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Keywords: Perturbed nonlinear systems, domain of attrac- Taking into account that usually mathematical models of

tion, Zubov’s method, computational approach. complex systems contain model errors and that exogenous
perturbations are ubiquitousit is natural to consider systems
with deterministic time varying perturbations and look for

Abstract domains of attraction that are robust under all these perturba-

tions. Here we consider systems of the form
We present a generalization of Zubov's method to perturbed

differential equations. The goal is to characterize the domain i(t) = f(z(t),at)), =eR"

of attraction of a set which is uniformly locally asymptoti-

cally stable under all admissible time varying perturbations.wherea is an arbitrary measurable function with values in
We show that in this general setting the straightforward gensome compact set ¢ R™. Under the assumption that
eralization of the classical Zubov’s equations has a uniquep < R” is a locally asymptotically stable compact set for
viscosity solution which characterizes the robust domain ofg|| admissible perturbation functiomswe try to find the set
attraction as a suitable sublevel set. of points which are attracted tB under all these perturba-
tionsa.

For the special case @ being just one fixed point this set
has been considered e.g. in [13, 14, 5, 8], for the case where
The domain of attraction of an asymptotically stable fixed tl; elsaf;r?rigcéﬂlgf {Sb]ltviizreé% éze]h;gﬁzgﬁosﬁ 2; gi?g/,fs I(I:?;S
point has been one of the central objects in the stud_y of €ON5ical method [21] r;as been developed in the framework of
Fm_uous dyngmlcal syster_ns.. The knowledge of this Objecr\/iscosity solutions for the characterization of the domain of
is important in many applications modeled by those SyStemsattraction of an exponentially stable fixed point of a perturbed

I|Ir<1e e.g. the lar}?lyjﬁ of pqwer3s;€/)stigns él] an? turbulence ystem. Based on this approach, in this paper we show the
E erlzorgena mthUI i/'nalmlzc; [21 7 11]' everlrlgl Papers atn ecessary modifications for non-exponential attraction and
ooks discuss theoretical [20, 21, 7, 11] as well as compu aérbitrary compact uniformly attracting sets.

tional aspects [19, 12, 1, 10] of this problem. The main result we obtain that way is the formulation of

A general|zat|on_ of the concept of a stable f|>_<ed point IS a first order partial differential equation which possesses a
a chal_ly gsymptotlcally stat?le compac.t set. This may be nique viscosity solution which characterizes the domain of
periodic limit cycle (as conS|der§d €.g.1n [2D), gcompa_ct at'attraction as a suitable sublevel set. In addition, this func-
traf:tor or some 'other forward invariant set with a swtabletiOn is a robust Lyapunov function fab on its domain of
uniform attractivity property. Of course, also for these ob- attraction.

jects the question of the domain of attraction is interesting. It might be worth noting that in particular our approach
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1 Introduction




This paper is organized as follows: In Section 2 we give

In particular, the setup in the present paper allows to re-

the setup and collect some facts about robust domains of atax in a certain sense the assumption of [5] that the fixed

traction. In Section 3 we formulate and prove the main result
and finally, Section 4 gives some further properties of the so
lution to our equation.

2 Robust domains of attraction

We consider systems of the following form

{ i) = f(a(t),a(t),  te[.00),
z(0) = zo,
with solutions denoted by:(¢, z9,a). Herea(:) € A =

L*>(]0,400), A) and A is a compact subset &™, f is con-
tinuous and bounded IR™ x A and Lipschitz inc uniformly
ina € A.

We assume that there exists a compact and connected
D c R™ which is uniformly locally asymptotically stable for
system (1), i.e.

there exists a constant> 0

and a functiorg of classCL such that
dist(z(t, zo, a), D) < B(dist(zo, D), t)
foranyxzo € B(D,r), anya € A, and allt > 0.

(H1)

Here B(D,r) := {z € R™|dist(z, D) < r} denotes the
set of points with distance less tharfrom D. As usual in
stability analysis, we call a functiam of classiC> if it is a
homeomorphism of0, oo) (i.e. «(0) = 0 and« is strictly
increasing to infinity) and we call a continuous functién
with two real nonnegative arguments of cldssg if it is of
classKC in the first and decreasing to zero in the second
argument.

Itis known (see [16]) that for ang € KL there exist two
functionsay, as € £ such that

B(r,t) < az(en(r)e™). )

Note that (H1) implies forward invariance @, but not

necessarily backward invariance, i.e. there might be trajecto-

ries leavingD in backward time and enterinB in forward
time. Hence here the situation is more general compared t
[5] where the attracting set was assumed to be a (forward an
backward invariant) singular fixed point.

The following sets describe domains of attraction for the
setD of the system (1).

Definition 2.1 For the systen{l) satisfying (H1) we define
therobust domain of attractioas

dist(x(¢, g, a), D) — 0 as
t — oo foranya € A

there exists a functiof(t) — 0
ast — oo such that

dist(x(¢, o, a), D) < (1)

forallt >0,ae A

D:{J?QER”:

and theuniform robust domain of attractidsy

Dog=<{xog€R" :

jpoint (taken to b&) is invariant under all perturbations, i.e.
-f(0,a) = 0,Va € A. If we assume thal is locally asymp-
totically stable for the system = f(x,ao) for a particu-
lar ap € A, then we may consider a local Lyapunov func-
tion W for this system. We now regard the sublevel sets
D, :={x € R" | W(z) < r}. If the perturbations id are
sufficiently small, then for some > 0, D = D,. will satisfy
assumption (H1). The interpretation of the domahsD,
would then be the set of points that are still (uniformly) at-
tracted “close” to the fixed point of the unperturbed system,
even though locally the fixed point moves under perturbation,
or undergoes a bifurcation, which is a common scenario in
many applications.

The next proposition summarizes some properties of (uni-

S%{rm) robust domains of attraction. As the proofs are

straightforward generalizations of the proofs of [5, Propo-
sition 2.4] we omit them here. Observe that several of these
properties are very similar to those of the domain of attrac-
tion of an asymptotically stable fixed point of a time-invariant
system, compare [11, Chap. IV].

Proposition 2.2 Consider system (1) and assume (H1), then
(i) cIB(D,r) C Dy.

(i) Dy is an open, connected, invariant sét.is a path-
wise connected, invariant set.

(i) sup,ca{t(z,a)} — +ooforz — zo € 0D, or
|z]| = oo, wheret(x,a) := inf{t > 0: z(t,z,a) €
B(D,r)}.

(iv) clDy, cID are forward invariant sets.

(v) If for everyx € 9D, there existss € A such that
x(t,x,a) € 0Dy for all t > 0 thenD = D,.

(vi) Ifforall z € Dthe set{ f(z,a) :
thenDy = D.

a € A} is convex

(0]
8 Zubov’'s method for robust domains of at-

traction

In this section we discuss the following partial differential
equation

sup {Dv(z) f(z,a) + (1 —v(z))g(z,a)} =0
acA

3)

for z € R™ whose solution—for suitable functiogs—will

turn out to characterize the uniform robust domain of attrac-
tion Dy. This equation is a straightforward generalization
of Zubov’s equation [21]. In this generality, however, in or-
der to obtain a meaningful result about solutions we have to
work within the framework of viscosity solutions, which we
recall for the convenience of the reader (for detdilswt this
theory we refer to [4]).



Definition 3.1 Given an open subsét of R™ and a contin-
uous functiond : 2 x R x R™ — R, we say that a lower
semicontinuous (I.s.c.) functian: Q@ — R (resp. an upper
semicontinuous (u.s.c.) function: 2 — R) is a viscosity
supersolution (resp. subsolution) of the equation

H(z,u,Du)=0 z € 4)
if for all ¢ € C1(2) andz € argmin,(u — ¢) (resp.,z €
argmax, (v — ¢)) we have

H(z,u(z), Dg(x)) >0 (resp.,H(z,v(x), Dp(x)) < 0).

A continuous functiom : Q — R is said to be a viscosity
solution of(4) if  is a viscosity supersolution and a viscosity
subsolution of4).

We now introduce the value function of a suitable optimal
control problem related to (3).

Consider the following nonnegative, extended value func-

tionalJ : R" x A = RU {400}

+oo
J(z,a): /0 g(x(t),a(t))dt

and the optimal value function

—J(w,a)_

(5)

v(z):=supl—e
acA

The functiong : R™ x A — R is supposed to be continuous
and satisfies

(i) Foralla € A, g(z,a) < Cay *(dist(z, D))
forall z € R™, ay from (2) and some
C > 0,andg(z,a) > 0fora & D.
There exists a constagg > 0 such that
infogp(D,r), aca 9(x,a) > go.
For everyR > 0 there exists a constaiity
such that|g(z, a) — g(y, a)l| < Lr(|z -yl
forall ||z, ||ly]| < R, and alla € A.

(if)
(ii)

(H2)

Sinceg is nonnegative it is immediate thafz) < [0, 1]
for all x € R™. Furthermore, standard techniques from opti-
mal control (see e.g. [4, Chapter IlI]) imply thatatisfies a
dynamic programming principle, i.e. feacht > 0 we have

v(z) = sup {(1 — G(x,t,a)) + G(z,t,a)v(z(t, z,a))}
acA
(6)
with
G(t,z,a) = exp <_/0 g(x(T,x,a),a(T))dT> .

Furthermore, a simple application of the chain rule shows

(1-G(z,t,a)) :/0 G(z,7,a)g(z(1,z,a),a(r))dr

implying

v(x)

sup
acA

{ /Ot G(z,7,a)g(z(r,2,a),a(r))dr

+ G(;v,t,a)v(a:(t,:v,a))} (8)

The next proposition shows the relation betwédanand
v, and the continuity ob.

Proposition 3.2 Assume (H1), (H2). Then
(i) v(z) < 1ifandonlyifz € Dy.
(i) v(z) =0ifandonlyifz € D.
(i) v is continuous omR™.
(iv) v(z) — 1forax — o € 0Dy and for|z| — co.
Proof: We show

sup J(z,a) < oo for all z € B(D,r)
acA
implying v(z) < 1 on B(D,r). For this, for eachz €
B(D,r) and eactu € A we can estimate
J(z,a)

< /oo Cay (dist(z(t, z, a), D))dt

0

IN

/ Ca (dist(x, D))e 'dt
0

Cay (dist(z, D))

which is independent af and hence implies the desired es-
timate.

Now all assertions follow as in the proof of [5, Proposition
3.1].

We now turn to the relation betweenand equation (3).
Recalling that is locally bounded ofR™ an easy application
of the dynamic programming principle (6) (cp. [4, Chapter
[11]) shows that and is a viscosity solution of (3). The more
difficult part is to obtain uniqueness of the solution, since
equation (3) exhibits a singularity on the det

In order to get a uniqueness result we use the following
super- and suboptimality principles, which essentially follow
from Soravia [17, Theorem 3.2 (i)], see [5, Proposition 3.5]
for details.

Proposition 3.3

(i) Letw be al.s.c. supersolution ¢8) in R™, then for any
reR”

sup sup{(1 — G(z, t,a))
ac€A t>0

+ Gz, t,a)w(z(t))}. (9)

(i) Let u be a u.s.c. subsolution ) in R™, anda : R™ —
R be a continuous function with < 4. Then for any
x € R"andanyl' > 0

< sup inf

u(z
(=) acAtEN,T

}{(1 — G(z,t,a))
+ G(x,t,a)a(x(t))}. (10)



Remark 3.4 If wis continuous or the set of the control func-

tions A is replaced by the set of relaxed control laws,
assertion (ii) can be strengthened to

U(JI) = sup inf {(1 - G(‘Ia t, :u)) + G(J?, i, M)u(x(t))}>
neEAT t>0

which follows from [17, Theorem 3.2(iii)].

Now the lower optimality principle (10) implies for every
t > 0 that

u(zg) < sup {1 + G(zo,t, a)(te(z(t, x0,a)) — 1)} .
acA
(14)
Again, we distinguish two cases:
(i) zo € Dy: In this casalist(z(t, zg,a), D) — 0 ast — oo
uniformly ina € A. Hence for each > 0 there exists, > 0

We can now apply these principles to the generalized versych that

sion of Zubov’s equation (3) in order to obtain comparison

principles for sub- and supersolutions.

Ue(z(te, 2o, a)) < e and |G(zg, te,a) — G(xg,00,a)| <€

Proposition 3.5 Let w be a bounded |.s.c. supersolution of for all a € A. Thus from (13) and (14), and using the defini-

(3)onR™ withw(xz) = v > 0forall x € D. Thenw > v
for v as defined irn{5).

Proof: First observe that the lower semicontinuitywefand
the assumptiomw(z) = v > 0 for all z € D imply that for
eache > 0 there exists @ > 0 such that

w(z) > —e for all z € R® withdist(z, D) <é. (11)

Furthermore, the upper optimality principle (9) implies

w(zg) > sup 72n£{1 + G(zo,t,a)(w(z(t,xg,a)) — 1)} .

acAt2
(12)
Now we distinguish two cases:
(i) zo € Dy: In this case we know that for eache A we
havedist(x (¢, zg,a), D) — 0 ast — oo. Thus from (11)
and (12), and using the definition ofie can conclude

w(zg) > 21613 {tliglo(l - G(xo,t, a))} = v(xo) .
which shows the claim.

(i) zo & Do: Sincev(x) € [0,1] for all z € R™ it is suffi-

cient to show thatv(z) > 1. Now consider the time(z, a)

as defined in Proposition 2.2(iii). By the definition®f we

know that for eacHl” > 0 there existsir € A such that
t(xo, ar) > T, which impliesG(zo, T, ar) < exp(—Tgo)

which tends ta) asT — oo. Thus denoting the bound on

|w| by M > 0 the inequality (12) implies
w(zg) > (1 —exp(—Tygo)) — exp(—T'go) M
for everyT > 0 and hencev(zg) > 1. [l

Proposition 3.6 Letu be a bounded u.s.c. subsolution(8f
onR"™ withu(z) =y < 0forall z € D. Thenu < v for v
defined in(5).

Proof: By the upper semicontinuity af and«(0) < 0 we
obtain that for every > 0 there exists @ > 0 with u(z) <
e for all x € R™ with dist(z, D) < . Thus for eack > 0
we find a bounded and continuous functiogn: R™* — R
with

te(z) < € for all x € D andu < 4. (13)

tion of v we can conclude

u(zg) < 21613{1 — (1 —¢)G(xo,te,a)}
< w(xo) +€(1 —v(xo)) + €,

which shows the claim since is bounded and > 0 was
arbitrary.

(i) o & Do: Since in this case(zy) = 1 (by Proposition
3.2(i)) itis sufficient to show that(zo) < 1. By (i) we know
thatu(y) < v(y) < 1 for eachy € Dy, hence analogous
to (13) for eache > 0 we can conclude the existence of a
continuousi, with v < 4. anda.(y) < 1+ e for each

y € Dy. Sinceu is bounded by assumption, we may choose
e such thatM. := sup,cpn Ge(z) < co. If M, < 1 for
somee > 0 we are done. Otherwise fix> 0 and consider

a sequence, — oo. Then (14) implies that there exists a
sequence,, € A with

U(JJO) —e<1+ G(x())tman)(aﬁ(x(tn>x0>an)) - 1)'

If 2(tn,z0,an) € Do we know thati.(z(t,, xo,an)) <
1+ ¢, and sinced < 1 we obtainu(zg) —e < 1 +e. If
Z(tn, To, an) & Do thenG(zo, tn, arn) < exp(—gotn), thus

1 + G(J:Q, t'fu an)(ae(x(tru Zo, an)) - 1)
< 1+ exp(—gotn)(Me — 1).

Thus for eacln € N we obtain
u(zg) < 26+ 1+ exp(—gotn) (M — 1),

which forn — oo impliesu(zg) < 1+ 2e. This proves the
assertion since > 0 was arbitrary.
EI

Using these propositions we can now formulate an exis-
tence and uniqueness theorem for the generalized version of
Zubov's equation (3).

Theorem 3.7 Consider the systerfll) and a functiong :
R™ x A — R such that (H1) and (H2) are satisfied. Th&)
has a unigue bounded and continuous viscosity solutiom
R™ satisfyingu(z) = 0 forall z € D.

This function coincides with from (5). In particular the
characterizationDy = {z € R" | v(z) < 1} holds.



Proof:
3.6.

This is immediate from Propositions 3.5 and

O

holds for somekX > 0, s > Ly andas from (2), then the
functionv is Lipschitz continuous iR™ for all g with gg > 0

The following theorem is an immediate consequence offrom (H2) sufficiently large.

Theorem 3.7.
proper open subsé&? of the state space and still obtain our
solutionv, providedD, C O. This is in particular impor-
tant for our computational approach as we will not be able to
approximater on the wholeR™.

Theorem 3.8 Consider the systerfil) and a functiong :
R™ x A — R. Assume (H1) and (H2). L&? C R™ be an
open set containing, and letv : <O — R be a bounded
and continuous function which is a viscosity solutior{3)f
on O and satisfies(z) = 0 forall x € D andv(x) = 1 for
all z € 00.

Thenv coincides with the restriction|» of the function
v from (5). In particular the characterizatioDy, = {z €
R™|v(z) < 1} holds.

Proof. Any solution? meeting the assumption can be con-
tinuously extended to a viscosity solution of (3) Bft by
settingt(z) = 1 for x € R™\ O. Hence the assertion fol-
lows. [l

4 Further properties of the solution

In this section we show two properties of the solutidnom
Theorem 3.7. First, we show thatis a robust Lyapunov
function onDy and second we give conditions gnwhich
guarantee (global) Lipschitz continuity of

We start by giving the Lyapunov function property, which
in fact immediately follows from the optimality principle.

Proposition 4.1 Assume (H1) and (H2) and consider the
unigue viscosity solutiom of (3) with v(z) = 0 for all

x € D. Then the functiom is a robust Lyapunov function
for the systenfl). More precisely we have

v(z(t, 20, a)) — v(zo)
<lie fo, g(z(7),a(T))dr (U(x(t,xo, a)) - 1)

< 0

forall o € Dy \ D and all functions: € A.

Proof: Follows immediately from (6).
Now we turn to the Lipschitz property.

Proposition 4.2 Assume (H1) and (H2) and consider the
unigue viscosity solutiom of (3) with v(z) = 0 for all
reD.

If (-, a) andg(-, a) are uniformly Lipschitz continuous in
Dy, with constantd ¢, L, > 0 uniformly ina € A, and if
there exists an open neighborhodtof D such that for all
x,y € N the inequality

|9(z,a) — g(y, a)|
< Koy H(max{dist(z, D), dist(y, D)})* ||z — y|

It shows that we can restrict ourselves to a

Proof: It is sufficient to show that

V(z) := sup J(z,a)
acA
is (locally) Lipschitz onDy, since then the assertion follows
as in the proof of [5, Proposition 4.4].
In order to see Lipschitz continuity &f observe that

V(@) - V)l
A l9(e(t, 2, ), alt)) — g(z(t, v, a), a(t))|dt.

< sup

acA

By continuous dependence on the initial value foradl D,

and by the asymptotic stability @ there exists atimé& > 0

and a neighborhoo® such thatz(T + ¢,y,a) € N for all

a € A aly € Bandallt > 0. Abbreviatingz(t) =
x(t, z,a) andy(t) = z(t,y, a) we can conclude

Vi)~ V()

Swg/|amoﬂ@»—amoﬂ@mm
acAJo
+wg/|ammmm—ammmet
acAJT

T
< [ Lyt~
0

+/°<> Ko (max{dist(z(T), D), dist(y(T), D)})*
T

e_s(t_T)eLftHx _ det
< )1zl

LgeliT —1  Kay(C)%elsT
Ly — Ly

where we assumed without loss of generality boundedness
of N, i.e.sup,¢cy dist(z, D) < C < oo. This shows the
Lipschitz property of//. i

By [15, Theorems 1 & 2, Proposition 3] it follows that if
we add the assumption thétz, A) be convex for alk: € R™
then there exists & Lyapunov functionl” on D, (which
is in this case equal t® by Proposition 2.2 (iv)). Assuming
thatw : D — R>¢ is an indicator function foD, that isw is
continuousw(z) = 0 ifand only ifx € D, andw(z,,) — oo
for any sequencéz,} with limz,, € 9D or lim ||z, || =
oo, thenV can be chosen in such a manner, that it has the
following additional properties. There exist two class°®
functionsny, . such that

S

m(w(z)) <V(z) < na(w(@)) (15)
and it holds that
max DV (z)f(z,a) < =V (z). (16)

a€A

Using this result we can also obtain smooth solutions of
Zubov's equation by a proper choice gf



Proposition 4.3 Assume (H1) and that(z, A) is convex for
all z € R™. Let B C Dy satisfydist(B, 9Dg) > 0, then
there exists a functiog : R™ — R such that the correspond-
ing solutionv of (3) is C* on a neighborhood oB.

Proof. Given a smooth Lyapunov functidri defined oriD
and defining)(z) = 1 —e~"(®) as before it suffices to define
gonD by

Do(x)f(z,a)

9(z,a) = g(z) = I R o e 17)
— sup e VDV (2)f(z,a) = —sup DV (z)f(z,a).

e_V(f)

acA acA

Then a short calculation shows that the functionand g

thus defined solve the partial differential equation (3). The

problem with this is that it is a priori unclear if can be
extended continuously t&”. Given a closed seB C Dy,

however, we can use the definition (17) on a neighborhood of

Bwhose closure is contained I, and extend the functiog
continuously tdR™ in some manner so that (H2) (ii) and (iii)
are satisfied. This results in a solutionf (3) that is smooth
on the chosen neighborhood Bf In order to guarantee that
g satisfies condition (H2) (i) we will slightly modify” in a
neighborhood oD. Lety : R — R be anyC*® function that
satisfiesy(s) = 0, s < 0 and

min{a; H(dist(z, D)) | V(z) = ¢}

Y (s) <

for0 < s < r/2 and furthermorey(s) = s for all s large
enough. Then it is easy to see that V is a smooth Lya-
punov function orD, and using (16) it is easy to see that the
functiong defined by (17) usingoV satisfies (H2) (i). U

5 Conclusion
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