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Abstract— We demonstrate how a recently developed new
numerical technique for the construction of approximately
optimal stabilizing feedback laws can naturally be extended
in order to handle nonlinear hybrid systems with discrete
control inputs. The idea of the method is to explicitly
construct a finite graph model of the original hybrid system
and to use shortest path algorithms in order to compute the
optimal value function and the associated feedback law. As
a numerical example, we reconsider the construction of a
switched DC/DC power converter from [12].

I. I NTRODUCTION

The control of hybrid systems is a topic which received
considerable interest during the last years. The mixture
of continuous and discrete components in such systems
creates severe difficulties in their analytical and numerical
treatment, for instance when stabilizability or reachability
problems are to be solved or when optimal control methods
are to be applied. Particular progress has been made in
the field of piecewise or switched linear systems, where
different kinds of optimization techniques turned out to be
applicable, see, e.g., the monographs [1] or [9] and the
references therein.

In this paper we focus on the optimal stabilization of
a general class of nonlinear discrete time hybrid systems,
possessing discrete and continuous state variables and a
discrete control value set. We consider an approach for dis-
crete time and continuous state systems presented recently
in [10], [7] and show how to modify the method in order
to cover the hybrid setup. The method consists of a set
oriented discretization of the state space and a subsequent
representation of the system as a finite directed graph. On
this discretized level, Dijkstra’s shortest path algorithm can
then be applied in order to solve the problem.

A technique that is closely related to our approach is
described in [2] for time continuous systems using a so-
called bisimulation in order to construct a finite automaton.
They rely on the existence (and knowledge) of a particular
number of first integrals that are needed to construct the
bisimulation partition. This approach has been pursued in
the context of hybrid systems in, e.g., [11].

The organization of this paper is as follows: in Section
II we formulate our problem and in Section III we present
our computational approach for the optimal value function
of the problem. Based on this, in Section IV we show

how to construct the optimal stabilizing feedback and in
Section V we discuss a local error estimation technique for
our discretization. In Section VI we present an application
of our method to a switched DC/DC power converter
model in order to illustrate the performance of the resulting
feedback. Finally, Section VII presents conclusions and in
particular a comparison to the related approach from [12],
[14].

II. PROBLEM FORMULATION

We consider the problem of optimally stabilizing the
continuous state componentx of a discrete-time nonlinear
hybrid control system given by

xk+1 = fc(xk, yk, uk)
yk+1 = fd(xk, yk, uk) k = 0, 1, . . . , (1)

with continuous state dynamicsfc : X × Y × U → X ⊂
Rn and discrete state dynamicsfd : X × Y × U → Y .
Here the setU of possible control inputs is finite1, the
set X ⊂ Rn of continuous states is compact and the set
Y of discrete states (or modes) is an arbitrary finite set.
The solutions of (1) for initial valuesx0 = x, y0 = y and
control sequenceu = (u0, u1, . . .) ∈ UN are denoted by
xk(x, y,u) and yk(x, y,u), respectively, and we assume
that for eachk ≥ 0 the mapxk(·, y,u) is continuous for
eachy ∈ Y and eachu ∈ UN. Note that if fd does not
depend onx, then this is equivalent tofc(·, y, u) : X ×
Y → Rd being continuous for eachy ∈ Y , u ∈ U .

The class (1) of hybrid models is quite general. For
instance, it includes models without discrete state space
componenty whenfc(x, y, u) = fc(x, u) by settingY =
{0} andfd ≡ 0, in which case the only “hybrid” structure
is given by the discrete nature of the finite control value set
U . Another specialization of (1) appears iffc(x, y, u) =
fc(x, y) and fd(x, y, u) = fd(y, u) in which case the
continuous state plant is controlled solely by the discrete
variable y which in turn is determined by the discrete
dynamicsfd, which may be realized, e.g., by a discrete
automaton. Finally, for generalfc andfd(x, y, u) = fd(x)
we obtain a hybrid system with state dependent switching.

Given atarget setT ⊂ X, the goal of the optimization
problem we want to solve is to find a control sequence

1If desired, continuous control values could also be included and
treated with the discretization technique described in [10], [7].



uk, k = 0, 1, 2, . . ., such thatxk → T as k → ∞, while
minimizing the accumulated continuous instantaneous cost
g : X×Y ×U → [0,∞) with g(x, y, u) > 0 for all x /∈ T ,
all y ∈ Y and allu ∈ U .

We assume that (1) is locally asymptotically controllable
to T , i.e., there exists aKL–function2 β and a neighbor-
hoodN (T ) ⊂ X of T , such that for eachx ∈ N (T ) there
exists a control sequenceu ∈ UN with

d(xk(x, y,u), T ) ≤ β(‖x‖, k) for all y ∈ Y.

By U(x, y) = {u ∈ UN : xk(x, y,u) → T} we denote the
set of asymptotically controlling sequences for(x, y) ∈
X × Y and by S = {(x, y) ∈ X × Y : U(x, y) 6= ∅}
the stabilizable subset. The accumulated costalong a
controlled trajectory is given by

J(x, y,u) =
∞∑

k=0

g(xk(x, y,u), yk(x, y,u), uk) ∈ [0,∞]

and we assume thatg is chosen such that this sum is finite
for each(x, y) ∈ S and eachu ∈ U(x, y) for which

d(xk0+k(x, y,u), T ) ≤ β(‖xk0(x, y,u)‖, k)

holds for somek0 ∈ N and allk ∈ N (suitable conditions
on g can be formulated in terms ofβ, see [8] or [5, Section
7.2] for details).

Our goal is to construct an approximateoptimal feed-
back u : S → U such a suitable approximate asymptotic
stability property for the resulting closed loop system
holds. The construction will be based on an approximation
of the (optimal) value functionV : S → [0,∞],

V (x, y) = inf
u∈U(x,y)

J(x, y,u)

which will act as a Lyapunov function. For an appropriate
choice ofg this function is continuous inx at least in a
neighborhood ofT [8].

In order to simplify the notation we writez = (x, y),
Z = X × Y and denote the dynamics (1) briefly by

zk+1 = f(zk, uk). (2)

III. C OMPUTATIONAL APPROACH

In this section we discuss a set oriented numerical
method for the computation ofV which was developed
in [10]. The method relies on the observation that one
may formulate the above discrete-time optimal control
problem equivalently as the problem of finding ashortest
pathwithin a directed weighted graph: Consider the graph
G = (Z,E), where the setE of edges ofG is given by

E = {(z1, z2) ∈ Z × Z | ∃u ∈ U : z2 = f(z1, u)},

and for every edgee = (z, f(z, u)) ∈ E the weightw(e) ∈
[0,∞) is given byw(e) = minu∈U g(z, u). A path in G is

2As usual, a functionγ : [0,∞) → [0,∞) is of classK if it is
continuous, zero at zero and strictly increasing. A functionβ : [0,∞)×
[0,∞) → [0,∞) is of classKL if it is continuous, of classK in the
first variable and strictly decreasing to0 in the second variable.

a sequencep = (ek)k∈N ∈ EN of edges ofG. The length
w(p) of a pathp = (ek)k∈N is defined to be

w(p) =
∞∑

k=0

w(ek) ∈ [0,∞].

Every path inG uniquely corresponds to a (controlled)
trajectory of (2). By construction, for a given path, the cost
J(z,u) of the associated trajectory equals the length of this
path. Thus, when asking for the infimum ofJ(z1,u) over
all control sequencesu, we can equivalently ask for the
infimum of w(p) over all pathsp in G that start inz1 (i.e.
such that ifp = (ek)k∈N, e0 is of the forme0 = (z1, z2)
for somez2 ∈ Z).

We are now going to construct a finite graphGP =
(P, EP) — which should be viewed as an approximation
to the graphG — in order to compute an approximation
to V . The idea is that onGP we can apply standard al-
gorithms for computing paths of shortest length. A typical
algorithm of this type isDijkstra’s algorithm [4].

The finite approximation toG is constructed as follows:
LetQ be apartition of the continuous state setX, that is a
finite collection of compact subsetsQi ⊂ X, i = 1, . . . , r,
with ∪r

i=1Qi = X, andm(Qi ∩Qj) = 0 for i 6= j (where
m denotes Lebesgue measure). Then the sets

P := {Qi × {y} |Qi ∈ Q, y ∈ Y } (3)

form a partition of the product state spaceZ = X × Y .
Define the graph

GP = (P, EP), (4)

EP = {(Pi, Pj) ∈ P × P | f(Pi, U) ∩ Pj 6= ∅}, (5)

where the edgee = (Pi, Pj) carries the weight

w(e) = min
z∈Pi,u∈U

{g(z, u) | f(z, u) ∈ Pj}. (6)

We useGP to find an approximation to the optimal value
function V . For any z ∈ Z there is a least one subset
P ∈ P containingz. The approximation forV (z) will be
the lengthw(p) =

∑`
k=0 w(ek) of a shortest pathp =

(e0, . . . , e`), ek ∈ EP , from a nodeP with x ∈ P to a
nodeP ′ ∈ P that has nonempty intersection withT , i.e.
we approximateV (x) by

VP(z) = min{w(p) | p is a path from a setP , z ∈ P,

to a setP ′ with (T × Y ) ∩ P ′ 6= ∅}.

Convergence

Let (P(l))l be a nested sequence of partitions ofZ (i.e.
for every l, each element ofP(l + 1) is contained in an
element ofP(l)). It is easy to see thatVP(z) ≤ V (z) for
any partitionP of Z and all z ∈ Z. In fact, it can be
shown that forz ∈ S, VP(l) converges toV asl →∞; the
corresponding proof for purely continuous state models in
[10], [7] is easily extended to our hybrid setting.



Implementation

The computation ofVP breaks down into three steps:
1) Construction of a suitable partitionP;
2) Construction ofGP ;
3) Computation ofVP by applying Dijkstra’s algorithm

to GP .
In the numerical realization we always letX be a box

in Rd and construct a partitionQ of X by dividing X
uniformly into smaller boxes from whichP is then derived
via (3). We realize this division by repeatedly bisecting the
current division (changing the coordinate direction after
each bisection). The resulting sequence of partitions can
efficiently be stored as a binary tree — see [3] for details.

OnceP has been constructed, we need to compute the
set EP of edges ofGP , as well as the weightw(e) for
every edgee ∈ EP . Here we approximateEP by

ẼP = {(Pi, Pj) | f(P̃i, U) ∩ Pj 6= ∅},

where P̃i ⊂ Pi is a finite set of test points. For example,
one may choose this set as points on an equidistant grid.
Correspondingly the weightw(e) on e = (Pi, Pj) is
approximated by

w̃(e) = min
z∈P̃i,u∈U

{g(z, u) | f(z, u) ∈ Pj}.

Again, we refer to [3] and [10] for details.

IV. CONSTRUCTING THE FEEDBACK

For the construction of the approximately optimal feed-
back law we use the classical dynamic programming
technique. It follows from standard dynamic programming
arguments that the exact optimal value functionV satisfies

V (z) = min
u∈U

{g(z, u) + V (f(z, u))}

and that an optimal feedback lawu is given by the control
u(z) minimizing the right hand side of this equation.

For the construction of our feedback law we will use
this fact, replacingV by its approximationVP . Thus for
each pointz ∈ S we define

uP(z) = argminu∈U{g(z, u) + VP(f(z, u))} (7)

The following theorem shows in which sense this feed-
back is approximately optimal.

Theorem 1:Consider a sequence of partitionsP(l), l ∈
N and let D ⊆ S be an open set with the following
properties:
(i) T × Y ⊂ D

(iii) For eachε > 0 there existsl0(ε) > 0 such that the
inequality

V (z)− VP(l)(z) ≤ ε

holds for allz ∈ D and all l ≥ l0(ε).
Let c > 0 be the largest value such that the inclusion
Dc(l) := V −1

P(l)([0, c]) ⊂ D holds for all l ∈ N. (Note that
c > 0 if P(1) is chosen appropriately.)

Then there existsε0 > 0 and a functionδ : R → R
with limα→0 δ(α) = 0, such that for allε ∈ (0, ε0], all

l ≥ l0(ε/2), all η ∈ (0, 1) and allz0 ∈ Dc(l) the trajectory
zi generated by

zi+1 = f(zi, uP(l)(zi))

satisfies

V (zi) ≤ V (z0)− (1− η)
i−1∑
j=0

g(zj , uP(l)(zj)),

for all i such thatV (zi) ≥ δ(ε/η) + ε.

V. ERROR ESTIMATION

From a practical point of view, Theorem 1 does not
give much information about the structure of the partition
P which is needed in order to achieve a desired level of
accuracy of the optimal value function.

Let S0 = {z ∈ Z : V (z) < ∞}. For z ∈ S0 consider
the error function

e(z) = min
u∈U

{g(z, u) + VP(f(z, u))} − VP(z).

Note that by definition ofVP we havee(z) ≥ 0. Further-
more,

e(z) ≤ V (z)− VP(z), z ∈ S0.

For Dc = V −1
P ([0, c]) define

δ(ε) := sup
z∈Cε

V (x),

where Cε := {z ∈ Dc | g0(z) ≤ ε} and g0(z) :=
infu∈U(z) g(z, u). Note thatδ(ε) → 0 as ε → 0 because
Cε shrinks down to0 andV is continuous inx aroundT
with V (0, y) = 0.

Theorem 2:Consider a partitionP and a sublevel set
Dc = V −1

P ([0, c]) for somec > 0. Assume that the error
estimatee satisfies

e(z) ≤ max{ηg0(z), ε} (8)

for all z ∈ Dc, someε > 0 and someη ∈ (0, 1).
Then the trajectoryzi generated by

zi+1 = f(zi, uP(zi)) (9)

for eachx0 ∈ Dc satisfies

VP(zi) ≤ VP(z0)− (1− η)
i−1∑
j=0

g(zi, uP(l)(zi)), (10)

for all i such thatVP(zi) ≥ δ(ε/η) + ε.
If the main purpose of the kind of optimal control

problems treated in our setup is the derivation of asymp-
totically stabilizing feedback laws one might ask to relax
the strict “approximate optimality” condition by looking
only for a feedback which — although far from optimal —
still ensures approximate asymptotic stability in a suitable
sense. In this case, it may be a good compromise to choose
a relatively largeη ∈ (0, 1). This way we slow down the
convergence of the trajectories to the (neighborhood of the)
origin, but in turn the problem becomes numerically easier
and can be solved on a coarser partition. Such relaxations



of the optimality conditions have recently been used also
for other dynamic programming formulations of optimal
control problems, see [12], and can considerably reduce
the computational cost.

The framework from [13] allows the conclusion of
asymptotic stability in our framework, as stated in the
following corollary.

Corollary 1: Let the assumptions of Theorem 2 be
satisfied. Then for anyη ∈ (0, 1) the feedback lawuP
renders thexi–component of the closed loop system

zi+1 = f(zi, uP(zi))

with zi = (xi, yi) practically asymptotically stable onDc,
i.e., there exists aKL–functionβ depending ong0 andη,
with the property that for anyδ > 0 there existsε > 0
such that

d(xi+1, T ) ≤ β(‖x0‖, t) + δ

holds for eachz0 = (x0, y0) ∈ Dc and all partitions
for which the error estimatee satisfies the assumption of
Theorem 2 with the givenε.

In general one cannot expect robustness of the feedback
law even for arbitrarily small perturbations̃f of f if the
controller design is based on the discontinuous (Lyapunov)
function VP . However, using the concept of multivalued
games, it is possible to systematically account for addi-
tional (bounded) perturbations, see [6].

VI. N UMERICAL EXAMPLE : A SWITCHED VOLTAGE

CONTROLLER

In order to demonstrate the effectiveness of our approach
we reconsider an example from [12]: A switched power
controller for DC to DC conversion. Within the controller,
a semiconductor device is switching the polarity of a
voltage source in order to keep the load voltage as constant
as possible. The mathematical model is given by

ẋ1 =
1
C

(x2 − Iload)

ẋ2 = − 1
L

x1 −
R

L
x2 +

1
L

uVin (11)

ẋ3 = Vref − x1

(cf. Fig. VI), whereu ∈ {−1, 1} is the control input. In the
following numerical experiment we use the same parameter
values as given in [12]. Note that this is an example of
a system where no discrete variable is present (i.e, we
can identifyx with z) and the hybrid structure is solely
represented by the switching control, i.e., by the finiteness
of U .

The corresponding discrete time system is given by the
time-h-map φh (h = 0.1 in our case) of (11), with the
control input held constant during this sample period. The
cost function is

g(x, u) = qP (φh
1 (x)−Vref )+qD(φh

2 (x)−Iload)+qIφ
h
3 (x).

The third component in (11) is only being used in order to
penalize a largeL1-error of the output voltage. We slightly

Fig. 1. A switched DC/DC converter (taken from [12]).
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Fig. 2. Simulation of the controlled switched power converter.

simplify the problem (over its original formulation in [12])
by usingx3 = 0 as initial value in each evaluation of the
discrete map. Correspondingly, the map reduces to a two-
dimensional one.

Confining our domain of interest to the rectangleX =
[0, 1] × [−1, 1], our target set is given byT = {Vref} ×
[−1, 1]. For the construction of the finite graph, we employ
a partition ofX into 64× 64 equally sized boxes. We use
4 test points in each box, namely their vertices, in order
to construct the edges of the graph.

Using the resulting approximate optimal value function
and the associated feedback, we repeated the stabilization
experiment from [12], where the load current is changed
after every 100 iterations. Figure VI shows the result of
this simulation, proving that our controller stabilizes the
system as requested.

VII. C ONCLUSION

We have presented a graph theoretic numerical method
for the optimal feedback stabilization of hybrid systems.
Due to the special kind of set oriented discretization,
discrete control value sets and discrete state variable com-
ponents are easily included in our framework.

Our approach is complementary to the relaxed dynamic
programming approach in [12], [14] in the following sense:
in [12], [14] an approximation to the optimal value function
via classes of highly regular functions (typically certain



polynomials) is used while in our approach a highly
irregular function, i.e., a piecewise constant function is
used. As a consequence, the relaxed dynamic programming
approach is able to treat problems with rather high dimen-
sional state space provided the optimal value function is
close to a member of this class of approximating functions
(cf. [14, Example 5]) while our method is confined to rather
low dimensional state space allowing, however, for nons-
mooth and even discontinuous optimal value functions.

Due to the conceptional similarities, a natural next step
would be a combination of our set oriented and graph
theoretic approach with the relaxed dynamic programming
methods from [12], [14] which captures the advantages of
both approaches. This is the topic of future research.
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