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1. INTRODUCTION

At the Oberwolfach Control Theory Meeting 2005 I presented the following
open problem:
Consider a single input control affine closed loop system

(1) () = go(x(t)) + g1 (2(t))u(x(t))
with x € R™ and a smooth feedback controller u : R” — R and the corresponding
sampled—data system

(2) dr(t) = golwr(®) + o1 (wr®))ur(er(T)), € [T, +1)T), i =0,1,...
with a family of sampled-data controllers ur : R™ — R parameterized with the
(sufficiently small) sampling rate T > 0 which are locally bounded uniformly in
T but not necessarily continuous. We consider the mismatch after one time step
given by
AT(‘rO) = ”‘T(Ta Zo, u) - I'T(Tv Lo, UT)”,
with (¢, o, u) and z7 (¢, zg, ur) denoting the solutions of (1) and (2), respectively,
with initial value x( at time ¢ = 0.
It is easy to prove that for ur = u we obtain Ar = O(T?)* while for

T Ou(x)

(3) ur(z) = u(z) + 3 or [90(x) + g1(x)u(z)]

we obtain Az = O(T?3) (this follows from [4, Theorem 4.11] setting V (z) = ; ob-
serving that positive definiteness of V' is not needed). Remark 4.12 in [4] suggests
that higher order cannot be obtained in general.

Problem: Find conditions on gg, g1, u under which Az < O(T*) can be achieved.

In this report a solution to the problem and an extension to multi-input systems
will be presented. In the talk, we will in addition discuss performance issues and
present a novel numerical optimization approach based on these results.

2. SINGLE-INPUT SYSTEMS

We use the following notation: for two vector fields f,g : R — R" we define
the usual Lie bracket by [f, g] = %g -f- %f-g. Furthermore, for k£ € N we define

dk

@ w(z0) = o

w(x(t, zo,u)).
t=0

LA = O(T™) means: for each compact K C R™ there is C' > 0 with sup,ecx Ar(z) < CT™
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Note that with this notation (3) can be written as
ur(z) = u(z) + =u'(x).

Theorem 2.1: A feedback law ur with Ar = O(T*) exists if and only if there
exists a bounded function « : R® — R satisfying

(5) (90, 1] (2)u' (2) = a() g1 (2).
If this condition holds, then the feedback laws ur are given by
T T2 T2
ur(e) = u(@) + S0 () + (@) + T50()

and these ur are uniquely determined up to terms of order O(T?) for all x with
g1(x) # 0.

The proof of this theorem relies on comparing the Taylor expansion of (T, ¢, u)
with the Fliess expansion of 27 (T, 2o, ur) in T = 0, see [1, Theorem 3.6] for details.

Remark 2.2: (i) Conditions for higher order Az < O(T) can be stated similarly
but become more and more involved. However, computer mathematics systems
like, e.g., MAPLE can be used to check the conditions recursively and compute the
corresponding uy.

(ii) The condition (5) is rather restrictive. Hence, Theorem 2.1 shows that a
mismatch Ar < O(T*) can hardly be expected in general, regardless of how ur is
chosen. In particular, the seemingly “natural” Taylor-like choice

T T

ur(z) = u(zr) + Eul(ar) + Euz(x)

only works if & = 0. A sufficient condition for o = 0 is [go, g1] = 0, i.e., the vector
fields commute.

(iii) A sufficient condition for (5) is [go,91] € span{gi). In [3] it was shown
that this condition is necessary and sufficient for the fact that for each smooth
controller u : R” — R there exists ur satisfying Ar < O(T*) for arbitrary k € N.

3. MULTI-INPUT SYSTEMS

We now extend our result to multi-input control affine systems of the form
(6) () = go(w(t) + Y gilw(t))us (1))
i=1

with vector fields ¢; = (gi1, .-+, 9in)’,i=1,...,m, m € N, m < n, and controller

w=(u1,...,um)’. We write the right hand side of the system briefly as

gra(@) - gma(x)

(7) go(z) + G(z)u(x) with G(z) = : . :
gin(x) - gman(T)

and use definition (4) also for these vector valued feedback laws.
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As in the single input case for ur = u we get Ar = O(T?) sets while for
ur(z) = u(z) + Lul(z)] we obtain Ap = O(T?), cf. [2, Theorem 4.1 (i)-(ii)]. For
A7 < O(T*), Theorem 2.1 generalizes as follows, see [2, Theorem 4.1 (iii)]. Again,
the proof relies on Taylor and Fliess expansions of the solution.

Theorem 3.1: For the multi-input system (6), a feedback law ur with Ar <
O(T*) exists if there exists a bounded function o : R — R™ satisfying

(8) D (190, 9il(2) + Y lgjs gil(@)uo i (2) | uf () = Y ailx)gi(x).
i=1 =1 i=1
i
If this condition holds, then the feedback laws up are given by
T T2 T2
ur(x) = u(z) + iul(x) + FuQ(x) + Ea(m)

and these ur are uniquely determined up to terms of order O(T?3) for all z for
which G(z) has full column rank. For these z condition (8) is also necessary.

As in the case of Theorem 2.1, the results can be extended to higher orders which
is most conveniently done recursively using a computer mathematics system such
as MAPLE. This recursive design procedure leads to a feedback of the form

2
ur(z) = u(z) + Iftl(ar) + T—ﬂQ(x) +...

2 6
in which each @* is the solution of a least squares problem of the form G(x)a*(z) =
b*(x). If this problem is solvable with residual 0 for k = 1,...,m, then ur is a

sampled-data feedback yielding Az < O(T™*2). In particular, this shows that

(i) the problem is solvable for arbitrary order O(T*), k € N, if G(x) is square
and invertible for all x € R™

(ii) the problem is in general not solvable for Ar < O(T*) if G(x) is not
square, i.e., when m < n.
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