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Abstract—We use set valued analysis techniques in order o,+ and p from V' are directly related to the comparison
to characterize Lyapunov functions for the input-to-state functions3 and~ in the ISS estimate (1).
dynamical stability (ISDS) property, a quantitatively sharper A more careful investigation of this relation reveals that

but qualitatively equivalent variant of the well known input— . - . . .
to—state stability (ISS) property. We show that the epigraphs of the existence of” with (2), (3) implies a slightly stronger

minimal I1SDS Lyapunov functions are invariance kernels of a Property than ISS, namely the input-to—state dynamical
suitable augmented differential inclusion. This identity provides  stability property (ISDS) introduced in [4, Chapter 3] and [5]
theoretical insight into Io.cal I'SDS properties and yields a basis (see also [6]). The ISDS property, which will be precisely
;ﬁ:}c"’t‘iorr‘]‘;”:ﬁ;";ae't ?ﬂg;‘;ézngﬂg%rf’cfal'%)e?h :gsd ISS Lyapunov  gefined in Definition 2.1, below, is qualitatively equivalent
' to ISS (see [4, Proposition 3.4.4(ii)]) but, due to its tighter
. INTRODUCTION guantitative relation tol/, more suitable for a Lyapunov

One of the key concepts in nonlinear stability theory fofunction based analysis. Hence, in this paper we will work
perturbed systems is the input—to—state stability properiyith this ISDS property which we will use in a rather general
(ISS), introduced by E.D. Sontag in 1989 [12] and furthe?’ers'o,n,by conS|der|ng_arb|trary compact setsnstead of
investigated in, e.g., [7], [13], [L5]. The ISS property can béhe origin, and by allowing that ISDS only holds on a subset
seen as a generalization of the asymptotic stability properl@ € R™ instead of the whol&™.

to perturbed systems of the typet) = f(x(t),w(t)) and This paper deals with the characterization of the ISDS
demands that each trajectopysatisfies the inequality property and ISDS Lyapunov functions using set valued
techniques. More precisely, to ourdimensional perturbed

lo(t, z, w)|| < max{B(||z],t), Y(||w|s)} (1) system we associate an augmentedt 1-dimensional dif-

for suitable, so called, comparison functiohe L and- € ferential inclusion with solutions), where the additional
’ ’ P 7= dimension represents the value of the Lyapunov function

1 .
Koo = For asurvey aboutthe ISS property and its apphcatlor\?ia this inclusion we obtain a characterizationofvia the

in nonlinear systems theory we refer to the survey [14] ar]f;lvariance kernelnv,, (D) of a suitable seD. In particular,
the references therin.

we are able to give a necessary and sufficient condition on

One of the early important results about the ISS properl%Ie shape ofuv,,(D) being equivalent to the ISDS property.

was the observation that it can be characterized by a suita Srthermore, the invariance kerek,,(D) characterizes the

Lyapunov function, see [15].More precisely, the ISS pmper%inimal ISDS Lyapunov function by means of its epigraph

:‘irfci?c;\éaxl/? nﬁRtg T)eRe);laS:iirf;,Ciﬁgoiﬁecggﬂzggusw dIﬁerem""lblSrovided that ISDS holds. However, even when ISDS does

not hold the seinv, (D) may contain useful information.

lz]| < V(z) < a(|z|) (2) 1If ISDS does not hold for some perturbation rarige then
) it may still hold for a suitably restricted perturbation range
for someo € Ko, and the decaying property W. It turns out that the invariance kernklv,, (D) for the
inf DV (2)f(z,w) < —g(V(z)) (3) unrestricted perturbation sé¥’ can be used in order to
Y(lwl)<V (2) determine whether this is the case, and if so, then, (D)

for someg : Rf — Rar with g(r) > 0 for r > 0. gives a precise estimate about the size of the maximal

This Lyapunov function characterization comes in differenestricted perturbation rangé’ for which ISDS holds.
variants, and the fact that we prefer this particular form The contribution of these results is twofold. First, our
lies in the fact that integrating (3) for some perturbatior{esuns give additional insight into the ISDS (and thus the

function w and using (2) one obtains (1) with from (3) |SS) property and the respective Lyapunov functions. In
andj(r, t) = u(o(r), ) wherep is the solution of the initial particular, our second result characterizes the situation where

ISDS is lost due to a too large set of perturbations, a topic
which was recently investigated in [3] using a controllability
This research was done while the first author was a professeue imwit analysis. Second, since invariance kernels are computable by

value problemi = —g(i), #(0) = r. Hence, the functions
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1These function classes, nowadays standard in nonlinear stability theoH),ml now. It goes without saying that the numerical ef-

are defined in Section II. fort of this approach is rather high such that our method



is only applicable to moderately complex systems of lovholds with
dimensions, but this is due to the inherent complexity of o _
the problem, taking into account that the computation of v(w,t) = fzs[oil]lp rOy(lw (). = 7). ©)

nonlinear Lyapunov functions is a difficult task even forWe call A globally ISDS if this property holds with3 — R,

unperturbed systems. This numerical approach bears SOME. " Host important feature of the ISDS property is its
similarities with a recently developed dynamic programmin uantitative characterization by an ISDS Lyapunov function
method for the computation of ISS comparison function B # R™ then for its definition we need the reachable set.
[8], with the difference that here Lyapunov functions ar \

computed while in [8] the comparison functions (or gains?z“"’W(B) of a setB under, defined by

are obtained. Row(B) = U {o(t,z,w)},

This paper is organized as follows. In the ensuing Section WE Lo (R,W),2€ B,t€[0, Trmax (z,w))
Il we summarize the necessary background information MhereT

. max (z, w) denotes the upper bound of the existence
the ISDS property. In Section Ill we state and prove OUf iarval of t(hxe l.gc))Iutionp(t 2, w) PP

first main result on the representation of ISDS Lyapunov Definition 2.2: A function V : R, (B) — R is called

functions VV via nvanance _Kernels. Section l\./ gives Nec-, 1sps Lyapunov functignif it satisfies the inequalities
essary and sufficient conditions for ISDS using a suitably

restricted perturbation range. Finally, in Section V, we show ~ V(z) = da(z) forall z € Ry, w(B)
some examples. V() < oldaz)) forallzeB

()

Il. SETUP AND PRELIMINARIES and

Vi(p(t,z,w)) < max{,u(V(x)?t), V(wvt)} 8)

We consider perturbed nonlinear systems of the form for all z € R, w € W andt > 0 with v from (6).

@(t) = f(z(t), w(t)) 4) It is easily seen that the existenceléfmeeting Definition
’ 2.2 implies ISDS with the same comparison functions. The
with = € R™, andw € W := L. (R, W) for some converse is also true but much less trivial to prove, cf.

W C R'. We assume thaf is continuous and Lipschitz in [4, Theorem 3.5.3] or [5, Theorem 4] Thus, an ISDS
x uniformly for w in a compact set. We denote the solutiond-yapunov function for given comparison functiops o, v

with o(t, z, w). exists if and only if the se#l is ISDS for these comparison
For a compact sed C R"” we denote the Euclidean functions and the ISDS property admits a precise quantitative
distance toA by d. charactarization by ISDS Lyapunov functions.
We define the comparison function classes In the remainder of this paper we will always assume that
the functiony € KLD satisfies the differential equation
K := {a:Rf — R |ais continuous and strictly d
increasing witha(0) = 0} gphrt) = —g(u(r 1)) ©)
Kew = {a€K]|ais unbounded for some Lipschitz continuoug: R — R with g(r) > 0 for
£ = {a:Rf —R}|ais continuous and strictly 7 > 0. By [4, Proposition B.2.3] this can be assumed without

loss of generality, more precisely, for any givene KLD
we find u € KLD arbitrarily close tor satisfying (9).
KL = {B:Rf xR — R{ |3 is continuous Remark 2.3:1f the function V' from Definition 2.2 is
B(,t) €K, Blr,-) € L for all t, 7 > 0} smooth andu satisfies (9), then (8) is equivalent to the in-
- finitesimal inequality (3), see [5, Lemma 15]. Evervifis not
KLD = {peKL|p(r,0)=r, smooth one can use this infinitesimal characterization, when
p(r,t+s) = p(u(r,t),s) for all r, ¢, s > 0} interpreted in the viscosity solution sense, see [4, Proposition

3.5.6] for details. In this paper, we will work directly with

The first four classes are standard in nonlinear stability theo%) thus avoiding the use of nonsmooth differential calculus
while the last clas&C LD of “dynamical” KL functions was ' '

introduced in [4] in order to formalize the specific form Ill. AN INVARIANCE KERNEL REPRESENTATION

of KL functions 5(r,t) = u(o(r),t) originating from the Fixing two functionsy € K, and p € KLD satisfying

integration of a Lyapunov function, cf. the introduction.  (9), to our perturbed system (4) we associate the 1—
Using these functions we can now define the ISDS pro@imensional differential inclusion

decreasing withtlim a(t) =0}

oy . . i(t) € fla(t), W(y(t))

Definition 2.1: The setA is calledinput—to—state dynam- . B
ically stable (ISDSpn some open neighborhodg of A, if p(t) = —9(y(®) (10)
for suitabley € KLD ando, v € K, and allz € B, all with W(y) = {weW|y(w]) <y}

w € W and allt > 0 the inequality

2In fact, in [5] only the special casd = {0} and B = R" is treated,
da(e(t,z,w)) < max{u(c(da(z),t), v(w,t)} (5) butthe proof easily carries over to our more general setting.



andy € R . We denote the solutions hy(t, =, y), by (¢,2) Dom(V) and all other ISDS Lyapunov functioris for the
for z = (z,y) € R**! or simply by «(t), if there is no comparison functiong and-.

ambiguity. We will frequently use the decompositigft) = (iii) The set A is ISDS with neighborhood if and only
(15(t), 1y (t)) with ¢, (t) € R™ and ), (t) € R. We assume if (12) holds for some functiow € K.

that the right hand side of this differential inclusion and théroof: By [5, Lemma 13] a functioV : R(B) — R satisfies
mapy ~» W (y) are Lipschitz set valued maps, which holds(8) if and only if it satisfies

e.g., if W is a star shaped set and! is Lipschitz, which

can be assumed without loss of generality. Vie(t,z,w)) < p(y,t) forall z € B, all t > 0

The following sets will be crucial for our analysis. all y > V(x) and allw € W with (13)
For a subseD ¢ R™*! and a di_fferential incllusioin with v(|lw(r)|l) < ply, ) for almost allr € [0, ¢].
solutions denoted by) we define its(forward) invariance )
kernel as For the sake of completeness we give the proof of the

equivalence (8)= (13).
Assume (8) andv € W is such thaty(||w(7)|) < u(y,7)
holds for almost all- € [0,¢]. Then the definition of in
For an extended real valued functiéh: R* — RU {oc}  (6) impliesv(w,t) < u(y,t), thus (8) immediately implies
we define its epigraplipi(G) c R"*! by (13).
. n Conversely, assume (13) and considerc W, =z € B
Epi(G) i={(x,y) € R"" [y = G(x)}. andt > 0. Sety = max{V (), p(v(w,t), —t)}, which by

Invy (D) == {z eD

Y(t,z) € D for all solutions
¢ of (10) and allt > 0 ‘

For a setB C R™ we define (6) implies y([lw(7)|]) < p(y,7) for almost allT € [0,1],
. . hence (13) impliesV (o(t,z,w)) < wu(y,t). Now by the
Epi(G|p) := Epi(G) N (B X R). choice ofy eithery = V(z) or u(y,t) = v(w,t) holds.

Since ISDS Lyapunov functions are in general only dell the first case, from (13) we obtailf (p(f,z,w)) <
fined on subset§’ ¢ R™ we extend them t@®™ by setting p#lyt) = p(V(x),t) while in the second case we obtain
V(z) = oo for 2 ¢ C and defineDom(V) = {z € Y(@EHow) < plyt) = v(w.b). In both cases, (8)
R" |V (z) < ool follows. _ _

The set which we are interested in is the invariance kernel USIng this equivalence we now turn to the proof of the

Inv, (D) of the set thep rem. .
(i) Let (z,y) € Epi(V) and lety(t) = ¢(t,z,y) be a

D :=Epi(da) = {(z,y) € R""" |y >da(z)}. (11) solution of the differential inclusion (10). We have to prove
at(z,y) € Invy (D), i.e.¢(t) € D for all ¢ > 0. Writing

= (g, ¥y) this amounts to showing (¢, (t)) < 1, (t)

for all ¢ > 0. From Filippov’s Lemma (see [1] or [9, p. 267])
we find a functionw(t) with w(t) € W, (t)) for almost
M(E) :={(z,y) € E|(x,z) € E for all z > y}. all t > 0 such that), solves

The setM(E) is the largest subset @ which can be written i%(t) = f(x(t)), w(t)).

as an epigraph of a functiofi : R” — R U {oc}. dt
Using these concepts we can now describe the relati®ince, (t) = u(y,t) we obtain thaty(||w(7)|) < p(y, 7)
between ISDS Lyapunov functions and suitable invarianc®r almost all= > 0. Thus from (13) we can conclude

. . . ot
More precisely, we will use the largest epigraph contameéI
in Invy (D). For this purpose, for a given closed g8tC
R"*+! we define the set

kernels. V(. (t)) < p(y,t) which implies
Theorem 3.1:Consider the perturbed system (4) and the
differential inclusion (10). Consider a compact set” R”, da(¥a(t)) < V(¥a(t)) < pu(y,t) = vy(t),
an open neighborhoo# C R" of A and the setD from o ¥(t) € D and thus(z, y) € Invy (D).
(11). Then the following assertions hold: (i) We show that the functio(z) defined by

(i) Each I1SDS Lyapunov functioft : R" — R satisfies

V(z) :=inf{y > 0| (z,y) € M(Invy (D
Ei(V) € M{izve(D)). () 1= inf{y > 0| (z,y) € M(vy (D))}
(with the conventioninf() = oc) is an ISDS Lyapunov
function. Clearly, the inequalities (7) follow immediately
Epi(o(da)|p) C Invy (D) (12) from the construction and (12). It remains to show (8) for
B x € B which we do by verifying (13) forz € Dom(V).
holds, then there exists an ISDS Lyapunov functién:  Considert > 0, z € Dom(V), w € W. Then we find
R" — R with y > 0 with (2, ) € Tnv,,(D) such thaty(Jlw()|) < ju(y, 7)
. _ holds for almost allr € [0,¢]. The choice ofy implies
BCD d E = M(I D)). ’
< Dom(V) an pi(V) = M{Invy (D)) that w(r) € W(u(y, 7)) for almost allT € [0,¢], hence
In particular, thisV is the minimal ISDS Lyapunov function v (7) := (¢(7, z,w), u(y, 7)) is a solution of the inclusion on

for (4) in the sense thaV'(z) < V(x) holds for allz € [0, 7]. Sincelnv, (D) is forward invariant we obtaim(7) €

(ii) If there exists a functiorr € K, such that



Inv, (D) for all 7 € [0,¢], in particulary(t) € Invy (D). We have computed the invariance kernel Bf for A =
From the definition ofi” we obtain {0} (i.e., da = | - | is the Euclidean norm)u(r,t) =
e tM0% (ie., d/dt u(r,t) = —1/10 u(r,t)), v(r) = 2r (i.e.,
Vet zw)) < ply, 1), i) = r/2),/and§/V i R, usi/ng th(e n)ume(rical algorithms
i.e. (13) which shows th&t is an ISDS Lyapunov function. described in [11], [2]. Figure 1 shows the numerically

The fact that thisV is minimal follows immediately computed result.
from (i), because each ISDS Lyapunov functiBnsatisfies
Epi(V) € M(Invy (D)), hence the one satisfyirgpi(V') =
M(Invy (D)) must be the minimal one.

(iii) If the condition (12) holds, then by (ii) we obtain the
existence of an ISDS Lyapunov function witlom(V) O B,
hence ISDS onB. Conversely, if ISDS holds, then by [5,
Theorem 4] there exists an ISDS Lyapunov function®n
thus from (i) we can conclude thdhv, (D) contains an
epigraph containing the points, V(x)) for 2 € B, thus for
o € Ko from (7)Inv, (D) contains the pointéz, o(da(z)))
for x € B. Hence (12) follows. ]

Remark 3.2:The condition (12) involvings implies that
M(Invy (D)) is not empty, thal” is continuous adV” and
that V' is bounded on compact sets. Thus, it guarantees the
existence of a functior with Epi(V) = M(Invy (D))
as well as some regularity properties 6t The inequality Fig. 1. Numerically determined invariance kerrelv,, (D) for System
(8) is then a consequence of the structure of the differentigh®). W =R
inclusion (10).

A particular nice situation occurs whehwvy (D) = Note that due to Theorem 3.1(iii) ISDS cannot hold
M(Inv,(D)). In this cas we can state the following corol-becauselnv, (D) does not contain an epigraph for any
lary. neighborhoodB of A = {0}, i.e., M(Invy (D)) = 0. The

Corollary 3.3: Consider the perturbed system (4) and théact that the system is not ISDS can also be seen directly,
differential inclusion (10). Consider a compact set- R,  because itis easily verified that for= 0 and, e.g.w = 2 the
an open neighborhoo® C R" of A and the setD from corresponding trajectory grows unboundedly, it even tends to

(12). oo in finite time.
Assume that there exists a functiéh: R* — R U {oo} This gives rise to the question about the meaning of this
and a functions € K, such that nontrivial invariance kernel. The answer can be given when

. . looking at the sef’” of admissible perturbation values. In
Epi(o(da)ls) € Epi(V) = Invy (D) fact, the shape of the invariance kernel in Figure 1 still

holds. ThenV is an ISDS Lyapunov function o and, in  contains what could be called a restricted epigraph, i.e., a set
particular, the set is ISDS with neighborhood. of the formEpi(V) N (R™ x [0, §]) for some functionV and
Proof: Follows immediately from Theorem 3.1 (i). ® someg > 0. It turns out that choosing the “rightj with

Note that the equalityM (Inv,, (D)) = Invy (D) need not  this property, we can prove ISDS for a suitably restricted
hold, even if M(Invy (D)) # 0, see Example 18, below. setW C W of perturbation values. In order to make this
Hence, Corollary 3.3 indeed describes a special situati@tatement precise and to formulate a necessary and sufficient
which can, hovewer, be observed for many systems. condition we need thaorizontal cross section

IV. ISDS FOR RESTRICTED PERTURBATION
RANGE

Observe thainv, (D) for D = Epi(d4) may be empty, of the setlnv,, (D) C R"™! and the invariance kernel of a
even when no perturbations are present, e.g., when thé sesetS C R™ under the solutions of (4) with perturbations
is not forward invariant, like the set = {1} for the simple from W C R defined by
1d systemi(t) = «(t). WheneverA is forward invariant 0 )€ S for all
undery for w = 0 is is easily seen thadiv, (D) contains — { ‘ plt,r,w) € o 1ora }
at least the setl x {0}. i v w (5) TES| we Loo(R,W), z€5,t=0

By Theorem 3.1 (iii), botHnv, (D) = ¢ andInv (D) =
A x {0} imply that ISDS does not hold. However, the
converse is not true, i.e., if ISDS does not hold tien, (D)
might still be nonempty and strictly larger thahx {0}. As
an example, consider the 1d system

@(t) = —2(t)(1 — 22(t)) + w(t). (14) C =Tnv,, 5 (S(Invy(D), §))

S(Invy(D),y) :={z e R"|(x,y) € Invy(D)}

Theorem 4.1:Consider a compact set € R™ and the set
Inv, (D) for D from (11).

(i) Assume that for some real numbgr > 0 and the
perturbation rangéV := {w € W |y(||w||) < g} the set



contains a neighborhoo# of A for which we can find a that of (16), because we hav& (¢, (t)) C W for all t > 0.

o € Ko with the property Hence we have

Epi(o(da)|p) N (R™ x [0,9]) C Invy(D) (15) Inv; (D) N (R™ x [0,9]) = Invy (D)
Then the set is ISDS with neighborhood and perturba- Wwhich shows that the assumptions from (i) also hold for
tion rangeW Invy (D). [ ]

(i) Conversely, if the setl is ISDS on some neighborhood Remark 4.2:The equivalence of ISDS withiV’ and the
B for the perturbation range/’ = {w € W |y(||lw||) < 4} condition in Theorem 4.1()) implies that the maximal
for somey > 0, then the assumptions in (i) are satisfied fosatisfying this condition characterizes the maximal set of

this valuej andC =R 7 (B). perturbations for which ISDS holds for the considered com-

Proof: (i) We prove the assertion by showing that for theparison functionsy and .

differential inclusion Unfortunately, the first condition of Theorem
. = 4.1(i), i.e., the assumption on the invariance kernel
#t) € fla®), Wy®) Invi)ﬁ;(S(Invw(D),g)) ispnot directly related to the shape
yt) = —g(y(®)) (16) of the invariance kernelnv, (D), hence just by looking

o — at Inv, (D) it is not possible to verify the assumptions of
with. W(y) = {weW|y(|wl) <y} Theorem 4.1(i).

Fortunately, there is a remedy to this problem if one
aims at a sufficient ISDS condition analogous to Corollary
3.3. This corollary can be extended to therestricted case
without making assumptions otnv%W(S(Invw(D),g))).
The key observation for this result is the following lemma,

which gives a sufficient condition for the forward invariance
of the setS(Inv, (D), §) itself underep.

Lemma 4.3:Assume that there exists> 0 such that the

condition

with solutions denoted by the forward invariance kernel
Invlz)(D) satisfies (12) fo3. Then (i) follows from Theorem
3.4(iii).

We prove (12) using the forward invariance @fundery
and V. This property implies), (¢, z,¢) c C for all t > 0
and allz € C. In order to show (12), we have to show that".
for any point (z,y) with z € B, y > o(da(x)) and any
solution)(t) starting from this point the property(t) € D
holds for allz > 0. In order to accomplish this we show

there exists’ > 0 with (t) € D for all ¢ € [0, 7] S(Invy (D), y) € S(Invy (D), 9)

-~ 17
and(t) € Invy (D). (7 holds for ally € (§ — ¢,9) and somej > 0. Then
This will prove (12) sincelnvy(D) C D is forward Inv 5 (S(Invy (D), §)) = SInvy (D), §)
invariant (16), due to the fact that the solution set of (16) a
is smaller than that of (10), for the perturbation rangs/” = {w € W |y(||wl|) < §}.

If y <y then (15) implies(x,y) € Inv, (D), hence (17) Proof: We abbreviateC' := S(Invy(D),§) and show that
holds fori = 0. If y > § then we write the solution as C is forward invariant for all perturbation functions € W
U(t) = (a(t),1,(t)). Then the forward invariance aff With a = y(|lw[l<) < . By continuity this implies the
under ¢ carries over toy,, i.e., ¢, (t) € C for all t > 0. desired result also far = .
Slncewu( ) — 0 we Obtaln’(/kq( {) = ¢ for somei > 0 and Consider a pointzr € C and a perturbation function
COHSGC{UEHUW( f) € C C Invy (D). Fort € [0,1] we have w € W with a < §. We prove the forward invariance by
wy( ) >4 > U(dA(%( ))), where the last inequality holds contradiction. For this purpose assume that there exists a time
because the po|r(th(~) ) lies in C x {y} - Ian/,(D) - t > 0 such that,o(t ZL; U}) ¢ C. COﬂSId?r a t|m$t> 0 W|th
D = Epi(da). Thus,4(t) € Epi(ds) = D, which proves the property thap(g, At) > max{a,§ — e}, which exists

(17) in this case. by continuity of 4 and sincej > «. Sincegp starts inC' we
We have thus shown thdnv (D) satisfies (12). This find atimet; > 0 with
finishes the proof of (i) because now the ISDS property o(ty,z,w) € C andy(t, + At,z,w) & C.

follows immediately from Theorem 3.1(iii).

(i) If 1ISDS holds for W on some neighborhoodz From the choice ofAt we obtain|jw(t)|| < u(y*,t) for
of A, then for this set of perturbations there exists a@lmost allt € [0, + At]. Hence, fort € [t1,t; + At] the
ISDS Lyapunov functionV : R_(B) — R whose functiony(t) = (o(t, z,w), u(y”, t)) is a solution of the dif-
epigraph by Theorem 3.1(i) Satisﬁg@i(v) C Inv, (D) and ferential inclusion (10). Furthermore, by the definitionysf
Epi(o(d4)|s) € Epi(V) for somes € K. SinceR(B) C  the point(¢(t1, z, w), §) lies inInvy, (D). Thus, the forward
S(Inv (D), ) holds, the invariance kerngiv ; (D) satisfies  invariance ofiuvy, (D) impliest)(t; +At) & Inv,, (D) which
the assumptions from part (i). We have to show fhat, (D)  in particular yieldsp(ty + At, 2, w) € S(Invy (D), (g, At)
also satisfies this assumptions, which we do by showing that C' which contradicts the choice ¢f and A¢. ThusC' is
these sets coincide fog < ¢. To this end consider the forward invariant undet. u
perturbation rangé’ D W. Then for any poini(z, y) with Using this fact we can state the following result, which is
y < § the set of possible solutions of (10) coincides witranalogous to Corollary 3.3.



Corollary 4.4: Consider the perturbed system (4) and thé¢his section we provide two examples which were computed

differential inclusion (10). Consider a compact set- R”,
an open neighborhoo® c R™ of A and the setD from
(12).

with these algorithms and illustrate our theoretical results.
The first example is motivated by a question which arises
when looking at our results: is it possible thatv, (D)

Assume that there exists a functidnh: R” — RU oo, a
functiono € K, and a valuej > 0 such that

Epi(o(da)lz) N (R" x [0,])

contains a “maximal” epigrapBpi(V) = M(Inv, (D)) but
is not equal to this set, i.ef, # M(Inv, (D)) # Invy(D)?
Indeed, this situation is possible, as the one dimensional

C Ep(V) IR X [0]) gt

= IIle (D) N (Rn X [0» Q])

B(t) = —22(t)(1/2 — 2)° + (1/4+ x()’w(t)  (18)

holds. ThenV is an ISDS Lyapunov function o3 for
the perturbation rangdV = {w € W|v(|w|| < 7}
In particular, the setd is ISDS with neighborhood5 for
perturbation rangév’.

Proof: FromEpi(V)N(R" %[0, §]) = Inv,(D)N(R" %[0, 9])
we obtain the equality

S(Invy(D),y) = V=1([0,y])

for all y € [0,9]. This immediately implies

Sy (D),y1) € S(Invy(D),y2) if 0 < 41 < y2 < 4,

hence by Lemma 4.3 we Obtallnv%w(S(Invw(D),y)) =

S(Invy (D), 7). Thus, Theorem 4.1 (i) yields the assertion.
[ |

We can apply this result to our Example (14) with

Inv,, (D) from Figure 1. There one sees that the condition of

Corollary 4.4 is satisfies e.g. fgr= 0.24. Note that for large

4 the assumed epigraph property from Corollary 4.4 is not

satisfied and the inclusiofi(Invy (D), y) € S(Invy (D), )

for y < ¢ does not hold. Sincg(r) = 2r, we obtain ISDS O T A R

with W = [—-0.12,0.12]. The numerical computation of the

corresponding invariance kernielv ; (D) as shown in Figure g 3 numerically determined invariance kerrlelv ; (D) for System

2 indicates that this is the case because now the invariangg) 7 — r

kernel is indeed an epigraph.

shows. Figure 3 shows the numerically determined invariance
kernel for~(r) = r/2 andg(r) = r/10.

L
078
057
056
045
034
023

012

Here one observes thatv, (D) contains the epigraph of
the functionV (z) = |z| for = € [—1/4,1/4] but, in addition,
also a restricted epigraph of the same function on a larger
interval.

The reason for this behavior is due to the fact that
the system is ISDS for unrestricted perturbation Bn=
[—1/4,1/4] because the perturbation cannot drive the system
out of this set. For smaller perturbations, however, it is ISDS
on larger sets which is whinv,, (D)) contains additional
points.

The second example is a two dimensional system which is
easily verified to be ISS (hence ISDS) because it is a cascade

of two ISS systems. It is given by

Fig. 2. Numerically determined invariance kerdelv@;(D) for System

> i(t) =
14), W = [-0.12,0.12]

ia(t) =

—z1(t) + 332(t)
—x9(t) + w(t) (19)
For v(r) = 10r and g(r) = r/10 Figure 4 (left) shows
V. EXAMPLES the lower boundary of the invariance kernel, which in this

Invariance Kernels and their boundaries can be computedse happens to be an epigraph, i.e., the figure shows the
by set valued numerical techniques, using the algorithms dgraph of the ISDS Lyapunov function which was computed
veloped in [11] and extended in [2]. Our approach thereforasing the functional approximation. Figure 4 (right) shows
allows to compute ISDS Lyapunov functions numerically. Irthe corresponding level sets.



(2]

K]
(4]

(7]

(8]

El
[20]

[11]

Fig. 4. Graph and contour sets for the ISDS Lyapunov function for Systeri-2]

(19), W =R 13

[14]
VI. CONCLUSIONS

The shape of the contour set in our last example suggests
that the minimal ISDS Lyapunov function is nonsmooth,
indicating that optimal ISDS Lyapunov functions are not ir15l
general smooth, a property which is also known for optimal
H., storage functions, see [10]. Indeed, since the epigraph
of the minimal ISDS Lyapunov function is an invariance
kernel and since the invariance kernel is a maximal closed
subset (satisfying the invariance property), the minimal ISDS
Lyapunov function is necessarily lower semicontinuous but
in general it has no reason to be smooth or even continuous.
This motivates our use of set oriented methods and set—
valued analysis, which is an appropriate framework for
handling such functions.
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