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Abstract— We use set valued analysis techniques in order
to characterize Lyapunov functions for the input–to–state
dynamical stability (ISDS) property, a quantitatively sharper
but qualitatively equivalent variant of the well known input–
to–state stability (ISS) property. We show that the epigraphs of
minimal ISDS Lyapunov functions are invariance kernels of a
suitable augmented differential inclusion. This identity provides
theoretical insight into local ISDS properties and yields a basis
for a numerical approximation of ISDS and ISS Lyapunov
functions via set oriented numerical methods.

I. INTRODUCTION

One of the key concepts in nonlinear stability theory for
perturbed systems is the input–to–state stability property
(ISS), introduced by E.D. Sontag in 1989 [12] and further
investigated in, e.g., [7], [13], [15]. The ISS property can be
seen as a generalization of the asymptotic stability property
to perturbed systems of the typeẋ(t) = f(x(t), w(t)) and
demands that each trajectoryϕ satisfies the inequality

‖ϕ(t, x, w)‖ ≤ max{β(‖x‖, t), γ(‖w‖∞)} (1)

for suitable, so called, comparison functionsβ ∈ KL andγ ∈
K∞.1 For a survey about the ISS property and its applications
in nonlinear systems theory we refer to the survey [14] and
the references therin.

One of the early important results about the ISS property
was the observation that it can be characterized by a suitable
Lyapunov function, see [15].More precisely, the ISS property
is equivalent to the existence of a continuously differentiable
function V : Rn → R satisfying the bounds

‖x‖ ≤ V (x) ≤ σ(‖x‖) (2)

for someσ ∈ K∞, and the decaying property

inf
γ(‖w‖)≤V (x)

DV (x)f(x,w) ≤ −g(V (x)) (3)

for some g : R+
0 → R+

0 with g(r) > 0 for r > 0.
This Lyapunov function characterization comes in different
variants, and the fact that we prefer this particular form
lies in the fact that integrating (3) for some perturbation
function w and using (2) one obtains (1) withγ from (3)
andβ(r, t) = µ(σ(r), t) whereµ is the solution of the initial
value problemµ̇ = −g(µ), µ(0) = r. Hence, the functions
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σ, γ and µ from V are directly related to the comparison
functionsβ andγ in the ISS estimate (1).

A more careful investigation of this relation reveals that
the existence ofV with (2), (3) implies a slightly stronger
property than ISS, namely the input–to–state dynamical
stability property (ISDS) introduced in [4, Chapter 3] and [5]
(see also [6]). The ISDS property, which will be precisely
defined in Definition 2.1, below, is qualitatively equivalent
to ISS (see [4, Proposition 3.4.4(ii)]) but, due to its tighter
quantitative relation toV , more suitable for a Lyapunov
function based analysis. Hence, in this paper we will work
with this ISDS property which we will use in a rather general
version by considering arbitrary compact setsA instead of
the origin, and by allowing that ISDS only holds on a subset
B ⊆ Rn instead of the wholeRn.

This paper deals with the characterization of the ISDS
property and ISDS Lyapunov functions using set valued
techniques. More precisely, to ourn–dimensional perturbed
system we associate an augmentedn + 1–dimensional dif-
ferential inclusion with solutionsψ, where the additional
dimension represents the value of the Lyapunov functionV .
Via this inclusion we obtain a characterization ofV via the
invariance kernelInvψ(D) of a suitable setD. In particular,
we are able to give a necessary and sufficient condition on
the shape ofInvψ(D) being equivalent to the ISDS property.
Furthermore, the invariance kernelInvψ(D) characterizes the
minimal ISDS Lyapunov function by means of its epigraph,
provided that ISDS holds. However, even when ISDS does
not hold the setInvψ(D) may contain useful information.
If ISDS does not hold for some perturbation rangeW , then
it may still hold for a suitably restricted perturbation range
W̃ . It turns out that the invariance kernelInvψ(D) for the
unrestricted perturbation setW can be used in order to
determine whether this is the case, and if so, thenInvψ(D)
gives a precise estimate about the size of the maximal
restricted perturbation rangẽW for which ISDS holds.

The contribution of these results is twofold. First, our
results give additional insight into the ISDS (and thus the
ISS) property and the respective Lyapunov functions. In
particular, our second result characterizes the situation where
ISDS is lost due to a too large set of perturbations, a topic
which was recently investigated in [3] using a controllability
analysis. Second, since invariance kernels are computable by
set valued numerical algorithms, our characterization leads
to a numerical approach for computing ISDS Lyapunov
functions for which — to the best of our knowledge —
no other numerically feasible representation is available
until now. It goes without saying that the numerical ef-
fort of this approach is rather high such that our method



is only applicable to moderately complex systems of low
dimensions, but this is due to the inherent complexity of
the problem, taking into account that the computation of
nonlinear Lyapunov functions is a difficult task even for
unperturbed systems. This numerical approach bears some
similarities with a recently developed dynamic programming
method for the computation of ISS comparison functions
[8], with the difference that here Lyapunov functions are
computed while in [8] the comparison functions (or gains)
are obtained.

This paper is organized as follows. In the ensuing Section
II we summarize the necessary background information on
the ISDS property. In Section III we state and prove our
first main result on the representation of ISDS Lyapunov
functions V via invariance kernels. Section IV gives nec-
essary and sufficient conditions for ISDS using a suitably
restricted perturbation range. Finally, in Section V, we show
some examples.

II. SETUP AND PRELIMINARIES

We consider perturbed nonlinear systems of the form

ẋ(t) = f(x(t), w(t)) (4)

with x ∈ Rn, and w ∈ W := L∞(R,W ) for some
W ⊆ Rl. We assume thatf is continuous and Lipschitz in
x uniformly for w in a compact set. We denote the solutions
with ϕ(t, x, w).

For a compact setA ⊂ Rn we denote the Euclidean
distance toA by dA.

We define the comparison function classes

K := {α : R+
0 → R+

0 |α is continuous and strictly

increasing withα(0) = 0}
K∞ := {α ∈ K |α is unbounded}
L := {α : R+

0 → R+
0 |α is continuous and strictly

decreasing with lim
t→∞

α(t) = 0}

KL := {β : R+
0 × R+

0 → R+
0 |β is continuous,

β(·, t) ∈ K, β(r, ·) ∈ L for all t, r ≥ 0}
KLD := {µ ∈ KL |µ(r, 0) = r,

µ(r, t+ s) = µ(µ(r, t), s) for all r, t, s ≥ 0}

The first four classes are standard in nonlinear stability theory
while the last classKLD of “dynamical”KL functions was
introduced in [4] in order to formalize the specific form
of KL functionsβ(r, t) = µ(σ(r), t) originating from the
integration of a Lyapunov function, cf. the introduction.

Using these functions we can now define the ISDS prop-
erty.

Definition 2.1: The setA is calledinput–to–state dynam-
ically stable (ISDS)on some open neighborhoodB of A, if
for suitableµ ∈ KLD and σ, γ ∈ K∞ and all x ∈ B, all
w ∈ W and all t ≥ 0 the inequality

dA(ϕ(t, x, w)) ≤ max{µ(σ(dA(x), t), ν(w, t)} (5)

holds with

ν(w, t) := ess sup
τ∈[0,t]

µ(γ(‖w(τ)‖), t− τ). (6)

We callA globally ISDS if this property holds withB = Rn.
The most important feature of the ISDS property is its

quantitative characterization by an ISDS Lyapunov function.
If B 6= Rn then for its definition we need the reachable set
Rϕ,W (B) of a setB underϕ, defined by

Rϕ,W (B) :=
⋃

w∈L∞(R,W ),x∈B,t∈[0,Tmax(x,w))

{ϕ(t, x, w)},

whereTmax(x,w) denotes the upper bound of the existence
interval of the solutionϕ(t, x, w).

Definition 2.2: A function V : Rϕ,W (B) → R is called
an ISDS Lyapunov function, if it satisfies the inequalities

V (x) ≥ dA(x) for all x ∈ Rϕ,W (B)

V (x) ≤ σ(dA(x)) for all x ∈ B
(7)

and
V (ϕ(t, x, w)) ≤ max{µ(V (x), t), ν(w, t)} (8)

for all x ∈ Rn, w ∈ W and t ≥ 0 with ν from (6).
It is easily seen that the existence ofV meeting Definition

2.2 implies ISDS with the same comparison functions. The
converse is also true but much less trivial to prove, cf.
[4, Theorem 3.5.3] or [5, Theorem 4]2. Thus, an ISDS
Lyapunov function for given comparison functionsµ, σ, γ
exists if and only if the setA is ISDS for these comparison
functions and the ISDS property admits a precise quantitative
charactarization by ISDS Lyapunov functions.

In the remainder of this paper we will always assume that
the functionµ ∈ KLD satisfies the differential equation

d

dt
µ(r, t) = −g(µ(r, t)) (9)

for some Lipschitz continuousg : R → R with g(r) > 0 for
r > 0. By [4, Proposition B.2.3] this can be assumed without
loss of generality, more precisely, for any givenµ̃ ∈ KLD
we find µ ∈ KLD arbitrarily close toν̃ satisfying (9).

Remark 2.3:If the function V from Definition 2.2 is
smooth andµ satisfies (9), then (8) is equivalent to the in-
finitesimal inequality (3), see [5, Lemma 15]. Even ifV is not
smooth one can use this infinitesimal characterization, when
interpreted in the viscosity solution sense, see [4, Proposition
3.5.6] for details. In this paper, we will work directly with
(8), thus avoiding the use of nonsmooth differential calculus.

III. AN INVARIANCE KERNEL REPRESENTATION

Fixing two functionsγ ∈ K∞ and µ ∈ KLD satisfying
(9), to our perturbed system (4) we associate then + 1–
dimensional differential inclusion

ẋ(t) ∈ f(x(t),W (y(t)))

ẏ(t) = −g(y(t))

with W (y) = {w ∈W | γ(‖w‖) ≤ y}

(10)

2In fact, in [5] only the special caseA = {0} and B = Rn is treated,
but the proof easily carries over to our more general setting.



andy ∈ R+
0 . We denote the solutions byψ(t, x, y), byψ(t, z)

for z = (x, y) ∈ Rn+1 or simply by ψ(t), if there is no
ambiguity. We will frequently use the decompositionψ(t) =
(ψx(t), ψy(t)) with ψx(t) ∈ Rn andψy(t) ∈ R. We assume
that the right hand side of this differential inclusion and the
mapy  W (y) are Lipschitz set valued maps, which holds,
e.g., if W is a star shaped set andγ−1 is Lipschitz, which
can be assumed without loss of generality.

The following sets will be crucial for our analysis.
For a subsetD ⊂ Rn+1 and a differential inclusion with

solutions denoted byψ we define its(forward) invariance
kernelas

Invψ(D) :=
{
z ∈ D

∣∣∣∣ ψ(t, z) ∈ D for all solutions
ψ of (10) and allt ≥ 0

}
.

For an extended real valued functionG : Rn → R∪ {∞}
we define its epigraphEpi(G) ⊂ Rn+1 by

Epi(G) := {(x, y) ∈ Rn+1 | y ≥ G(x)}.

For a setB ⊆ Rn we define

Epi(G|B) := Epi(G) ∩ (B × R).

Since ISDS Lyapunov functions are in general only de-
fined on subsetsC ⊂ Rn we extend them toRn by setting
V (x) = ∞ for x 6∈ C and defineDom(V ) := {x ∈
Rn |V (x) <∞}.

The set which we are interested in is the invariance kernel
Invψ(D) of the set

D := Epi(dA) = {(x, y) ∈ Rn+1 | y ≥ dA(x)}. (11)

More precisely, we will use the largest epigraph contained
in Invψ(D). For this purpose, for a given closed setE ⊂
Rn+1 we define the set

M(E) := {(x, y) ∈ E | (x, z) ∈ E for all z ≥ y}.

The setM(E) is the largest subset ofE which can be written
as an epigraph of a functionG : Rn → R ∪ {∞}.

Using these concepts we can now describe the relation
between ISDS Lyapunov functions and suitable invariance
kernels.

Theorem 3.1:Consider the perturbed system (4) and the
differential inclusion (10). Consider a compact setA ⊂ Rn,
an open neighborhoodB ⊆ Rn of A and the setD from
(11). Then the following assertions hold:

(i) Each ISDS Lyapunov functionV : Rn → R satisfies

Epi(V ) ⊆M(Invψ(D)).

(ii) If there exists a functionσ ∈ K∞ such that

Epi(σ(dA)|B) ⊆ Invψ(D) (12)

holds, then there exists an ISDS Lyapunov functionV :
Rn → R with

B ⊆ Dom(V ) and Epi(V ) = M(Invψ(D)).

In particular, thisV is the minimal ISDS Lyapunov function
for (4) in the sense thatV (x) ≤ Ṽ (x) holds for all x ∈

Dom(V ) and all other ISDS Lyapunov functions̃V for the
comparison functionsµ andγ.

(iii) The setA is ISDS with neighborhoodB if and only
if (12) holds for some functionσ ∈ K∞.
Proof: By [5, Lemma 13] a functionV : R(B) → R satisfies
(8) if and only if it satisfies

V (ϕ(t, x, w)) ≤ µ(y, t) for all x ∈ B, all t ≥ 0

all y ≥ V (x) and allw ∈ W with

γ(‖w(τ)‖) ≤ µ(y, τ) for almost allτ ∈ [0, t].

(13)

For the sake of completeness we give the proof of the
equivalence (8)⇔ (13).

Assume (8) andw ∈ W is such thatγ(‖w(τ)‖) ≤ µ(y, τ)
holds for almost allτ ∈ [0, t]. Then the definition ofν in
(6) implies ν(w, t) ≤ µ(y, t), thus (8) immediately implies
(13).

Conversely, assume (13) and considerw ∈ W, x ∈ B
and t ≥ 0. Set y = max{V (x), µ(ν(w, t),−t)}, which by
(6) implies γ(‖w(τ)‖) ≤ µ(y, τ) for almost all τ ∈ [0, t],
hence (13) impliesV (ϕ(t, x, w)) ≤ µ(y, t). Now by the
choice of y either y = V (x) or µ(y, t) = ν(w, t) holds.
In the first case, from (13) we obtainV (ϕ(t, x, w)) ≤
µ(y, t) = µ(V (x), t) while in the second case we obtain
V (ϕ(t, x, w)) ≤ µ(y, t) = ν(w, t). In both cases, (8)
follows.

Using this equivalence we now turn to the proof of the
theorem.

(i) Let (x, y) ∈ Epi(V ) and letψ(t) = ψ(t, x, y) be a
solution of the differential inclusion (10). We have to prove
that (x, y) ∈ Invψ(D), i.e. ψ(t) ∈ D for all t ≥ 0. Writing
ψ = (ψx, ψy) this amounts to showingdA(ψx(t)) ≤ ψy(t)
for all t ≥ 0. From Filippov’s Lemma (see [1] or [9, p. 267])
we find a functionw(t) with w(t) ∈ W (ψy(t)) for almost
all t ≥ 0 such thatψx solves

d

dt
ψx(t) = f(ψ(x(t)), w(t)).

Sinceψy(t) = µ(y, t) we obtain thatγ(‖w(τ)‖) ≤ µ(y, τ)
for almost all τ ≥ 0. Thus from (13) we can conclude
V (ψx(t)) ≤ µ(y, t) which implies

dA(ψx(t)) ≤ V (ψx(t)) ≤ µ(y, t) = ψy(t),

i.e., ψ(t) ∈ D and thus(x, y) ∈ Invψ(D).
(ii) We show that the functionV (x) defined by

V (x) := inf{y ≥ 0 | (x, y) ∈M(Invψ(D))}

(with the conventioninf ∅ = ∞) is an ISDS Lyapunov
function. Clearly, the inequalities (7) follow immediately
from the construction and (12). It remains to show (8) for
x ∈ B which we do by verifying (13) forx ∈ Dom(V ).
Consider t ≥ 0, x ∈ Dom(V ), w ∈ W. Then we find
y ≥ 0 with (x, y) ∈ Invψ(D) such thatγ(‖w(τ)‖) ≤ µ(y, τ)
holds for almost allτ ∈ [0, t]. The choice ofy implies
that w(τ) ∈ W (µ(y, τ)) for almost all τ ∈ [0, t], hence
ψ(τ) := (ϕ(τ, x, w), µ(y, τ)) is a solution of the inclusion on
[0, τ ]. SinceInvψ(D) is forward invariant we obtainψ(τ) ∈



Invψ(D) for all τ ∈ [0, t], in particularψ(t) ∈ Invψ(D).
From the definition ofV we obtain

V (ϕ(t, x, w)) ≤ µ(y, t),

i.e. (13) which shows thatV is an ISDS Lyapunov function.
The fact that thisV is minimal follows immediately

from (i), because each ISDS Lyapunov functionV satisfies
Epi(V ) ⊆M(Invψ(D)), hence the one satisfyingEpi(V ) =
M(Invψ(D)) must be the minimal one.

(iii) If the condition (12) holds, then by (ii) we obtain the
existence of an ISDS Lyapunov function withDom(V ) ⊇ B,
hence ISDS onB. Conversely, if ISDS holds, then by [5,
Theorem 4] there exists an ISDS Lyapunov function onB,
thus from (i) we can conclude thatInvψ(D) contains an
epigraph containing the points(x, V (x)) for x ∈ B, thus for
σ ∈ K∞ from (7) Invψ(D) contains the points(x, σ(dA(x)))
for x ∈ B. Hence (12) follows.

Remark 3.2:The condition (12) involvingσ implies that
M(Invψ(D)) is not empty, thatV is continuous at∂V and
that V is bounded on compact sets. Thus, it guarantees the
existence of a functionV with Epi(V ) = M(Invψ(D))
as well as some regularity properties ofV . The inequality
(8) is then a consequence of the structure of the differential
inclusion (10).

A particular nice situation occurs whenInvψ(D) =
M(Invψ(D)). In this cas we can state the following corol-
lary.

Corollary 3.3: Consider the perturbed system (4) and the
differential inclusion (10). Consider a compact setA ⊂ Rn,
an open neighborhoodB ⊆ Rn of A and the setD from
(11).

Assume that there exists a functionV : Rn → R ∪ {∞}
and a functionσ ∈ K∞ such that

Epi(σ(dA)|B) ⊆ Epi(V ) = Invψ(D)

holds. ThenV is an ISDS Lyapunov function onB and, in
particular, the setA is ISDS with neighborhoodB.
Proof: Follows immediately from Theorem 3.1 (ii).

Note that the equalityM(Invψ(D)) = Invψ(D) need not
hold, even ifM(Invψ(D)) 6= ∅, see Example 18, below.
Hence, Corollary 3.3 indeed describes a special situation
which can, hovewer, be observed for many systems.

IV. ISDS FOR RESTRICTED PERTURBATION
RANGE

Observe thatInvψ(D) for D = Epi(dA) may be empty,
even when no perturbations are present, e.g., when the setA
is not forward invariant, like the setA = {1} for the simple
1d systemẋ(t) = x(t). WheneverA is forward invariant
underϕ for w ≡ 0 is is easily seen thatInvψ(D) contains
at least the setA× {0}.

By Theorem 3.1 (iii), bothInvψ(D) = ∅ and Invψ(D) =
A × {0} imply that ISDS does not hold. However, the
converse is not true, i.e., if ISDS does not hold thenInvψ(D)
might still be nonempty and strictly larger thanA×{0}. As
an example, consider the 1d system

ẋ(t) = −x(t)(1− 2x(t)) + w(t). (14)

We have computed the invariance kernel ofD for A =
{0} (i.e., dA = ‖ · ‖ is the Euclidean norm),µ(r, t) =
e−t/10r (i.e., d/dt µ(r, t) = −1/10µ(r, t)), γ(r) = 2r (i.e.,
γ−1(r) = r/2), andW = R, using the numerical algorithms
described in [11], [2]. Figure 1 shows the numerically
computed result.

Fig. 1. Numerically determined invariance kernelInvψ(D) for System
(14), W = R

Note that due to Theorem 3.1(iii) ISDS cannot hold
becauseInvψ(D) does not contain an epigraph for any
neighborhoodB of A = {0}, i.e.,M(Invψ(D)) = ∅. The
fact that the system is not ISDS can also be seen directly,
because it is easily verified that forx = 0 and, e.g.,w ≡ 2 the
corresponding trajectory grows unboundedly, it even tends to
∞ in finite time.

This gives rise to the question about the meaning of this
nontrivial invariance kernel. The answer can be given when
looking at the setW of admissible perturbation values. In
fact, the shape of the invariance kernel in Figure 1 still
contains what could be called a restricted epigraph, i.e., a set
of the formEpi(V )∩ (Rn× [0, ŷ]) for some functionV and
some ŷ > 0. It turns out that choosing the “right”̂y with
this property, we can prove ISDS for a suitably restricted
set W̃ ⊂ W of perturbation values. In order to make this
statement precise and to formulate a necessary and sufficient
condition we need thehorizontal cross section

S(Invψ(D), y) := {x ∈ Rn | (x, y) ∈ Invψ(D)}

of the setInvψ(D) ⊂ Rn+1 and the invariance kernel of a
setS ⊂ Rn under the solutionsϕ of (4) with perturbations
from W ⊂ Rl defined by

Invϕ,W (S) :=
{
x ∈ S

∣∣∣∣ ϕ(t, x, w) ∈ S for all
w ∈ L∞(R,W ), x ∈ S, t ≥ 0

}
.

Theorem 4.1:Consider a compact setA ⊂ Rn and the set
Invψ(D) for D from (11).

(i) Assume that for some real number̂y > 0 and the
perturbation rangẽW := {w ∈W | γ(‖w‖) ≤ ŷ} the set

C = Inv
ϕ,W̃

(S(Invψ(D), ŷ))



contains a neighborhoodB of A for which we can find a
σ ∈ K∞ with the property

Epi(σ(dA)|B) ∩ (Rn × [0, ŷ]) ⊆ Invψ(D) (15)

Then the setA is ISDS with neighborhoodB and perturba-
tion rangeW̃ .

(ii) Conversely, if the setA is ISDS on some neighborhood
B for the perturbation rangẽW = {w ∈ W | γ(‖w‖) ≤ ŷ}
for someŷ > 0, then the assumptions in (i) are satisfied for
this valueŷ andC = R

ϕ,W̃
(B).

Proof: (i) We prove the assertion by showing that for the
differential inclusion

ẋ(t) ∈ f(x(t), W̃ (y(t)))

ẏ(t) = −g(y(t))

with W̃ (y) = {w ∈ W̃ | γ(‖w‖) ≤ y}

(16)

with solutions denoted bỹψ the forward invariance kernel
Invψ̃(D) satisfies (12) forB. Then (i) follows from Theorem
3.1(iii).

We prove (12) using the forward invariance ofC underϕ
andW̃ . This property impliesψ̃x(t, x, ŷ) ⊂ C for all t ≥ 0
and allx ∈ C. In order to show (12), we have to show that
for any point (x, y) with x ∈ B, y ≥ σ(dA(x)) and any
solutionψ̃(t) starting from this point the propertỹψ(t) ∈ D
holds for all t ≥ 0. In order to accomplish this we show

there existŝt ≥ 0 with ψ̃(t) ∈ D for all t ∈ [0, t̂]
and ψ̃(t̂) ∈ Invψ(D).

(17)

This will prove (12) sinceInvψ(D) ⊆ D is forward
invariant (16), due to the fact that the solution set of (16)
is smaller than that of (10),

If y ≤ ŷ then (15) implies(x, y) ∈ Invψ(D), hence (17)
holds for t̂ = 0. If y > ŷ then we write the solution as
ψ̃(t) = (ψ̃x(t), ψ̃y(t)). Then the forward invariance ofC
underϕ carries over toψ̃x, i.e., ψ̃x(t) ∈ C for all t ≥ 0.
Sinceψ̃y(t) → 0 we obtainψ̃y(t̂) = ŷ for somet̂ ≥ 0 and
consequentlyψ̃(t̂) ∈ C ⊂ Invψ(D). For t ∈ [0, t̂] we have
ψ̃y(t) ≥ ŷ ≥ σ(dA(ψ̃x(t))), where the last inequality holds
because the point(ψ̃x(t), ŷ) lies in C × {ŷ} ⊆ Invψ(D) ⊆
D = Epi(dA). Thus, ψ̃(t) ∈ Epi(dA) = D, which proves
(17) in this case.

We have thus shown thatInvψ̃(D) satisfies (12). This
finishes the proof of (i) because now the ISDS property
follows immediately from Theorem 3.1(iii).

(ii) If ISDS holds for W̃ on some neighborhoodB
of A, then for this set of perturbations there exists an
ISDS Lyapunov functionV : R

ϕ,W̃
(B) → R whose

epigraph by Theorem 3.1(i) satisfiesEpi(V ) ⊆ Invψ(D) and
Epi(σ(dA)|B) ⊆ Epi(V ) for someσ ∈ K∞. SinceR(B) ⊆
S(Invψ̃(D), ŷ) holds, the invariance kernelInvψ̃(D) satisfies
the assumptions from part (i). We have to show thatInvψ(D)
also satisfies this assumptions, which we do by showing that
these sets coincide fory ≤ ŷ. To this end consider the
perturbation rangeW ⊇ W̃ . Then for any point(x, y) with
y ≤ ŷ the set of possible solutions of (10) coincides with

that of (16), because we haveW (ψy(t)) ⊆ W̃ for all t ≥ 0.
Hence we have

Invψ̃(D) ∩ (Rn × [0, ŷ]) = Invψ(D)

which shows that the assumptions from (i) also hold for
Invψ(D).

Remark 4.2:The equivalence of ISDS with̃W and the
condition in Theorem 4.1(i) implies that the maximalŷ
satisfying this condition characterizes the maximal set of
perturbations for which ISDS holds for the considered com-
parison functionsγ andµ.

Unfortunately, the first condition of Theorem
4.1(i), i.e., the assumption on the invariance kernel
Inv

ϕ,W̃
(S(Invψ(D), ŷ)) is not directly related to the shape

of the invariance kernelInvψ(D), hence just by looking
at Invψ(D) it is not possible to verify the assumptions of
Theorem 4.1(i).

Fortunately, there is a remedy to this problem if one
aims at a sufficient ISDS condition analogous to Corollary
3.3. This corollary can be extended to theŷ–restricted case
without making assumptions onInv

ϕ,W̃
(S(Invψ(D), ŷ)).

The key observation for this result is the following lemma,
which gives a sufficient condition for the forward invariance
of the setS(Invψ(D), ŷ) itself underϕ.

Lemma 4.3:Assume that there existsε > 0 such that the
condition

S(Invψ(D), y) ⊆ S(Invψ(D), ŷ)

holds for ally ∈ (ŷ − ε, ŷ) and somêy > 0. Then

Inv
ϕ,W̃

(S(Invψ(D), ŷ)) = S(Invψ(D), ŷ)

for the perturbation rangẽW = {w ∈W | γ(‖w‖) ≤ ŷ}.
Proof: We abbreviateC := S(Invψ(D), ŷ) and show that
C is forward invariant for all perturbation functionsw ∈ W
with α := γ(‖w‖∞) < ŷ. By continuity this implies the
desired result also forα = ŷ.

Consider a pointx ∈ C and a perturbation function
w ∈ W̃ with α < ŷ. We prove the forward invariance by
contradiction. For this purpose assume that there exists a time
t > 0 such thatϕ(t, x, w) 6∈ C. Consider a time∆t > 0 with
the property thatµ(ŷ,∆t) > max{α, ŷ − ε}, which exists
by continuity ofµ and sincêy > α. Sinceϕ starts inC we
find a timet1 ≥ 0 with

ϕ(t1, x, w) ∈ C andϕ(t1 + ∆t, x, w) 6∈ C.

From the choice of∆t we obtain‖w(t)‖ ≤ µ(y∗, t) for
almost allt ∈ [0, t1 + ∆t]. Hence, fort ∈ [t1, t1 + ∆t] the
functionψ(t) = (ϕ(t, x, w), µ(y∗, t)) is a solution of the dif-
ferential inclusion (10). Furthermore, by the definition ofy∗

the point(ϕ(t1, x, w), ŷ) lies in Invψ(D). Thus, the forward
invariance ofInvψ(D) impliesψ(t1+∆t) ∈ Invψ(D) which
in particular yieldsϕ(t1 +∆t, x, w) ∈ S(Invψ(D), µ(ŷ,∆t)
⊆ C which contradicts the choice oft1 and∆t. ThusC is
forward invariant underϕ.

Using this fact we can state the following result, which is
analogous to Corollary 3.3.



Corollary 4.4: Consider the perturbed system (4) and the
differential inclusion (10). Consider a compact setA ⊂ Rn,
an open neighborhoodB ⊂ Rn of A and the setD from
(11).

Assume that there exists a functionV : Rn → R ∪∞, a
function σ ∈ K∞ and a valuêy > 0 such that

Epi(σ(dA)|B) ∩ (Rn × [0, ŷ]) ⊆ Epi(V ) ∩ (Rn × [0, ŷ])
= Invψ(D) ∩ (Rn × [0, ŷ])

holds. ThenV is an ISDS Lyapunov function onB for
the perturbation rangẽW = {w ∈ W | γ(‖w‖ ≤ ŷ}.
In particular, the setA is ISDS with neighborhoodB for
perturbation rangẽW .
Proof: FromEpi(V )∩(Rn×[0, ŷ]) = Invψ(D)∩(Rn×[0, ŷ])
we obtain the equality

S(Invψ(D), y) = V −1([0, y])

for all y ∈ [0, ŷ]. This immediately implies
S(Invψ(D), y1) ⊆ S(Invψ(D), y2) if 0 ≤ y1 ≤ y2 ≤ ŷ,
hence by Lemma 4.3 we obtainInv

ϕ,W̃
(S(Invψ(D), ŷ)) =

S(Invψ(D), ŷ). Thus, Theorem 4.1 (i) yields the assertion.

We can apply this result to our Example (14) with
Invψ(D) from Figure 1. There one sees that the condition of
Corollary 4.4 is satisfies e.g. for̂y = 0.24. Note that for large
ŷ the assumed epigraph property from Corollary 4.4 is not
satisfied and the inclusionS(Invψ(D), y) ⊆ S(Invψ(D), ŷ)
for y < ŷ does not hold. Sinceγ(r) = 2r, we obtain ISDS
with W̃ = [−0.12, 0.12]. The numerical computation of the
corresponding invariance kernelInvψ̃(D) as shown in Figure
2 indicates that this is the case because now the invariance
kernel is indeed an epigraph.

Fig. 2. Numerically determined invariance kernelInvψ̃(D) for System

(14), W̃ = [−0.12, 0.12]

V. EXAMPLES

Invariance Kernels and their boundaries can be computed
by set valued numerical techniques, using the algorithms de-
veloped in [11] and extended in [2]. Our approach therefore
allows to compute ISDS Lyapunov functions numerically. In

this section we provide two examples which were computed
with these algorithms and illustrate our theoretical results.

The first example is motivated by a question which arises
when looking at our results: is it possible thatInvψ(D)
contains a “maximal” epigraphEpi(V ) = M(Invψ(D)) but
is not equal to this set, i.e.,∅ 6= M(Invψ(D)) 6= Invψ(D)?

Indeed, this situation is possible, as the one dimensional
example

ẋ(t) = −2x(t)(1/2− x)2 + (1/4 + x(t))2w(t) (18)

shows. Figure 3 shows the numerically determined invariance
kernel forγ(r) = r/2 andg(r) = r/10.

Fig. 3. Numerically determined invariance kernelInvψ̃(D) for System

(18), W̃ = R

Here one observes thatInvψ(D) contains the epigraph of
the functionV (x) = |x| for x ∈ [−1/4, 1/4] but, in addition,
also a restricted epigraph of the same function on a larger
interval.

The reason for this behavior is due to the fact that
the system is ISDS for unrestricted perturbation onB =
[−1/4, 1/4] because the perturbation cannot drive the system
out of this set. For smaller perturbations, however, it is ISDS
on larger sets which is whyInvψ(D)) contains additional
points.

The second example is a two dimensional system which is
easily verified to be ISS (hence ISDS) because it is a cascade
of two ISS systems. It is given by

ẋ1(t) = −x1(t) + 3x2(t)
ẋ2(t) = −x2(t) + w(t) (19)

For γ(r) = 10r and g(r) = r/10 Figure 4 (left) shows
the lower boundary of the invariance kernel, which in this
case happens to be an epigraph, i.e., the figure shows the
graph of the ISDS Lyapunov function which was computed
using the functional approximation. Figure 4 (right) shows
the corresponding level sets.



Fig. 4. Graph and contour sets for the ISDS Lyapunov function for System
(19), W̃ = R

VI. CONCLUSIONS

The shape of the contour set in our last example suggests
that the minimal ISDS Lyapunov function is nonsmooth,
indicating that optimal ISDS Lyapunov functions are not in
general smooth, a property which is also known for optimal
H∞ storage functions, see [10]. Indeed, since the epigraph
of the minimal ISDS Lyapunov function is an invariance
kernel and since the invariance kernel is a maximal closed
subset (satisfying the invariance property), the minimal ISDS
Lyapunov function is necessarily lower semicontinuous but
in general it has no reason to be smooth or even continuous.
This motivates our use of set oriented methods and set–
valued analysis, which is an appropriate framework for
handling such functions.
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[7] L. Grüne, E. D. Sontag, and F. R. Wirth, “Asymptotic stability equals
exponential stability, and ISS equals finite energy gain—if you twist
your eyes,”Syst. Control Lett., vol. 38, pp. 127–134, 1999.

[8] S. Huang, M. James, D. Nesic, and P. M. Dower, “Analysis of input
to state stability for discrete time nonlinear systems via dynamic
programming,” in Proceedings of the 42th IEEE Conference on
Decision and Control, Hawaii, USA, 2003, pp. 5068–5073, full version
provisionally accepted in Automatica.

[9] E. B. Lee and L. Markus,Foundations of Optimal Control. John
Wiley & Sons, New York, 1967.

[10] L. Rosier and E. D. Sontag, “Remarks regarding the gap between con-
tinuous, Lipschitz, and differentiable storage functions for dissipation
inequalities,”Syst. Control Lett., vol. 41, pp. 237–249, 2000.

[11] P. Saint-Pierre, “Approximation of the viability kernel,”Appl. Math.
Optim., vol. 29, pp. 187–209, 1994.

[12] E. D. Sontag, “Smooth stabilization implies coprime factorization,”
IEEE Trans. Autom. Control, vol. 34, pp. 435–443, 1989.

[13] ——, “On the input-to-state stability property,”Europ. J. Control,
vol. 1, pp. 24–36, 1995.

[14] ——, “The ISS philosophy as a unifying framework for stability–
like behavior,” inNonlinear Control in the Year 2000, Volume 2, ser.
Lecture Notes in Control and Information Sciences 259, A. Isidori,
F. Lamnabhi-Lagarrigue, and W. Respondek, Eds., NCN. Springer
Verlag, London, 2000, pp. 443–468.

[15] E. D. Sontag and Y. Wang, “On characterizations of the input-to-state
stability property,”Syst. Control Lett., vol. 24, pp. 351–359, 1995.


