
The Metri
 Average of 1D Compa
t SetsRobert Baier, Nira Dyn and Elza FarkhiAbstra
t. We study properties of a binary operation between two 
om-pa
t sets depending on a weight in [0; 1℄, termed metri
 average. Themetri
 average is used in spline subdivision s
hemes for 
ompa
t sets inIRn, instead of the Minkowski 
onvex 
ombination of sets, to retain non-
onvexity [3℄. Some properties of the metri
 average of sets in IR, like the
an
ellation property, and the linear behavior of the Lebesgue measure ofthe metri
 average with respe
t to the weight, are proven. We presentan algorithm for 
omputing the metri
 average of two 
ompa
t sets in IR,whi
h are �nite unions of intervals, as well as an algorithm for re
onstru
t-ing one of the metri
 average's operands, given the se
ond operand, themetri
 average and the weight.x1. Introdu
tionIn this paper we study properties of a binary operation, termed metri
 average,between two 
ompa
t sets A;B � IR.For two 
ompa
t sets A;B in IRn and a weight t 2 [0; 1℄, the metri
average of A and B with weight t is given byA�tB = �tfag+ (1� t)�B(a) : a 2 A	 [ �t�A(b) + (1� t)fbg : b 2 B	;where �A(b) is the set of all 
losest points to b from the set A, and the additionabove is the Minkowski addition of sets.The metri
 average is introdu
ed in [1℄ for pie
ewise linear approximationof set-valued fun
tions. It is used in spline subdivision s
hemes for 
ompa
tsets, to repla
e the average between numbers [3℄. With this binary average,the limit set-valued fun
tion of a spline subdivision s
heme operating on ini-tial data 
onsisting of samples of a univariate Lips
hitz 
ontinuous set-valuedfun
tion, approximates the sampled fun
tion with error of the order of O(h),for samples h distan
e apart [3℄. Thus the limit set-valued fun
tions of thespline subdivision s
hemes retain the non-
onvexity nature of the approxi-mated set-valued fun
tions, while if we use the Minkowski average instead ofApproximation Theory X 1Charles K. Chui, Larry L. S
humaker, and Joa
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2 R. Baier, N. Dyn and E. Farkhithe metri
 average, any limit is 
onvex, and the spline subdivision s
hemesfail to approximate set-valued fun
tions with non-
onvex images [4℄.The metri
 average has many important properties [1℄,[3℄. It is a subsetof the Minkowski average tA+ (1� t)B, generally non-
onvex, re
overing theset A for t = 1, and B for t = 0. Here we 
onsider the metri
 average as anoperation between 
ompa
t sets in IR. In this setting the metri
 average hasseveral more important properties, su
h as the 
an
ellation property whi
hguarantees that for a given weight t, if the metri
 average and one of itsoperands are known, then the se
ond operand is determined uniquely. Su
ha property is valid for Minkowski sums, only for 
onvex sets, and not validfor non-
onvex ones. While redundant 
onvexifying parts may appear in theMinkowski average of non-
onvex sets, there are no redundan
ies in the metri
average of 
ompa
ts in IR. In this sense the metri
 average of sets in IR isoptimal.We also show that the 
omputation of the metri
 average is not 
ostly anddoes not require the 
omputation of distan
es. By presenting an algorithm forthe 
al
ulation of the metri
 average, we prove that the number of operationsrequired is linear in the sum of the numbers of 
losed intervals in the twooperands, independently of the weight parameter.The metri
 average for sets in IR is important in the re
onstru
tion of 2Dsets from their 
ross-se
tions, and more generally, in approximating set-valuedfun
tions with images in IR.Here is an outline of the paper: De�nitions and notation are presentedin Se
tion 2. Properties of the metri
 average for 1D sets are presented inSe
tion 3, without proofs. An algorithm for 
al
ulating the metri
 average isgiven in Se
tion 4. The 
an
ellation property is derived from an algorithm forthe re
onstru
tion of the set A from the sets B;C and the weight t 2 (0; 1)when C = A�tB. This is done in Se
tion 5, where a 
entral theorem for thevalidity of the 
an
ellation algorithm is stated. The main proofs are postponedto the last se
tion. x2. De�nitions and NotationDenote by K(IRn) the set of all 
ompa
t, nonempty subsets of IRn, by C(IRn)the set of all 
ompa
t, 
onvex, nonempty subsets of IRn and by KF (IR) the setof all 
ompa
t, nonempty subsets of IR whi
h are �nite unions of nonemptyintervals.The Lebesgue measure of the set A is denoted by �(A). The Hausdor� distan
ebetween the sets A;B 2 K(IRn) is haus(A;B). The Eu
lidean distan
e froma point a to a set B 2 K(IRn) is dist(a;B) = infb2B ka � bk2. The set of allproje
tions of a 2 IRn on the set B 2 K(IRn) is denoted as�B(a) := �b 2 B : ka� bk2 = dist(a;B)	:The set di�eren
e of A;B 2 K(IRn) is A nB = f a : a 2 A; a 62 B g.A linear Minkowski 
ombination of two sets A and B is�A+ �B = f�a+ �b : a 2 A; b 2 Bg;



Metri
 Average of 1D Compa
t Sets 3for A;B 2 K(IRn) and �; � 2 IR.The Minkowski sumA+B 
orresponds to a linear Minkowski 
ombination with� = � = 1. The linear Minkowski 
ombination with �; � 2 [0; 1℄, �+ � = 1, istermed Minkowski average or Minkowski 
onvex 
ombination.A segment is denoted by [
; d℄ = f�
+ (1� �)d : 0 � � � 1g, for 
; d 2 IRn.De�nition 1. Let A;B 2 K(IRn) and 0 � t � 1. The t-weighted metri
average of A and B isA�tB = �tfag+(1�t)�B(a) : a 2 A	[�t�A(b)+(1�t)fbg : b 2 B	 (1)where the linear 
ombinations in (1) are in the Minkowski sense.The sets A;B 2 KF (IR) are given asA = M[i=1[ali; ari ℄ B = N[j=1[blj; brj ℄: (2)Ea
h interval is proper, i.e. the left endpoint is not bigger than the right one,equality is possible whi
h stands for a so-
alled point (or degenerate) interval.The intervals are ordered in an in
reasing order, i.e. ari < ali+1 and brj < blj+1for all relevant i; j.We extend the representation (2) to a 
ommon 
losed interval 
ontainingthe 
onsidered sets by adding point intervals to the left and to the right of thesets: A = M+1[i=0 [ali; ari ℄; B = N+1[j=0 [blj ; brj ℄; (3)wherexmin = al0 = ar0 = bl0 = br0 < minfal1; bl1g � jal1 � bl1j; (4)xmax = alM+1 = arM+1 = blN+1 = brN+1 > maxfarM ; brNg+ jarM � brN j: (5)This 
hoi
e guarantees that C = A�tB is 
hanged only by the addition of thepoint intervals fxming and fxmaxg for any t 2 [0; 1℄. Denote X = [xmin; xmax℄.The \holes" of ea
h set, namely the maximal open intervals in X, whi
hdo not interse
t the set, play an important role, as well as their 
enters. Denotethe holes byHAi := (ari ; ali+1); i = 0; : : : ;M; HBj := (brj ; blj+1); j = 0; : : : ; N; (6)and their 
enters bya�i := ari + ali+12 i = 0; : : : ;M; b�j := brj + blj+12 ; j = 0; : : : ; N: (7)



4 R. Baier, N. Dyn and E. FarkhiThe dual representation of A and B is:A = X n �A; where �A = M[i=0HAi ; (8)B = X n �B; where �B = N[j=0HBj : (9)The t-weighted metri
 average A�tB is denoted by C,C = A�tB = L+1[k=0[
lk; 
rk℄; (10)where 
l0 = 
r0 = xmin, 
lL+1 = 
rL+1 = xmax, and the 
enter of the k-th holeHCk = (
rk; 
lk+1) is denoted by 
�k.x3. Properties of the Metri
 AverageThe following properties of the metri
 average are known [3℄:Let A;B;C 2 K(IRn) and 0 � t � 1, 0 � s � 1. Then1. A�0 B = B; A�1 B = A; A�t B = B �1�t A:2. A�t A = A.3. A \ B � A�t B � tA+ (1� t)B � 
o(A [B).4. haus(A�t B;A�s B) = jt� sjhaus(A;B):The following properties are valid for sets in IR.Proposition 2. Let A;B 2 K(IR), C;D 2 C(IR), t 2 [0; 1℄. Then(a) C �tD = tC + (1� t)D,(b) �(A�tB) = t�(A) + (1� t)�(B).(
) �(A�tB) = t�( �A) + (1� t)�( �B).The proof of the �rst assertion follows trivially from the de�nition. Thethird assertion is proven in the last se
tion. The se
ond one follows dire
tlyfrom the third.In the following we present two properties of the metri
 average whi
hare valid for sets in KF (IR).Proposition 3. Let A;B 2 KF (IR), and let H(A) denote the number of holesof A. Then for every t 2 (0; 1)(a) H(A�tB) � H(A) +H(B)(b) The number of operations ne
essary for the 
al
ulation of A�tB isO(H(A) +H(B)).The �rst assertion is proven in the last se
tion. The se
ond one followsfrom the algorithm presented in the sequel.The 
an
ellation property of the metri
 average is



Metri
 Average of 1D Compa
t Sets 5Proposition 4. Let A0; A00; B 2 KF (IR). Then for any t 2 (0; 1)A0�tB = A00�tB =) A0 = A00: (11)The proof of this 
laim follows from the 
onsiderations in se
tion 5. It
an be extended to sets in K(IR), sin
e all relevant statements are valid forsets 
onsisting of an in�nite number of 
ompa
t segments.To understand the nature of the metri
 average of two sets A and B, wedistinguish four types of holes in A with respe
t to B, and vi
e versa:De�nition 5. Let HAi be a hole of A. A

ording to its position with respe
tto B, HAi is 
alled:1. paired with a hole of B, if there is a hole HBj of B, su
h that a�i 2 HBj andb�j 2 HAi .2. paired with a point in B, if the 
enter a�i 2 B.3. left shadow of a hole of B, if there is a hole HBj of B, su
h that a�i 2 HBj ,and b�j � ali+1.4. right shadow of a hole of B, if there is a hole HBj of B, su
h that a�i 2 HBj ,and b�j � ari .Clearly, ea
h hole of A belongs to exa
tly one of the above 
ategories ofholes with respe
t to B, and vi
e versa.Note that HA0 is paired with HB0 by the 
hoi
e of xmin, and similarly, HAMis paired with HBN by the 
hoi
e of xmax.When A is averaged with B and t 2 (0; 1℄, ea
h hole of A 
reates a \
hild"hole of C, whi
h inherits the type of its parent with respe
t to B, as is statedbelow.Proposition 6. Let HAi and HBj be holes of A and B, respe
tively, t 2 [0; 1℄and C = a�tB.1. If HAi and HBj are paired, then the intervalHC = tHAi + (1� t)HBjis a hole of C, paired with both HBj and HAi .2. If HAi is paired with a point of B, then for t > 0 the intervalHC = tHAi + (1� t)fa�i gis a hole of C, paired with the point a�i 2 B.3. If HAi is a left shadow of HBj , then for t > 0 the intervalHC = tHAi + (1� t)fbrjgis a hole of C, and a left shadow of HBj .4. If HAi is a right shadow of HBj , then for t > 0 the intervalHC = tHAi + (1� t)fblj+1g



6 R. Baier, N. Dyn and E. Farkhiis a hole of C, and a right shadow of HBj .The proof of this proposition is postponed to the last se
tion.Inter
hanging the roles of A and B and repla
ing t with 1�t in Proposition6, we get that for t 2 (0; 1) some holes of C are generated by holes of A, orrespe
tively, by holes of B, by the four ways presented above. The followingproposition, proved in the last se
tion, states that every hole of C has thisproperty.Proposition 7. Let HC = (
0; 
00) be a hole of C = A�tB, t 2 [0; 1℄. ThenHC is obtained either from a hole of A, by one of the four ways presented inProposition 6, or from a hole of B, in a symmetri
 way.In the next example we have plotted the one-dimensional sets A, B andthe set Ct = A�tB in one pi
ture, giving B at the y-
oordinate 0, A at y=1,and Ct at y= t for t = 14 ; 12 ; 34 (see Figure 1).The lines 
onne
ting the boundary points of A to points of B and vi
eversa, show whi
h holes of A are 
onne
ted with whi
h holes or points of B,a

ording to their type with respe
t to B, and similarly for the holes of B.These lines give the holes of Ct when 
rossed with the line y = t.

C   = B 
0 

C 1/4 

C
1/2

C 
3/4 

C  = A 
1 

1 3 4 5 6.5  14  16

0    1 5     6 7.5  8 9   10 11.5 14 

Fig. 1. The sets A, B and Ct of Example 8.Example 8. Consider the two setsA = [0; 1℄ [ [5; 6℄ [ [7:5; 8℄ [ [9; 10℄ [ [11:5; 14℄;B = [1; 4℄ [ [5; 6:5℄[ [14; 16℄:For these two sets a possible X is [�2; 20℄. The metri
 average Ct = A�tBis Ct = X n �Ct, where�Ct =�t(�2; 0) + (1� t)(�2; 1)� [ �t(1; 5) + (1� t)f3g� [ �tf5g+ (1� t)(4; 5)�



Metri
 Average of 1D Compa
t Sets 7[ �t(6; 7:5) + (1� t)f6:5g� [ �t(8; 9) + (1� t)f6:5g�[ �t(10; 11:5) + (1� t)(6:5; 14)�[ �t(14; 20) + (1� t)(16; 20)�:The end points of X and of A;B;Ct, xmin = �2; xmax = 20, are notpresent in the pi
ture.The holes of the set A are related to the set B as follows:The hole (1; 5) is paired with a point in B, ea
h of the holes (6; 7:5), (8; 9)is a left shadow of a hole of B, the hole (10; 11:5) is paired with a hole of B.The holes of the set B are related to the set A as follows:The hole (4; 5) is a right shadow of a hole of A and the hole (6:5; 14) ispaired with a hole of A.See Figure 1 for the way these holes indu
e holes in Ct = A�tB.x4. Algorithm for Computing the Metri
 AverageIn this se
tion we propose an algorithm for 
al
ulating the metri
 averageC = A�tB, of two given sets A;B 2 KF (IR), and t 2 (0; 1).Relying on Propositions 6 and 7, we 
onstru
t the holes of the set C
onsidering the generating holes of A and B, in an order from left to right,determining the type of ea
h hole.Algorithm for 
al
ulating C = A�tBGiven are t 2 (0; 1); A;B 2 KF (IR) of the form (3).1. HC0 := tHA0 + (1� t)HB0 ; i := 1; j := 1; k := 1:2. While i �M and j � N ,(a) If HAi is a right shadow of HBj�1, thenHCk := tHAi + (1� t)fbljg; k := k + 1; i := i+ 1.(b) Else, if HBj is a right shadow of HAi�1, thenHCk := tfalig+ (1� t)HBj ; k := k + 1; j := j + 1.(
) Else, if HAi is a left shadow of HBj , thenHCk := tHAi + (1� t)fbrjg; k := k + 1; i := i+ 1.(d) Else, if HBj is a left shadow of HAi , thenHCk := tfarig+ (1� t)HBj ; k := k + 1; j := j + 1.(e) Else, if a�i < brj , thenHCk := tHAi + (1� t)fa�i g; k := k + 1; i := i+ 1.(f) Else, if b�j < ari , thenHCk := tfb�jg+ (1� t)HBj ; k := k + 1; j := j + 1.(g) Else ( HAi and HBj are paired)HCk := tHAi + (1� t)HBj ; k := k + 1; i := i+ 1; j := j + 1.End of the loop.3. L := k � 1; C = X n � L[k=0HCk �:Ea
h hole of A, B belongs exa
tly to one of the 
ases des
ribed in Step2 of the algorithm. A hole whi
h is a shadow hole, or paired with a point of



8 R. Baier, N. Dyn and E. Farkhithe other set, is 
onne
ted to a single point of the other set to generate a holeof C (
ases (a)-(f) of Step 2). Note that the 
ondition (e) (resp. (f)) 
he
kedafter the 
ondition (a) (resp.(b)) yields that the hole HAi (resp. HBj ) is pairedwith a point of B (A).Note also that the order of the holes from the left to the right yields thatall the right shadow holes of a given hole are 
onsidered after it. That is why,in the 
ases (a),(b) of Step 2 we 
he
k for right shadows of the previously
onsidered holes HAi�1, HBj�1.x5. Can
ellation PropertyTo prove the 
an
ellation property (11), we present an algorithm whi
h 
om-putes the set A, if t 2 (0; 1); B and C(= A�tB) are given.The following proposition is the basis for our 
an
ellation algorithm.Proposition 9. Given are t 2 (0; 1), C = A�tB with holes HCk (0 � k � L),and B with holes HBj (0 � j � N).1. Let HCk and HBj be paired and de�ne a0 = a0k = 1t 
rk + (1 � 1t )brj ; a00 =a00k = 1t 
lk+1 + (1� 1t )blj+1. If a0 < a00, then (a0; a00) � X nA.2. Let HCk be paired with a point of B, and de�ne a0 = a0k = 1t 
rk+(1� 1t )
�k,a00 = a00k = 1t 
lk+1 + (1� 1t )
�k. Then (a0; a00) � X nA.3. Let HCk be a left shadow of the hole HBj , and de�ne a0 = a0k = 1t 
rk+(1�1t )brj , a00 = a00k = 1t 
lk+1 + (1� 1t )brj . Then (a0; a00) � X nA.4. Let HCk be a right shadow hole of HBj , and de�ne a0 = a0k = 1t 
rk + (1�1t )blj+1, a00 = a00k = 1t 
lk+1 + (1� 1t )blj+1. Then (a0; a00) � X nA.De�nition 10. A hypotheti
 hole (a0; a00) of A is any proper open interval(a0; a00) 
onstru
ted in one of the four ways des
ribed in the above proposition.Let C = A�tB; t 2 (0; 1). By Proposition 9, every hypotheti
 hole ofA is a subset of some (real) hole of A. Thus the set of all hypotheti
 holes is
ontained in the set of holes of A.On the other hand, by Proposition 6, every hole of A generates a \
hild"hole of C of the same type with respe
t to B. The pro
edure des
ribed inProposition 9 guarantees that every hole of A will be re
overed by its \
hild"hole of C. Thus the set of all holes of A is 
ontained in the set of all hypotheti
holes of A 
onstru
ted from the holes of C. Therefore the set of all holes ofA is equal to the set of all hypotheti
 holes.Theorem 11. Let J = fk : 0 � k � L; a0k < a00kg, where a0k; a00k are de�nedin Proposition 9. Then A = X n �[k2J(a0k; a00k)�.Note that Propositions 6, 9 and Theorem 11 remain true when B and Care in�nite unions of 
ompa
t segments, sin
e their proofs do not use essen-tially the �nite number of segments. Thus the 
an
ellation property is truefor sets in K(IR).



Metri
 Average of 1D Compa
t Sets 9Given two sets B;C 2 KF (IR), and a weight t 2 (0; 1), we propose thefollowing algorithm for re
onstru
ting A 2 KF (IR), if C = A�tB.Can
ellation Algorithm1. J := ;; k := 0.2. While k � L,(a) Compute a0k; a00k a

ording to Proposition 9.(b) If a0k � a00k, then J := J [ fkg.3. A = [bl0; brN+1℄ n � L[k=0k=2J (a0k; a00k)�:x6. ProofsFirst we prove propositions 6,7, whi
h are then used in the proof of Proposi-tions 2(
) and 3(a).Proof of Proposition 6:1. Let HAi be paired with HBj . Denote 
0 = tari + (1 � t)brj , 
00 = tali+1 +(1 � t)blj+1. To prove that HC = (
0; 
00) = tHAi + (1 � t)HBj is a holeof C = A�tB, we �rst prove that HC \ C = ;. Suppose that there is
 2 HC \C. Then 
 = ta0+(1� t)b0, where either a0 2 A; b0 2 �B(a0), ora0 2 �A(b0); b0 2 B. Suppose that b0 2 �B(a0), where a0 2 A, and a0 � ari .Then sin
e a0 < b�j , it follows that b0 � brj , and 
 = ta0 + (1 � t)b0 �tari + (1 � t)brj = 
0, i.e. 
 =2 HC , a 
ontradi
tion. Similarly one gets
ontradi
tions if a0 � ali+1; b0 2 �B(a0), or if a0 2 �A(b0), where b0 2 Bsatis�es b � brj or b � blj+1.Thus we have proven that HC � X n C. To verify that HC is a hole ofC, we have to prove that its end points are elements of C. This followstrivially from the de�nition of HC and the fa
t that, for the left endpoints, either brj 2 �B(ari ), or ari 2 �A(brj), and similarly, for the rightend points, either blj+1 2 �B(ali+1), or ali+1 2 �A(blj+1).The proof that HC is paired with A and B is trivial and follows from therelation 
0+
002 = ta�i + (1� t)b�j 2 HAi \HBj .2. Let HAi be paired with a point of B, i.e. a�i 2 B. Then ari ; ali+1 2 �A(a�i ),hen
e 
0 = tari +(1� t)a�i 2 C, 
00 = tali+1+ (1� t)a�i 2 C. To prove thatHC = (
0; 
00) is a hole of C, we have to prove that HC \ C = ;. If thereis 
 2 HC \ C, then 
 = ta0 + (1� t)b0, where either a0 2 A; b0 2 �B(a0),or a0 2 �A(b0); b0 2 B. Suppose �rst that a0 2 A; b0 2 �B(a0) and a0 � ari .Then sin
e a�i 2 B, it follows that b0 � a�i . Thus 
 = ta0 + (1 � t)b0 �tari + (1 � t)a�i = 
0, i.e. 
 =2 HC , a 
ontradi
tion. Similarly one provesthe other three 
ases.Thus (
0; 
00) is a hole of C with 
0+
002 = a�i 2 B, hen
e HC is paired witha point of B.3. Let HAi be a left shadow of HBj . Denote 
0 = tari + (1 � t)brj ; 
00 =tali+1 + (1 � t)brj , and HC = (
0; 
00). Clearly, brj 2 �B(ali+1), and either



10 R. Baier, N. Dyn and E. Farkhibrj 2 �B(ari ), or ari 2 �A(brj). Thus 
0; 
00 2 C. If HC \C = ;, it is trivialto show that HC is a left shadow of HBj .It remains to show that HC \ C = ;. Suppose that 
 2 HC \ C, i.e.
 = ta0+(1�t)b0, where either a0 2 A; b0 2 �B(a0), or a0 2 �A(b0); b0 2 B.Suppose �rst that a0 2 A; b0 2 �B(a0) and a0 � ari . Then sin
e ari < b�j ,it follows that b0 � brj . Hen
e 
 = ta0 + (1 � t)b0 � tari + (1 � t)brj = 
0,i.e. 
 =2 HC , a 
ontradi
tion. The other three 
ases are proven similarly.4. The 
ase that HAi is a right shadow of HBj is symmetri
 to the previous
ase and we omit the proof.Proof of Proposition 7:Let 
0 = ta0 + (1 � t)b0, where either b0 2 �B(a0) for some a0 2 A, ora0 2 �A(b0) for some b0 2 B, and let 
00 = ta00 + (1 � t)b00, where eitherb00 2 �B(a00) for some a00 2 A, or a00 2 �A(b00) for some b00 2 B.First we prove that both inequalities a0 � a00; b0 � b00 hold and at leastone of them is stri
t. Clearly, if a0 � a00 and b0 � b00, then 
0 � 
00, whi
h isimpossible. Next we show that a0 > a00; b0 < b00 is impossible. We use theinequality maxfjb0 � a0j; jb00 � a00jg > maxfjb0 � a00j; jb00 � a0jg; (12)whi
h is proven at the end of the present proof.Suppose, e.g. that jb0 � a0j = maxfjb0 � a0j; jb00 � a00jg. It follows from(12) that a0 =2 �A(b0) and b0 =2 �B(a0), a 
ontradi
tion. Similarly we get a
ontradi
tion if jb0 � a0j � jb00 � a00j.Thus a0 � a00; b0 � b00 and at least one of these inequalities is stri
t. Toprove that (a0; a00) � X n A, suppose that there exists a 2 (a0; a00) \ A. Thena belongs to one of the following ranges (some of them might be empty):1. If b0 � a � b00, there is b 2 �B(a) \ [b0; b00℄, hen
e ta+ (1� t)b 2 (
0; 
00),a 
ontradi
tion.2. If a < b0, then there exists a(b0) 2 �A(b0) \ (a0; a00) \ (a0; b0), su
h thatta(b0) + (1� t)b0 2 (
0; 
00), a 
ontradi
tion.3. The 
ase b00 < a is symmetri
 to the previous one.Thus (a0; a00) � X nA. Similarly one proves that (b0; b00) � X nB.Next, we prove that the intervals (a0; a00), (b0; b00) satisfy the 
onditions ofone of the four 
ases of Proposition 6.Assume that (a0; a00), (b0; b00) are non-degenerate, i.e. a0 < a00 and b0 < b00.We will prove that they are paired. If a� = a0+a002 =2 (b0; b00), for instan
ea� � b0, then either a� � b0 � a00, implying that a00 2 �A(b0) and 
0 <ta00 + (1 � t)b0 < 
00, a 
ontradi
tion, or a00 < b0, implying that a0 =2 �A(b0),and therefore b0 2 �B(a0), from whi
h it is 
on
luded that in the interval(a0 � (b0 � a0); a0 + (b0 � a0)) there are no points of B. Thus b0 2 �B(a00) and
0 < ta00 + (1 � t)b0 < 
00, a 
ontradi
tion. The 
ase a� � b00 is symmetri
.Similarly one proves that b� = b0+b002 2 (a0; a00). Therefore (a0; a00), (b0; b00) arepaired.Let one of (a0; a00), (b0; b00) be degenerate, for instan
e, b0 = b00.
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t Sets 11If b00 < a�, then a00 =2 �A(b00) and b00 2 �B(a00). Hen
e in the interval(a00 � jb00 � a00j; a00 + jb00 � a00j) there are no points of B. Let b000 = minfb 2B; b � a00g, then (a0; a00) is a left shadow of (b00; b000).Similarly, if b00 > a�, we get that (a0; a00) is a right shadow of a hole of B.If b00 = a�, then obviously (a0; a00) is paired with a� = b00 2 B.In a similar way, if a0 = a00, then (b0; b00) is a shadow of a hole in A, orpaired with b� = a00 2 A.Proof of (12):The inequality (12) follows easily from the fa
t that in the trapezoid withverti
es (a00; 0), (a0; 0), (b00; 1), (b0; 1), the large diagonal is longer than thesides, and the Pythagorean theorem. To prove the above geometri
 fa
t, itis suÆ
ient to prove that if one of the sides BC;AD of the trapezoid ABCD(ABkCD), is not less than one of the diagonals of ABCD, then it is less thanthe other diagonal. Suppose, for instan
e, that BC � BD. We prove thatBC < AC. In the triangle BCD, the inequality of the sides yields inequalityof the angles, 6 BCD � 6 BDC. Continuing to 
ompare the angles, sin
eABkCD, it follows that 6 BAC = 6 ACD < 6 BCD. On the other hand,6 BDC = 6 ABD < 6 ABC. Thus we get 6 BAC < 6 ABC, hen
e, in thetriangle ABC, BC < AC, whi
h 
ompletes the geometri
 proof of (12).Proof of Proposition 2(
) and Proposition 3(a):As was proven in Proposition 7, every hole in C is generated either bya hole of A 
onne
ted to a single point of B (if the hole of A is a shadow ofsome hole of B or is paired with a point of B), or, symmetri
ally, by a holeof B 
onne
ted to a single point of A, or by two paired holes of A and B. ByProposition 6, di�erent holes of A (or of B) produ
e di�erent holes in C, andthe only 
ase when two holes, one of A and one of B, produ
e one hole of Cis the 
ase of paired holes. This yields the 
laim of Proposition 3(a).Denote by IA (respe
tively IB) the set of indi
es of holes in A (resp.B) whi
h are 
onne
ted to a single point in B (resp. A). Sin
e for everyi =2 IA there exists a unique j(i) =2 IB su
h that HAi is paired with HBj(i), thenProposition 6 implies�( �C) = Xi2IA t�(HAi ) + Xj2IB(1� t)�(HBj ) + Xi=2IA�t�(HAi ) + (1� t)�(HBj(i))�= t�( �A) + (1� t)�( �B) :Proof of Proposition 9:1. Let HCk be paired with HBj . Sin
e C = A�tB, by Propositions 6, 7, theonly possibility for HCk is that HCk = tHAi + (1 � t)HBj , where HAi is ahole of A, paired with HBj . Then 
learly HAi = (a0; a00).2. Let HCk be paired with a point of B, i.e. 
�k 2 B. Then a0 = 1t 
rk + (1�1t )
�k; a00 = 1t 
lk+1+(1� 1t )
�k. Suppose that a 2 A\ (a0; a00). Then, sin
ea is 
loser to 
�k than a0 and a00, there is a point a0 2 (a0; a00) \�A(
�k).
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e ta0 + (1� t)
�k 2 C \HCk , a 
ontradi
tion.3. Let HCk be a left shadow of HBj ; a0 = 1t 
rk + (1 � 1t )brj ; a00 = 1t 
lk+1 +(1 � 1t )brj . De�ne also the point a0s � brj su
h that ja0s � brj j = ja0 � brj j(possibly a0s = a0).We perform the proof in several steps.Step 1 First we prove that (a0; a0s) \ A = ;.Assume (a0; a0s) 6= ;, i.e. a0 < brj < a0s, and suppose that there isa 2 A \ (a0; a0s). Then for brj there is a(brj) 2 �A(brj) \ (a0; a0s). Thusta(brj) + (1� t)brj 2 (
rk; 
lk+1) \ C, whi
h is a 
ontradi
tion.Step 2 We prove now that (a0; a00) \ [a0s; b�j ℄ \ A = ;.Suppose that there is a 2 A\ (a0; a00)\ [a0s; b�j ℄. Then sin
e a � b�j , itfollows that brj 2 �B(a). Hen
e ta+(1�t)brj < ta00+(1�t)brj = 
lk+1.On the other hand, ta + (1 � t)brj > ta0 + (1 � t)brj = 
rk. Thusta+ (1� t)brj 2 (
rk; 
lk+1) \ C, whi
h is a 
ontradi
tion.Clearly, if a00 � b�j , the proof is 
ompleted. In all next steps we suppose thatb�j < a00.Note that the point 
lk+1 2 C is obtained either by
lk+1 = ta(b) + (1� t)b; where b 2 B; a(b) 2 �A(b); (13)or by
lk+1 = ta+ (1� t)b(a); where a 2 A; b(a) 2 �B(a00): (14)In Steps 3 and 4 we suppose that (13) holds and prove that [b�j ; a00) \ A = ;,whi
h implies (a0; a00)\A = ;. In Step 5 we show that (14) is impossible whenb�j < a00.Step 3 We prove that [b�j ; a00) \A = ;, in 
ase b � brj in (13).Indeed, sin
e 1t > 1, then a(b) = 1t 
lk+1 + (1 � 1t )b � 1t 
lk+1 + (1 �1t )brj = a00. This yields that there are no elements of A in the interval[b; a00) � [b�j ; a00).Step 4 We prove that [b�j ; a00) \A = ;, in 
ase b � blj+1 in (13).Assume b � blj+1. De�ne bsj > 
lk+1 su
h that bsj � 
lk+1 = 
lk+1 � brj .Su
h a point exists sin
e HCk is a left shadow of HBj , i.e. brj < 
lk+1 <bsj < blj+1.Denote a00s = 1t 
lk+1 + (1� 1t )bsj . Then by the de�nition of a00 we geta00� 
lk+1 = 
lk+1� a00s = (1t � 1)(
lk+1� brj). Sin
e b � blj+1 > bsj anda(b) = 1t 
lk+1 + (1 � 1t )b, it follows that a(b) < a00s . Sin
e a(b) is aproje
tion of b, it follows that there are no points of A in the intervalI = [b� (b� a00s ); b+ (b� a00s )℄ � [bsj � (bsj � a00s ); bsj + (bsj � a00s )℄ = I 0.Sin
e a00s < 
lk+1 < b�j and bsj+(bsj�a00s ) = 2
lk+1�brj+ 1t (
lk+1�brj) =a00 + (bsj � brj) > a00, it is easy to see that [b�j ; a00) � I 0 � I. Thusthere are no points of A in [b�j ; a00).Step 5 Let 
lk+1 = ta+(1� t)b(a), where a 2 A, b(a) 2 �B(a). Sin
e a 2 A,it follows by Steps 1,2 that a 62 (a0; b�j ℄\ (a0; a00), hen
e either a � a00,or a > b�j , or a � a0.



Metri
 Average of 1D Compa
t Sets 13If a > a00, then sin
e a00 > 
lk+1 > brj , it follows that b(a) � brj andta+ (1� t)b(a) > ta00 + (1� t)brj = 
lk+1, a 
ontradi
tion.If a > b�j , then b(a) � blj+1 and ta+(1�t)b(a) > tb�j+(1�t)blj+1 > b�j ,a 
ontradi
tion.If a � minfa0; b�jg, then sin
e a � b�j , b(a) � brj . Hen
e 
lk+1 �ta0 + (1� t)brj = 
rk < 
lk+1, a 
ontradi
tion.Thus the only possibility for a 2 A is a = a00, hen
e b(a) = brj . But,sin
e b�j < a00, we obtain that brj 62 �B(a00), whi
h is a 
ontradi
tion.This 
ompletes the proof of 3.4. The 
ase that HCk is a right shadow of HBj is symmetri
 to the previous
ase and is proven similarly.A
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