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Abstract: Generalizing an idea from deterministic optimal control, we construct a posteriori error

estimates for the spatial discretization error of the stochastic dynamic programming method based

on a discrete Hamilton–Jacobi–Bellman equation. These error estimates are shown to be efficient

and reliable, furthermore, a priori bounds on the estimates depending on the regularity of the
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discretization scheme whose performance is illustrated by two numerical examples.
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1 Introduction

The dynamic programming method is a popular and reliable technique for the numerical
solution of optimal control problems. In contrast to trajectorywise approaches like direct
discretizations or methods based on Pontryagin’s maximum principle it gives the full global
information about the optimal value function which in turn gives access to the optimal
control law in feedback form. This global nature together with the robust convergence
behavior makes this very classical method appealing for the solution of optimal control
problems in many mathematical application areas, like for instance in technical applications
(see, e.g., [16, 28]) or in mathematical economy (see, e.g., [23, 24, 34] or [30] and the
references therein).

On the other hand, the global nature of this method already implies the huge computa-
tional cost in higher dimensions. Typically, the numerical cost grows exponentially in the
space dimension of the problem, a phenomenon which is known as the “curse of dimen-
sionality”. In recent years, several attempts have been made to improve the efficiency of
dynamic programming algorithms in order to increase the applicability of this method to
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a broader class of problems. Techniques like higher order approximations [12, 14, 29, 37],
randomization [31] or adaptive space discretization methods have been proposed.

In this paper we focus on this last technique, i.e., on adaptive space discretization. Our
main reason for choosing this method is the fact that the alternative techniques rely on
the smoothness of the optimal value functions, which are the objects to be approximated
by this algorithm. However, such optimal value functions often fail to be smooth. For
continuous time problems, this was a severe theoretical problem until the early 80’s of the
last century, when the method of viscosity solutions was introduced by Crandall and Lions
[11, 26]. Numerically, higher order approximations usually lose their efficiency when applied
to non–smooth problems, while adaptive methods still work sufficiently well. Of course,
for a number of optimal control problems, especially stochastic problems in mathematical
economy, smoothness of the solutions can be rigorously proved, in which case high order
approximations are typically advantageous, but in general smoothness cannot be expected
a priori. Furthermore, Example 7.1, below, shows that also in the smooth case an adaptive
method may perform very well. Finally, our proposed technique is by no means restricted
to low–order approximations: the basic idea as outlined in Section 3 immediately carries
over to arbitrary approximation methods, though, of course, the subsequent analysis in
Sections 4 and 5 heavily relies on the type of approximation.

In the literature, several adaptive methods for dynamic programming have been proposed
like, e.g., [37] for stochastic problems, where a fixed grid is used but only an adaptively
chosen subset of the grid nodes enters into the solution. Here we do not want to use a basic
fixed grid (whose size is a priori limited due to memory restrictions) but construct a truly
adaptive discretization using a suitable control mechanism. Several of such mechanisms are
described in [28] in a deterministic setting, however, all of them use heuristic arguments
in one or the other way, and though the numerical experiments reported in this reference
show good performance they do not allow the derivation of rigorous mathematical error
bounds. In our approach we follow a methodology borrowed from the numerical analysis of
PDEs, in the sense that we define efficient and reliable a posteriori error estimates which
indicate where the spatial grid should be locally refined and which allow mathematically
justified error bounds for the resulting approximations. For deterministic optimal control
problems this was done in [18] and this method has turned out to be very efficient in a
number of applications, for instance in stability analysis and stabilization of controlled and
perturbed systems, see [7, 10, 19], and in the global dynamical analysis of deterministic
economic optimal control problems, see [23, 24], where non–smoothness of the optimal
value function plays a crucial role.

The main contribution of the present paper is twofold: first, we carry over the technique
and results from [18] to the stochastic case. As in the deterministic case we can expect this
method to be particularly efficient if the approximated solution is non–smooth. Second,
since smoothness of the optimal value function can often be observed in the stochastic con-
text, we investigate theoretically and numerically how our method behaves in the smooth
case, providing a posteriori bounds for approximation of the first derivative and asymptotic
estimates for the error estimates for vanishing element size.

This paper is organized as follows. In Section 2 we describe the problem, indicate its
relation to optimal control problems, describe our basic numerical approximation method
and give some preliminary results. In Section 3 we define our a posteriori error estimates
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and show that they are efficient and reliable in the sense of numerical approximations to
PDEs. In Section 4 we show that the error estimates also allow to derive a bound on
the numerical error for the approximation of derivatives. In Section 5 we investigate the
asymptotic behavior of our error estimates with respect to the size of the corresponding grid
elements. Finally, we turn to numerical examples. We first discuss some implementational
aspects including the precise formulation of the adaptive refinement iteration in Section 6
and then illustrate the performance of the method by two examples in Section 7.

2 Problem setup and preliminaries

We consider the discrete stochastic Hamilton–Jacobi–Bellman (or dynamic programming)
equation

V (x) = max
u∈U

E{g(x, u, z)+ β(x)V (ϕ(x, u, z))}. (2.1)

Here x ∈ Ω ⊂ Rn, U ⊂ Rm, Ω and U are compact sets and z is a random variable with
values in Rp. The mappings ϕ : Ω× U ×Rp → Rn and g : Ω × U ×Rp → R are supposed
to be continuous and we assume the existence of constants Lg > 0 and Lϕ > 0 such that
the inequalities

sup
u∈U

E{|g(x1, u, z)− g(x2, u, z)|} ≤ Lg‖x1 − x2‖ (2.2)

and

sup
u∈U

E{|W (ϕ(x1, u, z))−W (ϕ(x1, u, z))|} ≤ LϕLW‖x1 − x2‖ (2.3)

hold for any two points x1, x2 ∈ Ω and any function W ∈ C(Ω,R) which is Lipschitz
with constant LW . Furthermore, we assume that either ϕ(x, u, z) ∈ Ω almost surely for
all x ∈ Ω and all u ∈ U , or that suitable boundary values V (x) for x 6∈ Ω are specified,
such that the right hand side of (2.1) is well defined for all x ∈ Ω. The value β(x) is the
(possibly state dependent) discount factor which we assume to be Lipschitz with constant
Lβ and we assume that there exists β0 ∈ (0, 1) such that β(x) ∈ (0, β0) holds for all x ∈ Ω.

There are two interpretations of Equation (2.1). First, (2.1) characterizes the optimal value
function of the discrete time stochastic optimal control problem

V (x) = max
u∈U∞

E

{
∞∑
i=0

(
i∏

k=0

β(xk)

)
g(xi, ui, zi)

}
,

where U∞ denotes the sequences (ui)i∈N with ui ∈ U , the zi are independent and equidis-
tributed random variables with values in Rp and xi solves

x0 = x, xi+1 = ϕ(xi, ui, zi).

Optimal control problems of this type occur in many mathematical applications. For
comprehensive information on these problems and on the dynamic programming method
see, e.g., the monograph [3].

Secondly, (2.1) appears as the semi–discretization of the Hamilton–Jacobi–Bellman equa-
tion of continuous time stochastic optimal control problems. This type of semi–discrete
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approximation was introduced in [27] and extended to viscosity solutions in [4], a detailed
convergence analysis is given in [2]. See Example 7.2, below, for an application. In this
context, Equation (2.1) is a discrete time approximation to the continuous time Hamilton–
Jacobi–Bellman equation which motivates the name “discrete Hamilton–Jacobi–Bellman
equation”. For more information on viscosity solutions of Hamilton–Jacobi equations and
stochastic optimal control we refer to [15].

Associated to (2.1) we define the dynamic programming operator

T : C(Ω,R)→ C(Ω,R)

given by
T (W )(x) := max

u∈U
E{g(x, u, z)+ β(x)W (ϕ(x, u, z))}. (2.4)

The solution V of (2.1) is then the unique fixed point of (2.4), i.e.,

T (V ) = V. (2.5)

For the numerical solution of (2.5) we use a discretization method that goes back to Falcone
[13] in the deterministic case (see also [1, Appendix A]) and was applied to stochastic
problems in Santos and Vigo–Aguiar [33] (see also [34]). Here we use unstructured cuboidal
grids like, e.g., in [22]: We assume that Ω ⊂ Rn is a cuboid and consider a grid Γ covering Ω
with cuboid elements Ql and nodes xj and the space of continuous and piecewise multilinear
functions

WΓ := {W ∈ C(Ω,R) |W (x+ αej) is linear in α on each Ql for each j = 1, . . . , n}

where the ej, j = 1, . . . , n denote the standard basis vectors of the Rn. If the grid Γ is
locally refined, then there exist nodes which do not belong to each adjacent element Qj.
These nodes are called hanging or non–conforming nodes and in order to ensure continuity
the values of W in these hanging nodes have to be computed by interpolation along the
corresponding element edges. All other nodes are called conforming, in these nodes a
function W ∈ WΓ can assume arbitrary values. With πΓ : C(Ω,R) → WΓ we denote a
projection of an arbitrary continuous function to WΓ, i.e.,

πΓ(W )(xj) = W (xj) for all conforming nodes xj of the grid Γ.

For locally refined grids in dimensions ≥ 3 the projection πΓ might not be unique because
there might be several possible choices for the values in the hanging nodes; in order to avoid
technicalities on this level we simply fix one possible projection for each grid Γ. We define
the minimal and maximal diameter kl and kl of an element Ql with nodes xj1 , . . . , xjd as

kl := min
1≤i<k≤d

‖xji − xjk‖, kl := max
x,y∈Ql

‖x− y‖.

In this paper we use an arbitrary norm ‖ · ‖ on Rn, for the analysis of certain properties
of functions in WΓ, however, special norms like the ∞–norm or the 1–norm turn out to be
advantageous, see, e.g., [20].

We now define the discrete dynamic programming operator by

TΓ : C(Ω, R)→WΓ, TΓ = πΓ ◦ T (2.6)
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with T from (2.4). Then the discrete fixed point equation

TΓ(VΓ) = VΓ. (2.7)

has a unique solution VΓ ∈ WΓ which converges to V if the size of the elements Ql tends
to zero. The convergence is linear if V is Lipschitz on Ω, see [13] or [1, Appendix A] and
quadratic if V is C2, see [33, Theorem 3.5].

There are several reason for restricting ourselves to multilinear, i.e., first order approxi-
mation. The main reason is that we want our algorithm to be reliable even if the exact
solution V to (2.1) is non–smooth. In general one cannot expect V to (2.1) to be smooth
and the approximation of non–smooth functions by smooth approximations can lead to
severe problems like spurious oscillations and non–convergence. Another reason is the rel-
ative ease of both implementation and analysis of such methods. For example, for this
scheme it will turn out to be possible to obtain rigorous a priori bounds on the a posteriori
error estimates depending on the element size, which are useful also in the smooth case, see
the results in Section 5, below. Also, the analysis of regularity properties for the discrete
time approximation is facilitated, see, e.g., [18, Theorem 2.9]. Finally, the error estimation
and adaptive discretization method we propose in this paper is by no means restricted to
first order approximations; the technique and the basic results can be straightforwardly
carried over to higher–order approximations methods. For the description of such methods
we refer, e.g., to [14] (using high–order interpolation), [12, 37] (using spline–interpolation)
or [29] (using regression techniques).

We end this section with a lemma giving some basic results for the operators (2.4) and
(2.6) which will be useful in what follows. Here and in the remainder of the paper we use
the norm ‖W‖∞ := maxx∈Ω |W (x)| for W ∈ C(Ω,R).

Lemma 2.1 Let S = T or S = TΓ. Then for all functions W , W1, W2 ∈ C(Ω,R) and all
points x1, x2 ∈ Ω the inequalities

(i) |T (W )(x1)− T (W )(x2)| ≤ (Lg + Lβ‖W‖∞)‖x1 − x2‖

+ β0 sup
u∈U

E{‖W (ϕ(x1, u, z))−W (ϕ(x2, u, z))‖}

and

(ii) ‖S(W1)− S(W2)‖∞ ≤ β0‖W1 −W2‖∞

hold.

Proof: (i) Assume without loss of generality that T (W )(x1) ≥ T (W )(x2). Then we obtain

|T (W )(x1)− T (W )(x2)|

= T (W )(x1)− T (W )(x2)

= max
u∈U

E{g(x1, u, z) + β(x1)W (ϕ(x1, u, z))}

−max
u∈U

E{g(x2, u, z) + β(x2)W (ϕ(x2, u, z))}
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≤ max
u∈U

{
E{g(x1, u, z)− g(x1, u, z)}+ E{β(x1)W (ϕ(x1, u, z))− β(x2)W (ϕ(x2, u, z))}

}
≤ Lg‖x1 − x2‖+ Lβ‖W‖∞‖x1 − x2‖+ E{β(x2)(W (ϕ(x1, u, z))−W (ϕ(x2, u, z)))}

≤ (Lg + Lβ‖W‖∞)‖x1 − x2‖+ β0 sup
u∈U

E{‖W (ϕ(x1, u, z))−W (ϕ(x2, u, z))‖}

which shows (i).

(ii) We first prove (ii) for S = T . Consider an arbitrary x ∈ Ω and assume without loss of
generality T (W1)(x) ≥ T (W2)(x). Then

|T (W1)(x)− T (W2)(x)|

= T (W1)(x)− T (W2)(x)

= max
u∈U

E{g(x, u, z)+ β(x)W1(ϕ(x, u, z))}−max
u∈U

E{g(x, u, z) + β(x)W2(ϕ(x, u, z))}

≤ max
u∈U

{
E{g(x, u, z)− g(x, u, z)}+ E{β(x)W1(ϕ(x, u, z))− β(x)W2(ϕ(x, u, z))}

}
≤ β0‖W1 −W2‖∞

which shows (ii) for S = T since x ∈ Ω was arbitrary.

For S = TΓ inequality (ii) follows from the multilinearity of the functions in WΓ which
implies

|πΓ(W1)(x)− πΓ(W2)(x)| =

∣∣∣∣∣∣
d∑
j=1

µj(W1(xj)−W2(xj))

∣∣∣∣∣∣ ≤ ‖W1 −W2‖∞

because the coefficients µj are non–negative and sum up to one. Hence (ii) for S = TΓ

follows from (ii) for S = T .

Remark 2.2 If the projection πΓ preserves the Lipschitz constants of Lipschitz continuous
functions W ∈ C(Ω,R) then (i) also holds for TΓ. Note, however, that this Lipschitz
preserving property in general only holds for suitable norms on Rn and under suitable
regularity properties on the grid Γ.

3 A posteriori error estimates

In this section we develop suitable a posteriori error estimates for measuring the discretiza-
tions error, i.e., the difference between the functions VΓ and V . The idea for these error
estimates was developed for deterministic equations of type (2.1) in [18], some implemen-
tational details were discussed in [22]. The concept was subsequently extended to evolutive
deterministic equations in [20] and applied to the shape–from–shading problem in image
analysis in [32] (see also [5]).

The basic idea of the error estimates simply relies in evaluating the residual of the operator
T applied to VΓ, as made precise in the following definition. Here for any subset B ⊂ Ω
and any function W ∈ C(Ω,R) we use

‖W‖∞,B := max
x∈B
|W |.
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Definition 3.1 Consider a grid Γ and the corresponding solution VΓ ∈ WΓ of (2.7).

(i) We define the a posteriori error estimate η as a continuous function η ∈ C(Ω,R) by

η(x) := |T (VΓ)(x)− VΓ(x)|.

(ii) For any element Ql of the grid Γ we define the elementwise error estimate

ηl := ‖η‖∞,Ql

(iii) We define the global error estimate ηmax by

ηmax := max
l
ηl = ‖η‖∞.

The following theorem shows the important properties of ηmax.

Theorem 3.2 Consider the solutions V of (2.5) and VΓ of (2.7). Then the inequality

ηmax

1 + β0
≤ ‖V − VΓ‖∞ ≤

ηmax

1− β0

holds for the global error estimate ηmax from Definition 3.1 (iii).

Proof: From Lemma 2.1(ii) for any two functions W1, W2 ∈ C(Ω,R) and any x ∈ Ω we
obtain

|T (W1)(x)− T (W2)(x)| ≤ ‖T (W1)− T (W2)‖∞ ≤ β0‖W1 −W2‖∞. (3.1)

Since T (V ) = V it follows for all x ∈ Ω that

|VΓ(x)− T (VΓ)(x)| = |VΓ(x)− V (x) + T (V )(x)− T (VΓ)(x)|

≤ |VΓ(x)− V (x)|+ |T (V )(x)− T (VΓ)(x)|

≤ (1 + β0)‖VΓ − V ‖∞

where the last inequality follows by (3.1). Thus

ηmax = ‖VΓ − T (VΓ)‖∞ ≤ (1 + β0)‖VΓ − V ‖∞

which shows the first inequality.

Conversely for all x ∈ Ω we have

|V (x)− VΓ(x)| = |T (VΓ)(x)− VΓ(x) + T (V )(x)− T (VΓ)(x)|

≤ |T (VΓ)(x)− VΓ(x)|+ |T (V )(x)− T (VΓ)(x)|

≤ ηmax + β0‖V − VΓ‖∞

using again (3.1) for the last inequality. This implies ‖V − VΓ‖∞ ≤ ηmax + β0‖V − VΓ‖∞
and thus the second inequality.
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Remark 3.3 An error estimate satisfying these two inequalities is called reliable and effi-
cient. The upper bound shows that small error estimates guarantee small error (they are
reliable), the lower bound shows that the error estimates do not overestimate the real error
(they are efficient). Note that here only the upper bound really depends on the problem
data via the constant 1 − β0 in the denominator, which might become small. For very
degenerate problems, i.e., with discount factor β0 close to 1 this might render the upper
bound practically useless. In contrast to this, the lower bound is bounded from below in-
dependent of β0 by ηmax/2, which is the reason why the adaptive gridding strategy shows
satisfactory performance also in the degenerate case β0 ≈ 1, see Example 7.2, below.

Remark 3.4 The proof of the first part of Theorem 3.2 in fact shows the “semi–local”
inequality

η(x)

1 + β0
≤ ‖V − VΓ‖∞,B(x),

where B(x) := {x}∪ϕ(x, U, Z) with Z denoting the set of all possible values of the random
variable z. Thus, a large error estimate η(x) indicates that the real error is large either at
the point x itself or at some point in the image of ϕ. In the second case, refining the element
Ql containing x will not immediately reduce the global error. However, the fact that small
elements Ql carry small error estimates ηl — which will be shown in Section 5 below —
ensures that after a number of grid adaptation iterations the elements corresponding to
large real errors will eventually be identified and also refined.

The upper inequality can not be localized in this way; in fact the error in a point x depends
on all the error estimates in the elements Ql that can be reached from this point, where
the reachability can be formally expressed via the finite state Markov chain associated to
the space discretization. This type of error propagation (or error influence) analysis can
also be used for the development of adaptive grid refinement strategies, see [28].

4 Estimates for the first derivative

As already mentioned, for stochastic optimal control problems it is not too optimistic to
expect that the exact solution V is smooth. This leads to the question, whether the error
estimates introduced in the last section can also be used in order to give bounds on the
approximation error of the derivatives. Note that since our approximation VΓ is piecewise
multi–linear, the derivative DxVΓ(x) will in general not be continuous, however it is still
well defined on the interior intQl for each element; furthermore the directional derivative
DxV (x)z exists and is well defined for each point x ∈ intΩ and each vector z ∈ Rn, hence
these values can be used as a numerical approximation for the derivative DxV (x), provided
that V is smooth.

In this section we provide two results on error bounds for the difference between DxV

and DxVΓ based on the error estimate ηmax. Note that we cannot expect that ηmax gives
a lower bound for this difference, since if, e.g., VΓ happens to be simply V + c for some
constant c ∈ R, then the error in the derivatives is 0 but — according to the upper bound
in Theorem 3.2 — the inequality ηmax ≥ (1−β0)c > 0 must hold. What we can still obtain
is an upper bound for this difference.
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Proposition 4.1 Assume that V is two times continuously differentiable. Then for each
element Ql with minimal diameter kl, each x ∈ Ql and each coordinate direction ei there
exists ξ = x+ λei ∈ Ql such that the inequality

|DxV (ξ)ei −DxVΓ(ξ)ei| ≤ 4
ηmax

kl(1− β0)

holds.

Proof: Let g(λ) := V (x + λei) and consider the (unique) real values λ1 < λ2 with the
property that x1 := x + λ1ei ∈ ∂Ql and x2 := x + λ2ei ∈ ∂Ql. From the mean value
theorem applied to g we obtain the existence of λ ∈ (λ1, λ2) such that

V (x2)− V (x1)

λ2 − λ1
=
g(λ2)− g(λ1)

λ2 − λ1
= g′(λ) = DxV (ξ)ei

where ξ = x+ λei. On the other hand, since VΓ is linear in each coordinate direction we
obtain

DxVΓ(ξ)ei =
VΓ(x2)− VΓ(x1)

λ2 − λ1
.

Thus using Theorem 3.2 and the inequality λ2 − λ1 ≥ kl we obtain

|DxV (ξ)ei −DxVΓ(ξ)ei| ≤
2‖V − VΓ‖∞
λ2 − λ1

≤
4ηmax

kl(1− β0)

which shows the claim.

In the following theorem we show how this result implies an error bound for arbitrary points.
As above, for subsets B ⊆ Ω we use the notations ‖DxV ‖∞,B := maxx∈B ‖DxV (x)‖ and
‖DxxV ‖∞,B := maxx∈B ‖DxxV (x)‖ where in the second case DxxV denotes the second
derivative of V and we denote both the Rn–norm and the induced operator norm by ‖ · ‖.

Theorem 4.2 Assume that V is two times continuously differentiable. Then for each
element Ql the estimate

‖DxV −DxVΓ‖∞,Ql ≤ 4
ηmax

kl(1− β0)
+ kl‖DxxV ‖∞,Ql

holds.

Proof: This follows immediately from Proposition 4.1, since by Taylor’s theoremDxV (x)ei
is Lipschitz in x on Ql with constant ‖DxxV ‖∞,Ql .

5 Bounds on the error estimates

An adaptive grid refinement strategy relies on the idea that local refinement will eventually
reduce the local and consequently the global approximation error. While this property is
what one would expect intuitively, it is by no means clear that it can be rigorously proved;
furthermore it is helpful to know more precisely what order of convergence of ηl to 0 can
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be expected depending on the size of the element and which properties are needed in order
to ensure this behavior. In this section we provide a couple of estimates on the value of ηl
depending on the size of the corresponding element and on certain regularity properties of
the discrete approximation. Note that regularity properties of the discrete approximations
VΓ can in principle be proved rigorously, see, e.g., [18, Theorem 2.9] or [20, Proposition 9.1].
Here, in order to keep the presentation simple, we simply impose suitable and reasonable
regularity properties.

We would like to emphasize that the error bounds in Sections 3 and 4 do not depend on
the results in this section. Rather, the following results indicate the performance that can
be expected using an adaptive local refinement strategy. We start with the first estimate
which simply assumes Lipschitz continuity of VΓ.

Theorem 5.1 Assume that VΓ satisfies ‖VΓ‖∞ ≤ MΓ and is Lipschitz with constant LΓ.
Then the error estimates η(x) are Lipschitz with the constant Lη = Lg+LβMΓ+(1+Lϕ)LΓ.
In particular, the estimate

ηl ≤ Lηkl

holds.

Proof: Consider x1, x2 ∈ Ω. Assume without loss of generality that η(x1) ≥ η(x2). Then
from the definition of η, Lemma 2.1(i) and (2.3) we obtain

|η(x1)− η(x2)| = η(x1)− η(x2)

= VΓ(x1)− T (VΓ)(x1)− VΓ(x2) + T (VΓ)(x2)

≤ |VΓ(x1)− VΓ(x2)|+ |T (VΓ)(x1)− T (VΓ)(x2)|

≤ LΓ‖x1 − x2‖+ (Lg + Lβ‖VΓ‖∞)‖x1 − x2‖

+ sup
u∈U

E{|VΓ(ϕ(x1, u, z))− VΓ(ϕ(x2, u, z))|}

≤ (LΓ + Lg + LβMΓ + LΓLϕ)‖x1 − x2‖

which shows the Lipschitz property of η(x).

The second assertion follows since η(xk) = 0 holds for all conforming nodes of Γ.

Note that the Lipschitz property assumed here could be relaxed if desired, e.g., to Hölder
continuity, cf. [18, Corollary 2.10].

Remark 5.2 Apart from showing that the local error indeed tends to 0 as kl → 0, Theorem
5.1 also justifies the numerical evaluation of η(x) on an element Ql in finitely many test
points xT ∈ XT ⊂ Ql only. The continuity of η(x) then implies that η̃l := maxxT∈XT η(xT )
gives an approximation for ηl = maxx∈Ql η(x).

As shown in Proposition 4.1 and Theorem 4.2, one can also obtain an error bound on the
derivative provided that the exact solution V is C2. This bound, however, is scaled by



ADAPTIVE DISCRETIZATION FOR STOCHASTIC HJB EQUATIONS 11

1/kl, hence convergence to zero for vanishing element size in an adaptive gridding strategy
can only be expected if ηl = o(kl) holds, i.e., if we have superlinear convergence of ηl to 0.

Superlinear — more precisely quadratic — convergence for approximations on equidistant
grids can be expected if V is C2, see e.g. [34]. Therefore, it seems natural to impose
appropriate “smoothness” properties of our discrete approximations VΓ if we want to ensure
quadratic convergence of the ηl to 0.

The remainder of this section is devoted to giving sufficient conditions under which one

can show that the error estimates on an element Ql are bounded by k
2
l , i.e., they converge

to 0 quadratically with the size of the element. If the used grids satisfy kl ≤ µkl for some
µ > 0, then one can indeed expect ηl = O(k2

l ), i.e., the error bound maxl ηl/kl for the
derivatives tends to zero with O(kl) for kl → 0.

The first result in this direction assumes that the continuous operator T has a smoothing
effect.

Theorem 5.3 Assume that T (VΓ) ∈ C2(Ω,R) with ‖DxxT (VΓ)‖∞,Ql ≤ C for some con-
stant C > 0. Then the inequality

ηl ≤ Ckl

holds.

Proof: Let W ∈ C2(Ω,R) be a function satisfying ‖DxxW‖∞,Ql ≤ C. Then a straightfor-
ward application of Taylor’s theorem shows for each x ∈ Ql the inequality

‖πΓ(W )(x)−W (x)‖ ≤ Ckl.

For W = T (VΓ) this implies

|VΓ(x)− T (VΓ)(x)| = |TΓ(VΓ)(x)− T (VΓ)(x)|

= |πΓ(T (VΓ))(x)− T (VΓ)(x)| ≤ Ckl,

i.e., the assertion.

If the diffusion is suitably regular then the smoothing property assumed in this theorem
might well hold. However, the value function V might also be smooth if T does not have
this “immediate” smoothing effect, e.g., for systems with degenerate diffusion or purely
deterministic systems, see, e.g., [34, Theorem 3.1] for a smoothness result for a family of
such optimal control problems.

Thus, in the next theorem we replace the assumption on T by a suitable “discrete second
differentiability” condition on the discrete approximation. This property is most conve-
niently expressed by the second difference quotient, which for a function W : Rn → R and
three points x1, x2, y with y = µx1 + (1− µ)x2 for some µ ∈ (0, 1) is defined by

∆2W (x1, x2, y) :=
µW (x1)−W (y) + (1− µ)W (x2)

‖x1 − x2‖2µ(1− µ)
.

Note that for a C2 function W by Taylor’s theorem the inequality

∆2W (x1, x2, y) ≤ max
ξ=µx1+(1−µ)x2,µ∈[0,1]

‖DxxW (ξ)‖
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holds, hence in particular ifW is C2 then ∆2W is bounded on compact and convex domains.
The value ∆2W can be seen as a measure for the “discrete curvature” of W in y along the
line connecting x1 and x2.

Unlike the previous theorem, here it is not assumed that the approximation VΓ has sufficient
regularity. Instead, we need to assume that the solution on a suitably refined grid has the
respective property.

Theorem 5.4 Consider a grid Γ, an element Ql in Γ and a point x ∈ intQl. Let Γx be
the grid obtained from Γ by inserting x as a new node. Assume that the second difference
quotient satisfies

|∆2VΓx(x1, x2, x)| ≤
C

µ(1− µ)
(5.1)

for the solution VΓx on Γx, some C > 0, some standard basis vector ei with i ∈ {1, . . . , n}
and the unique points x1, x2 ∈ ∂Ql with x = µx1 + (1 − µ)x2 for some µ ∈ (0, 1) and
x2 − x1 = λei for some some λ ∈ R \ {0}. Then the inequality

η(x) ≤ C
1 + β0

1− β0
k

2
l

holds.

In particular, if (5.1) holds for all x ∈ intQl then

ηl ≤ C
1 + β0

1− β0
k

2
l

holds.

Proof: Fix x ∈ intQl and assume that (5.1) holds.

The proof is split into three steps. First we show the inequality

‖TΓ(VΓx)− VΓx‖∞ ≤ Ck
2
l . (5.2)

In order to show (5.2), observe that since Γx contains all the nodes of Γ, we obtain TΓ =
πΓ ◦ TΓx and thus

TΓ(VΓx) = πΓ(TΓx(VΓx)) = πΓ(VΓx).

Since Γx contains exactly one more conforming node x than Γ, which lies in intQl we
obtain

πΓ(VΓx)|Ω\intQl = VΓx|Ω\intQl .

The piecewise multilinearity of VΓx implies

‖πΓ(VΓx)− VΓx‖∞ = |πΓ(VΓx)(x)− VΓx(x)|.

Now consider the points x1, x2 ∈ ∂Ql and µ ∈ (0, 1) for which (5.1) holds. Then the
linearity of πΓ(VΓx) on Ql in direction ei implies

πΓ(VΓx)(x) = µπΓ(VΓx)(x1) + (1− µ)πΓ(VΓx)(x2) = µVΓx(x1) + (1− µ)VΓx(x2).
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Now the definition of ∆2 implies

|µVΓx(x1) + (1− µ)VΓx(x2)− VΓx(x)| = µ(1− µ)|∆(x1, x2, x)| ‖x1− x2‖
2.

Combining all these considerations and (5.1) we can conclude

‖TΓ(VΓx)− VΓx‖∞ = |πΓ(VΓx)(x)− VΓx(x)|

= |µVΓx(x1) + (1− µ)VΓx(x2)− VΓx(x)|

= µ(1− µ)|∆(x1, x2, x)| ‖x1− x2‖
2 ≤ Ck

2
l ,

which shows (5.2).

In the second step we show the inequality

‖VΓx − VΓ‖∞ ≤
C

1− β0
k

2
l . (5.3)

The proof of (5.3) follows from

‖VΓx − VΓ‖∞ ≤ ‖VΓx − TΓ(VΓx)‖∞ + ‖TΓ(VΓx)− VΓ‖∞

≤ Ck
2
l + ‖TΓ(VΓx)− TΓ(VΓ)︸ ︷︷ ︸

=VΓ

‖∞ ≤ Ck
2
l + β0‖VΓx − VΓ‖∞,

where we used (5.2) in the second last and Lemma 2.1(ii) in the last inequality. This
implies

(1− β0)‖VΓx − VΓ‖∞ ≤ Ck
2
l .

and thus (5.3).

Finally, we show the assertion of the theorem. The construction of Γx implies

T (VΓ)(x) = πΓx(T (VΓ))(x) = TΓx(VΓ)(x).

Thus by the definition of η(x) we obtain

η(x) = |T (VΓ)(x)− VΓ(x)|

= |TΓx(VΓ)(x)− VΓ(x)|

≤ |TΓx(VΓ)(x)− TΓx(VΓx)(x)|+ |TΓx(VΓx)(x)− VΓ(x)|

= |TΓx(VΓ)(x)− TΓx(VΓx)(x)|+ |VΓx(x)− VΓ(x)|

≤ β0|VΓx(x)− VΓ(x)|+ |VΓx(x)− VΓ(x)| ≤ (1 + β0)
C

1− β0
k

2
l

where we used Lemma 2.1(ii) in the second last and (5.3) in the last inequality. This shows
the claim.
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For a single approximation VΓ the assumption of this theorem is in general difficult to check,
since it requires the knowledge of VΓx which is not available. However, it should be noted
that the assumption of this theorem holds if each approximation VΓ on any admissible grid
Γ satisfies (5.1). Thus, we can expect quadratic convergence of the error estimates if the
family of discrete approximations satisfies a “discrete C2 condition”. If the approximated
function V itself is C2 then one could expect such a property, though a rigorous proof
might be tedious and is beyond the scope of this paper. In any case, the second difference
quotient ∆2 can be evaluated on the nodes of each discrete approximation VΓ which can
be used in order to obtain some “heuristic evidence” for the validity of (5.1).

In numerical examples with smooth V a decreasing of ηl/kl could be observed for not too
fine grids; after a certain number of refinements, however, the convergence ηl/kl → 0 stops
(cf. the example in Section 7.1). Numerical experiments indicate that this behavior is due
to the effect of additional numerical errors (introduced, e.g., in the solution of the fixed
point equation TΓ(VΓ) = VΓ) which affect the smoothness of VΓ, because the higher the
numerical accuracy in the solution of TΓ(VΓ) = VΓ was chosen chosen in our numerical
experiments the longer the decrease of ηl/kl could be observed.

We want to end this discussion by remarking once again that our piecewise multilinear
approach is particularly suitable when the exact optimal value function V is not smooth. If
smoothness of the optimal value function can be guaranteed by some a priori analysis, then
higher order approximations may be more efficient. However, our basic a posteriori error
estimation technique can be rather straightforwardly carried over to other approximations
and we assume that the estimates proved in this section indicate the lines along which an
analysis of higher–order schemes should be carried out. This might become more technically
involved, but some things might also simplify, e.g., for C2 approximations the second
derivatives of the numerical solution could be computed directly, which should lead to a
less technical formulation of the assumption of Theorem 5.4.

6 Implementational aspects

In this section we briefly discuss implementational aspects of our method; in particular
we explain some details we have used in order to compute the numerical examples in the
Section 7.

6.1 Numerical evaluation of TΓ and solution of (2.7)

For the solution of (2.7) as well as for the computation of η(x) we need to evaluate the
operator TΓ. More precisely, we need to evaluate

max
u∈U

E{g(x, u, z)+ β(x)W (ϕ(x, u, z))}.

for all conforming nodes x = xj of Γ and all points x = xT in which we want to compute
η(xT ).

This first includes the numerical evaluation of the expectation E. If z is a finite ran-
dom variable then this is straightforward, if z is a continuous random variable then the
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corresponding integral ∫
Z

(g(x, u, z)+ β(x)W (ϕ(x, u, z)))f(z)dz

has to be computed, where f is the probability density of z which is assumed to be known.
In our implementation we approximated this integral by a trapezoidal rule.

The second difficulty in the numerical evaluation of T lies in the maximization over u. In
our implementation we simply used a discrete approximation of the set U with equidistant
points and then maximized by comparing the corresponding values. For low to medium
accurate evaluation of TΓ this is a feasible method, for high accuracy, however, this method
becomes inefficient; in this case other methods like, e.g., Brent’s algorithm have been
reported in the literature to give good results, see [9, 34].

For the solution of the fixed point equation (2.7) we use the Gauss–Seidel type value space
iteration which is described in [18, Section 3] (under the name “increasing coordinate al-
gorithm”), where we subsequently compute Vi+1 = SΓ(Vi) with SΓ being a Gauss–Seidel
type iteration operator (including the maximization over u) obtained from TΓ. This iter-
ation is coupled with a policy space iteration as described in [17, 35]: Once a prescribed
percentage of the maximizing u–values in the nodes remains constant from one iteration
to another we fix all control values and compute the associated value function by solving
a linear system of equations using the CGS or BICGSTAB method (in our examples the
CGS method turned out to show more reliable convergence behavior). After convergence
of this method we continue with the value space iteration using SΓ until the control values
again converge, switch to the linear solver and so on. This combined policy–value space
iteration turns out to be much more efficient (often more than 90 percent faster) than the
plain Gauss–Seidel value space iteration using SΓ, which in turn is considerably faster than
the Banach iteration Vi+1 = TΓ(Vi).

6.2 Numerical evaluation of ηl

Clearly, in general the values ηl = maxx∈Ql η(x) can not be evaluated exactly since the max-
imization has to be performed over infinitely many points x ∈ Ql. Instead, we approximate
ηl by

η̃l = max
xT∈XT (Ql)

η(xT ),

where XT (Ql) is a set of test points. The continuity of η(x) in x implies that η̃l is indeed
an approximation of ηl, cf. Remark 5.2. In our numerical experiments we have used the
test points indicated in Figure 6.1.

6.3 Adaptive refinement and coarsening

The adaptive grid itself was implemented on a tree data structure in the programming
language C, cf. [22] for details.

The adaptive refinement follows the standard practice in numerical schemes. The iterative
construction of adaptive grids works as follows:
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Figure 6.1: Test points XT (Ql) for a 2d element Ql

(0) Choose an initial grid Γ0, set i = 0, fix a refinement threshold θ ∈ (0, 1)

(1) Compute VΓi and the (approximated) error estimates η̃l and η̃max. If a desired accu-
racy or a maximally allowed number of nodes is reached, then stop

(2) Refine all elements Ql with η̃l ≥ θη̃max, denote the new grid by Γi+1

(3) Set i := i+ 1 and go to (1)

Here for the solution of VΓi for i ≥ 1 we use the previous solution VΓi−1 as the initial value
for the iteration described in Section 6.1, which turns out to be very efficient.

During the adaptation routine it might happen that the error estimate causes refinements
in regions which later turn out to be very regular. It is therefore advisable to include
a coarsening mechanism in the above iteration. This mechanism can, e.g., be controlled
by comparing the approximation VΓi with its projection π

Γ̃i
VΓi onto the grid Γ̃i which is

obtained from Γi by coarsening each element once. Using a specified coarsening tolerance
tol ≥ 0 one can add the following step after Step (2).

(2a) Coarsen all elements Ql with η̃l < θη̃max and ‖VΓi − πΓ̃i
VΓi‖∞,Ql ≤ tol.

This procedure also allows to start from rather fine initial grids Γ0, which have the advan-
tage of yielding a good approximation η̃l of ηl. Unnecessarily fine elements in the initial
grids will this way be coarsened afterwards.

In addition, it might be desirable to add additional refinements in order to avoid large
differences in size between adjacent elements, e.g., to avoid degeneracies or large numbers
of hanging nodes. Such regularization steps could be included as a step (2b) after the
error based refinement and coarsening has been performed. In the implementation used
in Section 7, below, such a criterion was used; there the difference in refinement levels
between two adjacent elements was restricted in such a way that at most one hanging node
can appear on each edge in the grid.

6.4 Anisotropic grids

Finally, we want to discuss the possibility of anisotropic refinement, i.e., the refinement
of a cuboid element Ql not in all but only in selected coordinate directions, thus allowing
to use “flat” or “stretched” elements. For some problems, anisotropic refinement can be
controlled by suitably designed error estimates (see, e.g., [36]). Here we apply a heuristic
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strategy based on the evaluation of η(x) in a suitable selection of test points. The basic
idea is to place new nodes only at those points x where the error estimate η(x) gives large
values.

More precisely, consider an element Q of Γ (we drop the indeces for notational convenience)
and let Xnew,i be the set of potential new nodes which would be added to Γ if the element
Ql was refined in coordinate direction ei. Figure 6.2 shows these points in 2d.

Figure 6.2: Potential new nodes Xnew,1 (left) and Xnew,2 (right) for a 2d element Q

Define the error estimate in these nodes for each coordinate direction ei by ηdir,i :=
maxx∈Xnew,i η(x) and define the overall error measured in these potential new nodes by
ηdir := maxi=1,...,n ηdir,i. Note that ηdir ≤ ηl always holds. If we include all the points in
Xnew :=

⋃
i=1,...,nXnew,i in our set of test points XT (Q) (which is reasonable because in

order to compute ηdir,i we have to evaluate η(x) for x ∈ Xnew, anyway) then we can also
ensure ηdir ≤ η̃l.

Now we introduce an anisotropy factor γ ∈ [0, 1] and make a two step decision:

(1) We allow anisotropic refinement if ηdir ≥ (1 − γ)η̃l, i.e., if the error estimate in the
potential new nodes Xnew is sufficiently large compared to the overall estimated error η̃l.

(2) If anisotropic refinement is allowed according to (1), then we refine the grid in each
direction ei, i = 1, . . . , n for which ηdir,i ≥ γηdir holds, i.e., we refine in each direction ei in
which the error in the potential new nodes Xnew,i is sufficiently large compared to ηdir.

For γ = 0 this implies that anisotropic refinement will never happen, i.e., each element is
always refined in each coordinate direction. Conversely, for γ = 1 in each refinement step
each element will only be refined anisotropically, i.e., in one coordinate direction only. The
specific structure of this two step decision mechanism has no theoretical foundation; we
use it because it shows good results in practice.

Anisotropic refinement can considerably increase the efficiency of the adaptive gridding
strategy, in particular if the solution V has certain anisotropic properties, e.g., if V is
linear or almost linear in one coordinate direction. On the other hand, a very anisotropic
grid Γ can cause degeneracy of the function VΓ like, e.g., large Lipschitz constants or large
discrete curvature even if V is regular, hence the assumptions made in the theorems in
Section 5 might be violated or might only hold with large constants. However, according
to our numerical experience the positive effects of anisotropic grids are usually predominant.

7 Numerical examples

In this section we describe two test problems in order to illustrate the performance of the
proposed numerical method.
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7.1 Example: a stochastic economic growth model

Our first example is a one–sector stochastic economic growth model taken from [33]1. The
model is two–dimensional with one–dimensional control and stochastic component. The
dynamics and return function are given by

ϕ(x, u, z) =

(
Ax2x

α
1 − u

ρx2 + z

)
g(x, u, z) = log u,

where ρ, α and A are positive real constants and β(x) ≡ β0 which we specified as ρ = 0.9,
α = 0.34, A = 5 and β0 = 0.95. The random variable is Gaussian distributed with zero
mean and standard deviation 0.008.

This simple model has several desirable features as a test problem, because

(i) the exact solution is known. It is given by

V (x) = B + C lnx1 +Dx2,

where

B =
ln((1− βα)A) + βα

1−βα ln(βαA)

1− β
, C =

α

1− αβ
, D =

1

(1− αβ)(1− ρβ)

(ii) the exact solution is smooth for x1 6= 0, but the operator T is not smoothing, i.e., we
can test the convergence of gradients and the results from Theorem 5.4.

(iii) the exact solution has large curvature for x1 ≈ 0, hence the numerical approximation
is not too trivial, and it is linear in x2–direction which makes this a good test problem
for the anisotropic refinement strategy.

We have computed the solution to this problem on the domain Ω = [0.1, 10]× [−0.32, 0.32].
The Gaussian variable z was approximated by a trapezoidal rule with 11 discrete values
equidistributed in the interval [−0.032, 0.032] which ensures ϕ(x, u, z) ∈ Ω for x ∈ Ω and
suitable u ∈ U = [0.5, 10.5]. For evaluating the maximum in T the set U was discretized
with 161 points. Table 7.1 shows the results of the resulting adaptive gridding scheme
applied with refinement threshold θ = 0.1, coarsening tolerance tol = 0.001 and anisotropy
factor γ = 0.8. The given CPU time is the accumulated time for all iterations up to the
current one including the time needed for error estimation and grid refinement. Figure 7.1
shows the resulting optimal value function and adapted grid.

The error was measured in the L∞ norm ‖V − VΓ‖∞ while the error in the gradients was
measured according to Proposition 4.1 by

max
l,i

min
ξ∈Ql
|DxV (ξ)ei −DxVΓ(ξ)ei|

in order to rule out effects caused by the size of the elements. As expected, both errors
decrease during the refinement iteration, as well as the corresponding upper error bounds

1Here we use a different notation. The variables used in [33] are k = x1, z = ex2 , c = u, ε = z.
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iteration nodes η̃max error max η̃l/kl deriv. error total CPU time (s)

1 49 0.797717 1.357262 7.478598 1.608344 0.94
2 56 0.348198 0.535164 3.264356 0.784972 1.95
3 65 0.170612 0.293198 1.599490 0.570023 3.02
4 109 0.082990 0.133594 1.385438 0.344867 5.16
5 154 0.034092 0.055225 0.598638 0.100389 8.54
6 327 0.012166 0.021920 0.430123 0.103138 14.35
7 889 0.003674 0.009643 0.272726 0.108210 34.84
8 2977 0.001604 0.004342 0.229363 0.089012 132.01

Table 7.1: Numerical results for Example 7.1, adaptive discretization
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Figure 7.1: Approximated value function and final adaptive grid for Example 7.1

from Theorem 3.2 and Proposition 4.1. Also, these theoretical bounds turn out to be
reliable here; recall that η̃l is only an approximation for ηl which could be a source of
numerical errors.

One also observes, that max η̃l/kl almost stops decreasing after the seventh iteration (also in
further iterations), which indicates that the condition from Theorem 5.4 might be violated
here. In fact, additional tests revealed that the number of iterations for which this value
decreases strongly depends on the accuracy in the evaluation of TΓ: the more accurate TΓ

is evaluated, the longer the value max η̃l/kl decreases.

In [33, Table 2(a)] on equidistant grids with 143× 9 = 1287 and 500× 33 = 16500 nodes,
L∞–errors of 0.21 and 0.0148, respectively, were reported. In our adaptive iteration these
accuracies could be obtained with 109 and 889 nodes, respectively; thus we obtain a reduc-
tion in the number of nodes of more than 90% in the first and almost 95% in the second
case.
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7.2 Example: Zubov’s equation

In order to illustrate the performance of our method for discretized continuous time prob-
lems, as a second example we consider the numerical approximation of the stochastic Zubov
equation

−1
2Tr

(
a(x)D2V (x)

)
− b(x)DV (x)− δ(G(x)− V (x)G(x)) = 0 x ∈ Rn \A,

V (x) = 0 x ∈ A
(7.1)

This equation was introduced in [8] and further investigated in [6]. For δ → 0 it gives the
attraction probability of the solutions of the underlying stochastic differential equation{

dX(t) = b(X(t)) dt+ σ(X(t)) dW (t)
X(0) = x.

(7.2)

to the set A ⊂ Rn which is assumed to be a.s. locally exponentially stable. Note that here
no control variable is present, though it could be added if desired, see [8].

In order to apply the discretization method from [4] we first need to regularize (7.1) accord-
ing to [8] replacing the second G(x)–term by Gε(x) = max{ε, G(x)}. In the computation,
below, we used ε = 0.001. Then the semi–discrete approximation of (7.1) with time–step
h > 0 is of type (2.1) with

ϕ(x, z) = x+ hb(x) + zσ(x), g(x) = hδGε(x) and β(x) = 1− hδGε(x),

where z is a two–point distributed random variable which assumes the values ±
√
h with

probability 1/2 (ϕ is the discretization of (7.2) using the simplified weak Euler scheme, cf.
[25, Section 14.1]).

We have solved this equation for the SDE

dX1(t) = (−3 + cosX2(t))X1(t) +X1(t)
3dt

dX2(t) = σdW (t)

with σ = 5 on the domain Ω = [−2.5, 2.5]× R with A = {0} × R and boundary condition
V ≡ 1 outside Ω. Due to the 2π–periodicity of the equation in the second component the
actual computation only needs to be carried out on Ω = [−2.5, 2.5]× [0, 2π], with periodic
boundary conditions V ((x1, 0)T ) = V ((x1, 2π)T).

The numerical solution shown in Table 7.2 and Figure 7.2 was computed with h = 0.05,
δ = 0.0001, g(x) = |x1|, refinement threshold θ = 0.1 and coarsening tolerance tol = 0.001.
Anisotropic refinement was not used in this computation.

For this problem we expect the solution of (7.1) to be non–smooth (the solution to (7.1)
has to interpreted in the viscosity sense), and indeed the values max η̃l/kl remain almost
constant during the iterative refinement which supports this conjecture.

It should be noted that here β0 = 1 − δεh = 1− 5 · 10−9 ≈ 1 holds, thus the upper error
bound from Theorem 3.2 does not give useful information. Nevertheless, the lower error
bound in this theorem still holds which implies that large error estimates still indicate
large real errors, which explains why the resulting adaptive discretization routine provides
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iteration nodes η̃max max η̃l/kl total CPU time (s)

1 2401 0.050458 0.484395 0.17
2 2569 0.028417 0.545600 0.51
3 7011 0.012574 0.482858 1.25
4 19092 0.005579 0.428443 3.54
5 54091 0.003665 0.436802 10.53

Table 7.2: Numerical results for Example 7.2
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Figure 7.2: Approximated value function and final adaptive grid for Example 7.2

a very reasonable final discretization also for this highly degenerate problem (cf. also the
deterministic numerical example in [18] which exhibits a similar degeneracy).

In fact, for this problem the convergence of the scheme does not rely on the contraction
property of T but on additional dynamical stability properties of the solution, which for
the analogous deterministic problem have been investigated in [21, Section 7.6] using ideas
from numerical dynamics. A thorough convergence analysis of this scheme in the stochastic
setting along the lines of [21] is currently under investigation.
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