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Abstract: We propose a set oriented approach to the global optimal control of nonlinear systems with quantized state
measurement in which information about the past measurements is taken into account. We investigate the theoretical
properties of the approach and illustrate the performance by a numerical example.

1 Introduction

In this paper we consider the problem of optimally controlling a discrete time nonlinear system to a desired target state
by means of a state feedback law. However, we assume that instead of the precise state of the system only a rather
rough quantized information about the region containing the current state is available, as, for instance, in a multi tank
system where for each tank only certain fill intervals like, e.g., [0%, 25%], [25%, 50%] etc. are distinguishable.
It was already observed in [2,3] that the set oriented approach to global optimal control problems for perturbed systems
developed in [2] is suitable to handle this situation when the uncertainty about the exact state of the system is modelled
as a perturbation. We summarize this approach in Section 2 of this paper. Proceeding this way significantly improves
the results compared to not taking into account the uncertainty at all, cf. [3], however, due to its worst case dynamic
game approach it is still rather conservative.
Motivated by conceptually similar methods in the discrete event system literature, see, e.g., [5] and the references
therein, in this paper we propose to extend the method by including past information: We determine the feedback
value at time k not only depending on the state region at the current time k but also on the regions visited in the past,
i.e., at times k − m + 1, . . . , k − 1. We formalize this idea in Section 3, present our main theorem about the relation
between the optimization with and without considering past information in Section 4 and illustrate the efficiency of
our approach with a numerical example in Section 5.

2 Problem formulation

We consider the discrete-time nonlinear control system

xk+1 = f(xk, uk), k = 0, 1, . . . , (2.1)

where f : X × U −→ X is continuous, xk ∈ X is the state of the system, uk ∈ U is the control input, chosen from
compact sets X ⊂ R

n and U ⊂ R
m. The set of all control sequences u = (uk)k∈N is denoted by UN and for each initial

value x0 and control sequence u we denote the corresponding trajectory by xk(x0,u).
The control problem we consider is as follows: Given a target set X∗ ⊂ X , steer the system into X∗ while minimizing
the functional

J(x0,u) =

N(x0,u)∑

k=0

g(xk(x0,u), uk) (2.2)

over u, where N(x0,u) denotes the minimal k ≥ 0 such that xk(x0,u) ∈ X∗ holds. Here g : X ×U → R is a continuous
running cost satisfying minu∈U g(x, u) > 0 for all x 6∈ X∗.
Our goal now is to find a feedback law which approximately solves this problem, assuming, however, that the system’s
state is not exactly determinable. Instead, we assume that we can only identify regions of the state space where the
current state is located. These regions are described by a partition Q consisting of finitely many connected and disjoint
subsets Q ⊂ X with the properties

⋃

Q∈Q

Q = X and Q ∩ Q̃ = ∅ for all Q, Q̃ ∈ Q with Q 6= Q̃ (2.3)

In contrast to, e.g., [1,2] we do not consider the sets Q ∈ Q as a discretization which we are able to change according
to our demands but rather as a feature of the system which we cannot influence. One example — and our main
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motivation — for this setting are systems with coarse quantization of the measurement, i.e., systems in which the
sensors do only yield information about the region Q ∈ Q the system’s state is contained in.
We assume that our target set X∗ is a union of such regions, i.e., X∗ =

⋃
Q∈Q∗ Qi for some set Q∗ ⊂ Q. For simplicity

of notation we will frequently identify subsets {Q1, . . . , Qn} ⊂ Q with their corresponding subsets
⋃

i=1,...,n Qi ⊂ X .
The next definition is a tool for formalizing the feedback concept we intend to use.

Definition 2.1. The correlation function ρ : X → Q is defined as ρ(x) = Q for x ∈ Q.

The correlation function returns the region Q ∈ Q in which the state x is located. Now the desired feedback law
for solving our control problem is given by a map µ : Q → U which assigns a control value to each state x ∈ X via
x 7→ µ(ρ(x)).
In the remainder of this section we describe the solution for the problem presented in [3] using, however, a different
notation which is more suitable for our extension of the method in the following section. To this end we define the
set 2X of all subsets of X and the set of sequences (2X )N := {X = (X0, X1, . . .) |X ⊂ X for all i ∈ N} and use the
following concept of choice functions.

Definition 2.2. A choice function β : (2X )N × UN −→ XN is a function of the form

β(X,u) = (β̂0(X0, u0), β̂1(X1, u1), . . .),

with component functions β̂i : 2X ×U −→ X satisfying β̂i(X, u) ∈ X for all X ⊆ X . The set of all choice functions β

is denoted by B and the set of all component functions β̂ by B̂.

The components β̂ of the choice functions β model the uncertainty of the state x given that we only know x ∈ X for
regions X ⊂ X by choosing one x ∈ X depending on the control u. The choice functions β then extend this concept
to a sequence of regions and controls.
Using this concept we now define a perturbed set valued control system by

Xk+1 = F (Xk, uk, β̂k(Xk, uk)), k = 0, 1, . . . , (2.4)

with F : 2X × U × B̂ → Q, F (X, u, β̂(X, u)) := ρ(f(β̂(X, u), u)). In what follows we will omit the arguments of β̂ in
order to simplify the notation.
The map F describes all possible transitions of f from a subset X ⊂ X of the state space to regions Q ∈ Q,
parametrized by β̂k which is interpreted as a perturbation. More precisely, for each u ∈ U we have the identity

⋃

β̂∈ bB

F (X, u, β̂) = {Q ∈ Q | f(x, u) ∈ Q for some x ∈ X}.

A trajectory Xk = Xk(Q,u, β), k ∈ N of (2.4) is now a sequence of regions defined by

X0 = Q, Xk+1 = F (Xk, uk, β̂k)

and depends on the start set Q ∈ Q, the control sequence u ∈ UN and the choice function β ∈ B.
The next object defines the set of regions from which the system (2.4) can be steered to the target set X∗ regardless
of the choice of β.

Definition 2.3. The domain of controllability of X∗ is defined as

S = {Q ∈ Q| for each β ∈ B there exists u ∈ UN and k ∈ N with Xk(Q,u, β) ⊂ X∗}.

and the first hitting time is defined as N(Q,u, β) = inf{k ∈ N|Xk(Q,u, β) ∈ S}.

Note that for fixed Q we can interpret β as a map from UN to XN. In the language of dynamic game theory this map
defines a nonanticipating strategy, cf. [2].
Using the running cost g we now define a running cost for the set valued perturbed control system (2.4)

g1 : Q× U −→ R
+
0 , g1(Q, u) := sup

x∈Q

g(x, u).

By this definition we assume the worst case, i.e., the highest cost, over all the uncertain states in Q. Using g1 we now
define the functional

J1(Q,u, β) :=

N(Q,u,β)∑

k=0

g1(Xk(Q,u, β), uk) ∈ R
+
0 ∪ {+∞}
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and the optimal value function V1(Q) = supβ∈B inf
u∈UN J1(Q,u, β). By standard arguments one sees that V1 fulfills

the optimality principle

V1(Q) = inf
u∈U

{
g1(Q, u) + sup

β̂∈ bB

V1(F (Q, u, β̂))

}
(2.5)

for all Q 6⊂ X∗ and V (Q) = 0 for all Q ⊂ X∗. Since Q consists of finitely many sets, from this it is easy to see by
induction that, if Q /∈ S then V1(Q) = ∞ and if Q ∈ S then V1(Q) < ∞.
We will now investigate the behavior of V1 along an optimal trajectory for the original system (2.1). To this end,
observe that the optimal feedback law µ : Q → U is given by

µ(Q) = argminu∈U

{
g1(Q, u) + sup

β̂∈ bB

V (F (Q, u, β̂))

}

Using this µ we get the following theorem.

Theorem 2.4. For all x ∈ S the inequality

g(x, µ(ρ(x))) + V1(ρ(f(x, µ(ρ(x))))) ≤ V1(ρ(x)) (2.6)

holds.

Proof. Using the optimality principle (2.5) and the definition of µ, β̂ and g1 we get

V1(ρ(x)) = inf
u∈U

{
g1(ρ(x), u) + sup

β̂∈ bB

V1(F (ρ(x), u, β̂))

}

= g1(ρ(x), µ(ρ(x))) + sup
β̂∈ bB

V1(F (ρ(x), µ(ρ(x)), β̂)) ≥ g(x, µ(ρ(x))) + V1(ρ(f(x, µ(ρ(x)))))

which shows the assertion.

The result has two immediate consequences for the trajectory xk(x0, µ) of (2.1) corresponding to µ defined by

xk+1 = f(xk, µ(ρ(xk))).

On the one hand, (2.6) shows that the value V1(ρ(xk(x0, µ))) in decreasing in k until X∗ is reached, impying that
xk(x0, µ) eventually reaches X∗ provided x0 ∈ S (or equivalently V1(ρ(x0)) < ∞) holds. On the other hand, we obtain
the inequality

J(x0, µ) =

N(x0,µ)∑

k=0

g(xk(x0, µ), µ(ρ(xk(x0, µ)))) ≤ V1(ρ(x0)),

i.e., the function V1 is a guaranteed upper bound for the “performance” of µ with respect to the original functional
(2.2).

3 Including past information

The approach described in the previous section is conservative because by maximizing over β we implicitly assume the
worst case in each step, i.e., that for each k among all the possible states in Xk the actual state xk is the one which
produces the largest cost. Of course, this is not necessarily the case. The approach we propose in order to reduce the
conservatism relies on the idea that at time k we consider m state regions, namely the current and m− 1 past regions,
i.e., Xk−m+1, . . . , Xk. This way we can collect more information and thus obtain a less conservative result. In other
words, we are now looking at an approximately optimal feedback map of the form µ(Xk−m+1, . . . , Xk).
In order to keep the exposition simple, in this paper we restrict ourselves to m = 2. All arguments can, however, be
extended to the more general setting m ≥ 2 (note that the setting in the last section corresponds to m = 1).
In order to formalize our idea, we define Q2 := (Q∪{δ})×Q and introduce a new set valued state Zk = (Z1

k , Z2
k)T ∈ Q2

which represents (Xk−1, Xk)T . For Z we define the set valued control system as

Zk+1 = F2(Zk, uk, β̂k) :=

(
Z2

k

F (X(Zk), uk, β̂k)

)
(3.1)
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with F from (2.4) and

X(Z) :=

{
Z2, if Z1 = δ

f(Z1, U) ∩ Z2, else.
(3.2)

The symbol δ is introduced to represent the “unknown” state, which appears when the system is started at time k = 0
with initial region X0 ∈ Q, because at k = 0 a past region does not exist. Therefore, at time k a trajectory starts
with the vector Z0 = (δ, X0)

T .
By including the extra information in the defininition of F2 the uncertainty of the system is reduced. Instead of using
F (Xk, u, β̂) as in the previous section now we use F (X(Zk), u, β̂), where X(Zk) is the subset of the current region Xk

which can be reached from the past region Z1
k = Xk−1, i.e., we exclude states which the system cannot reach.

Clearly, not all the pairs Z = (Q1, Q2)
T ∈ Q2 are actually attained by the systems dynamics. In fact, only those

pairs with X(Z) 6= ∅ can appear on the left hand side of (3.1) which is why we define the active state regions
Qa

2 := {Z ∈ Q2 |X(Z) 6= ∅}. We denote the trajectories of (3.1) by Zk(Z0,u, β) and adapt the definitions from the
previous section to our new setting.
The target set now becomes Z∗ = {Z ∈ Q2 |Z

2 ⊆ X∗} and the definition of the domain of controllability S and the
first hitting time N changes accordingly. For the cost function

g2 : Q2 × U → R
+
0 , g2(Z, u) = sup

x∈X(Z)

g(x, u),

we define the functional

J2(Z0,u, β) =

N(Z0,u,β)∑

k=0

g2(Zk(Z0,u, β), uk) ∈ R
+
0 ∪ {+∞}

and the optimal value function V2(Z) = supβ∈B inf
u∈UN J2(Z0,u, β). V2 again fulfills the optimality principle

V2(Z) = inf
u∈U

{
g2(Z, u) + sup

β̂∈ bB

V2(F2(Z, u, β̂))

}
. (3.3)

and the optimal feedback µ2(Z) is given by the argmin of this expression. The following theorem is the counterpart
of Theorem 2.4.

Theorem 3.1. For all x ∈ X and all Z ⊂ S with x ∈ X(Z) the inequality

g(x, µ2(Z)) + V2((ρ(x), ρ(f(x, µ2(Z)))T ) ≤ V2(Z)

holds. In particular, the inequality holds for Z = (δ, ρ(x))T .

Proof. Completely analogous to Theorem 2.4.

By formally setting ρ(x−1) = δ we define the closed loop trajectory xk(x0, µ2) of (2.1) by

xk+1 = f(x0, µ2((ρ(xk−1), ρ(xk))T )), k = 0, 1, 2, . . .

Then from Theorem 3.1 by a straightforward induction we obtain

J(x0, µ2) =

N(x0,µ2)∑

k=0

g(xk(x0, µ2), µ2((ρ(xk−1(x0, µ2)), ρ(xk(x0, µ2)))
T )) ≤ V2((δ, ρ(x0))

T ),

4 Comparison of the two approaches

In the preceding sections we have seen that the optimal value functions V1 and V2 yield upper bounds for the per-
formance of the feedback laws µ and µ2. Our main theorem now shows that the upper bound V2 for the formulation
including the past region is at least as good as the upper bound V1.

Theorem 4.1. The optimal value functions V1 and V2 satisfy

V2(Z) ≤ V1(Q) for all Z ∈ Qa
2 , Q ∈ Q with Z2 = Q.

4 Draft, Bayreuth, Germany, 2008
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Proof. We prove the theorem by induction over the elements Q1, Q2, . . . , Ql ∈ Q which we number according to their
values in the optimal value function V1, i.e., V1(Qi) ≤ V1(Qj) for all 1 ≤ i < j ≤ l. We will frequently use the obvious
inclusion X(Z) ⊆ Z2 for X(Z) from (3.2) and all Z = (Z1, Z2)T ∈ Q2.

Induction start n = 1: Since V1(Q) = 0 holds if any only if Q ⊆ X∗ we obtain Q1 ⊆ X∗. Since Z ⊆ Z∗ for all
Z ∈ Q2 with Z2 = Q1 ⊆ X∗ we obtain V2(Z) = 0 = V1(Q1) and thus the assertion for Q1.

Induction step n = n + 1: We use the induction hypothesis V2(Z) ≤ V1(Qj) for all j = 0, . . . , n and all Z ∈ Qa
2 with

Z2 = Qj in order to show V2(Z) ≤ V1(Qn+1) for all Z ∈ Qa
2 with Z2 = Qn+1.

The optimality principle for V1 yields

V1(Qn+1) = inf
u∈U

{
g1(Qn+1, u) + sup

β̂∈ bB

V1(F (Qn+1, u, β̂))

}
= g1(Qn+1, µ(Qn+1)) + sup

β̂∈ bB

V1(F (Qn+1, µ(Qn+1), β̂)).

By positivity of g1 this implies V1(F (Qn+1, µ(Qn+1), β̂)) < V1(Qn+1) for all β̂ and thus the numbering of the Qi yields

F (Qn+1, µ(Qn+1), β̂) ∈ {Q1, . . . , Qn}. (4.1)

Now the optimality principle for V2 yields

V2(Z) = inf
u∈U

{
g2(Z, u) + sup

β̂∈ bB

V2(F2(Z, u, β̂))

}

≤ g2(Z, µ(Qn+1)) + sup
β̂∈ bB

V2(F2(Z, µ(Qn+1), β̂)) = g2(Z, µ(Qn+1)) + V2(Zmax), (4.2)

where Zmax = (Qn+1, Qi)
T denotes the element from {F2(Z, µ(Qn+1), β̂) | β̂ ∈ B̂} realizing the supremum, which exists

because F2 can only assume finitely many values.
Now X(Z) ⊆ Qn+1 implies Qi = F (Qn+1, µ(Qn+1), β̂) for some suitable β̂ and thus from (4.1) we can conclude i ≤ n.
Furthermore, from the optimality principle for V1 we obtain

V1(Qn+1) = g1(Qn+1, µ(Qn+1)) + sup
β̂∈ bB

V1(F (Qn+1, µ(Qn+1), β̂)) ≥ g1(Qn+1, µ(Qn+1)) + V1(Qi).

Using the induction assumption V1(Qi) ≥ V2(Zmax) (which is applicable since i ≤ n) and

g2(Z, µ(Qn+1)) = sup
x∈X(Z)

g(x, µ(Qn+1)) ≤ sup
x∈Qn+1

g(x, µ(Qn+1)) = g1(Qn+1, µ(Qn+1))

we can continue to estimate V1(Qn+1) ≥ g1(Qn+1, µ(Qn+1)) + V1(Qi) ≥ g2(Z, µ(Qn+1)) + V2(Zmax) which together
with (4.2) yields the assertion.

In practice, we expect V2 to be considerably smaller than V1, as the numerical example in the following section as
well as further numerical examples in [6] confirm. Theorem 4.1, however, only yields V2 ≤ V1 because system (3.1)
may not yield any useful additional information compared to (2.4), which is theoretically possible but appears to be
an exceptional case.

5 Numerical Example

We illustrate our approach with the example of an inverted pendulum

ẋ1 = x2, ẋ2 =
g
l
sin(x1) −

1
2mrx

2
2 sin(2x1) −

mr

ml
cos(x1)u

4
3 − mr cos2(x1)

The equations model the motion of a (planar) inverted pendulum on a cart which moves under an applied horizontal
force u. The position x1 of the pendulum is measured relative to the position of the cart as an offset angle from the
vertical up position. The parameters are M = 8 (mass of the cart), m = 2 (mass of the pendulum), mr = m/(m+M)
(mass ratio), l = 0.5 (distance of the pendulum mass from the pivot) and g = 9.8 (gravitational constant), see
also [1–3]. The discrete time system (2.1) has been obtained by sampling the continuous time system with sampling
period T = 0.1. The target region X∗ was chosen as the neighborhood of the origin consisting of 4x4 regions.
The optimal value functions are computed with a graph theoretic approach, in which each state region Q is represented
as a vertex and each transition as a hyperedge in a weighted directed hyphergraph. Then we can compute the optimal
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Figure 1: Value function V1 (left) and value function V2 (right) for 128x128 regions
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Figure 2: Value function V2 (left) and trajectories with initial values (3.1, 0.1) and (−3, 0.1) (right) for 64x64 regions

value functions with a min-max version of Dijkstra’s shortest path algorithm, see [2, 4] for details.
Figure 1 shows that the values for V2 are considerably smaller than those for V1.
On a partition with 64x64 regions, the approach via V1 is no longer feasible because the domain of controllability
S turns out to be empty. In contrast to this, for V2 we still get get a useful solution and corresponding closed loop
trajectory converging to X∗ as shown in Figure 2.
The following table indicates that the computation time for V2 is — at least in our current implementation —
significantly larger than for V1. However, this computation can be performed offline and since in return we get
considerably better solutions with fewer regions this appears to be a reasonable price to pay.

number of regions 642 1282 2562 5122

computation time for V1 in seconds 17.7 70.6 286.1 1176.1
computation time for V2 in seconds 265.8 1154.6 5344.7
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