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1. Introduction

At the Oberwolfach Control Theory Meeting 2005 I presented the following
open problem:

Consider a single input control affine closed loop system

(1) ẋ(t) = g0(x(t)) + g1(x(t))u(x(t))

with x ∈ Rn and a smooth feedback controller u : Rn → R and the corresponding
sampled–data system

(2) ẋT (t) = g0(xT (t)) + g1(xT (t))uT (xT (iT ))), t ∈ [iT, (i + 1)T ), i = 0, 1, . . .

with a family of sampled-data controllers uT : Rn → R parameterized with the
(sufficiently small) sampling rate T > 0 which are locally bounded uniformly in
T but not necessarily continuous. We consider the mismatch after one time step
given by

∆T (x0) := ‖x(T, x0, u)− xT (T, x0, uT )‖,
with x(t, x0, u) and xT (t, x0, uT ) denoting the solutions of (1) and (2), respectively,
with initial value x0 at time t = 0.

It is easy to prove that for uT ≡ u we obtain ∆T = O(T 2)1 while for

(3) uT (x) = u(x) +
T

2
∂u(x)

∂x
[g0(x) + g1(x)u(x)]

we obtain ∆T = O(T 3) (this follows from [4, Theorem 4.11] setting V (x) = xi ob-
serving that positive definiteness of V is not needed). Remark 4.12 in [4] suggests
that higher order cannot be obtained in general.

Problem: Find conditions on g0, g1, u under which ∆T ≤ O(T 4) can be achieved.

In this report a solution to the problem and an extension to multi-input systems
will be presented. In the talk, we will in addition discuss performance issues and
present a novel numerical optimization approach based on these results.

2. Single-Input systems

We use the following notation: for two vector fields f, g : Rn → Rn we define
the usual Lie bracket by [f, g] = d

dxg ·f− d
dxf ·g. Furthermore, for k ∈ N we define

(4) uk(x0) :=
dk

dtk

∣∣∣∣
t=0

u(x(t, x0, u)).

1∆T = O(T m) means: for each compact K ⊂ Rn there is C > 0 with supx∈K ∆T (x) ≤ CT m
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Note that with this notation (3) can be written as

uT (x) = u(x) +
T

2
u1(x).

Theorem 2.1: A feedback law uT with ∆T = O(T 4) exists if and only if there
exists a bounded function α : Rn → R satisfying

(5) [g0, g1](x)u1(x) = α(x)g1(x).

If this condition holds, then the feedback laws uT are given by

uT (x) = u(x) +
T

2
u1(x) +

T 2

6
u2(x) +

T 2

12
α(x)

and these uT are uniquely determined up to terms of order O(T 3) for all x with
g1(x) 6= 0.

The proof of this theorem relies on comparing the Taylor expansion of x(T, x0, u)
with the Fliess expansion of xT (T, x0, uT ) in T = 0, see [1, Theorem 3.6] for details.
Remark 2.2: (i) Conditions for higher order ∆T ≤ O(T 5) can be stated similarly
but become more and more involved. However, computer mathematics systems
like, e.g., maple can be used to check the conditions recursively and compute the
corresponding uT .

(ii) The condition (5) is rather restrictive. Hence, Theorem 2.1 shows that a
mismatch ∆T ≤ O(T 4) can hardly be expected in general, regardless of how uT is
chosen. In particular, the seemingly “natural” Taylor-like choice

uT (x) = u(x) +
T

2
u1(x) +

T 2

6
u2(x)

only works if α ≡ 0. A sufficient condition for α ≡ 0 is [g0, g1] ≡ 0, i.e., the vector
fields commute.

(iii) A sufficient condition for (5) is [g0, g1] ∈ span〈g1〉. In [3] it was shown
that this condition is necessary and sufficient for the fact that for each smooth
controller u : Rn → R there exists uT satisfying ∆T ≤ O(T k) for arbitrary k ∈ N.

3. Multi-Input systems

We now extend our result to multi-input control affine systems of the form

(6) ẋ(t) = g0(x(t)) +
m∑

i=1

gi(x(t))ui(x(t))

with vector fields gi = (gi,1, . . . , gi,n)T , i = 1, . . . ,m, m ∈ N, m ≤ n, and controller
u = (u1, . . . , um)T . We write the right hand side of the system briefly as

(7) g0(x) + G(x)u(x) with G(x) =

 g1,1(x) · · · gm,1(x)
...

. . .
...

g1,n(x) · · · gm,n(x)

 .

and use definition (4) also for these vector valued feedback laws.
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As in the single input case for uT ≡ u we get ∆T = O(T 2) sets while for
uT (x) = u(x) + T

2 u1(x)] we obtain ∆T = O(T 3), cf. [2, Theorem 4.1 (i)-(ii)]. For
∆T ≤ O(T 4), Theorem 2.1 generalizes as follows, see [2, Theorem 4.1 (iii)]. Again,
the proof relies on Taylor and Fliess expansions of the solution.
Theorem 3.1: For the multi-input system (6), a feedback law uT with ∆T ≤
O(T 4) exists if there exists a bounded function α : Rn → Rm satisfying

(8)
m∑

i=1

[
[g0, gi](x) +

m∑
j=1
j 6=i

[gj , gi](x)u0,j(x)

]
u1

i (x) =
m∑

i=1

αi(x)gi(x).

If this condition holds, then the feedback laws uT are given by

uT (x) = u(x) +
T

2
u1(x) +

T 2

6
u2(x) +

T 2

12
α(x)

and these uT are uniquely determined up to terms of order O(T 3) for all x for
which G(x) has full column rank. For these x condition (8) is also necessary.

As in the case of Theorem 2.1, the results can be extended to higher orders which
is most conveniently done recursively using a computer mathematics system such
as maple. This recursive design procedure leads to a feedback of the form

uT (x) = u(x) +
T

2
ũ1(x) +

T 2

6
ũ2(x) + . . .

in which each ũk is the solution of a least squares problem of the form G(x)ũk(x) =
bk(x). If this problem is solvable with residual 0 for k = 1, . . . ,m, then uT is a
sampled-data feedback yielding ∆T ≤ O(Tm+2). In particular, this shows that

(i) the problem is solvable for arbitrary order O(T k), k ∈ N, if G(x) is square
and invertible for all x ∈ Rn

(ii) the problem is in general not solvable for ∆T ≤ O(T 4) if G(x) is not
square, i.e., when m < n.
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