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1 Introduction

In recent times the lack of closed form solutions of dynamic models with optimizing agents
has led to the use of computational methods to solve those models. Closed form solutions
are available for special cases such as the linear-quadratic control problem, see Ljungqvist
and Sargent (2001, ch. 4) and growth models with log-utility. While those special models
suffice for the analytical study of a variety of economic problems in more general cases
they are not sufficient for a robust analysis of interesting economic problems. For the
more general cases numerical methods have been proposed in the literature. A detailed
discussion of a variety of numerical methods and a comparison with our proposed method
is provided in Section 3 below.

Our paper is concerned with a family of continuous and discrete time dynamic models
with optimizing agents whose solutions are most conveniently approached by the method
of dynamic programming. Dynamic programming provides the value function and the con-
trol variable in feedback form. Yet, the application of numerical methods such as dynamic
programming to find the global dynamics in interesting regions of the state space were
restricted by the use of fixed grid size techniques. Following Griine (1997) in this paper an
adaptive grid scheme is used for finding global solutions of models with dynamic optimiza-
tion. As Santos and Vigo-Aguiar (1998), we use numerical value function iteration but we
employ local error estimates based on a flexible grid scheme. Since those numerical meth-
ods provide us with approximate solutions only, it is essential to have accuracy estimates
for the numerical methods employed.

We consider discounted continuous time and discrete time optimal control problems and
flexible grid scheme based on local error estimates. The advantage of the use of flexible
grid scheme is demonstrated by computing the value function and the control variable
in feedback form of one and two dimensional economic models. In order to study the
accuracy of our numerical methods when applied to economic models we first want to test
our algorithm by studying a basic growth model of Brock and Mirman (1972) type for
which the exact solution is known. This allows us to judge the accuracy of our numerical
method and to explore whether the flexible grid scheme is accurately capturing important
solution properties, for example, steep curvature of the value function. Our algorithm will
be applied to a deterministic as well as to a stochastic version of the Brock and Mirman
(1972) growth model.

Moreover in the economic literature there exist more complicated dynamic models with
optimizing agents which have been a challenge to commonly used numerical techniques.
Those models exhibit more complicated dynamics due to the existence of multiple steady
state equilibria,! thresholds (Skiba-sets) separating domains of attraction and periodic
solutions as attractors. Examples of such models can be found in the literature on economic
growth and development.? Multiple steady states and thresholds can also arise in the

'If there are local attractors among the equilibria some authors characterize them as indeterminant
equilibria. For a survey of models with indeterminacy, see Benhabib and Farmer (1999).

2In the latter type of models a convex-concave production function arises which leads to thresholds
separating paths to low per capita income (poor) countries and high per capita income (rich) countries,
see Skiba (1978) and Azariadis and Drazen (1990). In more recent growth models of the Lucas or Romer
type multiple steady state growth paths may arise due to externalities and complementarities of inputs, or
monopolistic competition, see for example, Benhabib, Perli and Xie (1994) and Benhabib and Perli (1994).
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dynamic decision problem of the firm, for example due to relative adjustment costs of
investment,? in resource economics and in ecological management problems.* Our paper
studies a prototype model from each of those areas and applies the proposed dynamic
programming algorithm with adaptive grid scheme to find the global dynamics.

The remainder of the paper is organized as follows. Section 2 describes the basic discretiza-
tion procedure and its strategy of adaptive grid refinement, while Section 3 compares our
approach to other advanced dynamic programming schemes found in the literature. Sec-
tion 4 solves one dimensional control problems. Here we study the basic growth model
for which the exact solution is known and compare the accuracy of our numerical meth-
ods with previously used methods. We then study one dimensional dynamic optimization
models with multiple domains of attraction and thresholds. Section 5 then presents results
for two dimensional examples which also can give rise to thresholds and periodic solutions
as attractors. Section 6 concludes the paper.

2 Numerical Dynamic Programming

In this section we describe a dynamic programming algorithm which enables us to com-
pute optimal value functions as well as optimal trajectories of discounted optimal control
problems of the below type (2.1)—(2.2) or (2.3)—(2.4).

After stating the problem formulation we will briefly describe the basic discretization pro-
cedure which goes back to Capuzzo Dolcetta (1983) and Falcone (1987) (see also Capuzzo
Dolcetta and Falcone (1989) and Bardi and Capuzzo Dolcetta (1997), Appendix A), then
discuss the adaptive gridding strategy from Griine (1997) and, finally, give some hints on
implementational aspects.

2.1 Problem Formulation

We consider discounted optimal control problems, either given in continuous time ¢ € Rar
by

V() = max /0 h e g (x(t), u(t))dt (2.1)
where
%x(t) — f@(t),u(t), (0)=w € R" (2.2)

or in discrete time t € Ny given by

V(z) = maXZ Bg(x(t), u(t)) (2.3)
=0

ueU

3See for example, Feichtinger et al. (2001) and Hartl et al. (2000).
“For the former, see Sieveking and Semmler (1997), for the latter, see Brock and Starret (1999).
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where

x(t+1)=p(x(t),ut)), z(0)=z)eR" (2.4)

Our algorithm is easily extended to stochastic optimal control problems, see Section 2.5,
below, for details.

2.2 Discretization

We start describing the basic discretization technique, which is done using a two step or
semi-Lagrangian discretization, first in time and then in space. In the first step, which
is only necessary for continuous time problems (2.1)—(2.2), the continuous time optimal
control problem is replaced by a first order discrete time approximation given by

Vi(z) = max Tn(x,w),  Tn(w,u) =hY Biglan(i),u) (2.5)
=0

where 8 =1 — dh and x, is defined by the discrete dynamics
zp(0) =2, xp(t+1) = @p(ap(i),u;) == zp(i) + hf(zp(i), u;) (2.6)

and h > 0 is the discretization time step. Here Uy denotes the set of discrete control
sequences u = (uy, ug, ...) for u; € U. If the original problem is of type (2.3)—(2.4), then
it is already in the form (2.5)—(2.6) with h = 1.

The optimal value function V}, is the unique solution of the discrete Hamilton—Jacobi—
Bellman equation

Vi(z) = glgg{hg(%w + BVi(p(z,u))} (2.7)

If we define the dynamic programming operator Tj, by
Th(Vi) (@) = mavx {g(w, u) + BVh(o(, )} (23)
then V}, can be characterized as the unique solution of the fixed point equation
Vi(x) = Tp(Vy) () for all x € R™. (2.9)

The second step of the algorithm now approximates the solution on a grid I' covering a
compact subset Q of the state space. Note that optimal control problems in economics
are usually defined on a non—compact state space and the reduction to a compact domain
Q) is a nontrivial task. Typically, we pick a reasonable set ) and consider only those
trajectories which remain in €2 for all future times. Often it is possible to identify sets 2
which are optimally invariant, i.e., which have the property that any optimal trajectory
of the unconstrained problem which starts in 2 remains in  for all future times. In this
case, the restriction to {2 does not change the optimal value functions, otherwise one has to
interpret more carefully the final results. In any case, we assume that for any point x € 2
there exists at least one control value u such that  + hf(z,u) €  holds.
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Denoting the nodes of the grid I' by 2%, i = 1,..., P, we are now looking for an approxi-
mation fo satisfying ‘ ‘
Vi (') = Th(Vy) (") (2.10)

for all nodes z of the grid, where the value of Vhr for points  which are not grid points
(these are needed for the evaluation of T},) is determined by interpolation. In our implemen-
tation we use rectangular grids with bilinear interpolation in 2d and linear interpolation
in 1d.

Note that an approximately optimal control law (in feedback form for the discrete dynam-
ics) can be obtained from this approximation by taking the value u*(x) = u for u realizing
the maximum in (2.7), where V}, is replaced by V,f . This procedure in particular allows
the numerical computation of approximately optimal trajectories.

For a rigorous convergence analysis of this discretization scheme we refer to Bardi and
Capuzzo Dolcetta (1997) and Falcone and Giorgi (1999). Here we only remark that the
scheme converges at least with order v, where v > 0 depends on the continuity properties
of V and V},. In particular, we have v = 1/2 for continuous time problems and v = 1 for
discrete time problems if V' and V}, are Lipschitz continuous and v = 2 for discrete time
problems if V}, is twice continuously differentiable.

2.3 Adaptive Grids

In order to distribute the nodes of the grid efficiently, we make use of a posteriori error
estimation. The idea here lies in the fact, that we want to solve the equation Vj(z) =
T (Vi) (z) for all z € Q but we do only solve this equation for the nodes x¢ of the grid.
Therefore, for the estimation of the gridding error we estimate the residual of the dynamic
programming operator, i.e., the difference between V' (x) and T},(V;l ) () for points which
are not nodes of the grid. Thus, for each cell C; of the grid I' we compute local error
estimates

m = max |Th(Vy) (@) = Vi ()]

It was shown in Griine (1997) that the error estimators 7; give upper and lower bounds for
the real error. More precisely, one can prove the estimates

1
~max 7 < max |Vj,(z) — Vi (2)] < —— max,. (2.11)
2 1 e l

Thus these local error estimates fit into the usual theory for error estimates for PDEs and
can be used as indicators for the following local refinement strategy of the grid I':

(0) Pick an initial grid Ty and set i« = 0. Fix a refinement parameter § € (0,1) and a
tolerance rtol > 0.
(1) Compute the solution Vhri on I';.

(2) Evaluate the error estimates 7. If 1, < rtol for all [ then stop.

(3) Refine all cells C; with n; > @ max; n;, set i =i+ 1 and go to (1).
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As an alternative to specifying rtol one could also stop the refinement iteration when a
prescribed maximum number of elements is reached, which is what we did in the numerical
experiments in this paper. In all these experiments we used 6 = 0.1.

It should be noted that both the upper and the lower bound in (2.11) are necessary for an
efficient and reliable adaptation routine: the upper bound ensures that small local errors
indeed imply small global errors, which means that refining elements with large local errors
— thus reducing the local error — will be the right strategy to reduce the global error (the
error estimate is reliable). On the other hand, the lower bound ensures that large local
errors do indeed indicate that there is something wrong with the numerical solution, which
means that we do only refine if there really are large errors (the estimate is efficient in the
sense that we do not make useless refinements). Note that the gap between the upper and
lower bound becomes large if 5 ~ 1; in this case numerical experience shows that the upper
bound is likely to become too conservative in the sense that the estimated errors typically
overestimate the real error. However, since the lower bound is independent of 3, even in
the case 0 =~ 1 — which causes problems in many numerical schemes — the efficiency of
the adaptive gridding method is maintained, i.e., we do not make unnecessary refinements.

In practice, the error estimates 7; cannot be evaluated exactly, because it involves maxi-
mization over infinitely many points in the element Cj. Instead, we use a number of test
points zi,..., 2! in each element and evaluate 7, = maxn(z!). Figure 2.1 shows the test
points we have used in the 2d examples. Note that this procedure may underestimate the
real error estimate on very large elements, thus it is advisable not to choose a too coarse

initial grid T'y.

Figure 2.1: Test points 2! for a 2d element C;

This choice of test points naturally leads to the idea of anisotropic refinement of elements,
i.e., the refinement of C; not in all but only in selected coordinate directions, thus allowing
to use “flat” or “stretched” elements. First note that for each rectangular element in R"
we have several possibilities of refinement, as indicated in Figure 2.2 for the 2d case.

Figure 2.2: Refinements in 2d, from left to right: refinement in direction e, e, and both

The simplest choice would be to refine each element in all possible coordinate directions,
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like in the rightmost case in Figure 2.2. However, for an element C; one can also consider
the sets X,ew; of potential new nodes which would be added to I' if the element C; was
refined in coordinate direction e;. Figure 2.3 shows these points in 2d.

Figure 2.3: Potential new nodes Xyey,1 (left) and Xpey 2 (right) for a 2d element C;

Define the error estimate in these nodes for each coordinate direction e; by 74ir; =
MaXze X, 00 n(z) and define the overall error measured in these potential new nodes by
Ndir = MaX;—=1,.nNdiri- Note that 14, < 7 always holds. Since the points in Xy
are contained in our selection of test points, anyway, we get these values for free. Now,
if the error in one direction is large compared to the overall error 7;, then we only refine
the element in the corresponding direction. We have used this strategy in all 2d examples
presented in Section 5, but the effect is most apparent in Example 5.1, because here we
have a strong curvature in e;—direction but no curvature in es—direction.

During the adaptation routine it might happen that the error estimate on a coarser grid
causes refinements in regions which after a few more refinement iterations turn out to be
very regular. It is therefore advisable to include a coarsening mechanism in the above
iteration. This mechanism can, e.g., be controlled by comparing the approximation Vr,
with its projection Vr onto a “thinned” grid T; which is obtained from I'; by coarsening
each element once. Using a specified coarsening tolerance ctol > 0 one can add the following
step after Step (2).

(2a) Coarsen all elements C; with n; < § max; n; and max,ec, |Vr, () — Vi, (2)] < ctol.

This procedure also allows to start from rather fine initial grids I'g, which have the advan-
tage of yielding a good approximation 7j; of 7;. Unnecessarily fine elements in the initial
grids will this way be coarsened afterwards. We have used this coarsening mechanism in
the Examples 5.1 and 5.2, below, with its effect being most apparent in Example 5.2 where
the final grid consists of fewer nodes than the initial grid.

2.4 Some Implementational Detalils

In this section we describe some implementational issues for our computations. We only
outline the most important facts and refer to the appropriate literature for details. All
numerical examples described in this paper were computed using an implementation of our
algorithm in C on a Pentium III-PC with 997 MHz and 384 MByte RAM running under
a SuSE LINUX system.

For the computation of VhF with time step h > 0 on a grid I with P nodes z',..., 2", we
identify the piecewise (bi)linear function V;l' with the p-dimensional vector V = (V;F'(z1),
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.. VE(@P))T containing the values of Vil in the nodes 2 of the grid I'. For the computation
of V one could use the fixed point iteration

VITL = Ty, (V9),

starting, e.g., from the initial vector V9 = (0,...,0)”. This procedure is known to converge
to the right solution, however, the convergence can be rather slow. A first method to speed
up the convergence is obtained if we replace the iteration V7! = T}, (V7) by a Gauss—Seidel
type iteration VIt = S(V7) which is described in Griine (1997, Sect. 3) under the name
increasing coordinate algorithm.

In our implementation we use a straightforward discretization of U by a finite set U , for
which the local maximization can be performed by simply comparing the finitely many val-
ues obtained for the finitely many control values from U. Note that other implementations
use different strategies for this local optimization, e.g. in Santos and Vigo-Aguiar (1998)
and Carlini, Falcone and Ferretti (2002) Brent’s Algorithm is used here; both references
report good results for this optimization strategy. The advantage of using a finite set of
control values U lies in the fact that one can easily couple this value—space iteration with
a policy—space iteration as described in Gonzalez and Sagastizabal (1990) or Seek (1997):
Once the control values in which the maxima for V* and V! are attained become conver-
gent, we fix these values and solve the corresponding system of linear equations for these
fixed control values using a fast iterative solver like the CGS or BICGSTAB method. After
convergence of this method we continue with the usual iteration using S until the control
values again converge, switch to a linear solver and so on. This combined policy—value—
space iteration turns out to be much more efficient than the plain value space iteration
using S, often more than 90 percent faster. We also take advantage of the fact that the
solution on the grid I'; can be interpolated in the new nodes of I';41 and then be used as
the initial value for the iteration on I';4.

The adaptive rectangular grids were stored on a hierarchical tree data structure as described
in Griine, Metscher and Ohlberger (1999). In particular, this allows the compact storage of
the complete adaptively refined grid without storing the coordinates of the nodes of the grid;
these values are reconstructed when needed while traversing through the data structure.
For a given point y € 2 this structure also allows a fast location of the grid element
containing y which in turn leads to an efficient computation of the value ViI'(¢(z,u))
which is needed in the evaluation of the operator T}.

2.5 Extension to stochastic optimal control problems

Our adaptive approach is easily extended to stochastic discrete time problems of the type

V(z)=E (glgg > Blgla(t), U(t))> (2.12)
=0
where

x(t+1) = f(x(t),u(t),z), =x(0)=uz9€R" (2.13)
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and the z; are i.i.d. random variables. Again, this problem could be a priori in discrete time
(in which case we have h = 1) or it could be the time discretization of a continuous time
stochastic optimal control problem with dynamics governed by an It6 stochastic differential
equation, see Camilli and Falcone (1995).

The corresponding dynamic programming operator becomes
T3,(Va) (@) = max { hg(a,u) + BE [Vi(o(x,u, )] }. (2.14)

where ¢(z,u, z) is now a random variable.

If the random variable z is discrete then the evaluation of the expectation E is a simple
summation, if z is a continuous random variable then we can compute F via a numerical
quadrature formula for the approximation of the integral

/ Vi, u, 2))p(2)dz,

z

where p(z) is the probability density of z. Example 5.1 shows the application of our method
to such a problem, where z is a truncated Gaussian random variable and the numerical
integration was done via the trapezoidal rule.

It should be noted that despite the formal similarity, stochastic optimal control problems
have several features different from deterministic ones. First, complicated dynamical be-
havior like multiple stable steady state equilibria, periodic attractors etc. is less likely
because the influence of the stochastic term tends to “smear out” the dynamics in such a
way that these phenomena disappear.® Furthermore, in stochastic problems the optimal
value function typically has more regularity which allows the use of high order approxi-
mation techniques, see the following section for details. Finally, stochastic problems can
often be formulated in terms of Markov decision problems with continuous transition prob-
ability (see Rust (1996) for details), whose structure gives rise to different approximation
techniques, in particular allowing to avoid the discretization of the state space.

In these situations, our technique may not be the most efficient approach to these problems,
and it has to compete with other efficient techniques, of which some are outlined in the
following section. Nevertheless, Example 5.1 shows that adaptive grids are by far more
efficient than non—adaptive methods if the same discretization technique (i.e., bilinear
approximation in this example) is used for both approaches. It should also be noted that
in the smooth case one can obtain estimates for the error in the approximation of the
gradient of V}, from our error estimates, for details we refer to Griine (2003).

3 Comparison with other dynamic programming schemes

In the literature one can find a vast amount of different approaches to dynamic program-
ming problems, many of them using state—of-the art mathematical and numerical tech-
niques for making this appealing computational technique more efficient. In this section

A remark to this extent on an earlier version of the paper has been made by Buz Brock and Michael
Woodford.



10 LARS GRUNE, WILLI SEMMLER

we will briefly review some of them and highlight the differences to our approach as de-
scribed in the preceding section.

Before describing these different approaches, let us recall that the main purpose of our study
is to compute the dynamics of the optimally controlled systems, in particular when com-
plicated dynamic behavior like different domains of attractions separated by Skiba—Sets,
periodic attractors and other phenomena occur. These phenomena occur in deterministic
problems and their occurrence often comes along with a loss of regularity in the related
value functions, which are at best Lipschitz but typically nonsmooth.

The majority of numerical dynamic programming approaches, however, do either need suf-
ficient smoothness of the optimal value functions or stochastic problems with a sufficiently
rich stochastic influence like in Markov decision problems with at least continuous transi-
tion probabilities. If the optimal value function turns out to be sufficiently smooth, then
methods using approximations by smooth functions, like Chebyshev polynomials (Rust
(1996), Judd (1996), Jermann (1998)), Splines (Daniel (1976), Johnson et al. (1993), Trick
and Zin (1993, 1997)) or piecewise high—order approximations (Falcone and Ferretti (1998))
can be very efficient, see also the survey of Taylor and Uhlig (1990) where one can find a
comparative numerical study of several methods.

Some of these methods (like Spline and piecewise high order approximation) use a grid
discretization of the state space similar to our approach and it would be tempting to try
whether adaptive discretization ideas based on our local error estimation technique work
equally well with these approximation techniques; so far we are not aware of numerical
studies in this direction. Again, we would like to recall that this approach needs appropriate
smoothness which is not present in most of the examples we are interested in. Smoothness
is also needed in other strategies, like in finite difference approximations (Candler (2001)),
Gaussian Quadrature discretization (Tauchen and Hussey (1991), Burnside (2001)) and
in perturbation techniques (Judd (1996)). While the last should also work if the value
function is only piecewise smooth (which is the case in all of our examples), however, this
technique computes the optimal value function starting from the stable equilibria and is
typically less accurate away from these, which suggests that this may not be the best
approach to detect Skiba points or curves, which are located far away from the stable
equilibria, furthermore, the approach does not work if there are more complicated stable
attractors like, e.g., periodic solutions as in Example 5.3, below.

A crucial aspect of any numerical dynamic programming method approximation is the
curse of dimensionality, which states that the numerical effort (induced by the number of
grid points) grows exponentially in the dimension of the state space (see Rust (1996) for a
comprehensive account on complexity issues). Our adaptive approach will not be able to
break the curse of dimensionality, but it helps to considerably reduce the computational
cost for any fixed dimension. There are, however, methods that can break the curse
of dimensionality by using either randomly distributed grid points (Rust (1997)) or so
called low discrepancy grids (Rust (1996), Reiter (1999)). Even though these results are
very appealing, these methods are unfortunately not applicable here because they either
need Markov Decision Problems with (at least) continuous transition probability like in
Rust (1996), which allows to avoid interpolation, or again sufficient smoothness of the
optimal value function like in Reiter (1999) where interpolation is replaced by a regression
technique. In principle also Monte—Carlo techniques like in Keane and Wolpin (1994)
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allow for breaking the curse of dimensionality, but as Rust (1997) points out, the specific
algorithm in Keane and Wolpin (1994) uses an interpolation technique which again is
subject to exponential growth of the numerical cost in the space dimension.

In this context it should be noted that from the complexity point of view for discretiza-
tion techniques it turns out to be optimal to solve the dynamic programming problem on
successively finer grids, using a one-way multigrid strategy (Chow and Tsitsiklis (1991),
see also Rust (1996)). In fact, our adaptive gridding algorithm is similar to this approach
since the approximation on the previous grid I'; is always used as the initial value for the
computation on the next finer adaptive grid I';41. This also explains the large reduction
in computation time observed for our approach compared to the computation on one fixed
equidistant grid, see Tables 4.1 and 4.2, below.

Summarizing this first part of our comparative discussion, for smooth and “rich” stochastic
problems a large amount of sophisticated and efficient techniques have been developed,
which do, however, not apply to deterministic or nonsmooth problems. It would be very
interesting to see how these methods compare to our adaptive approach in the smooth
case, even more, it would be interesting to see whether the ideas of smooth approximation
and adaptive discretization can be coupled in order to combine the strong sides of both
approaches, but this is beyond the scope of this paper and will be the topic of future
research.

As for deterministic and nonsmooth problems, there are still a number of advanced tech-
niques reported in the literature which do all make use of adaptivity in one way or the
other. Perhaps closest to our approach are the techniques discussed in Munos and Moore
(2002). Here a number of heuristic techniques are compared which lead to local and global
error indicators which can in turn be used for an adaptive grid generation. Some of the
indicators discussed in this paper bear some similarity with our residual based estimator,
though rigorous estimates like (2.11) are not given. In any case, the authors report that
these techniques are unsatisfactory and argue for a completely different approach which
measures the influence of local errors in certain regions on the global error by analysing the
information flow on the Markov chain related to the discretization of the (deterministic)
problem at hand. The reason for this lies in the fact that the model problem treated by
Munos and Moore (2002) has a discontinuous optimal value function, which often hap-
pens in technical problems with boundary conditions. In fact, also our adaptive scheme
performs rather poorly in presence of discontinuities but since our economic problems do
always have continuous optimal value functions, Munos’ and Moore’s conclusions do not
apply here. A roughly similar technique is the endogenous oversampling used by Marcet
(1994). This method, however, does not lead to adaptive grids but rather selects suitable
parts of the state space where the optimally controlled trajectories stay with high proba-
bility. Clearly, selecting a reasonable computational region is a serious problem at its own
right, but for problems with multiple steady state equilibria and Skiba sets this approach
is not adequate, because these sets have a very low probability (all trajectories move away)
but are nevertheless very interesting for understanding the global dynamics of the prob-
lem. Furthermore, again this is a heuristic approach which needs to be complemented by
a rigorous mathematical foundation.%

%In order to avoid misunderstandings: We do not claim that heuristic methods cannot perform well; in
fact they can show very good results. Our main concern about these methods is that one can never be sure
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Probably the adaptive approaches with the most solid mathematical background are pre-
sented in the papers of Trick and Zin (1993, 1997).” In these papers an alternative approach
for the solution of the fully discrete problem is developed using advanced linear program-
ming techniques which are capable of solving huge linear programs with many unknowns
and constraints. In Trick and Zin (1993) an adaptive selection of constraints in the lin-
ear program is used based on estimating the impact of the missing constraint, a method
which is closely related to the chosen solution method but only loosely connected to our
adaptive gridding approach. The later paper (Trick and Zin (1997)), however, presents an
idea which is very similar to our approach. Due to the structure of their solution they
can ensure that the numerical approximation is greater than or equal to the true optimal
value function. On the other hand, the induced suboptimal optimal control strategy always
produces a value which is lower than the optimal value. Thus, comparing these values for
each test point in space one can compute an interval in which the true value must lie,
which produces a mathematically concise error estimate that can be used as a refinement
criterion. While this approach is certainly a good way to measure errors, which could in
particular be less conservative than our upper bound in (2.11), we strongly believe that it
is less efficient for an adaptive gridding scheme, because (i) the estimated error measured
by this procedure is not a local quantity (since it depends on the numerical along the whole
suboptimal trajectory), which means that regions may be refined although the real error
is large elsewhere, and (ii) compared to our approach it is expensive to evaluate, because
for any test point one has to compute the whole suboptimal trajectory, while our error
estimate needs only one step of this trajectory.

Summarizing the second part of our discussion, there are a number of adaptive strategies
around which are all reported to show good results, however, they are either heuristic and
better suited for other classes of problems (like problems with discontinuities or problems
with only one stable equilibrium), or they have nice theoretical features but are practically
inconvenient because their implementation is numerically much more expensive than our
approach.

Let us finally comment on the idea of a posteriori error estimation. In fact, the idea to
evaluate residuals can also be found in the papers of Judd (1996) and Judd and Guu
(1997), using, however, not the dynamic programming operator but the associated Euler
equation. In these references the resulting residual was used to estimate the quality of the
approximating solution, however, to our knowledge it has not been used to control adaptive
gridding strategies, and we are not aware of any estimates resembling (2.11), which is a
crucial property for an efficient and reliable adaptive gridding scheme.

4 One Dimensional Examples

In this section we describe the application of our algorithm to a selection of one dimensional
optimal control problems. For some one dimensional models the use of adaptive gridding
strategies is not really necessary, because these problems can usually be solved with high

about the quality of the final solution of a heuristic method.

" As mentioned above, this approach also uses splines, i.e., a smooth approximation, but the ideas devel-
oped in these papers do also work for linear splines which do not require smoothness of the approximated
optimal value function.
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precision on fixed equidistant grids in a reasonable amount of time and with only low
memory consumption. Nevertheless, even for these (numerically) simple problems one can
show that adaptive gridding techniques can be much more efficient than algorithms on
equidistant grids when there are kinks or steep curvature in the value function. Our first
example will illustrate this, because for this problem the exact solution is known, hence the
accuracy of the respective methods can be compared directly. For the subsequent examples
the exact solution is not known, hence numerical methods are necessary for their analysis.

4.1 A basic growth model with explicit solution

We start our numerical investigations with a basic growth model in discrete time, which
goes back to Brock and Mirman (1972). This model has been used as a test example for
many numerical algorithms, and our method can be regarded as an adaptive version of the
numerical analysis performed by Santos and Vigo-Aguiar (1995 and 1998, Sect. 4). The
problem is a discrete time maximization problem of type (2.3)—(2.4) with return function
and dynamics given by

g(z,u) = In(Az® —u(t)) and z(t+1) = u(t),

with constants A > 0 and 0 < a < 1. The exact solution to this problem is known (see
Santos and Vigo-Aguiar (1998)) and is given by

a In((1 - aB)A) + 125 In(apA)

and B = .
1—ap 1—-p
For our numerical tests we specify A = 5, a = 0.34 and the discount factor to 8 = 0.95.

For these parameters the point 1 = 2.06734 is the unique optimal equilibrium. The
corresponding optimal value function is shown in Figure 4.1.

V(z) =B+ Clnz, withC =

30.5

30 [

29

285

28

Figure 4.1: Optimal value function for Example 4.1

In Santos and Vigo-Aguiar (1998), this problem was solved with a similar algorithm as
proposed here using equidistant grids. In our first computation we have also computed
the solution on grids with an equidistant distribution of the nodes. We have computed the
solution on the interval [0.1, 10] with control range U = [0.1, 5], whose discretization U
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consisted of 501 equidistant values. Table 4.1 shows the respective results, the CPU time
needed for the computation and also the maximal error (i.e., the error in the Lo, norm)
between the numerical and the exact solution. The achieved accuracy is comparable with
the results from Santos and Vigo-Aguiar (1998) (small differences are due to the different
local maximization strategy, see Sect. 2.4), the CPU times are, of course, not, because the
computations here were performed with a different implementation on a different computer.

# nodes ‘ Error ‘ CPU time
99 [ 3.2-1072 ls

989 | 6.3-1074 9s
9899 | 5.0-107° 55 s

Table 4.1: Numerical solution of Example 4.1 on equidistant grids

Table 4.2 shows the respective results for the adaptive grid algorithm with refinement
parameter = 0.1. The CPU time in the last row is the overall time for the computation
on all levels including all the time needed for the computation of the error estimates and
the grid refinements. The estimated error is the error bound obtained from the upper
inequality in (2.11), i.e. maxn;/(1 — f3), in this example 20 - max 7.

# nodes Error | estimated Error | CPU time
99 | 3.2-1072 5.9-1071
103 | 1.3-1072 2.2-1071
110 | 5.1-1073 5.4-1072
135 | 2.6-1073 2.1-1072
183 | 3.8-107* 4.8-1073
313 | 1.1-107* 1.2-1073
595 | 5.2-107° 4.6-1074 8 s

Table 4.2: Numerical solution of Example 4.1 on adaptive grid

It turns out that the final accuracy here is comparable to the equidistant grid with 9899
nodes, while the number of nodes needed here is only about 1/16 and the needed CPU time
is only about 1/7 compared to the equidistant grid with same accuracy. In other words,
in this example the use of the adaptive grid strategy yields a reduction of the memory
consumption of about 94 per cent and a reduction of the computation time of about 85
per cent. Figure 4.2 shows the grid nodes of the adaptive grid depending on x where the
mesh width is indicated by the y—position of the nodes (the lower, the finer). Note that
due to the hierarchical construction of the grid the possible mesh widths are always of the
form 27 for a fixed constant ¢ > 0 and k € N. Comparing this figure with the graph of
the value function in Figure 4.1 one sees that the steeper the curvature of the graph of the
optimal value function is, the finer the adaptive grid becomes.
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Figure 4.2: Mesh width of final adaptive grid for Example 4.1

4.2 A growth model with credit market

Next, we investigate a growth model from Griine, Semmler and Sieveking (2001) which
admits borrowing from the credit market for investment but where the maximal level of
debt is given by the present value of an income stream from economic activity. Under the
assumption of unrestricted access to capital market, a country, for example, may face a
present value borrowing constraint which we want to compute. The interest rate paid on
the debt is constant.® The model leads to an optimal control problem of type (2.1)-(2.2)
with a return function and dynamics given by

d
g(z,u) = Az® —u —uP2™) and ax(t) = u(t) — ox(t),
where = denotes the capital stock, u is the investment and the discount rate 0 in (2.1) is the

interest rate (for the numerical treatment of non—constant credit cost see Griine, Semmler
and Sieveking (2001)).

We have solved this problem with constants ¢ = 0.15, A = 0.29, a = 1.1, 6 =2, v = 0.3
and 6 = 0.1. The qualitative behavior of the numerical results, which were computed
with A = 1/20 and 401 control values in U covering the interval U = [0,1/4], is shown
in the Figures 4.3—4.5. Unlike the previous example, given the parameter constellations
of our model, this model exhibits multiple steady state equilibria. We obtain two optimal
equilibria 1 = 0 and x2 = 0.996, with domains of attraction separated by the Skiba point
x* = 0.267. Yet, as it is shown in Griine, Semmler and Sieveking (2001) there are in fact
three steady state equilibria, but the middle one in the vicinity of Skiba point x* = 0.267,
is unstable and non-optimal. The kink in the value function, however, is barely visible
in Figure 4.3, but the jump in the control variable in Figure 4.4 and also the local mesh
refinement (here the final grid consists of 116 nodes) clearly indicate the presence of a

8This model goes back to Blanchard (1983). In the original model by Blanchard, however, a utility
functional is maximized. In Griine, Semmler and Sieveking (2001) it is shown that this can be transformed
into the below employed transformed model. Moreover, in Griine, Semmler and Sieveking (2001) a variant
with state dependent credit cost is treated which requires a second state equation. Our model can also be
read as a growth model with poverty trap in the sense of Skiba (1978) and Azariadis and Drazen (1990),
since the growth model exhibits a threshold below which per capita income will shrink.
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Figure 4.3: Optimal value function for Example 4.2

Skiba point which represents a threshold below which it is optimal to deplete the capital
stock and above which the capital stock and thus per capita income will grow. Figure 4.5
shows the mesh width for the final adaptive grid of our computed example.

Figure 4.4: Optimal control for Example 4.2 in a neighborhood of the Skiba point

FoE R+

Figure 4.5: Mesh width of final adaptive grid for Example 4.2
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Also in this example we have evaluated the error bound from inequality (2.11) which is
given in Table 4.3.

# nodes | estimated Error
39 6.1-1073

45 4.8-1073

46 3.0-1073

58 42.1073

59 1.4-1073

94 2.6-1073

99 1.8-1073

104 1.0-1073

116 4.0-107*

Table 4.3: Numbers of nodes and error bounds for Example 4.2

4.3 A 1d investment model with relative adjustment cost

Next, we investigate a continuous time decision problem of the firm where the firm’s objec-
tive is to maximize, through the choice of an optimal investment strategy, the discounted
value of its cash flows subject to some technology constraint. This type of decision problem
which also exhibits multiple steady state equilibria may also result, as the example 4.2, in
a discontinuous policy function and thus in a discontinuous investment strategy. A model
of this type has been introduced, although not numerically solved, by Hartl et al. (2000).
The return function and dynamics are given by

d
g(z,u) = ax — bz® — ux — cu — du® and %x(t) =u(t)x(t) — oz(t),
respectively, where x is the capital stock and uz is the investment (here we have performed
the change of variables u = u/x on the model from Hartl et al. (2000) which removes the
singularity of the return function g in z = 0).

As the previous example, this model also exhibits multiple stable optimal equilibria for
suitable parameters, whose domains of attraction are separated by a Skiba point, see
Deissenberg et al. (2001) for a detailed explanation of this phenomenon. Here we have
computed the optimal value function for ¢ = 0.1, a = 1, b = 0.6, ¢ = 0, d = 0.3 and
discount rate 6 = 0.2. Figure 4.6 shows the corresponding optimal value function computed
with time step h = 1/20 and 501 equidistant control values in U discretizing the interval
U = [0,1]. With these parameters, the optimal equilibria are 1 = 0 and x5 = 0.565. Yet,
the Skiba point in between at z* = 0.010 is barely visible as a kink in the optimal value
function in Figure 4.6. The Skiba point is clearly visible as a jump in the optimal feedback
control law in Figure 4.7 where the optimal feedback law is shown.

Finally, the Skiba point also shows up in the mesh width of the final adaptive grid, which
in this example consists of 399 nodes. The kink in the optimal value function produces
large local error, which in turn result in a fine grid around this point. This effect is visible
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L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7

Figure 4.6: Optimal value function for Example 4.3

0 0.1 0.2 0.3 0.4 05 0.6 0.7

Figure 4.7: Optimal control for Example 4.3

in Figure 4.8. Note, however, that also the regions with steep curvature of the graph cause
a fine resolution of the grid. Table 4.4 gives the estimated upper bound on the errors for
the different adaptive grids.

Figure 4.8:

0.0055

0.005 |- .

0.0045

0.004 |-

0.0035

0.003 |-

0.0025 - - B -

0.002 |-

0.0015

0.001 |-

0.0005

Mesh width of final adaptive grid for Example 4.3
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# nodes ‘ estimated Error

131 2.1-1072
171 1.1-1072
250 5.7-1073
399 5.3-1073

Table 4.4: Numbers of nodes and error bounds for Example 4.3

4.4 An ecological management problem

Our final 1d example is an ecological management problem from Brock and Starret (1999).
An extensive numerical study of this model was performed in Griine, Kato and Semmler
(2002). We here show a numerical computation with a specific parameter set.

The model is given by a return function and dynamics

ma(t)P

g(x,u) = au’ — kfz® and im(t) =u(t) — px(t) + 2

dt

In the above the return function g(x,u) represents a utility function with two components:
the utility of an affector, obtaining a benefit letting phosphorus, u, running into a lake and
the disutility of an enjoyer of the lake being negatively affected by the stock of phosphorus,
xz. The state equation denotes the dynamics of the stock of phosphorus in the lake. We
specify the parameters a = 2, 0 = 3 = %, m=n=1, p=2, u = 0.55 and discount rate
§ = 0.1. The numerical parameters were chosen as time step h = 1/20 and 501 control
values U discretizing U = [0, 0.4]. With these parameters, again multiple optimal equilibria
x1 = 0.396 and x2 = 1.861 separated by a Skiba point x* = (0.714 arise, and consequently
the Figures 4.9-4.11 show exactly the same qualitative behavior as in the previous two
examples. The Skiba point is visible in all three figures: as a kink in the optimal value
function Figure 4.9, as a jump in the optimal control (Figure 4.10) and refined elements
in the adaptive grid (Figure 4.11). Table 4.5 again gives the corresponding upper error

bounds from (2.11).

Figure 4.9: Optimal value function for Example 4.4



20 LARS GRUNE, WILLI SEMMLER

L L L L L L
0.4 05 0.6 0.7 0.8 0.9 1 1.1

Figure 4.11: Mesh width of final adaptive grid for Example 4.4

5 Two Dimensional Examples

Next, we describe three two—dimensional problems which we have solved using our al-
gorithm. We first study our above basic growth model of Sect. 4.1, but we employ an
extension to a stochastic variant. This gives rise to two state variables. Next we turn
to deterministic problems, where the study of the dynamics of two—dimensional problems
with multiple steady state equilibria have been quite a challenge for research in economics

# nodes | estimated Error
101 3.5-1071
122 3.2-107!
133 3.4-1071
135 5.0- 1072
225 1.2-1071
240 421072

Table 4.5: Numbers of nodes and error bounds for Example 4.4
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since here one expects the separation of domains of attraction given not by threshold points
but threshold lines (Skiba lines). Furthermore, two-dimensional models may give rise to
periodic solutions as attractors. Examples of both cases are subsequently presented.

5.1 A 2d stochastic growth model

Our first 2d problem is a 2d version of the Brock and Mirman (1972) model from Example
4.1. Here the 1d model 4.1 is extended using a second variable modelling a stochastic
shock. The model is given by the discrete time equations

z(t+1) = xo(t)Az1(H)* — u(t)

x2(t+1) = exp(plnza(t) + 2;)
where A, a and p are real constants and the z(t) are i.i.d. random variables with zero mean.
The return function in (2.3) is again g(z,u) = Inw.
In our numerical computations we used the parameter values A =5, a = 0.34, p = 0.9 and
6 =0.95. As for Example 4.1, the exact solution is known and given by

V(z) = B+ Clnxy + Dzo,

where

In((1 - Ba)A) + 125 In(BaA) oo 1

B= =—— D
1- 8 ’ 1—ap’ (1—aB)(1 - pB)

We have computed the solution to this problem on the domain © = [0.1, 10] x [-0.32,0.32].
The integral over the Gaussian variable z was approximated by a trapezoidal rule with 11
discrete values equidistributed in the interval [—0.032,0.032] which ensures ¢(z,u, z) € Q
for z € Q and suitable u € U = [0.5,10.5]. For evaluating the maximum in 7" the set U was
discretized with 161 points. Table 5.1 shows the results of the resulting adaptive gridding
scheme applied with refinement threshold 8 = 0.1 and coarsening tolerance ctol = 0.001.
Figure 5.1 shows the resulting optimal value function and adapted grid.

# nodes Error | estimated Error
4914-10 O 1.6-10 !

56 | 0.5-107! 6.9-10 ©

65 | 2.9-1071 3.4-10 ©

109 | 1.3-107! 1.6-10 ©

154 | 5.5- 1072 6.8-107"

327 | 2.2-1072 2.4-1071

889 [ 9.6-1073 7.3.1072
2977 | 4.3-1073 3.2-1072

Table 5.1: Number of nodes and errors for Example 5.1

In Santos and Vigo—Aguiar (1995) on equidistant grids with 143 x 9 = 1287 and 500 x 33 =
16500 nodes, errors of 2.1-10~! and 1.48-1072, respectively, were reported. In our adaptive
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Figure 5.1: Approximated value function and final adaptive grid for Example 5.1

iteration these accuracies could be obtained with 109 and 889 nodes, respectively; thus we
obtain a reduction in the number of nodes of more than 90% in the first and almost 95%
in the second case, even though the anisotropy of the value function was already taken
into account in these equidistant grids. Here again in our stochastic version of the growth
model of Sect. 4.1, a large curvature in the value function can best be approximated with
grid refinement.

5.2 A 2d investment model with relative adjustment cost

The following problem from Feichtinger et al. (2000) is a 2d variant of the 1d Example 4.3,
where the control variable now is the change of investment rather than investment itself.
It is given by

I C2T5 au
1+ kot — e 2 2

i < a:l(t) > . ( .CCQ(t) —aa:l(t) >

dt \ z2(t) )\ u(t) '
Using the parameters ¢ = 0.25, k; = 2, ko = 0.0117, ¢; = 0.75, co = 2.5, a = 12 and
discount rate § = 0.04 we have obtained the results shown in the following Figures 5.2-5.3,
with time step h = 1/20 and 101 control values U covering U = [—1,1]. Here we started
from a rather fine grid and used the coarsening tolerance ctol = 0.001. As a result, the final

grid is coarser than the initial grid but better adapted to the problem and thus provides a
smaller error with fewer elements and grid nodes.

g(z,u) = k1y/rr —

with dynamics

The final adaptive grid here consists of 14255 nodes. Note that the Skiba curve is visible
in all three figures: as a discontinuity on the optimally controlled vector field (Figure 5.2,
left), as a jump in the optimal control (Figure 5.2, right), as a kink in the optimal value
function (Figure 5.3, left), and as a line of refined elements in the adaptive grid (Figure
5.3, right). This last figure in particular shows that the adaptive gridding strategy is very
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Figure 5.2: Optimal vector field and optimal control for Example 5.2
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0.002 in the right inequality of estimate (2.11)

causes a large gap between the upper and lower bound for the error, and our numerical

8264
9848
14255

# nodes ‘ estimated Error
22201

Figure 5.3: Optimal value function and final adaptive grid for Example 5.2
well suited for detecting threshold curves and provides an accurate resolution for such a
Table 5.2: Numbers of nodes and error bounds for Example 5.2
Note that the estimated error values in Table 5.2 are very conservative here due to two
experience shows that the lower bound is often the more reliable one. Second, and more

model.
reasons: first, the small denominator 1—
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important here, the large error values are concentrated along the Skiba curve, where large
errors occur due to the fact that the position of the numerical curve is not precisely at
its exact location. Away from this curve, the error estimates are much lower, and since
trajectories do only move away from this unstable curve this means that also the error is
much lower there. If we evaluate the error bound away from the Skiba curve we obtain
an upper bound for the error of about 10~! and around the stable equilibria we obtain an
even smaller bound of the order of 1073.

5.3 A 2d model of interacting resources

As a last example we consider a model for the optimal exploitation of interacting resources
from Semmler and Sieveking (1994) and analytically studied in Sieveking and Semmler
(1997). It is given by the return function

g(x,u) = Lol — %

1+ a:1ux1u + 1+ zou

and the dynamics

d () ( (a0 —asalt) — arza(t) — u(®)an )
(0 ) = (e @),

Here x1 and 9 are the number of two species (e.g. fish in the ocean) with intraspecific
competition, where x5 is the predator for the prey x1. The control variable u models the
harvesting effort chosen by the economic agent.

We set the parameters to ag = 1.04, a1 = 0.01, ao = 0.07, by = 1.01, by = 0.2, by = 0.01
and the discount rate to § = 5. We have computed the optimal value function on the
domain © = [0,20] x [0,40]. The numerical time step was chosen as h = 1/20 and the
range of control values U = [0, 3] was discretized with 101 equidistributed values U. The
Figures 5.4-5.5, below, show the results on [0, 20] x [0, 30], which is where the interesting
dynamical behavior of the optimally controlled system occurs.

The final adaptive grid for this example consisted of 14208 nodes. The interesting fact
in this system is that although the trajectories for constant harvesting effort do always
tend to asymptotically stable equilibria, the optimal harvesting strategy here turns out to
have an asymptotically stable periodic limit cycle. Figure 5.4 shows the vector field (left)
the optimal control (right) and Figure 5.5 (left) the value function and the regions of grid
refinement (right). Figure 5.6 shows this optimal periodic trajectory (as a solid line) along
with two other optimal trajectories (as dotted lines) which tend to this periodic solution.
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Figure 5.4: Optimal vector field and optimal control for Example 5.3
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# nodes | estimated Error
1681 2.6-102
1827 1.2-1072
2399 6.9-1073
3544 3.3.1073
6938 1.7-1073

14208 1.2-1073

Table 5.3: Numbers of nodes and error bounds for Example 5.3

6 Conclusions

The current paper uses dynamic programming with a flexible gridding strategy for the
robust analysis of the dynamics of economic models with optimizing agents. The flexi-
ble gridding strategy permits to compute in models with multiple domains of attraction,
threshold points (one dimensional examples) and threshold lines (two dimensional exam-
ples). The method is also well suited to accurately compute value functions with steep
curvature or periodic solutions as attractors. Such solutions are computed in a robust way
through local error analysis and grid refinements for prototype economic models of eco-
nomic growth (deterministic or stochastic versions), dynamic decision problem of the firm
and resource and ecological management problems. The global error estimate provided by
the method turns out to yield a reliable upper bound for the real error, which, however, can
be conservative for discount factor § = 1, in the sense that the real error is overestimated.
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