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Abstract: A structure and equation of the state of δ-AlOOH has been studied at room temperature, up to
29.35 GPa, by means of single crystal X-ray diffraction in a diamond anvil cell using synchrotron radiation.
Above ~10 GPa, we observed a phase transition with symmetry changes from P21nm to Pnnm.
Pressure-volume data were fitted with the second order Birch-Murnaghan equation of state and
showed that, at the phase transition, the bulk modulus (K0) of the calculated wrt 0 pressure increases
from 142(5) to 216(5) GPa.

Keywords: AlOOH; diamond anvil cell; high pressure; extreme conditions; single crystal X-ray
diffraction (SC-XRD)

1. Introduction

Water and water-bearing minerals are important components in the Earth crust and mantle.
For many years, the whole mantle and especially the lower mantle was thought to be anhydrous,
particularly since most of the known hydrous phases lose water with the increasing temperature
even at high pressure. However, there is solid evidence available now that some of the H-bearing
phases survive even at lower mantle conditions [1,2]. If water is transported into the deep mantle
and released there, the elasticity, viscosity, melting temperature, and atomic diffusion properties of
the mantle constituents would be considerably affected. Therefore, the properties of high-pressure
hydrous minerals play an important role for understanding the petrology and geochemical evolution
of the Earth.

The obvious possible sources of water in the lower mantle are thought to be hydrated magnesium
and aluminum silicates, i.e., phases within the (MgO/Al2O3)-SiO2-H2O systems. The aluminous
hydrous silicate, the phase Egg (AlSiO3(OH)), was found in inclusions of natural diamonds [3],
proving that this mineral is present in deep Earth interiors. At the same time, high-pressure and
high-temperature experiments document that the phase Egg is formed in the hydrous sediment
component in the upper mantle [4]. In addition, it decomposes with the formation of δ-AlOOH and
stishovite at the base of the mantle transition zone [5,6], which makes δ-AlOOH a prominent candidate
phase for the water transport in the lower mantle conditions [7]. This attracted a lot of attention and

Minerals 2020, 10, 1055; doi:10.3390/min10121055 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
https://orcid.org/0000-0003-0248-1728
https://orcid.org/0000-0003-1342-2168
https://orcid.org/0000-0002-8256-5675
http://dx.doi.org/10.3390/min10121055
http://www.mdpi.com/journal/minerals
https://www.mdpi.com/2075-163X/10/12/1055?type=check_update&version=2


Minerals 2020, 10, 1055 2 of 10

currently the structure of δ-AlOOH [8–12], its stability range [6,13–17], and physical properties [18,19]
have been investigated both theoretically and experimentally.

The δ-AlOOH phase is a high-pressure polymorph of the natural aluminous hydrous minerals
diaspore (α-AlOOH) and boehmite (γ-AlOOH) [10,20]. At ambient conditions, δ-AlOOH can be
obtained as a metastable phase with the orthorhombic symmetry with space group P21nm [20,21].
In this structure, an aluminum atom is surrounded by six oxygen atoms forming a distorted
octahedral coordination. These AlO6 octahedra share edges to form an infinite chain along the
a axis of the orthorhombic unit cell (Figure 1a). At ambient conditions, the Al atom is displaced from the
center of the octahedra to compensate for the electrostatic charge difference caused by hydrogen bonds.
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Figure 1. Crystal structure of δ-AlOOH shown in the projection along the c direction at the ambient
pressure space group P21nm (a) and at the high symmetry phase Pnnm, featuring disordered hydrogen
in the intermediate phase between 9 and 18 GPa (b) and symmetric hydrogen above 18 GPa (c).

At a pressure approximately above 9 GPa, the δ-AlOOH goes through a phase transition which
increases the symmetry from P21nm to Pnnm [11]. The new symmetry elements include the 2-fold axis
passing through the middle of the hydrogen bond and making the AlO6 tetrahedra more symmetric.
Structural studies found no jump in the unit cell parameters at the phase transition. However, the crystal
becomes much stiffer, especially along the a and b axes, which coincide with the direction of the
hydrogen bond. The mechanism of this stiffening is interesting since, as was recently shown by the
neutron study [12], the phase transition does not correspond to symmetrization of the hydrogen bond
(i.e., formation of the stiff hydrogen bond where hydrogen occupies the position in the center between
two oxygen atoms). Rather, at the phase transition, hydrogen becomes disordered (Figure 1), while the
symmetrization of the hydrogen bond happens only above 18 GPa and, intriguingly, is not associated
with the unit cell stiffening [12].

Understanding this unusual behavior would require accurate ab-initio modelling, which so
far has been proven complicated. Ordered models at absolute zero temperature predict hydrogen
symmetrization at a very high pressure of about 30 GPa [18], while completely missing the order-disorder
phase transition. High-temperature DFT-MD simulations show the order-disorder phase transition [22],
but the small supercell size used so far could not provide reliable estimates of material stiffness and
the phase transition pressure. An accurate model will require very large supercells and potentially
a careful modelling of hydrogen tunneling to capture the disorder driven stiffening. In addition, it will
require accurate experimental reference structures, which we aim to provide in this study. Moreover,
there is inconsistency in the reported compressibility of δ-AlOOH with the bulk modulus (in GPa)/first
derivatives ranging from 228/7 [13] to 124/13.5 [9], which require additional investigations.

In this work, we report the results of a single crystal experiment on δ-AlOOH at pressures up to
about 30 GPa, using the diamond anvil cell (DAC) technique. In addition, we determined its lattice
parameters and revealed the crystal structure by means of X-ray diffraction at a synchrotron facility.
To the best of our knowledge, this is the first work in which the structure of δ-AlOOH was investigated,
using single crystal diffraction above 12 GPa.
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2. Materials and Methods

Single crystals of δ-AlOOH were synthesized at high-pressure and high-temperature conditions
at Bayerisches Geoinstitut (Bayreuth, Germany). The synthesis was performed by decomposition of
Al(OH)3 at 21 GPa and 1050 ◦C upon heating during 4 h in a 1000 ton multi-anvil Haymag press.

High-quality single crystals with an average size of ~0.02 × 0.02 × 0.03 mm3 were preselected
and the data collection was performed at ambient conditions, using a three-circle diffractometer
equipped with a SMART APEX CCD detector (Bruker, Karlsruhe, Germany) and a high-brilliance
Iµs 3.0 microfocus anode (Ag radiation) (Incoatec, Geesthacht, Germany). The exposure time was 5 s
per frame. Lorentz and polarization corrections, as well as an analytical absorption correction based
on the crystal shape were applied to the reflection intensities, using the CrysAlis Pro package [23].

All high-pressure experiments were performed using the diamond anvil cells (DAC). Pressure was
generated by means of four-screw-driven BX90 type DACs [24] equipped with Boehler-Almax [25] anvils
(250 µm culet sizes). Rhenium gaskets were indented to about 25 µm of thickness. A 120 µm hole was
drilled in the middle of the indentation. The gaskets were then placed between two diamonds to form
a pressure chamber. Neon loaded at about 1.2 kbar [26] was used as a pressure-transmitting medium.
Note that the neon might have a limitation on hydrostaticity at 15 GPA [27]. However, we see no
indication of that in our experiment. In each loading, two δ-AlOOH single crystals with dimensions
of ~0.02 × 0.02 × 0.01 mm3 were put in DACs along with a ruby for pressure calibration [28]. Here,
we report the data for the best crystal in each experiment.

Single crystal X-ray diffraction high-pressure experiments were performed at P02.2 at PETRA III
and at ID15 at ESRF. At extreme conditions, the beamline P02.2 at PETRA III data were collected using
a PerkinElmer flat panel detector and X-ray radiation with a wavelength of λ = 0.28995 Å and beam
size of 2 µm2. At the beam line ID15 at ESRF, data were acquired using the MAR555 detector and X-ray
radiation with a wavelength of λ = 0.28874 Å and beam size of 2 µm2. Diffraction data were collected
at room temperature and the pressure was from 3 to 30 GPa with a step of 2–4 GPa. Each frame was
measured for 0.5 s. Integration of the reflection intensities and absorption corrections were performed
using the CrysAlisPro software [23]. Please note that the graphs of the unit cell parameters from the
two experiments, while internally consistent, differ between themselves. We have kept both datasets
and marked them on the plots as an indication for systematic errors. The estimates of the statistical
errors on experimental parameters were obtained from the integration and refinement software,
the errors on the pressure were assumed to be equal to 0.5 GPa.

All crystallographic data refinements were performed based on F2 using the SHELX97
program package [29] in the WinGX System [30]. Due to the low completeness common for
high-pressure experiments, hydrogen atoms could not be reliably identified from the different electron
densities. The fitting of the equation of states were performed in program EOSFit7 [31].

3. Results and Discussion

Selected examples of the results of the structural refinement of δ-AlOOH at different pressures are
presented in Table 1 (see also the CIF files provided in Supplementary Materials). For all data-points,
we collected more than 100 reflections, which after integration in CrysAlis Pro gave Rint about 3% and
refined to R1 better than 5% (Table 1). Remarkably, the high-pressure data allowed the comparable
quality of the structural refinement as those obtained at ambient conditions, which gives evidence that
the crystals were in a quasi-hydrostatic environment up to the highest pressures achieved.
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Table 1. Crystallographic data for P21nm (7.85 GPa) and Pnnm (10.19 GPa) phases of δ-AlOOH at room temperature.

Parameter P21nm P21nm Pnnm Pnnm

Facility P02.2 PETRA III P02.2 PETRA III P02.2 PETRA III
Pressure (GPa) ambient 7.85 10.19 29.35

Empirical formula AlOOH AlOOH AlOOH AlOOH
Formula weight (g/mol) 59.99 59.99 59.99 59.99

Wavelength (Å) 0.5608 0.2887 0.2887 0.2887
Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group P21nm P21nm Pnnm Pnnm
a (Å) 4.7202(8) 4.640(2) 4.6244(12) 4.5288(19)
b (Å) 4.2259(6) 4.13709(19) 4.1225(3) 4.0345(4)
c (Å) 2.8278(4) 2.8017(3) 2.79255(18) 2.7278(4)

V (Å3) 56.406(15) 53.78(2) 53.237(15) 49.84(2)
Z 2 2 2 2

Calculated density (g/cm3) 3.54 3.704 3.742 3.997
Crystal size (µm3) 20 × 20 × 30 20 × 20 × 30 20 × 20 × 30 20 × 20 × 30

Theta range for data collection (deg) 4.0320 to 28.6530 3.568 to 18.223 3.580 to 18.287 3.663 to 17.658

Index range
−4 < h < 4
−6 < k < 6
−7 < l < 4

−5 < h < 3
−7 < k < 6
−5 < l < 4

−4 < h < 5
−7 < k < 6
−5 < l < 4

−4 < h < 5
−7 < k < 6
−4 < l < 4

Reflections used 644 284 310 108
Rint 0.026 0.045 0.031 0.035

Refinement method Least squares on F2 Least squares on F2 Least squares on F2 Least squares on F2
Restraints/parameters 0/15 1/15 0/9 0/9
Goodness of fit on F2 1.065 1.284 1.088 1.088

Final R indices [I > 2σ(I)] R1 = 0.0257 R1 = 0.0451 R1 = 0.0336 R1 = 0.0346

R indices (all data) R1 = 0.0247;
wR2 = 0.0658

R1 = 0.0446;
wR2 = 0.1317

R1 = 0.0319;
wR2 = 0.0778

R1 = 0.0351;
wR2 = 0.1016

Largest diff. peak and hole (e/Å3) 0.59 and −0.37 0.92 and −0.74 0.45 and −0.78 0.58 and −0.76
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The δ-AlOOH crystallizes in an orthorhombic structure (space group P21nm) and can be described
in terms of a slightly distorted hexagonally close packed arrangement of O anions with Al cations
occupying two-thirds of the octahedral sites (Figures 1 and 2). The AlO6 octahedra are linked together
by sharing edges and vertices to form infinite 2 × 1 channels parallel to the b axis with H atoms inside
the channels. There are two independent oxygen sites: O1, at ambient conditions covalently bound
to hydrogen (O-H bond), and O2, characterized by a weak H···O bond. In the selected octahedron,
one can distinguish the O1a and O2a atoms in the axial position and two O1e and O2e atoms in the
equatorial position. The octahedral Al(O-H)3 (O···H)3 moiety is highly distorted at ambient pressure,
as seen in Figure 2, where the Al-O1 bonds are significantly longer than those of Al-O2.
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A close examination of diffraction images shows that between 7.85 and 10.19 GPa certain changes
occur (Figure 3). At 7.85, the reflection extinction conditions are consistent with the 21 screw axis
along a (h00: h = 2n) and with the n-glide plane perpendicular to b (h0l, h + l = 2n). However,
at 10.19 GPa, the new extinction rule becomes valid (0kl: k + l = 2n) (Figure 3b). This corresponds to
the appearance of a new n-glide plane in the system and overall increase of the symmetry from P21nm
to Pnnm (Figure 1). Therefore, this confirms the structural phase transition between 7.85 and 10.19 GPa.

Unit cell parameters of δ-AlOOH at ambient conditions are a = 4.7202(8) Å, b = 4.2259(6) Å,
c = 2.8278(4) Å, and V = 56.406(15) Å3 (Table 1), in good agreement with literature data [9,13,15,32].

In total, X-ray diffraction data were collected at 16 different pressures (Table 2). The dependence of
the unit cell volume of δ-AlOOH on a pressure up to 30 GPa is shown in Figure 4. The equation of states
was fitted with the second order Birch-Murnaghan (BM2) equation for low-pressure and high-pressure
data separately and gave the following results: K0 = 142(8) GPa below the phase transition and
K0 = 216(5) GPa above the phase transition. Just for comparison with the literature, the third-order
Birch-Murnaghan (BM3) equation of state was also fitted over the whole volume range, as presented
in Table 3. Our results are in good agreement with the results of Suzuki [9] and Sano-Furukawa [11],
while in stark discrepancy with the results of Vanpeteghem et al. [13]. The reason for the discrepancy
with Vanpeteghem et al. [13] is not obvious and we only hypothesized that it may relate to the diffusion
of He (employed as a pressure medium by Vanpeteghem et al.) into the bulk of δ-AlOOH.
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Figure 3. (a) Single crystal diffraction precession image of δ-AlOOH along the 0kl. The blue square
shows the area that was enlarged in Figure 3b. (b) The enlarged single crystal diffraction precession
images of δ-AlOOH of the 0kl section at different pressures. “*”—designate vectors of reciprocal lattice.
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Table 2. Lattice parameters for δ-AlOOH at different pressure points.

Experiment Pressure, GPa a, Å b, Å c, Å V, Å3

in-house ambient 4.7202(8) 4.2259(6) 2.8278(4) 56.406(15)
DESY 3.16 4.68246(12) 4.18746(17) 2.8197(8) 55.288(16)
ESRF 3.42 4.6824(3) 4.18642(15) 2.8196(3) 55.271(7)
DESY 5.27 4.6612(9) 4.1613(2) 2.81066(15) 54.518(12)
DESY 7.85 4.640(2) 4.13709(19) 2.8017(3) 53.78(2)
ESRF 8.74 4.6316(2) 4.12766(18) 2.79637(15) 53.460(4)
DESY 10.19 4.6244(12) 4.1225(3) 2.79255(18) 53.237(15)
ESRF 11.8 4.6127(2) 4.11221(14) 2.78493(14) 52.826(4)
DESY 12.75 4.6087(13) 4.1090(3) 2.7836(2) 52.713(16)
DESY 15.14 4.5977(13) 4.0958(3) 2.7744(2) 52.245(16)
ESRF 17.64 4.5787(5) 4.0854(2) 2.76353(11) 51.694(6)
DESY 18.25 4.5809(15) 4.0814(3) 2.7639(3) 51.675(18)
DESY 21.24 4.5672(13) 4.0680(3) 2.7546(2) 51.179(16)
ESRF 22.4 4.5493(7) 4.0646(4) 2.74858(17) 50.824(10)
DESY 25.03 4.545(2) 4.0524(4) 2.7417(4) 50.50(3)
DESY 29.35 4.5288(19) 4.0345(4) 2.7278(4) 49.84(2)
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Table 3. Refined parameters for the δ-AlOOH equation of state.

Fitting Model V0, Å3 K0, GPa K’

Third order BM, full range 56.43(9) 132(8) 10(1)
Second order BM, low pressure 56.51(8) 142(5) 4(fixed)
Second order BM, high pressure 55.56(8) 216(5) 4(fixed)

The pressure dependence of the unit cell parameters of δ-AlOOH is shown in Figure 5. As can
be seen, below the phase transition the b and a axes are more susceptible than the c axis since the
soft hydrogen bonds lie in the a-b plane. Above the phase transition, the compressibility in all
axes becomes comparable. As seen in Figure 6a, this change in compressibility is defined solely by
the hydrogen, while all other bonds decrease in pressure monotonically and almost linearly (Figure 6a,b).
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Figure 6. (a) Evolution of the shortest oxygen-oxygen distances with pressure, blue is hydrogen bond,
other curves are O-O distances within the AlO6 octahedron; (b) pressure-dependent evolution of the
AlO6 octahedron volume; (c) evolution of Al-O bonds within the AlO6 polyhedra (see Figure 2 for
atoms assignment). Lines are guides for the eye and error bars are smaller than the marker sizes.

It is interesting to note that we could not observe any structural change around 16 GPa, which was
estimated by neutron diffractions as the pressure where the hydrogen bond changes from a disordered
to single-well symmetric type [12]. X-ray data are not directly sensitive to the hydrogen atoms.
However, the atomic parameters of other atoms indirectly indicate any significant changes. For instance,
the approach of the phase transition around 10 GPa is clearly visible in the asymmetry of Al position
within the oxygen octahedron (Figure 6c). As for the region of 16 GPa, neither the O-H-O compressibility
(Figure 6a) nor other structural parameters indicate any change within the observed accuracy.
Our observation is similar to that of IR spectroscopy, which also did not indicate any anomalies
at 16 GPa [33]. More intensive diffraction and modelling studies will be required to understand
the stiffening in δ-AlOOH, which is defined by crystallographic symmetry rather than the nature of
hydrogen bond.

4. Conclusions

We obtained an accurate equation of the state of δ-AlOOH, up to 30 GPa, from the compression of
single crystals in a quasi-hydrostatic pressure medium. The evolution of the structure of δ-AlOOH
with pressure was characterized in detail and revealed a phase transition approximately above
10 GPa, associated with an increase of the bulk modulus from 142(5) to 216(5) GPa. The phase
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transition is caused by the increase in the hydrogen bond symmetry caused by a disorder. We could
not identify any structural difference at 16 GPa, which was suggested as the pressure of hydrogen
bond symmetrization. This makes δ-AlOOH an unusual material, in which hydrogen bond stiffening
is governed by crystallographic symmetry.
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