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Abstract We extend a systematic method for the derivation of high order schemes for affinely

controlled nonlinear systems to a larger class of systems in which the control variables are allowed to
appear nonlinearly in multiplicative terms. Using an adaptation of the stochastic Taylor expansion
to control systems we construct Taylor schemes of arbitrary high order and indicate how derivative

free Runge-Kutta type schemes can be obtained.
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1 Introduction

Traditional numerical schemes for ordinary differential equations, such as Runge–Kutta

schemes, usually fail to attain their asserted order when applied to ordinary differential

control equations due to the measurability of the control functions. A similar situation

occurs with stochastic differential equations due to the nondifferentiability of the driving

noise processes. To construct higher order numerical schemes for stochastic differential

equations, one needs to start with an appropriate stochastic Taylor expansion to ensure

consistency with the less robust stochastic calculus as well as a higher order of convergence.

This is the opposite procedure to that used for numerical schemes for ordinary differential

equations, where heuristic arguments are typically used to derive a scheme and the Taylor

expansion is then used to establish its local discretization order.

In [9] it was shown that this approach for stochastic differential equations carries over

to control systems with affine control (for these systems the stochastic Taylor expansion

is essentially the same as the Fliess expansion [11]). In the present paper we will extend

∗This work was partially supported by the DFG Forschungschwerpunkt “Ergodentheorie, Analysis und

effiziente Simulation dynamischer Systeme”.
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the results from [9] to a larger class of control systems allowing also nonlinearities in the

control input. More precisely, we consider d–dimensional controlled nonlinear system with

n–dimensional control functions of the form

dx

dt
= f0(t, x) +

m∑
j=1

f j(t, x) gj(t, u(t)), (1)

where t ∈ [t0, T ], x = (x1, . . . , xd) ∈ IRd, the vector fields f j : IR×IRd → IRd are sufficiently

smooth in order to apply our expansion, the functions gj : IR × IRn → IR are continuous

and the control functions u(t) are measurable and take values in a compact set U ⊂ IRn.

Numerical schemes for such systems play an important role in the numerical analysis

of nonlinear control systems since in many algorithms the approximation of trajectories

appears as a subproblem, see, e.g., the monographs [2] and [8].

The organization of this paper is as follows. We start with the introduction of the

necessary notation in Section 2 and the precise statement of the Taylor expansion in Section

3. In Section 4 we explain how numerical Taylor and derivative free (i.e., Runge–Kutta

type) schemes can be obtained, and finally in Section 5 we show a numerical example.

2 Setup and Notation

In the following sections we shall refer to the nonautonomous d–dimensional controlled

differential equation (1), which we rewrite in the equivalent compact integral form

x(t) = x(t0) +
m∑
j=0

∫ t

t0

f j(s, x(s)) gj(s, u(s)) ds (2)

where we set g0(t, u) ≡ 1 so that the first integral term can be included in the summation.

We call a row vector α = (j1, j2, . . . , jl), where ji ∈ {0, 1, . . . , m} for i = 1, . . ., l, a

multi–index of length l := l(α) ≥ 1 and for completeness we write � for the multi–index

of length zero, that is, with l(�) = 0. We denote the set of all such multi–indices byMm.

For any α = (j1, j2, . . . , jl) ∈ Mm with l(α) ≥ 1, denote by −α and α− for the multi–

index inMm obtained by deleting the first and the last component, respectively, of α, thus

−α = (j2, . . . , jl) and α− = (j1, . . . , jl−1).

For a multi–index α = (j1, j2, . . ., jl) ∈Mm, some integrable control function u : IR→

Um and an integrable function f : [t0, T ] → IR we define the multiple integral Iα[f(·)]t0,t
recursively by

Iα[f(·)]t0,t :=

 f(t) : l = 0∫ t
t0
Iα−[f(·)]t0,s g

jl(s, u(s))ds : l ≥ 1
. (3)

We note that Iα[f(·)]t0,· : [t0, T ] → IR is continuous, hence integrable, so the integrals are

well defined. For example, we obtain

I(0)[f(·)]t0,t =
∫ t

t0

f(s) ds, I(0,1)[f(·)]0,t =
∫ t

0

∫ s2

0
f(s1)g1(s2, u(s2)) ds1ds2.
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For simpler notation, we shall often abbreviate Iα[f(·)]t0,t to Iα,t or just Iα when f(t) ≡ 1

and shall explicitly write Iα,u[f(·)]t0,t, Iα,u,t or Iα,u when we want to emphasize a specific

control function u.

For each α = (j1, . . ., jl) ∈ Mm and a function F : [t0, T ]×IRd → IR, the coefficient

function Fα is defined recursively by F� = F and

Fα = Lj1F−α, if l(α) ≥ 1,

where the partial differential operators are defined by

L0 =
∂

∂t
+

d∑
k=1

f0,k ∂

∂xk
, Lj =

d∑
k=1

f j,k
∂

∂xk
, j = 1, . . . , m.

This definition requires the functions F , f0, f1, . . ., fm to be sufficiently smooth.

For example, in the autonomous scalar case with d = m = 1 for the identity function

F (t, x) ≡ x we have

F(0) = f0, F(j1) = f j1, F(j1,j2) = f j1f j2 ′,

where the dash ′ denotes differentiation with respect to x. When the function F is not

explicitly stated in the text we shall always take it to be the identity function F (t, x) ≡ x.

Since different integrals can be expanded in forming a Taylor expansion, the terms

with constant integrands cannot be written down completely arbitrarily. Rather, the sets

of corresponding multi–indices must fo rm hierarchical and remainder sets. These sets can

be defined in a very general way, see [13]. Here we only need the hierarchical and remainder

sets defined by

ΓN = {α ∈Mm : l(α) ≤ N} and B(ΓN ) = {α ∈Mm : l(α) = N + 1}.

3 Taylor expansions and approximations

We now formulate the Taylor expansion for the d–dimensional controlled system (2) using

the terminology from the preceding section.

Theorem 1 Let F : IR+×IRd → IR. Then for each N ≥ 0 the following Taylor expansion

F (t, x(t)) =
∑
α∈ΓN

Iα [Fα (t0, x(t0))]t0,t +
∑

α∈B(ΓN)

Iα [Fα(·, x(·)), ]t0,t

holds, provided all of the partial derivatives of F , f0, f1, . . ., fm and all of the multiple

control integrals appearing here exist.

For the proof we refer to [9, Theorem 1], whose proof immediately carries over to our class

of systems.
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Based on Theorem 1 we can now construct Taylor approximations of arbitrary higher

order. In the general multi-dimensional case d, m= 1, 2, . . . the Taylor approximation for

N = 1, 2, 3, . . . is defined by

FN (t0, x(t0),∆) :=
∑
α∈ΓN

Fα (t0, x(t0)) Iα,t0,t0+∆ (4)

= F (t0, x(t0)) +
∑

α∈ΓN\{�}

Fα (t0, x(t0)) Iα,t0,t0+∆ (5)

with the coefficient functions Fα corresponding to the function F (t, x) .

When the function F (t, x) is N + 1 times continuously differentiable and the drift and

control coefficients f0, f1, . . ., fm of the controlled differential equation (2) are N times

continuously differentiable, then each of the integrals Iα,t0,t0+∆ (Fα(·, x(·))) for α in the

remainder set B(ΓN ) is of order ∆N+1. Since there are only finitely many, specifically

(m+ 1)!, remainder integrals, the truncation error here is

|FN (t0, x(t0),∆)− F (t0 + ∆, x(t0 + ∆))| ≤ K ∆N+1, (6)

where the constant K depends on N as well as on a compact set containing the initial

value (t0, x(t0)) and the solution of the controlled differential equation.

For the function F (t, x) ≡ xk, the kth component of the vector x, and N= 1, 2 and 3,

respectively, the solution x(t0 + ∆) of the controlled differential equation (2) satisfies the

componentwise approximations

xk(t0 + ∆) = xk(t0) +
m∑
j=0

f j,k(t0, x(t0)) I(j) + O(∆2), (7)

xk(t0 + ∆) = xk(t0) +
m∑
j=0

f j,k(t0, x(t0))I(j) +
m∑

j1,j2=0

Lj1f j2,j I(j1,j2) + O(∆3) (8)

and

xk(t0 + ∆) = xk(t0) +
m∑
j=0

f j,k(t0, x(t0))I(j) +
m∑

j1,j2=0

Lj1f j2,j I(j1,j2)

+
m∑

j1,j2,j3=0

Lj1Lj2f j3,k(t0, x(t0)) I(j1,j2,j3) +O(∆4) (9)

for k = 1, . . ., d, where we have written I(j) for I(j),t0,t0+∆ and so on.

4 Numerical schemes

Using the Taylor approximation from the previous section we now construct numerical

schemes by iterating Taylor approximations, or suitable derivative free approximations of

those, over a partition of the time interval under interest. Schemes of arbitrary higher order
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N = 1, 2, . . . can be constructed by truncating the Taylor approximation corresponding to

the the hierarchical set ΓN . Here we assume that the multiple control integrals Iα are at

our disposal, which is often feasible e.g. by using symbolic manipulators like maple. For

a numerical approximation of such integrals see [9, Section 9].

Let {t0, t1, . . . , tn, . . . , } be a partition of the time interval [t0, T ] with stepsizes ∆n =

tn+1−tn and maximal step size ∆ := maxn ∆n. In the general multi-dimensional case d, m

= 1, 2, . . . for N = 1, 2, 3, . . . we define the Taylor scheme of order N for the controlled

differential equation (2) is given componentwise by

Xk
n+1 = Xk

n +
∑

α∈ΓN\{�}

F kα (tn, Xn) Iα,tn,tn+1

with the coefficient functions F kα corresponding to F (t, x) ≡ xk for k = 1, . . ., d and the

multiple control integrals from (3). By standard arguments (see [12] or [10]) it follows

from (6) that the global discretization error is of order N when the coefficients f j of the

differential equation (2) are N times continuously differentiable.

Below, we write out the Taylor schemes for N = 1 and 2, where we distinguish the

purely uncontrolled integrals, that is with multi–indices (0) and (0, 0) from the others,

since no special effort is required for their evaluation.

The simplest nontrivial Taylor scheme is the Euler approximation with convergence

order N = 1. It is given componentwise by

Xk
n+1 = Xk

n + f0,k(tn, Xn) ∆n +
m∑
j=1

f j,k(tn, Xn) I(j),tn,tn+1
(10)

for k = 1, . . ., d, where ∆n = tn+1 − tn = I(0),tn,tn+1
. The kth component of the Taylor

scheme of order N = 2 is given by

Xk
n+1 = Xk

n + f0,k(tn, Xn) ∆n +
m∑
j=1

f j,k(tn, Xn) I(j),tn,tn+1
(11)

+
1

2
L0f0,k(tn, Xn) ∆2

n +
m∑

j1,j2=0
j1+j2 6=0

Lj1f j2,k(tn, Xn) I(j1,j2),tn,tn+1

f or k = 1, . . ., d. For N = 3 we refer to [9].

A disadvantage of Taylor schemes is that the derivatives of various orders of the drift

and control coefficients must be first derived and then evaluated at each step. Although

nowadays symbolic manipulators [3] facilitate the computation of the derivatives in the

schemes, it is useful to have approximations and schemes that avoid the use of derivatives

of the drift and control coefficients in much the same way that Runge–Kutta schemes do

in the more traditional setting since these often have other computational advantages.

Since the Euler or Taylor scheme of order 1 contains no derivatives of the f j , we

illustrate this procedure for the second order Taylor scheme (11). In the autonomous case,

from the ordinary Taylor expansion for f j we obtain

5



Lif j,k(Xn) =
1

∆n

(
f j,k

(
Xn + f i(Xn) ∆n

)
− f j,k(Xn)

)
+ O(∆n).

Since O(∆n) I(i,j),tn,tn+1
= O(∆3

n), the remainder is of the same order as the local dis-

cretization error if we replace the Lif j,k by this approximation.

In this way we obtain the second order derivative–free scheme in the autonomous case

Xk
n+1 = Xk

n +
1

2
f0,k(Xn) ∆n +

m∑
j=1

f j,k(Xn) I(j),tn,tn+1
+

1

2
f0,k

(
Xn + f0(Xn) ∆n

)
∆n

+
1

∆n

m∑
i,j=0
i+j 6=0

(
f j,k

(
Xn + f i(Xn) ∆n

)
− f j,k(Xn)

)
I(i,j),tn,tn+1

(12)

for k = 1, . . ., d. In the usual ODE case, that is with f j(x) ≡ 0 for j = 1, . . ., m, this is

just the second order Runge–Kutta scheme known as the Heun scheme.

This principle can be extended to obtain higher order derivative–free schemes. See [13]

for analogous higher order derivative–free schemes for the stochastic case.

Note that all these schemes simplify considerable when the coefficients f j of the con-

trolled differential equation (2) satisfy special properties. For example, if the control coef-

ficients f1, . . ., fm are all constants or depend just on t, then all of the spatial derivatives

of these control coefficients vanish and, hence, so do the corresponding higher order terms.

Another major simplification occurs under commutative control, that is when the f i

satisfy Lif j,k(t, x) ≡ Ljf i,k(t, x) for all i, j = 0, 1, . . . , m. Then, by the generalized

integration–by–parts identities

I(i,j),tn,tn+1
+ I(j,i),tn,tn+1

= I(i),tn,tn+1
I(j),tn,tn+1

, i, j = 0, 1, . . . , m, (13)

we obtain

Lif j,k(tn, Xn) I(i,j),tn,tn+1
+Ljf i,k(tn, Xn) I(j,i),tn,tn+1

= Lif j,k(tn, Xn) I(i),tn,tn+1
I(j),tn,tn+1

,

which involves more easily computed multiple control integrals of lower multiplicity. Note

that this condition is similar to the one considered in [14], where the effect of time discretiza-

tion of the control function is investigated and a second order scheme for the approximation

of the reachable set is obtained.

5 A numerical example

We have tested the Euler (10) and Heun (12) Schemes from Section 4 with

dx(t)

dt
= f0(x(t)) + g(u(t))f1(x(t)) :=

(
x2(t)

0

)
+ (u(t) + u(t)3)

(
−x2(t)

1

)

with control function u(t) = sin(100/t) and initial value x0 = (0, 0)T . The resulting schemes

have been simplified using the identity (13) such that the only remaining control integrals
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were I(1),0,t and I(0,1),0,t, which have been evaluated using maple. Note that the exact

solution for this equation is easily verified to be x1(t) = I(1,0),0,t− I(1,1),0,t, x2(t) = I(1),0,t.

The equation was solved on the interval [0, 1] with timestep ∆ = 1/N and N = 50,

100, . . ., 500. Figure 1 shows the resulting errors supn=1,...,N ‖xn − x(n∆)‖ for the Heun

and the Euler scheme. The left figure shows the error over N in a linear scale, the right

figure shows the error over ∆ in a log-log scale.
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Figure 1: Global error for Heun (black) and Euler (grey) schemes, linear and log-log

The Figures 2 and 3 show the x1 component of the exact solution, of the Heun and of

the Euler scheme for N = 100 and N = 500, respectively.
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Figure 2: Exact (solid), Heun (black dashed) and Euler (grey dashed) solution for N = 100
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