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Mathematisches Institut, Fakultät für Mathematik und Physik,
Universität Bayreuth, 95440 Bayreuth, Germany

lars.gruene@uni-bayreuth.de

F. Wirth

The Hamilton Institute, National University of Ireland Maynooth,
Maynooth, Co. Kildare, Ireland

fabian.wirth@nuim.ie

Abstract

In a seminal work V.I. Zubov has described a constructive method to obtain Lya-
punov functions. This method is the first to allow numerical construction of domains
of attraction for general nonlinear systems. In this paper we describe recent gener-
alizations of this method that is applicable for systems subject to perturbations or
control inputs.

Key words: Domain of attraction, robust Lyapunov function, control Lyapunov
function, Zubov’s method.

1 Introduction

In his seminal thesis Lyapunov showed that a sufficient stability condition can be ob-
tained in terms of a positive definite function that decreases along the trajectories of the
system, or, as we say today, the existence of a Lyapunov function implies asymptotic
stability. Converse theorems state that certain stability properties imply the existence of
a Lyapunov function. Early results in this direction were obtained by Persidskii, see the



discussion in [14, Chapter VI], Massera [19] and Kurcvĕıl [17]. However, in recent times
these results have been extended in several directions to cover perturbed systems and dif-
ferential inclusions [18,10,24]. Further constructive approaches valid for C2 systems and
based on approximations by radial basis functions, respectively on a linear programming
approach have recently been described in [12,13].
For nonlinear systems one of the interests in providing a Lyapunov function lies in the
fact, that it automatically provides an estimation of the domain of attraction. This is
discussed for instance in the books [14,15] and further information can be obtained in
the articles [25,26,20]. However, a priori, a Lyapunov function only gives a conservative
estimate for the domain of attraction in that a subset of the domain is described. It is
often quite difficult to get an idea how good an approximation has been obtained.
In this paper we present a method that was originally developed by Zubov [27] which
allows in principle for the exact calculation of the whole domain of attraction and we de-
scribe extension to perturbed and controlled systems. We begin by summarizing Zubov’s
result. Assume we are given a system of ordinary differential equations of the form

ẋ = f(x) , x ∈ Rn (1)

with an asymptotically stable fixed point x∗. We assume throughout that x∗ = 0 and that
the vector field f is locally Lipschitz continuous on Rn, so that existence and uniqueness
of solutions is guaranteed. By ϕ(t; x0) we denote the solution at time t of (1) satisfying
the initial condition ϕ(0; x0) = x0. The object of interest is now the domain of attraction
(of the asymptotically stable fixed point x∗ = 0), which is defined by

D(0) := {x ∈ Rn | ϕ(t; x) → 0, for t →∞} .

Unfortunately, there are few restrictions as to what a domain of attraction can look like.
Any open subset of Rn that is diffeomorphic to Rn can be a domain of attraction, [14,26].
Thus the question of computation of such domains becomes crucial but also potentially
difficult.
One of the milestones in the analysis of domains of attraction is Zubov’s theorem [27]
which links the domain of attraction of an asymptotically stable fixed point x∗ = 0 of (1)
to the first order partial differential equation

Dv(x) · f(x) = −h(x)(1− v(x))
√

1 + ‖f(x)‖2 . (2)

Namely, under suitable assumptions on h, the equation (2) has a unique solution v that
vanishes in the origin. Furthermore, the set v−1([0, 1)) is equal to the domain of attraction
D(0), or equivalently

D(0) = {x ∈ Rn | 0 ≤ v(x) < 1} .

The importance of this result is twofold. On the one hand it is an existence result, which
states that a Lyapunov function exists that characterizes the whole domain of attraction.
And in fact, there exist many of them since we have freedom in the choice of the auxiliary
function h which will in general lead to different solutions of (2). On the other hand
the equation also opens the door for computational approaches, as in order to find the
Lyapunov function, we ”only” have to solve equation (2).



These results are presented in several books, see [14,15]. An overview over applications is
given in [16]. For the case of real-analytic systems a constructive procedure is presented
in [14,27] that allows for the approximation of the domain of attraction. This method was
extended and simplified in [25].
In this note we present some recent results obtained in [4,6] which show an extension of
Zubov’s result for the case of perturbed systems. In the following Section 2 we present
results in the spirit of Zubov’s work that are applicable to perturbed systems. In Section 3
analogous results are derived for the case of controlled systems. We comment on the merits
and the limitations of the method in Section 4.

2 Perturbed Systems

We consider perturbed systems of the form

ẋ(t) = f(x(t), a(t)) , (3)

where a : R → A ⊂ Rm is a measurable function taking values in the compact set A.
Here x ∈ Rn denotes the state of the system and a represents an unknown time-varying
perturbation acting on the system and f : Rn×A → Rn. In order to ensure existence and
uniqueness of solutions we assume that f in (3) is continuous and locally Lipschitz con-
tinuous in x where the Lipschitz constants can be chosen independently of a ∈ A. We are
interested in stability properties that are robust with respect to unknown perturbations
taking values in A, or in other words in stability properties that hold uniformly for

A := {a : R → A | a is measurable} .

The solution of (3) corresponding to the initial condition ϕ(t) = x0 and to a particular
choice for the perturbation function a ∈ A is denoted by ϕ(t; x0, a). The Euclidean norm
in Rn is denoted by ‖ · ‖.
As we are interested in domains of attraction we assume that the point x∗ = 0 has a
robust local stability property. To be precise, we need the following assumption.

Assumption 1 Consider system (3). We assume that there is a ball of radius r > 0
around x∗ = 0 and constants M ≥ 1, β < 0 such that for all a(·) ∈ A and all x with
‖x‖ ≤ r we have

‖ϕ(t; x, a)‖ ≤ Meβt‖x‖ .

It may now seem that we have made two very strict assumptions that make the problem
a not very interesting one. First of all we have implicitly assumed that the fixed point
x∗ = 0 is not perturbed by any of the perturbations, or in other words that

f(0, a) = 0 , for all a ∈ A ,

a case that is rarely met in applications. Secondly, we have assumed local exponential
decay which is maybe a more reasonable assumption, but still it gives rise to the question



if this assumption is really necessary.
Indeed, the problem can be studied in a more general context and the results that we
present here remain essentially the same. We restrict ourselves to the present case for
ease of exposition. For the more general case of compact attractors which includes the
case that a fixed point is perturbed by the perturbations and for the case of general
attraction rates we refer to [4,5,7]. Our main remark at this point is, that the results
remain essentially the same after some obvious modifications.
We now define the domain of attraction robust with respect to perturbations.

Definition 2 If the system (3) satisfies Assumption 1 we define the uniform robust do-
main of attraction of x∗ = 0 by

D0 =

x0 ∈ Rn |
there exists a continuous function β with β(t) → 0 as t →∞

such that ‖ϕ(t; x0, a)‖ ≤ β(t) for all t > 0, a ∈ A

 . (4)

It may seem surprising, that in the definition of the robust domain of attraction we require
a uniform attraction rate. This rate is given by the function β that is an upper bound for
the decay for all perturbations. Indeed, it may be shown that this is not at all a severe
restriction. It follows from [6, Prop. 2.3 (v)] that if x0 is a point such that all trajectories
ϕ(t; x0, a) converge to zero, but an upper bound β as in the definition of D0 does not
exist, then x0 ∈ ∂D0. Furthermore, such points cannot exist, if the set {f(x, a) | a ∈ A}
is convex for all x ∈ Rn.
We now want to characterize the robust domain of attraction in a way that makes it
accessible to theoretic considerations. The idea is to use methods from optimal control.
To this end we define a function g : Rn × A → R+ that associates to each point and
perturbation value a certain cost. Then we can define the value function (which may take
on the value ∞) V : Rn → R ∪ {+∞} by

V (x) = sup
a∈A

∫ +∞

0
g(ϕ(t; x, a), a(t))dt , (5)

and in order to obtain a function that is finite everywhere we apply the transformation

v(x) = 1− e−V (x). (6)

The idea is now to define the function g and thus the optimal control problem in such
a manner, that V , respectively v characterize the robust domain of attraction. The con-
struction needed to do this is simple. The unique feature of the points in the domain of
attraction is that all trajectories emanating from these points converge to zero. If x = 0 is
the only zero of g and g is also bounded away from 0 outside of a bounded neighborhood
of 0 then it is clear that for all trajectories that do not converge to zero the integral in (5)
will diverge to infinity. If a suitable condition on g in a neighborhood is added then we
obtain, that the value of the integral in (5) is finite if and only if the trajectory converges
to zero. Hence a point x belongs to D0 if and only if V (x) is finite or equivalently if and
only if v(x) < 1. We now state the precise assumptions that lead to the desired result.



Assumption 3 The running cost g : Rn × A → R is continuous and satisfies

(i) For any a ∈ A, g(0, a) = 0 and g(x, a) > 0 for all x 6= 0.
(ii) There exists a constant g0 > 0 such that g(x, a) ≥ g0 for all a ∈ A, x0 ≥ r.
(iii) The function g is locally Lipschitz continuous in x uniformly in a, i.e. for every

R > 0 there exists a constant LR such that

‖g(x, a)− g(y, a)‖ ≤ LR‖x− y‖ for all ‖x‖, ‖y‖ ≤ R, and all a ∈ A .

Since g is nonnegative it is immediate that V (x) ≥ 0 and v(x) ∈ [0, 1] for all x ∈ Rn.
Under the previous assumption the following result may be shown.

Proposition 4 ([6]) Consider system (3) and a function g : Rn × A → R such that the
Assumptions 1 and 3 are satisfied. Then v : Rn → R is a continuous function satisfying

(i) v(x) < 1 if and only if x ∈ D0.
(ii) v(x) = 0 if and only if x = 0.
(iii) v(x) → 1 for x → x0 ∈ ∂D0 and for ‖x‖ → ∞.

Thus in the construction of v in the manner described above we have found a function
that characterizes the robust domain of attraction just as the solution of Zubov’s classical
equation describes the domain of attraction. What is more is that if we consider the
following straightforward generalization of Zubov’s equation

inf
a∈A

{−Dv(x)f(x, a)− (1− v(x))g(x, a)} = 0 x ∈ Rn , (7)

then we obtain the following theorem.

Theorem 5 ([6]) Consider the system (3) and a function g : Rn ×A → R such that the
Assumptions 1 and 3 are satisfied. Then the partial differential equation (7) has a unique
bounded and continuous viscosity solution v on Rn satisfying v(0) = 0.
This solution coincides with v defined in (6). In particular, we have the characterization

D0 = {x ∈ Rn | v(x) < 1} .

A few words of discussion are in order to interpret this result. First, the reader will note
that the first order partial differential equation (7) is solved in the viscosity sense. Indeed,
an example in [6] shows that classical solutions may not exist, so that we have to resort
to a solution sense that allows for solutions that are not (everywhere) differentiable. A
good introduction to the corresponding theory is provided by the book [2].
Secondly, as in the case of Zubov’s original result the importance of the result is twofold.
First of all it provides an existence result and then it also provides way of calculating
domains of attraction. It has to be mentioned however, that the existence result was
already shown to be true in [18,24]. On the other hand, these papers do not propose
methods for the calculation of robust domains of attraction. It can be seen from examples



in [4] that Theorem 5 indeed provides a way for the calculation of domains of attraction.
Numerical details of the method are also discussed in [4].

3 Control Lyapunov Functions

In this section we investigate the question of existence of Lyapunov functions for systems
with inputs or control systems. While for (perturbed) ordinary differential equations the
property of interest is stability, for systems with control inputs a basic question concerns
the existence of control functions steering the system to a desired target. Consider a
control system

ẋ(t) = f(x(t), u(t)) , (8)

where x ∈ Rn denotes the state, u ∈ Rm denotes the input, and where f is sufficiently
regular with f(0, 0) = 0. The set of control values U ⊂ Rm is a closed set and the space
of admissible control functions is given by

u ∈ U := L∞([0,∞), U) .

Solutions corresponding to an initial value x and a control u ∈ U at time t are denoted
by ϕ(t, x, u), which are defined on a maximal positive interval of definition [0, Tmax(x, u)),
where we do not exclude the case that Tmax(x, u)) < ∞. i.e. that solutions explode. We call
a point x0 ∈ Rn asymptotically controllable to 0 if there exists a measurable, essentially
bounded function u0 : R+ → Rm such that the corresponding solution ϕ(t, x0, u0) of (8)
satisfies ϕ(t, x0, u0) → 0 for t → ∞. The domain of asymptotic null-controllability is the
collection of all points that are asymptotically controllable to 0, i.e.

Dc := {x ∈ Rn | there exists u ∈ U with ‖ϕ(t, x, u)‖ → 0 for t →∞} .

Also for this concept there is a Lyapunov theory which has received widespread attention
in recent years. In contrast to the case of ordinary differential equations, where smooth
Lyapunov functions always exist for asymptotically stable systems, it is not reasonable to
require too many regularity properties of Lyapunov functions for controllability questions.
For this reason it is now standard to formulate the concept of a control Lyapunov function
in nondifferential terms. To formulate this recall that a function V : Rn → R is called
positive definite, if V (x) ≥ 0 for all x ∈ Rn and V (x) = 0 iff x = 0. The function V is
proper if preimages of compact sets are compact. A positive definite, proper function V
is called a control-Lyapunov function (CLF) for (8) if there is a positive definite function
W such that for every compact set X ⊂ Rn there is a compact set UX of control values
so that V is a continuous viscosity supersolution of

max
u∈UX

−DV (x)f(x, u) ≥ W (x) , x ∈ X . (9)

For the definition of viscosity solutions we refer to [2].
While design techniques using Lyapunov functions have been popular in applied control
theory for a long time, the systematic study of control Lyapunov functions only started



with Artstein [1], who proved for the case of systems affine in the control term u that the
existence of a smooth CLF is equivalent to stabilizability by continuous state feedback.
For general systems of the form (8) the existence of a global continuous CLF is equivalent
to global asymptotic null controllability [22]. Since then a rich body of literature has been
created in this field. We do not have the space here to discuss the various contributions
in sufficient detail and refer the reader to [11,9,21] for an overview and further pointers
to the literature.

Our aim is to determine a CLF as (i) an optimal value function of a suitable control
problem and (ii) as unique viscosity solution to a suitable Hamilton-Jacobi equation which
is a generalization of Zubov’s equation.

To this end we need the following regularity assumption on f 1 . We assume that there
exists γ ∈ K∞ such that for any R > 0 there is CR > 0 with

‖f(x, u)− f(y, u)‖ ≤ CR(1 + γ(‖u‖))‖x− y‖ , (10)

for all x, y with ‖x‖, ‖y‖ ≤ R.

Furthermore, we assume a local controllability assumption, similar to the approach for
perturbed systems. There exists an open ball B(0, r), a constant ū > 0, and β ∈ KL such
that for any x ∈ B(0, r) there exists ux ∈ U with ‖ux‖∞ ≤ ū, Tmax(x, ux) = ∞ and

‖ϕ(t, x, ux)‖ ≤ β(‖x‖, t) , ∀t ≥ 0 . (11)

It is known [23] that for any β ∈ KL there exist two functions α1, α2 ∈ K∞ such that
β(r, t) ≤ α2(α1(r)e

−t). For ease of presentation we will work with these two functions.
Under our standing assumptions it may be shown that the domain Dc is open, connected
and for every x ∈ Dc there is a u ∈ U such that ϕ(t, x, u) ∈ Dc for all t ≥ 0. Note that the
domain of nullcontrollability DD0 is in general not diffeomorphic to Rn. This is in contrast
to the theory of domains of attraction of (perturbed) ordinary differential equations. In
the case of asymptotically stable fixed points the domain of attraction is diffeomorphic to
Rn even for perturbed systems, see e.g. [6,26].

We describe how to characterize the domain of asymptotic null-controllability via an
optimal control problem. In order to set up the problem we need a running cost g :
Rn × U → R. The assumptions on g are as follows:

The function g : Rn × U → R is continuous and satisfies (10) with the same γ ∈ K∞ as
f . Furthermore, for all c > 0 we have

inf {g(x, u) | ‖x‖ ≥ c, u ∈ U} =: gc > 0 .

1 As usual we call a function α of class K∞ if it is a homeomorphism of [0,∞), a continuous
function β in two real nonnegative arguments is called of class KL if it is of class K∞ in the first
and decreasing to zero in the second argument.



We need to ensure convergence of the integral cost that is introduced shortly for the
“right” stabilizing solutions. To this end using the simplification β(r, t) ≤ α2(α1(r)e

−t)
for β from (11) and some arbitrary η > 0 we assume that there is a constant C > 0 such
that

g(x, u) ≤ C(α−1
2 (‖x‖))η for all (x, u) ∈ B(0, r)×B(0, ū) .

Finally, we need the following technical assumption. It is used in the proof of continuity
of v as well as in showing that v vanishes only in 0.

g(x, u) ≥ ‖f(x, u)‖+ γ(‖u‖) whenever ‖x‖ ≥ 2r or ‖u‖ ≥ 2ū .

We now define the functional

J(x, u) :=


∫∞
0 g(ϕ(t, x, u), u(t))dt , if Tmax(x, u) = ∞

∞ else
, (12)

and the (extended real valued) optimal value functions

V (x) := inf
u∈U

J(x, u) , v(x) := 1− e−V (x) , x ∈ Rn . (13)

Note that both V and v satisfy appropriate dynamic programming principles, e.g., for
each T > 0 we have

v(x) = inf
u∈U

{1 + G(x, T, u)(v(ϕ(T, x, u))− 1)} , (14)

where

G(x, T, u) := exp

(
−
∫ T

0
g(ϕ(t, x, u), u(t))dt

)
.

From the dynamic programming principle it appears reasonable to study the following first
order partial differential equation. Again we see, that it is a straightforward extension of
Zubov’s original equation. This time, however, the optimization problem is a minimization
not a maximization problem.

sup
u∈U

{−Dv(x)f(x, u)− (1− v(x))g(x, u)} = 0, (15)

The following result shows that Zubov’s approach can also be extended to the the calcu-
lation of control Lyapunov functions.

Theorem 6 ([8]) Assume that f and g satisfy the assumptions described above. Then

(i) The function v from (13) is the unique bounded viscosity solution of (15) with v(0) =
0

(ii) The function v characterizes the domain of asymptotic controllability via

Dc = {x ∈ Rn | v(x) < 1}.



4 Conclusions

We have discussed a method for the calculation of domains of attraction for perturbed
systems. The method relies on the ability to numerically solve for a viscosity solution
of a first order PDE. This has been an active research area over the past decade and
quite efficient methods are available, see for instance the appendix by M. Falcone in [2].
For lower dimensional systems this provides an efficient method to obtain estimates for
domains of attraction.
It is clear that the approach is restricted to low dimensions because for the calculations
a region of the state space has to be gridded which requires exponential cost in the
dimension of the problem. However, to the best of our knowledge this is the first possibility
to calculate domains of attractions for systems subject to perturbations available in the
literature.
Finally, it should be noted that Zubov’s idea can also be used in the context of stochastic
systems, see [3]. Overall, this shows that “Zubov’s method” brings deeper insight to a
broad range of applications: perturbed systems, controlled systems and stochastic systems.
The ideas behind Zubov’s work reach well beyond the original result and motivate new
research to this day. This is what distinguishes a great achievement.
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[4] F. Camilli, L. Grüne, and F. Wirth. A regularization of Zubov’s equation for robust domains
of attraction. in: Nonlinear Control in the Year 2000, A. Isidori et al., eds., Lecture Notes in
Control and Information Sciences, Vol. 258, pp. 277 - 290, Springer-Verlag, London, 2000.
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