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Abstract

The paper deals with the approximation of the solution set and the reach-
able sets of an impulsive differential inclusion with variable times of impulses.
It is strongly connected to [11] and is its continuation. We achieve order
of convergence 1 for the Euler approximation under Lipschitz assumptions
on the set-valued right-hand side and on the functions describing the jump
surfaces and jumps themselves. Another criterion prevents the beating phe-
nomena and generalizes available conditions. Several test examples illustrate
the conditions and the practical evaluation of the jump conditions.

1 Preliminaries

We study discrete approximations of finite dimensional autonomous impulsive sys-
tems, having the form:

ẋ(t) ∈ F (x(t)), x(0) = x0 a.e. t ∈ I = [0, 1], t 6= τi(x(t)),(1)
∆x|t=τi(x(t)) = Si(x(t)), i = 1, . . . , p.(2)

Here F : Rn ⇒ Rn is a multifunction with nonempty compact and convex values,
Si : Rn → Rn yields the magnitude of the impulses (jumps) and τi : Rn → R
are the impulsive surfaces. If a solution hits the impulsive surface, it has to jump
(time of impulse). Sometimes we will simply write τi or τi(x) (not τi(x(t))). We
assume that t = 0 is not a time of impulse, otherwise we simply replace the initial
condition x0 by x0 + Si(x0).

Recall (compare [23, p. 34]) that the piecewise absolutely continuous function
x(·) is said to be a solution of (1)–(2), if:

a) x(·) is left continuous, i.e. x(t) = x(t − 0), and satisfies (1) for almost all
t ∈ I, t 6= τi(x(t)) and (2).

b) It has jumps on t = τi(x(t)) (discontinuities of the first kind), defined by:
∆x
∣∣
t=τi(x(t))

= x(t + 0)− x(t) = Si(x(t)).
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Given a solution x(·) of (1)–(2) we define a function, which zeros coincide with
the jump times:

fx
i (t) = τi(x(t))− t(3)

The multiple hitting of one switching surface is called beating phenomena.
In the paper we study the approximation of the solution set and the reachable

set of (1)–(2) with the help of the following approximation scheme:

Let ∆k =
{

tj =
j

k

∣∣∣
j=0,1,...,k

}
be a uniform grid of I (if we have to cover

Iδ := [0, 1− δ] with δ > 0, we drop some grid points). To (1)–(2) we juxtapose the
following discrete system below.

We let xk
0 = x0 and for j = 0, 1, . . . , k − 1 we define xk

j+1 = x(tj+1 + 0)
inductively as follows:

xk(t) = xk
j + (t− tj)fj , fj ∈ F (xk

j ),(4)

xk
j+1 =

xk(tj+1) = lim
t↑tj+1

xk(t) t 6= τi(xk(t)), ∀t ∈ (tj , tj+1],

xk(tj+1) + Si(xk(tj+1)) otherwise.
(5)

The formula above means that the jump times are permitted to be only on
the grid points, i.e. if some discrete solution xk(·) must have a jump time tj <
τi(x(t)) = t < tj+1, then the jump is ”postponed” to the time tj+1. For simplicity
we did not explicitly express the dependence of x and the superscript k for such
solutions and jump times.

On every interval (tj , tj+1] we check the signs of fx
i (·). If fx

i (tj) = 0, then there
will be no jump on (tj , tj+1] (at least for step-sizes small enough). If fx

i (tj) > 0
(fx

i (tj) < 0) and fx
i (tj+1) ≤ 0 (fx

i (tj+1) ≥ 0), then x(·) has a jump in (tj , tj+1]
and we set xk

j+1 = xk(tj+1) + Si(xk(tj+1)). Here, i is the minimal index for which
the change of the inequality from ”>” to ”≤” (or vice versa) occurs for fx

i (·).
We prove in case of Lipschitzian F (·) under some natural assumption that

the order of convergence is O(h) (with respect to a kind of distance ρ(·, ·) from
Definition 1).

Our other aim is to test this scheme in some concrete examples, where we
compare (whenever it is possible) the graph of the approximate and the graph of
the exact systems.

We refer to [18, 24] for the theory of impulsive differential equations. Among
others we note the interesting books [21] and [23] (the second one studies impulsive
differential inclusions with averaging methods in the first chapter). Notice that
the impulsive systems have connection with so-called hybrid systems (see [1] and
[3, 15]) which are out of the scope of this paper. We do not study measure-driven
systems, where intensive research is done and mention in this direction [5, 14].

There are a lot of papers devoted to approximation of solutions and of the
reachable set of systems without impulses. We mention only [12, 16], survey pa-
pers [13, 19] and references therein. Numerical realizations of set-valued Euler’s
method and careful estimates of the space discretization of reachable sets are con-
tained in [7, 6]. For an Euler-type approximation of impulsive systems with linear
dependence on the measure (state-independent jump times), the graph conver-
gence is shown for nonlinear systems with measure decomposition ([26]) as well as
convergence order 1 for linear systems with polyhedral approximations in [17].
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This paper studies a similar subject to [10, 11]. In the first paper, some qual-
itative properties play a major role, in the second one discrete approximations of
impulsive differential inclusions are considered, however, there are some difficulties
to approximate numerically such systems. The main goal here is the numerical
justification of the approximation of those nonlinear systems.

The multifunction G : Rn ⇒ Rn with nonempty compact values is said to
be upper semi continuous (USC) at x0, if for every ε > 0 there exists δ > 0
such that G(x0 + δB) ⊂ G(x0) + εB, where B is the closed unit ball. We call
a map G : I × Rn ⇒ Rn almost USC, if for any ε > 0 there exists a com-
pact Iε ⊂ I with meas(I \ Iε) < ε such that G(·, ·) is USC on Iε × Rn. The
multifunction G : Rn ⇒ Rn is said to be Lipschitzian with a constant L, if for
every x, y ∈ Rn one has DH(F (x), F (y)) ≤ L|x − y|. Recall that DH(A,B) =

max{dist(A,B),dist(B,A)} = max
{

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|b− a|
}

is the Haus-

dorff distance between the bounded sets A and B. For compact sets A we let
σ(l, A) = max

a∈A
〈l, a〉 – the support function.

We refer to [2] or [9] for all the concepts used but not explicitly given here.

Standing hypotheses.

F. F (·) is Lipschitz (with a constant L) or it is locally Lipschitz, satisfying the
linear growth condition |F (x)| ≤ β(1 + |x|) for some positive constant β.

A1. τi(x) 6= τj(x + Si(x)) for every x and every j 6= i. Each τi(·) is Lipschitz
with a constant N and Clarke’s subdifferential ∂τi(·).

A2. The functions Si : Rn → Rn are Lipschitz with a constant µ.

A3. Just one of the following assumptions holds for every x ∈ Rn:

a) τi(x) ≥ τi(x + Si(x)), τi+1(x) > τi(x) for i = 1, . . . , p − 1, τ1(x0) > 0 and
∃ α < 1 such that σ(∇τi(x), F (x)) ≤ α (whenever the gradient ∇τi(x) exists).

b) τi(x) ≤ τi(x + Si(x)), τi+1(x) < τi(x) for every i = 1, . . . , p − 1, τ1(x0) < 0
and ∃ κ > 1 such that σ(−∇τi(x), F (x)) ≤ −κ (whenever ∇τi(x) exists).

Assumptions A3 a) resp. b) will guarantee strong monotonicity of fx
i (·) such

that even in A3 b) with the condition τi+1(x) < τi(x) we have that the jump times
τ?
i < τ∗i+1 for a given function x(·) are ordered in the right way.

Lemma 1. Under the standing hypotheses there exist α′ < 1 and κ′ > 1 such that
it follows for every i = 1, . . . , p:

a) HF (l, x) := σ(l, F (x)) ≤ α′ ∀ l ∈ ∂xτi(x) in case of A3 a),
b) hF (l, x) := −σ(−l, F (x)) ≥ κ′ ∀ l ∈ ∂xτi(x) in case of A3 b).

Proof. Let Gi : Rn ⇒ Rn be the minimal USC map with convex compact values,
which graph contains the graph of x → ∇τi(x). From [8, Section 1.2, (4)]) we
know that Gi(x) = ∂τi(·). Since the support function σ(l, F (·)) is Lipschitz and
σ(·, F (x)) is convex, the proof is complete.

Lemma 2. Under condition A3 a), the functions fx
i (t) = τi(x(t))− t in (3) are

strongly montone decreasing with fx
i (·) < fx

i+1(·) and τ?
i < τ?

i+1.
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Under condition A3 b), the functions fx
i (·) in (3) are strongly montone in-

creasing with fx
i (·) > fx

i+1(·) and τ?
i < τ?

i+1.

Proof. If τ? is a jump time of x(·), then fx
i (τ? + 0) ≤ fx

i (τ?) in case of A3 a),
since

fx
i (τ? + 0) = τi(x(τ? + 0))− (τ? + 0) = τi(x(τ?) + Si(x(τ?)))− τ?

≤ τi(x(τ?))− τ? = fx
i (τ?) = 0,

Let (s, t) be the interval of continuity of x(·). Applying the chain rule for Clarke’s
subdifferential yields

fx
i (t)− fx

i (s) = s− t + τi(x(t))− τi(x(s))

≤ s− t +
∫ t

s
σ(ẋ(r), ∂x(τi(x(t)))) ≤ (t− s)(α′ − 1) < 0.

The inequalities fx
i (·) < fx

i+1(·) and τ?
i < τ?

i+1 follow immediately from τi(x) <
τi+1(x) and τ1(x0) > 0.

Similarly, in case of A3 b) we have fx
i (τ? + 0) ≥ fx

i (τ?), τ?
i < τ?

i+1 and

fx
i (t)− fx

i (s) > 0.

Hence, the functions fx
i (·) are strongly monotone except in the jump times for

every i and hence fx
i (τ) = 0 has at most one solution, which is a jump time.

Remark 1. If τi(·) is differentiable, then A3 a) is a nonsmooth and set-valued

generalization of the corresponding pointwise condition
∂

∂x
τi(x) · f(x) < 1 as e.g.

in [18, Theorem 1.3.5]. Condition A3 a) replaces the condition A3 in [10, 11], i.e.

(6) |F (x)| ≤ C for each x ∈ Rn and NC < 1.

Since τi(·) is Lipschitz, |∂τi(x)| ≤ N . For every subgradient l we have σ(l, F (x)) ≤
|l| · |F (x)| ≤ NC < 1, i.e. A3 a) holds. Condition A3 b) is a new condition and
helps to deal with situations in which A3 a) is not fulfilled, cf. Example 1, case 2).

Let us provide a simple illustrative example.

Example 1. Consider the following one dimensional differential inclusion:

(7) ẋ(t) ∈ F (x), x(0) =
1
3
, τ(x) = x− 1.

Here, the impulsive surface is the (red) straight line x = t + 1 in Figure 1 and the
right-hand side is

F (x) :=

{
[1, 3x] x ≥ 1

3 ,

[3x, 1] x ≤ 1
3 .

Case 1) We let S(x) = −x

2
.

It is easy to see that the system (7) satisfies A1 and since the impulsive surface
is just one, also F and A2. But neither a) nor b) of A3 is true.
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There are ”good” solutions as x(t) =
1
3

+t with no jumps. However, if we study

the solution x∗(·) with ẋ∗(t) = 3x∗(t), we see after some standard calculations that
this solution hits several times the impulsive surface (beating phenomena), see
Figure 1.

Denote by τ?
i the i-th time of impulse for x∗(·), one can show that τ?

i+1 − τ?
i >

1
3 · ln(2) ≈ 0.23105.

The distances of jump times for x∗(·) shrink from 0.2899 (i = 1) to 0.2467
(i = 15), if the zeros of the function are calculated numerically.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: solution for Example 1, case 1) with multiple jumps

Case 2) We let S(x) =
x

2
.

Here, no multiple hitting of the jumping surface is possible, because if a solution
intersects the impulsive surface t = τ(x(t)), then x(t + 0) > t + 1. Since the
derivative ẋ(t) ≥ 1, x(t) > t + 1 is valid for all times after the only jump time. In
this case b) of A3 holds.

In case 2) of Example 1 the functions fx
i (·) are strongly increasing except in

its jump times.

Given ε > 0 and motivated by USC case (see [11]) we study inner perturbations:

(8)
{

ẋ(t) ∈ F (x(t) + εB), x(0) = x0 a.e. t ∈ I = [0, 1], t 6= τi(x(t)),
∆x|t=τi(x(t)) = Si(x(t)), i = 1, . . . , p.

First we prevent the beating phenomena:

Lemma 3. Under A1 – A3 for every solution of (1)–(2) (if it exists) and i =
1, . . . , p there exists at most one t ∈ I with t = τi(x(t)). Furthermore, the solution
set is nonempty and bounded.

Proof. Let x(·) be a solution of (1)–(2). Due to Lemma 2, the functions fx
i (·) are

strongly monotone for every i except in the jump times and hence fx
i (τ) = 0 has

at most one solution, which is a jump time. The solution exists on each interval
(s, t] of continuity due to A1) and the reachable set is bounded. If the solution
has a jump at τ due to the i-th jump surface, then the new value x(τ + 0) =
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x(τ) + Si(x(τ)) will form a new starting value for the same differential inclusion
(8). Since A2) holds, we can estimate

|x(τ + 0)− x(τ)| ≤ |Si(x(τ))| ≤ |Si(x0)|+ µ|x(τ)− x0|.

Since all values x(τ) of each solution before the jump are uniformly bounded, the
values after the jump are also uniformly bounded which results in the precompact-
ness of the reachable set due to the maximal number p of the possible jumps.

The existence is already proved in [10] in a more general form.

For Lemma 3, we may allow α ≤ 1 and κ ≥ 1 in A3 a) resp. A3 b) as long as
we have a strict inequality between τi(x) and τi(x + Si(x)).

Using the following standard arguments one can also show the same existence
result for problem (8), i.e. for small ε > 0 there exist constants C, M , ᾱ′ resp. κ̄′

such that |y(t)| ≤ M for solutions y(·) of (1)–(2), if F (y) is replaced by co F (y+εB),
|F ((M + ε)B)| ≤ C and HF (l, x + εB) ≤ ᾱ′ < 1 ∀ l ∈ ∂τi(x) (resp. hF (l, x + εB)
≥ κ̄′ > 1 ∀ l ∈ ∂τi(x)). In this case we will replace α′ by ᾱ′ and κ′ by κ̄′.

Remark 2. Calculating the solution set under the scheme (4)–(5) (or some other
one), the problem arises to verify, if the approximate solution say η(·) = xk(·) has
a jump time between two grid points tkj < tkj+1. The criterion is very easy: the
jump occurs if and only if fη

i changes its sign.

Corollary 1. Assume that the conditions A1, A2, A3 hold, then there exists a
constant ν > 0 such that for every solution y(·) of (8) all of the absolute values

|τi+1(y(·))− τi(y(·))|, |τi+1(y(·+ 0))− τi(y(·))|,
|τi+1(y(·))− τi(y(·+ 0))|, |τi+1(y(·+ 0))− τi(y(·+ 0))|

are greater or equal to ν for i = 1, 2, . . . , p− 1.

The proof for A3 a) and the inequality for the first term is given in [11],
however, we include here the full proof for the reader’s convenience.

Proof. Since τi(·) are Lipschitz for i = 1, . . . , p, one has that on every compact set

K ⊂ Rn the sets Ai :=

{⋃
x∈K

{(x, τi(x))

}
and Aj,i :=

{⋃
x∈K

(x, τj(x + Si(x)))}

}
are compacts. Due to A1, A3 Ai

⋂
Aj = ∅ and Ai

⋂
Aj,i = ∅ for any i 6= j.

Consequently the first estimation follows from min
i6=j

DH(Ai,Aj) = ν > 0, similar

arguments help for the estimation of the other terms.

The above corollary shows that the jump surfaces have a minimum distance
of ν > 0, if both surfaces are evaluated at the values of a solution y(·). The next
corollary shows that the jump times for a solution also have a minimal distance
to each other.

Corollary 2. Under the conditions of Lemma 3 there exists a constant λ > 0
such that for every solution y(·) of (8) and every jump time τ?

i , i = 1, . . . , p
from y(·) the estimate τ?

i+1 − τ?
i ≥ λ

1−κ holds in the case of A3 a). Hereby, κ ≤
min

l∈(∂τi)(x(τ))
HF (l, x(τ)), i = 1, . . . , p. If A3 b) holds, the estimate τ?

i+1 − τ?
i ≥ λ

α−1

holds with α ≥ max
l∈(∂τi)(x(τ))

HF (l, x(τ)), i = 1, . . . , p.
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Proof. By Corollary 1 there exists a lower bound λ > 0 of τi+1(y(τ?
i+1))−τi(y(τ?

i+1))
for the case A3 a). We have κ ≤ α′ < 1, τj(y(τ?

j )) = τ?
j , j = 1, . . . , p and

τi(y(τ?
i+1))− τi(y(τ?

i )) ≥ κ · (τ?
i+1 − τ?

i ),
τ?
i+1 = τi+1(y(τ?

i+1)) ≥ λ + τi(y(τ?
i+1)) ≥ λ + τi(y(τ?

i )) + κ · (τ?
i+1 − τ?

i ),
(1− κ) · (τ?

i+1 − τ?
i ) ≥ λ.

By Corollary 1 there exists λ > 0 with the bound on τi(y(τ?
i+1))−τi+1(y(τ?

i+1)) ≥ λ
for the case A3 b). We have α ≥ κ′ > 1 and

τi(y(τ?
i+1))− τi(y(τ?

i )) ≤ α · (τ?
i+1 − τ?

i ),
τ?
i+1 + λ = τi+1(y(τ?

i+1)) + λ≤ τi(y(τ?
i+1)) ≤ τi(y(τ?

i )) + α · (τ?
i+1 − τ?

i )
= τ?

i + α · (τ?
i+1 − τ?

i ), i.e. λ ≤ (α− 1) · (τ?
i+1 − τ?

i ).

One can take the number k of subintervals so big that the step-size is less than
λ. Due to Corollary 2 it is impossible for an approximate solution (say xk(·)) to
have more that one jump in [tj , tj+1].

2 Approximation of the solution set

The numerical approximation of the Lipschitzian case has been studied among
others in [12, 13, 16, 19]. Euler’s method in the presence of state constraints is
realized in [7].

Definition 1. Let x(·) and y(·) be solutions of (8) we say that ρ(x(·), y(·)) ≤ ε if
they intersect successively the impulsive surfaces, i.e. τi(x) ≥ τj(y) is impossible for

i < j and vice versa. Moreover
p∑

i=1

(
τ+
i − τ−i

)
≤ ε and |x(t)− y(t)| ≤ ε for every

t ∈ I \

(
p⋃

i=1

[τ−i , τ+
i ]

)
. Here τ−i = min{τi(x), τi(y)} and τ+

i is the corresponding

maximum.

To study the approximation of the solution set of (1)–(2) in C(I, Rn) with
discrete trajectories (the solution set of (4)–(5)), we will use the Filippov-Plis
lemma. To prove this lemma, we first mention the following known lemma (Lemma
2 in [22]), a discrete version of Gronwall inequality.

Lemma 4. Let a1, a2, b, d ≥ 0 and let δ+
0 = δ−0 = δ0. If for i = 1, 2, . . . , p

δ+
i ≤ a1δ

−
i + d, δ−i ≤ a2δ

+
i−1 + b

then δ−i ≤ (a2d + b)
i−1∑
j=0

(a1a2)j + δ0(a1a2)i, where δ0 ≥ 0.

We need a variant of Filippov–Plis lemma, which is proved in [11] for F being
OSL and USC under slightly stronger assumptions on the jumps, but not for the
assumption A3 b). Here, we study the Lipschitzian case.
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Theorem 1. (Lemma of Filippov–Plis) Under the standing hypotheses there
exists a constant K such that if ε > 0 is sufficiently small, then for any solution
y(·) of (8) there exists a solution x(·) of (1)–(2) with ρ(x(· ), y(· )) ≤ Kε and vice
versa.

Proof. Let y(·) be a solution of (8). It is easy to see that ẏ(t) ∈ F (y(t) + LεB)
(however, |ẏ(t)| ≤ C). We are looking for a solution x(·) of (1)–(2), satisfying the
condition of the theorem.

On the interval [0, 1] define

Γε(t, z) :=
{
u ∈ F (z) : 〈y(t)− z, ẏ(t)− u〉 ≤ L

(
|y(t)− z|2 + ε|y(t)− x(t)|

)}
.

It is easy to see that Γ(·, ·) is almost USC with nonempty convex and compact
values. Let x(·) be a piecewise defined solution of

(9) ẋ(t) ∈ Γε(t, x(t))

with starting value x(0) = y(0), later with starting value x(τ+
i + 0) = x(τ+

i ) +
Si(x(τ+

i )) resp. x(τ−i + 0) = x(τ−i ) + Si(x(τ−i )).
It follows that

1
2

d

dt
|x(t)− y(t)|2 ≤ L

(
|x(t)− y(t)|2 + ε|x(t)− y(t)|

)
.

Since |x(·) − y(·)| is an AC function, it is a.e. differentiable and the integrable

derivative could be estimated by
d

dt
|x(t)− y(t)| ≤ L (|x(t)− y(t)|+ ε). If x(·) and

y(·) have no impulses on (r, s), then

(10) |x(s)− y(s)| ≤ eL(s−r)

(
|x(r + 0)− y(r + 0)|+ Lε

∫ s

r
e−L(τ−r)dτ

)
.

By A1) the following holds:

|fx
i (t)− fy

i (t)| = |τi(x(t))− τi(y(t))| ≤ N · |x(t)− y(t)|.

Since x(·) and y(·) are continuous in 0, x(0) = y(0) = 0 and we iteratively
show that |x(t) − y(t)| = O(ε), we can assume that x(·) and y(·) intersect the
impulse surfaces successively, i.e. x(·) does not intersect the (i + 1)-th surface
before y(·) to intersect the i-th one and vice versa. The minimal length of the
interval [τi(x(t)), τi+1(x(t))] is λ > 0 by Corollary 1. Hence, it is possible to
choose ε > 0 so small that τi(y(t)) ∈ (τi(x(t)), τi+1(x(t))) and vice versa. Assume
that x(·) intersects the first impulsive surface before y(·).

Denote a2 = eL. We let b := (eL − 1)ε and δ−i = |y(τ−i ) − x(τ−i )| and δ+
i =

|y(τ+
i + 0)− x(τ+

i + 0)|.
Modifying the proof of Theorem 2 of [22] and applying the Gronwall inequality

for |y(t)− x(t)| of (10) we will derive the following estimates:

δ+
i ≤ a1δ

−
i , where a1 will be defined later in (16),(11)

δ−i+1 ≤ a2δ
+
i + b,(12)

|τ+
i − τ−i | ≤

Nδ−i
1− α′

by A3 a),(13)

|τ+
i − τ−i | ≤

Nδ−i
κ′ − 1

by A3 b).(14)
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Inequality (12) holds, since there is no jump in (τ+
i , τ−i+1) and

δ−i+1 = |y(τ−i+1)− x(τ−i+1)| ≤ a2δ
+
i + b

follows due to (10).
Since τ−i = τi(x), τ+

i = τi(y) holds and we can use the C-Lipschitz continuity
of y(·) on [τ−i , τ+

i ] as well as Lemma 1 a) and A3 a) to show that

τ+
i − τ−i ≤ |τi(x(τ−i ))− τi(y(τ−i ))|+ τi(y(τ+

i ))− τi(y(τ−i )) ≤ Nδ−i + α′(τ+
i − τ−i ).

Therefore τ+
i − τ−i ≤

Nδ−i
1− α′

, which proves (13) in case of A3 a).

In case of A3 b) one uses Lemma 1 b) to estimate

τ+
i − τ−i ≥ τi(y(τ+

i ))− τi(y(τ−i ))− |τi(x(τ−i ))− τi(y(τ−i ))| ≥ κ′(τ+
i − τ−i )−Nδ−i ,

i.e. τ+
i − τ−i ≤

Nδ−i
κ′ − 1

. Furthermore,

|x(τ−i )− y(τ+
i )| ≤ |x(τ−i )− y(τ−i )|+ |y(τ−i )− y(τ+

i )| ≤ δ−i + C|τ+
i − τ−i |.(15)

Hence, we have in case of A3 a) by (15) and A2

δ+
i = |x(τ+

i )− y(τ+
i + 0)| ≤ |x(τ−i )− y(τ−i )|+

∫ τ+
i

τ−i

|ẋ(t)− ẏ(t)| dt

+ |Si(x(τ−i ))− Si(y(τ+
i ))| ≤ δ−i + 2C(τ+

i − τ−i ) + µ|x(τ−i )− y(τ+
i )|

≤ δ−i + 2C(τ+
i − τ−i ) + µ[δ−i + C(τ+

i − τ−i )]

≤ (1 + µ)δ−i +
N(2 + µ)C

1− α′
δ−i = a1δ

−
i

which is just (11). In this case

a1 =
(1 + µ)(1− α′) + NC(2 + µ)

1− α′
.(16)

In case of A3 b) one has to replace 1− α′ by κ′ − 1.
If τi(x(t)) > τi(y(t)), the proof is very similar.
Now Lemma 4 applies. Due to A1, A2 there exists a constant λ > 0 such

that τ−i+1 − τ−i ≥ λ, thanks to Corollary 2. It follows from (13) and (14) that
τ+
i − τ−i < Kε. Therefore there exists a (generic) constant K̃ > 0 such that:

ρ(x(·), y(·)) ≤ K̃ε.

Now we study the discrete approximations. Notice that it is difficult to es-
timate the distance between the solution set of (1)–(2) and the piecewise linear
approximations (4)–(5). So we successively approximate the solution set of (1)–(2)
with other solution sets for which such an estimate is simpler.
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First we prove a lemma for the approximation of solutions of (1)–(2) with the
solutions of

(17) ẋk(t) = fj(t) ∈ F (xk
j ), xk

0 = x0, xk(t) = xk
j +

∫ t

tj

fj(s)ds,

where fj(·) is an integrable selection of the constant set-valued map F (xk
j ).

If ∃ t′ ∈ (tj , tj+1) with t′ = τi(xk(t′)), then we redefine the solution xk(·) as xk(t) =

xk(t′) + Si(xk(t′)) +
∫ t

t′
f̂j(s)ds on (t′, tj+1], where f̂j(t) ∈ F (xk(t′) + Si(xk(t′))).

Recall that we use the same partition ∆k as in (4)–(5).

Lemma 5. Let ε > 0 be fixed and k big enough. For every solution y(·) of (1)–(2)
there exists a solution xk(·) of (17) such that ρ(xk(· ), y(· )) ≤ ε and vice versa.

One can take ε = O

(
1
k

)
.

Proof. (Vice versa) Let xk(·) be a solution of (17). Then,

(xk)′(t) = fj(t) ∈ F (xk
j ),

xk(t) ∈ xk
j + ‖xk(t)− xk

j ‖ ·B1(0),

‖xk(t)− xk
j ‖ ≤ ‖

∫ t

tj

fj(s)ds‖ ≤ C(t− tj) ≤ Ch

on a subinterval [tj , tj+1]. Hence, xk(·) is a solution of (8) with ε = C · h.
Now, the result holds due to Theorem 1.
(other assertion) Let y(·) be a solution of (1)–(2). We define xk(·) succes-

sively on the intervals [tki , t
k
i+1]. Let xk

i = xk(ti). Define the multifunction:

(18) Gi(t) := {u ∈ F (xk
i ) : |ẏ(t)− u| ≤ L|y(t)− xk

i |}.

It is easy to see that Gi(·) is measurable. Let gi(t) ∈ Gi(t) be a measurable

selection. Define xk(t) = xk
i +

∫ t

ti

gi(s)ds. If there are no impulses in [tki , t
k
i+1], we

define xk(·) on the whole subinterval.
If there exists a jump τl(z(t∗)) = t∗ ∈ (tki , t

k
i+1), then we redefine xk(t) for

t = t∗ +0 by setting xk(t∗ +0) = xk(t∗)+Sl(xk(t∗)). Now we define G̃i(t) := {u ∈
F (xk(t∗ + 0)) : |ẏ(t) − u| ≤ L|y(t) − xk(t∗ + 0)|} and extend xk(·) on (t∗, tki+1] as

xk(t) = xk(t∗ + 0) +
∫ t

t∗
g̃i(s)ds, where g̃i(s) ∈ G̃i(s) is a measurable selection. As

in the proof of Theorem 1 we may assume only one jump in the subinterval and
that xk(·) and y(·) intersect the impulse surfaces successively. In this way, one can
define xk(·) on the whole interval I.

For t ∈ [τ+
i , τ−i+1]

dist(ẋk(t), F (xk(t)) ≤ DH(F (xk
i ), F (xk(t))) ≤ L|xk(t)− xk

i | ≤ LC(t− ti)

follows as well as

〈y(t)− xk(t), ẏ(t)− ẋk(t)〉 ≤ L
(
|y(t)− xk(t)|2 + LC(t− ti)|y(t)− xk(t)|

)
.(19)
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Thus,
d

dt
|y(t)− xk(t)| ≤ L|y(t)− xk(t)|+ LC(t− ti).

Denote a2 = max
t∈I

2CLheLt

∫ t

0
e−τdτ and δ−i , δ−i as in Theorem 1. If b =

max
{

a2
1
k
,
2LC

k

}
, then δ−i+1 = |y(t−i+1) − x(t−i+1)| ≤ a2δ

+
i + b. Hence, (12) holds

true.
Let A3 a) be valid. As in the proof of Theorem 1 we have

τ+
i − τ−i ≤ Nδ−i + α′(τ+

i − τ−i ).

and hence, (13) is also true. In the case of A3 b), one can also proceed in a similar
way to show that (14) of Theorem 1 is fulfilled.

Due to Lemma 4 for sufficiently large k there exists a constant M > 0 (not
depending on k) such that for every solution y(·) of (1)–(2) there exists an approx-

imate solution xk(·) (obtained by (18)) with ρ(xk(·), y(·)) ≤ M

k
.

In case of A3 b) one obtains the same estimate with κ′−1 replacing 1−α′.

Consider now the new discrete system having the similar form as (17):
For j = 0, 1, . . . , k − 1 we let xk(tj+1) = lim

t↑tj+1

xk(t) and set for t ∈ [tj , tj+1):

(20) xk
0 = x0, x(t) = xk

j +
∫ t

tj

fj(s)ds, fj(·) integrable with fj(s) ∈ F (xk
j ).

If ∃ t ∈ (tj , tj+1) with t = τi(x(t)), then we postpone the jump and proceed as in
the scheme (4)–(5).

As a next step, we want to estimate the distance between the solution sets
of (1)–(2) and (20). Similarly as in the proof of Lemma 5, one can prove as a
corollary of Theorem 1:

Theorem 2. Under the conditions of Theorem 1 we have (for k big enough):
For every solution x(·) of (1)–(2) there exists a solution xk(·) of (20) such that

ρ(x(· ), xk(·)) ≤ O

(
1
k

)
and vice versa.

Proof. We only have to estimate the distance between the solution sets of (20)
and (17) and afterwards to use Lemma 5. Let η(·) be a solution of (17). We look
for a solution xk(·) of (20) which is sufficiently close to η(·). Let τη

1 ∈ (tj , tj+1) its
(possible) first jump time and set xk(t) = η(t) on [0, τη

1 ]. The first jump of xk(·)
will be at tj+1. Using the linear growth condition F, the Lipschitz continuity of
S1 and Lemma 3 we derive |η(tj+1)− xk(tj+1 + 0)| ≤ µβ(1 + C)h with the bound

C on the reachable set (recall that h =
1
k
), if we extend xk(·) by ẋk(t) = η̇(t)

on [τη
1 , tj+1]. Now we consider the problems (20) and (17) on [tj+1, 1]. Since

F (·) is L–Lipschitz, one can choose ẋk(·) such that 〈η(t) − xk(t), η̇(t) − ẋk(t)〉 ≤
L|η(t)− xk(t)|2 + 2µβ(1 + C)h|η(t)− xk(t)| up to the second jump time τη

2 .
On every impulsive point τη

i we will add µβ(1+C) to the estimation of |η(t)−
xk(t)|. Since the solutions η(·) and xk(·) differ by O(h), this estimation also holds
for the jump times τη

i and τxk

i by A1. The rest of the proof is standard and will
be omitted.
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The following theorem is a corollary of Theorem 2:

Theorem 3. If all the conditions of Theorem 1 hold, then we have for sufficiently
large k:

For every solution x(·) of (1)–(2) there exists a solution xk(·) of (4)–(5) such

that ρ(x(· ), xk(· )) ≤ O

(
1
k

)
and vice versa.

Proof. For the system without impulses the proof is trivial. It is known that

(t− s)F (x(ti)) =
∫ t

s
F (x(ti))dη by the convexity of Aumann’s integral. Since the

strategy of postponing jumps in (20) and (5) coincides too, the result is just a
reformulation of Theorem 2.

Due to Definition 1 of ρ(·, ·), the jump times of solutions in Theorem 3 also

differ as O

(
1
k

)
.

Let us consider the following nonlinear example:

Example 2. (Kenderov’s example) Consider the following two dimensional system

ẋ(t) ∈ F (x(t))
def
= {(A + uB) x(t) : u ∈ [−1, 1]} , x(0) =

(
1
1

)

on I = [0, 1], where we add the impulse hyperplane τ(x) =
1
16
|x| and the jump

function S(x) = −x

2
. Let the matrixes A =

(
k2 − 1 k

√
1− k2

−k
√

1− k2 k2 − 1

)
, B =(

0 −2k
√

1− k2

2k
√

1− k2 0

)
be given, where k ∈ (0, 1) is a fixed number (we will

take k =
1
3
). Notice that without impulses this example is due to Kenderov and

can be found in [7, Example 5.2.1]. It is easy to see that A1, A2 are true with

N =
1
16

. We will show that NC < 1 which implies that A3 a) holds due to
Remark 1.

Hence, consider C(u) = A + uB. It is easy to see that |C(u)| ≤
√

34
3

. Of

course F (·) is not uniformly bounded, but it is sufficient to check the assumptions
on a compactum containing all solution values as we noticed earlier.

The reachable set Dt (t ∈ I) for the system without impulses has the form (in
polar coordinates (r, φ)):

Dt =
{

r(t)
(

cos φu(t)
sinφu(t)

)
| r(t) = r0e

(k2−1)t,

φu(t) = φ0 + k
√

1− k2 · (2u− 1)t, 0 ≤ u ≤ 1
}

.

In our case (r0, φ0) =
(√

2,
π

4

)
.
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Obviously, if x(t) ∈ Dt, then x(t) ∈ r(t)Sn−1, where Sn−1 is the unit sphere.

Although the switching function τ(x) =
|x|
16

depends on the state x, it appears that
all the solutions have the same jump time

τ∗ = τ(x(τ∗)) =
|x(τ∗)|

16
=

r0

16
e(k2−1)τ∗

and τ∗ ≈ 0.0821630987895, cf. Figure 2. The dashed lines show how the solutions

jump. Hence, x(τ∗ + 0) =
x(τ∗)

2
and Dτ∗+0 =

1
2
Dτ∗.

As indicated in Section 3 in more details, we will approximate numerically the
solution funnel by calculating finitely many solutions of (4)–(5).
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Figure 2: reachable set for Example 2 (full picture resp. details)

All trajectories have the same jump time τ∗ which is approximated by τ∗N , the
common jump time of all Euler iterates, cf. Table 1. The logarithmic least squares
approximation by log(Chp

N ) gives the values C = 0.5523505, p = 0.9996063.

N τ∗N τ∗N − τ∗

10 −−− −−−
20 0.1 0.0178369
40 0.1 0.0178369
80 0.0875 0.0053369

160 0.0875 0.0053369
320 0.084375 0.0022119
640 0.0828125 0.0006494

1280 0.0828125 0.0006494
2560 0.082421875 0.0002588
5120 0.0822265625 0.0000635 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

measurement points

log. linear least squares for C*hp

Table 1: convergence of the switching time for Euler iterates of Example 2
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3 Approximation of the reachable set

The approximation of the reachable set can be realized by the approximation of
the solution set in the case without impulses. In our case, however, the situation
is more complicated. The problem is that the different solutions have (in general)
different times of impulses. Therefore it is practically hard to approximate the
reachable set or its graph. Furthermore, we have to check for every (approximate)
solution x(·) if there is a time τi(x(τ∗)) = τ∗ ∈ (tj , tj+1). Moreover, the possible
jump at the end point τ∗ = 1 poses some problems. One way to overcome such
kind of problems is either to study (1)–(2) in a smaller interval [0, 1 − δ] or to
study it in the semi-open interval [0, 1).

The graph of the reachable set is not closed in general. However, if we modify
it by adding the values of (t, x(t + 0)), then the graph will be closed. Denote the
(modified) reachable set and its graph by

Dt = {{x(t), x(t + 0)} : x(·) is a trajectory of (1)–(2) on [0, t]}, t ∈ I,

D = {{(t, x(t)), (t, x(t + 0))} : t ∈ I, x(·) is a trajectory of (1)–(2) on I} .

Similar definitions are for the discrete system (4)–(5). The graph of the (mod-
ified) reachable set for the latter is denoted by:

Dk = {(tj , xk(tj)) : j = 0, . . . , k, xk(·) is a trajectory of (4)–(5) on [0, t]}.

First we will state a very useful proposition stating that the closure of the
reachable set D is compact:

Proposition 1. Under the conditions A1–A3 the graph of the reachable set is
precompact. The graph of the modified reachable set is compact.

Proof. Since the graph of the reachable set is bounded by Lemma 3, it is precom-
pact.

Let (tν , xν) ∈ D and let (tν , xν) → (t̄, x̄). Let xν(·) be the corresponding
trajectories. One has to consider two cases:

I) t̄ 6= τi(x̄) for every i.
II) t̄ = τi(x̄) for some i = 1, . . . , p.
The same reasoning as in [10, Proposition 3.1] shows the existence of a subse-

quence such that xνj (.) tends to z(.) and their jump times τ∗i,νj
tend to τ∗i . z(.)

is again piecewise Lipschitz and has no more than p jumps at τ∗i , i = 1, . . . ,m
(m ≤ p).

It is also very easy to see that z(·) is indeed a solution. Namely on [0, τ∗1 ] it
is a solution since there are no jumps. Also τ1(z(τ∗1 )) = τ∗1 . On (τ∗1 , τ∗2 ] one can
proceed in the same way starting from z(τ∗i + 0).

In the case I) x̄ = z(t̄).
In case II) it is easy to see that z(t̄) = x̄ or z(t̄ + 0) = x̄.

For the estimation of the reachable set at time t = 1, we will replace the interval

I by Ik := [0, 1− δk], where δk >
C

k
, δk ≥ δk+1 and lim

k→∞
δk = 0. For example such

is δk =
C√
k

(at least for k ≥ 2).

The following result is a consequence of Theorem 2.
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Theorem 4. Under the assumptions of Theorem 3, DH(Dk,D) = O(h) in the
sense that for every δ > 0 the estimates dist(Dk|Iδ

,D) = O(h) and dist(D|Iδ
,Dk) =

O(h) hold, where Dk|Iδ
is Dk restricted on Iδ = [0, 1− δ].

Since there can be solutions of (1)–(2) or (4)–(5) with a jump at t = 1 we have
to restrict the interval.

First we will describe the graph of the reachable set of Example 1.

Example 3. Let us consider the impulsive differential inclusion of Example 1.
Case 1) Using standard calculations one can describe the reachable set:

Dt =


[t + 1

3 , 1
3e3t] (0 ≤ t < τ∗),

[ τ∗+1
2 + t− τ∗, τ∗+1

2 e3(t−τ∗)]
⋃

[t + 1
3 , t + 1] (τ∗ ≤ t < τ̃),

[t + 1
3 , t + 1] (τ̃ ≤ t)

Here, τ∗ ≈ 0.501747 and τ̃ ≈ 0.559449. In Figure 3, the reachable sets are
shown for both cases. The red dashed line indicates the jump surface, the green
dashed line the values of solutions after the jump.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

Figure 3: reachable set for Example 1, case 1) resp. 2)

Case 2) Let x(·) be a solution. It is easy to see that in this case the function
f(t) = τ(x(t))− t defined in the proof of Lemma 3 is strongly increasing and hence
every equation t = τ(x(t)) has no more than one solution.

It is clear that τ∗ is the same as in 1), the reachable set can be represented as

Dt =

{
[t + 1

3 , 1
3e3t] (0 ≤ t < τ∗),

[32(τ∗ + 1) + t− τ∗, 3
2(τ∗ + 1)e3(t−τ∗)]

⋃
[t + 1

3 , t + 1] (τ∗ ≤ t).

All the numerical tests use special selections of the right-hand side. Since
in all examples the right-hand side of the differential inclusion is parameterized
by functions f(t, x, u), several convex combinations of certain exposed points of
the set-valued right-hand side are used for the selection process. This simulation
process gives a first impression of the trajectory funnel. For each trajectory, the
possible hitting of the jump surfaces is tested. The so-called generalized Steiner
selections were also studied for Castaing representations of set-valued integrands
and in the approximation of reachable sets of linear differential inclusions, cf. [4]. In
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the linear case, the reachable set (without impulses) can be rewritten as Aumann’s
integral and these selections fill out the whole funnel of all integrable selections.

The focus is laid on selections, since the jump conditions depend on the tra-
jectory and must be tested separately for each trajectory. Due to Theorem 3, the
evaluation can be simply performed with the piecewise linear interpolation.

The following three examples are linear.

Example 4. Consider the following linear example which stems from an impulsive
system in [25, Example 2.2.3], [3, Section II.F] with the gravity constant g:

x′1(t) = x2(t),
x′2(t) = −g (t ∈ I = [0, 2])

This example does not seem to fit in our problem class, since jumps x2(τ +0) =
−α · x2(τ) appear at a time t, if x2(t) = 0 and x1(t) ≤ 0. Introducing an artificial
variable x3(·) with x′3(t) = 1, x3(0) = 0 which measures the time, we set

τ(x) =

{
x1 + x2

2 + x3, if x1 ≥ 0,

x2
2 + x3, else.

Now, τ(x(t)) = t if and only if x2(t) = 0, x1(t) ≤ 0, since x3(t) = t.
The following model also incorporates uncertainty (modeled by ε ·U = 0.00335 ·

[−1, 1]) on the value g = 9.80665:

(21) ẋ(t) ∈ Ax(t) + BU (t ∈ I = [0, 2]), x(0) =

0
5
0



Here, A :=

0 1 0
0 0 0
0 0 0

, B =

0
ε
0

 and U = [−1, 1].

The jump is given by

S(x) =

 0
−(α + 1)x2

0

 , α =
1
2
.

The number sN of detected jump times of the Euler iteration depends on the
number of subintervals used, cf. Table 2.

N sN τ∗i , i = 1, . . . , sN

10 3 2.0, 3.5, 5.0
100 22 1.1, 1.7, 2.05, 2.3, 2.45, 2.6, 2.75, 2.9,

3.05, 3.2, 3.35, 3.5, 3.65, 3.8, 3.95,
4.1, 4.25, 4.4, 4.55, 4.7, 4.85

1000 201 1.025, 1.545, 1.815, 1.955, 2.03,
2.07, 2.09, . . . 4.985, 5.0

Table 2: number of jump times for Euler iteration for Example 4

The dashed lines in Figures 4–5 show how the solutions jump w.r.t. the second
coordinate.
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Figure 4: single trajectory for Example 4 (coordinates resp. phase portrait)
and N = 500
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Figure 5: reachable set for Example 4 with N = 500 (full picture resp. details)

Example 5. Consider the following system:

(22) ẋ(t) ∈ Ax + BU (t ∈ [0, 1]), x(0) = 0,

where A =
(

0 1
−1 0

)
, B =

(
0
1
4

)
and U = [−1, 1].

The impulsive surface is just one: τ(x) =
|x|
4

+ 0.1 and S(x) = −x

4
.

The trajectories start from the origin and have at most one jump, cf. Figure 6.
It is easy to see that all our conditions hold.
For the special trajectory x(·) with the control function u(t) = 1 we get the

following approximation of the switching time τ∗ by the Euler iterates, cf. Table
3. The logarithmic least squares approximation by log(Chp

N ) gives the values C =
1.294387, p = 1.142452.

Different jump times occur in this example for different solutions, cf. Table 4.

Example 6. Consider the following non-autonomous system with U = [−1, 1]:

(23) ẋ(t) ∈ 1
2
x + εU + u∗(t) (t ∈ [0, 1]), x(0) = 1, u∗(t) = 2 · e

2
3
·t · e3t − e3

2 + e3
,
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Figure 6: reachable set for Example 5 (full picture resp. details)

N τ∗N τ∗N − τ∗5120

10 0.2 0.093164
20 0.15 0.043164
40 0.125 0.018160
80 0.1125 0.005664

160 0.1125 0.005664
320 0.109375 0.002539
640 0.1078125 0.000977

1280 0.10703125 0.000195
2560 0.10703125 0.000195
5120 0.1068359375 0.000000 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0
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measurement points

log. linear least squares for C*hp

Table 3: convergence of the jump time for Euler iteration for Example 5

N τ∗N for u(·) = 1 τ∗N for u(·) = −1
10 0.2 0.2

100 0.11 0.11
1000 0.107 0.104

Table 4: (slightly) different jump times of Euler iterates in Example 5

We consider just one impulsive surface: τ(x) =
1
3
·(x+

23
10

) and S(x) = −1
2
·x.

In Figures 7–8, the impulsive surface are plotted in red, the solution points for
non-jump times in blue and the end points y(t) of the solutions before the jump
time τ and after the jump, i.e. y(t + 0), are depicted in green colour.

In the details of Figures 9–10, the linear convergence of the Euler iteration could
be clearly observed as well as the delay of the jump times to the right endpoint of
the subinterval as in (5). In Figure 9, only 3 of 20 trajectories jump at τ∗1 = 0.9,
the others jump at τ∗1 = 1.0. In Figure 10 all trajectories jump before t = 1.0. The
violation of the jump surface by Euler iterates tends linearly to zero in Figure 10.
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Figure 7: reachable set for Example 6 with N = 10 and 20 selections
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Figure 8: reachable set for Example 6 with N = 50 resp. N = 100 and 20 selections
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Figure 9: zoomed reachable set for Example 6 with N = 10 and 20 selections
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Figure 10: zoomed reachable set for Example 6 with N = 50 resp. N = 100
and 20 selections
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Conclusions

The results in Section 2 show that one could apply at least three strategies to
deal with jumps in trajectories when implementing a discretization. For numerical
approximations, it is crucial to justify how the algorithm should react, if jump
times of the original solution of the impulsive differential inclusion would not lie
on grid points used for the discretization.

The first strategy is a kind of nonlinear interpolation strategy on grid points
in (17), i.e. it uses an integrable selection fj(·) with fj(t) ∈ F (xk

j ) and

ẋk(t) = fj(t) on [tj , tj+1)

yielding xk(t) = xk
j +

∫ t

tj

fj(s)ds.

This (nonlinear) selection is used to test the jump condition

(24) τi(xk(τi)) = τi

and allow jump times even within the subinterval [tj , tj+1]. Lemma 5 shows that
one could reach order of convergence 1 w.r.t. step-size.

The second strategy is similar and uses the (nonlinear) selection fj(·), but the
jump within a subinterval [tj , tj+1] is postponed to the subsequent grid point tj+1

as in (20). Theorem 2 tells that this simple strategy still gives us the same order
of convergence than the first strategy.

In contrary to the first two approaches, the third strategy uses a piecewise
linear strategy on (4)–(5) with

xk(t) = xk
j + (t− tj)fj (t ∈ [tj , tj+1)), fj ∈ F (xk

j ).

This interpolation is used to evaluate the jump condition (24) on the subin-
terval. Nevertheless, the jump is again postponed to the following grid point.
Theorem 3 justifies the resulting order of convergence 1 for the simplest strategy
among the three ones.

The proof of Theorem 3 was done step by step by increasing the simplicity for
testing the jump condition. Lemma 5 justifies the first strategy with nonlinear se-
lections and jumps within subintervals. It relies heavily on the Filippov-Plis lemma
in Theorem 1. Within the convergence proof for the second strategy, solutions of
the first strategy are approximated by the second and vice versa, also applying
the result on inner perturbations of the original differential inclusion. Finally, the
third strategy is justified by the convexity of Aumann’s integral.

Evidently, not all the conditions of A3 hold for Example 4 which demonstrates
that this condition is important to prevent the multiple hitting of jump surfaces.
However, we have only one impulsive surface which causes this beating phenomena
for solutions. In this example, fx(·) is still strongly monotone on the intervals of the
continuity of a given solution x(·) and our method gives a good approximation. It is
interesting to investigate the approximation of solutions with beating phenomena
and we leave this interesting task for a further paper.
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In a forthcoming article we want to apply our results to the Lagrange
optimal control problem:

(25) minJ [x] :=
∫ 1

0
g(t, x(t)) dt

subject to (1)–(2).
Assuming that f(t, ·) is (locally) Lipschitz, Mordukhovich studies more general

kind of problem, if the system is without impulses.
Our future aim is to extend Mordukhovich’s results in [20] to the case of an

impulsive system.
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