Optimal stabilization of hybrid systems using a set oriented approach
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Abstract—We demonstrate how a recently developed new how to construct the optimal stabilizing feedback and in
numerical technique for the construction of approximately  Section V we discuss a local error estimation technique for
optimal stabilizing feedback laws can naturally be extended our discretization. In Section VI we present an application
in order to handle nonlinear hybrid systems with discrete .
control inputs. The idea of the method is to explicitly of our. method t(,) a switched DC/DC power converFer
construct a finite graph model of the Origina| hybnd System mOdel n Ol‘del‘ to |”ustrate the performance Of the result|ng
and to use shortest path algorithms in order to compute the feedback. Finally, Section VII presents conclusions and in

optimal \{alue function and the as;ociated feedbacK law. As particular a comparison to the related approach from [12],
a numerical example, we reconsider the construction of a [14].

switched DC/DC power converter from [12].
Il. PROBLEM FORMULATION

We consider the problem of optimally stabilizing the
The control of hybrid systems is a topic which receivedontinuous state componentof a discrete-time nonlinear
considerable interest during the last years. The mixtureybrid control system given by
of continuous and discrete components in such systems
creates severe difficulties in their analytical and numerical
treatment, for instance when stabilizability or reachability } ]
problems are to be solved or when optimal control method¥ith continuous state dynamich : X x Y x U — X C
are to be applied. Particular progress has been made §n and discrete state dynamigg : X x YV x U — Y.
the field of piecewise or switched linear systems, wherblere the set of possible control inputs is finite the
different kinds of optimization techniques turned out to b&etX C R™ of continuous states is compact and the set
applicable, see, e.g., the monographs [1] or [9] and thE Of discrete states (or modes) is an arbitrary finite set.
references therein. The solutions of (1) for initial values, = z, yo = y and
In this paper we focus on the optimal stabilization ofcONtrol sequencer = (ug, uy, ...) € U™ are denoted by
a general class of nonlinear discrete time hybrid system&s(%; ¥, ) and yx(z,y, u), respectively, and we assume
possessing discrete and continuous state variables and@t for eachk > 0 the mapzy(:,y, u) is continuous for
discrete control value set. We consider an approach for di§2chy € ¥ and eachu € UN-_ Note that if f; does not
crete time and continuous state systems presented rece endd onz, then this is equivalent tg.(-,y,u) : X x
in [10], [7] and show how to modify the method in order? — R being continuous for eachc Y, u € U.
to cover the hybrid setup. The method consists of a set The class (1) of hybrid models is quite general. For
oriented discretization of the state space and a subsequifift@nce, it includes models without discrete state space
representation of the system as a finite directed graph. GRMPonenty when f.(z,y, u) = fe(z,u) by settingy” =
this discretized level, Dijkstra’s shortest path algorithm cap®} @1dfa = 0, in which case the only “hybrid” structure
then be applied in order to solve the problem. is given by the d|s_cr_ete_nature of the finite control value set
A technique that is closely related to our approach ¥+ Another specialization of (1) appears fi(z,y, u) =
described in [2] for time continuous systems using a sole(*:¥) and fa(z,y,u) = fa(y,u) in which case the
called bisimulation in order to construct a finite automaton(.:or?tInuous St‘_"‘te plant IS 'controlled. solely by the .d|screte
They rely on the existence (and knowledge) of a particulaf®iable y which in turn is determined by the discrete
number of first integrals that are needed to construct tHYNamics fa, which may be realized, e.g., by a discrete

bisimulation partition. This approach has been pursued ftomaton. Finally, for genergl and fa(x,y, u) = fa(z)
the context of hybrid systems in, e.g., [11]. we obtain a hybrid system with state dependent switching.

The organization of this paper is as follows: in Section Gbl:/en atarget setl’ C |X Fhe gc;_aldof the opt||m|zat|on
Il we formulate our problem and in Section Ill we presenfTP/€m we want to solve Is to find a control sequence

our Compl"tat'onal approach fqr th_e opt|mal value function 1if desired, continuous control values could also be included and
of the problem. Based on this, in Section IV we showreated with the discretization technique described in [10], [7].

. INTRODUCTION

Tpt1 = fel@r, Yk, uk)

—0,1,..., (1
Yk+1 =  Ja(Tr, Yk, uk) @



ur, k = 0,1,2,..., such thatry, — T ask — oo, while a sequence = (ex)ren € EV of edges ofG. The length
minimizing the accumulated continuous instantaneous costp) of a pathp = (ex)ren is defined to be
g: X xY xU — [0,00) with g(z,y,u) > 0forallz ¢ T, -
alyeY and allu € U. .

We assume that (1) is locally asymptotically controllable wip) = kz_ow(ek) € [0, 00].
to T, i.e., there exists & L—functior? 3 and a neighbor- B
hood/(T) C X of T, such that for eaclr € V(T) there Every path inG uniquely corresponds to a (controlled)

exists a control sequenaec UN with trajectory of (2). By construction, for a given path, the cost
J(z,u) of the associated trajectory equals the length of this
d(xr(z,y,0),T) < B(||z[|, k) forallyeY. path. Thus, when asking for the infimum @fz;,u) over

By U(z,y) = {u € UY : 24(z,y,u) — T} we denote the all control sequences, we can equivalently ask for the
set of asymptotically controlling sequences far, y) € infimum of_w(p) over all pat_hqo in G that start inz; (i.e.
XxYandbyS = {(z,y) € X x Y : U(z,y) # 0} such that ifp = (ex)ren, €o is Of the formey = (21, 22)
the stabilizable subsetThe accumulated coselong a [OF SOmez; € Z).

controlled trajectory is given by We are now going to construct a finite gragh> =
(P, Ep) — which should be viewed as an approximation

to the graphG — in order to compute an approximation
to V. The idea is that oiGp we can apply standard al-
gorithms for computing paths of shortest length. A typical
algorithm of this type iDijkstra’s algorithm[4].
The finite approximation t@- is constructed as follows:
d(zrosn(z,y,0), T) < B(||zko (2,9, 0)|, k) Let Q be apartition of the continuous state sét, that is a
finite collection of compact subsef$; C X,i=1,...,r,
holds for soméek, € N and allk € N (suitable conditions ith Ur_, Qi = X, andm(Q; NQ;) = 0 for i # j (where
ong can be formulated in terms ¢f, see [8] or [5, Section 1, denotes Lebesgue measure). Then the sets
7.2] for details).
Our goal is to construct an approximatetimal feed- P={Qix{y}|QicQ,yeY} (3
backu : S — U such a suitable approximate asymptotic
stability property for the resulting closed loop systenform a partition of the product state spage= X x Y.
holds. The construction will be based on an approximation Define the graph
of the (optimal) value functiorV/ : S — [0, oc],

J(LE, Y, u) = Z g(xk(am Y, 11), yk(xa Y, u)7 Uk) € [0’ OO]
k=0

and we assume thatis chosen such that this sum is finite
for each(z,y) € S and eachu € U(x,y) for which

. Gp = (P,Ep), (4)
Viz.y) = inf J(@yu) Ep = {(P.P)ePxP|f(P.U)NP; #0}.(5)

which will act as a Lyapunov function. For an appropriatgyhere the edge = (P, P;) carries the weight
choice of ¢ this function is continuous ix at least in a !

neighborhood off" [8]. w(e) = min {g(z,u) | f(z,u) € P;}. (6)
In order to simplify the notation we write = (z,), 2CPucl
Z = X x Y and denote the dynamics (1) briefly by We useG to find an approximation to the optimal value

) function V. For anyz € Z there is a least one subset
P € P containingz. The approximation fol/(z) will be
[1l. COMPUTATIONAL APPROACH the lengthw(p) = Eizow(ek) of a shortest pathp =

In this section we discuss a set oriented numericdFo;---:¢¢), ex € Ep, from a nodeP with z € P to a
method for the computation of which was developed NodeF” € P that has nonempty intersection with i.e.
in [10]. The method relies on the observation that on&/€ approximatel/(z) by
may formulate the above discrete-time optimal contro ) .
problem equivalently as the problem of findingslortest */P(Z) = min{w(p) | p is a path from a seP, z € P,
pathwithin a directed weighted graph: Consider the graph to a setP’ with (' x Y) N P’ # 0}

G = (Z,E), where the seE of edges ofG is given by

21 = f 2k, ug).

Convergence

E= ZxZ|3 D29 =
@z 22) € Z2x Z[Juel:z = flzu)} Let (P(1)); be a nested sequence of partitionsZofi.e.

and for every edge = (z, f(z,u)) € E the weightw(e) €  for everyl, each element oP(l + 1) is contained in an
[0, 00) is given byw(e) = miny,ecp g(z,u). A pathin Gis  element ofP(1)). It is easy to see thdtp(z) < V(z) for
any partition? of Z and all z € Z. In fact, it can be
*As usual, a functiony : [0,00) — [0,00) is of classK if it is  shown that for: € S, V() converges td/ asl — oo; the
continuous, zero at zero and strictly increasing. A funciion|0, co) x di f f | . dels i
[0,00) — [0,00) is of classKCL if it is continuous, of clasdC in the corresponding proot for purely continuous state models in

first variable and strictly decreasing @oin the second variable. [10], [7] is easily extended to our hybrid setting.



Implementation 1 >1p(g/2),alln € (0,1) and allzg € D.(I) the trajectory
The computation ol/» breaks down into three steps: 2 generated by
1) Construct?on of a suitable partitioR; Zip1 = flzi, upy(2i))
2) Construction ofGp; o
3) Computation ofi’> by applying Dijkstra’s algorithm Satisfies
to Gp. i—1
In the numerical realization we always lat be a box V(z) < Vi(zo) = (L=n) Y 9z, up@y (%),
in R? and construct a partitior® of X by dividing X 3=0
uniformly into smaller boxes from whicP is then derived for all i such thatV(z;) > d(¢/n) + &.
via (3). We realize this division by repeatedly bisecting the
current division (changing the coordinate direction after
each bisection). The resulting sequence of partitions canFrom a practical point of view, Theorem 1 does not
efficiently be stored as a binary tree — see [3] for detailggive much information about the structure of the partition
OnceP has been constructed, we need to compute tH8 which is needed in order to achieve a desired level of
set Ep of edges ofGp, as well as the weights(e) for  accuracy of the optimal value function.
every edgee € Ep. Here we approximat&p by Let So = {2z € Z : V(2) < oo}. For z € Sy consider

- - the error function

where P, C P; is afinite set oftest points For example, e(2) = inelg{g(z’u) +Vp(flzu)} = Vp(2).

one may choose this set as points on an equidistant gridote that by definition o> we havee(z) > 0. Further-
Correspondingly the weightv(e) on e = (P, P;) IS more N

V. ERROR ESTIMATION

approximated by e(z) <V(z) = Vp(z), z€S.
w(e) = Zepmifer{g(z’“) | f(z,u) € Py} For D, = V5 ([0, c]) define
Again, we refer to [3] and [10] for details. 0(g) := sup V(x),
z€C.
V. CONSTRUCTING THE FEEDBACK where C. = {z € D.|go(z) < ¢} and go(z) =

For the construction of the approximately optimal feedinfueu(z) g(z,u). Note thats(s) — 0 ase — 0 because
back law we use the classical dynamic programming: shrinks down to) andV is continuous inz around?’
technique. It follows from standard dynamic programmingyitn V(0,y) = 0.
arguments that the exact optimal value functiorsatisfies Theorem 2:Consider a partitior™ and a sublevel set

V(2) = min{g(z, u) + V(f(z,u))} D, = Vp_l([O,_c}_) for somec > 0. Assume that the error
u€l estimatee satisfies
and that an optimal feedback lawis given by the control
u(z) minimizing the right hand side of this equation. e(2) < max{ngo(2), e} C)
For the construction of our feedback law we will usefor all z € D,, somee > 0 and some; € (0,1).

this fact, replacingl” by its approximationVp. Thus for Then the trajectory; generated by
each pointz € S we define
ziv1 = f(zi,up(2i)) 9)

up(z) = argmin, ey {g(z,u) + Vp(f(z,u)}  (7) .
for eachzy € D, satisfies

The following theorem shows in which sense this feed-
back is approximately optimal.
Theorem 1:Consider a sequence of partitioR$l), | €
N and letD C S be an open set with the following
properties: for all 7 such thath(zl) > 5(5/77) +e.
() TxY CD If the main purpose of the kind of optimal control

(iii) For eache > 0 there existdo(e) > 0 such that the problems treated in our setup is the derivation of asymp-
totically stabilizing feedback laws one might ask to relax

Vp(zi) < Vp(zo) — (1 — 1) ig(ziaup(z)(zz‘)% (10)

j=0

inequality ) 7 S o :
V(2) = Vpuy(2) <e the strict “approximate optimality” condition by looking
- only for a feedback which — although far from optimal —
holds for allz € D and alll > lo(e). still ensures approximate asymptotic stability in a suitable

Let ¢ > 0 be the largest value such that the inclusiorsense. In this case, it may be a good compromise to choose

D.(1) = Vg(})([o,c}) C D holds for alll € N. (Note that a relatively largen € (0,1). This way we slow down the

¢ > 0 if P(1) is chosen appropriately.) convergence of the trajectories to the (neighborhood of the)
Then there existsy > 0 and a functiond : R — R origin, but in turn the problem becomes numerically easier

with lim,—,0 d(«r) = 0, such that for alle € (0,0}, all and can be solved on a coarser partition. Such relaxations



of the optimality conditions have recently been used als
R Yo L Thosa

for other dynamic programming formulations of optimal i — T
control problems, see [12], and can considerably reduc Vani— cwiten +}51 Load
the computational cost. C

The framework from [13] allows the conclusion of
asymptotic stability in our framework, as stated in the
following corollary.

Corollary 1: Let the assumptions of Theorem 2 be Fig. 1. A switched DC/DC converter (taken from [12]).
satisfied. Then for any) € (0,1) the feedback lawup

renders ther;—component of the closed loop system osl i
zit1 = f(zi,up(2:)) Foar I
> 0.2 . -
with z; = (z;,y;) practically asymptotically stable ob., . ‘ ‘ ‘ ‘ ‘ ‘ ‘
i.e., there exists & L—function 5 depending ory, andn, 0 %0 10 10 200 20 300 30 400
with the property that for any > 0 there existss > 0 ‘ ‘
such that O'Sﬂ '

d(iv1,T) < B(lloll, ) + 0

Current
s
o o
T T
—
I
]
]
I

holds for eachzy = (zo,%) € D. and all partitions

for which the error estimate satisfies the assumption of

Theorem 2 with the given. ! ‘ m PH‘
In general one cannot expect robustness of the feedba

law even for arbitrarily small perturbatior];é of f if the

controller design is based on the discontinuous (Lyapuno L ‘ : | | ‘

function V. However, using the concept of multivalued  ° o A

games, it is possible to systematically account for addi-

tional (bounded) perturbations, see [6].

Switch sign
o
T

Fig. 2. Simulation of the controlled switched power converter.
VI. NUMERICAL EXAMPLE: A SWITCHED VOLTAGE
CONTROLLER

In order to demonstrate the effectiveness of our approadinPlify the problem (over its original formulation in [12])
we reconsider an example from [12]: A switched powep_y usingxs = 0 as initial vglue in each evaluation of the
controller for DC to DC conversion. Within the controller, discréte map. Correspondingly, the map reduces to a two-
a semiconductor device is switching the polarity of glimensional one. S
voltage source in order to keep the load voltage as constantConfining our domain of interest to the rectangle=

as possible. The mathematical model is given by [0,1] x [~1,1], our target set is given by" = {Vi..s} x
[—1, 1]. For the construction of the finite graph, we employ
b= 1 T a partition of X into 64 x 64 equally sized boxes. We use
I (xQ load)
Cl R . 4 test points in each box, namely their vertices, in order
Fy = ——mz — =9+ —uVin (11) to construct the edges of the graph.

L L L

. Using the resulting approximate optimal value function
i3 = Vief—m1

and the associated feedback, we repeated the stabilization
(cf. Fig. V1), whereu € {—1,1} is the control input. In the experiment from [12], where the load current is changed
following numerical experiment we use the same parametéfter every 100 iterations. Figure VI shows the result of
values as given in [12]. Note that this is an example othis simulation, proving that our controller stabilizes the
a system where no discrete variable is present (i.e, weystem as requested.

can identify z with z) and the hybrid structure is solely

represented by the switching control, i.e., by the finiteness VII. CONCLUSION

of U. We have presented a graph theoretic numerical method

The corresponding discrete time system is given by th®yr the optimal feedback stabilization of hybrid systems.
time-h-map ¢" (h = 0.1 in our case) of (11), with the Due to the special kind of set oriented discretization,
control input held constant during this sample period. Thgjscrete control value sets and discrete state variable com-
cost function is ponents are easily included in our framework.

_ RN RN h Our approach is complementary to the relaxed dynamic
9(z,u) = ap(@1(2)=Vres)+4p(92(¥)~Tioad) + 4163 (@)- programming approach in [12], [14] in the following sense:
The third component in (11) is only being used in order tan [12], [14] an approximation to the optimal value function
penalize a largd.!-error of the output voltage. We slightly via classes of highly regular functions (typically certain



polynomials) is used while in our approach a highly [4] E. Dijkstra, “A note on two problems in connection with graphs,”
irregular function, i.e., a piecewise constant function is
used. As a consequence, the relaxed dynamic programmir{%]
approach is able to treat problems with rather high dimen-
sional state space provided the optimal value function ig6]
close to a member of this class of approximating functionsm
(cf. [14, Example 5]) while our method is confined to rather
low dimensional state space allowing, however, for nons{8l
mooth and even discontinuous optimal value functions.
Due to the conceptional similarities, a natural next step9]
would be a combination of our set oriented and graph
theoretic approach with the relaxed dynamic programmingg;
methods from [12], [14] which captures the advantages of

both approaches. This is the topic of future research.
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