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Abstract. We study properties of a binary operation between two com-
pact sets depending on a weight in [0, 1], termed metric average. The
metric average is used in spline subdivision schemes for compact sets in
IR", instead of the Minkowski convex combination of sets, to retain non-
convexity [3]. Some properties of the metric average of sets in IR, like the
cancellation property, and the linear behavior of the Lebesgue measure of
the metric average with respect to the weight, are proven. We present
an algorithm for computing the metric average of two compact sets in R,
which are finite unions of intervals, as well as an algorithm for reconstruct-
ing one of the metric average’s operands, given the second operand, the
metric average and the weight.

¢1. Introduction

In this paper we study properties of a binary operation, termed metric average,
between two compact sets A, B C RR.

For two compact sets A, B in R™ and a weight ¢ € [0,1], the metric
average of A and B with weight ¢ is given by

A®,B={t{a} + (1 - t)lig(a) : ac A} U {tIla(b) + (1 — t){b} : b€ B},

where T4 (D) is the set of all closest points to b from the set A, and the addition
above is the Minkowski addition of sets.

The metric average is introduced in [1] for piecewise linear approximation
of set-valued functions. It is used in spline subdivision schemes for compact
sets, to replace the average between numbers [3]. With this binary average,
the limit set-valued function of a spline subdivision scheme operating on ini-
tial data consisting of samples of a univariate Lipschitz continuous set-valued
function, approximates the sampled function with error of the order of O(h),
for samples h distance apart [3]. Thus the limit set-valued functions of the
spline subdivision schemes retain the non-convexity nature of the approxi-
mated set-valued functions, while if we use the Minkowski average instead of
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the metric average, any limit is convex, and the spline subdivision schemes
fail to approximate set-valued functions with non-convex images [4].

The metric average has many important properties [1],[3]. It is a subset
of the Minkowski average tA + (1 — t) B, generally non-convex, recovering the
set A for t = 1, and B for ¢ = 0. Here we consider the metric average as an
operation between compact sets in R. In this setting the metric average has
several more important properties, such as the cancellation property which
guarantees that for a given weight ¢, if the metric average and one of its
operands are known, then the second operand is determined uniquely. Such
a property is valid for Minkowski sums, only for convex sets, and not valid
for non-convex ones. While redundant convexifying parts may appear in the
Minkowski average of non-convex sets, there are no redundancies in the metric
average of compacts in IR. In this sense the metric average of sets in IR is
optimal.

We also show that the computation of the metric average is not costly and
does not require the computation of distances. By presenting an algorithm for
the calculation of the metric average, we prove that the number of operations
required is linear in the sum of the numbers of closed intervals in the two
operands, independently of the weight parameter.

The metric average for sets in IR is important in the reconstruction of 2D
sets from their cross-sections, and more generally, in approximating set-valued
functions with images in IR.

Here is an outline of the paper: Definitions and notation are presented
in Section 2. Properties of the metric average for 1D sets are presented in
Section 3, without proofs. An algorithm for calculating the metric average is
given in Section 4. The cancellation property is derived from an algorithm for
the reconstruction of the set A from the sets B,C and the weight ¢ € (0,1)
when C' = A®; B. This is done in Section 5, where a central theorem for the
validity of the cancellation algorithm is stated. The main proofs are postponed
to the last section.

§2. Definitions and Notation

Denote by IC(IR™) the set of all compact, nonempty subsets of R", by C(IR")
the set of all compact, convex, nonempty subsets of R™ and by Kz (IR) the set
of all compact, nonempty subsets of IR which are finite unions of nonempty
intervals.

The Lebesgue measure of the set A is denoted by p(A). The Hausdorff distance
between the sets A, B € K(IR"™) is haus(A, B). The Euclidean distance from
a point a to a set B € K(IR") is dist(a, B) = bin}fg lla — bl|2. The set of all

€
projections of a € R™ on the set B € K(IR") is denoted as
lp(a) :={be B : |la—bl|y = dist(a, B)}.

The set difference of A, B e K(R")is A\B={a : a€ A, a¢ B }.
A linear Minkowski combination of two sets A and B is

M+vB={X a+vb : a€ A, be B},



Metric Average of 1D Compact Sets 3

for A,B € K(R") and A, v € R.

The Minkowski sum A+ B corresponds to a linear Minkowski combination with
A =v = 1. The linear Minkowski combination with A,» € [0,1], A\+v =1, is
termed Minkowski average or Minkowski convex combination.

A segment is denoted by [¢,d] = {Ac+ (1 —=A)d : 0 < A <1}, for e,d € R™.

Definition 1. Let A,B € K(IR") and 0 < t < 1. The t-weighted metric
average of A and B is

A@, B = {t{a}+(1-t)lIp(a) : a € AJU{tIa(b)+(1—t){b} : be B} (1)

where the linear combinations in (1) are in the Minkowski sense.

The sets A, B € Kx(IR) are given as

[b5, 03]- (2)
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Fach interval is proper, i.e. the left endpoint is not bigger than the right one,
equality is possible which stands for a so-called point (or degenerate) interval.
The intervals are ordered in an increasing order, i.e. af < al , and by < bé- 11
for all relevant i, j.

We extend the representation (2) to a common closed interval containing
the considered sets by adding point intervals to the left and to the right of the
sets:

M+1 N+1
A= U [a’fuaz] B = U bé7b§ (3)
i=0
where
Tmin = aé =ap = b =by < mln{al, bt '} - | | (4)

Tmax = alM+1 =ajy = bNJrl = by > maX{aM, N lahy — U] (5)

This choice guarantees that C' = A &, B is changed only by the addition of the
point intervals {Zpin} and {zmax} for any ¢ € [0, 1]. Denote X = [Zmin, Tmax)-
The “holes” of each set, namely the maximal open intervals in X, which

do not intersect the set, play an important role, as well as their centers. Denote
the holes by

Hf = (a},al,), i=0,...,M, HP = (b5,b5,,), j=0,...,N, (6)

and their centers by

a’ + at b”—i—b
af = LWL 0 M, b= ke

= j =0,...,N. 7
2 7 2 ? j 7 7 ()
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The dual representation of A and B is:

M

A=X\A, where A:UHiA, (8)
i=0
N

B=X\B, where B’:UH]B. 9)
=0

The t-weighted metric average A @; B is denoted by C,

L+1
C=A®:B= U[ckvc};]v (10)
k=0
where cé = ¢ = Tmin, clLJrl = €}, 11 = Tmax, and the center of the k-th hole
HY = (¢, ch ) is denoted by cf.

63. Properties of the Metric Average

The following properties of the metric average are known [3]:
Let A,B,C e KR") and 0 <t<1,0<s<1. Then
A@OB:B, A@]_B:A, A@tB:BGBktA.
Ad; A= A.

ANBCA®; BCtA+(1—-t)BCco(AUB).

haus(A & B, A®; B) = |t — s|haus(4, B).

e

The following properties are valid for sets in RR.

Proposition 2. Let A,B € K(R), C,D € C(R), t € [0,1]. Then
(a) CoyD=tC+ (1—1t)D,

(b) (A B) =tu(A)+ (1 —t)u(B).

(¢) p(A® B) = tu(A) + (1 - t)u(B).

The proof of the first assertion follows trivially from the definition. The
third assertion is proven in the last section. The second one follows directly
from the third.

In the following we present two properties of the metric average which
are valid for sets in Kz (RR).

Proposition 3. Let A, B € Kx(IR), and let H(A) denote the number of holes

of A. Then for every t € (0,1)

(a) HA®yB) < H(A) + H(B)

(b) The number of operations necessary for the calculation of A&; B is
O(H(A) + H(B)).

The first assertion is proven in the last section. The second one follows
from the algorithm presented in the sequel.
The cancellation property of the metric average is
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Proposition 4. Let A’, A", B € K#(R). Then for any t € (0,1)
AN@B=A"® B— A = A" (11)

The proof of this claim follows from the considerations in section 5. It
can be extended to sets in (IR), since all relevant statements are valid for
sets consisting of an infinite number of compact segments.

To understand the nature of the metric average of two sets A and B, we
distinguish four types of holes in A with respect to B, and vice versa:

Definition 5. Let HZ-A be a hole of A. According to its position with respect
to B, HZA is called:
1. paired with a hole of B, if there is a hole HJB of B, such that a} € HJB and
b5 € H.
2. paired with a point in B, if the center a} € B.
3. left shadow of a hole of B, if there is a hole H}’ of B, such that aj € H},
and b; > al .
4. right shadow of a hole of B, if there is a hole HJB of B, such that a} € HJB,
and b < aj.

Clearly, each hole of A belongs to exactly one of the above categories of
holes with respect to B, and vice versa.

Note that H()“ is paired with HE by the choice of #yin, and similarly, H j\}
is paired with H ﬁ by the choice of &y ax.

When A is averaged with B and ¢ € (0, 1], each hole of A creates a “child”
hole of C, which inherits the type of its parent with respect to B, as is stated
below.

Proposition 6. Let HZ-A and HJB be holes of A and B, respectively, t € [0, 1]
and C = a®; B.

1. If H# and HP are paired, then the interval
HC = tH* + (1 - t)HP

is a hole of C', paired with both HJB and HiA.
2. If H{A is paired with a point of B, then for ¢ > 0 the interval

HY =tH# + (1 - t){a}}

is a hole of C, paired with the point a} € B.
3. If H* is a left shadow of Hf, then for £ > 0 the interval

HC =tH + (1 - t){b}}

is a hole of C, and a left shadow of HJ.
4. If H{ is a right shadow of H, then for ¢ > 0 the interval

HO =tH} + (1 —t){b},,}
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is a hole of C', and a right shadow of HJB.

The proof of this proposition is postponed to the last section.

Interchanging the roles of A and B and replacing ¢t with 1—¢ in Proposition
6, we get that for ¢ € (0,1) some holes of C' are generated by holes of A, or
respectively, by holes of B, by the four ways presented above. The following
proposition, proved in the last section, states that every hole of C' has this

property.

Proposition 7. Let H® = (¢, ¢") be a hole of C = A®; B, t € [0,1]. Then
HC is obtained either from a hole of A, by one of the four ways presented in
Proposition 6, or from a hole of B, in a symmetric way.

In the next example we have plotted the one-dimensional sets A, B and
the set Cy = A @®; B in one picture, giving B at the y-coordinate 0, A at y=1,
and Cy at y=t for t = 1, 3,2 (see Figure 1).

The lines connecting the boundary points of A to points of B and vice
versa, show which holes of A are connected with which holes or points of B,
according to their type with respect to B, and similarly for the holes of B.

These lines give the holes of C; when crossed with the line y = ¢.

01 5 6 758 910 115 14
=A
€1
Can
c
172
C 1
cgsB
1 3 4 5 65 14 16

Fig. 1. The sets A, B and C} of Example 8.

Example 8. Consider the two sets

A =10,1]U[5,6] U[7.5,8]U[9,10] U[11.5,14],
B =[1,4 U[5,6.5] U[14,16].

For these two sets a possible X is [~2,20]. The metric average Cy = A ®y B
is Cy = X \ Cy, where

Cp =(t(=2,0) + (1 = )(=2,1)) U ((1,5) + (1 = ){3}) U (¢{5} + (1 — 1)(4,5))
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U (£(6,7.5) + (L —){6.5}) U (£(8,9) + (1 — t){6.5})
U (£(10,11.5) + (1 — £)(6.5,14)) U (£(14,20) + (1 — £)(16, 20)).

The end points of X and of A, B,C}, Tmin = —2, Tmax = 20, are not
present in the picture.

The holes of the set A are related to the set B as follows:

The hole (1, 5) is paired with a point in B, each of the holes (6, 7.5), (8,9)
is a left shadow of a hole of B, the hole (10, 11.5) is paired with a hole of B.

The holes of the set B are related to the set A as follows:

The hole (4,5) is a right shadow of a hole of A and the hole (6.5,14) is
paired with a hole of A.

See Figure 1 for the way these holes induce holes in C; = A ®; B.

§4. Algorithm for Computing the Metric Average

In this section we propose an algorithm for calculating the metric average
C = A®, B, of two given sets A, B € Kx(R), and t € (0,1).

Relying on Propositions 6 and 7, we construct the holes of the set C
considering the generating holes of A and B, in an order from left to right,
determining the type of each hole.

Algorithm for calculating C = A®; B
Given are t € (0,1), A, B € K£(R) of the form (3).
1. HS =tH{ + 1 —t)HE, i:=1, j:=1, k:=1.
2. While 2 < M and j < N,
(a) If HA is a right shadow of Hﬁl, then
HY = tH? + (1= t){b5}, k:=k+1, i:=i+1.
(b) Else, if H{ is a right shadow of H# |, then
HS =t{al} + 1 —t)HP, k:=k+1, j:=j+1,
(c) Else, if Hf is a left shadow of HJB, then
HY =tHA + (1 - t){b5}, k:=k+1, i:=i+1
(d) Else, if HJ‘-13 is a left shadow of H/, then
HY :=t{a]} + (1 —t)HP, k:=k+1, j:=j+1
(e) Else, if aj < b7, then
HS :=tHA+ (1 -t){a}, k:=k+1,i:=10i+1.
(f) Else, if b7 < aj, then
HS =t{bi}+ (1 -t)HP, k:=k+1, j:=j+1
(g) Else ( H* and H} are paired)
HS :=tH} + (1 —=t)HP, k:=k+1, i:=i+1, j:=j+1.
End of the loop.

3. L=k 1, C:X\(LLJH,S).
k=0

Each hole of A, B belongs exactly to one of the cases described in Step
2 of the algorithm. A hole which is a shadow hole, or paired with a point of
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the other set, is connected to a single point of the other set to generate a hole
of C (cases (a)-(f) of Step 2). Note that the condition (e) (resp. (f)) checked
after the condition (a) (resp.(b)) yields that the hole H (resp. HF) is paired
with a point of B (A).

Note also that the order of the holes from the left to the right yields that
all the right shadow holes of a given hole are considered after it. That is why,
in the cases (a),(b) of Step 2 we check for right shadows of the previously

considered holes HA |, HP ;.

§5. Cancellation Property

To prove the cancellation property (11), we present an algorithm which com-
putes the set A, if ¢t € (0,1), B and C(= A @, B) are given.
The following proposition is the basis for our cancellation algorithm.

Proposition 9. Given aret € (0,1),C = A®; B with holes HS (0 < k < L),
and B with holes H? (0 < j < N).
1. Let HY and HP be paired and define o' = aj, = 3¢ + (1 — )b}, a” =
af = tchy + (1 — )bk, Ifa’ <a”, then (a/,a”) C X \ A.
2. Let HY be paired with a point of B, and define a' = aj, = +c}+(1—1)cf,
a" =aj =tck  + (1= §)ct. Then (a’,a”) C X \ A.
3. Let H be a left shadow of the hole HP, and define o’ = aj, = ¢j + (1 —
%)bg, a’" =a) = %ck_,_l +(1- %)b; Then (a’,a") C X \ A.
4. Let HY be a right shadow hole of HP, and define o’ = aj, = +¢j, + (1 —
Dok =af = jcf . + (1 - bk, Then (a/,a”) C X\ A.
Definition 10. A hypothetic hole (a',a”) of A is any proper open interval
(a',a") constructed in one of the four ways described in the above proposition.

Let C = A®; B, t € (0,1). By Proposition 9, every hypothetic hole of
A is a subset of some (real) hole of A. Thus the set of all hypothetic holes is
contained in the set of holes of A.

On the other hand, by Proposition 6, every hole of A generates a “child”
hole of C' of the same type with respect to B. The procedure described in
Proposition 9 guarantees that every hole of A will be recovered by its “child”
hole of C. Thus the set of all holes of A is contained in the set of all hypothetic
holes of A constructed from the holes of C. Therefore the set of all holes of
A is equal to the set of all hypothetic holes.

Theorem 11. Let J ={k : 0 <k <L, a} < a}}, where a},aj are defined

in Proposition 9. Then A = X \ (U (ak, a%))-
kEJ

Note that Propositions 6, 9 and Theorem 11 remain true when B and C
are infinite unions of compact segments, since their proofs do not use essen-
tially the finite number of segments. Thus the cancellation property is true
for sets in K(IR).
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Given two sets B,C € Kx(R), and a weight ¢ € (0,1), we propose the
following algorithm for reconstructing A € Kx(R), if C = A, B.

Cancellation Algorithm

1. J:=0, k:=0.

2. While k < L,
(a) Compute ay,, aj according to Proposition 9.
(b) If aj, > aj, then J := J U {k}.

L

3. A =[bh, by 1]\ (U(ak,ak’))-
k=0
kgJ

§6. Proofs

First we prove propositions 6,7, which are then used in the proof of Proposi-

tions 2(c) and 3(a).

Proof of Proposition 6:

1. Let H be paired with HP. Denote ¢ = taj + (1 — t)bf, ¢" = tal,, +
(1 =)t ;. To prove that HY = (¢, ") = tH + (1 — t)H} is a hole
of C = A®, B, we first prove that H® N C = (). Suppose that there is
c€ HYNC. Then ¢ = ta' + (1 —t)V', where either o’ € A, ¥ € Il (a’), or
a' € 4 (V'), b € B. Suppose that b’ € IIg(a’), where o’ € A, and o’ < af.
Then since a' < b7, it follows that b’ < b7, and ¢ = ta’ + (1 — )b’ <
taj + (1 = )by = ', ie. c ¢ H®, a contradiction. Similarly one gets
contradictions if a’ > al,,,b’ € IIp(a’), or if a’ € T4 (b'), where VY € B
satisfies b < b;? or b > b§-+1.

Thus we have proven that HY C X \ C. To verify that H¢ is a hole of
C, we have to prove that its end points are elements of C. This follows
trivially from the definition of H and the fact that, for the left end
points, either b7 € Tlp(aj), or af € T4(b}), and similarly, for the right
end points, either b, € Ilg(al,,), or al,; € Ia(bh, ).

The proof that HC is paired with A and B is trivial and follows from the
relation <3< = tay + (1 —t)bs € HA N HP.

2. Let H* be paired with a point of B, i.e. a} € B. Thenal,al ; € Il4(a}),
hence ¢ =taf + (1—t)a; € C, ¢’ =tal,, + (1—t)a} € C. To prove that
HC¢ = (¢, ") is a hole of C, we have to prove that HY N C = (). If there
is c € HY N O, then ¢ = ta’ + (1 — t)b, where either o’ € A, b’ € TIg(a'),
ora’ € (b),b € B. Suppose first that a’ € A,V € lIg(a’) and @’ < af.
Then since a} € B, it follows that b" < af. Thus ¢ = ta’ + (1 — )b’ <
ta’ + (1 —t)a; = ¢, i.e. ¢ ¢ HC, a contradiction. Similarly one proves
the other three cases.

Thus (¢, ¢") is a hole of C' with CIEC” =a} € B, hence H is paired with
a point of B.
3. Let HA be a left shadow of HJB. Denote ¢’ = taj + (1 — )b}, " =

tal  + (1 - t)b}, and HC = (¢, "). Clearly, b € Mp(al,,), and either
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b € Ip(af), or aj € M4 (b}). Thus ¢, " € C. If HYNC = 0, it is trivial
to show that HC is a left shadow of H]-B.
It remains to show that H¢ N C = (. Suppose that ¢ € HC N C, i.e.
¢ =ta'+(1—1t)b', where either o’ € A,b’ € TIg(a’), ora’ € TI4(V'),b" € B.
Suppose first that o’ € A, b € IIp(a’) and o’ < aj. Then since aj < b7,
it follows that " < b7. Hence ¢ = ta’ + (1 — )b’ < ta] + (1 — )b = ¢/,
i.e. c¢ H, a contradiction. The other three cases are proven similarly.
4. The case that H is a right shadow of H JB is symmetric to the previous
case and we omit the proof. O

Proof of Proposition 7:

Let ¢ = ta’ + (1 — t)b’, where either b’ € IIg(a’) for some o’ € A, or
a' € T4(b') for some b’ € B, and let ¢’ = ta” + (1 — ¢)b”, where either
b" € Ip(a") for some a’" € A, or a” € I14(b") for some b” € B.

First we prove that both inequalities a’ < a”, b’ < b” hold and at least
one of them is strict. Clearly, if ' > a” and V' > b”, then ¢’ > ¢”, which is
impossible. Next we show that a’ > a”, ' < 0" is impossible. We use the
inequality

max{|b’ — a'|,|b" — a"|} > max{|’ — a"|, |b" — d'|}, (12)

which is proven at the end of the present proof.

Suppose, e.g. that |b' —a'| = max{|t) — d/|, [b” — a”|}. It follows from
(12) that o’ ¢ I14(b') and O’ ¢ IIp(a’), a contradiction. Similarly we get a
contradiction if [0’ — a'| < |b” — a”|.

Thus a’ < a”, b’ <b” and at least one of these inequalities is strict. To
prove that (a’,a”) C X \ A, suppose that there exists a € (a’,a”) N A. Then
a belongs to one of the following ranges (some of them might be empty):

1. If b <a <V’ there is b € IIg(a) N [b',b"], hence ta + (1 —t)b € (¢, "),

a contradiction.

2. If a < ¥/, then there exists a(b') € 4(d') N (a’,a"”) N (a’,b"), such that
ta(b’) + (1 — )b’ € (¢, "), a contradiction.
3. The case b’ < a is symmetric to the previous one.
Thus (a’,a”) C X \ A. Similarly one proves that (b',0") C X \ B.

Next, we prove that the intervals (a’,a’), (b',0") satisfy the conditions of
one of the four cases of Proposition 6.

Assume that (a’,a”), (/,0") are non-degenerate, i.e. a’ < a’ and ' < b”.
We will prove that they are paired. If a* = # ¢ (b',1b"), for instance
a* < ¥, then either a* < b < a”, implying that o” € TI4(b') and ¢ <
ta” + (1 — )b’ < ", a contradiction, or a” < V', implying that o’ ¢ T 4(b),
and therefore b’ € IIg(a’), from which it is concluded that in the interval
(a/ = (b —a'),a’ + (b — a’)) there are no points of B. Thus b’ € TIg(a”) and
d < ta”+ (1 -t < ', a contradiction. The case a* > b” is symmetric.
Similarly one proves that b* = # € (a’,a"). Therefore (a',a”), (b',0") are
paired.

Let one of (a/,a”), (b',b") be degenerate, for instance, b’ =b".
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If b < a*, then a” ¢ I14(b") and b € IIg(a”). Hence in the interval
(" =" —d"|,a” + |b"" — a"'|) there are no points of B. Let b""" = min{b €
B, b>a"}, then (a,a"”) is a left shadow of (b, b"").

Similarly, if ¥ > a*, we get that (a’,a”) is a right shadow of a hole of B.

If b = a*, then obviously (a’,a”) is paired with o* =" € B.

In a similar way, if ' = a”, then (b’,b”) is a shadow of a hole in A, or
paired with b* =a” € A. O

Proof of (12):

The inequality (12) follows easily from the fact that in the trapezoid with
vertices (a”,0), (a’,0), (b”,1), (0',1), the large diagonal is longer than the
sides, and the Pythagorean theorem. To prove the above geometric fact, it
is sufficient to prove that if one of the sides BC, AD of the trapezoid ABCD
(ABJ|CD), is not less than one of the diagonals of ABCD, then it is less than
the other diagonal. Suppose, for instance, that BC' > BD. We prove that
BC < AC'. In the triangle BC'D, the inequality of the sides yields inequality
of the angles, /BCD < /BDC. Continuing to compare the angles, since
AB||CD, it follows that ZBAC = LACD < /BCD. On the other hand,
/BDC = /ABD < [ABC. Thus we get /BAC < /ABC, hence, in the
triangle ABC, BC' < AC, which completes the geometric proof of (12). O

Proof of Proposition 2(c) and Proposition 3(a):

As was proven in Proposition 7, every hole in C' is generated either by
a hole of A connected to a single point of B (if the hole of A is a shadow of
some hole of B or is paired with a point of B), or, symmetrically, by a hole
of B connected to a single point of A, or by two paired holes of A and B. By
Proposition 6, different holes of A (or of B) produce different holes in C, and
the only case when two holes, one of A and one of B, produce one hole of C
is the case of paired holes. This yields the claim of Proposition 3(a).

Denote by I4 (respectively Ip) the set of indices of holes in A (resp.
B) which are connected to a single point in B (resp. A). Since for every
i ¢ I there exists a unique j(i) ¢ Ip such that H is paired with Hﬁi), then
Proposition 6 implies

w(C) = 3 tw(HY) + 30 (- 0P+ 3 (u(H) + (1 u(HE))

1€l jEIB ’L’QIA

= tu(A) + (1 - Du(B) . O

Proof of Proposition 9:

1. Let H,? be paired with HJB. Since C' = A @&, B, by Propositions 6, 7, the
only possibility for ch is that H,f = tHiA + (1 - t)HJB, where HiA is a
hole of A, paired with HP. Then clearly H? = (a,a").

2. Let HY be paired with a point of B, i.e. ¢} € B. Then o’ = %c’,; +(1-
2)cg, o’ = ek 4+ (1= })ck- Suppose that a € AN (a’,a”). Then, since
a is closer to ¢, than a’ and a”, there is a point ag € (a/,a”) NT4(c}).
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Hence tag + (1 — t)c} € C N HY, a contradiction.

3. Let HS be a left shadow of HP, o = 1ch 4+ (1- %)bg, a" = 1ck .+
(1-— %)b; Define also the point ay > b such that |aj — b}| = |a’ — 07|
(possibly a’. = a').

We perform the proof in several steps.

Step 1 First we prove that (a’,al) N A =.

Assume (a’,al) # 0, ie. o < bj < a, and suppose that there is
a € AN (a’,ay). Then for b} there is a(b}) € Ia(b}) N (@', a;). Thus
ta(b}) + (1 = 1)b} € (¢}, ¢,41) N C, which is a contradiction.

Step 2 We prove now that (a’,a”) N [ag, b5] N A = 0.

Suppose that there is a € AN (a',a") N[ag, b]. Then since a < b7, it
follows that b} € I1g(a). Hence ta+(1—)b} < ta” +(1—)bj = ¢} ;.
On the other hand, ta + (1 — )b7 > ta’ + (1 — t)b; = cj. Thus
ta+ (1 —t)bj € (c, ¢k 11) N C, which is a contradiction.
Clearly, if a” < b}, the proof is completed. In all next steps we suppose that
b <a”.
Note that the point cﬁc 41 € C is obtained either by

iy =ta(b)+ (1 —t)b,  where b€ B, a(b) € ILa(b), (13)
or by
ki =ta+ (1—1t)b(a), where a € A, b(a) € Ug(a"). (14)

In Steps 3 and 4 we suppose that (13) holds and prove that [b},a") N A = 0,
which implies (a’,a”")N A = (). In Step 5 we show that (14) is impossible when
by <a.
Step 3 We prove that [b%,a") N A =0, in case b < b} in (13)
Indeed, since § > 1, then a(b) = 1ck,; + (1 — $)b > $chy + (1 —
$)b%5 = a”. This yields that there are no elements of A in the interval
[b,a”) D [bF,a").
Step 4 We prove that [b%,a”) N A =0, in case b > b, in (13).
Assume b > b]Jrl Define b3 > ¢ty such that b; — Chiy=chiy — b3
Such a point exists since HY is a left shadow of HP, i.e. b} < ¢}, <

by < b

i
Denote a’l lckJr1 + (1-1 bj. Then by the definition of a” we get
a”—c§€+1—ck+1 = (- 1)(cyy — b%). Since b > bk, > b3 and

a(b) = e+ (1 — ;)b, it follows that a(b) < a”. Since a(b) is a
projection of b, it follows that there are no points of A in the interval
I=[b- (b—a ), b+ (b—ay)] O [bF — (b —af), b3 + (bs—a”)] =TI.
Since a < ¢, < bf and b3+ (b5 —al) = 2¢f,, — 0]+ (chyy — b)) =
a” + (b — b7) > a”, it is easy to see that [b},a") C I’ c I Thus
there are no points of A in [b},a").

Step 5 Let ¢}, = ta+ (1 —t)b(a), where a € A, b(a) € ILg(a). Since a € A,
it follows by Steps 1,2 that a ¢ (a’, b5]N(a’, a"), hence either a > a”,
ora>bi,ora<a.
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If a > a”, then since a” > ¢}, > b}, it follows that b(a) > b7 and
ta+ (1 —t)b(a) > ta" + (1 - )b} = ¢t .1, a contradiction.
Ifa > b%, then b(a) > 0%, and ta+(1—t)b(a) > tb5+(1—t)b: | > b3,
a contradiction.
If a < min{a’, b7}, then since a < b}, b(a) < b7. Hence iy <
ta' + (1 —t)b = ¢ < ¢fy;, a contradiction.
Thus the only possibility for a € A is a = a”, hence b(a) = 0. But,
since b < a”, we obtain that b7 ¢ IIp(a”), which is a contradiction.
This completes the proof of 3.
4. The case that H ,? is a right shadow of H JB is symmetric to the previous
case and is proven similarly. O
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