
A networked unconstrained nonlinear MPC scheme
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Abstract— In this paper we propose an MPC scheme with a
compensation mechanism for packet dropouts in a network
connection between controller and actuator. We provide a
stability and suboptimality analysis of the scheme based on
asymptotic controllability properties and show that for large
classes of systems we obtain the same stability conditions as
for classical MPC and in particular stability for sufficient ly
large optimization horizon. As a byproduct, we observe that
longer control horizons may improve the performance of the
MPC closed loop. We illustrate our results by the standard
inverted pendulum on a cart problem and provide some insight
into the gap between the analyzed worst case and the average
performance by means of a Monte-Carlo simulation.

I. INTRODUCTION

Due to lower implementation costs, greater interoperabil-
ity, and a wide range of choices in developing control
systems, networked control systems (NCS) are increasingly
used, particularly in the automotive and aeronautical indus-
tries that are seeing high adoption–rates of drive–by–wire
and fly–by–wire designs. The main drawback of NCS is the
additional complexity in analysis and feedback design.

In this paper we consider the implementation of a non-
linear model predictive control (MPC) scheme over a net-
work. More precisely, we consider an uncertain transmission
channel between the controller and the actuator and focus
on the idealized situation in which delays are negligible
but packet dropouts may occur. In order to compensate for
these dropouts, we propose an MPC variant whose main
ingredient is a buffer device in the actuator. Note that we
do not assume any particular protocol like round–robin (RR)
or try–once–discard (TOD), as, e.g., in [12], [15], [16]. That
is, we assume that either a packet arrives unperturbed and
with negligible delay over the channel, or it is treated as a
dropout. While this is an admittedly simplified setting, we
consider our proposed MPC scheme as a building block for
more sophisticated schemes which, in addition, are able to
handle delays between sensor, controller and actuator and
whose details are currently under investigation, see e.g [6].

Our proposed MPC scheme results in a nonstandard MPC
closed loop in which the control horizon – i.e., the number
of elements of the online computed optimal control sequence
which are eventually applied at the plant – is time varying
and unknown at the time of optimization. The main goal of
this paper is to provide a mathematically rigorous stability
and suboptimality analysis of this scheme. During the last
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decades, such results have been obtained for different MPC
variants, see, e.g., [1], [3], [4], [7], [8], [10]. Here we
consider the simplest and industrially most commonly used
class of MPC schemes for nonlinear systems, namely those
without terminal constraints and costs, see [2] for a survey.

For our analysis we generalize results from [4] by allowing
for variable control horizons. This technique relies on a
suitable asymptotic controllability assumption and leadsto
a necessary and sufficient condition for suboptimality and
stability in terms of a small optimization problem which
was solved numerically in [4]. Besides generalizing these
results to variable control horizons, in this paper we also
present a closed analytic solution formula for this opti-
mization problem for a large class of systems. This allows
for a detailed qualitative study of the impact of different
control horizons which in particular reveals that for certain
classes of systems longer control horizons can yield better
suboptimality estimates than those obtained for the usual
control horizon of length one. Since our results are based
on a worst case analysis over a class of asymptotically
controllable systems, we additionally perform a numerical
Monte-Carlo simulation in order to provide some insight into
the gap between the worst case and the average performance.

The paper is organized as follows: In Section II we de-
scribe the setup and formalize the MPC scheme we propose.
In Section III we summarize and extend the optimization
based MPC analysis technique from [4] and in Section
IV we show how this technique can be used in order to
prove asymptotic stability for our proposed MPC scheme.
Thereafter, in Section V we present the analytic solution of
the optimization problem and state a couple of consequences
for the stability of our proposed scheme. In Section VI
we illustrate our results by means of a numerical example.
Finally, we perform a Monte-Carlo simulation in order
to investigate the differences between the worst case and
average performance and draw some conclusions.

II. SETUP AND PRELIMINARIES

We consider a nonlinear discrete time control system given
by

x(n+1) = f (x(n),u(n)), x(0) = x0 (1)

with x(n) ∈ X andu(n) ∈U for n∈ N0. Here the state space
X is an arbitrary metric space. We denote the space of control
sequencesu : N0 →U by U and the solution trajectory for
given u∈ U by xu(n).

A typical class of such discrete time systems are sampled–
data systems induced by a controlled — finite or infinite
dimensional — differential equation with sampling period



T > 0. In this situation, the discrete timen corresponds to
the continuous timet = nT.

We consider the situation of a networked control system
shown in Fig. 1 where the controller at every time instantn∈
N uses a network channel in order to transmit the feedback
control valueu(k) = µ(x(k)) to the actuator. We assume that

Fig. 1. Scheme of the considered networked control system

Actuator

Buffer

Plant Sensor

MPC
controllerChannel

delays over the network are negligible but that occasional
packet dropouts occur, i.e., that the control value sent by the
controller does not arrive at the actuator.

In order to compensate for these dropouts, we add
a buffer device in the actuator and design a con-
troller which at each time instantk sends a sequence
µ(x(k),0),µ(x(k),1), . . . ,µ(x(k),m⋆ −1) instead of a single
control valueu(k) = µ(x(k)) ∈ U . In the actuator, the ele-
ments of this sequence are buffered and used until the next
sequence arrives.

In the ideal case when no packet dropouts occur, the
actuator applies the control sequence

µ(x(n),0),µ(x(n+1),0),µ(x(n+2),0),µ(x(n+3),0), . . .

If, however, transmission is successful at, e.g., timen and
n+3 but fails at timen+1 andn+2, the actuator applies

µ(x(n),0),µ(x(n),1),µ(x(n),2),µ(x(n+3),0), . . .

In order to formalize this idea, we define a sequence(mi)i∈N0

of control horizons, which counts the time instances between
the ith and the(i + 1)st successful transmission. For these
sequences we make the following definitions.

Definition 2.1: Given a setM ⊆ {1, . . . ,m⋆}, we call a
control horizon sequence(mi)i∈N0 admissibleif mi ∈M holds
for all i ∈ N0. Furthermore, fork,n∈ N0 we define

σ(k) :=
k−1

∑
j=0

mi (using the convention∑−1
j=0 = 0)

ϕ(n) := max{σ(k) |k∈ N0,σ(k) ≤ n}.
Hereσ(k) denotes thekth successful transmission time while
ϕ(n) denotes the largest successful transmission time≤ n.
Note that by convention the timen = 0 coincides with the
first successful transmission.

Using this notation, the control sequence applied by the
actuator can be expressed as

µ(x(σ(k)),0), . . . ,µ(x(σ(k)),mk−1),µ(x(σ(k+1)),0), . . .

in which mk is unknown at the timeσ(k).
MPC is ideally suited to implement the proposed com-

pensation strategy since in each MPC optimization step an
optimal control sequence is computed, anyway. In order

to formalize MPC, we start by looking at the following
problem: Find a feedback control law minimizing the infinite
horizon costJ∞(x0,u)= ∑∞

n=0 l(xu(n),u(n)) with running cost
l : X ×U → R

+
0 . We denote the optimal value function for

this problem byV∞(x0) = infu∈U J∞(x0,u). In order to be
consistent with the scheme introduced above, we use the
term feedback control in the following general sense.

Definition 2.2: For m⋆ ≥ 1 and M ⊆ {1, . . . ,m⋆} a mul-
tistep feedback law is a mapµ : X ×{0, . . . ,m⋆ − 1} → U
which for an admissible control horizon sequence(mi)i∈N0

is applied according to the rulexµ(0) = x0,

xµ(n+1) = f (xµ(n),µ(xµ(ϕ(n)),n−ϕ(n))). (2)
Since infinite horizon optimal control problems are in gen-

eral computationally infeasible, we use a receding horizon
approach in order to compute an approximately optimal con-
troller. To this end we consider the finite horizon functional
with optimization horizon N∈ N

JN(x0,u) =
N−1

∑
n=0

l(xu(n),u(n)) (3)

for N ∈ N0 which gives us the optimal value function

VN(x0) = inf
u∈U

JN(x0,u). (4)

Here, we consider the conceptually simplest MPC approach
imposing neither terminal costs nor terminal constraints.
Results including an additional weight on the final term can
be found in [5].

Based on this finite horizon optimal value function we
define an multistep feedback lawµN,m⋆ by picking the first
m⋆ elements of the optimal control sequence.

Definition 2.3: For m⋆ ≥ 1 andN ≥ m⋆ + 1 we define a
multistep MPC feedback law byµN,m⋆(x0,n) = u⋆(n), where
u⋆ is a minimizing control for (4) with initial valuex0.

Remark 2.4:For simplicity of exposition we assume that
the infimum in (4) is a minimum.

Note that “classical” MPC is included in this definition
and corresponds to the choicem⋆ = 1.

In order to measure the suboptimality degree of the
multistep feedback for the infinite horizon problem we define

Vµ,(mi)
∞ (x0) :=

∞

∑
n=0

l(xµ(n),µ(xµ(ϕ(n)),n−ϕ(n))).

Our approach relies on results on relaxed dynamic program-
ming [9], [13] already used in an MPC context in [7] which
we adapt to our variable control horizon setting.

Proposition 2.5:Consider a multistep feedback law̃µ :
X × {0, . . . ,m⋆ − 1} → U , a set M ⊆ {1, . . . ,m⋆}, and a
function Ṽ : X → R

+
0 and assume that for each admissible

control horizon sequence(mi)i∈N0 and eachx0 ∈ X the
corresponding solutionxµ̃(n) with xµ̃(0) = x0 satisfies

Ṽ(x0) ≥ Ṽ(xµ̃(m0))+ α
m0−1

∑
k=0

l(xµ̃(k), µ̃(x0,k)) (5)

for someα ∈ (0,1]. Then for allx0 ∈ X and all admissible
(mi)i∈N0 the estimateαV∞(x0) ≤ αV µ̃,(mi)

∞ (x0) ≤ Ṽ(x) holds.



Proof: The proof is similar to that of [4, Proposition
2.4]: Considerx0 ∈ X and the trajectoryxµ̃(n) generated by
the closed loop system using the multistep feedbackµ̃ and
the control horizonsmi . Then from (5) for allk ∈ N0 we
obtain

α
σ(k+1)−1

∑
n=σ(k)

l(xµ̃(n), µ̃(xµ̃(ϕ(n)),n−ϕ(n)))

≤ Ṽ(xµ̃(σ(k)))− Ṽ(xµ̃(σ(k+1))).

Summing over the transmission timesσ(k) yields

α
σ(k⋆)−1

∑
n=0

l(xµ̃(n), µ̃(xµ̃(ϕ(n)),n−ϕ(n)))

= α
k⋆−1

∑
k=0

σ(k+1)−1

∑
n=σ(k)

l(xµ̃(n), µ̃(xµ̃(ϕ(n)),n−ϕ(n)))

≤ Ṽ(x(0))− Ṽ(x(σ(k⋆)) ≤ Ṽ(x(0)).

For k⋆ → ∞ this shows that̃V(x) is an upper bound for
αV µ̃,(mi )

∞ (x) and henceαV∞(x) ≤ αV µ̃,(mi)
∞ (x) ≤ Ṽ(x).

III. C ONTROLLABILITY AND PERFORMANCE BOUNDS

In this section we introduce an asymptotic controllability
assumption and deduce several consequences for our optimal
control problem. In order to facilitate this relation we will
formulate our basic controllability assumption, below, not in
terms of the trajectory but in terms of the running costl
along a trajectory.
To this end we say that a continuous functionρ : R≥0 →R≥0

is of classK∞ if it satisfiesρ(0) = 0, is strictly increasing
and unbounded. We say that a continuous functionβ : R≥0×
R≥0 → R≥0 is of classK L 0 if for each r > 0 we have
limt→∞ β (r,t) = 0 and for eacht ≥ 0 we either haveβ (·,t) ∈
K∞ or β (·,t) ≡ 0. Note that in order to allow for tighter
bounds for the actual controllability behavior of the system
we use a larger class than the usual classK L . It is, how-
ever, easy to see that eachβ ∈K L 0 can be overbounded by
a β̃ ∈ K L , e.g., by settingβ̃ (r, t) = maxτ≥t β (r,τ)+ e−tr.
Furthermore, we definel⋆(x) := minu∈U l(x,u).

Assumption 3.1:Given a functionβ ∈ K L 0, for each
x0 ∈ X there exists a control functionux0 ∈ U satisfying
l(xux0

(n),ux0(n)) ≤ β (l⋆(x0),n) for all n∈ N0.
Special cases forβ ∈ K L 0 are

β (r,n) = Cσnr (6)

for real constantsC ≥ 1 and σ ∈ (0,1), i.e., exponential
controllability, and

β (r,n) = cnr (7)

for some real sequence(cn)n∈N0 with cn≥ 0 andcn = 0 for all
n≥ n0, i.e.,finite time controllability(with linear overshoot).
For certain results it will be useful to have the property

β (r,n+m)≤ β (β (r,n),m) for all r ≥ 0,n,m∈ N0. (8)

Property (8) ensures that any sequence of the formλn =
β (r,n), r > 0, also fulfillsλn+m≤ β (λn,m). It is, for instance,

always satisfied in case (6) and satisfied in case (7) ifcn+m≤
cncm. If needed, this property can be assumed without loss
of generality, because by Sontag’sK L -Lemma [14]β in
Assumption 3.1 can be replaced by aβ of the formβ (r,t) =
α1(α2(r)e−t) for α1,α2 ∈ K∞. Then, (8) is easily verified if
α2◦α1(r) ≥ r which is equivalent toα1◦α2(r)≥ r which in
turn is a necessary condition for Assumption 3.1 to hold for
n = 0 andβ (r,t) = α1(α2(r)e−t).
Under Assumption 3.1, for anyr ≥ 0 and anyN ≥ 1 we
define the value

BN(r) :=
N−1

∑
n=0

β (r,n). (9)

An immediate consequence of Assumption 3.1 are the fol-
lowing lemmata which have been shown in [4].

Lemma 3.2:For eachN ≥ 1 the inequality

VN(x0) ≤ BN(l⋆(x0)) (10)

holds.
Lemma 3.3:Assume Assumption 3.1 and considerx0 ∈

X and an optimal controlu⋆ for the finite horizon optimal
control problem (4) with optimization horizonN ≥ 1. Then
for each j = 0, . . . ,N−1 the inequality

JN− j(xu⋆( j),u⋆( j + ·)) ≤ BN− j(l
⋆(xu⋆( j)) (11)

and for eachm= 1, . . . ,N−1 and eachj = 0, . . . ,N−m−1
the inequality

VN(xu⋆(m)) ≤ Jj(xu⋆(m),u⋆(m+ ·))+BN− j(l
⋆(xu⋆(m+ j)))

(12)
holds forBN− j from (9).

Now we provide a constructive approach in order to
computeα in (5) for systems satisfying Assumption 3.1.
Note that (5) only depends onm0 and not on the remainder
of the control horizon sequence. Hence, we can perform the
computation separately for each control horizonmand obtain
the desiredα for variablemby minimizing over theα-values
for all feasiblem.

For our computational approach we consider arbitrary
values λ0, . . . ,λN−1 > 0 and ν > 0 and start by deriving
necessary conditions under which these values coincide with
an optimal sequencel(xu⋆(n),u⋆(n)) and an optimal value
VN(xu⋆(m)), respectively.

Proposition 3.4:Assume Assumption 3.1 and consider
N ≥ 1, m∈ {1, . . . ,N−1}, a sequenceλn > 0, n= 0, . . . ,N−
1, and a valueν > 0. Considerx0 ∈ X and assume that
there exists a minimizing controlu⋆ ∈ U for (4) such that
λn = l(xu⋆(n),u⋆(n)) holds for alln∈ {0, . . . ,N−1}. Then

N−1

∑
n=k

λn ≤ BN−k(λk), k = 0, . . . ,N−2 (13)

holds true and if furthermoreν = VN(xu⋆(m)) we have

ν ≤
j−1

∑
n=0

λn+m+BN− j(λ j+m), j = 0, . . . ,N−m−1. (14)



Proof: If the stated conditions hold, thenλn andν must
meet the inequalities given in Lemma 3.3, which is exactly
(13) and (14).

Using this proposition a sufficient condition for subopti-
mality of the MPC feedback lawµN,m is given in Theorem
3.5 which is proved in [4].

Theorem 3.5:Consider β ∈ K L 0, N ≥ 1,
m∈ {1, . . . ,N− 1}, and assume that all sequencesλn > 0,
n = 0, . . . ,N−1 and valuesν > 0 fulfilling (13), (14) satisfy
the inequality

N−1

∑
n=0

λn−ν ≥ α
m−1

∑
n=0

λn (15)

for someα ∈ (0,1]. Then for each optimal control problem
(1), (4) satisfying Assumption 3.1 the assumptions of Propo-
sition 2.5 are satisfied for the multistep MPC feedback law
µN,m and in particular the inequalityαV∞(x) ≤ αV

µN,m
∞ (x) ≤

VN(x) holds for allx∈ X.
In view of Theorem 3.5, the valueα can be interpreted as a
performance bound which indicates how good the receding
horizon MPC strategy approximates the infinite horizon
problem. In the remainder of this section we present an
optimization approach for computingα. To this end consider
the following optimization problem.

Problem 3.6:Given β ∈ K L 0, N ≥ 1 and m ∈
{1, . . . ,N−1}, compute

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn−ν
∑m−1

n=0 λn

subject to the constraints (13), (14) andλ0, . . . ,λN−1,ν > 0.
The following is a straightforward corollary from Theorem

3.5.
Corollary 3.7: Consider β ∈ K L 0, N ≥ 1, m ∈

{1, . . . ,N−1}, and assume that the optimization problem 3.6
has an optimal valueα ∈ (0,1]. Then for each optimal control
problem (1), (4) satisfying Assumption 3.1 the assumptions
of Theorem 3.5 are satisfied and the assertions from Theorem
3.5 hold.

IV. A SYMPTOTIC STABILITY

In this section we show how the performance boundα
can be used in order to conclude asymptotic stability of
the MPC closed loop. More precisely, we investigate the
asymptotic stability of the zero set ofl⋆. To this end we
make the following assumption.

Assumption 4.1:There exists a closed setA⊂ X satisfy-
ing:

(i) For eachx∈ A there existsu∈U with f (x,u) ∈ A and
l(x,u) = 0, i.e., we can stay insideA forever at zero
cost.

(ii) There existK∞–functionsα1, α2 such that the inequal-
ity

α1(‖x‖A) ≤ l⋆(x) ≤ α2(‖x‖A) (16)

holds for eachx∈ X where‖x‖A := miny∈A‖x−y‖.
This assumption assures global asymptotic stability ofA
under the optimal feedback for the infinite horizon problem,

providedβ (r,n) is summable. We remark that condition (ii)
can be relaxed in various ways, e.g., it could be replaced
by a detectability condition similar to the one used in [3].
However, in order to keep the presentation in this paper
technically simple we will work with Assumption 4.1(ii)
here. Our first stability result is formulated in the following
theorem. Here we say that a multistep feedback lawµ
asymptotically stabilizes a setA if there existsβ̃ ∈ K L 0

such that for all admissible control horizon sequences the
closed loop system satisfies‖xµ(n)‖A ≤ β̃(‖x0‖A,n).

Theorem 4.2:Consider β ∈ K L 0, m⋆ ≥ 1 and N ≥
m⋆ + 1 and a setM ⊆ {1, . . . ,m⋆}. Assume thatα⋆ :=
minm∈M{α[N,m]} > 0 where α[N,m] denotes the optimal
value of optimization Problem 3.6. Then for each optimal
control problem (1), (4) satisfying the Assumptions 3.1 and
4.1 the multistep MPC feedback lawµN,m⋆ asymptotically
stabilizes the setA for all admissible control horizon se-
quences(mi)i∈N0. Furthermore, the functionVN is a Lya-
punov function at the transmission timesσ(k) in the sense
that

VN(xµN,m⋆ (σ(k+1))) ≤ VN(xµN,m⋆ (σ(k))) (17)

− α⋆Vmk(xµN,m⋆ (σ(k)))

holds for allk∈ N0 andx0 ∈ X.
Proof: From (16) and Lemma 3.2 we immediately

obtain the inequality

α1(‖x‖A) ≤VN(x) ≤ BN(α2(‖x‖A)). (18)

Note thatBN ◦α2 is again aK∞–function. The stated Lya-
punov inequality (17) follows immediately from the defini-
tion of α⋆ and (5) which holds according to Corollary 3.7 for
all m∈M. Again using (16) we obtainVm(x)≥α1(‖x‖A) and
thus a standard construction (see, e.g., [11]) yields aK L –
function ρ for which the inequalityVN(xµN,m⋆ (σ(k))) ≤
ρ(VN(x),k) ≤ ρ(VN(x),⌊σ(k)/m⋆⌋) holds. In addition, using
the definition ofµN,m⋆ , for p = 1, . . . ,mk − 1, k ∈ N0, and
abbreviatingx(n) = xµN,m⋆ (n) we obtain

VN(x(σ(k)+ p))

≤
σ(k+1)−1

∑
n=σ(k)+p

l(x(n),µN,m⋆ (x(ϕ(n)),n−ϕ(n)))

+ VN−mk+p(x(σ(k+1)))

≤
σ(k+1)−1

∑
n=σ(k)

l(x(n),µN,m⋆ (x(ϕ(n)),n−ϕ(n)))

+ VN−mk+p(x(σ(k+1)))

≤ VN(x(σ(k)))+VN(x(σ(k+1))) ≤ 2VN(x(σ(k)))

where we have used (17) in the last inequality. Hence, we
obtain the estimateVN(xµN,m⋆ (n)) ≤ 2ρ(VN(x),⌊ϕ(n)/m⋆⌋)
which eventually implies

‖xµN,m⋆ (n)‖A ≤ α−1
1 (VN(xµN,m⋆ (n)))

≤ α−1
1 (2ρ(VN(x),⌊ϕ(n)/m⋆⌋))

≤ α−1
1 (2ρ(BN(α2(‖x‖A)),⌊(n−m⋆)/m⋆⌋))



and thus asymptotic stability withK L -function given by,
e.g., β̃ (r,n) = α−1

1 (2ρ(BN(α2(r)),⌊(n− m⋆)/m⋆⌋)) + re−n.

Remark 4.3:For the “classical” MPC casem⋆ = 1 andβ
satisfying (8) it is shown in [4, Theorem 5.3] that the criterion
from Theorem 4.2 is tight in the sense that ifα⋆ < 0 holds
then there exists a control system which satisfies Assumption
3.1 but which is not stabilized by the MPC scheme. We
conjecture that the same is true for the general casem⋆ ≥ 2.

V. CALCULATION OF α
Problem 3.6 is an optimization problem of much lower

complexity than the original MPC optimization problem.
Still, it is in general nonlinear. However, it becomes a linear
program ifβ (r,n) (and thusBk(r) from (9)) is linear inr.

Lemma 5.1:If β (r, t) is linear in r, then Problem 3.6
yields the same optimal valueα as

min
λ0,λ1,...,λN−1,ν

N−1

∑
n=0

λn−ν (19)

subject to the (now linear) constraints (13), (14) and

λ0, . . . ,λN−1,ν ≥ 0,
m−1

∑
n=0

λn = 1. (20)

For a proof we refer to [4]. For linearβ we can defineγk :=
Bk(r)/r. This allows for an explicit formula to calculate the
optimal valueα of Problem 3.6.

Theorem 5.2:Let β (·, ·) be linear in its first argument and
satisfy (8). Then the optimal valueα = α[N,m] for given
optimization horizonN and control horizonm is

1−

N
∏

i=m+1
(γi −1)

N
∏

i=N−m+1
(γi −1)

(
N
∏

i=m+1
γi −

N
∏

i=m+1
(γi −1)

)(
N
∏

i=N−m+1
γi −

N
∏

i=N−m+1
(γi −1)

) .

(21)
Proof: We only sketch the main ideas of the proof

an refer to [5] for details. For the optimum of the linear
problem stated in Lemma 5.1 inequality (14),j = N−m−
1, is an active constraint. As a consequence, the positivity
conditions concerningν and λ0 are implicitly guaranteed.
The obtained equality for (14),j = N−m−1, in combination
with equality (20) allows for rewriting the objective function
as 1− (γm+1 − 1)λN−1 and eliminatingν and λ0 from the
optimization problem entirely. A pairwise comparison based
on (8) of (13),k = m, . . . ,N−2, and (14),j = 0, . . . ,N−m−
2, provides that the restrictions (13),k = m, . . . ,N− 2, are
negligible because each point which violates (13) fork is not
feasible due to (14) forj = k−m, k = m, . . . ,N−2. Hence,
the optimization problem under consideration depends only
on λ1, . . . ,λN−1 ≥ 0 and the remainingN− 1 inequalities.
In addition, we prove that the optimum is strictly positive
and satisfies all other constraints with equality. Solving the
resulting linear system of equations yields the stated formula
for α.
Theorem 5.2 enables us to easily compute the performance
boundsα[N,m] which are needed in Theorem 4.2 provided
β is known. However, even ifβ is not known exactly, we

can deduce valuable information. The following corollary is
obtained by a careful analysis of the fraction in (21), cf. [5].

Corollary 5.3: For each fixedm andβ of type (6) or (7)
we have limN→∞ α[N,m] = 1. In particular, for sufficiently
largeN the assumptions of Theorem 4.2 hold and hence the
networked closed loop system is asymptotically stable.
Another application of Formula (21) is the investigation of
qualitative properties ofα[N,m] depending on the control
horizonm. The following symmetry property follows imme-
diately from Formula (21).

Corollary 5.4: For m= 1, . . . ,⌊N
2 ⌋ the values from Theo-

rem 5.2 satisfyα[N,m] = α[N,N−m].

Fig. 2. Sequences of optimal valuesα [N, ·] for β satisfying (6), i.e.,
exponential controllability, with parametersC = 3

2 , σ = 4
5 (solid line, o)

and C = 7
2 and σ = 3

5 (dashed line, *) and optimization horizonsN = 8
(left) andN = 12 (right).

Fig. 2 illustrates the assertion of Corollary 5.4 forK L -
functions satisfying (6), i.e., exponential controllability.
Apart from the symmetry proven in Corollary 5.4 one also
observes certain monotonicity properties: we haveα[N,m+
1] ≥ α[N,m] for m = 1, . . . ,⌊N/2⌋ − 1 and the opposite
inequality afterwards. This is a very desirable feature because
it implies that if the stability condition in Theorem 4.2
holds for m⋆ = 1 then is also holds for allm⋆ ≤ N−1, cf.
Theorem 5.7, below. However, the next example shows that
this monotonicity property does not always hold.

Example 5.5:We consider theK L 0-functionsβ1 andβ2

of type (7) defined byc0 = 1.24, c1 = 1.14, c2 = 1.04 and
ci = 0 for all i ≥ 3 for β1 andc0 = 1, c1 = 1.2, c2 = 1.1, c3 =
1.1, c4 = 1.2, c5 = 1, c6 = 0.75, c7 = 0.25 andci = 0 for all
i ≥ 8 for β2. Both functions satisfy condition (8) andβ1

is, in addition, monotonically decreasing. The corresponding
valuesα[N,m] in Fig. 3 show that neither function satisfies
α[N,m+1]≥ α[N,m] for m= 1, . . . ,⌊N/2⌋.

Fig. 3. α [4,m], m= 1, . . . ,3 for β1 (left) and α [9,m], m= 1, . . . ,8 for β2
(right) from Example 5.5.



Example 5.5 shows that the desired monotonicity property
does not hold for arbitraryK L 0-functions β . However,
the following theorem (for the proof see [5]) shows that
monotonicity holds forβ of type (6) and at least for a subset
of β of type (7).

Theorem 5.6:Let β be of type (6) or of type (7) with
cn = 0 for n ≥ 1. Then for eachN ≥ 4 the optimal values
α = α[N,m] are monotonically increasing inm for m ∈
{1, . . . ,⌊N

2 ⌋} and decreasing form∈ {⌊N
2 ⌋, . . . ,m

⋆}.
This monotonicity has the following remarkable conse-

quence for our stabilization problem.
Theorem 5.7:Let β be of type (6) or of type (7) with

cn = 0 for n≥ 1. Then for eachN ≥ 1 the stability criterion
from Theorem 4.2 is satisfied form⋆ = N−1 if and only if
it is satisfied form⋆ = 1.

Proof: Corollary 5.4 and Theorem 5.6 implyα[N,m]≥
α[N,1] for all m∈ M which yields the assertion.
In other words, for exponentially controllable systems and
for systems which are finite time controllable in one step,
for our proposed networked MPC scheme we obtain stability
under exactly the same conditions as for “classical” MPC,
i.e., m⋆ = 1. In this context we recall once again that for
m⋆ = 1 the stability condition of Theorem 4.2 is tight, cf.
Remark 4.3.

VI. EXAMPLE

In this section we compare our analytical results to a
numerical MPC simulation. To this end we consider the
linear inverted pendulum on a cart given by

ẋ(t) =




0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0


x+




0
1
0
1


u.

Here, we want to stabilize the upright positionx⋆ = (0,0,0,0)
using linear MPC. We consider the optimization horizonN =
10, the sampling intervalT = 0.5 and the cost functional
JN(x0,u) = ∑N−1

n=0 ‖Qxu(n)‖1 + ‖Ru(n)‖1 with Q = 2Id and
R= 4Id. Moreover, we use the constantsg= 9.81 andk= 0.1
for gravitation and friction respectively.

For eachm= 1, . . . ,9 we have simulated MPC closed loop
trajectoriesxp

µN,m with control horizonmi ≡m and equidistant
initial values xp, p = 1, . . . ,625, from a rectangle with
diameter 0.2 around(0,0,−4,−1)⊤. Along each trajectory
we have then computedα[N,m]p as the minimum of the
values α from Formula (5) applied withx0 = xp

µN,m(n),
n= 0,m,2m, . . . ,ϕ(18). A selection of these values is plotted
in Fig. 4, in which each dashed line represents the values
α[N,1]p, . . . ,α[N,N−1]p for an initial valuexp. In addition,
the minima over all trajectories are plotted as a solid line.

The results indicate that the closed loop is asymptotically
stable for eachmi and confirm that choosing control horizons
mi > 1 may indeed improve the suboptimality bound. More-
over, it is interesting to compare Fig. 4 with Fig. 2. While
Fig. 2 shows the minimalα-values for a set of exponentially
controllable systems over all initial values, the curves inFig.
4 represent theα-values for one particular system and a finite

Fig. 4. Approximation ofα [10,m] for the linear inverted pendulum.
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set of initial values. Despite this very different nature ofthe
computations, the curves in Fig. 4 at least approximately
resemble the shape of the curves in Fig. 2.

VII. M ONTE-CARLO SIMULATION

While we were able to observe the monotonicity property
stated in Theorem 5.6 — at least approximately — in
many numerical examples (cf. also the examples in [5]), the
symmetry proved in Corollary 5.4 could not be observed.
As in Figure 4, for largem in simulations the valuesα[N,m]
are typically significantly smaller (and thus “worse”) than
the valuesα[N,N−m].

A possible explanation for this fact is that the values
α[N,m] from Theorem 5.2 are obtained by computing the
worst case over all control systems which are controllable
in the sense of Assumption 3.1. One may conjecture that a
“randomly” chosen system is more likely to be close to the
worst case system for largem than for small.

In order to support this conjecture, instead of computing
α by minimizing (19) over all admissibleλ0, . . . ,λN−1, and
ν we randomly generate admissible sequencesλ0, . . . ,λN−1,
then minimize (19) overν only, and average over the
resultingα in a Monte-Carlo simulation. While minimizing
over theλi corresponds to picking the worst case system in
the class of systems satisfying the controllability Assump-
tion 3.1, picking random sequences corresponds to picking
random systems from this class.

In order to generate an admissible random sequence
λ0, . . . ,λN−1, i.e., a sequence satisfying (13), we again exploit
the linearity ofBk which yields

Bk(r) = γkr

with γk = Bk(r)/r, cf. the definition before Theorem 5.2. We
then calculateλi by backward induction: we setλN−1 = 1
and inductively compute

λk =
∑N−1

n=k λn

(γN−k−1)z
, k = N−2, . . . ,0

wherez∈ (0,1) are random numbers generated in each iter-
ation step. Here we used uniformly distributed random num-



bers, however, experiments with other distributions yielded
qualitatively similar results. Normalizing this sequencesuch
that ∑m−1

n=0 λn = 1 holds, we then solved (19) numerically by
minimizing overν only.

Figure 5 shows the result of a Monte-Carlo simulation
using this procedure, in which we averaged the resultingα-
values over 1000 randomly generated sequences forβ (r,t) =
Cσ t r with C = 3 andσ = 0.6.

Fig. 5. Monte-Carlo simulation forα [10,m] with 1000 randomly generated
λi sequences.
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We observe the same qualitative behavior as for the
inverted pendulum example in Figure 4. In particular, the
result supports our conjecture that the average performance
for largem is closer to the worst case than for smallm. Still,
the result also shows that for control horizonsm up to about
0.8N we do not observe a significant loss of performance
compared to the classical MPC casem= 1.

VIII. C ONCLUSIONS

We have proposed a building block for the stability and
performance analysis of MPC schemes for networked control
systems with packet dropouts. Our technique is based on
asymptotic controllability properties and leads to an explic-
itly computable performance indexα which shows that for
a large class of systems stability can be guaranteed under
the same conditions as for a classical MPC scheme. In ad-
dition, by means of a numerical Monte-Carlo simulation we
investigated the gap between the worst case and the average
behavior showing that the average performance is closer to
the worst case for large control horizons (corresponding to
long periods of network failure) than for small ones.
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