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Lars Grüne ∗ Jürgen Pannek ∗

∗ Chair of Applied Mathematics, Mathematical Institute, University of
Bayreuth, 95440 Bayreuth, Germany

(e-mail: lars.gruene, juergen.pannek@uni-bayreuth.de).

Abstract: We analyze nominal NMPC schemes without stabilizing terminal constraints in
which the online optimization is terminated prior to convergence to the optimum. We state a new
stability based termination criterion for nonlinear optimization methods and give conditions for
stability and performance estimates. Additionally we present a numerical simulation to illustrate
our results.

1. INTRODUCTION

Model predictive control (MPC) is a well established
method for the optimal control of linear and nonlinear
systems, cf. Allgöwer and Zheng [2000], Qin and Badgwell
[2003] or Rawlings and Mayne [2009]. It relies on the itera-
tive online solution of finite horizon optimal control prob-
lems where in each sampling interval the first element of
the resulting optimal control sequence is applied, resulting
in a sampled data feedback law, see, e.g., Diehl et al. [2009],
Zavala and Biegler [2009b,a]. MPC can be interpreted
as an approximate solution method for in general com-
putationally intractable infinite horizon optimal control
problems. This interpretation led to a general stability and
performance analysis of nonlinear MPC (NMPC) schemes
without stabilizing terminal constraints in Grüne [2009],
Grüne et al. [2009a] and Grüne and Rantzer [2008], which
was already extended in different directions in Grüne and
Pannek [2009] and Grüne et al. [2009b].
(N)MPC is popular because of its conceptual simplicity
and its ability to handle both state and input constraints.
Its main drawback, on the other hand, is the computa-
tional effort needed to solve the underlying optimal control
subproblems in real time. Hence, much effort has been
spent to reduce this computational burden. One approach
in this direction is to relax the condition that the opti-
mization algorithm computes an optimal solution for the
subproblems. Since for this purpose usually Newton-like
iterative optimization algorithms like the SQP method are
used, a natural way to implement such a relaxation is to
use incomplete optimization iterations. This means that
we stop the iterative optimization after a small number
of iteration steps prior to the convergence to the optimal
solution.
For (N)MPC schemes with stabilizing terminal constraints
this method was investigated for instance in Diehl et al.
[2005] and Scokaert et al. [1999]. The main idea in Diehl
et al. [2005] is to use an upper bound on the sampling pe-
riods which allows to prove that, starting from the shifted
optimal control function of the previous sampling instant,
a single Newton-step is sufficient to arrive at a sufficently
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accurate approximation for the optimal control for the
current sampling instant. In contrast to this, the approach
by Scokaert et al. [1999] works for arbitrary sampling times
by ensuring that solutions which may be far from optimal
still satisfy the stabilizing terminal constraints from which
closed loop stability can be obtained.
Both references heavily rely on the fact that stabilizing
terminal constraints are considered, which allow to decou-
ple the stability investigation from optimality considera-
tions. In contrast to this, here we investigate this problem
for so called unconstrained nominal NMPC schemes, i.e.,
schemes in which no additional terminal constraints or
terminal costs are added to the finite horizon problem
in order to enforce stability properties for undisturbed
systems. These schemes are appealing in many ways, cf.
the discussion at the end of the introductory Section 2.
Since in unconstrained schemes stability is derived from
optimality, in general we cannot expect stability when we
use incomplete optimization. For this reason, this paper
investigates conditions — theoretically and numerically
— for termination of the optimization algorithm which,
in controst to the usual approach, is based on a stability
instead of an optimality criterion. Here, we show that
stability and guaranteed performance can be maintained
for the closed–loop using such an algorithm.
After defining the setting in Section 2 and summarizing
the results from Grüne [2009], Grüne et al. [2009a] and
Grüne and Rantzer [2008] in a simplified setting in Section
3, we define a first condition of this type in Section 4. This
condition relies on the online check of a suitable relaxed
dynamic programming inequality and is thus well suited
to be implemented numerically. A respective algorithm
is presented in Section 4 and numerically illustrated in
Section 5. In Section 6 we further investigate this condition
and show that with incomplete optimization we cannot
in general guarantee its feasibility. As a consequence, two
ideas on how feasibility can be ensured are discussed and
illustrated by a simple example. Finally, Section 7 gives
some conclusions.

2. SETUP AND PRELIMINARIES

We consider a nonlinear discrete time control system given
by



x(n + 1) = f(x(n), u(n)), x(0) = x0 (1)
with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here the
state space X and the control value space U are arbitrary
metric spaces. We denote the space of control sequences
u : N0 → U by U and the solution trajectory for given
u ∈ U by xu(·). State and control constraints can be
incorporated by replacing X and U by appropriate subsets
of the respective spaces, however, for brevity of exposition
we will not address this aspect in this paper.
A typical class of such discrete time systems are sampled–
data systems induced by a controlled — finite or infinite
dimensional — differential equation with sampling period
T > 0 where the discrete time control value u(n) corre-
sponds to the constant control value uc(t) applied in the
sampling interval [nT, (n + 1)T ).
Our goal is to minimize the infinite horizon cost func-
tional J∞(x0, u) =

∑∞
n=0 `(xu(n), u(n)) with running cost

` : X × U → R+
0 by a static state feedback control law

µ : X → U which is applied according to the rule
xµ(0) = x0, xµ(n + 1) = f(xµ(n), µ(xµ(n))). (2)

We denote the optimal value function for this problem by
V∞(x0) := infu∈U J∞(x0, u). The motivation for this prob-
lem stems from stabilizing the system (1) at a fixed point,
i.e., at a point x? ∈ X for which there exists a control value
u? ∈ U with f(x?, u?) = x? and `(x?, u?) = 0. Under mild
conditions on ` it is known that the optimal feedback for
J∞ indeed asymptotically stabilizes the system with V∞
as a Lyapunov function.
Since infinite horizon optimal control problems are in gen-
eral computationally infeasible, we use a receding horizon
NMPC method in order to compute an approximately
optimal feedback law. To this end, we consider the finite
horizon functional

JN (x0, u) =
N−1∑
k=0

`(xu(k), u(k)) (3)

with optimization horizon N ∈ N≥2 and optimal value
function VN (x0) := infu∈U JN (x0, u). By minimizing (3)
over u ∈ U we obtain an optimal control sequence 1

u∗(0), u∗(1), . . . , u∗(N − 1) depending on the initial value
x0. Implementing the first element of this sequence, i.e.,
u∗(0), yields a new state xu?(1, x0) for which we redo the
procedure, i.e., at the next time instant we minimize (3)
for x0 := xu?(1, x0). Iterative application of this procedure
provides a control sequence on the infinite time interval.
A corresponding closed loop representation of the type (2)
is obtained as follows.
Definition 1. For N ≥ 2 we define the MPC feedback law
µN (x0) := u?(0), where u? is a minimizing control for (3)
with initial value x0.

In many papers in the (N)MPC literature additional sta-
bilizing terminal constraints or terminal costs are added to
the optimization objective (3) in order to ensure asymp-
totic stability of the NMPC closed loop despite the trun-
cation of the horizon (see, e.g., the monograph Rawlings
and Mayne [2009] for a recent account of this theory). In
contrast to this approach, here we investigate (3) without
any changes. This is motivated by the fact that this “plain”
NMPC scheme is the most easy one to implement and
1 For simplicity of exposition we assume that a minimizing control
sequence u∗ exists for (3).

appears to be predominant in practical applications, cf.
Qin and Badgwell [2003]. Another reason appears when
looking at the infinite horizon performance of the NMPC
feedback law µN given by

V µN
∞ (x0) :=

∞∑
n=0

l(xµN
(n), µN (xµN

(n))).

As we will see in the following section, under a suitable
controllability condition for NMPC without stabilizing
constraints we can establish an upper bound for this value
in terms of the optimal value function V∞(x0), which
is in general not possible for schemes with stabilizing
constraints.

3. ANALYSIS FOR COMPLETE OPTIMIZATION

In this section we summarize the main steps of the sta-
bility and suboptimality analysis of unconstrained NMPC
schemes from Grüne [2009], Grüne et al. [2009a], Grüne
and Rantzer [2008]. Here, we assume that the optimization
algorithm delivers an optimal solution in each sampling
instant. The cornerstone of our analysis is the following
proposition which uses ideas from relaxed dynamic pro-
gramming.
Proposition 2. Assume there exists α ∈ (0, 1] such that for
all x ∈ X the inequality

VN (x) ≥ VN (f(x, µN (x)) + α`(x, µN (x)) (4)
holds. Then for all x ∈ X the estimate

αV∞(x) ≤ αV µN
∞ (x) ≤ VN (x) ≤ V∞(x) (5)

holds. If, in addition, there exist x? ∈ X and K∞-functions
α1, α2 such that the inequalities

`?(x) := min
u∈U

`(x, u) ≥ α1(d(x, x?)) and

VN (x) ≤ α2(d(x, x?))
(6)

hold for all x ∈ X, then x? is a globally asymptotically
stable equilibrium for (2) with µ = µN with Lyapunov
function VN .

Proof: The first part follows from [Grüne and Rantzer,
2008, Proposition 2.2] or [Grüne, 2009, Proposition 2.4]
and the second from [Grüne, 2009, Theorem 5.2] observing
that the definition of VN implies VN (x) ≥ `?(x) ≥
α1(d(x, x?)). 2

In order to compute α in (4) we use the following con-
trollability property: we call the system (1) exponentially
controllable with respect to the running cost ` if there exist
constants C ≥ 1 (overshoot bound) and σ ∈ [0, 1) (decay
rate) such that

for each x ∈ X there exists ux ∈ U with

`(xu(n, x), ux(n)) ≤ Cσn`?(x) for all n ∈ N0.
(7)

This condition implies

VN (x) ≤ JN (x, ux) ≤
N−1∑
n=0

Cσn`?(x) =: BN (`?(x)). (8)

Hence, in particular (6) follows for α2 = BN ◦ α3 if the
inequality

α1(d(x, x?)) ≤ `?(x) ≤ α3(d(x, x?)) (9)
holds for some α1, α3 ∈ K∞ and all x ∈ X.
In order to compute α in (4), consider an arbitrary x ∈ X
and let u? ∈ U be an optimal control for JN (x, u), i.e.,



JN (x, u?) = VN (x). Note that by definition of µN the
identity xu?(1, x) = f(x, µN (x)) follows.
For the following lemma we abbreviate

λn = `(xu?(n, x), u?(n)), n = 0, . . . , N − 1 and

ν = VN (xu?(1, x)).
(10)

Lemma 3. Assume (7) holds. Then the inequalities
N−1∑
n=k

λn ≤ BN−k(λk) and ν ≤
j−1∑
n=0

λn+1 + BN−j(λj+1)

(11)
hold for k = 0, . . . , N − 2 and j = 0, . . . , N − 2.

Proof: The first inequalities follow from (8) since by Bell-
man’s optimality principle xu?(k, x), . . . , xu?(N − 1, x) is
an optimal trajectory for the functional JN−k(xu?(k, x), u)
for k = 0, . . . , N − 2. The second inequalities follow from
VN (xu?(1, x)) ≤ JN (xu?(1, x), uj) for each j ∈ {0, . . . , N−
2} with control function

uj(n) =
{

u?(n + 1), n = 0, . . . , j − 1
uxu? (j+1,x)(n + j), n = j, . . . , N − 1

and uxu? (j+1,x) from (7). For details see [Grüne, 2009,
Section 3 and Proposition 4.1]. 2

The inequalities from Lemma 3 now lead to the following
theorem.
Theorem 4. Assume that the system (1) and ` satisfy the
controllability condition (7). Then inequality (4) holds for
all x ∈ X with

α = inf
λ1,...,λN−1,ν

1− ν +
N−1∑
n=0

λn (12)

subject to the constraints (11) with λ0 = 1 and
λ1, . . . , λN−1, ν ≥ 0.

Proof: Inequality (4) is equivalent to
N−1∑
n=0

λn ≥ ν + αλ0 (13)

for all x ∈ X, the corresponding optimal trajectories
xu?(n, x) and the values λ0, . . . , λN−1, ν from (10). Using
the linearity of all expressions in (11), (12) it follows that
for α from (12) inequality (13) holds for all λ0, . . . , λN−1, ν
satisfying (11). Since by Lemma 3 this set contains all
values of the form (10) for all possible optimal trajectories
xu?(n, x) of the system, inequality (4) follows. For details
see [Grüne, 2009, Section 4]. 2

The consequence of this theorem for the performance of
the NMPC closed loop, i.e., (2) with µ = µN , is as follows:
if (1) and ` satisfy (7) and (9), then global asymptotic
stability of x? and the suboptimality estimate (5) are
guaranteed whenever α from (12) is positive. In fact,
regarding stability we can show more: by construction of
an explicit example it can be shown that whenever α from
(12) is negative, then there exists a system (1) and an `
satisfying (7) and (9) but for which (2) with µ = µN is
not asymptotically stable, cf. [Grüne, 2009, Theorem 5.3].
The key observation for computing an explicit expression
for α in (4) is that the linear program defined by (12) can
be solved explicitly.
Theorem 5. Under the assumptions of Theorem 4 the
value α from (12) is given by

α = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
with γi = C

1− σi−1

1− σ
.

(14)

Proof: See [Grüne et al., 2009a, Theorem 5.3]. 2

The explicit formula thus derived for α allows us to
visualize the impact of the parameters C, σ in (7) on the
value of α in (4). As an example, Figure 1 shows the regions
in the C, σ-plane for which α > 0 and thus asymptotic
stability holds 2 for optimization horizons N = 2, 4, 8, and
16. Note that since α is increasing in N the stability region
for N is always contained in the stability region for all
Ñ > N .

Fig. 1. Stability regions for various optimization horizons
N depending on C and σ from (7)

Figure 1 clearly shows the different roles of the parameters
C and σ in (7): While for fixed C the minimal stabilizing
N for varying σ is usually larger than 2, for fixed σ it is
always possible to achieve stability with N = 2 by reducing
C. Thus, the overshoot bound C plays a decisive role for
the stability and performance of NMPC schemes.

4. INCOMPLETE OPTIMIZATION

In order to deal with incomplete optimization in which
we terminate the iterative optimization algorithm prior to
convergence, we extend Proposition 2. To this end, we first
introduce some notation.
The resulting NMPC feedback law will be denoted by
µ̃N and the corresponding NMPC closed loop trajectory
will consequently be denoted by xµ̃N

(n). At each sam-
pling instant, ũn(k), k = 0, . . . , N − 1 corresponds to the
control sequence computed by the (incomplete) optimiza-
tion algorithm for initial value x0 = xµ̃N

(n) and xũn(k),
k = 0, . . . , N − 1 denotes the corresponding trajectory.
This implies the equalities

µ̃N (xµ̃N
(n)) = ũn(0),

and
xµ̃N

(n + 1) = xũn
(1) = xũn+1(0).

With

ṼN (n) := JN (xµ̃N
(n), ũn) =

N−1∑
k=0

`(xũn(k), ũn(k))

2 The analogous regions for α ≥ α0 ∈ (0, 1) look qualitatively
similar.



we denote the value of functional JN along the trajectory
xũn .
If the optimization algorithm yields a globally optimal
control then we obtain the usual NMPC scheme discussed
in the previous sections, i.e., µ̃N = µN and ṼN (n) =
VN (xµ̃N

(n)). In general, however, if we do not assume that
ũn is optimal, we obtain

ṼN (n) ≥ VN (xµ̃N
(n)).

The following proposition, which has some similarities
with Proposition 3 in Grüne and Pannek [2009], gener-
alizes Proposition 2 to our non-optimal setting.
Proposition 6. Consider a closed loop trajectory xµ̃N

and
assume there exists α ∈ (0, 1] such that for all n ∈ N0 the
inequality

ṼN (n) ≥ ṼN (n + 1) + α`(xµ̃N
(n), µ̃N (xµ̃N

(n))) (15)
holds. Then we obtain the estimate

αV µ̃N
∞ (xµ̃N

(0)) ≤ ṼN (0) (16)
If, in addition, there exist x? ∈ X and a K∞-function α1

such that the inequality
`?(x) := min

u∈U
`(x, u) ≥ α1(d(x, x?)) (17)

holds for all x ∈ X, then xµ̃N
(n) converges to x? as

n →∞.

Proof: Rearranging (15) and summing over n we obtain
the upper bound

α

K−1∑
k=0

`(xµ̃N
(k), µ̃N (xµ̃N

(k)) ≤ ṼN (0)− ṼN (K) ≤ ṼN (0).

Hence, taking K → ∞ and using the definition of V µ̃N
∞

gives the first assertion.
From (17) we immediately obtain the inequality

ṼN (n) ≥ α1(d(xµ̃N
(n), x?)) ≥ 0 (18)

for all n ≥ 0. Furthermore, (17) in conjunction with (15)
yields

ṼN (n + 1) ≤ ṼN (n)− αα1(d(xµ̃N
(n), x∗)), (19)

which in particular implies that n 7→ ṼN (n) is monotone
decreasing. If we now assume xµ̃N

(n) 6→ x? then we find
ε > 0 and a sequence nj →∞ such that d(xµ̃N

(nj), x?) >

ε. By induction over (19) using the fact that ṼN (n) is
decreasing in n this implies

ṼN (nj) ≤ ṼN (0)− jαα1(ε).

Thus, for j sufficiently large we get ṼN (nj) < 0 which
contradicts (18). 2

Note that using the techniques from the proof of Theorem
5.2 in Grüne [2009] we could also construct a KL-function
β for which the inequality

d(xµ̃N
(nj), x?) ≤ β(d(xµ̃N

(0), x?), n)
holds. However, the precise shape of this function depends
on ṼN (0) which in turn depends on xµ̃N

(0) and the out-
come of the optimization algorithm at the first sampling
instant. Thus, unless we assume some uniform bound on
the map xµ̃N

(0) 7→ ṼN (0), the resulting function β will
depend on xµ̃N

(0). Therefore, we will not get the desirable
uniform upper bounds with respect to the initial value usu-
ally imposed in the definition of asymptotic stability. Still,
for notational simplicity we will refer to the convergence

property ensured by Proposition 6 as ”stability”.
Proposition 6 immediately motivates the following algo-
rithm which gives a criterion for the number of steps we
should perform in the iterative optimization algorithm in
each sampling period. To this end, we assume that the
optimization algorithm for minimizing JN (xµ̃N

(0), u) over
the control sequences u = u(·) ∈ U works iteratively.
More precisely, at time n starting from some initial guess
u

(0)
n (·) the algorithm iteratively produces control sequences

u
(i)
n (·), i = 1, 2, . . ., of length N which converge to an

optimal control sequence u?
n(·). In the following algorithm

we assume that for the initial time n = 0 the control
sequence ũ0(·) and thus the feedback law µ̃N (xµ̃N

(0))
are already computed, e.g., by optimization with a fixed
number of iteration steps. Furthermore, we fix a desired
value α ∈ (0, 1).

Algorithm: At each sampling instant n = 1, 2, 3, . . .:

(1) Obtain an initial guess u
(0)
n (0), . . . , u(0)

n (N − 1), e.g.,
by using the shifted values u

(0)
n (k) = ũn−1(k + 1)

of the control sequence from the previous sampling
instant for k = 0, . . . , N −2 and extending it by some
default value u

(0)
n (N − 1)

(2) Set x0 = xµ̃N
(0) and use the optimization al-

gorithm to compute iteratively control sequences
u

(i)
n (0), . . . , u(i)

n (N−1), i = 1, 2, . . . until the condition

JN (x0, u
(i)
n ) ≤ JN (xµ̃N

(n− 1), ũn−1)

+ α`(xµ̃N
(n− 1), ũn−1(0)) (20)

holds and set ũn = u
(i)
n .

Note that within the algorithm it is a priori unclear how
many iteration steps have to be performed. To maintain
applicability the computation of u

(i)
n is required to ter-

minate before the time instant n. From the definitions
in this section we immediately obtain that (20) implies
(15). Thus, if at each sampling instant n the algorithm
is successful in finding u

(i)
n for which (20) holds then

Proposition 6 is applicable and the respective assertion
holds. Hence, condition (20) gives a condition under which
it is save to terminate the iterative optimization without
loosing the stability and performance estimate (16).
In Section 6 we will address the question whether the
termination condition (20) is feasible. Before we do this,
we illustrate our algorithm by a numerical example.

5. NUMERICAL EXAMPLE

To illustrate the algorithm displayed above we consider
the nonlinear pendulum

ẋ1 = x2

ẋ2 = −g

l
sin(x1)− u cos(x1)−

Fa

l
x2|x2| − Fr sgn(x2)

ẋ3 = x4

ẋ4 = u

with gravitational constant g = 9.81, length of the pendu-
lum l = 1.25, air drag Fa = 0.007 and friction Fr = 0.197.
Here, x1 denotes the angle of the pendulum, x2 the angular
velocity, x3 the position of the cart and x4 the velocity of



the cart. Starting in the position t0 = 0, x0 = (10, 0, 0, 0),
our aim is to stabilize the origin (0, 0, 0, 0) for this system
which corresponds to a stable downward equilibrium.
Within the Figures 2 and 3 below, we display sections
of different closed loop trajectories of x1 and x3. These
solutions are the outcome of the MPC algorithm for the
cost functional

JN (x0, u) =
N−1∑
k=0

∫ (k+1)T

kT

100.0 sin2(0.5xu1(t)) + x2
u2(t)

+ 10.0x2
u3(t) + x2

u4(t) + u(kT )2dt

with N = 17, T = 0.15, constraints U = [−1, 1] and
different levels of the parameter α used within the subop-
timality based termination criterion (20). One can clearly
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Fig. 2. Trajectory of the angle of the pendulum x1
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Fig. 3. Trajectory of the position of the cart x3

see from Figures 2 and 3 that the closed loop system is
stable for all values of α. Moreover, one can nicely observe
the improvement of the closed loop behaviour visible in
the smaller overshoot in both components if the value of
α is increased.
This is also reflected in the total closed loop costs: While
for small values of α the costs sum up to V µ̃N

∞ (x0) ≈
2512.74, we obtain a total cost of V µ̃N

∞ (x0) ≈ 2485.83 for
the largest value of α. Note that the majority of the costs,

i.e. approximately 2435, is accumulated on the interval
[0, 5] on which the trajectories for different α are almost
identical and which is therefore not displayed in Figures 2
and 3. Hovewer, the chosen α exhibits a large impact on
the closed loop performance in the remaining part of the
interval.
Regarding the computational cost, the total number of
SQP steps which are executed during the run of the MPC
process reduces from 455 for α = 0.95 and 407 for α = 0.9,
to 267 and 246 for α = 0.5 and α = 0.1 respectively. Hence,
we obtain an average of approximately 2.5 – 4.5 optimiza-
tion iterations per MPC step over the entire interval [0, 15]
while using standard termination criteria 9.5 optimization
iterations per MPC step are required.

6. FEASIBILITY OF (20)

A closer look at the numerical simulation in the last section
reveals that for each α there were some sampling instants
n at which it was not possible to satisfy the suboptimality
based termination criterion (20). In this case in our al-
gorithm we simply iterated the SQP optimization routine
until convergence.
While this fact is not visible in Figures 2 and 3 and
obviously does not affect stability and performance in our
example, this observation raises the question whether (20)
can be satisfied, i.e., whether this condition is feasible in
the n-th step regardless of how ũn−1 was chosen in the
previous step. One obvious limitation for this property is
that even if ũn−1 is an optimal control sequence, in general
the value α cannot be chosen larger than α from (14).
However, even if we choose α smaller than (14) condition
(20) may not be feasible for arbitrary control functions
ũn−1.
In order to understand why this is the case we investigate
how Lemma 3 changes if the optimal control sequence u?

in (10) is replaced by the non-optimal control function
ũn−1. To this end, we simplify the notation by setting
x = xµ̃N

(n) and ũ = ũn−1. Now, first observe that the
second set of inequalities in (11) remains valid regardless of
the optimality of u? in (10). All inequalities in the first set
of inequalities in (11), however, require optimality of the
control function u? generating the λn in (10). In order to
maintain at least some of these inequalities we can pick an
optimal control function ũ? for xũ(1, x) and horizon length
N − 1 and define the control sequence ū via ū(0) = ũ(0),
ū(n) = ũ?(n− 1), n = 1, . . . , N − 1. Then, abbreviating

λ̄n = `(xū(n, x), ū(n)), n = 0, . . . , N − 1 and

ν̄ = VN (xũ(1, x)) = VN (xū(1, x)),
(21)

we arrive at the following version of Lemma 3.
Lemma 7. Assume (7) holds. Then the inequalities
N−1∑
n=k

λ̄n ≤ BN−k(λ̄k) and ν̄ ≤
j−1∑
n=0

λ̄n+1 + BN−j(λ̄j+1)

(22)
hold for k = 1, . . . , N − 2 and j = 0, . . . , N − 2.

Proof: Analogous to the proof of Lemma 3. 2

The subtle but crucial difference of (22) to (11) is that the
left inequality is not valid for k = 0. As a consequence,
λ̄0 does not appear in any of the inequalities, thus for any
λ̄1, . . . , λ̄n and ν̄ satisfying (22) and any ω > 0 the values



ωλ̄1, . . . , ωλ̄n and ων̄ satisfy (22), too. Hence, unless (22)
implies ν̄ ≤

∑N−1
n=0 λ̄n — which is a very particular case —

the value α in (12) will be −∞ and consequently feasibility
of (20) cannot be concluded for any positive α.
The following example shows that this undesirable result
is not simply due to an insufficient estimate for α but that
infeasibility of (20) can actually happen.
Example 8. Consider the 1d system

x(n + 1) = x(n)/2 + u(n) (23)
with `(x, u) = |x| and input constraint u ≥ 0. A simple
computation using ux ≡ 0 shows that for this system
(7) is satisfied with C = 1 and σ = 1/2. Furthermore,
for initial value x0 ≥ 0 it is obvious that the control
u∗ ≡ 0 is optimal. Using the non-optimal control given by
ũ0(0) = ε > 0 and ũ0(k) = 0 for k = 1, . . . , N − 1 for the
initial value x0 = 0 yields the trajectory xũ0(0) = x0 = 0,
xũ0(k) = ε2−k+1, k = 1, . . . , N , which implies

JN (x0, ũ0) =
N−2∑
k=0

ε2−k.

On the other hand, for the initial value xũ(1, x0) = ε it is
easily seen that for each control ũ the inequality

JN (xũ0(1), ũ) ≥
N−1∑
k=0

ε2−k > JN (x0, ũ0)

holds. Hence, for xµ̃N
(0) = x0 the inequality (20) is indeed

not feasible for any α > 0 and any i ∈ N.

Clearly, in order to rigorously ensure stability and guar-
anteed performance one should derive conditions which
exclude these situations and we briefly discuss two possible
approaches for this purpose.
One way to guarantee feasibility of (20) is to add the
missing inequality in (22) (i.e., the left inequality for k =
0) as an additional constraint in the optimization. This
guarantees feasibility of (20) for any α smaller than the
value from (14). The drawback of this appraoch is that an
additional constraint in the optimization is needed which
needs to be ensured for all i ≥ 1. Furthermore, the value
BN (λ̄0) depends on the in general unknown parameters C
and σ in (7) and thus needs to be determined by a try-
and-error procedure.
Another way to guarantee feasibility is to choose ` in such
a way that there exists γ > 0 for which

γ`(x, u) ≥ `∗(f(x, u)) (24)
holds for all x ∈ X and all u ∈ U with `∗ from (6). Then
from (24) and from the controllability condition (7) for
x = f(x, ū(0)) we get
N−1∑
n=0

λ̄n ≤ λ̄0 + BN−1(`?(f(x, ū(0)))) ≤ λ̄0 + γBN−1(λ̄0).

Replacing C by (1+ γ)C this right hand side is ≤ BN (λ̄0)
which again yields the left inequality in (22) for k = 0
and thus feasibility of (20). Note that (24) holds for our
example (23) if we change `(x, u) = |x| to `(x, u) = |x| +
|u|/γ. The advantage of this method is that no additional
constraints have to be imposed in the optimization. Its
disadvantages are that constructing ` satisfying (24) may
be complicated for more involved dynamics and that C
and σ may increase for the re-designed `. In turn, this
may lower the NMPC closed loop performance and cause

the need for larger optimization horizons N in order to
obtain stability.

7. CONCLUSIONS

We have investigated unconstrained nominal NMPC
schemes with incomplete optimization and have presented
a condition which is easily implemented and ensures sta-
bility and a performance estimate of the closed loop. De-
spite the fact that this condition produces good numerical
results, in general its feasibility cannot be guaranteed.
As a remedy, two approaches ensuring feasibility of this
condition have been presented and briefly discussed.

Future research will include an in depth study of these
approaches and in particular their algorithmic implemen-
tation and numerical evaluation.
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