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Abstract— In this paper we propose an MPC scheme with a decades, such results have been obtained for different MPC
compensation mechanism for packet dropouts in a ngtwork variants, see, e.g., [1], [3], [4], [7], [8], [10]. Here we
connection between controller and actuator. We provide a  cqngiger the simplest and industrially most commonly used
stability and suboptimality analysis of the scheme based on .
asymptotic controllability properties and show that for large C|§lSS of MP(,: schemes for nonlinear systems, namely those
classes of systems we obtain the same stability conditions a Without terminal constraints and costs, see [2] for a survey
for classical MPC and in particular stability for sufficient ly For our analysis we generalize results from [4] by allowing
large optimization horizon. As a byproduct, we observe that for variable control horizons. This technique relies on a
longer control horizons may improve the performance of the ¢ jitaple asymptotic controllability assumption and legas

MPC closed loop. We illustrate our results by the standard d sufficient dition f boptimalit d
inverted pendulum on a cart problem and provide some insight & NECesSary and suliicient condition tor suboptmality an

into the gap between the analyzed worst case and the average Stability in terms of a small optimization problem which
performance by means of a Monte-Carlo simulation. was solved numerically in [4]. Besides generalizing these

| INTRODUCTION results to variable control horizons, in this paper we also

esent a closed analytic solution formula for this opti-

r
_ Due to lower implementation costs, greater in_ter()perabi&ization problem for a large class of systems. This allows
ity, and a wide range of choices in developing controlor 5 getailed qualitative study of the impact of different
systems, networked control systems (NCS) are increasingiyntrol horizons which in particular reveals that for certa
used, particularly in the automotive and aeronautical $adu ¢|asses of systems longer control horizons can yield better
tries that are seeing high adoption-rates of drive-by-wirghoptimality estimates than those obtained for the usual
and fly-by-wire designs. The main drawback of NCS is thgyntro| horizon of length one. Since our results are based
additional complexity in analysis and feedback design. o 5 worst case analysis over a class of asymptotically

_ In this paper we consider the implementation of a Nofsonrollable systems, we additionally perform a numerical
linear model predictive control (MPC) scheme over a nefyonte-Carlo simulation in order to provide some insighbint
work. More precisely, we consider an uncertain transmissiqne gap between the worst case and the average performance.
channel between the controller and the actuator and focustpe paper is organized as follows: In Section Il we de-

on the idealized situation in which delays are negligiblg  ipe the setup and formalize the MPC scheme we propose.
but packet dropouts may occur. In order to compensate f§f section 11l we summarize and extend the optimization
these dropouts, we propose an MPC variant whose maiseq MPC analysis technique from [4] and in Section
ingredient is a buffer device in the actuator. Note that W@, \wve show how this technique can be used in order to
do not assume any particular protocql like round—robin (Rpﬁrove asymptotic stability for our proposed MPC scheme.
or try-once—discard (TOD), as, e.g., in [12], [15], [16].4IN Thereafter, in Section V we present the analytic solution of
is, we assume that either a packet arrives unperturbed afl optimization problem and state a couple of consequences
with negligible delay over the channel, or it is treated as g, the stability of our proposed scheme. In Section VI
dropout. While this is an admittedly simplified setting, w&e jljystrate our results by means of a numerical example.
consider our proposed MPC scheme as a building block f‘?rinally, we perform a Monte-Carlo simulation in order

more sophisticated schemes which, in addition, are able {g jnyestigate the differences between the worst case and
handle delays between sensor, controller and actuator rage performance and draw some conclusions.

whose details are currently under investigation, see 4.9 [6

Our proposed MPC scheme results in a nonstandard MPC Il. SETUP AND PRELIMINARIES
closed loop in which the control horizon — i.e., the number
of elements of the online computed optimal control sequence
which are eventually applied at the plant — is time varyin
and unknown at theytirrﬁ)g of optimizaFt)ion. The main gogl o? X(n+1) = f(x(n),u(m), x(0)=xo @)
this paper i_s to_provide a mathe_matically rigoro_us stapilit yith x(n) € X andu(n) € U for n € No. Here the state space
and suboptimality analysis of this scheme. During the las js an arbitrary metric space. We denote the space of control
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T > 0. In this situation, the discrete time corresponds to to formalize MPC, we start by looking at the following

the continuous timé = nT. problem: Find a feedback control law minimizing the infinite
We consider the situation of a networked control systerhorizon costle (Xo,U) =5 n_gl (Xu(n),u(n)) with running cost
shown in Fig. 1 where the controller at every time instaat | : X x U — RJ. We denote the optimal value function for

N uses a network channel in order to transmit the feedbatkis problem byV.(Xo) = infycs Jo(Xo,U). In order to be
control valueu(k) = u(x(k)) to the actuator. We assume thatconsistent with the scheme introduced above, we use the
term feedback control in the following general sense.

Fig. 1. Scheme of the considered networked control system Definition 2.2: For m* > 1 andM C {1,...,m"} a mul-
tistep feedback law is a map : X x {0,...,m*—1} - U
which for an admissible control horizon sequerfog)icy,
is applied according to the rubg,(0) = Xo,

Xu(N+1) = f(xu(n), L(xu(¢(n),n—=d(n))).  (2)

MPC Since infinite horizon optimal control problems are in gen-
controlier eral computationally infeasible, we use a receding horizon
approach in order to compute an approximately optimal con-

delays over the network are negligible but that occasionglller. To this end we consider the finite horizon functibna
packet dropouts occur, i.e., that the control value senhby t\yith optimization horizon Ne N

controller does not arrive at the actuator. N1

In order to compensate for these dropouts, we add J u) = 7| n).uln 3
a buffer device in the actuator and design a con- N(xo, ) % Oxa(), u(m) ®)
troller which at each time instank sends a sequence
p(x(k),0), u(x(k),1),...,u(x(k),m* — 1) instead of a single

Actuator Plant Sensor

(o ]

Channel

n=

for N € Ng which gives us the optimal value function

control valueu(k) = p(x(k)) € U. In the actuator, the ele- Wn(Xo) = inf In(Xo,U). (4)
ments of this sequence are buffered and used until the next uew
sequence arrives. Here, we consider the conceptually simplest MPC approach
In the ideal case when no packet dropouts occur, thgposing neither terminal costs nor terminal constraints.
actuator applies the control sequence Results including an additional weight on the final term can
be found in [5].
H(X(n),0), u(X(n+1),0), (X(n+2),0), p(x(n+3),0),.... Based on this finite horizon optimal value function we

If, however, transmission is successful at, e.g., timand define an multistep feedback laum by picking the first

n+ 3 but fails at timen+ 1 andn+ 2, the actuator applies ™M €lements of the optimal control sequence. .
Definition 2.3: For m* > 1 andN > m*+ 1 we define a

p(x(n),0), u(x(n), 1), u(x(n),2), u(x(n+3),0),... multistep MPC feedback law by v (X0, n) = u*(n), where

In order to formalize this idea, we define a sequemgicy, u II?S a ml|(n|2m4|f||:ng cpntrl(.)llfor (1‘4) W|th.|.n|t|al valueo. h

of control horizonswhich counts the time instances betweenh gr?ar . gr simp |c_|t_y of exposition we assume that

the ith and the(i + 1)st successful transmission. For thesd"® Infimum |n (4) IS a”mlnlmgm._ : : -

sequences we make the following definitions Note that “classical” MPC is included in this definition
Definition 2.1: Given a setM C {1,...,m*}, we call a and corresponds to the choioe = 1.

control horizon sequenden )icy, admissiblgf my € M holds In_ order to measure t_he_ _subopfumallty degree of _the
for all i € No. Furthermore, fok.n € No we define multistep feedback for the infinite horizon problem we define

k-1 Hs(my) - < _
o1 = 'S (using he conventrs %, =0 V™ (0) 1= 3 1u(M): KX (9()),n = 9().
o(n) = ;ax{o(k) 'k € No,o(K) < n}. Our approach relies on results on relaxed dynamic program-

ming [9], [13] already used in an MPC context in [7] which
we adapt to our variable control horizon setting.
Proposition 2.5: Consider a multistep feedback laji:

Hereo (k) denotes thé&th successful transmission time while
¢ (n) denotes the largest successful transmission tifrre
Note that by convention the time= 0 coincides with the

Xx{0,...,m"—1} - U, a setM C {1,...,m}, and a

first successful transmission. functionV - X — R+ and hat f h admissibl
Using this notation, the control sequence applied by tha/netion V: X — K, and assume that for each admissible

actuator can be expressed as control horizon sequencém)icy, and eachxg € X the

corresponding solutiomy (n) with x;(0) = X satisfies
IJ(X(U(k)),O),,[J(X(O’(k)),n‘k—1),[.1(X(O'(k+1)),0), _ mo—1

in which my is unknown at the times (k). V(%) =V (xa(mo)) +a 5 1(xa(K),fi(x0,k))  (5)
MPC is ideally suited to implement the proposed com- k=0

pensation strategy since in each MPC optimization step d4ar somea € (0,1]. Then for allxo € X and all admissible

optimal control sequence is computed, anyway. In ordém)cy, the estimatenvm(xo)gavoﬁ”<m)(xo)§\7(x) holds.



Proof: The proof is similar to that of [4, Proposition always satisfied in case (6) and satisfied in case @) <

2.4]: Considerxg € X and the trajectory;(n) generated by
the closed loop system using the multistep feedbacnd
the control horizonsn. Then from (5) for allk € Ng we
obtain
o(k+1)-1
a I (xz(n), A (X (@ (n)),n—¢(n)))
n=0o(k)

V(xa(a(K)) =V (xa(a(k+1))).

Summing over the transmission timegk) yields

<

a(k)-1
a ZO I (g (n), 21X (@ (n)),n—¢(n)))
k10011

ak;) n:;k) [(xg(n), A (xz (¢ (n)),n—¢(n)))

< V(x(0)) =V(x(a (k")) <V (x(0)).

For k* — oo this shows thatV (x) is an upper bound for
aVE™ (%) and hencarVe(x) < aVE ™ (x) <V(x). =

Ill. CONTROLLABILITY AND PERFORMANCE BOUNDS

cnCm. If needed, this property can be assumed without loss
of generality, because by Sontag® .Z-Lemma [14]3 in
Assumption 3.1 can be replaced byaf the formB(r,t) =
ai(az(r)e ) for ay, 0z € . Then, (8) is easily verified if
azoaq(r) >r which is equivalent tax; o a(r) > r which in

turn is a necessary condition for Assumption 3.1 to hold for
n=0 andB(r,t) = ai(az(r)e™).

Under Assumption 3.1, for any > 0 and anyN > 1 we
define the value

N-1
Bn(r) =) B(r,n). 9)
2
An immediate consequence of Assumption 3.1 are the fol-

lowing lemmata which have been shown in [4].
Lemma 3.2:For eachN > 1 the inequality

Wn(%0) < Bn(I"(%0)) (10)

holds.

Lemma 3.3:Assume Assumption 3.1 and considere
X and an optimal controli* for the finite horizon optimal
control problem (4) with optimization horizoN > 1. Then

In this section we introduce an asymptotic controllabilityfo; eachj = 0,...,N — 1 the inequality
assumption and deduce several consequences for our optimal

control problem. In order to facilitate this relation we il
formulate our basic controllability assumption, belowt imo
terms of the trajectory but in terms of the running cobst
along a trajectory.

To this end we say that a continuous functnR>¢ — R>q

is of class. % if it satisfiesp(0) =0, is strictly increasing
and unbounded. We say that a continuous fungBoiR ¢ x
R>p — Rxq is of classZ %y if for eachr > 0 we have
lim;_ B(r,t) =0 and for each > 0 we either have(-,t) €
Je or B(-,t) = 0. Note that in order to allow for tighter

bounds for the actual controllability behavior of the syste

we use a larger class than the usual claé<Z. It is, how-

ever, easy to see that egéhe 7”2 can be overbounded by

aBex?, eq., by setting3(r,t) = max>¢ B(r,7) +e'r.
Furthermore, we definkE (x) := minyey [ (X, u).

Assumption 3.1Given a functionf3 € 7%, for each
Xp € X there exists a control functiony, € % satisfying
I(quO(n)_,uxO(n)) < B(I*(x0),n) for all n e No.

Special cases foB € 7 % are

B(r,n) =Ca"r (6)

for real constantC > 1 and o € (0,1), i.e., exponential
controllability, and

B(r,n) = car (@)

for some real sequengen)nen, With ¢, > 0 andc, = 0 for all
n> ny, i.e.,finite time controllability(with linear overshoot).
For certain results it will be useful to have the property

B(r,n+m) < B(B(r,n),m) (8)

Property (8) ensures that any sequence of the fapm=
B(r,n), r >0, also fulfillsAn:m < B(An,m). Itis, for instance,

for all r > 0,n,me Np.

I O (1), ++)) < B (7 (% (1))

and for eachm=1,... N—1 and each =0,...,N—-m—-1
the inequality

(11)

W (X (M) < Jj (X (M), U™ (M) 4 B (17 (s (M- )
(12)
holds forBn_; from (9).

Now we provide a constructive approach in order to
computea in (5) for systems satisfying Assumption 3.1.
Note that (5) only depends any and not on the remainder
of the control horizon sequence. Hence, we can perform the
computation separately for each control horinoand obtain
the desiredx for variablem by minimizing over thea-values
for all feasiblem.

For our computational approach we consider arbitrary
values Ag,...,An_1 > 0 and v > 0 and start by deriving
necessary conditions under which these values coincide wit
an optimal sequencExy+(n),u*(n)) and an optimal value
Wn(Xur (M), respectively.

Proposition 3.4: Assume Assumption 3.1 and consider
N>1,me{1,...,N—1}, asequencd,>0,n=0,...,N—

1, and a valuev > 0. Considerxg € X and assume that
there exists a minimizing contral* € % for (4) such that
An=1(Xyg=(n),u*(n)) holds for allne {0,...,N—1}. Then

N-1

Z(AHSBka(Ak)a k:O,,N—Z (13)
n=

holds true and if furthermore = Viy(x~(m)) we have

-1
VS S Mt B (e, =0 N-m-1 (14)
n=



Proof: If the stated conditions hold, thels andv must  providedf(r,n) is summable. We remark that condition (ii)
meet the inequalities given in Lemma 3.3, which is exactlgan be relaxed in various ways, e.g., it could be replaced
(13) and (14). B by a detectability condition similar to the one used in [3].

Using this proposition a sufficient condition for subopti-However, in order to keep the presentation in this paper
mality of the MPC feedback lawn m is given in Theorem technically simple we will work with Assumption 4.1(ii)
3.5 which is proved in [4]. here. Our first stability result is formulated in the followi

Theorem 3.5:Consider B € 2%, N > 1, theorem. Here we say that a multistep feedback law
me {1,...,N—1}, and assume that all sequendgs> 0, asymptotically stabilizes a sét if there existsf3 € % %y
n=0,...,N—1 and valuey > 0 fulfilling (13), (14) satisfy such that for all admissible control horizon sequences the

the inequality closed loop system satisfiéig, (n)||a < [B(HXOHA, n.
N-1 m-1 Theorem 4.2:Consider 8 € # %y, m* > 1 and N >
HZOA“_V = an;)\“ (15) m +1 and a setM C {1,...,m"}. Assume thata* :=

minmem{a[N,m/} > 0 where a[N,m| denotes the optimal
for somea € (0,1]. Then for each optimal control problem yajye of optimization Problem 3.6. Then for each optimal
(1), (4) satisfying Assumption 3.1 the assumptions of Propgontrol problem (1), (4) satisfying the Assumptions 3.1 and
sition 2.5 are satisfied for the multistep MPC feedback lawy 1 the multistep MPC feedback lap n+ asymptotically
pinm and in particular the inequalityVeo () < aVa""(X) < stabilizes the se for all admissible control horizon se-
Wn(x) holds for allx € X. quences(m )ic,. Furthermore, the functioy is a Lya-

In view of Theorem 3.5, the value can be interpreted as a punov function at the transmission timegk) in the sense
performance bound which indicates how good the recedingat

horizon MPC strategy approximates the infinite horizon

problem. In the remainder of this section we present an WXy (0(k+1))) < Un(Xyy . (0(K))) (17)

optimization approach for computiray. To this end consider — O Vi, (X, e (0(K)))

the following optimization problem. ’

Problem 3.6:Given B € #. %o, N > 1 and m e holds for allk € No andxp € X.

{1,...,N—1}, compute Proof: From (16) and Lemma 3.2 we immediately

N1 obtain the inequality

a:= inf ZnoAn—V
Jo v SIS a1 ([[¥lla) < V() < Bu(@2(][¥]|a). (18)

subject to the constraints (13), (14) ahgl...,An_1,v > 0. Note thatByo a is again a#s—function. The stated Lya-

The following is a straightforward corollary from Theorempunov inequality (17) follows immediately from the defini-
3.5. tion of a* and (5) which holds according to Corollary 3.7 for

Corollary 3.7: Consider B € # %y, N > 1, m ¢ almeM. Again using (16) we obtai¥in(x) > a1(||X/|a) and
{1,...,N—1}, and assume that the optimization problem 3.8hus a standard construction (see, e.g., [11]) yield& &~
has an optimal value < (0,1]. Then for each optimal control function p for which the inequalityVn(Xy .. (0(K))) <
problem (1), (4) satisfying Assumption 3.1 the assumption8(Wn(x),K) < p(Wn(x), [o(k)/m*]) holds. In addition, using
of Theorem 3.5 are satisfied and the assertions from Theordf¢ definition of iy, for p=1,....m¢—1, k€ No, and

3.5 hold. abbreviatingx(n) = Xy, ... (N) we obtain
IV. ASYMPTOTIC STABILITY Wn(x(a (k) + p))
In this section we show how the performance bound olk1)-1
can be used in order to conclude asymptotic stability of = nza(kal(X(n),uNm(x(qb(n)),n—¢(n)))

the MPC closed loop. More precisely, we investigate the

asymptotic stability of the zero set ¢f. To this end we 4—(:/;1),”}+p(x(a(k+l)))
make the following assumption. olet2)—
Assumption 4.1There exists a closed sAtC X satisfy- = Z LX(); inm (X(9 (). n— 6 (1))
ing: n=o(k)
Wn— k+1
(i) For eachx € A there existau € U with f(x,u) € A and FViemep(x(o(k+1)))
I(x,u) =0, i.e., we can stay insid@ forever at zero < W(x(a(k) +Wn(x(a(k+1))) < 2Wn(x(a(k)))
cost.

. ) ) ) where we have used (17) in the last inequality. Hence, we
(i) There exist#,—functionsay, a, such that the inequal- 4piain the estimatd/ (X, . () < 20(Va(x), [$(n)/m¢])

ity ) which eventually implies
ay([[x]la) <17(x) < az([|x]|a) (16)

holds for eachx € X where||x||a := minyeca [|X—Y]|.
This assumption assures global asymptotic stabilityAof
under the optimal feedback for the infinite horizon problem,

Xy (Ml < @ (VN (K e (M)
ay *(2p(Vi(x), ¢ (n)/m"]))
a; *(2p(Bu(az(|[X|a)), [ (n—m")/m]))

INIA



and thus asymptotic stability wittiZ”.Z-function given by, can deduce valuable information. The following corollasy i
e.g., B(r,n) = a7 (2p(Bn(az(r)), [ (n—m*)/m*|)) +re".  obtained by a careful analysis of the fraction in (21), c}. [5
u Corollary 5.3: For each fixedn and 8 of type (6) or (7)

Remark 4.3:For the “classical” MPC case* =1 and8  we have liny_. a[N,m] = 1. In particular, for sufficiently
satisfying (8) itis shown in [4, Theorem 5.3] that the ciiber  largeN the assumptions of Theorem 4.2 hold and hence the
from Theorem 4.2 is tight in the sense thawif < 0 holds networked closed loop system is asymptotically stable.
then there exists a control system which satisfies Assumptiqnother application of Formula (21) is the investigation of
3.1 but which is not stabilized by the MPC scheme. Weyyalitative properties otr|N,m| depending on the control
conjecture that the same is true for the general calse 2. horizonm. The following symmetry property follows imme-
diately from Formula (21).

) o Corollary 5.4: Form=1,..., L%J the values from Theo-
Problem 3.6 is an optimization problem of much lowefem 5.2 satisfya [N, m = a[N,N — m.

complexity than the original MPC optimization problem.

Still, it is in general nonlinear. However, it becomes a éine

program if B(r,n) (and thusBy(r) from (9)) is linear inr. Fig. 2. Sequences of optimal valuesN, | for B satisfying (6), i.e.,
L 5.1:If B rt) is linear inr. then Problem 3.6 exponential controllability, with parametefs = % o = 2 (solid line, o)
emma . L. (r,t) is li inr, ¥ andC= 4 and o =  (dashed line, *) and optimization horizoms= 8

V. CALCULATION OF

yields the same optimal value as (left) andN = 12 (right).
N—-1
min An—V (19) o
A0AL - AN-1,V = o1 P
. . . AR TP R T
subject to the (now linear) constraints (13), (14) and oy [ conmolborizon
1 “02{ .
m— i \
-031 \
Ag, ..., AN—1,V >0, Z Ah=1. (20) g . ’ \
n=0 i \ !
For a proof we refer to [4]. For lineg® we can defings := o j Y contothorizon 0

By (r)/r. This allows for an explicit formula to calculate the

optimal valuea of Problem 3.6. ) ) )
Theorem 5.2:Let 3(-,-) be linear in its first argument and Fig. 2 illustrates the assertion of Corollary 5.4 fef".#-
satisfy (8). Then the optimal value = a[N,m| for given functions satisfying (6), i.e., exponential controllatyil

optimization horizorN and control horizorm is Apart from the symmetry proven in Corollary 5.4 one also
N N observes certain monotonicity properties: we heyl, m+
. S BN RS 1] > a[N,m for m=1....[N/2| ~1 and the opposite
7N N N N - inequality afterwards. This is a very desirable featureanse
(. n v— T (Vn*l)> ( n v (Vn*l)> it implies that if the stability condition in Theorem 4.2
i=m41 i=m4-1 i=N-m+1 i=N-m+1

(21) holds form* =1 then is also holds for alin* <N —1, cf.
Proof: We only sketch the main ideas of the proofTheorem 5.7, below. However, the next example shows that

an refer to [5] for details. For the optimum of the linearthis monotonicity property does not always hold.

problem stated in Lemma 5.1 inequality (14)= N —m— Example 5.5:We consider the?” % y-functionsf3; and,

1, is an active constraint. As a consequence, the positivitf type (7) defined bycg = 1.24,¢; = 1.14,¢c, = 1.04 and

conditions concerning and Aq are implicitly guaranteed. ¢; =0 for alli > 3 for B; andco=1,¢c;=1.2,¢c,=1.1,c3=

The obtained equality for (14),=N—m—1, in combination 1.1,c4 =1.2,¢c5=1, cg = 0.75, ¢ = 0.25 andc; = O for all

with equality (20) allows for rewriting the objective fuimt i > 8 for 3,. Both functions satisfy condition (8) anf;

as 1- (ymr1 — 1)An—1 and eliminatingv and Ag from the s, in addition, monotonically decreasing. The correspogd

optimization problem entirely. A pairwise comparison lhsevaluesa [N, m] in Fig. 3 show that neither function satisfies

on (8) of (13),k=m,...,N—2,and (14),j =0,...,N—m—  a[N,m+1] > a[N,m] form=1...,[N/2].

2, provides that the restrictions (1®,=m,...,N—2, are

negligible because each point which violates (13)k@® not

feasible due to (14) foj =k—m, k=m,...,N — 2. Hence, Fr'ig'hg'fr:n[f'E”;]énTpTelé‘.g"?’ for f, (left) and a[9,m), m=1.....,8 for B

the optimization problem under consideration depends only

on Ag,...,An_1 > 0 and the remainindN — 1 inequalities.

In addition, we prove that the optimum is strictly positive

and satisfies all other constraints with equality. Solvihg t

resulting linear system of equations yields the stated deim o

for a. [ | o]

Theorem 5.2 enables us to easily compute the performance

boundsa[N, m| which are needed in Theorem 4.2 provided 000

B is known. However, even if8 is not known exactly, we

0010 0,005

4 5
control horizon

0,005 -0,005
o ~0.010
-0,015
-0,020
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Example 5.5 shows that the desired monotonicity propertyFig. 4. Approximation ofar[10,m for the linear inverted pendulum.
does not hold for arbitrary? Zo-functions 3. However,

the following theorem (for the proof see [5]) shows that
monotonicity holds fo3 of type (6) and at least for a subset

of B of type (7). k52
Theorem 5.6:Let B be of type (6) or of type (7) with Zs
¢cn =0 for n> 1. Then for eachN > 4 the optimal values 0755 47,

N
~

a = a[N,m|] are monotonically increasing im for m ¢
{1,...,15]} and decreasing fame {|§],...,m*}.

This monotonicity has the following remarkable conse-
guence for our stabilization problem.

Theorem 5.7:Let B be of type (6) or of type (7) with
¢cn =0 for n> 1. Then for eactN > 1 the stability criterion
from Theorem 4.2 is satisfied fan* = N —1 if and only if

suboptimality degree a
o
3
J

o
o
a

0.55 I I I I I I I
1

it is satisfied form* = 1. 2 3 b ontrol borizonm = 7 8 o
Proof: Corollary 5.4 and Theorem 5.6 impty[N,m] >
a[N,1] for all me M which yields the assertion. [ |

In other words, for exponentially controllable systems andet of initial values. Despite this very different naturethoé

for systems which are finite time controllable in one stepsomputations, the curves in Fig. 4 at least approximately
for our proposed networked MPC scheme we obtain stabilisesemble the shape of the curves in Fig. 2.

under exactly the same conditions as for “classical” MPC,
i.e., m* = 1. In this context we recall once again that for

m* = 1 the stability condition of Theorem 4.2 is tight, cf. While we were able to observe the monotonicity property
Remark 4.3. stated in Theorem 5.6 — at least approximately — in

many numerical examples (cf. also the examples in [5]), the
VI. EXAMPLE symmetry proved in Corollary 5.4 could not be observed.
In this section we compare our analytical results to &S in Figure 4, for largen in simulations the valueg[N,m]
numerical MPC simulation. To this end we consider th@re typically significantly smaller (and thus “worse”) than

linear inverted pendulum on a cart given by the valuesar[N,N —m/.
A possible explanation for this fact is that the values

VII. M ONTE-CARLO SIMULATION

0 1k 8 8 2 a[N,m] from Theorem 5.2 are obtained by computing the
X(t) = g _0 0 1 pan 0 | U worst case over all control systems which are controllable
0 0 00 1 in the sense of Assumption 3.1. One may conjecture that a

“randomly” chosen system is more likely to be close to the
Here, we want to stabilize the upright position= (0,0,0,0) worst case system for large than for small.
using linear MPC. We consider the optimization hori2og: In order to support this conjecture, instead of computing
10, the sampling interval = 0.5 and the cost functional a by minimizing (19) over all admissibl@o,...,An-1, and
In(Xo,u) = SN3Qxu(n)||1 + |[RUN) |1 with Q = 21d and v we randomly generate admissible sequenggs.., An-1,
R=41d. Moreover, we use the constagts 9.81 anck=0.1  then minimize (19) overv only, and average over the
for gravitation and friction respectively. resultinga in a Monte-Carlo simulation. While minimizing
For eactm=1,...,9 we have simulated MPC closed loopover theA; corresponds to picking the worst case system in
trajectoriesd, . with control horizorm = mand equidistant the class of systems satisfying the controllability Assamp
initial values xP, p = 1,...,625, from a rectangle with tion 3.1, picking random sequences corresponds to picking
diameter @ around(0,0,—4,—1)". Along each trajectory random systems from this class.
we have then computed|[N,mP as the minimum of the In order to generate an admissible random sequence
values a from Formula (5) applied withxg = xfj . (n), Ao,---,An-1, i.e., @ sequence satisfying (13), we again exploit
n=0,m,2m,...,$(18). A selection of these values is plottedthe linearity ofBy which yields
in Fig. 4, in which each dashed line represents the values Bu(r) = e
a[N,1]P,...,a[N,N —1]P for an initial valuexP. In addition,
the minima over all trajectories are plotted as a solid line. with y = By(r)/r, cf. the definition before Theorem 5.2. We
The results indicate that the closed loop is asymptoticallihen calculateA; by backward induction: we sety_1 =1
stable for eacln; and confirm that choosing control horizonsand inductively compute

m > 1 may indeed improve the suboptimality bound. More- ZNil)‘
over, it is interesting to compare Fig. 4 with Fig. 2. While A= 20k K—N-2,...,0
Fig. 2 shows the minimak-values for a set of exponentially (W-k—1)z

controllable systems over all initial values, the curveFig. ~ whereze (0,1) are random numbers generated in each iter-
4 represent the-values for one particular system and a finiteation step. Here we used uniformly distributed random num-



bers, however, experiments with other distributions geld
qualitatively similar results. Normalizing this sequersteh
thatznm;(})\n =1 holds, we then solved (19) numerically by [6]
minimizing overv only.

Figure 5 shows the result of a Monte-Carlo simulation
using this procedure, in which we averaged the resulting
values over 1000 randomly generated sequence3(for) =
Cot'r with C=3 ando = 0.6.

(5]

(7]

Fig. 5. Monte-Carlo simulation fosr [10,m| with 1000 randomly generated
Aj sequences.

El

Monte-Carlo, 1000 samples [10]
1 ; ; ; ; ;
0.98r [11]
0.96f TRy
* *
0.94f [12]
* *
T 092
z
T 0.9f (13]
0.88r
[14]
0.86
0.84r [15]
*
0.82 e T
1 2 3 4 5 6 7 8 9 [16]

We observe the same qualitative behavior as for the
inverted pendulum example in Figure 4. In particular, the
result supports our conjecture that the average perforenanc
for largemis closer to the worst case than for snrall Still,
the result also shows that for control horizanaip to about
0.8N we do not observe a significant loss of performance
compared to the classical MPC case- 1.

VIII. CONCLUSIONS

We have proposed a building block for the stability and
performance analysis of MPC schemes for networked control
systems with packet dropouts. Our technique is based on
asymptotic controllability properties and leads to an &xpl
itly computable performance index which shows that for
a large class of systems stability can be guaranteed under
the same conditions as for a classical MPC scheme. In ad-
dition, by means of a numerical Monte-Carlo simulation we
investigated the gap between the worst case and the average
behavior showing that the average performance is closer to
the worst case for large control horizons (corresponding to
long periods of network failure) than for small ones.
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