitioning experiments, synthetic glasses were used as starting material. 

All the glasses have a major element composition close to the starting material used in Schmidt 

and Poli (1998) and Kessel et al. (2004, 2005), which is considered to be representative of mid 

ocean ridge basalts (MORB). To produce the basic glass, SiO2, TiO2, Al(OH)3, Fe2O3, 

Mg(OH)2, CaCO3 and Na2CO3 powders, which were previously dried at 140 ˚C overnight, 

were mixed in an agate mortar under ethanol for 1 hour. The resulting material was dried under 

an IR lamp and inserted in a Pt crucible to be decarbonated trough a gradual heating over 12 

hours to a final temperature of 1100 ˚C, which was maintained for other 12 hours. The mixture 

was then melted at 1600 ˚C and rapidly quenched in distilled water to obtain a homogeneous 

glass. A similar procedure was used to synthesize two glasses with diopside composition, 

which were doped with 26 trace elements (Li, Be, B, Sc, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Nd, 

Sm, Eu, Gd, Dy, Er, Yb, Lu, Hf, Ta, Pb, Th, and U) in different concentrations. After crushing 

all the glasses into fine powders, the MORB starting material was mixed with a small quantity 

(0.4, 1 or 2 wt. %) of one of the two diopside glasses in order to obtain different trace element 

concentrations. Before experiments, all starting materials were also mixed with ~ 1 wt. % of 

natural garnet seeds selected from Grytting (Norway) eclogite in order to facilitate garnet 

growth during the experiments. 

In order to understand the effect of chlorine on the partitioning behavior of trace elements in 

the eclogite-water system, several aqueous solutions were prepared by mixing 1, 5, 10 or 15 

wt. % of NaCl to distilled water. Trace element doped solutions were also produced to be used 

in experiments loaded with the undoped MORB glass to test the attainment of equilibrium 

through reversed experiments. To obtain such fluids, a mixture of equal amounts of certified 

ICP-MS calibration solutions containing each 1000 ppm of trace element in 5 % HNO3 was 
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prepared. The resulting solution was placed under an infrared lamp to evaporate and the solid 

residue was then re-dissolved in a smaller quantity of 5 % HNO3. This produced a milky 

solution with higher concentration of trace elements, which was left to rest for 1 month. After 

the sedimentation of the insoluble residue, the clear solution at the top was separated and 

analyzed by ICP-MS. 

Lastly, an aqueous solution of known composition was used in experiments to determine the 

best approach for diamond trap measurements. This solution was prepared by mixing a CsOH-

Na2SiO3-water and a NaCl-KCl-water solution. 

Final compositions in terms of major and trace elements of the different solid starting materials 

and doped aqueous solutions used in the eclogite-water experiments, and more details about 

their preparation can be found in Chapters 6 and 7. 

In all the diamond trap experiments, the capsule design and preparation was similar. Au or Pt 

capsules with a diameter of 5 mm and 10 mm length were used for piston cylinder experiments. 

About 1/3 of the total amount of aqueous fluid was first pipetted into the capsule, followed by 

half of the total amount of solid starting material. A relatively thin layer (~ 2 mm thick) of 

diamond powder with grain size of 10 – 20 μm was then inserted followed by the remaining 

amount of fluid. This two-steps fluid addition procedure was used to prevent an eventual 

contamination of the diamond trap due to suspension of some of the material from the bottom 

layer. This is particularly important when a fine grained powder is used as solid starting 

material. Lastly, the second half of solid starting material was added, so that the diamond trap 

layer is sandwiched between two layers of solid starting material (see Figure 2.1). The total 

fluid/solid starting materials weight ratio was typically between 0.30 and 0.45. An empty space 

of about 1 mm was left between the starting material and the top lid in order to avoid severe 

fluid loss due to heating upon welding of the lid to the capsule. To check that major fluid loss 

did not occur during the sealing, the capsules were weighed before and after welding the top 

lid and again after leaving the capsules several hours at 130 ˚C.  

For multi-anvil experiments, the procedure was essentially the same, but smaller capsules 

containing less starting material were used, while retaining the same proportions between fluid, 

glass, and diamond. The maximum capsule size that could be accommodated in the multi-anvil 

assembly used in these experiments is 4 mm in diameter and 4 mm long. However, capsules 
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with initial length of 5 mm were filled as described above and successively pre-shrinked before 

the high-pressure experiments to the desired length of 4 mm to eliminate the empty space left 

during the preparation of the capsule as described above for piston cylinder capsules. This 

method was used to increase the amount of material that could be inserted into the capsule, 

while facilitating the welding of the top lid. 

 

2.4.  Piston cylinder apparatus 

 

The piston cylinder press is an apparatus for high pressure and temperature experiments 

developed by Boyd and England (1960). The greatest advantage of this high-pressure device 

is the possibility to work with relatively large volumes of samples (typically ~200 mm3) over 

long periods of time (days to weeks). On the other hand, the main limitation is represented by 

the rather low range of pressure accessible with piston cylinder, which for a routine set-up, 

ranges from 0.5 to 5 GPa, thus covering typical conditions from the deep crust to the uppermost 

mantle. 

 

 

Figure 2.2. Piston cylinder apparatus used in BGI (on the left) and schematic diagram of an end-loaded 

piston cylinder and its components (on the right). 
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As many other high-pressure devices, the piston cylinder relies on the relationship existing 

between force (F), the area to which it is applied (A), and pressure (P): P = F / A. Therefore, 

even with relatively small loads, it is possible to amplify the pressure exerted on the sample by 

reducing the area of the pushing piston. Depending on the piston cylinder type, one (non end-

loaded) or two (end-loaded) hydraulic rams arranged are used to deliver the load and to contain 

the sample. The first ram (master ram) drives the piston that applies the pressure on the sample. 

The optional second ram (end-load ram) is positioned opposite to the master ram (see Figure 

2.2) and is used to strengthen the pressure vessel, thus extending the maximum high pressure 

limit from ~ 2 to 5 GPa. The pressure vessel, also called “bomb”, consists of a supporting steel 

ring containing a tungsten carbide core with a central cylindrical cavity for the assembly. Soft 

materials, such as NaCl, MgO, talc, pyrex, alumina, pyrophyllite, that flow under mild shear 

stresses, are used for the assembly to make the stress field acting on the sample quasi-

hydrostatic despite the uniaxial load applied by the piston cylinder press itself. The difference 

between the nominal pressure (i.e. the pressure based purely on geometrical consideration 

calculated as 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 =
𝐴𝑟𝑎𝑚

𝐴𝑝𝑖𝑠𝑡𝑜𝑛
𝑃𝑜𝑖𝑙 𝑟𝑎𝑚) and the “real pressure” that the sample experiences, 

is the friction correction. Most of this pressure loss is thought to be due to the different shear 

strength of the materials chosen for the assembly (Johannes 1978) and calibration experiments 

should be performed to quantify the appropriate friction corrections needed to convert the 

nominal pressure to the real pressure. Frictional effects also depend on the method employed 

to reach the desired pressure. The standard approach (“hot piston-in”) consists in applying only 

90 % of the target pressure first, then increase the temperature at constant pressure, and finally 

increase the pressure to the desired conditions. This method helps especially when materials 

with high thermal expansion, such as NaCl, are used as pressure medium, as during heating a 

marked increase in pressure can occur. 

To achieve high temperatures, up to 2200 °C, a current is passed through a graphite furnace 

located in the assembly (Figure 2.3). The temperature is monitored with an accuracy of ±1 °C 

by a thermocouple placed close to the top of the capsule. Uncertainties in the determination of 

the run temperature are usually introduced by thermal gradients that develop within the 

assembly. In order to reduce this problem, tapered or stepped graphite furnaces can be used 

instead of straight graphite tubes. During experiments, a cooling system that makes use of water 
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Figure 2.3. Piston cylinder assembly used in this study. 

 

circulating through the bridge, the bomb and the upper plate is activated. This cooling water 

also helps to achieve rapid quench to room temperature by shutting off the electrical power at 

the end of the experiment. 

For the purposes of this study, a piston cylinder apparatus was used to conduct partitioning and 

solubility experiments in the pressure and temperature range of 1 to 5 GPa and 700 to 1000 °C. 

A ½ inch assembly, consisting of an outer cylinder of NaCl and an inner cylinder of MgO 

containing the stepped graphite furnace was used in all experiments (see Figure 2.3). MgO 

plugs and sleeve ensure that the capsule stays at the center of the assembly, where the thermal 

gradient should be at its minimum. A hole in the top plug allows placing the thermocouple as 

close as possible to the capsule to have a realistic constraint on the temperature applied to the 

sample. An S-type thermocouple (Pt – Pt90Rh10) connected to a Eurotherm controller was used 

to monitor the temperature. Experiment durations ranged from 1 to 7 days depending on the 

time necessary to reach full equilibrium in the investigated system. In some experiments, ± 30 

°C cycles around the target temperature were applied to enhance mineral growth by Ostwald 

ripening (i.e. dissolution of the smaller crystals at high temperature and re-precipitation of 

material around bigger crystals at low temperature). Compression and decompression duration 

varied from 30 minutes for experiments conducted at relatively low pressures, to 20 hours for 

experiments conducted at 4 - 5 GPa, in order to minimize capsule deformation and maximize 
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the longevity of the pressure vessel. More details about the experimental procedures followed 

in these experiments can be found in Chapter 6 and 7. 

 

2.5.  Multi-anvil apparatus 

 

The multi-anvil press allows reaching higher pressures (up to 25 GPa with standard setups) 

than the piston cylinder apparatus while maintaining relatively large volume samples. In 

contrast to the piston cylinder, which first applies a uniaxial load to the assembly inside a stiff 

pressure container, the multi-anvil apparatus delivers pressure onto the sample from different 

directions, without using a passive container. Several geometries of multi-anvil presses exist 

(e.g. Huppertz 2004), and for the purposes of this study, a 6/8 Walker-type multi-anvil press 

was used. The 6/8 multi-anvil was first described by Kawai and Endo (1970) and consisted of 

six steel anvils that together formed a spherical outer shape with a cubic cavity at the center. 

In this cavity a second set of eight cubic-shaped tungsten carbide inner anvils is located. Each 

of the tungsten carbide cubes has a triangular corner truncation that creates an octahedral cavity 

at the center, where a ceramic pressure medium containing the sample is placed. Pyrophyllite 

gaskets are also arranged between the cubic anvils in order to support the truncations and to 

seal the high-pressure volume. While the inner anvils and assembly remain similar to the 

Kawai-type multi-anvil, Walker et al (1990) introduced a split-cylinder shape for the outer steel 

anvils, where each of the anvils is free to float inside a ring. This allowed a considerable 

reduction in production costs for the device.  

Different types of assembly can be used depending on the pressure and temperature range and 

sample volumes needed. The larger the sample volume, the smaller is in general the pressure 

achievable. A particular type of assembly is described by two numbers: the truncation edge 

length (TEL) and the octahedral edge length (OEL) using the OEL/TEL notation (i.e. a 25/15 

assembly has an octahedron with 25 mm long edge and an anvil truncation of 15 mm). In 

general, MgO is used for the octahedral assembly. A stepped tubular resistance heater typically 

made of graphite, lanthanum chromite or metal foils, is inserted into the MgO octahedron. An 

insulator material (e.g. ZrO2) should be placed around the furnace to prevent heating of the 

tungsten carbide anvils and the pyrophyllite gaskets that could enhance plastic deformation. 
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MgO spacers are used to keep the capsule at the center of the assembly, while Mo lids ensure 

contact between the WC anvils and the furnace. 

Similarly to the piston cylinder apparatus, also in multi-anvil devices a significant portion of 

the force applied by the anvils is lost during experiments due to friction losses in the gaskets 

and the assembly. Therefore, it is very important also in this case to perform calibration 

experiments in order to estimate the real pressure experienced by the sample. 

In this study, I performed multi-anvil experiments at 6 GPa and 800 °C to investigate the effect 

of pressure on the partitioning behavior of trace elements with respect to fluid salinity. A 

Walker-type multi-anvil with 25/15 assembly (see Figure 2.4) was used following the pressure 

calibration curve from Keppler and Frost (2005). A D-type thermocouple (W97Re3 - W75Re25) 

was used to monitor the temperature during the experiments. Compression and decompression 

were carried out within 15 hours, and high pressure and temperature conditions were 

maintained for 3 days. 

 

 

Figure 2.4. Multi-anvil assembly used in this study 
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2.6. Laser ablation inductively coupled plasma mass spectrometry 

 

The Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is an 

analytical technique for the determination of major, minor and trace elements, including the 

quantification of isotopic ratios. This method allows measuring most of the elements (with the 

exception of H, C, N, O, F, S and some noble gases) in any kind of matrix, but it only gives 

information about elemental abundances (i.e. it does not provide any information on valence 

state, molecular species or crystal structure of the sample). Due to its high spatial resolution (at 

the μm level) and high sensitivity (detection limits to sub-ppm), in combination with fast 

analytical procedures and minimal sample preparation, LA-ICP-MS has become a popular 

analytical method, which found one of its greatest successes in application to geological 

sciences. The idea of combining laser ablation sampling with ICP excitation source and mass 

spectrometry was first introduced by Gray (1985). 

A schematic setup of LA-ICP-MS is shown in Figure 2.5. Different lasers can be used, and 

almost all the available laser wavelengths have been tested for this application (Günther and 

Hattendorf, 2005). The first instruments made use of lasers in the infrared or visible range, 

while today the most common wavelengths employed are in the ultraviolet (266, 213 and 193 

nm). This shift towards shorter wavelengths was driven by the better quality of ablation 

achieved with them. UV wavelengths produce a smaller thermal alteration of the sample and 

generate particles of smaller size during ablation as compared to lasers having longer 

wavelength. This helps to prevent elemental fractionation processes during the analysis 

(Günther and Hattendorf, 2005). The laser beam initially has an inhomogeneous power 

distribution.  However, to ensure an even sampling, a “flat top” energy distribution is required 

at the ablation spot. Therefore, optical lenses are used to homogenize the beam. A mask with 

different apertures is then used to control the final pit size on the sample, which may be 

regulated to be between 5 and 200 μm in diameter. After being homogenized and shaped, the 

pulsed laser enters a petrographic microscope, which directs and focuses the beam on the 

sample. The analysis can be monitored and directed in real time using a CCD camera that 

shares the same focal point as the beam. The quantity of material removed from the sample at 

each laser pulse depends on the laser energy and on the nature and transparency of the sample. 
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Figure 2.5. Schematic Laser Ablation Inductively Coupled Plasma Mass Spectrometry instrument 

diagram. Modified from Günther and Hattendorf (2005 ). 

 

The typical thickness of the layer removed by a single pulse is about 0.1 - 0.3 μm, and the 

analysis is usually interrupted when the ablation crater reaches a depth of 20 - 50 μm. The 

ablation cell in which the sample is accommodated during analysis is constantly flushed with 

argon or helium. When the laser hits the sample, the material is converted to plasma, and tiny 

particles (usually smaller than 1 μm) that form from condensation of the plasma cloud are 

transferred to the ICP by the flushing gas. The transport efficiency is about 10 – 40 % (Günther 

and Hattendorf, 2005). The volume of the ablation cell can affect the signal/background ratio 

of the resulting signals. Also, the use of He instead of Ar as flushing gas when using a 193 nm 

laser, has been demonstrated to enhance the signals by a factor of five, as well as reducing 

elemental fractionation in silicate analysis (Eggins et al. 1998). The addition of minor quantities 

of H2 to the gas stream can help to prevent most of the Ar-based interferences (Günther et al. 

2001, Mason and Kraan 2002) and increases the sensitivity for most elements by a factor of 2 

– 4 when added to the He carrier (Guillong and Heinrich 2007). In the ICP, the temperature is 

increased to 5000 - 7000 °C in order to ionize all the particles transported by the gas. For 

complete ionization, it is important that the particles generated by the laser are as small as 

possible (Guillong and Günther 2002). The ions are then transferred to the mass spectrometer, 
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where ion lenses accelerate them. The majority of MS make use of a quadrupole mass analyzer. 

This device is made of four cylindrical metal rods of which each opposing pair is connected 

electrically. When ions travel between the rods, an oscillating electrical field selectively 

stabilizes or destabilizes their path, depending on their mass/charge ratio. Quadrupole mass 

filters therefore allow the arrival at the detector of only one specific mass at a given time. 

Changes to the potentials on the rods, and hence to the selected mass/charge ratio to measure, 

can however be performed very fast (typically 3 ms). Usually each mass is measured for a time 

of 10-20 ms, implying that even when analyzing multiple elements together, an entire cycle of 

mass measurements will last far less than one second. A typical LA-ICP-MS analysis takes 

between 2 and 5 minutes. Of these, the first 40 seconds are generally used for background 

measurements. At the beginning of the analysis, the formation of refractory oxide ions such as 

ThO+, is monitored and operating parameters are adjusted to minimize the abundance of such 

oxides trying at the same time to maximize the signal/background ratio. 

Relative intensities in the signals collected from the sample are compared to those obtained 

from an “external standard” (i.e. a well characterized reference material). An advantage of LA-

ICP-MS is the possibility to use external standards that are not matrix-matched to the sample, 

so that the same standard analysis can be used for the quantification of multiple elements in 

different phases. In order to obtain absolute concentrations of elements, also an “internal 

standard” is required. This can be any element contained in the sample for which the absolute 

concentration is known (e.g. it has been determined through another independent analytical 

method) or it can be assumed based on the nature of the sample itself. For example, if all of the 

major element that constitute the sample are analyzed, it is possible to assume that the sum of 

all the measured major oxides should close at 100 wt. %. The most important parameters that 

influence the detection limits achieved by LA-ICP-MS are the amount of material ablated (i.e. 

the pit size employed) and the mass of the element (higher masses are more sensitive than 

lower masses).  

For the aim of this study, both fluid and mineral compositions, retrieved after high pressure 

and temperature experiments, were characterized by LA-ICP-MS. The instrument present at 

the Bayerisches Geoinstitut is similar to that described by Günther et al. (1998) and uses a 

GeolasPro 193 nm ArF Excimer Laser (Coherent, USA) together with an Elan DRC-e (Perkin 

Elmer, Canada). The ICP-MS was tuned to a thorium oxide production rate of 0.05 – 0.10 % 
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and a rate of doubly charged Ca ions of 0.15 - 0.25 % according to measurements on NIST 

SRM 610 glass (Jochum et al. 2011). The sample chamber was flushed with He gas with a flow 

rate of 0.4 l/min, to which 5 ml/min H2 was admixed on the way to the ICP-MS (Guillong and 

Heinrich, 2007). Measured isotopes included 7Li, 9Be, 11B, 23Na, 25Mg, 27Al, 30Si, 35Cl, 39K, 

43Ca, 45Sc, 49Ti, 57Fe, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 133Cs, 137Ba, 139La, 140Ce, 146Nd, 147Sm, 153Eu, 

157Gd, 163Dy, 167Er, 172Yb, 175Lu, 178Hf, 181Ta, 208Pb, 232Th, and 238U, using a dwell time of 10 

ms.  

For the analysis of the fluid phase, the capsules, which were stored in a freezer at -18 °C 

immediately after experiments, were cooled in liquid nitrogen and cut open longitudinally with 

a razor blade attached to an opening device. After cutting, one half of the capsule was quickly 

placed in a LA-ICP-MS ablation chamber equipped with a Peltier-cooling element. Tests with 

H2O-ethanol mixtures showed that the temperature within this sample chamber is maintained 

at about -30 °C. This ensured that the aqueous fluid present in the capsule remained in frozen 

state during the entire duration of the analysis. The diamond trap layer was analyzed along two 

perpendicular transects with a repetition rate of 7 Hz and a large laser spot size of 50 - 70 μm 

to obtain the best average of the bulk fluid composition. External standardization was mostly 

based on NIST SRM 610 glass (Jochum et al., 2011), except for chlorine quantification for 

which a well characterized natural afghanite crystal (Seo et al. 2011) was used. Each fluid 

analytical sequence was bracketed by two measurements of NIST SRM 610 and one of 

afghanite both before and after analysis on the sample. The two measured transects were 

divided into 3 – 6 separate integration intervals to check homogeneity and reproducibility in 

the calculated element concentrations. Either Cl or Cs were used as internal standard for the 

fluid, as both these elements are expected to strongly partition into the fluid in all the considered 

systems. Internal standard concentrations were also corrected for the dilution effect produced 

by the dissolution of major elements during the high-pressure experiments. 

For the partitioning experiments conducted in the fluid-eclogite system, after measurements of 

the diamond trap layer, the fluid contained in the capsules was allowed to evaporate at room 

condition. The dry samples were impregnated in epoxy and the surface was polished to expose 

the minerals. Single crystals were analyzed with spot sizes of 7 – 20 µm, trying to avoid 

inclusion and the garnet seeds at the core of many garnets. NIST SRM 610 glass was again 

used for external standardization, while internal standardization was in this case done by 
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normalizing the sum of measured major oxides to 100 wt. %. Values obtained from the average 

of 4 – 7 different crystals of the same mineral located in different portions of the capsules were 

considered representative for the composition of garnet, omphacite and rutile. Measurements 

from kyanite crystals resulted in trace element concentrations below LA-ICP-MS detection 

limits, and the presence of this mineral was therefore ignored in the calculation of fluid/eclogite 

partition coefficients. Fluid/eclogite partition coefficients were obtained by normalizing the 

individual fluid/mineral partition coefficients to a bulk rock composition of 59 % omphacite, 

39 % garnet and 2 % rutile, considered to be representative for the mafic portion of a subducting 

oceanic slab at the studied P and T conditions. 

 

2.7. Electron microscopy 

 

In partitioning experiments between fluid and eclogite, the mineral assemblage was also 

characterized by means of scanning electron microscopy (SEM) and electron microprobe 

(EMP). 

2.7.1. Scanning electron microscopy 

In SEM, a beam of focused electrons is used to scan the sample surface. Several interactions, 

observed using different detectors, can occur when the beam hits the sample (Figure 2.6). When 

high-energy electrons interact elastically with the deep regions of the atoms constituting the 

sample, these electrons can be backscattered in a proportion strongly dependent on the atomic 

masses (heavier atoms generate more of these interactions than light atoms). Using this 

principle, it is possible to produce back scattered electrons (BSE) images, in which bright 

colors represent phases that are able to back scatter more electrons, hence having an higher 

molar mass, while regions presenting darker colors reflect areas characterized by atoms with 

lower masses. On the other hand, when the electrons of the beam interact inelastically with the 

sample, it may cause the ejection of an electron from an inner atomic shell. The vacancy 

produced by this process is then filled by an electron from one of the outer, higher-energy 

shells, thus releasing an X-ray photon. The energy of this radiation is characteristic for each 
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Figure 2.6. Schematic mechanisms of interactions that produce backscattered electrons (BSE) and 

characteristic X ray emissions detected by energy dispersive spectrometer (EDS). 

 

element and depends on the jump in energy that occurred when the electron filled the inner 

shell vacancy. The X-rays released are collected by an energy dispersive spectrometer (EDS) 

that provides a semi-quantitative measurement of the element abundance in the sample. 

BSE images complemented by EDS analysis for the identification of mineralogical phases were 

acquired using a Zeiss Gemini Leo 1530 scanning electron microscope (SEM). The samples 

were mounted in epoxy resin, polished on one side to maximize the exposure of the eclogitic 

portion, and coated with a carbon layer 14 nm thick. The instrument was operated with an 

accelerating voltage of 20 kV, a working distance of 14 mm and an aperture of 60 μm. The 

sample maps generated from the BSE images were used to select and locate crystals for 

subsequent LA-ICP-MS analysis. 

2.7.2. Electron microprobe 

Similarly to SEM, the electron microprobe makes use of the characteristic X-rays emitted after 

inelastic interactions occurring between the electron beam and the sample. In this case, a 

wavelength dispersive spectrometer (WDS) is used to collect such radiations. The X-rays 
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emitted from the sample are focused on a single crystal, whose d-spacings are known. The 

single crystal diffracts the X-rays according to the Bragg’s law. Therefore, the wavelength of 

the diffracted beam may be calculated from the lattice spacing of the crystal and the diffraction 

angle, which can be varied during a measurement. The WDS mode thus allows a comparison, 

in terms of both position and intensity, between the spectra collected from the sample and from 

matrix-matched standard materials, yielding an accurate quantification of major element 

abundances in the analyzed sample. 

Major element compositions of garnet, omphacite, kyanite and rutile produced in high-pressure 

experiments, were quantified using a JEOL JXA 8200 microprobe. The instrument was 

operated with a focused beam, 15 kV of acceleration voltage, a beam current of 15 nA and 

counting times of 10 sec on the background and 20 sec on the peak. Calibration was performed 

using the following standards: Diopside for Si, Mg, Ca; MnTiO3 for Ti; Fe2O3 for Fe, albite for 

Na, and corundum for Al. 
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3. Results and discussion 

 

 

3.1. Testing the diamond trap method 

 

The diamond trap method was used in this study in order to determine the composition of 

aqueous fluids coexisting with eclogite at typical subduction zone conditions. While this 

method had been previously used in different variations, systematic tests of the method had 

never been carried out. Therefore, a number of experiments were performed out to assess the 

reliability of the method. 

First, a diamond trap was prepared containing a fluid of known composition. This diamond 

trap was then analyzed by laser-ablation ICP-MS either after opening the trap and drying it at 

ambient conditions, or after freeze-drying it. Alternatively, the entire trap containing the fluid 

was frozen in liquid nitrogen, then sectioned and analyzed in frozen state. Results are shown 

in Figure 3.1. Only the analyses of the trap in frozen state returned the correct concentrations 

of the various elements in solution, while both drying the trap at ambient conditions and freeze-

drying yielded widely scattered data, which even after averaging significantly diverged from 

the expected result. The most likely reason for this is some inhomogeneous re-distribution of 

dissolved material inside the trap during drying.  The results clearly show that data obtained in 

some previous studies without freezing the trap are unreliable (e.g. Stalder et al. 1998). 

In order to test whether the diamond trap method yields correct fluid compositions in high 

pressure and high temperature experiments, several piston cylinder experiments were carried 

out to determine mineral solubilities in water in some well-studied systems. These were the 

systems quartz-H2O (Manning 1994), forsterite-enstatite-H2O (Newton and Manning 2002), 

rutile-H2O (Audetat and Keppler 2005), and corundum-H2O (Tropper and Manning 2007). 

Moreover, an experiment was carried out in the system albite-H2O at conditions beyond the 

critical curve (Shen and Keppler 1997), such that the entire trap was filled with a homogeneous 

fluid of known composition (equivalent to the bulk composition of the charge). The results of 

the analyses are shown in Figure 3.2. In general, for most systems, the expected concentrations 

are reproduced within a factor of two or better. However, there are problems in the systems 
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rutile-H2O and corundum-H2O, which are known to be difficult to investigate. Previous studies 

have produced results diverging by many orders of magnitude (see Audetat and Keppler 2005). 

The reason for this is likely that dissolution and re-precipitation of crystals in these systems 

occurs already as a result of very minor temperature gradients. This may cause some local 

contamination of the diamond trap by crystals that were stable during run conditions and 

therefore, the analysis of the trap yields scattered data that are above the expected value.  

 

Figure 3.1. Test of laser ablation ICP-MS analyses of a diamond trap loaded with a solution of known 

composition. The trap as analyzed after drying the solution at ambient temperature, after freeze-drying, 

or in frozen state after freezing the entire trap. The expected (true) concentration is shown as a gray 

line. 
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Figure 3.2. Test of the diamond trap method by solubility experiments in well-studied systems. The 

concentrations expected from independent measurements as reported in the literature are indicated as 

grey lines. Quartz solubility in water was studied at 1 GPa and 800 ˚C, the solubility of silica in water 

in equilibrium with forsterite and enstatite at 1 GPa and 800 ˚C, corundum solubility in water at 2 GPa 

and 700 ˚C, and rutile solubility in water at 2 GPa and 1000 ˚C. The albite-water system was studied 

at 1.8 GPa and 800, which is beyond the critical cure in this system, such that the entire capsule should 

have been filled with a fluid identical to the bulk composition of the charge. 
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In general, the tests carried out here show that the diamond trap method used to determine fluid 

compositions in piston cylinder experiments yields in most cases results that are accurate within 

a factor of two. While the method is therefore not optimal for high-precision solubility studies, 

it is completely appropriate for fluid/mineral partitioning experiments, as these numbers may 

vary by many orders of magnitude and an accuracy within a factor of two is acceptable. 

Attention has to be paid, however, to possible problems caused by the precipitation of 

accessory phases within the trap resulting from slight temperature gradients.  This process 

could lead to erroneously high estimates of fluid solubilities. Such effects will, however, 

usually be detectable as strong heterogeneities within the diamond trap. 

 

3.2. Experimental results on trace element partitioning between saline 

fluids and eclogite 

 

The main aim of this study was to provide data on the partitioning of trace elements between 

eclogite and aqueous fluids, in order to model the trace elements signature of fluids released 

from the basaltic part of the subducted slab. In order to do this, piston cylinder experiments 

using the diamond trap method were carried out at 4 GPa and 800 ˚C. These are conditions that 

fall in the middle of the expected slab surface P, T conditions at a typical depth of 120 km 

below the volcanic arc. They likely also correspond to conditions just after the dehydration of 

amphibole, which is the main water carrier in the basaltic part of the slab. In order to assess the 

P, T dependence of partitioning, additional piston cylinder experiments were carried out at 4 

GPa and 700 ˚C and 5 GPa and 800 ˚C, as well as some multi anvil experiments at 6 GPa and 

800 ˚C. 

Starting materials in the experiments were basaltic glasses of MORB composition and aqueous 

solutions containing some dissolved NaCl. In most experiments, the trace elements were 

initially doped into the basaltic glass, but some reversed experiments with trace elements doped 

into the solution were also carried out. In general, there was good agreement between forward 

and reversed experiments, demonstrating attainment of equilibrium. During the runs, the 

basaltic glass always recrystallized to an eclogitic assemblage of omphacite + garnet + rutile + 

kyanite. Mineral compositions were uniform throughout the charge, again demonstrating 
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attainment of equilibrium. A problem encountered was, however, the difficulty to grow 

omphacite crystals large enough for chemical analysis by laser-ablation ICP-MS. This problem 

was solved by applying some periodic temperature fluctuations by ± 30 ˚C during the run. This 

method helped to increase grain size, particularly of the omphacite by Ostwald ripening, i.e. by 

the dissolution of smaller grains and the growth of larger crystals (Figure 3.3).  

Bulk fluid compositions coexisting with eclogite at various P, T conditions are compiled in 

Figure 3.4. Total solute contents are typically around 30 – 40 wt. %. The most important solute 

is SiO2. Na2O, CaO, FeO, and MgO contents increase with salinity, while SiO2 and Al2O3 do 

not.  

Figure 3.5 shows the effect of fluid salinity on the fluid/eclogite partition coefficients of several 

trace elements at 4 GPa and 800 ˚C. The partition coefficients for the light rare earth elements 

(e.g. La) increase by up to three orders of magnitude with salinity, probably due to complexing 

with chloride. Similar effects are seen in the large-ion lithophile elements (e.g. Rb, Cs, Sr) as 

well as for Pb, Th, and U. On the other hand, the partitioning of the heavy rare earths (e.g. Lu) 

and of the typical high field strength trace elements Nb and Ta is independent of salinity. The 

data in Figure 3.5 indicate very good agreement between forward and reversed experiments as 

 

 

Figure 3.3. Effect of temperature cycling on grain growth. Shown are SEM images of eclogites 

synthesized in the presence of an aqueous fluid at 4 GPa and 800 ˚C. The sample on the left side (a) 

was synthesized at constant temperature, the one on the right side (b) with 30 ˚C temperature cycling. 

An increase in the size of the omphacite crystals applying temperature cycling is obvious. 
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Figure 3.4. Bulk composition of aqueous fluid coexisting with eclogite at 4 – 6 GPa and 700 – 800 ˚C 
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Figure 3.5. Dependence of fluid/eclogite partition coefficients of various trace elements on fluid salinity 

at 4 GPa and 800 ˚C. Orange dots refer to reversed experiments, blue dots with different shading refer 

to forward experiments with different levels of trace element doping in the starting material. 

 

well as consistency of results for different levels trace element doping. This implies that 

equilibrium was achieved and that the trace element concentration range studied falls within 

Henry´s law. 

The trace element enrichment patter in the fluid is shown in Figure 3.6. With increasing salinity, 

the pattern more and more resembles the fingerprint seen in typical arc magmas, with a strong 

enrichment of large-ion lithophile elements and light rare earths, of Pb, U, and Th, relative to 

the heavy rare earths and the high field strength elements. 
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Figure 3.6. Trace element enrichment pattern of fluids coexisting with an eclogitic assemblage at 4 

GPa and 800 ˚C. 

 

3.3. The cause of melting in subduction zones 

 

The experimental data for the fluid/eclogite partitioning of trace elements were used in order 

to test whether partial melting of a mantle source enriched by a saline, aqueous fluid released 

from the basaltic part of the subducted slab could reproduce the trace element abundance 

pattern seen in primitive arc basalts. For modeling, we assumed batch equilibrium between the 

fluid and the eclogite of the subducted slab and batch equilibrium during melting of the mantle 

wedge. The composition of the slab was assumed to be the “all MORB average” of Gale et al. 

(2013). The composition of the depleted mantle in the mantle wedge was taken from Salters 
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and Stracke (2004). Most of the mineral/melt partition coefficients during mantle melting were 

taken from Salters et al. (2002). The fraction of fluid in the slab was assumed to be 2 wt. %, 

while 20 % of melting was assumed in the mantle wedge. The influence of these two parameters 

on the final result is, however, relatively small. The enrichment pattern produced depends 

mostly on fluid salinity and on the fraction of fluid added to the mantle wedge.  

 

 

Figure 3.7. Predicted trace element enrichment pattern for partial melts of the mantle wedge 

metasomatized by aqueous fluids released from the basaltic part of the subducted slab. Compositions 

for primitive arc basalts as compiled by Kelemen et al. (2005) are shown for comparison as grey lines. 
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Figure 3.7 shows the modeling results for a range of these parameters and compares them to a 

compilation of data from primitive arc basalts worldwide. The data clearly show that a pure 

aqueous fluid without Cl cannot produce the observed enrichment pattern. However, already 

the addition of a few wt. % of a fluid containing between 7 and 10 wt. % Cl to the mantle 

wedge reproduces the enrichment pattern nearly completely. One interesting observation in 

Figure 3.7 is that the predicted negative Nb anomaly is more pronounced that in most natural 

arc basalts. This is, however, due to the fact that in the calculation of the bulk fluid/eclogite 

partition coefficients, we assumed 2 wt. % rutile in the eclogite. Reducing this fraction would 

diminish the negative Nb anomaly. The data therefore suggest that likely in the eclogites of the 

subducted slab, the rutile fraction is rather small.  

In order to test whether the addition of sediment melts to the mantle wedge could generate the 

trace element enrichment pattern in primitive arc basalts, the resulting melt compositions were 

also calculated. For this, the compositions of near-solidus partial melts of various sediments 

were taken from the experimental studies of Hermann & Rubatto (2009), Skora and Blundy 

(2010), and Skora et al. (2015). The results are shown in Figure 3.8. In general, these models 

have difficulties reproducing the entire trace element abundance pattern of primitive arc 

basalts. In particular, they are unable to enrich the light rare earths to the required concentration 

level and the fractionation of Nb relative to the light rare earths is not correctly predicted. Most 

sediment melts also have difficulties in enriching Sr to the required level. The closest match is 

achieved with partial melts of GLOSS (global subducting sediment, Plank and Langmuir 

1988). However, the reason for this is simple: GLOSS is very similar in composition to the 

average continental crust and therefore, it has already inherited a subduction-like trace element 

enrichment pattern. Obviously, this pattern cannot have originated in the first place, if it 

requires metasomatism by a partial melt of a sediment, which already contains this pattern. In 

contrast to this, the mechanism proposed here produces the trace element enrichment pattern 

in primitive arc basalts de novo by metasomatic enrichment of the mantle wedge with a saline 

fluid released from the subducted slab. 

Another obvious observation from Figure 3.8 is that the enrichment pattern for many trace 

elements, e.g. thorium, is strikingly different for different types of sedimentary material. 

Therefore, arc with mostly carbonate subduction should produce a very different pattern from 
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Figure 3.8. Predicted trace element enrichment patterns for partial melts of the mantle wedge enriched 

by 5 wt. % of sediment melts. Near-solidus melt compositions were taken from the experimental studies 

of Hermann and Rubatto (2009) for GLOSS (global subducting sediment), Skora and Blundy (2010) for 

radiolarian clay and Skora et al. (2015) for calcareous sediment and marl. Compositions for primitive 

arc basalts as compiled by Kelemen et al. (2005) are shown for comparison as grey lines. 
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arcs with mostly pelite subduction or no sediment subduction. However, this is not observed. 

The patterns of natural arc basalts shown as background in Figures 3.7 and 3.8 are all strikingly 

similar. 

The present study therefore provides strong evidence that aqueous fluids released from the 

basaltic part of the subducted slab are the main trigger for melting in subduction zones. The 

contribution of sediment melts to the generation of primitive arc basalts is likely negligible. 

They may well contribute to the origin of other types of subduction-related magmas, in 

particular the ultrapotassic melts. However, in general, the importance of sediment melting for 

arc magmatism has likely been grossly overestimated. 
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6.1. Abstract 

 

Although subduction zones are the main source of seismic and volcanic hazards on Earth, the 

causes of melting in volcanic arcs are still not fully understood. Recent models suggested that 

melting in the mantle wedge is not caused by hydrous fluids, but by sediment melts ascending 

from the subducted slab. A main argument for these models was that hydrous fluids are “too 

dilute” to produce the trace element enrichment observed in arc magmas. Here we demonstrate 

experimentally that even moderate salinities enhance the partitioning of trace elements such as 

the light rare earths, alkalis, alkaline earths, Pb, and U into the fluid by several orders of 

magnitude. Our data therefore show that saline hydrous fluids released from the basaltic part 

of the oceanic crust may produce the enrichment in LILE and light REE elements, and the 

negative Nb-Ta anomaly observed in typical arc magmas. 

 

6.2. Introduction 

 

In subduction zones, oceanic crust is recycled into the mantle. Thermal models show that the 

temperature of the mantle wedge above the subducting slab is actually considerably lower than 

in other parts of the shallow upper mantle (Syracuse et al., 2010). Melting must therefore be 

caused by other effects, most likely by the addition of water, which may reduce the melting 
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temperatures of mantle peridotite by several 100 ˚C (Kawamoto and Holloway, 1997; Gaetani 

and Grove, 1998). Water may be transferred from the subducted oceanic slab to the mantle 

wedge in the form of aqueous fluids, released by the dehydration of hydrous minerals, or by 

sediment melts. Already early studies (Perfit et al., 1980; Arculus and Powell, 1986) noted that 

the trace element enrichment pattern in magmas from volcanic arcs above a subduction zone 

is distinctly different from that observed in magmas at divergent plate boundaries, e.g., mid-

ocean ridges. Typical features of arc magmas include high enrichments of large ion lithophile 

elements (LILE, such as Rb+, Cs+, Sr2+, Ba2+) and light rare earth elements (REE, such as La3+ 

and Ce3+), but strong depletions of high field strength elements (HFSE, such as Ti4+, Nb5+ and 

Ta5+). Some experimental studies (Kessel et al., 2005; Hermann et al., 2006) suggested that 

trace element transport by aqueous fluids is unable to produce the observed trace element 

enrichment pattern in arc magmas. This led to the suggestion that sediment melts are the main 

agents of metasomatism in the mantle wedge above subduction zones (Kelemen et al., 2005; 

Hermann et al., 2006; Skora and Blundy, 2010; Behn et al., 2011; Spandler and Pirard, 2013). 

Previous studies, however, did not consider the effect of chloride, which may affect the 

partition behaviour of various trace elements by the formation of chloride complexes in the 

fluid. As the subducted oceanic crust was in contact with seawater, it is expected to contain 

chloride and measurements of the Cl/H2O ratio of primitive arc magmas (Métrich and Wallace, 

2008), as well as other lines of evidence (Kawamoto et al., 2013), are consistent with the 

incorporation of aqueous fluids (Manning, 2004) containing up to 15 wt. % NaCl. In the present 

study, we therefore for the first time directly measured the effect of chlorine on the partitioning 

of trace elements between aqueous fluids and the minerals of the subducted basaltic crust at 

conditions corresponding to the typical depth of the slab below the volcanic front. 

 

6.3. Methods 

 

Experiments were carried out in an end-loaded piston cylinder apparatus (Boyd and England, 

1960) at 4 GPa and 800 ˚C with run durations between 2 and 7 days. Synthetic MORB (mid-

ocean ridge basalt) glass doped with a suite of trace elements was loaded together with water 

or NaCl solutions into platinum capsules. A layer of diamond powder was inserted in the 

middle of the capsule between the layers of MORB powder to provide some empty pore space 
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between the diamond grains for trapping the fluid (Ryabchikov et al., 1989). After quenching 

of the experiments, the sample capsules were cooled to liquid nitrogen temperature and cut in 

half. Both the compositions of the minerals and of the quenched fluid trapped between the 

diamond grains were then measured in frozen state (Kessel et al., 2005) by laser ablation ICP-

MS. Additional details about the experimental and analytical methods are given in the 

Supplementary Information. 

 

Figure 6.1. Run products from high pressure experiments. (a) Cross section of a sample capsule after 

an experiment (image width 5 mm). A white layer of diamond powder is sandwiched between the silicate 

sample. The red arrow points to a laser ablation trace. (b) Backscatter electron image of the silicate 

part of a sample, consisting mostly of omphacite (Omp) and garnet (Grt) with minor kyanite (Ky) and 

rutile (Rt). In the centre of some garnet crystals, remnants of the garnet seeds are visible. (c) Laser 

ablation analysis of frozen fluid in the diamond trap, demonstrating the homogeneity of the sample. 
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6.4. Results and discussion 

 

During the high pressure experiments, the glasses recrystallized to an eclogitic assemblage of 

omphacite, garnet, rutile, and kyanite, i.e. the same minerals that are expected to be stable in 

the subducted basaltic oceanic crust below the volcanic arc (Figure 6.1). Other accessory 

phases likely do not occur in natural MORB at eclogite facies conditions. The solubility of 

phosphorus in garnet is so high that apatite and other phosphates are unlikely to form (Konzett 

and Frost, 2009). Due to the very low K2O content in natural MORB, eclogites of MORB 

composition either contain no phengite at all or at most traces of this mineral (e.g., Okrusch et 

al., 1991; see also the Supplementary Information for further discussion). Indeed, in sub-

solidus experiments with natural MORB at 3 GPa and 800 ˚C, Carter et al. (2015) did not 

observe any phengite or apatite. 

Mineral compositions in our experiments were found to be uniform in the entire sample, 

consistent with attainment of equilibrium throughout the entire charge. With a few exceptions, 

as discussed below, laser ablation ICP-MS analyses of trace element concentrations yielded 

homogeneous compositions of both the quenched fluid phase and the minerals (see Figure 6.1 

for typical laser ablation signals). Fluid/mineral partition coefficients Dfluid/mineral = cfluid/cmineral 

were calculated from the measured trace element concentrations in fluid (cfluid) and coexisting 

minerals (cmineral). Bulk fluid/eclogite partition coefficients were then calculated from the 

individual fluid/mineral partition coefficients assuming an eclogitic mineralogy with 59 % 

omphacite, 39 % garnet and 2 % rutile. Experimental details, compositions of all phases and 

calculated bulk fluid eclogite partition coefficients are compiled in Tables 6.1 to 6.8 of the 

Supplementary Information. 

A major problem in all studies of element partitioning between minerals and fluid is attainment 

of equilibrium, since the diffusion coefficients of most of the relevant trace elements in the 

minerals are very low. In order to circumvent this problem, we introduced periodic temperature 

fluctuations by ± 30 ˚C in our experiments, which enhanced grain growth and equilibration by 

Ostwald ripening (i.e. the dissolution of smaller grains at higher temperature and the growth of 

larger grains upon cooling). Indeed, the resulting grain sizes observed after runs with these 

sinusoidal temperature fluctuations were generally much larger than for experiments at 

constant temperature, but mineral compositions were not affected. In order to demonstrate 
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conclusively the attainment of equilibrium, we also performed some reversed experiments, 

starting with a trace element-free MORB glass and trace element-doped solutions. In general, 

both the normal “forward” experiments starting with trace element-doped MORB glass and the 

reversed experiments gave very consistent results. We are therefore confident that the trace 

element partition coefficients reported here represent true chemical equilibrium between 

aqueous fluid and minerals. Moreover, results from experiments with different concentration 

levels of trace elements yielded consistent partition coefficients, implying that Henry´s law is 

fulfilled. 

 

Figure 6.2. Effect of chloride on fluid/eclogite partition coefficients of trace elements at 4 GPa and 800 

˚C. Blue data points are the results from “forward” experiments, where the trace elements were initially 

doped into the solid starting material, while orange data points are from “reversed” experiments, which 

started with all trace elements dissolved in the fluid. For the forward experiments, results for different 

initial trace element concentrations in the starting material are given. Error bars are one standard 

deviation. Data for these and additional elements are given in Tables 6.1 to 6.8. 
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Figure 6.2 shows the fluid/eclogite partition coefficients for some selected trace elements as a 

function of the chloride content in the fluid. For the light rare earths, such as La and Ce, there 

is a striking increase of Dfluid/eclogite by up to three orders of magnitude even for moderate 

salinities (up to 15 wt. % NaCl). Similar, although smaller effects are seen for the alkalis (e.g., 

Rb and Cs) and the alkaline earths (Sr). Pb, Th, and U also show striking increases with salinity. 

On the other hand, both the typical high field strength elements, such as Nb and Ta as well as 

the heavy rare earth (e.g., Lu) appear to be unaffected by chloride. 

 

Figure 6.3 Comparison of the fluid/eclogite partition coefficients for Cl-free fluids measured in this 

study with those reported by Kessel et al. (2005). Both sets of experiments were carried out at 4 GPa 

and 800 ˚C, with a bulk composition resembling MORB. 
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Our data for Cl-free aqueous fluids are generally consistent with those from a previous study 

(Kessel et al., 2005), as shown in Figure 6.3. For saline fluids, there are no published data that 

could be directly compared with our results. However, both studies on mineral solubilities (Bali 

et al., 2011; Tropper et al., 2011; Tsay et al., 2014) and fluid/melt partitioning (Keppler, 1996; 

Kawamoto et al., 2014) at lower pressures suggest that those elements that are affected by fluid 

salinity indeed form stable chloride complexes in aqueous fluids. In particular, Tsay et al. 

(2014) noted an increase of the solubility of La2Si2O7 and Nd2Si2O7 in aqueous fluid by one 

order of magnitude upon addition of 1.5 M NaCl at 800 ˚C and 2.6 GPa. The formation of 

chloride complexes will tend to stabilise the trace element in the fluid and therefore increase 

the fluid/eclogite partition coefficient. Only the sensitivity of Th to chloride is unexpected, as 

it behaves differently from other HFSE trace elements, such as Nb and Ta. However, the ionic 

radius of Th4+ is significantly larger than that of Nb5+, Ta5+, or Ti4+, such that its geochemical 

behaviour may be transitional between a typical high field strength and a large ion lithophile 

element. We also tried to measure the fluid/eclogite partitioning of Zr and Hf, two important 

HFSE trace elements, but here we encountered experimental problems. The distribution of 

these elements in the quenched fluid inside the diamond trap was always highly 

inhomogeneous, which precluded the reliable determination of fluid concentrations and 

partition coefficients. A possible reason could be the very low solubility (Bernini et al., 2013) 

of zircon ZrSiO4 and hafnon HfSiO4, which may have precipitated early during the experiment 

inside the diamond trap and may have failed to reach equilibrium. 

Figure 6.4 shows the trace element enrichment pattern in the fluid phase from the fluid/eclogite 

partitioning experiments as a function of salinity. An important observation here is that a pure 

aqueous fluid would not be able to produce all of the trace element enrichment features 

observed in arc magmas. While such fluids may effectively transport some large ion lithophile 

elements, like Rb, Cs, Sr, and Ba (with fluid/eclogite partition coefficients > 1), the light rare 

earths as well as uranium would be retained in the eclogite. This used to be one of the main 

arguments why aqueous fluids were considered to be “too dilute” to produce the trace element 

enrichment observed in arc magmas and why alternative mechanisms, such as metasomatism 

by sediment melt were proposed. However, for elevated salinities the enrichment pattern in 

aqueous fluid has a striking similarity to that observed in arc magmas, with the light rare earths 

and U becoming mobile in the fluid together with the large ion lithophile elements, while at 
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Figure 6.4. Trace element enrichment patterns in fluids from fluid/eclogite partitioning experiments at 

4 GPa and 800 ˚C. Error bars are one standard deviation. Data for these and additional elements are 

given in Tables 6.1 to 6.8. 

 

the same time, high field strength elements, such as Nb, Ta, and Ti are nearly completely 

retained in the eclogite. The high Ba/La, Ba/Nb, and U/Th ratios match well with those inferred 

from primitive arc basalts (see Supplementary Information for further discussion). In particular, 

the “negative Nb-Ta anomaly” i.e. the strong depletion of Nb and Ta relative to both light rare 

earths and large ion lithophile elements is a hallmark of subduction zone magmas. Saline fluids 

can fractionate these elements by three orders of magnitude, mainly through the effect of Cl on 

rare earth partitioning. In a chloride-free system, the fluid/eclogite partition coefficient of La 

and Ce could be increased to a similar value by a temperature increase of several 100 ˚C, 
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ultimately leading to melting (Kessel et al., 2005). However, in silicate melts, Nb and Ta would 

also become mobile and therefore, this effect cannot produce the negative Nb Ta anomaly 

observed in subduction zone magmas. 

 

6.5. Conclusions 

 

Our experimental data show that saline fluids released from the basaltic layer of the subducted 

slab can account for most features in the trace element enrichment pattern observed in 

subduction zone magmas. In the light of these experiments, the relative importance of aqueous 

fluids and sediment melts in the formation of arc magmas needs to be reconsidered. Strong 

evidence for the involvement of sedimentary material comes from isotopic data; already 

Armstrong (1971) noted a close correlation between the 206Pb/204Pb ratio of arc magmas and 

the sediments in front of some arcs and similar evidence has been presented for different 

isotope systems. However, these observations do not necessarily require the involvement of 

sediment melts. The isotopic signal observed may also have been transported by aqueous 

fluids; our data suggest that both Pb and Sr may be efficiently transported by saline fluids 

(Figure 6.4) and even Be and Nd may be significantly mobile under some conditions. High 

Th/La ratios in arc magmas may be inherited from sediments (Plank, 2005); however, it 

remains uncertain whether sediment melts could effectively transport these elements, as they 

are strongly retained in residual monazite and other phases and the fractionation of Th and La 

between melt and monazite may not always operate in the right direction (Skora and Blundy, 

2010). On the other hand, experimental data suggest that mantle metasomatism by sediment 

melts produces distinctly potassic melts (Mallik et al., 2015) different from average subduction 

zone magmas. Thermal models of subduction zones (Syracuse et al., 2010) suggest 

temperatures below the arc that are lower than those required for dehydration melting (e.g., 

Mann and Schmidt, 2015). Higher temperatures have been inferred from Ce/H2O ratios. 

However, the Ce/H2O geothermometer (Plank et al., 2009) is based on the assumption that the 

Ce/H2O ratio in fluids and melts is a function of temperature only. Our data (Figure 6.2) show 

that at the same temperature, this ratio may vary by three orders of magnitude as a function of 

salinity. 
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6.7. Supplementary information 

 

6.7.1. Starting materials and methods 

6.7.1.1. Starting materials 

Two glasses with K-free average MORB composition were synthesised at 1600 ˚C. The first 

one (MORB1) was prepared without trace elements and was used in the reversed experiments. 

For some forward experiments, part of MORB1 was mixed with 2 wt. % of a synthetic diopside 

glass (D1) which was doped with 25 trace elements in order to give the final bulk 

concentrations reported in Supplementary Table 6.2 (MORB1-2D1). A second basaltic glass 

(MORB2) with similar major element composition but directly doped with LILE was also 

synthesised. The remaining trace elements were added by mixing 2 wt. % of a second synthetic 

diopside glass (D2) to MORB2 (MORB2-2D2). In experiment PC23, a starting material 

prepared by mixing MORB2 with 0.4 wt. % of D1 (MORB2-DD1) was used. To each solid 

starting material, 1 wt. % of natural garnet seeds selected and crushed from Grytting (Norway) 

eclogite were added to enhance garnet growth during the experiments. Solutions with 1, 5, 10, 

or 15 wt. % salinity were prepared by adding pure NaCl to distilled water. For the trace element 

doped solutions used in the reversed experiments, equal amounts of a certified ICP standard 

solution for each individual trace element (1000 ppm of trace element in 5 % HNO3) were 

mixed and evaporated under an infrared lamp. The solid residue was subsequently dissolved in 

a smaller amount of 5 % HNO3 to obtain higher trace element concentrations and the resulting 

milky solution was left to rest for 1 month. After the deposition of the insoluble residue, the 

clear solution at the top was separated. The compositions from ICP-MS analyses of the two 

different doped solutions obtained with this procedure are given in Table 6.2 (SOL1 and 

SOL2). 
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6.7.1.2. Experiments 

For each experiment, some of the solution was pipetted into a Pt or Au capsule (5 mm outer 

diameter, 10 mm long, 0.2 mm wall thickness), then a layer of MORB glass powder (~ 55 mg) 

was added, followed by a layer of diamond powder (with 10 – 20 μm grain diameter). The 

remaining fluid was added after the diamonds to avoid suspending the first layer of basaltic 

starting material, which could contaminate the diamond trap. At last, another layer of MORB 

glass was added. The resulting total fluid/glass weight ratio ranged from 0.30 to 0.45. The 

capsule was weighed before and after welding of the top lid to assure that no water loss 

occurred. Each capsule was also left overnight in an oven at 130 ̊ C and weighed again to verify 

the sealing before the experiment. High pressure experiments were carried out at 4 GPa and 

800 ˚C in an end-loaded piston cylinder apparatus using ½ inch MgO-NaCl assemblies with a 

stepped graphite furnace. Temperature was measured with a S-type (Pt/Pt-Rh) thermocouple 

and monitored by a Eurotherm controller. Long compression and decompression times (16-20 

hours) were used to reduce capsule deformation. Temperature was raised at constant pressure 

after compression with a rate of 100 ˚C/min. In some experiments, a temperature fluctuation 

of ± 30 ˚C was applied after an initial equilibration at constant temperature for ~ 36 hours to 

nucleate the stable mineral assemblage. The temperature cycling was terminated ~24 hours 

before quenching to allow final equilibration. During temperature cycling, linear ramps in 

temperature (from 770 to 830 ˚C and back) lasted 2 hours each, with dwelling times at both 

temperatures of 2 hours; a single temperature cycle lasted in total 8 hours. The duration of the 

experiments at combined high pressure and high temperature was 2 – 7 days. Oxygen fugacity 

was not controlled, but probably was near the Ni-NiO buffer. The runs were quenched by 

shutting off the power at constant pressure before starting decompression.  

6.7.1.3. Analytics 

After the experiments, the retrieved capsules were immediately cooled in liquid nitrogen and 

then stored in a freezer at -18 °C until the day of the analysis. On that day, each capsule was 

taken out of the freezer, cooled further to -50 to -100 °C, and then cut longitudinally in half 

with a razor blade attached to an opening device. One half of the frozen capsule was then 

quickly transferred to a Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-

ICP-MS) sample chamber equipped with a Peltier-cooling element to keep the sample frozen 
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during the entire measurement. Tests with H2O-ethanol mixtures revealed that the temperature 

in this sample chamber was ca. -30 °C. Analysing the diamond trap in frozen state is necessary 

to avoid element fractionation during solution evaporation, which would introduce major 

uncertainties in the quantification procedure. The LA-ICP-MS measurements were performed 

with a 193 nm ArF GeolasPro laser ablation unit (Coherent, USA) connected to a Elan DRC-e 

quadrupole ICP-MS unit (Perkin Elmer, Canada). The sample chamber was flushed with He at 

a flow rate of 0.4 l/min, to which 5 ml/min H2 was admixed on the way to the ICP-MS. 

Measured isotopes included 7Li, 9Be, 11B, 23Na, 25Mg, 27Al, 30Si, 35Cl, 43Ca, 45Sc, 49Ti, 57Fe, 

85Rb, 88Sr, 89Y, 90Zr, 93Nb, 133Cs, 137Ba, 139La, 140Ce, 146Nd, 147Sm, 153Eu, 157Gd, 163Dy, 167Er, 

172Yb, 175Lu, 178Hf, 181Ta, 208Pb, 232Th, and 238U, using a dwell time of 10 ms. The ICP-MS was 

tuned to a thorium oxide production rate of 0.05 – 0.10 % and a rate of doubly charged Ca ions 

of 0.15 – 0.25 % based on measurements on NIST SRM 610 glass (Jochum et al., 2011). The 

diamond trap layer was analysed by moving the laser beam at constant velocity along two 

perpendicular transects (parallel and perpendicular to the diamond layer, see Figure 6.1 a) using 

a laser spot size of 50-70 μm and a repetition rate of 7 Hz. The signals resulting from each 

transect (Figure 6.1 c) were divided into 3 – 4 separate integration intervals, for which element 

concentrations were calculated. The NIST SRM 610 glass and a well-characterised, natural 

afghanite crystal (Seo et al., 2011) were used as external standards. Chlorine (or Cs in 

experiments conducted with pure water) was used as internal standard, because these elements 

are expected to partition strongly into the fluid in the K-free eclogite-water system at the 

experimental conditions. Indeed, chlorine was never detected in any of the crystalline phases. 

Chlorine contents in the fluid phase were corrected for the dilution effect by dissolved solutes 

(mostly SiO2), as determined from the diamond trap analyses. After analysis of the diamond 

trap, the capsules were left to evaporate at room temperature and subsequently were 

impregnated with epoxy resin and were polished to expose minerals for LA-ICP-MS 

measurements. The largest suitable spot sizes to analyse single crystals and the rims in zoned 

garnets were chosen, usually in the range of 7 – 20 µm. Averages obtained from measurements 

of 4 to 7 separate crystals within the capsule were used to calculate the compositions of garnet 

(Supplementary Table 6.5), omphacite (Table 6.6) and rutile (Table 6.7). Special care was 

taken in the garnet measurements to only analyse inclusion-free rim portions and to avoid the 

natural garnet seeds, which showed distinctively different composition. To calculate bulk 

fluid/eclogite partition coefficients, first the fluid/mineral partition coefficients for each 
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mineral were calculated, and then the results normalised to a representative eclogitic 

composition of 59 % omphacite, 39 % garnet and 2 % rutile.  

Major element compositions of minerals were also measured by electron microprobe. A JEOL 

JXA 8200 instrument was used with a focused beam, an acceleration voltage of 15kV, a beam 

current 15nA and counting times of 10 sec on the background and 20 sec on the peak. The 

following standards were used: Diopside for Si, Mg, Ca; MnTiO3 for Ti; Fe2O3 for Fe, albite 

for Na; corundum for Al. 

6.7.2. Supplementary discussion 

6.7.2.1. Phase Assemblage in Experiments and in Natural MORB Eclogites 

The starting material used in the experiments was designed to be very similar to that of the 

study of Kessel et al. (2005) in order to facilitate the comparison of the Cl-free experiments. In 

particular, as in the study of Kessel et al. (2005), the simplified MORB composition used did 

not contain any phosphorus or potassium. This is well justified, since both P (0.184 wt. % P2O5) 

and K (0.160 wt. % K2O) concentrations in natural MORB are very low (Gale et al., 2013). 

Natural eclogites occasionally contain apatite and phengite, which could be important hosts for 

certain trace elements (REE in apatite, alkalis and Ba in phengite). However, we argue here 

that due to the low P and K contents of MORB, these phases will either not occur at all or only 

occur in insignificant traces in eclogites of MORB composition. 

Konzett and Frost (2009) measured the solubility of phosphorus in garnet of MORB eclogite. 

They observed a solubility of P2O5 in the garnet phase of about 0.3 wt. % at 4 GPa. They 

therefore concluded that virtually all P in a MORB eclogite will be contained in garnet. If 

apatite is observed in MORB eclogites, it is often a secondary alteration product, e.g., formed 

by low-temperature exsolution from garnet. This effect was already observed by Fung and 

Haggerty (1995); see also Keller and Ague (2019). Moreover, we note that in the presence of 

NaCl, apatite becomes quite soluble in aqueous fluids (Mair et al., 2017), such that traces of 

apatite would readily be dissolved during dehydration of the basaltic crust.  

The low average K2O content of 0.16 wt. % limits the amount of phengite that may form in an 

eclogite of MORB composition. Therefore, typical MORB eclogites either contain no 
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(primary) phengite at all or at most traces of this mineral. In the classical eclogite occurrences 

of the Bohemian Massif in central Europe, Okrusch et al. (1991) distinguished three lithological 

types, two of which do not contain any phengite. Similar, phengite-free eclogites of MORB 

composition were also described by Heinrich (1982), Tubia and Ibarguchi (1991), and 

Imayama et al. (2017). Eclogites from the North Dulan Belt in China, which formed from N-

type and E-type MORB may or may not contain phengite; however, in every case the modal 

abundance is less than 1 % (Song et al., 2003). Very likely, the occurrence of phengite is limited 

to the more K-enriched E-MORB types. Finally, we note that during interaction with an 

aqueous fluid, K will partition into the fluid, which should destabilise any traces of phengite. 

6.7.2.2. Silica Content of Starting Materials 

The silica content of the solid starting material (54 – 55 wt. %, Table 6.2) is higher than in 

average MORB (50.47 wt. %, Gale et al., 2013). This, however, compensates for the effect that 

in our experiments, the fluid/solid ratio is 0.3 – 0.5 and therefore much higher than in nature. 

These high fluid/solid ratios are necessary in order to be able to trap sufficient fluid in the 

diamond layer for analysis. Silica preferentially partitions into the fluid and is the most 

abundant solute in the aqueous phase (e.g., Kessel et al., 2005). This has the effect of shifting 

the composition of the solid residue back to that of MORB. Indeed, our experiments produce 

a typical eclogite phase assemblage (Figure 6.1, main text) without any excess quartz or coesite. 

 

6.7.2.3. Comparison of Trace Element Ratios in Primitive Arc Basalts With Those Observed 

in Experiments 

Certain trace element ratios are considered to be particularly characteristic for subduction zone 

magmas; this includes in particular high Ba/Nb (e.g., Pearce et al., 2005), Ba/La (e.g., Rüpke 

et al., 2002), and U/Th ratios (e.g., Bali et al., 2011). Here, we compare these ratios in natural, 

primitive arc basalts with those predicted by our experimental data. Average primitive arc 

basalt compositions for 14 different subduction zones were taken from the compilation in 

Kelemen and Hanghøj (2005). Fluid compositions released from the basaltic oceanic crust were 

obtained by assuming average MORB composition for the crust (Gale et al., 2013) and very 

low fluid/solid ratios. In this limiting case, the concentration ratio of two elements X and Y in 

the fluid may be estimated from the equation 
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cXfluid/cYfluid = (cXMORB/cYMORB) (DXfluid/eclogite/DYfluid/eclogite) 

 

These element ratios are directly given as ppm/ppm ratios; they are not normalised to MORB 

compositions. For Ba/Nb, the data compiled by Kelemen et al. (2005) span a range from 47 to 

352. For fluid salinities with > 4 wt. % Cl (experiments PC27, PC36, and PC39, Table 6.8), the 

predicted Ba/Nb ratios in the fluid range from 1280 to 3201. This means that already a small 

addition of such a fluid to the source of melting may produce the observed high Ba/Nb ratios. 

For Ba/La, the situation is similar. In average primitive arc basalts, this ratio ranges from 13 to 

48, the ratio calculated for the fluid in the same three experiments as above is between 18 and 

605. U/Th ratios in arc basalts are usually higher than in MORB (0.29); the average data by 

Kelemen et al. (2005) suggest a range from 0.11 to 0.65. In the fluids, the calculated ratio is 

between 3.1 and 5.0, indicating again that already a minor fluid addition to the source of 

melting will shift the ratio into the right direction. For the U/Th data, however, it has to be 

considered that U solubility in fluids increases with oxygen fugacity (Bali et al., 2011). Oxygen 

fugacity in our experiments was not buffered, but is likely close to the Ni-NiO buffer. For a 

quantitative discussion of the effect of oxygen fugacity on U/Th ratios in subduction zone 

fluids, see Bali et al. (2011). 

 

6.7.3. Supplementary tables 

Table 6.1. Summary of experiments. 

Experiment 
NaCl in Fluid 

(wt. %) 
Doped Fluid 

Solid Starting 

Material 
Capsule Material Duration (h) 

Temperature 

Fluctuations 

PC09 0 - MORB1-2D1 Au 84 no 

PC22 0 - MORB1-2D1 Pt 120 no 

PC37 0 - MORB2-2D2 Pt 68 yes 

PC38 0 - MORB2-2D2 Pt 128 no 

PC14 1 - MORB1-2D1 Au 69 no 

PC23 5 - MORB2-DD1 Pt 163 yes 

PC10 10 - MORB1-2D1 Au 68 no 

PC25 10 - MORB2-2D2 Pt 102 yes 

PC27 10 - MORB2-2D2 Pt 93 yes 

PC36 15 - MORB2-2D2 Pt 103 yes 

PC39 15 - MORB2-2D2 Pt 126 yes 

PC15 15 - MORB1-2D1 Au 63 no 

PC24* 0 SOL1 MORB1 Pt 144 yes 

PC18* 10 SOL2 MORB1 Pt 52 no 

* reversed experiments 
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Table 6.2. Starting material. 

 MORB1 MORB1-2D1 MORB2-2D2 MORB2-DD1 SOL1 SOL2 

M
aj

o
r 

el
em

en
ts

 (
w

t.
 %

) SiO2 54.04 (18) 53.79 (19) 55.62 (17) 55.78 (15)     

Al2O3 17.38 (6) 17.04 (6) 17.26 (12) 17.54 (11)     

MgO 5.56 (3) 5.73 (3) 5.41 (3) 5.27 (2)     

CaO 9.52 (2) 9.75 (2) 8.88 (8) 8.66 (8)     

FeO 8.30 (12) 8.14 (13) 6.93 (5) 7.04 (6)     

Na2O 3.90 (2) 3.83 (3) 3.77 (9) 3.83 (8)     

T
ra

ce
 e

le
m

en
ts

 (
p
p

m
) 

Li   236 (2) 1029 (16) 1076 (15)   100 

Be  192 (1) 1000 (11) 1040 (10) 202 100 

B  45 (1) 495 (16) 266 (15) 159 74 

Rb  61 (1) 777 (16) 728 (16)   99 

Cs  6.2 (1) 1077 (16) 1079 (15) 198 95 

Sr  254 (2) 1068 (7) 877 (8) 178 98 

Ba  456 (2) 1092 (4) 1145 (5) 180 98 

Ti 7718 (18) 7565 (20) 7011 (117) 7124 (115)     

Nb  138 (1) 77.4 (6) 30.7 (2) 103 17 

Ta  75 (1) 82.0 (9) 15.2 (2) 104 8 

Zr  119 (1) 37.8 (3) 33.1 (2) 188 96 

Hf  121 (1) 38.9 (4) 24.5 (2) 186 98 

La  208 (2) 211 (2) 41.8 (4) 142 99 

Ce  818 (5) 519 (3) 562 (4) 146 99 

Nd  222 (1) 221 (2) 44.0 (2) 154 99 

Sm  215 (2) 224 (1) 42.3 (3) 164 99 

Eu  217 (2) 223 (2) 45.9 (5) 166 99 

Gd  239 (2) 248 (1) 47.2 (4) 168 98 

Dy  245 (2) 243 (3) 48.7 (5) 175 98 

Er  240 (2) 310 (4) 47.4 (4) 177 98 

Yb  241 (2) 296 (3) 47.6 (4) 174 98 

Lu  248 (3) 243 (3) 49.5 (6) 177 98 

Y  250 (3) 36.7 (3) 50.5 (7) 161 98 

Sc   261 (5)       

Pb  92.5 (4) 530 (5) 21.1 (9) 189 97 

Th  198 (3) 106 (1) 39.4 (7) 117 26 

U   275 (2) 134 (1) 54.9 (4) 195 97 

Numbers in parentheses are one standard deviation in the last digits. Total iron is given as FeO. 
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Table 6.3. Microprobe analyses of garnet and omphacite (in wt. %). 

Garnet 

SiO2 39.17 39.32 39.86 39.43 39.25 38.77 39.02 39.19 39.26 

TiO2 0.69 0.69 0.71 0.64 0.63 0.89 0.79 0.63 0.74 

Al2O3 22 21.53 21.91 21.93 21.67 20.83 21.33 21.47 20.8 

MgO 7.35 7.46 7.36 7.15 7.17 7.29 6.66 8.18 6.69 

CaO 11.37 10.82 10.74 10.76 10.18 9.85 11.32 8.5 10.89 

FeO 20.04 20.83 21.08 20.57 21.6 22.27 21.21 22.14 21.8 

Na2O 0.06 0.06 0.05 0.09 0.06 0.07 0.09 0.06 0.21 

Total 100.7 100.7 101.7 100.6 100.6 100 100.4 100.2 100.4 

 

 

 

 

 

 

 

  

Omphacite 

SiO2 54.57 54.69 55.81 53.81 53.53 

TiO2 0.28 0.21 0.13 0.49 0.84 

Al2O3 12.23 12.61 10.20 10.50 10.62 

MgO 7.80 8.30 9.77 8.90 8.23 

CaO 12.91 12.78 14.76 13.55 13.83 

FeO 4.13 3.05 5.18 7.64 6.90 

Na2O 6.01 6.52 5.81 5.46 5.90 

Total 97.9 98.1 101.6 100.3 99.8 

Garnet and omphacite compositions were measured on grains across the capsule in one single experiment (PC09). The average garnet 

composition is (Ca0.29Mg0.27Fe0.44)3(Al0.97Fe0.03)2(SiO4)3, the average pyroxene composition is Ca0.52Na0.41Mg0.46Fe0.16Al0.44Si1.96O6 
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Table 6.4. Fluid compositions. 

Experiment PC09 PC22 PC37 PC38 PC14 PC23 PC10 PC25 PC27 PC36 PC39 PC15 PC24* PC18* 

Cl (wt. %) 0 0 0 0 0.48 2.25 3.76 3.85 4.91 6.50 6.81 6.93 0 4.23 

Li 147 (8) 51.5 (9) 1172 (25) 1044 (11) 286 (15) 1322(109) 314 (14) 1468 (10) 999 (4) 987 (22) 756 (38) 564 (38) 21.6 (14) 54.1 (7) 

Be 50 (3) 22.5 (3) 604 (8) 531 (9) 137 (2) 455 (32) 191 (16) 744 (4) 712 (55) 462 (14) 383 (44) 404 (29) 20.3 (16) 106 (3) 

B 731 (43) 29.6 (7) 1120 (18) 1046 (14) 282 (10) 1000 (106) 2094 (224) 3668 (67) 2224 (67) 4097 (145) 2234 (201) 259 (17) 80 (5) 440 (6) 

Rb 213 (9) 41.3 (3) 1529 (15) 1544 (11) 670 (42) 2266 (180) 710 (51) 5112 (89) 3089 (38) 5671 (196) 2772 (194) 394 (32) 100 (8) 314 (5) 

Cs 17.0 (7) 19.3 (1) 2105 (20) 2076 (15) 51 (1) 4725 (431) 81 (6) 9912 (38) 17895 (1467) 7631 (215) 6312 (485) 125 (14) 86 (8) 427 (67) 

Sr 194 (8) 90 (2) 1155 (42) 849 (15) 832 (58) 1356 (64) 396 (47) 1914 (365) 2945 (38) 2236 (167) 1235 (97) 1212 (87) 57 (5) 424 (8) 

Ba 254 (23) 157 (2) 1606 (16) 1375 (22) 1285 (130) 1885 (135) 1074 (106) 2314 (4) 4542 (69) 4618 (454) 1441 (84) 2384 (173

) 

275 (23) 1785 (23

) Ti 162 (10) 74 (3) 387 (4) 331 (7) 280 (24) 435 (56) 414 (64) 702 (5) 272 (21) 481 (25) 367 (68) 254 (24) 133 (16) 376 (23) 

Nb 10.9 (7) 4.44 (4) 17.8 (3) 14.3 (1) 19.0 (8) 4.23 (4) 27 (2) 22.7 (4) 8.5 (7) 23.3 (7) 11.7 (13) 17 (4) 0.74 (5) 3.18 (16) 

Ta 0.9 (1) 0.41 (2) 3.3 (1) 2.48 (8) 2.07(14) 0.32 (1) 1.5 (2) 3.47 (2) 1.69 (5) 2.73 (12) 1.9 (3) 2.5 (2) 0.09 (2) 0.84 (14) 

La 0.23 (2) 0.18 (1) 0.51 (1) 0.39 (5) 1.5 (6) 0.7 (1) 5.8 (7) 2.62 (13) 5.32 (13) 8.4 (9) 6.9 (17) 43 (2) 5.0 (4) 12.1 (6) 

Ce 2.6 (2) 1.5 (2) 2.94 (7) 2.39 (14) 10 (3) 29 (5) 41 (6) 14.5 (6) 20 (1) 29.3 (18) 23 (4) 169 (7) 66 (4) 129 (6) 

Nd 0.27 (3) 0.226 (4) 0.60 (3) 0.47 (4) 1.9 (8) 0.86 (10) 5.5 (3) 2.9 (4) 6.3 (4) 7.6 (11) 4.8 (11) 31.3 (17) 4.6 (4) 10.9 (6) 

Sm 0.50 (5) 0.287 (8) 0.86 (4) 0.62 (2) 1.9 (6) 0.78 (7) 5.1 (11) 3.6 (5) 6.2 (4) 9.2 (13) 5.4 (8) 26.3 (17) 3.9 (3) 10.3 (3) 

Eu 1.0 (1) 0.565 (5) 1.83 (3) 1.42 (3) 3.6 (1) 1.67 (23) 11.3 (13) 7.2 (9) 14.6 (9) 25 (3) 22 (5) 100 (7) 4.2 (3) 13.6 (4) 

Gd 1.1 (2) 0.420 (9) 1.06 (4) 0.72 (3) 2.1 (4) 0.81 (4) 4.9 (4) 4.2 (5) 5.5 (3) 11.3 (16) 4.7 (5) 20.8 (5) 2.6 (2) 6.6 (3) 

Dy 1.9 (3) 0.63 (4) 1.30 (9) 0.90 (5) 1.7 (3) 0.75 (3) 3.7 (2) 4.4 (4) 2.96 (13) 10.0 (11) 3.38 (16) 10.2 (3) 1.35 (9) 3.8 (3) 

Er 1.7 (3) 0.59 (6) 1.37 (12) 0.88 (9) 1.2 (2) 0.52 (5) 2.4 (3) 4.8 (6) 1.98 (13) 8.1 (8) 3.3 (5) 6.0 (2) 1.05 (13) 4.8 (5) 

Yb 1.5 (2) 0.63 (5) 1.35 (13) 0.99 (14) 1.4 (2) 0.53 (4) 2.2 (2) 5.3 (7) 2.22 (13) 6.2 (7) 4.0 (7) 5.8 (6) 1.4 (3) 7.6 (11) 

Lu 1.3 (2) 0.55 (5) 0.9 (1) 0.68 (9) 1.5 (2) 0.47 (5) 1.8 (3) 4.7 (6) 1.54 (19) 4.1 (3) 3.3 (6) 5.8 (3) 1.2 (2) 9.0 (14) 

Y 13 (3) 3.7 (4) 9 (2) 6.7 (17) 20 (5) 5.0 (7) 20 (4) 19 (3) 19 (3) 23 (6) 10.6 (17) 64 (20) 5.5 (6) 28 (8) 

Sc     3.3 (2) 2.66 (12)     8.4 (2) 3.00 (16) 5.5 (3) 4.4 (6)     

Pb 108 (21) 17.3 (5) 371 (3) 228 (1) 177 (6) 13 (1) 589 (67) 1708 (96) 860 (109) 1428 (110) 1008 (164) 417 (28) 21.7 (11) 438 (9) 

Th 0.19 (2) 0.0497 (8) 0,16 (2) 0.116 (12) 0.9 (5) 0.35 (5) 0.67 (9) 0.52 (1) 0.45 (2) 0.71 (4) 0.55 (9) 6.2 (2) 0.81 (5) 1.62 (15) 

U 14 (2) 5.0 (3) 11.7 (12) 9.2 (6) 29 (2) 13.7 (16) 58 (7) 50 (2) 20 (2) 63.8 (22) 36 (6) 158 (7) 12.2 (19) 134 (13) 

All compositions are given in ppm by weight, except for Cl (wt.%). Numbers in parentheses are one standard deviation in the last digits. * reversed experiments. 
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Table 6.5. Garnet compositions. 

Experiment PC09 PC22 PC37 PC38 PC14 PC23 PC10 PC25 PC27 PC36 PC39 PC15 PC24* PC18* 

Cl (wt.%) 

** 

0 0 0 0 0.48 2.25 3.76 3.85 4.91 6.50 6.81 6.93 0 4.23 

Li < 57 22 (3) 144 (9) 113 (10) < 188 162 (41) < 32 112 (26) 270 (66) 76 (12) 66 (10) 124 (23) < 39 < 69 

Be < 81 < 70 91 (28) 68 (10) < 35 127 (32) < 88 111 (5) 160 (37) 57 (12) 35 (3) < 162 < 101 < 127 

B < 71 < 79 96 (11) 123 (8) < 528 26 (1) < 63 81 (2) 44 (2) 84 (11) 51 (6) < 110 < 74 < 89 

Rb < 4.9 1.11 (18) 13 (9) 3.6 (5) < 25 2.7 (7) < 3.00 2.94 (16) 29 (12) 3.6 (0.9) 1.7 (2) < 4.84 < 2.98 < 4.1 

Cs < 1.46 < 47 15 (11) 3.4 (5) < 8.35 3.1 (7) < 1.30 1.57 (12) 28 (10) 3.9 (1.6) 1.4 (2) < 1.97 < 0.546 < 3.1 

Sr 2.92 (5) < 1.78 38 (7) 25 (6) 14 (4) 18.7 (6) 2.2 (13) 7.3 (4) 61 (11) 21 (12) 9.2 (28) 7.0 (23) 5 (1) 3.51 (14) 

Ba 9.9 < 3.38 22 (12) 14 (5) < 45.4 6.0 (5) < 7.00 5.50 (7) 46 (29) 15 (7) 9.0 (17) < 16 < 6.3 < 16.5 

Ti 5295 (657) 4545 (517) 4251 (702) 3955 (247) 6038 (1376) 5002 

(539) 

5540 (521) 2998 (432) 5168 (514) 4122 (2160) 2031 (417) 4234 (372) 4486 (224) 2877 (465) 

Nb 28 (3) 28 (3) 9.4 (23) 9 (3) 50 (19) 6.1 (25) 33 (7) 11 (6) 29 (3) 31 (18) 5.0 (18) 9.6 (12) 2.4 (2) 3.1 (0.4) 

Ta 12.1 (18) 13 (2) 8 (3) 7.5 (23) 22 (9) 1.6 (3) 17 (5) 11 (7) 27 (3) 31 (20) 4.7 (16) 5.7 (16) 1.7 (4) < 2.70 

Zr 80 (1) 74 (6) 106 (10) 101 (9) 76 (4) 86.9 (5) 93.9 (5) 88 (3) 63 (11) 82 (17) 67 (5) 60 (4) 74 (3) 61 (3) 

Hf 33 (3) 40 (2) 36 (4) 33 (4) 41 (2) 17 (3) 54 (4) 26 (2) 32 (5) 32 (7) 23 (2) 43 (4) 19 (3) 22.9 (13) 

La < 1.02 0.65 (4) 5.5 (13) 5.7 (17) 12 (2) 0.52 (8) < 1.13 1.4 (3) 13 (3) 2.0 (0.8) 1.6 (5) 12 (5) 4.7 (1) < 1.54 

Ce 13.1 (4) 7.1 (3) 41 (9) 27 (8) 49 (28) 36 (2) 7.4 (24) 5.0 (14) 56 (12) 9 (4) 5.0 (13) 87 (29) 74 (19) 11 (5) 

Nd < 6.42 3.5 (3) 8 (2) 8.6 (11) < 27.3 2.1 (4) 6.6 (6) 4.9 (7) 19 (3) 11 (3) 4.7 (6) 21 (5) 8.8 (4) < 10.8 

Sm 20.7 (49) 14 (3) 34 (6) 28 (4) 36 (2) 7.8 (2) < 21.7 36 (5) 70 (7) 67 (16) 30 (3) 119 (7) 34 (4) 17.87 (8) 

Eu 46 (11) 37 (7) 77 (10) 66 (7) 66 (15) 15.2 (13) 68 (1) 82 (10) 151 (14) 141 (33) 72 (9) 205 (8) 55 (8) 47 (4) 

Gd 84 (16) 65 (12) 116 (17) 105 (10) 115 (27) 18 (3) 117 (9) 134 (16) 249 (25) 204 (48) 115 (15) 254 (26) 74 (10) 45 (3) 

Dy 237 (6) 223 (26) 294 (35) 291 (18) 229 (10) 44 (2) 260 (7) 435 (23) 538 (56) 473 (89) 382 (52) 423 (35) 106 (26) 58 (2) 

Er 361 (43) 450 (59) 529 (52) 532 (28) 362 (40) 62 (9) 340 (18) 930 (131) 781 (103) 818 (182) 872 (117) 430 (52) 106 (32) 63 (3) 

Yb 470 (121) 705 (115) 608 (48) 594 (48) 527 (127) 59 (11) 354 (9) 1146 (232) 759 (110) 983 (300) 1194 (155) 378 (48) 92 (31) 60 (4) 

Lu 534 (181) 826 (148) 511 (46) 491 (47) 561 (176) 59 (11) 328 (18) 1010 (219) 613 (95) 828 (270) 1088 (137) 401 (52) 86 (22) 51.5 (7) 

Y 439 (14) 411 (49) 64 (6) 93 (17) 360 (27) 136 (26) 343 (10) 110 (15) 118 (11) 139 (23) 157 (30) 454 (28) 144 (16) 128 (9) 

Sc    461 (37) 407 (22)      428 (29) 402 (38) 351 (79) 388 (43)      

Pb < 3.52 < 1.8 13 (3) 7.3 (7) < 27 1.22 (6) 4.3 (7) 5.0 (5) 14 (2) 4.8 (8) 4.9 (8) < 9.6 2.85 (16) < 9.0 

Th < 1.29 0.52 (5) 1.82 (21) 3.4 (5) 4.7 (3) 0.336 (9) < 1.28 1.7 (2) 3.6 (8) 1.05 (16) 0.76 (13) 5.4 (16) 1.1 (3) < 1.59 

U 6.9 (22) 8.1 (11) 11.7 (21) 6.0 (6) 13 (5) 3.2 (5) < 8.0 4.1 (7) 18 (2) 10 (3) 4.2 (5) 60 (9) 11.66 (2) 8.3 (2) 

All compositions are given in ppm by weight, except for Cl (wt.%); numbers in parentheses are one standard deviation in the last digits. < Detection limits are reported as maximum values when element concentrations were too low to be 

measured; * reversed experiments; ** Cl concentrations in the fluid of the same experiment are given for reference. 
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Table 6.6. Omphacite compositions 

Experiment PC09 PC22 PC37 PC38 PC14 PC23 PC10 PC25 PC27 PC36 PC39 PC15 PC24* PC18* 

Cl (wt.%) **  0 0 0 0 0.48 2.25 3.76 3.85 4.91 6.50 6.81 6.93 0 4.23 

Li 293 (54) 329 (10) 1461 (52) 1298 (209) 344 (28) 1812 (285) 32 (6) 1115 (43) 1463 (30) 1044 (37) 810 (13) 204 (7) 85 (2) 126 (6) 

Be 204 (9) 200 (4) 921 (39) 974 (172) 276 (13) 1065 (69) 88 (5) 798 (37) 855 (16) 804 (69) 882 (41) 203 (47) 109 (18) 153 (31) 

B 106 (24) 45 (3) 353 (54) 395 (81) 157 (111) 320 (74) 63 (4) 172 (6) 140 (12) 114 (10) 104 (21) < 41 80 (24) 97 (28) 

Rb 7.2 (5) 37 (2) 120 (38) 102 (32) 9 (2) 380 (85) 3.0 (2) 186 (25) 273 (19) 49 (18) 12 (2) 24 (4) 38 (11) 38 (7) 

Cs 2.1 (4) 19.46 (3) 172 (55) 147 (47) < 2.07 620 (144) 1.30 (7) 277 (40) 413 (66) 81 (28) 26 (4) 2.1 (5) 36 (12) 32 (5) 

Sr 52.4 (2) 173 (6) 341 (32) 438 (115) 146 (60) 958 (268) 2.2 (13) 305 (29) 400 (20) 300 (69) 136 (19) 42 (6) 83 (29) 63 (23) 

Ba 109 (15) 260 (46) 261 (39) 271 (73) 148 (65) 1193 (456) 7.0 (3) 133 (32) 248 (45) 215 (58) 100 (17) 15 (3) 169 (38) 146 (58) 

Ti < 80 1449 (37) 2711 (411) 2696 (921) 2188 (358) 2123 (110) 5540 (521) 2088 (45) 3769 (945) 2665 (305) 2747 (171) 3664 (853) 1008 (97) 1371 (209) 

Nb < 2.94 9.6 (6) 15 (6) 12 (3) 57 (26) 2.5 (3) 33 (7) 4.9 (3) 28 (7) 2.0 (8) 1.41 (14) 39 (6) 0.49 (4) 4.00 (14) 

Ta < 2.17 2.8 (3) 14 (7) 9 (3) 24 (12) 0.81 (21) 17 (5) 3.0 (2) 25 (7) 2.8 (8) 1.01 (14) 15 (3) 0.38 (11) 1.6 (3) 

Zr 20 (3) 13.9 (4) 14.6 (15) 17 (4) 35 (14) 18 (3) 93.9 (5) 13.4 (9) 22 (8) 35 (12) 8.5 (4) 8.4 (13) 11.6 (4) 20 (3) 

Hf 9.1 (5) 7.6 (6) 7.0 (4) 9 (2) 34 (18) 4.3 (2) 54 (4) 9.0 (5) 12 (2) 12 (4) 4.1 (5) 10.8 (16) 2.97 (2) 15 (3) 

La 9 (5) 104 (6) 43 (10) 46 (18) 303 (185) 41 (9) 1.13 (6) 43 (15) 27 (2) 1.0 (1) 0.6 (2) 51 (5) 70 (44) 31 (10) 

Ce 63 (24) 624 (4) 160 (35) 222 (89) 1179 (677) 963 (168) 7.4 (2.4) 141 (44) 93 (7) 4.8 (8) 2.6 (2) 273 (28) 1305 (827) 326 (68) 

Nd 15 (2) 110 (3) 46 (11) 49 (20) 315 (190) 45 (10) 6.6 (06) 45 (15) 29 (3) 6.2 (1.4) 5.0 (8) 56 (5) 74 (47) 33 (12) 

Sm 16 (3) 104.7 (5) 41 (10) 49 (18) 316 (201) 37 (6) 22 (4) 43 (14) 34 (2) 19 (2) 12.0 (8) 53 (8) 71 (43) 27.4 (5) 

Eu 13.5 (7) 111.3 (5) 56 (13) 59 (21) 289 (176) 46 (6) 68 (1) 51 (13) 50 (4) 27 (3) 18.7 (7) 51 (4) 59 (34) 20.8 (5) 

Gd 10.0 (1) 109.8 (1) 52 (12) 47 (16) 265 (161) 33 (6) 117 (9) 46 (9) 60 (6) 41 (5) 25 (2) 41 (7) 45 (27) 16 (2) 

Dy 25 (11) 106 (2) 51 (12) 42 (12) 189 (113) 24 (4) 260 (7) 49 (6) 86 (16) 57 (8) 24 (2) 42 (10) 18 (8) 9.9 (7) 

Er 28 (15) 100 (6) 63 (17) 46 (14) 160 (94) 19 (4) 340 (18) 61 (8) 115 (21) 60 (12) 20 (1) 38 (9) 7.5 (15) 6.4 (6) 

Yb 25 (12) 96 (6) 58 (16) 47 (16) 157 (93) 16 (3) 354 (9) 55 (6) 116 (22) 38 (11) 12.4 (4) 36 (7) 7.1 (14) 10.4 (5) 

Lu 25 (14) 92 (9) 46 (12) 35 (11) 139 (79) 15 (3) 328 (18) 44 (5) 92 (16) 28 (9) 9.0 (3) 32 (10) 5.3 (3) 8.4 (6) 

Y 65 (34) 118 (9) 43 (15) 14 (4) 204 (112) 75 (25) 343 (10) 17 (2) 24 (4) 40 (6) 15.5 (4) 42 (10) 27 (7) 11.6 (6) 

Sc     113 (12) 99 (18)      131 (6) 139 (6) 146 (8) 98 (2)       

Pb 20 (7) 33 (3) 72 (8) 57 (16) 69 (34) 3.8 (7) 4.3 (7) 219 (122) 39 (3) 14 (2) 26 (4) 5.2 (7) 30 (12) 93 (30) 

Th 5.0 (22) 67.3 (5) 16 (4) 17 (7) 274 (177) 31 (9) 1.28 (4) 14 (6) 9 (1) 0.36 (4) 0.540 (25) 27 (2) 10 (6) 8.9 (9) 

U 15 (5) 179 (2) 34 (7) 38 (14) 274 (177) 57 (10) 8.0 (3) 27 (9) 20 (1) 2.3 (4) 1.14 (8) 64 (6) 52 (31) 23.3 (9) 

All compositions are given in ppm by weight, except for Cl (wt.%); numbers in parentheses are one standard deviation in the last digits. < Detection limits are reported as maximum values when element concentrations 

were too low to be measured; * reversed experiments; ** Cl concentrations in the fluid of the same experiment are given for reference. 
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Table 6.7. Rutile compositions 

Experiment PC09 PC22 PC37 PC38 PC14 PC23 PC10 PC25 PC27 PC36 PC39 PC15 PC24* PC18* 

Cl (wt.%) 

** 

0 0 0 0 0.48 2.25 3.76 3.85 4.91 6.50 6.81 6.93 0 4.23 

Li < 100 < 32  < 112 < 93 < 147 < 46 < 61 < 44 < 409 < 179 < 112 < 214 < 74 < 106 

Be < 297 < 118 < 174 < 107 < 498 < 96 < 168 < 117 < 483 < 126 < 174 < 449 < 190 < 197 

B < 164 < 132 < 184 < 251 < 350 < 84 < 75 < 109 < 562 < 188 < 184 < 225 < 155 < 139 

Rb < 11 < 1.5 < 125 < 34 < 11 < 113 < 6 < 16 < 416 < 75 < 125 < 11 < 7 < 9 

Cs < 2 < 0.8 < 220 < 88 < 5 < 156 < 1.6 < 2 < 1250 < 79 < 220 < 5 < 2 < 8 

Sr < 48 < 17 < 96 < 165 < 45 < 75 < 10 < 23 < 490 < 87 < 96 < 15 < 4 < 47 

Ba < 133 < 40 < 126 < 76 < 67 < 94 < 11 < 15 < 521 < 90 < 126 < 31 < 10 < 126 

Nb 10584 (608) 11863 (682) 7067 (285) 7257 (219) 10278 (344) 2475 (80) 8164 

(264) 

7306 (244) 7539 (227) 7226 (161) 7067 (285) 11319 (494) 1067 (43) 1611(157) 

Ta 6117 (488) 6568 (523) 7363 (362) 7862 (377) 5893 (232) 1223 (32) 4072 

(105) 

6688 (263) 8110 (389) 7095 (364) 7363 (362) 5476 (301) 528.0 (3) 882(97) 

Zr 300.8 (3) 243.3 (2) 309 (23) 341 (13) 260 (15) 341 (17) 307 (16) 401 (24) 302 (12) 331 (29) 309 (23) 346 (42) 276 (10) 274(16) 

Hf 263 (16) 257 (16) 130 (23) 104 (12) 193 (41) 58 (10) 307 (52) 261 (55) 138 (16) 112 (18) 130 (23) 341 (16) 69 (20) 189(17) 

La < 7 < 14 < 6 < 38 < 37 < 3 < 36 < 10 < 20 < 4 < 6 < 4 < 7 < 122 

Ce < 69 < 104 < 27 < 147 < 307 < 129 < 172 < 51 < 74 < 9 < 27 < 6 < 123 < 1057 

Nd < 12 < 7 < 14 < 48 < 50 < 4 < 32 < 11 < 21 < 9 < 14 < 28 < 16 < 71 

Sm < 22 < 23 < 16 < 49 < 31 < 5 < 16 < 8 < 29 < 14 < 16 < 25 < 11 < 58 

Eu < 5 < 16 < 9 < 44 < 26 < 4 < 26 < 14 < 25 < 6 < 9 < 7 < 9 < 58 

Gd < 12 < 20 < 13 < 37 < 33 < 7 < 14 < 14 < 33 < 14 < 13 < 27 < 12 < 33 

Dy < 12 < 13 7 < 17 < 20 < 3 < 22 < 5 < 19 < 14 < 7 < 23 < 5 < 12 

Er < 11 < 8 < 10 < 9 < 27 < 4 < 10 < 7 < 7 < 18 < 10 < 19 < 6 < 15 

Yb < 9 < 17 < 11 < 12 < 29 < 4 < 19 < 5 < 11 < 18 < 11 < 20 < 9 < 22 

Lu < 2 < 9 < 3 < 3 < 10 < 0.8 < 11 < 2 < 7 < 9 < 3 < 6 < 4 < 4 

Y < 4 < 9 < 3 < 5 < 15 < 4 < 15 < 2 < 8 < 7 < 3 < 8 < 10 < 10 

Sc    < 39 < 38    < 36 < 24 < 51 < 39      

Pb < 17 < 3 < 39 < 34 < 35 < 5 < 13 < 16 < 216 < 54 < 39 < 18 < 6 < 33 

Th < 3 < 8 < 3 < 20 < 26 < 4 < 15 < 4 < 9 < 2 < 3 < 6 < 3 < 18 

U < 31 < 33 < 8 < 39 < 61 < 8 < 59 < 24 < 36 < 19 < 8 < 74 < 20 < 92 

All compositions are given in ppm by weight, except for Cl (wt.%); numbers in parentheses are one standard deviation in the last digits. < Detection limits are reported as maximum values when element concentrations 

were too low to be measured; * reversed experiments; ** Cl concentrations in the fluid of the same experiment are given for reference. 
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Table 6.8. Fluid/eclogite partition coefficients. 

Experiment PC09 PC22 PC37 PC38 PC14 PC23 PC10 PC25 PC27 PC36 PC39 PC15 PC24* PC18* 

Cl (wt.%) ** 0 0 0 0 0.48 2.25 3.76 3.85 4.91 6.50 6.81 6.93 0 4.23 

Li > 0.74 0 (11) 1.25 (7) 1.27 (21) > 1.01 1.1 (3) > 1.7 2.06 (9) 1.01 (4) 1.50 (8) 1.48 (9) 3.3 (3) > 0.32 > 0.52 

Be > 0.32 > 0.15 1.02 (6) 0.87 (16) > 0.45 0.66 (8) > 1.3 1.42 (7) 1.23 (11) 0.91 (10) 0.70 (11) > 2.2 > 0.19 > 0.74 

B > 7.9 > 0.51 4.5 (6) 3.7 (7) > 0.92 4.9 (16) > 25 27 (1) 22 (2) 40 (4) 27 (6) > 3.8 > 1.04 > 4.7 

Rb > 34 1.82 (9) 20 (6) 25 (8) > 43 10 (3) > 170 45 (7) 17.6 (14) 185 (73) 349 (77) > 24 > 4.2 > 17 

Cs > 9.1 > 1.6 19 (6) 23 (7) > 11 13 (4) > 88 59 (9) 69 (16) 152 (55) 398 (96) > 60 > 3.9 > 21 

Sr 6.0 (3) > 0.86 5.3 (6) 3.1 (8) 9 (4) 2.3 (7) 14 (3) 10 (3) 11.1 (7) 12 (3) 15 (3) 43 (9) 1.1 (5) 11(4) 

Ba > 3.6 > 0.99 9.7 (15) 8.2 (23) > 12 2.6 (12) > 112 28 (7) 27 (5) 34 (12) 23 (5) > 153 > 2.6 > 19 

Ti > 0.075 0.0274 (17) 0.116 (8) 0.103 (12) 0.075 (10) 0.133 (13) 0.131 

(15) 

0.287 (13) 0.063 (7) 0.15 (3) 0.149 (19) 0.065 (8) 0.055 (5) 0.191 (18) 

Nb > 0.049 0.01748 (16) 0.116 (7) 0.092 (4) 0.073 (7) 0.079 (6) 0.154 

(12) 

0.148 (12) 0.047 (4) 0.148 (13) 0.078 (6) 0.069 (6) 0.033 (4) 0.089 (6) 

Ta > 0.0067 0.00294 (11) 0.021 (2) 0.015 (1) 0.015 (2) 0.0126 (16) > 0.017 0.025 (3) 0.009 (1) 0.018 (2) 0.0130 (17) 0.020 (2) 0.0077 (16) > 0.043 

La > 0.041 0.0028 (2) 0.018 (4) 0.013 (6) 0.0083 (78) 0.028 (10) > 0.24 0.10 (4) 0.25 (3) 6.0 (18) 7 (3) 1.22 (18) 0.12 (8) > 0.62 

Ce 0.060 (25) 0.0041 (5) 0.026 (5) 0.017 (7) 0.014 (12) 0.049 (17) 0.27 

(13) 

0.17 (6) 0.25 (3) 4.4 (12) 6.3 (17) 0.85 (12) 0.08 (5) 0.64 (16) 

Nd > 0.023 0.0034 (2) 0.020 (5) 0.014 (6) > 0.0093 0.031 (10) > 0.22 0.10 (4) 0.25 (3) 0.9 (3) 1.0 (3) 0.74 (10) 0.10 (6) > 0.46 

Sm 0.028 (6) 0.0042 (1) 0.022 (5) 0.015 (5) 0.010 (8) 0.030 (7) 0.16 (7) 0.09 (3) 0.128 (14) 0.24 (7) 0.28 (5) 0.33 (4) 0.07 (4) 0.437 (16) 

Eu 0.039 (1) 0.0069 (2) 0.028 (4) 0.023 (5) 0.018 (14) 0.050 (11) 0.23 (5) 0.114 (25) 0.161 (18) 0.34 (10) 0.56 (15) 0.89 (8) 0.07 (3) 0.43 (3) 

Gd 0.029 (9) 0.0046 (3) 0.014 (2) 0.010 (2) 0.010 (7) 0.030 (5) 0.071 

(11) 

0.052 (10) 0.040 (5) 0.11 (3) 0.076 (14) 0.165 (18) 0.045 (15) 0.242 (21) 

Dy 0.017 (3) 0.0041 (4) 0.0088 (14) 0.0064 (7) 0.008 (4) 0.023 (2) 0.032 

(3) 

0.021 (3) 0.0111 (14) 0.045 (12) 0.020 (3) 0.053 (5) 0.025 (7) 0.129 (11) 

Er 0.010 (3) 0.0025 (4) 0.0055 (9) 0.0037 (5) 0.0050 (17) 0.014 (3) 0.017 

(3) 

0.012 (3) 0.0052 (9) 0.022 (7) 0.009 (2) 0.031 (4) 0.022 (9) 0.166 (21) 

Yb 0.007 (3) 0.0019 (4) 0.0048 (8) 0.0037 (8) 0.0047 (16) 0.016 (3) 0.0152 

(18) 

0.011 (3) 0.006 (1) 0.015 (6) 0.008 (2) 0.033 (7) 0.033 (16) 0.25 (4) 

Lu 0.006 (3) 0.0014 (3) 0.0037 (7) 0.0032 (7) 0.0048 (018) 0.014 (3) 0.0129 

(25) 

0.011 (4) 0.005 (1) 0.012 (5) 0.008 (2) 0.032 (6) 0.031 (13) 0.35 (5) 

Y 0.062 (5) 0.016 (3) 0.18 (6) 0.15 (6) 0.07 (3) 0.049 (14) 0.13 (3) 0.35 (9) 0.30 (6) 0.29 (9) 0.15 (5) 0.31 (10) 0.075 (14) 0.47 (15) 

Sc    0.0131 (14) 0.0120 (11)      0.033 (2) 0.0123 (13) 0.024 (4) 0.021 (4)      

Pb > 8.1 > 0.84 7.6 (9) 6.1 (16) > 3.4 4.7 (10) > 64 13 (8) 30 (5) 142 (29) 58 (16) > 60 1.1 (5) > 7.3 

Th > 0.053 0.00123 (3) 0.015 (5) 0.010 (5) 0.01 (1) 0.019 (8) > 0.043 0.06 (2) 0.064 (9) 1.12 (16) 0.88 (17) 0.33 (4) 0.12 (8) > 0.27 

U 1.2 (5) 0.045 (3) 0.47 (12) 0.37 (014) 0.17 (12) 0.39 (11) 1.9 (9) 2.8 (9) 1.04 (14) 12 (3) 15 (3) 2.5 (3) 0.34 (22) 7.8 (9) 

Numbers in parentheses are one standard deviation in the last digits;  > minimum values of D are reported when only maximum concentrations of trace elements were available for garnet and/or omphacite.; * reversed 

experiments; ** Cl concentrations in the fluid of the same experiment are given for reference. 

 

 



6. Experimental evidence for fluid-induced melting in subduction zones 

 

86 

 

6.7.4. Supplementary information references 

Fung, A.T., Haggerty, S.E. (1995) Petrography and mineral compositions of eclogites from the 

Koidu kimberlite complex, Sierra-Leone. Journal of Geophysical Research 100, 20451-

20473. 

Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y.J., Schilling, J.G. (2013) The mean composition 

of ocean ridge basalts. Geochemistry Geophysics Geosystems 14, 489-518. 

Heinrich, C.A. (1982) Kyanite-eclogite to amphibolite facies evolution of hydrous mafic and 

pelitic rocks, Adula-Nappe, Central Alps. Contributions to Mineralogy and Petrology 81, 

30-38 

Imayama, T., Oh, C.W., Baltybaev, S.K., Park, C.S., Yi, K., Jung, H. (2017) Paleoproterozoic 

high-pressure metamorphic history of the Salma eclogite on the Kola Peninsula, Russia. 

Lithosphere 9, 855–873. 

Jochum, K.P. et al. (2011) Determination of reference values for NIST SRM 610-617 glasses 

following ISO guidelines. Geostandards and Geoanalytical Research 35, 397-429.  

Keller, D.S., Ague, J.J. (2019) Crystallographic and textural evidence for precipitation of rutile, 

ilmenite, corundum, and apatite lamellae from garnet. American Mineralogist 104, 980-

995. 

Mair, P., Tropper, P., Harlov, D.E., Manning, C.E. (2017) The solubility of apatite in H2O, 

KCl-H2O, NaCl-H2O at 800 ˚C and 1.0 GPa: Implications for REE mobility in high-

grade saline brines. Chemical Geology 470, 180-192. 

Pearce, J.A., Stern, R.J., Bloomer, S.H., Fryer, P. (2005) Geochemical mapping of the Mariana 

arc-basin system: Implications for the nature and distribution of subduction components. 

Geochemistry Geophysics Geosystems 6, Article Number: Q07006. 

Rüpke, L.H., Phipps Morgan, J., Hort, M., Connolly, A.D. (2002) Are the regional variations 

in Central American arc lavas due to differing basaltic versus peridotitic slab sources of 

fluids? Geology 30, 1035–1038. 



6. Experimental evidence for fluid-induced melting in subduction zones 

 

87 

 

Seo, J.H., Guillong, M., Aerts, M., Zajacz, Z., Heinrich, C.A. (2011) Microanalysis of S, Cl, 

and Br in fluid inclusions by LA-ICP-MS. Chemical Geology 284, 35-44.  

Song, S., Yang, J., Liou, J.G., Wu, C., Shi, R., Xu, Z. (2003) Petrology, geochemistry and 

isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. 

Lithos 70, 195– 211. 

Tubia, J.M., Ibarguchi, J.I.G. (1991) Eclogites of the Ojén nappe: a record of subduction in the 

Alpujárride complex (Betic Cordilleras, southern Spain). Journal of the Geological 

Society of London 148, 801-804. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. A systematic assessment of the diamond trap method for measuring fluid compositions in high pressure experiments 

 

88 

 

7. A systematic assessment of the diamond trap method for 

measuring fluid compositions in high-pressure experiments 

 

Greta Rustioni, Andreas Audétat, Hans Keppler 

 

Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany 

 

 

7.1. Abstract 

 

A variety of experimental techniques have been proposed to measure the composition of 

aqueous fluids in high-pressure experiments. In particular, the “diamond trap method”, where 

the fluid is sampled in the pore space of diamond powder and analyzed by laser-ablation ICP-

MS after the experiment, has become a popular tool. Here, we carried out several tests in order 

to assess the reliability of this method. (i) We prepared several capsules loaded with fluid of 

known composition and analyzed the fluid by laser-ablation ICP-MS, either (a) after drying the 

diamond trap at ambient condition, (b) after freezing and subsequent freeze-drying, and (c) 

after freezing and by analyzing a frozen state. Of these methods, the analysis in the frozen state 

(c) was most accurate, while the results from the other two methods were poorly reproducible 

and the averages sometimes deviated from the expected composition by more than a factor of 

2. (ii) We tested the reliability of the diamond trap method by using it to measure mineral 

solubilities in some well-studied systems at high pressure and high temperature in piston 

cylinder runs. In the systems quartz-H2O, forsterite-enstatite-H2O, and albite-H2O, the results 

from analyzing the diamond trap in frozen state by laser-ablation ICP-MS generally agreed 

well with the expected compositions according to literature data. However, in the systems 

corundum-H2O and rutile-H2O, the data from the analysis of the diamond trap were poorly 

reproducible and appeared to indicate much higher solubilities than expected. We attribute this 

not to some unreliability of the analytical method, but rather to the fact that in these systems, 

minor temperature gradients along the capsule may induce the dissolution and re-precipitation 
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of material during the run, which causes a contamination of the diamond trap by solid phases. 

(iii) We carried out several tests on the reliability of the diamond trap to measure fluid 

compositions and trace element partition coefficients in the eclogite-fluid system at 4 GPa and 

800 ˚C using piston cylinder experiments. The good agreement between “forward” and 

“reversed” experiments – with trace elements initially either doped in the solid starting material 

or the fluid – as well as the independence of partition coefficients on bulk concentrations 

suggests that the data obtained are reliable in most cases. We also show that the rate of 

quenching/cooling has little effect on the analytical results, that temperature oscillations during 

the run can be used to enhance grain growth, and that well equilibrated samples can be obtained 

in conventional piston cylinder runs. Overall, our results suggest that the diamond trap method 

combined with laser-ablation ICP-MS in frozen state yields reliable results accurate within a 

factor of two in most cases; however, the precipitation of accessory minerals in the diamond 

trap during the run may severely affect the data in some systems and may lead to a gross 

overestimation of fluid concentrations. 

 

7.2. Introduction 

 

Aqueous fluids are important agents of metasomatism in Earth´s mantle, particularly above 

subduction zones (e.g. Tatsumi 1989, Manning 2004, Kelley and Cottrell 2009, Keppler 2017). 

Traces of such fluids are sometimes sampled as fluid inclusions in mantle xenoliths and in 

diamonds (e.g. Kawamoto et al. 2013, Weiss et al. 2015). However, in particular the fluids 

sampled by diamonds may be the result of extensive fractionation processes, which are not 

easy to unravel. Constraining the primary composition of mantle fluids therefore requires 

experimental studies. Unfortunately, methods for the direct withdrawal and analysis of fluids 

are limited to very low pressures (Potter et al. 1987) and cannot be used under typical mantle 

P, T conditions. Simply quenching fluids equilibrated with minerals at high P and T and 

analyzing the quenched fluid at ambient conditions is not likely to yield meaningful results, 

because in most cases, solutes will precipitate as solid phases even during rapid quenching (e.g. 

Ryabchikov and Boettcher 1980). Various methods have been proposed to solve this problem. 

In simple systems, where minerals dissolve congruently, the weight loss of single crystals may 

allow very accurate solubility measurements, since during quenching, solute will precipitate 
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throughout the fluid, and only a very minor fraction could produce an overgrowth on the 

original single crystal (e.g. Manning 1994, Tropper and Manning 2007). Separating the charge 

into different, but connected compartments for solid phases and fluid – by using a double 

capsule technique (Anderson and Burnham 1965) or folded capsules (Ryabchikov and 

Boettcher 1980) – may also help to distinguish material precipitated from the fluid from solids 

that were stable during run conditions. 

Synthetic fluid inclusions offer an attractive possibility to trap fluids in high-pressure 

experiments. The fluid inclusions may be analyzed at ambient conditions by laser-ablation ICP-

MS or other methods, such as synchrotron X-ray fluorescence. This technique has been used 

successfully to study fluid compositions in various systems (Bali et al. 2011, 2012, Tsay et al. 

2014). One limitation of the method is that elements contained in the host crystal (typically 

quartz or olivine) obviously cannot be quantified. Moreover, it is not always possible to 

accurately control the time at which the inclusions seal off and lose contact to the main fluid 

reservoir. In systems where chemical equilibrium is attained slowly, this may have the effect 

that the fluid trapped in the inclusions has not yet fully equilibrated with the other phases 

present. 

Direct observation of mineral dissolution in the externally-heated diamond anvil cell can 

provide accurate solubility data for minerals that dissolve congruently in the fluid (e.g. Audétat 

and Keppler 2005, Bernini et al. 2013), but the approach does not allow to determine the 

solubility of minerals that dissolve incongruently. Solubility studies may also be carried out by 

directly measuring fluid compositions in-situ by X-ray fluorescence or X-ray absorption 

spectroscopy (e.g. Wilke et al. 2012). Other spectroscopic methods, in particular Raman 

spectroscopy, may also be used to infer solute concentrations. However, Raman spectroscopic 

measurements in the diamond cell require an extremely careful calibration (see Zarei et al. 

2018 for discussion). A general limitation of solubility studies in the externally-heated diamond 

cell is that run durations are usually relatively short, such that systems that require long 

timescales (more than a few hours) for equilibration cannot be studied. Moreover, controlling 

oxygen fugacity in the diamond cell is nearly impossible. 

The “diamond trap method” for measuring fluid (and melt) compositions was first introduced 

by Ryabchikov et al. (1989). It may be used in conventional piston cylinder or multi anvil 

experiments. A layer of diamond powder is placed together with the other starting materials 
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inside a noble metal capsule. During the experiment, the fluid infiltrates the pore space between 

the diamond grains. Upon quenching, any material precipitating from the fluid will remain 

trapped between the diamond grains. Therefore, ideally, it should be possible to determine the 

bulk composition of the fluid by analyzing the entire diamond trap. Since its first description, 

the diamond trap method has been used extensively to infer fluid or melt compositions. For 

analyzing aqueous fluids, in earlier studies (e.g. Stalder et al. 1998, Johnson and Plank 1999) 

the water was simply allowed to evaporate after opening the capsule and the remaining solid 

residue was analyzed. Kessel et al. (2004) introduced a more advanced method, where the 

capsule is first frozen and then cut open and analyzed in frozen state. 

Even though the diamond trap method – in various variants (e.g. Stalder et al. 1998, Johnson 

and Plank 1999, Kessel et al. 2005, Rustioni et al. 2019) – has become rather popular for 

determining fluid compositions, the accuracy and precision of this method have been evaluated 

only for a single measurement of quartz solubility in water (Aerts et al. 2010). In this study, 

we therefore carried out additional tests to verify the reliability of the diamond trap technique: 

(i) We loaded capsules containing diamond traps with fluids of known composition and 

analyzed them by laser-ablation ICP-MS, either after simple evaporation of H2O, after freeze-

drying, or in frozen state; (ii) we used the diamond trap technique to measure mineral 

solubilities at high pressure and temperature in several simple systems, where independent, 

high-quality solubility data exist; and (iii) we used the method to determine fluid compositions 

and fluid/mineral partition coefficients of trace elements in the eclogite-H2O ± NaCl system. 

In the latter experiments, we tested the attainment of equilibrium by forward and reverse 

experiments and we investigated the effect of various experimental parameters, such as cooling 

or quench rates on the analytical results. 

 

7.3. Experimental methods 

7.3.1. Starting materials 

Several solid starting materials and solutions were prepared in order to test different aspects of 

the diamond trap technique. Solubility measurements were carried out for quartz, forsterite-

enstatite, corundum, rutile and albite in water. The quartz was a very pure synthetic crystal 
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from China. Natural, inclusion-free forsterite-rich olivine (Fo90) from San Carlos with a 

composition similar to that used by Newton and Manning (2002), and enstatite 

(En89Fs09Wo02Ac00) from a metasomatic vein in equilibrium with the peridotite also from San 

Carlos, were used for the forsterite-enstatite-water system. For corundum, we selected a 

synthetic, optical sapphire crystal that is very pure according to Laser-Ablation Inductively-

Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) analyses. Rutile was also a very pure 

synthetic crystal. For albite, a natural inclusion-free crystal from Brazil, containing only 0.2 

wt. % K2O and <0.05 wt. % CaO, was selected. All the different crystals were crushed into fine 

powders, and for the forsterite-enstatite experiment, a mixture consisting of 15 wt. % olivine 

and 85 wt. % enstatite was prepared. 

For partitioning experiments in the eclogite-water system, we used a K-free synthetic basalt 

with a composition similar to the starting material of Kessel et al. (2005) to reproduce an 

average mid ocean ridge basalt (MORB). SiO2, TiO2, Al(OH)3, Fe2O3, Mg(OH)2, CaCO3 and 

Na2CO3 were ground and mixed in an agate mortar under ethanol. The mixture was 

decarbonated in a Pt crucible at 1100 ⁰C for 12 hours. After cooling, the material was melted 

at 1600 ⁰C for 80 minutes and quenched in distilled water to prevent crystallization. The 

recovered glass was ground to a powder except for three pieces from different portions of the 

crucible that were analyzed by LA-ICP-MS to assess the final composition and homogeneity 

of the obtained starting material. In order to dope the trace elements into the MORB starting 

material, two diopside composition glasses with different concentration of trace elements were 

synthesized. To produce these doped diopside glasses, a procedure similar to that described 

above for the MORB was used. In the forward experiments, the basaltic starting material was 

mixed with 0.4, 1 or 2 wt. % of doped diopside glass in order to achieve different trace element 

concentrations. Circa 1 wt. % of natural garnet seeds from Grytting (Norway) eclogite was also 

added to enhance garnet growth during the experiments.  

Saline aqueous solutions were used in some of the eclogite-fluid partitioning experiments. 

NaCl was directly added to distilled water to obtain 1, 5, 10 and 15 wt. % NaCl solutions. Also, 

in order to perform reversed experiments, two trace element-doped solutions were prepared by 

mixing appropriate amounts of ICP-MS calibration solution (containing 1000 ppm of each 

trace element in 5 % HNO3). The resulting solution was evaporated under an infrared lamp and 

the obtained solid residue was dissolved again in a smaller amount of 5 % HNO3 to increase 
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the trace element concentration. The resulting milky solution was left to rest for 1 month to 

allow the insoluble residue to sediment out. The top clear portion of the solution was then 

separated and analyzed by ICP-MS. Compositions of the MORB glasses and of the solutions 

for reversed experiments are reported in Rustioni et al. (2019). 

A solution with known composition was prepared in order to test various analytical approaches. 

Two separate solutions were produced by dissolving CsOH and Na2SiO3 in distilled water in 

one case and NaCl and KCl in in distilled water for the other solution. The final solution was 

then produced by mixing the CsOH-Na2SiO3 solution with the NaCl-KCl solution to obtain the 

composition reported in Table 7.1. 

7.3.2. High pressure experiments 

In all experiments, a cylindrical Au or Pt capsule with 10 mm length, 5 mm external diameter 

and 4.6 mm internal diameter was used. A 2 mm thick layer of diamond powder (10 – 20 μm 

grain size) was placed in the central part of the capsule in between two layers of solid starting 

material. Fluid was either completely added before the solid starting material, or it was added 

in several steps during the filling of the capsules. In the second case, about 1/3 of the total fluid 

was added at the beginning, while the remaining fluid was inserted after the diamond trap layer. 

This approach is particularly important when a fine-grained powder is used, to prevent the solid 

starting material from being suspended and contaminating the diamond trap layer during 

capsule preparation, which would cause an overestimation of solute content in the fluid phase 

during LA-ICP-MS analysis after the experiments. About 1 mm of empty space was always 

left at the top of the capsule to avoid fluid loss during the welding of the top lid. The weight of 

the capsule was always checked before and after welding. Before high pressure experiments, 

the capsules were also left overnight in an oven at 130 ⁰C and weighed again to test whether 

complete sealing was achieved. 

High pressure and temperature experiments were conducted in an end-loaded piston cylinder 

apparatus using ½ inch MgO-NaCl assemblies with a stepped graphite furnace. Temperature 

was measured with a Pt/Pt-Rh (S-type) thermocouple and monitored by a Eurotherm controller. 

The temperature was raised at constant pressure after compression at a rate of 100 ⁰C/min. Run 

durations varied depending on the complexity of the system. For experiments on simple 

systems used in the solubility tests, the typical duration was 16 – 20 hours. In the eclogite-
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water ± NaCl system, experiment duration varied from 2 to 7 days. Most of the runs were 

quenched by shutting off the power at constant pressure before starting the decompression. In 

a few experiments conducted in the eclogite-water system, a cooling ramp of 100 ⁰C/min was 

applied instead of the temperature quench. 

In the eclogite-water ± NaCl experiments at 4 GPa and 800 ⁰C, some of the Au capsules 

appeared very deformed and contained small holes after the experiments. The extent of 

deformation could be reduced by pre-shrinking the capsule inside a hydrothermal vessel 

pressurized to 200 MPa before the piston cylinder runs, in order to eliminate the empty space 

at the top of the capsules that was considered to be mechanically weaker. However, this method 

did not particularly enhance the resistance of the capsule and tiny holes were still observed 

after experiments. The problem was eventually solved by changing the capsule material from 

gold to platinum and by slowly compressing and decompressing the sample over 16-20 hours 

at the beginning and the end of the experiments. Slow, continuous compression and 

decompression was achieved using an automated hydraulic spindle press that continuously 

changed the oil pressure on master ram and end-load according to a pre-set program.  

Another challenge in the eclogite-water experiments was to synthetize crystals (in particular 

omphacite) large enough for LA-ICP-MS analysis. To overcome this problem, the initial 

fluid/solid starting material ratio in the capsule was increased from ~ 0.3 to ~ 0.4. Moreover, 

temperature fluctuations of ± 30 ⁰C were applied in experiments to enhance grain growth by 

Ostwald ripening, i.e. the dissolution of smaller crystals upon heating and the growth of larger 

 

 

Figure 7.1. Example of temperature profile in a typical eclogite-water system experiment in which ± 

30 ⁰C temperature cycling was applied. On the left the entire experiment duration is shown. On the 

right is the detail of a single temperature cycle with a total duration of 8 hours. 
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crystals during cooling. Temperature cycling started after an initial equilibration at constant 

temperature for ~ 36 hours to nucleate the mineral assemblage stable at 800 ⁰C. The 

temperature cycling was stopped ~ 24 hours before quenching to let the system equilibrate 

again. Ramps in temperature (from 770 to 830 ˚C and vice versa) lasted 2 hours each, with 

dwell times at both temperatures of 2 hours. A single temperature cycle thus lasted 8 hours in 

total, see Figure 7.1. 

7.3.3. Analytical methods 

Several analytical approaches were tested, as described below. The best quality of data was 

obtained when the fluid contained in the diamond trap was directly analyzed in frozen state by 

LA-ICP-MS following a procedure similar to that described in Kessel et al. (2004). The 

capsules were cooled in liquid nitrogen and then cut open longitudinally with a razor blade 

attached to an opening device. One half of the frozen capsule was then quickly transferred to a 

LA-ICP-MS sample chamber equipped with a Peltier-cooling element to keep the sample 

frozen during the entire measurement. Tests with H2O-ethanol mixtures revealed that the 

temperature within this sample chamber was ca. -30 °C. The LA-ICP-MS measurements were 

performed with a 193 nm ArF GeolasPro laser ablation unit (Coherent, USA) connected to an 

Elan DRC-e quadrupole ICP-MS unit (Perkin Elmer, Canada). The sample chamber was 

flushed with He at a flow rate of 0.4 l/min, to which 5 ml/min H2 was admixed on the way to 

the ICP-MS. Measured isotopes included 7Li, 9Be, 11B, 23Na, 25Mg, 27Al, 30Si, 35Cl, 39K, 43Ca, 

45Sc, 49Ti, 57Fe, 85Rb, 88Sr, 89Y, 93Nb, 133Cs, 137Ba, 139La, 140Ce, 146Nd, 147Sm, 153Eu, 157Gd, 

163Dy, 167Er, 172Yb, 175Lu, 181Ta, 208Pb, 232Th, and 238U, using a dwell time of 10 ms. The ICP-

MS was tuned to a thorium oxide production rate of 0.05 – 0.10 % and a rate of doubly-charged 

Ca ions of 0.15 – 0.25 % based on measurements on NIST SRM 610 glass (Jochum et al. 2011). 

The diamond trap layer was analyzed first by moving the laser beam at constant velocity along 

a transect perpendicular to the diamond layer in order to locate and subsequently avoid eventual 

contaminations at the border of the diamond trap. A second transect, parallel to the diamond 

layer, was measured in the central, homogeneous part of the diamond trap. To obtain the best 

average of fluid composition, a large laser spot size of 50 – 70 μm and a repetition rate of 7 Hz 

were used. The signals resulting from each transect (a typical example is shown in Figure 7.2) 

were divided into 3 – 6 separate integration intervals, for which element concentrations 
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Figure 7.2. Representative LA-ICP-MS signal collected from the frozen fluid contained in the diamond 

trap while moving along a transect parallel to the diamond layer from experiment PC39 conducted in 

the eclogite-water system at 800 °C and 4 GPa. The fluid contained approximately 7 wt. % of Cl, 6 wt. 

% of Na2O, 27 wt. % of SiO2, 1 wt. % Al2O3, 370 ppm of Ti and 6300 ppm of Cs. 

 

were calculated. The average composition of these intervals was considered to be 

representative of the fluid composition. The NIST SRM 610 glass and a well-characterized, 

natural afghanite crystal (Seo et al. 2011) were used as external standards. Cesium and/or 

chlorine were used as internal standard, as these elements are expected to partition strongly 

into the fluid in all the systems investigated in the present study. Internal standard 

concentrations used for calculation were corrected considering the dilution effect due to major 

element dissolution into the fluid during high pressure and temperature experiments.  

After analysis of the diamond trap of the eclogite-fluid partitioning experiments, the capsules 

were left to evaporate at room temperature and subsequently they were impregnated in epoxy 

resin and polished to expose minerals for LA-ICP-MS measurements. The largest suitable spot 

sizes to analyze single crystals were typically in the range of 7 – 20 µm. Special care was taken 

during the garnet measurements to only analyze inclusion-free rim portions and to avoid the 

natural garnet seeds, which showed distinctively different composition. Averages obtained 

from measurements of 4 to 7 separate crystals within the capsule were used to calculate the 
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compositions of garnet, omphacite and rutile. Kyanite crystals were also analyzed, but trace 

element concentrations were always below the detection limits and thus were considered 

irrelevant for partitioning calculation. To calculate bulk fluid/eclogite partition coefficients, 

first the fluid/mineral partition coefficients for each mineral were calculated, and then the 

results normalized to a representative eclogitic composition of 59 % omphacite, 39 % garnet 

and 2 % rutile. 

 

7.4. Results 

7.4.1. Test of various analytical approaches 

Simplified diamond trap experiments were carried out to understand which analytical approach 

provides the most reliable data. Capsules were prepared following the procedure described 

above. Undoped MORB glass was used as solid starting material, and an aqueous Na-Cl-Si-K-

Cs solution of known composition (see Table 7.1) was added to the capsules. Three 

experiments were conducted in a cold-seal vessel at 200 MPa and room temperature for 1 hour 

in order to mechanically force the fluid into the pore space between the solid materials and the 

diamond trap without changing its composition. The retrieved capsules were weighed to check 

that no fluid loss or gain occurred during experiments. After these experiments, three different 

procedures were used to analyze the diamond traps. One capsule was cut open longitudinally 

and let evaporate at room conditions for three days (evaporation approach). The second was 

frozen in liquid nitrogen, cut open, and then transferred in frozen state into a Christ Alpha 2-4 

LDplus freeze-drying apparatus with an ice condensation temperature of -85 °C, where the 

aqueous liquid sublimated over the course of 2 hours (freeze-drying approach). In both the 

evaporation and the freeze-drying approaches, after complete drying, one half of the capsule 

was impregnated in epoxy and polished for further analysis. For the third capsule, the procedure 

described in the “analytical methods” section was used (freezing chamber approach).  

Results of these tests are shown in Figure 7.3 and Table 7.1, together with the original 

composition of the fluid loaded into the capsule. Assuming that no major change in fluid 

composition occurred during the experiments, the most accurate and precise method for 
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Table 7.1. Tests of different analytical approaches 

Analytical approach 
Initial fluid 

composition 
Freeze-drying Evaporation Freezing chamber 

Na2O (wt.%) 7.74 2.5 (7) 5.6 (3) 8.02 (6) 

SiO2 (wt.%) 3.12 7 (4) 6 (2) 2.35 (9) 

Cl (wt.%)* 7.62 7.62 7.62 7.62 

K2O (wt.%) 2.69 1.3 (2) 3.7 (3) 2.30 (4) 

Cs (ppm) 120 110 (20) 148 (19) 115 (4) 

One standard deviation is reported in parentheses in terms of the least digit cited; *Cl concentration in the fluid is used as 

internal standard for calculations 

 

 
Figure 7.3. Comparison between measurements of fluid compositions performed using three different 

methods: “evaporation” (green triangles), “freeze drying” (red diamonds) and “freezing chamber” 

(blue circles), as described in the text.  The initial fluid composition is shown as a grey line. 
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analysis is clearly the freezing chamber approach. The concentrations of Na, K, and Cs are 

reproduced within a relative deviation of 3.6, 14, and 4.2 %. Only for silica, the measured 

concentration is 25 % below the expected value. This could, however, reflect adsorption of 

silica on the surface of the glass powder in the charge. While the data obtained with the freezing 

chamber are very stable and reproducible, both the evaporation and the freeze-drying method 

give much more scattered results and even the averages sometimes deviate from the expected 

composition by more than a factor of two (Table 7.1). Since none of the solute components in 

the fluid is expected to be volatile near ambient temperature, the scatter is unlikely to be due 

to element loss during evaporation. However, some redistribution of elements inside the 

diamond trap during evaporation could very well explain the scatter of the data. 

7.4.2. Solubility measurements in known systems 

Several test experiments were carried out to measure mineral solubilities in water for simple, 

well-studied systems, in order to compare the diamond trap method with data from literature. 

Results are shown in Figure 7.4 and Table 7.2. 

Two experiments (SC05 and SC06) were performed at 1 GPa and 800 ⁰C to test quartz 

solubility in water. This system is very well studied and there is generally a rather good 

agreement between various experimental data sets (e.g. Anderson and Burnham 1965, Fournier 

and Potter 1982, Manning 1994). At the conditions of the experiments, SiO2 concentration in 

 

Table 7.2. Tests of mineral solubilities in known systems 

Experiment Type 
P 

(GPa) 

T 

(⁰C) 

Duration 

(h) 
SiO2 Al2O3 Na2O TiO2 

SC05 
Quartz 1 800 

18 7.2 (5)    

SC06 16 4.2 (5)    

SC02 Forsterite-enstatite 1 800 20 0.94 (3)    

SC12 Corundum 2 700 19  0.101 (9)   

SC07 (top) 

Rutile 2 1000 18 

   0.023 (2) 

SC07 (middle)    0.034 (1) 

SC07 (bottom)    0.028 (6) 

SC03 Albite-water 

supercritical fluid 
1.8 800 

16 38.3 (7) 4.9 (2) 6.8 (3)  

SC04 16 37.0 (6) 3.0 (2) 10.6 (3)  

One standard deviation is reported in parentheses in terms of the least digit cited; Concentrations are expressed as wt. % in the fluid 

phase. 
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Figure 7.4. Results of experiments to test mineral solubilities in known systems. Each graph gives the 

results of a single experiment, and each point represents the integration of a segment of the laser 

ablation transects performed on the diamond trap portions of the capsule. Expected concentrations in 

the fluid from the literature are shown as a grey line. The data for quartz are from Manning (1994), for 

forsterite-enstatite from Newton and Manning (2002), for corundum from Tropper and Manning (2007), 

and for rutile from Audétat and Keppler (2005). For the albite-H2O system, the P, T conditions are 

beyond the critical curve (Shen and Keppler 1997) and therefore the measured composition should 

equal the bulk composition of the charge. 



7. A systematic assessment of the diamond trap method for measuring fluid compositions in high pressure experiments 

 

101 

 

the fluid is expected to be 7 wt. % (Manning 1994). The solubility measured in experiment 

SC05 is 7.2 ± 0.5 wt. %, consistent with literature data. On the other hand, experiment SC06 

gave a significantly lower solubility of 4.2 ± 0.5 wt. %. The experimental procedures for SC05 

and SC06 were the same, also both diamond traps show relatively homogeneous laser ablation 

signals along the analyzed transects, resulting in similar precision. Therefore, the reason for 

the lower solubility obtained from experiment SC06 is not obvious. 

The solubility of silica in the forsterite-enstatite-water system at 1 GPa and 800 ⁰C was tested 

in experiment SC02. The diamond trap approach yields well-reproducible data with an average 

of 0.94 ± 0.03 wt. % for the SiO2 concentration in the fluid. However, this value is significantly 

below the silica solubility determined by Newton and Manning (2002), who report a value of 

1.77 wt. % SiO2 at the same conditions. A possible reason for the observed low solubility could 

be incomplete equilibration or perhaps some error associated with the concentration of the Cs 

standard in the fluid. The run duration of 20 hours is at the low end of those used by Newton 

and Manning (2002). However, in the latter study, a double capsule technique was used in 

combination with single crystals, which should make attainment of equilibrium more sluggish 

than in the present experiments.  The high reproducibility in the diamond trap, which reflects 

a homogeneous fluid and precipitate distribution in the capsule, is consistent with equilibrium 

throughout the charge.  

Corundum solubility tests yielded data with both low precision and low accuracy. The average 

value for Al2O3 concentration in the fluid for a diamond trap experiment (SC12) conducted at 

2 GPa and 700 ⁰C is 0.101 ± 0.009 wt. %. For these conditions, Tropper & Manning (2007) 

report a much lower corundum solubility of 0.029 wt. %. The scatter in the measured  

concentrations in the diamond trap may be due to inhomogeneous precipitation of solid 

materials either during the experiment or upon quench from high temperature. Indeed, such 

effects are known from previous studies. Corundum solubility increase strongly with 

temperature and therefore, minute temperature gradients inside a capsule may cause the 

dissolution and re-precipitation of corundum crystals throughout the charge. Images of such 

“vapor-transport crystals” are shown by Tropper and Manning (2007). They are likely 

responsible for the anomalously high apparent solubilities observed in experiment SC12 and 

for similar order-of-magnitude differences in corundum solubilities reported in previous 

studies (e.g. Ragnasdottir and Walther 1985, Walther 1997).  
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Rutile solubility in water is known to be notoriously difficult to measure. Early single-crystal 

weight-loss experiments in piston cylinder presses suggested very high solubilities up to 1.9 

wt. % at 1 GPa and 1100 ˚C (Ayers and Watson 1993). These data were, however, very likely 

affected by dissolution and re-precipitation effects in a temperature gradient. In later studies, 

Tropper and Manning (2005) and Antignano and Manning (2008) carefully reduced 

temperature gradients inside the piston cylinder experiments and obtained solubilities that were 

orders of magnitude lower. Direct visual observation of rutile dissolution and re-precipitation 

in an externally-heated diamond cell yielded even lower solubilities in the range of 10 to 25 

ppm at 900 to 1050 ˚C and 1 to 2.5 GPa (Audétat and Keppler 2005).  As rutile solubility may 

be strongly affected by temperature gradients, in experiment SC07 three separated diamond 

traps were placed in the capsule to also test the temperature distribution. Therefore, in addition 

to the diamond powder layer located at the center, one diamond trap was inserted at the bottom 

and one at the top of the capsule, with two rutile layers dividing the three diamond layers. TiO2 

concentrations measured in the fluid with this approach are very inhomogeneous, with no 

systematic difference observed between the three diamond traps. As in previous studies, the 

measured concentrations are likely affected by dissolution and precipitation in a temperature 

gradient along the entire capsule. This process also leads to an overestimation of TiO2 

solubility, which at 2 GPa and 1000 ⁰C is expected to be about 0.003 wt. % (Audétat and 

Keppler 2005), while in our measurements it ranges between 0.017 and 0.042 wt. %. At face 

value, these numbers would be more consistent with the rutile solubility model of Antignano 

and Manning (2008), which predicts 0.026 wt. % TiO2 under the run conditions. However, the 

scatter of the data suggests that they are likely affected by some transport process in a thermal 

gradient.  

Two experiments (SC03 and SC04) were conducted at 1.8 GPa and 800 ⁰C in the albite-water 

system. At these conditions a supercritical fluid should form (Shen and Keppler 1997), and 

therefore a single, homogeneous fluid phase should fill the entire pore space in the capsule. 

The albite starting material was thus directly mixed with diamond and the entire capsule was 

regarded as a single diamond trap for the fluid. The measured fluid composition turned out to 

be homogeneous along the entire capsule for both experiments. As the fluid/solid ratio loaded 

in the two capsules was the same, the expected concentrations in the fluid for both runs are 

35.9 wt. % SiO2, 10.9 wt. % Al2O3, and 6 wt. % Na2O. While SiO2 and Na2O show a good 

agreement between measured concentrations and expected values, particularly for SC03, the 
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data for Al2O3 concentration are considerably lower. As the values for SiO2 and Na2O are 

reasonable, the discrepancy of Al2O3 may be caused by a fractionation process. To understand 

the origin of this problem, we filled a smaller platinum capsule (4 mm high and 4 mm in 

diameter; sample AbTest) with a mixture of diamond and albite powder in a ratio of about 9:1 

plus added water in a similar fluid/solid ratio as in the experiments SC03 and SC04. The 

capsule was compressed in a cold-seal vessel at 200 MPa without any heating and then 

analyzed in frozen state in the same way as SC03 and SC04. The SiO2/Al2O3 ratio obtained 

from this test is 7.5, which is close to that obtained in SC03 and SC04, but significantly 

different from the theoretical SiO2/Al2O3 weight ratio of 3.54 in albite. In contrast, LA-ICP-

MS analyses on a larger fragment of albite using the same laser settings returned the correct 

SiO2/Al2O3 ratio. Note that the frozen diamond trap ablates in a far less controlled fashion than 

solids, resulting in deep trenches that are 2-5 times wider than the used beam diameter. The 

uncontrolled ablation likely causes serious fractionation effects, particularly for refractory 

elements like Al. We thus believe that the low Al2O3 values represent an analytical artifact. 

Overall, the data presented here suggest that the analytical precision of the diamond trap 

technique is high and that the accuracy is commonly within a factor of two or better, except in 

systems that are highly susceptible to dissolution and re-precipitation of solid phases in minor 

temperature gradients, such as the systems Al2O3-H2O and TiO2-H2O. 

7.4.3. Tests in partitioning experiments in the eclogite–water ± NaCl system 

Compositions of fluid and minerals, and trace element fluid/eclogite partition coefficients 

obtained from experiments in the eclogite–water ± NaCl system using the methods described 

here were reported by Rustioni et al. (2019). A frequent problem in such experiments is the 

difficulty to obtain crystals large enough for trace element analysis. While in a crystal-melt 

system this can usually be solved by very slow cooling and slow crystal growth from the melt, 

this is not possible for a system where crystals coexist with an aqueous fluid only. However, 

we carried out some tests which suggest that periodic temperature fluctuations can be used to 

enhance crystal growth through Ostwald ripening, i.e. the dissolution of smaller crystals during 

heating and the growth of larger crystals during cooling. Figure 7.5 shows a comparison 

between an eclogite synthesized in an experiment conducted at constant temperature (a) and 
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one obtained with ± 30 ˚C temperature fluctuations (b). Introducing temperature cycling 

effectively enhanced omphacite and kyanite growth, while it did not particularly affect the size 

of garnet and rutile crystals. Table 7.3 reports the average compositions of garnet and 

omphacite in two different experiments (PC37 and PC38). Both experiments were conducted 

with pure water for a better comparison, but while in PC38 the temperature was kept constant 

at 800 ˚C, in PC37 ± 30 ˚C temperature cycling was used. The resulting compositions of both 

garnet and omphacite from the two experiments are very similar, indicating that although 

temperature cycling enhanced crystal growth, it did not affect the composition of minerals.  

 

 

Figure 7.5. Comparison of experimental results in the eclogite–fluid system at 4 GPa and 800 ˚C 

conducted with and without temperature fluctuation. (a) Eclogite synthetized in an experiment run at 

constant temperature. (b) Eclogite synthetized in an experiment where ± 30 ˚C cycling was used. (c) 

Comparison of trace element fluid/eclogite partition coefficient measured in two experiments conducted 

at 4 GPa with pure water, one at a steady temperature of 800 ̊ C and the other with temperature cycling. 
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Table 7.3. Effect of temperature cycling on mineral compositions in the eclogite-H2O system at 4 GPa 

and 800 ˚C 

Mineral T cycling SiO2 TiO2 Al2O3 MgO CaO FeO Na2O 

Garnet 
No 46.1 (12) 0.67 (2) 19.0 (9) 7.5 (2) 9.2 (7) 17.5 (4) 0.16 (5) 

Yes 46.3 (4) 0.71 (7) 19.2 (4) 8.1 (4) 8.3 (4) 17.4 (2) 0.32 (4) 

Omphacite 
No 59.3 (4) 0.55 (4) 14.2 (5) 7.5 (2) 13.4 (1) 5.1 (3) 6.73 (1) 

Yes 61.4 (7) 0.45 (4) 14.6 (7) 7.3 (1) 11.8 (4) 4.5 (4) 6.88 (25) 

One standard deviation is reported in parentheses in terms of the least digit cited; concentrations are expressed as wt. %. 

 

This observation also applies for trace element compositions. A comparison between trace 

element Dfluid/eclogite between the same two experiments is shown in Figure 5c. Again, the 

measured partition coefficients in PC37 and PC38 are the same within uncertainties. We 

therefore conclude that temperature cycling can be a useful technique for enhancing crystal 

growth in fluid-mineral partitioning experiments without compromising the validity of the 

measured partition coefficients (see also da Silva et al. 2017). A necessary prerequisite for 

applying this method is, however, that the amplitude of cycling is within the stability range of 

the phase assemblage of interest.  

The effect of different cooling rates on measured trace element concentrations was tested by 

comparing experiment PC25, which was quenched from high temperature by shutting off the  

power resulting in a rapid cooling within 10-15 seconds, to experiment PC27, which was 

cooled at a constant rate of 100 ˚C/minute. All other parameters in the experimental procedure 

of PC25 and PC27 were the same. Figure 7.6 shows that the two different cooling rates did not 

have major effects on the measured partition coefficients for most of the trace elements. 

In all experiments, LA-ICP-MS signals obtained from the analysis of frozen fluid in the 

diamond trap were relatively constant in time for the measured isotopes (Figure 7.2). As the 

ablation was performed by moving along transects perpendicular and parallel to the diamond 

layer, this reflects a generally homogeneous distribution of elements inside the trap.  

Kessel et al. (2005) used a rocking multi anvil press to measure trace element partitioning in 

the eclogite-fluid system. Schmidt and Ulmer (2004) suggested that such a device is necessary 

in order to suppress the formation of extreme chemical zoning (and therefore disequilibrium) 

in fluid-bearing multi anvil experiments.  However, while this technology may indeed offer an 
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Figure 7.6. Comparison of fluid/eclogite partition coefficients obtained from an experiment that was 

rapidly quenched from high temperature, versus one that was cooled down at a rate of 100 ˚C/minute. 

In general, variations in cooling rate were found to have little effect on the measured fluid compositions. 

 

 
 

Figure 7.7. Garnet compositions measured along a single capsule from an experiment in the eclogite-

fluid system at 4 GPa and 800 ˚C. Red diamonds are iron, yellow triangles aluminium, blue squares 

calcium and green circles magnesium oxides. 
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advantage for multi anvil experiments, where temperature gradients may be rather large, we 

did not observe any zonation or other evidence for disequilibrium in our piston cylinder 

experiments. Figure 7.7 shows electron microprobe measurements of garnets that were located 

in different areas of a capsule recovered from one piston cylinder experiment. The composition 

is constant throughout the entire length of the recovered charge; moreover, garnet and 

clinopyroxene appear to be homogeneously distributed, without obvious phase segregation in 

parts of the capsule. Accordingly, equilibrium was likely achieved throughout the entire charge. 

We therefore conclude that fluid/mineral partitioning experiments can be carried out with a 

simple piston cylinder device up to about 5 GPa; the use of a rocking multi anvil in this pressure 

range is not required.  

Unlike for the mineral solubilities in simple model systems, it is not possible to test the 

accuracy of the data obtained in eclogite-fluid partitioning experiments against independent 

measurements. However, it was possible to check attainment of equilibrium between mineral 

and fluid phases by reversed experiments. While in “forward” experiments all the trace 

elements were doped in the solid starting material, in reversed experiments all the trace 

elements, except for Ti, were added by means of the fluid phase and an undoped MORB was 

used. In general, we obtained good agreement between results from forward and reversed 

experiments, demonstrating attainment of equilibrium in our experiments.  Figure 7.8 shows 

the effect of Cl on the fluid/eclogite partition coefficient of europium. The enhancement of Eu 

solubility with addition of chlorine is the same for forward and reversed experiments.  

In order to be able to measure trace element concentrations in both fluid and solid phases, it 

may be necessary to dope the starting material with a relatively high concentration of trace 

elements. At the same time, to measure meaningful partition coefficients, the concentration of 

trace elements must be low enough to not exceed the boundaries of Henry’s law behavior. 

Figure 7.8 includes results from experiments conducted with different initial concentrations of 

europium. The fact that all experiments produce a single trend implies that the Eu 

concentrations used in our experiments fulfill Henry’s law. Similar data on reversed 

experiments and variable trace element concentration for other trace elements are given by 

Rustioni et al. (2019).  
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Taken together, the good agreement between forward and reversed experiments and the 

independence of the measured partition coefficients on the bulk concentration of the trace 

elements suggests that in most cases, the diamond trap method yields reliable fluid/eclogite 

partition coefficients. 

 

 

Figure 7.8. Effect of the amount of chlorine dissolved in fluid on the fluid/eclogite partition coefficient 

of europium. Green diamonds represent data obtained from forward experiments. Red circles are data 

obtained from reversed experiments. Different shades of color represent different initial concentration 

of trace elements in the solid starting material (green diamonds) or in the initial fluid (red circles) used 

in experiments. 
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7.5. Implications 

 

The systematic tests carried out in the course of this study show the potential and limitations 

of the diamond trap technique for studying fluid compositions. In principle, the method is 

widely applicable for both piston cylinder and multi anvil experiments, covering the entire 

pressure and temperature range of the upper mantle. At least up to 5 GPa, partitioning and 

solubility experiments in fluid-bearing systems may be carried out with conventional piston 

cylinder devices; the use of a rocking multi anvil is not required in this pressure range. Laser 

ablation ICP-MS analyses of the fluid in the diamond trap should always be carried out in 

frozen state. The method is particularly suitable for measuring partition coefficients, which 

may vary by several orders of magnitude and thus do not require very high precision or 

accuracy. However, particularly in chemically simple systems, measurements of mineral 

solubilities in fluids using the single-crystal weight-loss techniques, or by direct observation in 

diamond anvil cells, may yield more accurate results than the diamond trap method. A severe 

problem can be the dissolution and re-precipitation of solid phases already during the high-

pressure and high-temperature experiment, which may lead to erroneously high fluid 

concentrations. Such effects are to be expected for phases like corundum or rutile with 

solubilities that are highly temperature dependent, such that dissolution and re-precipitation 

may occur as a result of minor temperature gradients. 
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8.1. Abstract 

 

The partitioning of major and trace elements between eclogite and aqueous fluids with variable 

salinity was studied at 700 – 800 ˚C and 4 – 6 GPa in piston cylinder and multi anvil 

experiments. Fluid compositions were determined using the diamond trap technique combined 

with laser ablation ICP-MS measurements in frozen state. In addition to NaCl, silica is the main 

solute in the fluids. The fluid/eclogite partition coefficients of the large ion lithophile elements 

(LILE), such as Rb, Cs, Sr, and Ba as well as those of the light rare earths (LREE), of Pb and 

of U increase by up to three orders of magnitude with salinity. These elements will therefore 

be efficiently transported by saline fluids released from the basaltic layer of the subducted slab. 

On the other hand, typical high field strength elements, such as Ti, Nb, and Ta are not mobilized 

by the fluids even at high salinities. Increasing temperature and pressure gradually increases 

the partitioning into the fluid. In particular, Th is mobilized by silica-rich fluids at 6 GPa 

already at low salinities.  We show that we can fully reproduce the trace element enrichment 

pattern of primitive arc basalts by adding a few percent of saline fluid (with 5 – 10 wt.% Cl) 

released from the basaltic slab to the zone of melting in the mantle wedge. Only for thorium, 

possibly some minor contribution from a silica-rich aqueous fluid released at greater depth is 

required as an additional component to match the observed enrichment pattern in some cases. 

Assuming 2 wt. % of rutile in the eclogite equilibrated with the saline fluid produces a negative 

Nb Ta anomaly that is stronger than in most primitive arc basalts. Therefore, we conclude that 

the rutile fraction in the subducted eclogite below most arcs is likely < 1 wt. %.  In fact, saline 
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fluids would even produce a noticeable negative Nb Ta anomaly without any rutile in the 

eclogite residue. Metasomatism by sediment melts alone, on the other hand, is unable to 

produce the enrichment pattern seen in arc basalts. Sediment melts generated at plausible slab-

surface temperatures do not produce the required enrichment of light rare earth elements.  

Moreover, they often fail to produce the proper fractionation between Nb and the light rare 

earths. We therefore conclude that at least for primitive arc basalts, the release of hydrous fluids 

from the basaltic part of the subducted slab is the trigger for melting and the main agent of 

trace element enrichment. The contribution of sediment melts to the petrogenesis of these 

magmas is likely negligible. In the supplementary online material, we provide a “Subduction 

Calculator” in Excel format, which allows to calculate the trace element abundance pattern in 

primitive arc basalts as function of fluid salinity, the amount of fluid released from the basaltic 

part of the subducted slab, the fluid fraction added to the source, and the degree of melting.   

 

8.2. Introduction 

 

Magma generation in subduction zones is likely the main mechanism for the growth of the 

continental crust since the onset of plate tectonics (e.g. Hawkesworth et al. 2019). While early 

studies assumed that these magmas were formed by direct melting of the subducted basaltic 

crust (Green and Ringwood 1968), recent thermal models (Syracuse et al. 2010) imply that this 

is only possible under exceptional circumstances for very young and hot slabs. Direct slab 

melting within steeper geothermal gradients may, however, have produced the Archean TTG 

(tonalite trondjemite-granodiorite) suite that is a main component of the earliest continental 

crust (Rapp et al. 2003). Since the subduction of cold material from Earth´s surface actually 

reduces the temperature of the surrounding mantle, there is a general consensus that magma 

formation in subduction zones cannot be caused by elevated temperatures. Rather, melting 

point depression by the addition of water to the mantle wedge is likely the cause of magmatic 

activity, consistent with the generally elevated water contents in arc magmas (Métrich and 

Wallace 2008). Water also appears to correlate with the oxidation state of the magmas (Kelley 

and Cottrell 2009). Many models therefore assume that aqueous fluids released by the 

breakdown of hydrous minerals in the subducted slab infiltrate into the mantle wedge and 

trigger melting (e.g. Gill 1981, Arculus and Powell 1986, Tatsumi 1989, Peacock 1990). This 



8. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas 

 

116 

 

idea would be generally consistent with the typical trace element enrichment pattern seen in 

arc magmas (e.g. Kelemen et al. 2005), which features strong enrichments in large ion 

lithophile (LILE) elements, such as Rb, Cs, Sr, and Ba, which are usually considered to be 

soluble in aqueous fluids, while the poorly soluble high field strength elements (HFSE), such 

as Ti, Zr, Hf, Nb, and Ta are depleted. Accordingly, many experimental studies have been 

carried out in the last decades in order to constrain the composition of aqueous fluids in 

equilibrium with minerals of the subducted slab at high pressures and temperatures (Brenan et 

al. 1994, 1995, Keppler 1996, Stalder et al. 1998, Johnson and Plank 1999, Kessel et al. 2005, 

Bali et al. 2011, 2012, Tsay et al. 2014, 2017). Several of the earlier investigations were 

hampered by technical problems related to the difficulty in determining fluid compositions 

quenched from high-pressure experiments. Overall, the available data on the partitioning of 

trace elements between purely aqueous fluids and eclogite mostly suggest that such fluids are 

not very efficient in transporting trace elements, with the exception of some alkalis and alkaline 

earths. Therefore, a common notion in the recent literature is that aqueous fluids are “too dilute” 

to cause the trace element enrichment pattern seen in typical arc magmas (e.g. Hermann et al. 

2006, Spandler and Pirard 2013).  

The perceived inability of aqueous fluids to generate the trace element enrichment seen in arc 

magmas has led to alternative ideas on the nature of the phase that transports water from the 

subducted slab to the zone of melting in the mantle wedge. One possibility could be 

supercritical fluids intermediate in composition between aqueous fluids and silicate melts (e.g. 

Bureau and Keppler 1999, Portnyagin et al. 2007). Indeed, experimental data (Kessel et al. 

2005) suggests that the capability of such fluids to transport many trace elements greatly 

increases with bulk solute content. However, as the composition of the mobile phase becomes 

more melt-like, the strong fractionation between LILE elements (e.g. Ba) and HFSE elements 

(e.g. Nb), which is characteristic for arc magmas, also diminishes. Indeed, variations in the 

Ba/Nb ratio of arc magmas have sometimes be attributed to variable contributions of “shallow” 

and “deep” fluid components (Pearce et al. 2005), the deep fluid components perhaps being 

rather silica-rich.  

Some recent studies have suggested that sediment melts may be the main agent for the 

metasomatism of the mantle wedge above the subducted slab and the ultimate trigger for arc 

magmatism (e.g. Kelemen et al. 2005, Hermann et al. 2006, Hermann and Rubatto 2009, Skora 
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and Blundy 2010, Behn et al. 2011, Spandler and Pirard 2013, Skora et al. 2015). The 

correlation of trace element (e.g. Th/La) and isotope ratios of magmas and subducted sediments 

in some arcs supports some involvement of sediment melts or perhaps of fluids released from 

the sediment (e.g. Armstrong 1971, Turner and Foden 2001, Plank 2005). Proposing sediment 

melts as the main trigger of arc magmatism, however, is difficult to reconcile with the striking 

similarity in the trace element pattern of primitive arc basalts worldwide (see the compilation 

in Kelemen et al. 2005), irrespective of the presence, absence, nature, and amount of sediment 

subducted. Also, the rather viscous nature of silica-rich sediment melts does not match with 

the short timescales for fluid transfer from the slab to the zone of melting inferred from 

radioactive disequilibria (< 30 000 to 120 000 years, e.g., Hawkesworth et al. 1997; Turner and 

Foden 2001). However, sediment melts or aqueous fluids released from sediments may 

contribute to the chemical transport from the subducted slab to the zone of melting in the mantle 

wedge. Variations in magma composition within a volcanic arc are therefore often interpreted 

in terms of variable contributions of aqueous fluids and sediment melts (e.g. Elliot et al. 1997, 

Class et al. 2000, Turner and Foden 2001, Zamboni et al. 2016). On the other hand, a recent 

study of Klaver et al. (2020) using 88/86Sr as a tracer of strontium concluded that the slab-

derived fluid accounts for >70% of the Sr budget of the Mariana and Aegean arc lavas. 

Considering that the Aegean arc subducts 3–6 km of Sr-rich calcareous sediments, this 

observation casts severe doubts on the perceived importance of the sediment melts for arc 

magma generation.  

In a recent study, Rustioni et al. (2019) demonstrated that the fluid/eclogite partition coefficient 

of many trace elements increases by up to three orders of magnitude upon addition of chloride 

to the system. Since the Cl/H2O ratio in primitive arc basalts suggests fluid salinities typically 

ranging between 5 and 15 wt. % NaCl, it is expected that this effect also occurs in natural 

subduction zone fluids. The experimental data obtained by Rustioni et al. at 4 GPa and 800 ˚C 

suggest that saline fluids released from the basaltic part of the subducted slab may well account 

for the typical trace element enrichment pattern seen in primitive arc magmas. This would 

imply that the relative contribution of aqueous fluids and sediment melts to chemical transport 

below the arc needs to be reconsidered. In this study, we expand the work by Rustioni et al. 

(2019) by providing data on the temperature and pressure dependence of fluid/eclogite 

partitioning for a large suite of trace elements as well as for the major silicate components. 
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Moreover, we use these data to model the composition of arc magmas as function of fluid 

salinity, fluid fraction released from the slab and fluid fraction entering the zone of melting. 

 

8.3. Experimental methods 

 

8.3.1. Starting materials and sample preparation 

To reproduce the composition of the basaltic portion of subducting oceanic slabs, a K-free 

MORB glass was synthesized, with a composition similar to that of Kessel et al. (2005). This 

glass was doped with 26 trace elements by addition of 2 wt. % of a trace element-rich synthetic 

diopside glass. About 1 wt. % of garnet seeds, selected from Grytting (Norway) eclogite and 

crushed into a fine powder, were also added to the starting material in order to enhance garnet 

growth during the experiments. Aqueous solutions with salinities of 1, 5, 10 and 15 wt. % were 

produced by dissolution of pure NaCl in distilled water. Two trace element doped solutions, 

obtained by mixing ICP-MS calibration solutions, were used in combination with the undoped 

MORB glass to carry out reversed experiments. Complete analyses of all starting materials are 

given in Rustioni et al. (2019). 

To perform high-pressure experiments, the starting glass was loaded together with water or 

saline solutions in platinum or gold capsules. A thin layer of diamond powder was sandwiched 

between two layers of MORB glass to provide empty pores for fluid circulation. About 1 mm 

of space was left empty at the top of the capsules in order to avoid fluid losses that may be 

caused by heating during the welding of the top lid. Each capsule was weighed before and after 

welding to ensure that no major fluid loss occurred. For piston cylinder experiments, cylindrical 

capsules with an outer diameter of 5 mm, 0.2 mm wall thickness, and 10 mm length were 

employed. In the case of multi anvil experiments, Pt tubes with 4 mm outer diameter, 0.15 mm 

wall thickness, and 5 mm length together with lids were used as capsules. After the sealing of 

the top lid and before multi anvil experiments, the capsules were pre-compressed to a length 

of 4 mm to fit into the assembly. This procedure eliminates the empty space originally left at 

the top of the capsules, thus maximizing the amount of material that can be loaded in each 

experiment. 
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8.3.2. Piston cylinder experiments 

High-pressure experiments at 4 – 5 GPa and 700 – 800 ˚C were performed using an end-loaded 

piston cylinder apparatus. ½ inch MgO-NaCl assemblies with a stepped graphite furnace were 

used. Temperature was measured with an S-type thermocouple (Pt/Pt-Rh) and monitored by a 

Eurotherm controller. Long compression and decompression durations, up to 20 hours, were 

applied to reduce the deformation of the capsule. Temperature was increased after compression 

with a heating rate of 100 ˚C/min. Fluctuations in temperature of ± 30 ˚C were applied to most 

of the experiments in order to enhance mineral growth by Ostwald ripening. Experiments were 

quenched by switching off the electrical power at constant pressure before decompression. 

Total run durations ranged between 3 and 7 days. 

8.3.3. Multi anvil experiments 

Experiments at 6 GPa and 800 ˚C were carried out in a Walker-type a multi anvil apparatus 

following the pressure calibration of Keppler and Frost (2005). We used tungsten carbide cubes 

as secondary anvils, pyrophyllite gaskets, and a 25/15 (octahedral edge length/truncation edge 

length in mm) assembly consisting of an outer MgO octahedron that contains a ZrO2 sleeve, a 

stepped graphite furnace and an inner MgO sleeve, in which the sample capsule is kept at the 

center by MgO spacers and Mo caps. All MgO parts were heated to 1000 ˚C for 1 hour to 

remove eventual moisture before being assembled. Experiments were compressed and 

decompressed within 15 hours. As for piston cylinder experiments, temperature was raised at 

a rate of 100 ˚C/min after compression. A D-type (W97Re3 – W75Re25) thermocouple was 

employed to monitor the temperature during experiments. High pressure and temperature 

conditions were maintained for 3 days. The runs were terminated by rapid quench before 

decompression. 

8.3.4. Laser ablation ICP-MS analyses 

Both fluid and mineral compositions were determined by laser ablation inductively coupled 

plasma mass spectrometry (LA-ICP-MS). After high pressure experiments, the recovered 

capsules were cooled in liquid nitrogen and cut in half in frozen state to expose the diamond 

trap. The diamond layer still containing the frozen fluid was then analyzed along two 
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perpendicular transects by means of a LA-ICP-MS equipped with a freezing chamber able to 

maintain the sample at a temperature of - 30 ˚C during the entire measurement. The instrument 

used consists of a 193 nm ArF GeolasPro laser ablation unit (Coherent, USA) connected to a 

Elan DRC-e quadrupole ICP-MS unit (Perkin Elmer, Canada). After the determination of fluid 

composition, each capsule was impregnated in epoxy and polished. Garnet, omphacite and 

rutile crystals were then analyzed again using LA-ICP-MS. For further details about the 

experimental and analytical procedures see Rustioni et al. (2019, 2021). 

 

8.4. Results 

8.4.1. Bulk fluid compositions 

During the runs, the glassy starting material always transformed into a well-crystallized 

eclogitic assemblage of omphacite + garnet + rutile ± kyanite. Representative microprobe 

analyses of these phases are given in Rustioni et al. (2019). The major element composition of 

the fluid coexisting with the eclogitic assemblage are shown in Figures 8.1 and 8.2 for each 

experiment; see also Table 8.4 in the supplementary online material. The total solute contents 

shown include SiO2, Al2O3, Na2O, CaO, FeO, MgO and Cl. These totals are highly dependent 

on fluid salinity, ranging from an average of about 20 wt. % solutes in experiments conducted 

at 4 GPa and 800 ˚C without NaCl, to an average of about 40 wt. % in experiments with more 

than 6 wt. % of Cl at the same conditions. As illustrated by Figure 8.1, an increase in 

temperature of 100 ˚C at 4 GPa significantly enhances bulk solubility, yielding a total solute 

content of about 5 wt. % at 700 ˚C, but about 20 wt. % at 800 ˚C for a Cl-free fluid.  The effect 

of salinity is similar at both temperatures.  

The major solute in all experiments is SiO2, which alone represents on average 65 % of the 

total solute content. At 4 GPa, SiO2, together with Al2O3, does not show a significant increase 

in solubility upon addition of Cl to the fluid, both oxides being more sensitive to temperature. 

On the other hand, the solubilities of Na2O, CaO, FeO, and MgO markedly increase with fluid 

salinity. In particular, Na2O concentration is mostly a function of Cl content in the fluid, while 

CaO, FeO and MgO solubilities are also affected by temperature. The nearly linear increase of 
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Figure 8.1. Bulk composition of saline fluids in equilibrium with an eclogitic assemblage from high-

pressure experiments at 4 GPa and 700 - 800 ˚C. “Total solute” is the sum of all oxide components 

plus Cl, with a slight negative correction for the fact that 1 Cl- replaces ½ O2- in the fluid. 
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Figure 8.2. Bulk composition of saline fluids in equilibrium with an eclogitic assemblage from high-

pressure experiments at 5 and 6 GPa and 800 ˚C. “Total solute” is the sum of all oxide components 

plus Cl, with a slight negative correction for the fact that 1 Cl- replaces ½ O2- in the fluid. 
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Na2O, CaO, and MgO concentrations in the fluid at 4 GPa is most likely due to the formation 

of some undissociated species with a metal:chloride ratio of 1:1 in the fluid, such as NaCl, 

Ca(OH)Cl, and Mg(OH)Cl.  

With pressure increasing to 5 and 6 GPa, the dependence of fluid composition on salinity 

changes (Figure 8.2). SiO2 and Al2O3 now markedly decrease with salinity, which also 

translates into a decrease of bulk solute at 6 GPa. While CaO increases with Cl at all pressures, 

the effect diminishes for Na2O, FeO and MgO at 5 GPa and nearly disappears or reverts at 6 

GPa. Very likely, these effects are due to the high bulk silica contents of Cl-free fluids at 5 and 

particularly at 6 GPa, where the fluids may be considered to approaching a “supercritical” state, 

intermediate in composition between typical aqueous fluids and silicate melts. At these high 

silica contents, cations may dissolve mostly as neutral silicate species or silicate complexes. 

Upon addition of Cl, silicate anions compete with chloride for cations, such that the effect of 

Cl on oxide solubilities becomes less pronounced. The negative effect of Cl on silica 

solubilities is consistent with previous observations Cruz and Manning (2015) in the quartz-

H2O-NaCl system at 1.5 - 2 GPa, but higher temperatures.  

As demonstrated by Rustioni et al. (2021), solubilities in aqueous fluids measured with the 

diamond trap method yield results accurate within a factor of two. While this has a minor effect 

in the determination of trace element partition coefficients, which may vary by orders of 

magnitude, this factor may be significant for major element contents and it may explain the 

significant scatter in some of the data reported in Figures 8.1 and 8.2. 

8.4.2. Trace element partition coefficients 

As already observed by Rustioni et al. (2019), fluid/eclogite partition coefficients are highly 

affected by fluid salinity at 4 GPa and 800 ˚C. In particular, light rare earths show an increase 

in solubility of up to three orders of magnitude with an addition of 7 wt. % of Cl. A significant, 

even though smaller, solubility enhancement is observed also for large ion lithophile elements 

(LILE), as well as for Pb, Th and U. On the other hand, fluid salinity does not have a significant 

effect on the partitioning behavior of high field strength elements (HFSE). Similar results were 

found also in experiments conducted at lower temperature (700 ˚C) and higher pressure (5 and 

6 GPa). Results from these experiments are shown in Figure 8.3 and 8.4 in comparison to the 

data from Rustioni et al. (2019). Complete analytical data are compiled in Tables 8.4 to 8.9 in  
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the supplementary online material. The strong enhancement of the fluid/eclogite partitioning 

of the light rare earth elements by chloride is seen at all P,T conditions, while the heavy rare 

earths as well as Nb and Ta are never affected by salinity. 

A detailed inspection of the data shows that at 4 GPa, temperature has only a minor effect on 

the fluid/eclogite partitioning of trace elements (Figure 8.3). The partition coefficients 

measured at 700 ̊ C tend to be slightly lower than at 800 ̊ C, but the dependence on fluid salinity 

 

Figure 8.3. Influence of fluid salinity on the fluid/eclogite partition coefficient of trace elements at 4 

GPa and 700 – 800 ˚C. 
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is similar. A notable exception are Rb and Cs, where the 700 ˚C data appear to be nearly 

independent of fluid salinity; very likely, this is an artifact due to incomplete equilibration at 

the lower temperature. DNb
fluid/eclogite increases by one order of magnitude with temperature 

increasing from 700 to 800 ̊ C. A pressure increase from 4 to 5 or 6 GPa does not fundamentally 

alter the partition coefficients and their dependence on salinity for most elements. However, 

notable exceptions from this are Th and U; for both elements, the partitioning into the fluid at 

low salinity is strongly enhanced by pressure, in agreement with previous observations by 

 

Figure 8.4. Influence of fluid salinity on the fluid/eclogite partition coefficient of trace elements at 5 - 

6 GPa and 800 ˚C. 
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Kessel et al. (2005). Very likely, the interaction with silicate species due to the greatly enhanced 

silica solubility in the fluid (see above) is responsible for this effect. A similar, but weaker 

enhancement of fluid/eclogite partitioning with pressure at low salinity is also observed for La 

and Ce.  

The reported bulk fluid/eclogite partition coefficients (Dfluid/eclogite) were calculated from the 

individual fluid/mineral partition coefficients. In order to constrain the sole effect of changes 

in fluid salinity on the trace element partitioning behavior, in these calculations the eclogite 

modal composition is fixed at 59 % omphacite, 39 % garnet and 2 % rutile.  

 

Figure 8.5. Fluid/garnet (above) and fluid/clinopyroxene (below) partition coefficients of various trace 

elements at 4 GPa and 800 ˚C. 
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Different eclogite modal compositions may also cause changes in the bulk fluid/eclogite 

partition coefficients. The individual Dfluid/mineral for garnet and omphacite and the effect of fluid 

salinity on those are shown in Figure 8.5. Garnet retains in general less trace elements than 

omphacite, with the exception of the heavy rare earth elements. Therefore, increasing the modal 

abundance of garnet relative to omphacite generally enhances Dfluid/eclogite , except for the heavy 

rare earth elements.  

As rutile is able to retain a large amount high field strength elements, but none of the other 

investigated trace elements, its presence, even in small proportions, only affects the partitioning 

 

Figure 8.6. Bulk fluid/eclogite partition coefficients of trace elements at 4 GPa and 800 ˚C with 

different rutile contents in the eclogite and for variable fluid salinities. The diagram in the upper left 

corner summarizes the results from the other diagrams. 
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behavior of Nb, Ta, and Ti, leaving the remaining trace element pattern essentially unaltered. 

Figure 8.6 shows the Dfluid/eclogite calculated without and with 1 or 2 % of rutile in the eclogite. 

These results show that the presence of rutile strongly depletes the fluid in Nb and Ta, 

especially for high salinities. This effect is similar for the addition of 1 or 2 % rutile, implying 

that already small proportions of this mineral can greatly affect the Dfluid/eclogite for Nb and Ta. 

Still, a depletion in these elements relative to the light rare earths is never observed for pure 

water, even with rutile in the eclogitic assemblage. For high salinities on the other hand, a slight 

negative anomaly in Nb and Ta is already produced even in the absence of rutile.  

 

8.5. Discussion 

8.5.1. Comparison with previous studies 

As noted by Rustioni et al. (2019), the fluid/eclogite partition coefficients of trace elements 

measured in this study for pure water (without NaCl) are generally in very good agreement 

with those obtained by Kessel et al. (2005) using similar methods. However, there is an 

apparent discrepancy between this study and some previous publications, which suggested that 

complexing by chlorine does not significantly enhance the fluid/mineral partitioning of trace 

elements in aqueous fluids under typical subduction zone conditions. Brenan et al. (1995) 

observed only a minor enhancement of the fluid/clinopyroxene partition coefficients of Sr and 

Pb upon addition of NaCl at 900 ˚C and 2 GPa. However, the NaCl concentrations used in that 

study were rather low, 0.5 molal, which corresponds to just 1.77 wt. % Cl. This concentration 

is small compared to the concentration range investigated in the present study and it is also at 

the low end of fluid salinities inferred from the Cl/H2O ratio of primitive arc basalts (Métrich 

and Wallace 2008). Stalder et al. (1998) claimed that adding up to 5 m HCl has “nearly no 

effect” on the fluid/garnet partition coefficient of a large suite of trace elements at 10 ˚C and 4 

– 5 GPa. However, they carried out only two experiments with Cl-bearing fluids. Moreover, 

there is only one single pair of experiments under otherwise equal conditions, where only the 

HCl content of the fluid varied. If one compares their experiments no. 57 and 64, DBa
fluid/garnet 

increased from 16 to 59 and DSr
fluid/garnet increased from 13 to 31 upon addition of 1.5 M HCl. 

Only DPb
fluid/garnet appeared to decrease. Moreover, we note that many of the partition 

coefficients reported by Stalder et al. (1988) are in striking contrast to more recent experimental 
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data obtained with improved experimental methods. For example, their data would suggest that 

Nb always partitions strongly in favor of the fluid in equilibrium with clinopyroxene or garnet, 

even more so than Sr, while both the data of Kessel et al. (2005) and of Rustioni et al. (2019) 

suggest much lower fluid/mineral partition coefficients of Nb. 

Support for the enhancement of fluid/mineral partition coefficients by chloride complexing 

under subduction zone conditions comes from a number of recent studies. Both Tsay et al. 

(2014) and Tropper et al. (2011) observed major increases in the solubilities of La2Si2O7 and 

CePO4, respectively in aqueous fluids at 1 – 2.6 GPa and 600 – 800 ˚C upon addition of 

chloride. Bali et al. (2001) observed similar effects for UO2 solubility in aqueous fluids at 1.5 

– 2.6 GPa. Kawamoto (2014) studied the fluid/melt partitioning of Pb, Rb, and Sr by direct in-

situ synchrotron fluorescence in the hydrothermal diamond anvil cell to 1.3 GPa and 830 ˚C 

and observed a strong enhancement of the partitioning of these elements into the fluid with 

increasing chloride concentration. However, Tsay et al. (2017) studied the fluid/eclogite 

partitioning of a large suite of trace elements at 590 – 800 ˚C and 2.4 – 2.6 GPa and did not 

observe enhanced fluid/eclogite partitioning of trace elements upon the addition of NaCl. This 

result is rather curious, as it appears to contradict the study of Tsay et al. (2014) from the same 

group, which found a major enhancement of the solubility of the light rare earths in aqueous 

fluids upon addition of NaCl. Possibly, the data reported by Tsay et al. (2017) involve 

incomplete equilibration between the eclogite and the fluid, perhaps due to early formation and 

closure of the fluid inclusions used to trap the fluid. While they used some in-situ fracturing 

method to control the time of inclusion formation, it is not implausible that some fluid 

inclusions may already have formed rather early during the run, such that the fluid trapped was 

not in equilibrium with the eclogite. 

8.5.2. A numerical model for the trace element signature of primitive arc basalts 

In order to better constrain the mechanism of magma generation in subduction zones, we use 

our data to quantitatively model the trace element composition of partial melts from a mantle 

wedge metasomatized by saline fluids released from the basaltic part of the subducted slab. We 

will then compare these data with the worldwide compilation of primitive arc basalt 

compositions from Kelemen et al. (2005). For modeling the composition of the fluids released 

from the slab, we use our fluid/eclogite partitioning data for 4 GPa and 800 ˚C. These 
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conditions fall right in the middle of the subduction zone thermal profiles as compiled by 

Syracuse et al. (2010). We argue that they are plausible for an eclogite just after the dehydration 

of amphibole, which is expected to be the major carrier of water in the basaltic part of the slab. 

The experimental study of Schmidt and Poli (1998) places the high-pressure stability limit of 

amphibole near 2.4 GPa. These experiments were, however, carried out with 5 wt.% water 

added to the system. Mandler and Grove (2016) pointed out that the apparent stability limit of 

amphibole in mantle peridotite strongly depends on the amount of water added to the charge in 

experiments. This is because alkalis – which are required to form amphibole – strongly partition 

into the fluid. High fluid fractions in the charge therefore destabilize amphibole. Mandler and 

Grove (2016) showed that for water contents < 1 wt. %, the high-pressure stability limit of 

amphibole approaches 4 GPa. While these data were obtained for a peridotitic bulk 

composition, a similar effect likely also occurs in basaltic systems, implying that the high-

pressure stability limit of amphibole may well be 1 GPa higher than inferred by Schmidt and 

Poli (1998). Therefore, our experimental data for 4 GPa and 800 ˚C may capture the conditions 

during or just after amphibole dehydration. 

The experimental data on the fluid/eclogite partitioning of trace elements in this study and in 

Rustioni et al. (2019) were obtained with a starting material free of potassium and phosphorus, 

very similar to that used in the previous study of Kessel et al. (2005). This is justified, as both 

K (0.160 wt. % K2O) and P (0.184 wt. % P2O5) are only trace constituents in MORB (Gale et 

al. 2013). As pointed out by Rustioni et al. (2019), the high phosphorus solubility in garnet 

(Konzett and Frost 2009) implies that in an eclogite of MORB composition, separate phosphate 

phases such as apatite are unlikely to be stable. For similar reasons, phengite is expected to be 

either completely absent or present only in trace amounts. This is supported by an experimental 

study of Carter et al. (2015) who did not observe any apatite or phengite in an eclogite produced 

at 3 GPa and 800 ˚C from a natural MORB starting material. Hermann (2002) suggested that 

allanite may be an important phase retaining light rare earth elements and thorium in subducted 

eclogites. However, in an experimental study of a natural MORB composition up to 2.8 GPa, 

Sisson and Kelemen (2018) could not detect any allanite or any other epidote group mineral 

above 750 ˚C. We are therefore confident that our fluid/eclogite partitioning data, which are 

based on an eclogite with omphacite + garnet + rutile mineralogy can be directly used to model 

trace element transport from the basaltic part of the subducted slab to the mantle wedge.  
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In our model, we assume that the composition of the basaltic part of the subducted slab 

corresponds to the “all MORB” average from Gale et al. (2013) and the peridotite in the mantle 

wedge above the slab has the composition of the depleted mantle as estimated by Salters and 

Stracke (2004). For predicting the partitioning of trace elements between aqueous fluids and 

eclogite, we used the equation 

(1)                                              Dfluid/eclogite = a e b Cl 

where Dfluid/eclogite is the fluid/eclogite partition coefficient  of the element considered and Cl is 

fluid salinity in wt. % Cl; a and b are regression coefficients calibrated by our experimental 

data and tabulated for each element in Table 8.1. The concentration of a trace element in fluid 

cfluid in equilibrium with the MORB eclogite was then calculated assuming batch equilibrium 

using the equation  

(2)                                       
c fluid =

D fluid /ec logitecMORB

1+ x fluid (D
fluid /ec logite -1)  

where xfluid is the mass fraction of the fluid in the eclogite and cMORB is the concentration of the 

trace element in the MORB eclogite according to Gale et al. (2013).  

The composition of the metasomatized peridotite in the zone of melting in the mantle wedge 

was then calculated according to 

(3)                                  csource = xfluid cfluid + (1 – xfluid) cperidotite 

where csource is the trace element concentration in the source, xfluid is the mass fraction of fluid 

added and cperidotite is the concentration in the depleted mantle according to Salters and Stracke 

(2004).  

The composition of partial melts from the metasomatized mantle source was then obtained 

from the following equation, which assumes batch melting: 

(4)                                      
cmelt =

csource /D peridotite/basalt

1+ xmelt (1/D peridotite/basalt -1)  
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Table 8.1.  Regression coefficients for the dependence of the fluid/eclogite partition coefficient of trace 

elements at 4 GPa and 800 ˚C on fluid salinity. 

Trace element a b Χ2 R2 

Li 0.355 ± 0.215 0.346 ± 0.151 6.12 0.972 

Be 1.021 ± 0.176 0.003 ± 0.045 13.14 0.001 

B 3.514 ± 1.009 0.379 ± 0.065 1.09 0.991 

Rb 3.003 ± 2.243 0.669 ± 0.184 3.08 0.935 

Cs 10.202 ± 4.586 0.470 ± 0.103 1.42 0.952 

Sr 2.408 ± 0.804 0.368 ± 0.083 2.39 0.928 

Ba 4.339 ± 2.570 0.347 ± 0.142 3.66 0.852 

Ti 0.007 ± 0.002 0.223 ± 0.109 276.04 0.048 

Nb 0.018 ± 0.001 0.233 ± 0.056 91.81 0.337 

Ta 0.003 ± 0.006 0.239 ± 0.065 36.10 0.354 

La 0.005 ± 0.002 0.961 ± 0.118 0.96 0.976 

Ce 0.010 ± 0.004 0.855 ± 0.106 1.10 0.968 

Nd 0.008 ± 0.003 0.714 ± 0.076 0.70 0.984 

Sm 0.010 ± 0.004 0.588 ± 0.088 1.55 0.985 

Eu 0.017 ± 0.005 0.572 ± 0.070 1.15 0.981 

Gd 0.005 ± 0.001 0.462 ± 0.053 14.89 0.565 

Dy 0.005 ± 0.002 0.456 ± 0.134 4.34 0.920 

Er 0.003 ± 0.001 0.171 ± 0.079 12.19 0.214 

Yb 0.003 ± 0.009 0.204 ± 0.077 9.47 0.292 

Lu 0.002 ± 0.008 0.235 ± 0.085 9.19 0.265 

Y 0.035 ± 0.013 0.387 ± 0.091 2.81 0.901 

Sc 0.013 ± 0.004 0.056 ± 0.075 18.48 0.123 

Pb 2.428 ± 1.137 0.565 ± 0.117 1.75 0.939 

Th 0.003 ± 0.002 0.809 ± 0.117 1.30 0.971 

U 0.109 ± 0.061 0.727 ± 0.135 2.13 0.949 

Data were fitted to equation (1) Dfluid/eclogite = a e b Cl 

For some elements, R2 is below 0.9; these are typically elements with fluid/eclogite partition coefficients that 

are nearly independent of Cl, such that equation (1) does not describe the partition behavior well and the scatter 

in the data may be larger than the variability due to Cl.  

  

where cmelt is the concentration of some trace element in the partial melt, xmelt is the mass 

fraction of melt and Dperidotite/basalt is the bulk partition coefficient of the trace element between 

peridotite and melt. Dperidotite/basalt was calculated from individual mineral/melt partition 

coefficients for a mixture of 60 wt. % olivine, 30 wt. % orthopyroxene, 5 wt. % garnet and 5 
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wt. % clinopyroxene coexisting with the partial melt. Mineral/basalt partition coefficients for 

REE, Ba, U, Th, Pb, Y, and Nb were taken as averages of the experimental data reported in 

from Salters et al. (2002). Clinopyroxene/basalt and garnet/basalt partition coefficients for Rb 

were taken from Klemme et al. (2002), for Sr from Johnson (1994). The partitioning of Sr and 

Rb into olivine and orthopyroxene was assumed to be zero. Titanium (Ti4+) partition 

coefficients were taken from Mallmann and O´Neill (2009) and from Johnson (1994). In 

general, since the trace elements considered here are mostly incompatible in peridotite, 

variations in the values of the mineral/melt partition coefficients have a rather minor effect on 

the final result of the calculation. For this reason, possible variations due to the presence of 

water in the melt (e.g. Sun and Liang 2012) were also ignored. 

The results of the calculations outlined above depend on four independent parameters: (i) the 

fluid salinity, (ii) the fluid fraction in the eclogite, (iii) the fluid fraction added to the source of 

melting, and (iv) the degree of melting in the mantle wedge. Of these four variables, the fluid 

salinity is by far the most important parameter, since the fluid/eclogite partition coefficient of 

some trace elements increases exponentially with salinity, while others are nearly independent 

of salinity. Fluid salinity therefore does not only produce the strongest absolute variations in 

final melt composition, but it also changes the fractionation of the various trace elements 

relative to each other. In contrast to this, the other three parameters – fluid fraction in eclogite, 

fluid fraction added to the source, and degree of melting in the mantle wedge have some 

influence on the absolute level of trace element enrichment in the final melt, but they induce 

only minor variations in the fractionation of trace elements relative to each other.  

For fluid salinity, we explored a parameter space up to 10 wt. % Cl in the fluid, which would 

be equivalent to about 16 wt. % of NaCl. This is well within the range of fluid salinities inferred 

from the Cl/H2O ratio in primitive arc basalts (Métrich and Wallace 2008). Experimentally, we 

have calibrated partition coefficients to about 7 wt. % Cl in the fluid, such that only a minor 

extrapolation is involved in our modeling. For the fluid fraction in the eclogite, we consider 

values between 1 and 2 wt. % most plausible, considering that amphibole itself contains only 

about 2 wt. % water. Higher fluid fractions would likely require some external source (e.g. 

serpentine dehydration of the hydrated mantle below the basaltic layer). While such an external 

addition of water is possible, it is also likely that at some distance from the source the fluid 

flow becomes channelized (e.g. Zack and John 2007, John et al. 2012, Plümper et al. 2017), 
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such that only a small fraction of the basaltic layer might be affected. Therefore, in our 

calculations, we mostly assumed a fluid fraction in the eclogite layer of 2 wt. %. Reducing this 

to 1 wt. % has only a minor effect on the final trace element enrichment pattern. Essentially, at 

the lower fluid fraction, the abundances of the most fluid-mobile elements (Ba, Sr, Rb, Pb) 

increase slightly in the final melt composition, while the other elements are hardly affected. 

This is because at low fluid fraction, for most elements the concentration in the fluid approaches 

Dfluid/eclogite . cMORB, i.e. it is nearly independent of fluid fraction. Only for the elements with 

very high Dfluid/eclogite, already at low fluid fraction the reservoir becomes strongly depleted in 

these elements and the aforementioned approximation cannot be used anymore; the 

concentration in the fluid will then decrease with increasing fluid fraction. For the fluid fraction 

added to the source, we consider values from 2.5 to 10 wt. %. Plausible values for the degree 

of melting in the mantle wedge are probably between 10 and 30 %. This parameter has the 

smallest effect on the final melt composition and therefore, for most calculations, we assumed 

it to be around 20 %.  

In the supplementary online material, we provide a “Subduction calculator” as Excel 

spreadsheet, which allows a rapid assessment of expected melt composition according to the 

model outlined above. Calculations with a model fluid released from the basaltic part of the 

subducted slab at 6 GPa are also possible. The regression coefficients for the fluid/eclogite 

trace element partitioning at 6 GPa are compiled in Table 8.2. However, 6 GPa is beyond most 

of the dehydration reactions expected in a subducted slab and a model based solely on a fluid 

composition produced at such high pressures is not very plausible. The following discussion, 

is therefore mostly based on the data at 4 GPa and 800 ˚C.  

Figure 8.7 shows arc magma compositions predicted by our model, assuming 2.5 wt. %, 5 wt. 

%, or 10 wt. % fluid addition to the source of melting in the mantle wedge, with fluid salinities 

ranging from 0 to 10 wt. % Cl. The data are shown in comparison to a global compilation of 

average primitive arc magma compositions from Kelemen et al. (2005). This compilation 

includes data from the Kermadec, Lesser Antilles, Marianas, New Hebrides, Scotia, Tonga, 

Aleutian, Andean, Cascades, Central America, and Kamchatka arcs. The model data clearly 

show that metasomatism by a pure aqueous fluid cannot account for the trace element 

enrichment in arc magmas, as this would only produce minor enrichments of the most fluid- 
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Table 8.2.  Regression coefficients for the dependence of the fluid/eclogite partition coefficient of trace 

elements at 6 GPa and 800 ˚C on fluid salinity. 

Trace element a b Χ2 R2 

Li 2.449 ± 1.781  -0.008 ± 0.100 28.68 0.004 

Be 1.630 ± 0.372  -0.103 ± 0.038 2.84 0.845 

B 9.451 ± 1.392  0.137 ± 0.024 0.38 0.973 

Rb 7.056 ± 1.517  0.269 ± 0.063 1.38 0.807 

Cs 10.227 ± 3.660  0.252 ± 0.093 2.58 0.654 

Sr 1.285 ± 0.114  0.356 ± 0.021 0.23 0.982 

Ba 2.431 ± 0.518  0.483 ± 0.065 1.37 0.866 

Ti 0.209 ± 0.018  -0.114 ± 0.019 0.35 0.972 

Nb 0.986 ± 0.140  -0.115 ± 0.027 0.22 0.937 

Ta 0.378 ± 0.039  -0.205 ± 0.019 0.09 0.985 

La 0.740 ± 0.072  0.274 ± 0.024 0.14 0.978 

Ce 1.146 ± 0.066  0.197 ± 0.015 0.07 0.987 

Nd 0.396 ± 0.020  0.163 ± 0.010 0.06 0.995 

Sm 0.268 ± 0.002  0.044 ± 0.001 0.01 0.999 

Eu 0.359 ± 0.057  0.021 ± 0.035. 0.90 0.261 

Gd 0.136 ± 0.016  -0.017 ± 0.025 0.39 0.292 

Dy 0.098 ± 0.021  -0.158 ± 0.009 0.04 0.995 

Er 0.108 ± 0.005  -0.273 ± 0.037 0.47 0.953 

Yb 0.099 ± 0.030  -0.329 ± 0.050 0.74 0.922 

Lu 0.088 ± 0.026  -0.328 ± 0.051 0.66 0.837 

Y 1.583 ± 1.194  -0.463 ± 0.120 0.99 0.734 

Sc 0.069 ± 0.034  -0.224 ± 0.077 3.15 0.783 

Pb 5.354 ± 2.312 0.081 ± 0.224 5.67 0.069 

Th 2.216 ± 1.326  -0.123 ± 0.112 8.79 0.467 

U 5.956 ± 3.554  -0.121 ± 0.110 6.35 0.499 

For explanation, see Table 8.1 

 

mobile elements Rb, Ba, Sr, and Pb. This result is quite consistent with the frequent view that 

aqueous fluids are “too dilute” to produce the enrichment seen in arc magmas (e.g. Hermann 

et al. 2006, Spandler and Pirard 2013). However, the situation changes completely once saline 

fluids are considered. Already a fluid with 5 wt.% Cl produces an enrichment of Rb, Ba, U, Pb, 

and Sr that similar to that observed in many arc basalts. Only the light REE (La and Ce) and in 
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particular Th require higher fluid salinities to match the enrichment observed in natural 

magmas. The enrichment of La and Ce are well reproduced by salinities between 7 and 10 wt. 

% Cl. For thorium, the highest salinities near 10 wt. % Cl yield values overlapping with 

primitive arc basalt compositions. Therefore, the modeling results shown in Figure 8.7 show 

very clearly that virtually the entire trace element enrichment pattern observed in primitive arc 

basalts can be reproduced by melting a depleted mantle source metasomatized by saline fluids. 

 

 

Figure 8.7. Predicted trace element enrichment patterns for partial melts of the mantle wedge enriched 

by aqueous fluids from the basaltic layer of the subducted slab. Compositions for primitive arc basalts 

as compiled by Kelemen et al. (2005) are shown as grey lines for comparison. All data were normalized 

to the “all MORB average” of Gale et al.  (2013). Model calculations are shown for 2.5 to 10 wt. % 

fluid addition to the source and for fluid salinities from 0 to 10 wt. % Cl. Note: The model result for Pr 

is not directly calculated, but interpolated between Ce and Nd. 
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For salinities between 7 and 10 wt. % Cl, already 2.5 wt. % fluid addition to the source of 

melting are sufficient to match most of the arc basalt patterns. High salinities above 7 wt. % Cl 

are particularly important to match the natural thorium abundances. 

When discussing thorium abundances, it is important to note that the appearance of a plot as in 

Figure 8.7 depends very much on the choice of the MORB composition used for 

standardization. Here, for consistency, we use the “all MORB average” of 0.404 ppm Th from 

Gale et al. (2013) for standardization, which was also used for calculating the composition of 

fluids released from the slab. However, this number is more than two times higher than the 

often-used N-type MORB abundance of 0.1871 ppm Th from Hofmann (1988). Even the “all 

normal MORB average” from Gale et al. (2013) is with 0.353 ppm Th still about twice the 

value quoted by Hofmann (1988). The rather high enrichment of Th in arc magmas suggested 

by some MORB-normalized diagrams is therefore partially an artifact of normalization to a 

likely less-representative Th abundance in MORB. Nevertheless, the enrichment of Th in some 

of the primitive arc basalts would require metasomatism by a very Cl-rich fluid released from 

the slab at 4 GPa and 800 ˚C. There is, however, an obvious alternative possibility. Pearce et 

al. (2005) noted in a study of the Mariana arc that the Th/Ba ratio in magmas very much 

increases with the depth of the slab and they therefore attributed the Th addition mainly to a 

“deep subduction component”. Indeed, in the study of Kessel et al. (2005) in a Cl-free system, 

increasing the pressure from 4 to 6 GPa at constant temperature of 800 ˚C increases the 

partitioning of Th into the fluid by about one order of magnitude, while the effect on Ba is 

more subtle. Our data (Figure 8.4) show a similar enhancement of thorium partitioning into the 

fluid with pressure for low-salinity fluids. It is therefore entirely plausible that the relatively 

high Th abundances in some primitive arc basalts may reflect the influence of an additional 

fluid component released from the slab at higher pressures. Another, perhaps less likely 

explanation could be that the Th enrichment is due to an additional complexing agent in the 

fluid, such as fluoride. Fluoride complexing is known to enhance thorium mobility at lower 

pressures (Keppler and Wyllie 1990) and the recent study of Tsay et al. (2017) showed such an 

effect also under mantle conditions. However, as noted above, we suspect that the latter study 

suffered from some incomplete attainment of equilibrium. Moreover, the fluorine abundance 

in arc magmas is typically one order of magnitude below the chlorine abundance (Straub and 

Layne 2003), which also makes a significant effect of fluoride complexing on trace element 

enrichment in arc magmas rather unlikely, although not completely impossible.  
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A general observation from Figure 8.7 is that our models produce a negative Nb anomaly (and 

by inference Nb Ta anomaly) that is more pronounced than in most arc basalts. This is, 

however, the result of assuming 2 wt. % of rutile in the residual eclogite. Reducing the rutile 

fraction would diminish the magnitude of the negative Nb Ta anomaly. In fact, the data shown 

in Figure 6 suggest that such an anomaly could also be produced by saline fluid without any 

rutile in the eclogite residue. The comparison of our modeling results with the observed arc 

basalt patterns in Figure 8.7 therefore suggests that the fraction of rutile in the eclogite that 

released the metasomatizing fluid must be rather small.  

While the model outlined above is very successful in reproducing the trace element pattern of 

arc magmas, it contains a number of simplifications. The fluid released from the basaltic part 

of the slab almost certainly does not have a constant composition. Rather, upon decomposition 

of amphibole or other hydrous minerals, Cl very likely strongly partitions into the fluid, 

although there are now experimental data that would allow a quantification of this effect. 

Therefore, the very first fluid released from the slab likely has high salinity, which then 

decreases upon further dehydration. Accordingly, one would expect that the trace element 

enrichment patter of a real arc magma is a somehow weighed average of the curves for different 

salinities shown in Figure 8.7. Since, however, the fluid/eclogite partition coefficient of many 

trace element increases exponentially with salinity, this means that the first aliquot of highly 

saline fluids contributes a disproportionally high fraction of the trace elements. Therefore, 

while the curves shown in Figure 8.7 may suggest that the trace element enrichment in arc 

magmas requires very high salinities, the average salinity of the fluids added to the source may 

actually be considerably lower. This effect nicely reconciles the fluid salinities required for the 

trace element enrichment with those inferred from primitive melt inclusions from arc basalts, 

which range mostly from 5 to 15 wt.% NaCl equivalent (Métrich and Wallace 2008).  

Another important effect that is not directly considered in our model is the modification of fluid 

composition by interaction with the nominally anhydrous minerals of the mantle peridotite 

during percolation to the zone of melting.  According to Mierdel et al. (2007), at temperatures 

of 800 – 900 ˚C as they are expected in the mantle just above the slab surface, orthopyroxene 

may dissolve up to 0.5 wt% water. Any aqueous fluid percolating through this part of the mantle 

wedge will therefore likely lose water and become more concentrated. While this process will 

not affect the delivery of the incompatible trace elements to the mantle wedge, it is important 
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to understand the water budget of the entire process. The models shown in Figure 8.7 involve 

2.5 – 10 wt. % fluid addition to the source of melting. Assuming that this fluid contained 60 – 

70 wt. % water and the water is completely incompatible during melting, this would mean that 

for 20 % partial melting, the magma generated contains 8 – 32 wt. % of water. While the lower 

bound of this estimate is entirely realistic for primitive arc basalts (Métrich and Wallace 2008, 

Goltz et al. 2020), the upper bound is clearly out of the range of water contents observed in 

nature. However, if some of the water originally present in the fluid has been lost due to 

interaction with the mantle peridotite before it reaches the zone of melting, this problem 

disappears. During the “desiccation” of the fluid, the flux of trace elements transported likely 

would not change, as they are mostly highly incompatible in mantle minerals, as is chlorine 

(Bernini et al. 2013). The excess solute in the fluid, which is mainly silica, would probably 

react with olivine to form some orthopyroxene during the percolation process. Evidence for 

such “desiccated” subduction zone fluids is preserved in highly concentrated, Cl-rich 

inclusions in diamonds with exceptionally high concentrations of incompatible trace elements 

(Weiss et al. 2005, Klein BenDavid et al. 2007). 

8.5.3. The cause of melting in subduction zones 

In order to address the question whether hydrous slab fluids or sediment melts are the essential 

triggers for arc magmatism, we also calculated the trace element composition of magma 

produced by partial melting of a mantle source enriched by a few percent of sediment melts. 

The melt compositions for temperatures that are realistic for a slab surface were taken from the 

experimental studies of Hermann and Rubatto (2009), Skora and Blundy (2010) and Skora et 

al. (2015). Hermann and Rubato (2009) experimentally studied a sediment composition close 

to GLOSS (global subducting sediment, Plank and Langmuir 1988). However, in their 

experimental starting material, some trace elements were doped at much higher concentration 

levels than in GLOSS. Therefore, in order to make their experimental results compatible with 

natural starting material compositions, we multiplied their experimentally derived trace 

element concentrations in partial melts by a correction factor fX = (concentration of X in 

GLOSS) / (concentration of X in experimental starting material). A similar correction factor, 

relative to natural radiolarian clay composition, was applied to the data from the melting 

experiments from synthetic radiolarian clay by Skora and Blundy (2010). On the other hand, 
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no correction was applied to the experimental results of Skora et al. (2015) on natural 

calcareous clay or marl. 

Aside from the compositions of the sediment melts, the assumptions of the model are identical 

to that described above for fluid metasomatism, i.e. the initial depleted mantle composition is 

from Salters et al. (2002), the peridotite/basalt partition coefficients are the same as above and 

a degree of melting of 20 % in the mantle source as assumed. Figure 8.8 shows the results of 

this calculation. Obviously, the addition of sediment melt to the magma source has only limited 

success in producing a trace element enrichment pattern that resembles a typical arc basalt. 

None of the sediment melts produces the required enrichment of the light rare earths La and 

Ce. Moreover, several of the sediment melts yield an incorrect fractionation of Nb relative to 

the light rare earths. The GLOSS melts give little fractionation and the calcareous clay or marl 

melts would even produce an enrichment of Nb relative to La and Ce. Most of the partial melts 

– with the exception of GLOSS at 4.5 GPa and 800 ˚C – have difficulties to enrich Sr to the 

required level. Overall, the GLOSS melt is most successful in producing an arc-like pattern. 

The reason for this, however, is very simple: The bulk composition of GLOSS is similar to 

average upper continental crust as already noted by Plank and Langmuir (1988). Since the 

upper continental crust is mostly produced by magmatism in subduction zones, GLOSS has 

essentially inherited a subduction-like trace-element enrichment pattern. This pattern can, 

however, not have formed in the first place if it requires the addition of a sediment component, 

which already contains the required enrichment pattern. In contrast to this, our preferred model 

of the addition of a saline fluid from a subducted MORB eclogite to the zone of melting in the 

mantle wedge produces a typical arc-basalt pattern de novo, without requiring any other pre-

enrichment process.  

Another interesting observation from Figure 8.8 is that for thorium, but also for some other 

elements, the enrichment pattern produced by different sediment melts is very different. While 

carbonate melts do not enrich thorium at all, partial melts from radiolarian clay are very 

efficient in doing so. This is a rather curious result, as high thorium enrichments were often 

considered to be some kind of fingerprint of sediment melts (e.g. Elliott et al. 1997, Class et al. 

2000). As our experimental results (Figures 8.3 and 8.4) and models (Figure 8.7) show, a strong 

thorium enrichment may well be produced by high-salinity fluids, or generally aqueous fluids 
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Figure 8.8. Predicted trace element enrichment patterns for partial melts of the mantle wedge enriched 

by 5 wt. % of sediment melts. Near-solidus melt compositions were taken from the experimental studies 

of Hermann and Rubatto (2009) for GLOSS (global subducting sediment), Skora and Blundy (2010) for 

radiolarian clay and Skora et al. (2015) for calcareous sediment and marl. Compositions for primitive 

arc basalts as compiled by Kelemen et al. (2005) are shown for comparison as grey lines. All data were 

normalized to the “all MORB average” of Gale et al.  (2013). A few of the rare earth data have been 

interpolated between neighboring rare earths. 
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released above 4 GPa.  The strong differences in the enrichment pattern caused by different 

sediment melts (Figure 8.8) would suggest that if sediment melts contributed strongly to trace 

element enrichment, it should be easy to distinguish arc basalts produced in subduction zones 

with mostly carbonate subduction from those with mostly pelite subduction or no sediment 

subduction. However, this is not so. The compilation of primitive arc basalt composition shown 

as background in Figures 8.7 and 8.8 includes data from arcs with little or no sediment 

subduction (e.g. Kamchatka) as well as arcs with massive sediment subduction. Also, the nature 

of the sediment subducted changes, from mostly pelites (e.g. Tonga) in some arcs to mostly 

carbonates (e.g. Central America) in other arcs. Nevertheless, the enrichment pattern of trace 

elements in the different arcs is overall remarkably similar.  

Based on the comparison of the modeling results shown in Figures 8.7 and 8.8, we therefore 

conclude that the sediment melt contribution to primitive arc basalts is negligible and that these 

magmas are essentially produced by melting of a mantle source enriched by hydrous saline 

fluids released from the basaltic part of the subducted slab. Our results do not rule out some 

sediment melt contribution to other types of magmas found in subduction zones; in particular 

for ultrapotassic melts, such a contribution is plausible (e.g. Mallik et al. 2015). However, 

numerous geochemical arguments for a sediment contribution to the generation of arc magmas, 

such as the correlation of trace element (e.g. Th/La) and isotope ratios of magmas and 

subducted sediments (e.g. Armstrong 1971, Turner and Foden 2001, Plank 2005) do not 

necessarily involve sediment melting. The experimental data presented here for a basaltic 

eclogitic system make it rather plausible that saline fluids could transport incompatible trace 

elements, including thorium from the sediments to the source of melting. This process could 

also transport Pb, Sr, and Nd isotopic signals. While this hypothesis requires additional 

experimental testing with sediment lithologies, a recent study by Ferrando et al. (2019) 

provides direct observational support for this mechanism. They studied aqueous fluid 

inclusions from subducted kyanite-bearing quartzites from Sulu (China) and observed strong 

enrichments of Rb, Ba, Sr, Pb, U, Th and the light rare earths in the fluid. We therefore suggest 

that in particular isotopic “sediment signals” are often transported by saline aqueous fluids. 

Moreover, as noted above, some elemental enrichments, particularly of thorium that have often 

been attributed to sediment melts (e.g. Elliott et al. 1997, Class et al. 2000) can be produced by 

saline fluids released from the basaltic part of the subducted slab alone, without any sediment 

involvement. We therefore suggest that the importance of sediment melting to the generation 
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of arc magmas has been greatly overestimated and in reality, this contribution may be rather 

limited.  
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8.7. Supplementary tables 

 

Table 8.3.  Summary of experiments. 

Experiment Pressure (GPa) 
Temperature 

(⁰C) 

NaCl in fluid 

(wt. %) 
Duration (h) 

Capsule 

material 

PC09 4 800 0 84 Au 

PC22 4 800 0 120 Pt 

PC37 4 800 0 68 Pt 

PC38 4 800 0 128 Pt 

PC24 4 800 0 144 Pt 

PC14 4 800 1 69 Au 

PC23 4 800 5 163 Pt 

PC10 4 800 5 68 Au 

PC27 4 800 10 93 Pt 

PC18 4 800 10 52 Pt 

PC36 4 800 15 103 Pt 

PC39 4 800 15 126 Pt 

PC15 4 800 15 63 Au 

PC41 4 700 0 123 Pt 

PC45 4 700 5 185 Pt 

PC42 4 700 10 126 Pt 

PC40 4 700 15 127 Pt 

PC47 5 800 0 148 Pt 

PC49 5 800 5 125 Pt 

PC52 5 800 10 79 Pt 

PC53 5 800 15 126 Pt 

MA08 6 800 0 121 Pt 

MA07 6 800 10 76 Pt 

MA10 6 800 15 76 Pt 



8. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas 

 

151 

 

Table 8.4.  Fluid bulk composition 

Experiment Cl SiO2 Al2O3 Na2O CaO FeO MgO Total solutes 

PC09 0 12.0 (3) 1.02 (4) 1.13 (5) 0.61 (2) 0.25 (2) 0.141 (5) 15.1 (4) 
PC22 0 5.46 (7) 0.36 (1) 0.48 (1) 0.30 (1) 0.07 (1) 0.068 (1) 6.7 (1) 
PC37 0 24.6 (2) 1.82 (1) 2.28 (4) 1.13 (4) 0.5 (3) 0.224 (3) 30.6 (7) 
PC38 0 24.5 (5) 1.68 (2) 2.14 (4) 0.75 (2) 0.93 (7) 0.202 (4) 30.2 (6) 
PC24 0 7.0 (5) 0.45 (3) 0.65 (4) 0.52 (3) 0.77 (8) 0.142 (5) 9.5 (7) 

PC14 0.48 (3) 19 (1) 2.11 (4) 2.00 (5) 1.5 (1) 1.0 (5) 0.4 (1) 27 (2) 
PC23 2.3 (2) 27 (2) 1.52 (9) 3.6 (2) 2.7 (2) 1.3 (1) 0.83 (9) 38 (3) 
PC10 3.7 (3) 41 (2) 1.9 (1) 3.86 (7) 2.8 (6) 2.8 (1) 1.2 (1) 57 (3) 
PC27 4.9 (5) 13.3 (5) 1.61 (3) 3.87 (6) 7.5 (6) 0.74 (3) 0.537 (6) 33 (2) 
PC18 4.2 (3) 27.4 (3) 0.65 (9) 3.93 (6) 6.9 (2) 1.26 (5) 0.23 (1) 44 (1) 
PC36 6.5 (2) 34.9 (9) 0.93 (3) 5.66 (6) 2.7 (4) 1.24 (8) 0.43 (1) 51 (2) 
PC39 6.8 (5) 27 (3) 1.0 (1) 5.74 (8) 2.6 (8) 2.6 (3) 0.76 (8) 45 (5) 
PC15 6.9 (8) 13.1 (2) 1.4 (1) 9.1 (4) 9.2 (7) 2.9 (2) 1.62 (9) 43 (3) 
PC41 0 5.91 (7) 0.170 (2) 0.37 (1) 0.09 (1) 0.22 (9) 0.061 (3) 6.8 (2) 
PC45 2.81 (1) 7.26 (1) 0.30 (1) 2.33 (4) 0.42 (6) 1.16 (5) 0.153 (2) 13.8 (2) 
PC42 5.2 (5) 14 (1) 0.28 (2) 4.19 (4) 1.14 (7) 0.83 (9) 0.23 (1) 25 (2) 
PC40 7.74 (4) 14.1 (3) 0.22 (2) 5.5 (1) 1.97 (4) 1.4 (2) 0.26 (1) 29.5 (8) 
PC47 0 25.9 (4) 1.82 (7) 2.81 (5) 1.18 (6) 0.44 (1) 0.57 (2) 32.7 (6) 
PC49 2.73 (1) 9.3 (3) 0.31 (1) 2.06 (3) 0.95 (7) 0.23 (7) 0.17 (1) 15.1 (5) 
PC52 4.8 (4) 12 (1) 0.37 (3) 3.0 (3) 1.9 (2) 0.20 (2) 0.30 (3) 21 (2) 
PC53 8.11 (3) 8.2 (3) 0.37 (1) 4.89 (9) 3.02 (6) 1.1 (2) 0.47 (1) 24.4 (7) 
MA08 0 39 (2) 5.4 (5) 3.3 (1) 1.7 (2) 1.8 (2) 0.78 (8) 52 (3) 
MA07 4.87 (8) 20 (2) 1.28 (7) 3.36 (8) 2.8 (2) 0.44 (2) 0.57 (4) 33 (2) 
MA10 7.86 (5) 12.0 (7) 0.60 (2) 3.74 (7) 4.1 (2) 0.54 (1) 0.58 (2) 28 (1) 

All compositions are given in weight %. Number in parentheses are one standard deviation in the last digit.  
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Table 8.5.  Trace elements in the fluid 

Experiment PC41 PC45 PC42 PC40 PC47 PC49 PC52 PC53 MA08 MA07 MA10 

Cl (wt. %) 0 2.81 (1) 5.2 (5) 7.74 (4) 0 2.73 (1) 4.8 (4) 8.11 (3) 0 4.87 (8) 7.86 (5) 

Li 188 (5) 735 (16) 852 (53) 816 (9) 1300 (36) 892 (25) 794 (74) 836 (22) 1497 (72) 1173 (50) 1365 (16) 

Be 58 (1) 56 (1) 97 (8) 99 (1) 316 (8) 195 (8) 266 (24) 215 (9) 776 (82) 682 (63) 316 (16) 

B 922 (18) 1822 (5) 4723 (447) 1630 (26 1338 (15) 874 (35) 826 (77) 1077 (34) 1247 (118) 1792 (183) 1870 (92) 

Rb 1475 (20) 2852 (26) 4452 (344) 2362 (12) 1588 (57) 1433 (49) 1175 (108) 1154 (33) 1226 (52) 2853 (265) 2831 (96) 

Cs 2516 (4) 4420 (153) 6013 (473) 3329 (42) 2047 (5) 1853 (89) 3409 (290 3837 (129) 1924 (40) 4609 (442) 4981 (192) 

Sr 83 (8) 1244 (47) 2203 (114) 1993 (30) 519 (20) 581 (32) 980 (97) 1799 (40) 528 (50) 2557 (112) 3577 (70) 

Ba 979 (23) 2534 (94) 3304 (143) 2871 (51) 1153 (46) 1369 (54) 2886 (442) 3102 (664) 767 (69) 2940 (206) 3781 (105) 

Ti 25.5 (8) 44 (3) 78 (9) 79 (17) 550 (11) 93 (4) 109 (10) 118 (5) 1396 (154) 627 (44) 273 (14) 

Nb 1.94 (5) 1.89 (2) 2.7 (3) 2.6 (1) 12.1 (3) 6.5 (2) 6.2 (5) 4.7 (2) 28 (3) 18 (2) 8.5 (5) 

Ta 0.58 (5) 0.7 (1) 1.6 (2) 2.0 (2) 1.77 (7) 1.12 (7) 1.5 (1) 1.37 (7) 12 (1) 3.8 (4) 1.35 (4) 

La 0.23 (2) 0.5 (1) 1.4 (2) 4.0 (2) 0.45 (2) 5.1 (3) 7.2 (7) 26 (3) 19 (3) 23 (1) 46 (2) 

Ce 0.84 (6) 4 (1) 6 (1) 18 (2) 2.9 (1) 19.9 (8) 25 (2) 64 (5) 84 (11) 124 (12) 153 (7) 

Nd 0.26 (2) 0.46 (7) 1.5 (4) 3.7 (3) 0.55 (3) 3.5 (2) 6.4 (6) 17 (1) 20 (3) 21 (1) 34 (2) 

Sm 0.26 (3) 0.47 (6) 1.1 (1) 3.4 (3) 0.64 (5) 3.0 (2) 6.1 (5) 14.4 (8) 21 (3) 21 (2) 29 (1) 

Eu 0.45 (4) 1.1 (1) 1.7 (1) 7.0 (5) 1.25 (4) 5.3 (2) 14 (1) 37 (2) 38 (4) 39 (3) 59 (3) 

Gd 0.24 (2) 0.44 (5) 1.2 (2) 3.3 (2) 0.80 (5) 2.4 (1) 5.2 (4) 11.5 (6) 18 (2) 16.0 (8) 18.3 (9) 

Dy 0.37 (4) 0.44 (7) 1.4 (1) 2.7 (4) 1.06 (6) 1.24 (7) 2.4 (2) 5.3 (2) 15 (2) 7.8 (5) 5.0 (3) 

Er 0.56 (7) 0.7 (1) 2.7 (3) 4.6 (6) 1.2 (2) 0.74 (7) 1.2 (1) 2.9 (1) 17 (3) 4.9 (7) 2.1 (1) 

Yb 0.9 (1) 1.6 (2) 7.9 (9) 10 (1) 1.2 (2) 0.50 (7) 0.9 (1) 1.8 (2) 17 (3) 3.7 (7) 1.3 (1) 

Lu 0.54 (8) 0.82 (5) 5.6 (5) 7.3 (9) 0.8 (1) 0.33 (4) 0.6 (1 1.27 (9) 12 (2) 2.6 (7) 0.9 (1) 

Y 13 (2) 13.8 (4) 43 (4) 30 (4) 4.0 (7) 11 (4) 11 (2) 35 (7) 94 (51) 11 (5) 2.3 (2) 

Sc 0.58 (6) 0.97 (5) 2.7 (2) 3.8 (5) 4.1 (2) 0.78 (7) 1.1 (1) 1.8 (1) 12 (1) 5.1 (6) 2.0 (1) 

Pb 96 (4) 361 (9) 408 (93) 1118 (35) 534 (12) 377 (19) 435 (44) 343 (19) 386 (14) 367 (39) 1358 (266) 

Th 0.37 (2) 0.12 (3) 0.23 (4) 0.6 (1) 0.26 (2) 4.2 (2) 4.3 (4) 2.5 (1) 15 (2) 5.4 (4) 2.7 (1) 

U 20 (4) 3.5 (4) 7.7 (9) 20 (3) 17.4 (9) 42 (3) 43 (5) 61 (4) 124 (8) 137 (19) 64 (4) 

All compositions are given in ppm by weight, except for Cl (wt.%). Numbers in parentheses are one standard deviation in the last digits.  
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Table 8.6.  Garnet composition 

Experiment PC41 PC45 PC42 PC40 PC47 PC49 PC52 PC53 MA08 MA07 MA10 

Cl (wt. %) 0 2.81 (1) 5.2 (5) 7.74 (4) 0 2.73 (1) 4.8 (4) 8.11 (3) 0 4.87 (8) 7.86 (5) 

Li 114 (9) 96 (7) 126 (14) 87 (6) 159 (11) 125 (21) 149 (22) 152 (17) 147 (51) 222 (27) 116 927) 

Be < 33 35 (6) 110 (20) 44 (2) 66 (4) 92 (22) 63.1 (6) 93 (17) 167 (38) 118 (12) 44 (6) 

B < 82 46 (7) < 96 23.7 (9) 98 (6) 107 (30) 36.1 (3) 53 (8) 157 (62) 78 (10) 49 (6) 

Rb 10 (3) 10 (5) 8 (2) 1.52 (9) 4.1 (9) 15 (4) 8 (4) 8 (2) 19 (8) 11 (3) 33 (22) 

Cs 7 (2) 10 (6) 16 (8) 0.67 (4) 3 (1) 14 (3) 4 (2) 6 (3) 18 (3) 7 (2) 54 (37) 

Sr 17 (3) 19 (4) 54 (18) 3.7 (7) 4.0 (8) 8 (2). 23 (6) 24 (3) 22 (11) 44 (12) 66 (22) 

Ba 7.7 (5) 18 (7) 25 (8) 6 (2) 12.5 (8) 33 (7) 10.3 (1) 9.7 (5) 43 (9) 25 (8) 11 (2) 

Ti 3570 (286) 3243 (162) 3371 (202) 1618 (307) 3065 (184) 3353 (268) 4605 (645) 3106 (186) 1148 (402) 7111 (1209) 4083 (1102) 

Nb 16 (2) 7 (1) 19 (7) 2.0 (9) 6 (1) 6.2 (8) 25 (8) 9 (2) 25 (18) 43 (17) 30 (11) 

Ta 14 (2) 6 (1) 17 (9) 1.7 (5) 5 (1) 7 (1) 19 (6) 6.0 (9) 31 (23) 39 (17) 25 (10) 

La 5 (2) 1.6 (3) 9 (4) 1.2 (5) 1.4 (2) 1.5 (2) 3.5 (3) 7 (2) 10 (6) 2.2 (3) 15 (9) 

Ce 22 (10) 16 (4) 37 (7) 8 (1) 5.4 (9) 13 (2) 21 (1) 32 (4) 12 (6) 22 (4) 53 (30) 

Nd 14 (3) 4.4 (5) 12 (2) 4 (1) 22 (3) 27 (4) 37 (3) 47 (4) 35 (14) 24 (5) 38 (13) 

Sm 101 (5) 20 (2) 24 (5) 36 (15) 129 (9) 143 (13) 164 (7) 162 (15) 37 (14) 103 (11) 137 (42) 

Eu 216 (9) 54 (5) 47 (6) 79 (26) 232 (23) 235 (17) 305 (12) 291 (24) 30 (14) 195 (15) 214 (56) 

Gd 332 (11) 89 (10) 92 (12) 145 (44) 300 (30) 296 (18) 395 (14) 381 (20) 63 (33) 254 (25) 259 (74) 

Dy 726 (46) 242 (14) 370 (17) 492 (41) 468 (39) 477 (25) 552 (16) 508 (51) 105 (68) 304 (43) 355 (94) 

Er 967 (125) 481 (22) 1074 (80) 1284 (82) 603 (55) 666 (53) 801 (29) 703 (88) 168 (120) 305 (63) 435 (110) 

Yb 852 (142) 622 (56) 1498 (155) 2030 (271) 613 (62) 663 (60) 769 (42) 644 (79) 194 (128) 253 (66) 413 (106) 

Lu 636 (123) 540 (58) 1361 (163) 1919 (279) 491 (46) 540 (56) 627 (26) 502 (70) 152 (107) 184 (54) 316 (87) 

Y 173 (16) 131 (20) 215 (12) 284 (41) 124 (38) 86 (4) 131 (31) 88 (10) 51 (22) 174 (35) 101 (31) 

Sc 434 (48) 310 (10) 523 (55) 678 (54) 508 (44) 464 (44) 564 (30) 417 (44) 208 (135) 208 (49) 299 (82) 

Pb 9 (2) 8 (2) 16 (3) 2.4 (1) 6 (3) 18 (5) 11 (3) 10 (1) 17 (9) 12 (5) 17 (6) 

Th 4 (3) 0.7 (2) 2.6 (7) 2 (1) 2.5 (2) 4.1 (4) 2.5 (2) 7 (1) 8 (4) 2.9 (4) 7 (3) 

U 33 (3) 3.4 (4) 7 (2) 6 (2) 53 (7) 57 (6) 52 (5) 68 (10) 15 (9) 21 (3) 61 (18) 

All compositions are given in ppm by weight, except for Cl (wt.%). Numbers in parentheses are one standard deviation in the last digits. < Detection limits are 
reported as maximum values when element concentrations were too low to be measured. 
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Table 8.7.  Omphacite composition 

Experiment PC41 PC45 PC42 PC40 PC47 PC49 PC52 PC53 MA08 MA07 MA10 

Cl (wt. %) 0 2.81 (1) 5.2 (5) 7.74 (4) 0 2.73 (1) 4.8 (4) 8.11 (3) 0 4.87 (8) 7.86 (5) 

Li 1286 (77) 1251 (39) 1221 (55) 1280 (58) 1381 (46) 1315 (41) 914 (30) 871 (23) 646 (42) 1565 (326) 863 (24) 

Be 747 (55) 471 (41) 895 (44) 845 (34) 763 (13) 493 (17) 533 (14) 490 (50) 724 (39) 763 (71) 733 (50) 

B 212 (40) 205 (32) 223 (30) 309 (17) 167 (21) 40 (5) 198 (14) 117 (12) 130 (28) 95 (16) 85 (16) 

Rb 62 (4) 209 (78) 261 (54) 132 (17) 43 (12) 8 (3) 119 (13) 28 (2) 280 (42) 60 (31) 65 (30) 

Cs 60 (3 210 (31) 839 (317) 343 (44) 66 (18) 4 (1) 60 (7) 24 (3) 304 (65) 33 (17) 82 (39) 

Sr 661 (132) 237 (30) 926 (125) 450 (95) 183 (76) 88 (28) 411 (117) 139 (12) 660 (62) 672 (294) 220 (72) 

Ba 182 (22) 183 (39) 269 (162) 21 (2) 75 (11) 51 (11) 250 (132) 51 (14) 481 (47) 264 (128) 35 (14) 

Ti 4824 (338) 2549 (535) 4174 (209) 3582 (287) 2002 (60) 1517 (91) 2498 (475) 2532 (354) 10575 (952) 3102 (806) 2948 (766) 

Nb 38 (6) 19 (5) 19 (1) 18 (4) 4.1 (5) 2.1 (3) 15 (7) 15 (6) 32 (4) 16 (9) 18 (10) 

Ta 37 (8) 14 (5) 13 (1) 1 (3) 2.9 (5) 1.6 (1) 12 (6) 12 (6) 33 (3) 14 (8) 15 (8) 

La 57 (13) 3.2 (31) 66 (11) 16 (2) 37 (18) 11 (8) 94 (18) 29 (5) 37 (5) 10 (4) 3 (1) 

Ce 282 (55) 37 (22) 470 (75) 146 (11) 117 (46) 34 (24) 269 (52) 88 (13) 115 (11) 48 (18) 15 (3) 

Nd 62 (14) 2.3 (20) 58 (11) 16 (4) 41 (18) 16 (9) 111 (20) 47 (7) 63 (5) 22 (6) 16 (1) 

Sm 63 (14) 4 (3) 58 (10) 20 (5) 43 (14) 21 (7) 108 (18) 52 (6) 106 (6) 38 (6) 37 (2) 

Eu 71 (14) 7 (5) 76 (13) 28 (5) 48 (13 24 (6) 121 (10) 689 (9) 147 (9) 46 (10) 48 (3) 

Gd 69 (14) 6 (4) 59 (10) 30 (5) 48 (11) 27 (4) 113 (7) 72 (9) 167 (8) 53 (10) 50 (6) 

Dy 68 (14) 9 (7) 64 (8) 43 (8) 52 (11) 20 (4) 134 (10) 76 (14) 168 (14) 53 (14) 40 (10) 

Er 75 (17) 13 (10) 82 (9) 63 (12) 68 (16) 16 (5) 171 (18) 81 (22) 191 (19) 53 (17) 43 (18) 

Yb 72 (18) 15 (11) 86 (7) 68 (14) 62 (19) 14 (6) 173 (17) 87 (24) 182 (19) 44 (18) 35 (16) 

Lu 57 (15) 12 (9) 72 (6) 55 (11) 50 (14) 9 (6) 142 (15) 65 (18) 148 (15) 32 (14) 25 (12) 

Y 25 (8) 25 (7) 35 (9) 15 (3) 43 (12) 13 (3) 31 (3) 23 (5) 28 (2) 32 (7) 11 (1) 

Sc 110 (10) 92 (7) 107 (6) 113 (15) 91 (11) 40 (6) 161 (14) 100 (15) 198 (10) 85 (9) 114 (10) 

Pb 243 (46) 60 (6) 157 (38) 145 (21) 56 (22) 17 (7) 184 (40) 30.4 (3) 106 (16) 108 (66) 26 (7) 

Th 14 (2) 1.0 (7) 12 (3) 3.1 (6) 19 (9) 4 (2) 19 (4) 5.3 (7) 8 (1) 2.1 (5) 3 (2) 

U 37 (4) 2.3 (22) 48 (4) 15 (2) 30 (11) 6 (2) 31 (3) 18 (1) 27 (5) 11 (4) 13 (5) 

All compositions are given in ppm by weight, except for Cl (wt.%). Numbers in parentheses are one standard deviation in the last digits. < Detection limits are 
reported as maximum values when element concentrations were too low to be measured. 
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Table 8.8.  Rutile composition 

Experiment PC41 PC45 PC42 PC40 PC47 PC49 PC52 PC53 MA08 MA07 MA10 

Cl (wt. %) 0 2.81 (1) 5.2 (5) 7.74 (4) 0 2.73 (1) 4.8 (4) 8.11 (3) 0 4.87 (8) 7.86 (5) 

Li < 111 < 64 < 525 < 2342 < 107 < 120 < 85 < 95 < 869 < 643 < 499 

Be < 146 < 82 < 151 < 259 < 112 < 152 < 187 < 240 < 1570 < 1134 < 730 

B < 252 < 84 < 938 < 1326 < 254 < 145 < 133 < 171 < 1343 < 1003 < 1512 

Rb < 94 < 48 < 1177 < 783 < 14 < 106 < 82 < 55 < 1180 < 847 < 207 

Cs < 326 < 54 < 2132 < 1569 < 15 < 360 < 165 < 96 < 597 < 465 < 530 

Sr < 98 < 94 < 2637 < 236 < 15 < 55 < 48 < 30 < 927 < 686 < 855 

Ba < 243 < 199 < 283 < 178 < 23 < 44 < 47 < 55 < 1501 < 1034 < 599 

Nb 6391 (1300) 5828 (79) 6392 (371) 5706 (34) 6578 (556) 7079 (305) 7922 (287) 7339 (164) 6039 (173) < 6260 7658 (230) 

Ta 5863 (1365) 5287 (347) 6008 (563) 5164 (115) 6982 (681) 6987 (354) 7713 (192) 7254 (158) 5963 (177) < 6267 7429 (677) 

La < 14 < 18 < 795 < 36 < 5 < 15 < 169 < 5 < 45 < 37 < 55 

Ce < 70 < 64 < 2403 < 81 < 17 < 44 < 444 < 8 < 268 < 215 < 174 

Nd < 32 < 19 < 801 < 27 < 13 < 27 < 182 < 23 < 63 < 55 < 49 

Sm < 17 < 20 < 751 < 53 < 16 < 34 < 121 < 34 < 66 < 56 < 47 

Eu < 19 < 11 < 736 < 133 < 10 < 20 < 61 < 10 < 43 < 32 < 65 

Gd < 28 < 22 < 634 < 151 < 25 < 34 < 77 < 38 < 54 < 47 < 63 

Dy < 20 < 15 < 624 < 267 < 28 < 19 < 35 < 23 < 32 < 30 < 39 

Er < 46 < 22 < 499 < 187 < 42 < 22 < 45 < 26 < 36 < 34 < 28 

Yb < 56 < 13 < 501 < 166 < 50 < 23 < 32 < 33 < 31 < 29 < 35 

Lu < 36 < 6 < 340 < 132 < 37 < 6 < 20 < 9 < 9 < 9 < 15 

Y < 6 < 3 < 78 < 53 < 14 < 4 < 9 < 10 < 12 < 12 < 9 

Sc < 65 < 29 < 245 < 180 < 72 < 85 < 65 < 60 < 117 < 109 < 98 

Pb < 99 < 56 < 766 < 263 < 16 < 36 < 53 < 55 < 488 < 358 < 385 

Th < 7 < 4 < 394 < 9 < 4 < 8 < 170 < 5 < 16 < 14 < 9 

U < 100 < 10 < 463 < 20 < 19 < 51 < 146 < 31 < 70 < 58 < 107 

All compositions are given in ppm by weight, except for Cl (wt.%). Numbers in parentheses are one standard deviation in the last digits. < Detection limits are 
reported as maximum values when element concentrations were too low to be measured. 
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Table 8.9.  Fluid/eclogite partition coefficients 

Experiment PC41 PC45 PC42 PC40 PC47 PC49 PC52 PC53 MA08 MA07 MA10 

Cl (wt. %) 0 2.81 (1) 5.2 (5) 7.74 (4) 0 2.73 (1) 4.8 (4) 8.11 (3) 0 4.87 (8) 7.86 (5) 

Li 0.23 (2) 0.93 (5) 1.09 (11) 1.02 (5) 1.46 (8) 1.06 (6) 1.3 (2) 1.43 (7) 3.4 (4) 1.1 (3) 2.4 (1) 

Be > 0.12 0.19 (2) 0.17 (2) 0.19 (1) 0.65 (3) 0.59 (4) 0.78 (8) 0.65 (8) 1.6 (2) 1.4 (2) 0.69 (8) 

B > 5.8 13 (2) > 27.4 8.4 (6) 10 (1) 13 (3) 6 (1) 12 (1) 9 (3) 20 (4) 27 (5) 

Rb 36 (3) 22 (8) 28 (8) 30 (4) 57 (17) 137 (32) 15 (3) 57 (5) 7 (1) 70 (38) 54 (23) 

Cs 65 (4) 34 (6) 12 (5) 16 (2) 50 (13) 242 (59) 88 (18) 229 (32) 10 (2) 203 (105) 70 (30) 

Sr 0.2 (1) 8 (1) 3.8 (7) 7 (2) 5 (2) 10 (4) 3 (1) 19 (2) 1.3 (2) 6 (3) 23 (7) 

Ba 9 (1) 22 (5) 19 (12) 193 (17) 23 (4) 31 (6) 17 (11) 90 (40) 3 (1) 17 (9) 148 (53) 

Ti 0.0016 (1) 0.0031 (2) 0.0053 (4) 0.0064 (6) 0.04 (1) 0.0067 (5) 0.032 (6) 0.0083 (6) 0.21 (3) 0.13 (3) 0.08 (2) 

Nb 0.012 (2) 0.014 (1) 0.018 (1) 0.021 (2) 0.089 (9) 0.045 (3) 0.035 (3) 0.029 (2) 0.19 (2) 0.12 (1) 0.048 (4) 

Ta 0.004 (1) 0.0057 (7) 0.012 (1) 0.018 (2) 0.012 (2) 0.008 (1) 0.009 (1) 0.009 (1) 0.08 (1) 0.025 (3) 0.008 (1) 

La 0.006 (2) 0.20 (18) 0.033 (9) 0.40 (7) 0.02 (1) 0.7 (5) 0.12 (3) 1.3 (3) 0.7 (2) 3 (1) 6 (3) 

Ce 0.005 (1) 0.14 (10) 0.021 (7) 0.20 (3) 0.04 (2) 0.8 (5) 0.14 (4) 1.0 (2) 1.1 (2) 3 (1) 5 (2) 

Nd 0.006 (2) 0.15 (10) 0.04 (2) 0.3 (1) 0.017 (6) 0.17 (5) 0.07 (2) 0.35 (5) 0.39 (8) 0.9 (2) 1.4 (3) 

Sm 0.0033 (6) 0.04 (1) 0.025 (6) 0.13 (4) 0.008 (1) 0.044 (6) 0.045 (6) 0.15 (2) 0.27 (5) 0.33 (5) 0.38 (9) 

Eu 0.0035 (5) 0.041 (8) 0.026 (5) 0.15 (4) 0.010 (1) 0.049 (5) 0.070 (7) 0.23 (3) 0.38 (6) 0.37 (5) 0.5 (1) 

Gd 0.0014 (1) 0.011 (2) 0.017 (4) 0.04 (1) 0.0054 (7) 0.017 (2) 0.023 (2) 0.059 (5) 0.14 (3) 0.12 (2) 0.14 (4) 

Dy 0.0011 (2) 0.0043 (9) 0.0075 (8) 0.012 (3) 0.0048 (6) 0.0061 (6) 0.0080 (8) 0.021 (2) 0.11 (3) 0.051 (9) 0.030 (8) 

Er 0.0013 (3) 0.0034 (6) 0.0056 (9) 0.008 (1) 0.0041 (8) 0.0027 (4) 0.0028 (3) 0.009 (1) 0.09 (3) 0.03 (1) 0.011 (3) 

Yb 0.0024 (6) 0.006 (1) 0.012 (2) 0.011 (3) 0.0042 (9) 0.0018 (4) 0.0021 (4) 0.006 (1) 0.09 (4) 0.03 (1) 0.007 (2) 

Lu 0.0019 (6) 0.0037 (6) 0.010 (2) 0.009 (2) 0.0036 (9) 0.0015 (3) 0.0018 (3) 0.005 (1) 0.08 (3) 0.03 (1) 0.006 (2) 

Y 0.16 (4) 0.20 (3) 0.40 (6) 0.24 (6) 0.05 (2) 0.25 (9) 0.15 (5) 0.7 (2) 2.5 (15) 0.12 (7) 0.05 (2) 

Sc 0.0024 (4) 0.0054 (4) 0.010 (1) 0.011 (2) 0.016 (2) 0.0037 (6) 0.0035 (5) 0.008 (1) 0.06 (2) 0.038 (9) 0.011 (2) 

Pb 0.6 (1) 9 (1) 4 (2) 13 (2) 15 (6) 22 (6) 4 (1) 15 (1) 5 (1) 5 (4) 60 (22) 

Th 0.036 (8) 0.13 (9) 0.027 (9) 0.21 (7) 0.02 (1) 1.0 (3) 0.33 (9) 0.42 (6) 1.8 (5) 2.2 (4) 0.6 (2) 

U 0.6 (1) 1.3 (7) 0.24 (4) 1.8 (4) 0.4 (1) 1.6 (2) 1.1 (2) 1.6 (3) 6 (1) 9 (2) 2.0 (6) 

Numbers in parentheses are one standard deviation in the last digits; > minimum values of D are reported when only maximum concentrations of trace elements 
were available for garnet and/or omphacite. 
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9. Appendix: A study of natural melt inclusions from two 

Japanese volcanoes 

 

 

The experimental work conducted at the University of Bayreuth was complemented at Tohoku 

University with a study on natural olivine-hosted melt inclusions (MI) collected from two 

different arc volcanoes in Japan: Shinmoedake (in the Kirishima volcanic group) and 

Miyakejima (Figure 9.1). 

 

Figure 9.1. Location in Japan of Kirishima and Miyakejima volcanoes. 
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9.1. Shinmoedake and the 2011 eruption 

 

Shinmoedake is one of the most active volcanoes in the Kirishima volcanic group (Figure 9.2), 

which is located in southern Kyushu (Figure 9.1). Andesitic pyroclastic material, interlayered 

with lava flows, constitutes the present Shinmoedake volcanic edifice (Nakada et al. 2013). 

The volcanic activity of Kirishima lasts since ~ 600 ka, starting with caldera-forming eruptions, 

then forming about 330 ka ago stratovolcanoes with plinian, vulcanian, strombolian and 

phreatomagmatic eruptions (Imura, 1992; Nagaoka and Okuno, 2011). The Shinmoedake 

activity in 1822, 1959 and 1991, was characterized by phreatic explosions (Imura and 

Kobayashi, 1991; Tsutsui et al., 2005).  

The last Shinmoedake eruption took place in 2011, about 300 years after the last magmatic 

eruption. It started in January 2011 with a phreatomagmatic eruption, followed by sub-plinian 

eruptions and explosions, lava accumulation in the crater and from February to April repeated 

vulcanian events (Nakada et al 2013; Suzuki et al 2013). 

 

Figure 9.2. Map of the Kirishima volcano group. Modified after Nakada et al. 2013. 
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The magma erupted in 2011 is andesitic and the composition of the ejecta lie within the range 

of previous Shinmoedake products. The sub-plinian events produced white, brown and gray 

pumices, the former having higher SiO2 content (62 – 63 wt. %) than brown and gray pumices 

(57 – 58 wt. %, Suzuki et al. 2013). Suzuki et al. (2013) interpreted the white pumices as being 

representative of a shallower silicic andesite (SA) end-member magma (stored at ~ 870 °C and  

120 MPa). Darker pumices on the other hand, would be the product of syn-eruptive magma 

mixing with a deeper basaltic andesite (BA) magma in a proportion of 30 – 40 % SA with 60 

– 70 % BA . The high-temperature BA magma was not erupted directly, but it was estimated 

to contain 55 wt. % SiO2 and to have been stored in a deeper magma chamber at ~ 1030 °C 

and 250 MPa. 

All the pumices are coarsely plagioclase-phyric, with minor clinopyroxene, orthopyroxene and 

Fe-Ti oxides. Gray and brown pumices also contain olivine as phenocrysts. Olivines were 

interpreted by Suzuki et al. (2013) to have formed rapidly from the BA prior to plagioclase and 

before the mixing event. Reported Mg# [100 × Mg / (Mg + Fe)] for olivine phenocrysts range 

between 74.6 – 79.0. Some melt inclusions with andesitic composition (54.1– 57.7 wt. % SiO2) 

and average water content of 4.4 wt. % were trapped in olivine due to the rapid crystallization. 

 

9.2. Miyakejima and the Ofunato stage 

 

Miyakejima is a frontal arc volcano of the Izu arc, and is located about 200 km south of Tokyo 

(Figure 9.1). Miyakejima is a composite volcano with a twofold caldera (Chihara et al., 1984; 

Hayakawa, 1990). Its volcanic edifice has an average diameter of 20 km, of which about 8 km 

above sea, with a slight elongation in the north-south direction. Miyakejima is one of the most 

active Japanese volcanoes, and its eruptive history can be divided into four main stages (Tsukui 

& Suzuki, 1998; Tsukui et al., 2001; Niihori et al., 2003): the Ofunato stage (10000 – 4000 

yBP), the Tsubota stage (4000 – 2500 yBP), the Oyama stage (2500 yBP – 1469 AD) and the 

Shinmio stage (1469 AD – present).  

The main cone was formed during the Ofunato stage, which is regarded as the first phase of 

the Miyakejima magma plumbing system evolution (Ushioda et al. 2018). Miyakejima ejecta 

have a wide compositional range within the tholeiitic series, going from basalts (48.5 wt. % 
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SiO2) to andesite (63 wt. % SiO2, Tsukui et al. 2002). The products of the Ofunato stage 

represent the least differentiated material erupted over the past 10000 years and consist mostly 

of basaltic lavas (48.5 - 54.5 wt. % SiO2) and pyroclastic rocks with limited compositional 

variation (Tsukui et al. 2002, Niihori et al., 2003). The magma chamber conditions of the 

Ofunato basalts were estimated to be ~ 150 MPa, ~ 1100 °C, and the melt H2O content to be ~ 

3 wt. % (Ushioda et al. 2018). 

The Ofunato scoria, found in the bottom layer of the Ofunato explosion breccia (Figure 9.3) is 

the most undifferentiated product of Miyakejima. The bulk rock composition of the Ofunato 

scoria is: 50.11 wt. % SiO2, 0.92 wt. % TiO2, 18.09 wt. % Al2O3, 11.06 wt. % FeO, 0.21 wt. % 

MnO, 5.78 wt. % MgO, 11.78 wt. % CaO, 1.85 wt. % Na2O, 0.22 wt. % K2O, 0.01 wt. % P2O5 

(Ushioda et al. 2014). The Ofunato scoria contains phenocrysts consisting for 10.9 vol. % of 

highly calcic plagioclase (> An90) and for 0.7 vol. % of magnesian olivine (~ Fo80, Ushioda 

et al. 2014, 2018). Basaltic melt inclusions found in olivine are considered to be representative 

of the melt composition in the magma chamber. A wide range of water content was reported 

for such MIs, ranging from a maximum of 3.4 wt. % to less than 50 ppm (Ushioda et al. 2018). 

 

9.3. Sample preparation 

 

Samples include gray and brown pumices from the 2011 Shinmoedake eruption and Ofunato 

scoria from Miyakejima. The pumices were collected at the top of Nakadake crater, a lateral 

vent of Shinmoedake (Figure 9.2). Detailed sub-unites are not well identified for this location. 

Ofunato scoria were sampled in the location shown in Figure 9.3. 

The two types of samples were separately crushed into coarse grains using a steel mortar. After 

isolation of the phenocrysts from the groundmass, olivine single crystals were handpicked 

under an optical microscope while submerged in ethanol. Olivine phenocrysts were then 

mounted in resin and polished on one side to expose the maximum number of melt inclusions 

(see Figure 9.4). 
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Figure 9.3. Topographic map of Miyakejima modified after the Geospatial Information Authority of 

Japan. The location of sampling for this study is indicated by a red arrow. A stratigraphic column for 

the location (after Tsukui and Suzuki 1998) is given below. 
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Figure 9.4. Typical olivine-hosted melt inclusion from the Shinmoedake pumice samples. 

 

 

9.4. Analytical methods 

 

9.4.1. Fourier transform infrared spectroscopy 

Water contents in the melt inclusions were quantified by Fourier transform infrared (FT-IR) 

micro-reflectance spectroscopy at the Earthquake Research Institute (ERI), University of 

Tokyo. Analyses were conducted with a JASCO FT-IR-660 Plus spectrometer equipped with 

a IRT-30VC microscope. The presence of a vacuum pump that evacuates the entire beam path 
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greatly improves the signal/noise ratio by eliminating interferences due to atmospheric CO2 

and water vapor. This allows the quantification of water contents even in small samples, such 

as melt inclusions, by reflectance FT-IR instead of transmission analysis, with considerable 

advantages in the sample preparation procedures. Reflectance FT-IR spectra were collected for 

melt inclusions from the polished surface of the olivine mounts. Before each sample analysis, 

spectra were also acquired from a gold standard. An empirical relationship between H2O 

contents and the reflectance intensities in the 3650 cm-1 wavelength region of the collected 

spectra was used to quantify water concentrations in the melt inclusions. Analysis, calibration 

and data processing were conducted following the procedure described in Yasuda et al. (2014). 

9.4.2. Electron microprobe 

The composition of the melt inclusions and the adjacent olivine hosts were measured with a 

JEOL JXA-8800M electron microprobe at Tohoku University. Analyses of the melt inclusions 

were performed in two separate cycles: at first only SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, 

Na2O and K2O were measured in order to minimize alkali loss, followed by a second step where 

Cl, F and P2O5 were measured with higher probe current and peak counting times. Analyses 

were always performed with an accelerating voltage of 15 kV. The first step of MI analyses 

was done with a probe current of 8 nA and peak counting time of 10 sec. Measurement of Cl, 

F and P2O5, as well as olivine host analyses were conducted with a probe current of 15 nA and 

peak counting time of 20 sec. The beam diameter for melt inclusion analyses was 5 μm, while 

a focused beam was used for olivine. 

9.4.3. Laser ablation ICP-MS 

Laser ablation ICP-MS measurements were conducted to characterize the melt inclusion 

compositions in terms of trace elements. Analyses were performed with a GeolasPro 193 nm 

ArF Excimer Laser (Coherent, USA) equipped with an Elan DRC-e (Perkin Elmer, Canada) at 

the Bayerisches Geoinstitut. A procedure similar to that described in Chapter 2.6 for synthetic 

mineral analysis was followed for melt inclusion measurements. 
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9.5. Results and discussion 

 

9.5.1. Compositions of olivine phenocrysts and melt inclusions  

Average measured compositions for olivine hosts and melt inclusions are given in Tables 9.1, 

9.2 and 9.3. Olivine host compositions lie in the range previously reported in literature for these 

samples (Suzuki et al. 2013, Ushioda et al. 2014, 2018), with average Mg# of ~ 76 for 

Shinmoedake, and ~ 79 for Miyakejima olivines. 

 

Table 9.1. Average composition for olivine hosts 

Olivine sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO NiO Mg# 

Shinmoedake 38.58 (3) 0.017 (2) 0.025 (2) 21.76 (6) 0.334 (5) 39.15 (5) 0.110 (2) 0.045 (4) 76.23 (8) 

Miyakejima 38.53 (14) 0.014 (1) 0.020 (3) 19.88 (60) 0.27 (1) 41.05 (49) 0.194 (3) 0.049 (8) 78.62 (72) 

Compositions are given in wt. %. Numbers in parentheses are one standard deviation in the last digits. Total iron is given as FeO. 

 

 

Table 9.2. Average major element composition for melt inclusions 

MI n. SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Cl F H2O 

Shinmoe 

dake 
81 

53.7 

(1) 

0.81 

(1) 

17.17 

(7) 

7.93 

(6) 

0.162 

(6) 

3.13 

(6) 

8.08 

(5) 

2.91 

(1) 

1.08 

(2) 

0.181 

(3) 

0.068 

(1) 

0.032 

(4) 

3.1 

(1) 

Myiake 

jima 
9 

48.4 

(5) 

1.01 

(6) 

15.65 

(31) 

10.83 

(27) 

0.162 

(18) 

5.42 

(31) 

10.73 

(33) 

2.17 

(15) 

0.23 

(2) 

0.132 

(11) 

0.047 

(4) 

0.098 

(22) 

1.2 

(4) 

Compositions are given in wt. %. Numbers in parentheses are one standard deviation in the last digits. Total iron is given as FeO. The 

number of measured inclusions is given under the “n.” column. 

 

 

Table 9.3. Average trace element composition for melt inclusions 

MI n. B Rb Sr Y Zr Nb Cs Ba La 

Shinmoedake 81 27.3 (5) 36.7 (8) 
344.32 

(271) 
20.1 (3) 72.6 (9) 2.81 (5) 2.349 (48) 211 (3) 9.6 (1) 

Myiakejima 9 28.9 (87) 3.4 (2) 0.29 (3) 226.4 (47) 106.2 (87) 0.33 (6) 0.005 (2) 28 (3) 1.9 (3) 

MI n. Ce Nd Sm Gd Yb Ta Pb Th U 

Shinmoedake 81 21.6 (2) 12.2 (2) 3.22 (9) 3.4 (1) 2.12 (4) 0.22 (1) 10.2 (3) 3.01 (7) 0.80 (2) 

Myiakejima 9 4.7 (4) 6.3 (12) 1.73 (17) 2.8 (4) 1.76 (18) 
17.53 

(146) 
2.4 (3) 0.15 (3) 0.36 (19) 

Compositions are given in ppm. Numbers in parentheses are one standard deviation in the last digits. The number of measured inclusions 

is given under the “n.” column. 
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Melt inclusions silica contents measured in this study are slightly lower than previously 

reported data (Suzuki et al. 2013, Ushioda et al. 2018). SiO2 contents range between 50.0 and 

56.3 wt. % with an average of 53.7 wt. % in 81 melt inclusions from Shinmoedake, and between 

46.6 and 51.6 wt. % with an average of 48.4 wt. % in 9 melt inclusions from Miyakejima. 

Water contents measured in melt inclusions from Shinmoedake are also slightly lower than 

literature data (Suzuki et al. 2013), being on average 3.1 wt. %. In the Miyakejima samples, on 

the other hand, melt inclusions H2O contents are generally higher than those reported by 

Ushioda et al. (2018), having maximum water contents of 4.0 wt. % and a minimum of 0.2 wt. 

%, with an average value of 1.2 wt. %. Average of measured halogen contents in MIs are 0.068 

wt. % of Cl and 0.032 of F in Shinmoedake samples and 0.047 wt. % of Cl and 0.098 wt. % of 

F in Miyakejima. Cl contents for Miyakejima melt inclusions reported by Ushioda et al. (2018) 

are in good agreement with those found in this study, while other halogen data are not available 

in literature for samples from Shinmoedake and Miyakejima. Trace element concentrations 

were also never quantified before in olivine hosted melt inclusions from Shinmoedake and 

Miyakejima volcanoes. Averages of trace element contents in melt inclusions collected from 

both volcanoes are reported in Table 9.3. 

9.5.2. La/Yb ratio as a proxy for subduction zone fluids salinity  

In order to confirm the experimental results obtained at the Bayerisches Geoinstitut, which 

indicate a general enhancement of trace element fluid mobility with addition of Cl, information 

about the salinities of subduction zone fluids that metasomatized the mantle wedge below 

Shinmoedake and Miyakejima are required. A direct use of measured H2O and Cl contents in 

melt inclusions to infer the initial fluid salinity may not yield reliable results due to possible 

degassing processes that occurred before the entrapment of the inclusions and the fast diffusion 

of water in the olivine host after entrapment (e.g. Portnyagin et al. 2008, Chen et al, 2011). On 

the other hand, the diffusion of incompatible trace elements in olivine is very slow, and major 

changes in the concentrations of such elements should not occur after isolation of the melt 

inclusions (e.g. Portnyagin et al. 2008). As discussed in Chapter 8, the salinity of the fluid 

released by the slab is the key parameter that controls the trace element fractionation in 

primitive arc magmas. Parameters such as the fluid fraction and the degree of mantle melting 

mostly affect the absolute trace element concentrations with only minor effects on their relative 
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Figure 9.5. Melt inclusion trace element content against their La/Yb ratio for Shinmoedake (blue 

symbols) and Miyakejima (orange symbols) samples. 
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enrichment pattern. Results from the experimental work conducted in BGI, indicate that at all 

the investigated pressure and temperature conditions, the addition of Cl strongly enhance light 

rare earth elements (LREE) fluid solubility, while it does not really affect heavy rare earth 

elements (HREE) partitioning behavior. Accordingly, the relative enrichment of LREE with 

respect to HREE may be used as an indicator for the salinity of the fluid released by the 

subducting slab. In this context, the La/Yb ratio is therefore used as a proxy for subduction 

zone fluid salinity. Miyakejima samples have lower La/Yb ratios (0.9 – 1.3) than Shinmoedake 

samples (3.3 – 6.2). 

9.5.3. Comparison of natural and experimental results  

Trace element concentrations measured in both Shinmoedake and Miyakejima melt inclusions 

are plotted against their La/Yb ratios in Figure 9.5. Most of the analyzed trace element 

concentrations in the two volcanoes seem to increase with La/Yb ratios. This correlation is in 

very good agreement with the experimental data that show a general enhancement of trace 

element solubility in fluids with increasing fluid salinity.  Only Ta, Y and to some extent Zr, 

have a much higher concentration in the Miyakejima melt inclusion than in Shinmoedake. This 

result is again consistent with experimental observations that indicate that the solubilities of 

these elements are almost insensitive to fluid salinity. Their concentrations may therefore be 

controlled by other parameters such as the presence of rutile in the residual slab mineralogy 

and the degree of mantle melting. More difficult to reconcile with the experimental results is 

the positive correlation between Nb and La/Yb, which seem to suggest an enhancement of Nb 

transport with increasing fluid salinity. 
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