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1 Introduction 

Metal nanoparticles (MeNP) play an important and more considerable role in 

different areas of science and daily life.[1] Silver nanoparticles (AgNP) for 

example are used in modern wound management, as disinfectants.[1] The 

catalytic properties of gold- and platinum metal nanoparticles (AuNP, PtNP) lead 

to widespread applications in catalysis.[2-4] Many new techniques (Lotus effect) 

and materials are introduced by nanoparticles and –techniques.[1] 

 

 

1.1 Gold Nanoparticles 

Although gold is the subject of one of the most ancient themes of investigation 

in science, its renaissance now leads to an exponentially increasing number of 

publications.[5,6] AuNP have been in the focus of literature during the last seven 

years.[5,6] AuNP are the most stable metal nanoparticles. The totally different 

properties of bulk material and nanoparticles are in the focus of interest: 

Physicists predicted that nanoparticles in the diameter range 1 ― 10 nm 

(intermediate between the size of small molecules and that of bulk metal) would 

display electronic structures, reflecting the electronic band structure of the 

nanoparticles, owing to quantum-mechanical laws.[7] The resulting physical 

properties are neither those of bulk metal nor those of molecular compounds, 

but they strongly depend on the particle size, interparticle distance, nature of 

the protecting organic shell and shape of the nanoparticles.[5] In the nanosize 

the particle-particle distance, the organic stabilizer and the shape of the 

nanoparticles are important.[8,9] Reviews of the state of research and 

fundamentals are found in articles from Daniel et al. and Gosh et al.[5,6] 

 

 

1.2 Binary Metal Nanoalloys 

In materials science, the range of properties of metallic systems can be greatly 

extended by taking mixtures of elements to generate intermetallic compounds 

and alloys.[10] The application of nanoparticles can be extended to new areas 

such as electronics, engineering and catalysis.[10] In many cases, there is an 

enhancement in specific properties upon alloying due to synergistic effects, and 



1 Introduction 

-2- 

the rich diversity of compositions, structures, and properties of metallic alloys 

has led to widespread applications in electronics, engineering, and catalysis. The 

physical, chemical and material properties differ in comparison to monometallic 

particles.[10] The binary nanoalloy of gold and palladium is for instance more 

stable and more active as a catalyst of both monometallic nanoparticles gold 

and palladium.[11] An interesting point is the synthesis of binary nanoalloys, 

where there are no similarities in the macroscopic world. These nanoalloys show 

fascinating new opportunities.[12-15] It is possible to synthesize different Au-Pt 

nanoalloys without miscibility gap. Lou et al. showed that Au-Pt nanoalloys have 

a lattice parameter depending on the composition of the mixture. The 

dependency is linear and follows Vegard’s law.[16] 

As for bulk alloys, a very wide range of combinations and compositions are 

possible for binary nanoalloys.[10] Bimetallic nanoalloys (AmBn) can be generated 

with, more or less, controlled size (m + n) and composition (m / n). The cluster 

structures and degree of A-B segregation or mixing may depend on the method 

and conditions of cluster generation (type of cluster source, temperature, 

pressure, etc.). Nanoalloys can be generated in a variety of media, such as 

cluster beams, colloidal solutions, or can be immobilized on surfaces or inside 

pores.[10] 

Nanoalloys can be distincted according to their mixing and geometric structure. 

Figure 1 shows the four main types of mixing patterns and structures in a 

schematic fashion mainly found for binary nanoalloys.[10] Core-shell segregated 

nanoalloys (Fig. 1.1 (a)) consist of a shell of one type of atom B surrounding a 

core of another atom A. Figure 1.1 (b) shows subcluster segregated nanoalloys 

consisting of A and B subclusters, which may share a mixed interface (left) or 

may only have a small number of A-B bonds (right). There is no miscibility 

possible between the two kinds of atoms A and B. The bimetallic nanoparticle 

consists of two connected monometallic nanoparticles. Mixed A-B nanoalloys 

(Fig. 1.1 (c)) may be either ordered (left) or random. This diagramme shows a 

nanoalloy with statistical distributed atoms A and B. This is typically for binary 

nanoalloys with a facetted surface. Multishell nanoalloys (Fig. 1.1 (d)) may 

present layered or onion-like alternating –A-B-A- shells: The core consists of 

atoms A, surrounded by atoms of B, and then again atoms of A.[10] 
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Figure 1.1 a ― d: Schematic representation of some mixing patterns for two metals A (yellow) 
and B (red) in nanoscale: (a) core-shell particle, (b) segregated subcluster, (c) statistical mixed 
particle, (d) three shell particle. The images show cross-sections of the clusters.[10] 

 

 

1.3 Facetted Metal Nanoparticles 

Metal nanoparticles with tuned size and geometry are of interest in electronic 

and as optical materials and are also important in catalysis.[6,17-21] In this way 

they have become one of the major basic building blocks of nanotechnology. By 

now the intense research devoted to metallic nanoparticles in the last years has 

clearly demonstrated that particle morphology plays a central role in catalysis. 

For instance, facetted platinum crystals have been found to exhibit higher 

catalytic activity than spherical particles; the activity of the exposed facets may 

vary considerably.[19,22] The reactivity and selectivity of nanoparticles can 

therefore be tuned by controlling their morphology. In the opposite, amorphous 

platinum nanoparticles have been found to exhibit a much reduced catalytic 

activity.[23,24] The prospect for a number of possible applications has led to a 

strong activity in this field in the last years. However, facetted nanocrystals with 

a well-developed shape and a narrow size distribution exhibit, in general, sizes 

typically on the order of 100 nm and more. In previous works mainly gold[18,25], 

silver[17,18,26] and platinum[21] nanocrystals were synthesized under harsh 

conditions. For stabilization of nanoparticles organic ligands were used. The 

nanocrystal size depending on the route of synthesis ranges from 10 nm to more 

than 100 nm. Thus, Sun et al. could obtain well-defined gold and silver crystals 
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with sizes around 100 nm. Nanoprisms of silver with dimensions around 100 nm 

were prepared by Jin et al. by a photochemical conversion of silver spheres. 

Anisotropic silver nanoparticles of similar size were synthesized by Liz-Marzan 

and co-workers through careful choice of a suitable surfactant. Platinum 

nanocrystals with high-index facets were obtained recently by Tian and co-

workers. Here again the typical sizes range between 50 and 200 nm. Up to now, 

the only rather tedious route to facetted single crystals in the size range of a 

few nanometers is the synthesis of well defined clusters, e.g., Au55-cluster and 

subsequent heat treatment. 

Figure 1.2 (a) and (b) shows scanning electron microscopy (SEM) micrographs of 

possible facetted silver and gold nanocrystal geometries.[18] 

 

  

(a) (b) 

Figure 1.2 a and b: Scanning electron microscopy micrographs of silver nanocubes, stabilized by 
organic ligands (a). SEM micrograph of geometric well-defined gold nanocrystals (b).[18] 

 

 

1.4 Methods for Stabilization of Metal Nanoparticles 

The different concepts of stabilization for all monometallic and binary 

nanoalloys are described for AuNP. There are different concepts for generation 

and stabilization of gold nanoparticles.[5,27] Many groups use stabilizing agents 

like ligands during the generation of AuNP. Via this route the generated AuNP 

core is protected by a shell of ligands. In a typical experiment organic 

molecules, like dendritic structures or alkyl chains with a sulphur group are 

used.[5] In principle the resulting particle consist of one Au core with a shell of 
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organic molecules. Figure 1.3 shows an overview of different concepts for 

stabilizing AuNP. In previous works the surface of the AuNP is completely 

covered by stabilizing agents, whereas this problem doesn’t exist in Sharma’s 

concept[28] (Chapter 1.5), used in this thesis (Fig. 1.3, middle).[28] This point is an 

advantage in determination of catalytic activity, for example.[5,6] There is a 

higher surface for catalytic processes. The interaction of the organic ligand and 

the AuNP has not to be taken into consideration during discussion of the results. 

The method of Sharma et al.[28] (Fig. 1.3, middle and Fig. 1.4) is compared with 

the method of Gopidas et al.[29]. This group is working with dendritic structures. 

The resulting gold cores are shown in Figure 1.5. A comparison of the 

transmission electron microscopy (TEM) images of the AuNP, show the better 

efficiency of Sharma’s route.[28,29] The AuNP from Sharma et al. (Fig. 1.4) not 

monodispers, but more uniform, than the synthesized by Gopidas et al. (Fig. 

1.5). 
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Figure 1.3: Overview of different concepts used for stabilizing AuNP. Sharma et al. are using 
spherical polyelectrolyte brushes (SPB); AuNP are generated inside the polyelectrolyte layer. 
The core consists of polystyrene (PS). Kanaras et al. stabilized Au cores by Hydroxy-(1-
mercaptoundec-11-yl)-tetraethylenglycol. The hydrophobic C11-chain stablizes AuNP, whereas 
the hydrophilic Tetraethylenglycol is responsible for solubility in water. Ohno et al. stabilize an 
AuNP through a closed poly(methyl methacrylate) PMMA shell. Sun et al. protect the AuNP core 
by alkylthiolate. Daniel et al. protect their Au core by dendronizing with 
Nanoferrocenylthioldendrons. 
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Figure 1.4: TEM micrograph[28] of gold nanoparticles (approximately 2.5 nm) onto the core-shell 
system used by Sharma et al. introduced and discussed in Figure 6 in detail. 

 

 

 

 

 

 

 

Figure 1.5: TEM images (top) of synthesized AuNP by Gopidas et al. (stabilized by dendritic 
structures). The particle distribution of the sample (bottom).[29] 

 

 

1.5 Spherical Polyelectrolyte Brushes (SPB) 

Spherical polyelectrolyte brushes (SPB), used as carriers in this work ― were 

introduced by Guo et al..[30,31] Starting from these core shell systems with 

anionic polyelectrolyte chains Mei et al. changed the synthesis to bound cationic 

polyelectrolyte chains to the polystyrene core in a photo emulsion 

polymerization.[32] At the beginning PS cores of defined particle size are 
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synthesized by emulsion polymerization. In the next step a photo initiator is 

bound to the pre-polymerized polystyrene (PS) core. In the last step the chosen 

polyelectrolyte are grafted to the surface of the PS core via photo emulsion 

polymerization. Figure 1.6 shows in a schematic manner the characteristics of a 

cationic spherical polyelectrolyte brush. It is consisting of a PS core and cationic 

polyelectrolyte chains of 2-amino ethyl methacrylate attached to the surface of 

the core. The positive charge of the polyelectrolyte chains are compensated by 

the chloride counter ions. 

 

 

 

 

Figure 1.6: Schematic representation of a synthesized core-shell latex introduced by Guo et al.: 
The SPB consist of solid PS particles of approximately 100 nm diameter (RH ≈ 50 nm) bearing a 
dense layer of tethered cationic polyelectrolytes. The brush thickness L of the polyelectrolyte 
shell depends, on the conditions of polymerization, pH value and ionic strength in between 10 
und 200 nm. L consists in the scheme of poly(2-amino ethyl methacrylate)-hydrochloride. The 
structure of one monomer unit is depicted on the right hand side. The distance D of two 
polyelectrolyte chains at the surface of the PS core is determined by the thickness of 
occupation.[30] 

 

 

The given core-shell latex consists of a PS core bearing polyelectrolyte chains. 

The terminology brush means a shell of polymer chains bound to the surface (PS 

core). The neighbouring chains clearly overlap.[34] Because of the highly covered 

surface of non-charged polymer chains the geometric dimensions becomes 

interacted in a good solvent. Because of the steric interaction of single chain 

segments stretching of the bounded polymer chains result.[35,36] About this points 

the shell thickness L of the polymer brush is a function of the polymer chains, 

PS
R

D 

L 
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the solvent, also the occupation thickness of chains. The distance D of two 

polyelectrolyte chains at the surface of the PS core is determined by the 

thickness of occupation. Physically the distances D of each point of contact have 

to be smaller than the radius of gyration RG (Fig. 1.6). 

In the following part some physical facts for charged brushes are discussed in 

detail. The highly charged brush system affects a strong localisation of the 

counter ions inside the brush.[37] The osmotic pressure causes a clear stretching 

of the polyelectrolyte chains. Jusufi et al. showed by molecular dynamics (MD)-

simulations, that in star-branched polyelectrolytes the counter ions are free 

inside the star or along the stretched polyelectrolyte chain are located.[38] 

Theoretical description of the charged brush particles and the respective 

conformations is possible by the studies of Jusufi. [39-42] Guo et al. demonstrate 

that the brush thickness is depending not only on the pH value, but also on the 

ionic strength and the occupation of the surface of the PS core.[33] 

The principle of the localized counter ions is used for the synthesis introduced 

by Sharma et al. (Fig. 1.7). Starting from the poly(2-amino ethyl methacrylate)-

hydrochloride-system [I], the Cl--ions are exchanged against AuCl4
--ions by ion 

exchange [III]. The following reduction by NaBH4 is generating the system [IV]. 

The AuNP are localized inside the polyelectrolyte layer. Figure 1.4 shows some 

TEM micrographs of the synthesized systems.[28] 
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Figure 1.7: Schematic representation of the formation of gold nanoparticles on the surface of the 
core-shell system. The core-shell system having a shell of poly(2-amino ethyl methacrylate)-
hydrochloride-system [I] is de-protonated reversibly at high pH to give amine shell system [II]. [I] 
and [II] can be used for a counter ion exchange with HAuCl4 [III]. Reduction of [III] with NaBH4 forms 
[IV] with nanosized gold particles.[28] 

 

 

1.6 Application of Gold Nanoparticles and Binary Metal Nanoalloys 

in Catalysis 

First theoretical considerations of the catalytic application of nanoparticles were 

introduced by Henglein.[43] These preliminary studies on catalytic activity of 

different MeNP has led to widespread research in the last 20 years.[2] For many 

NP interesting catalytic effects could be observed. 

AuNP are the most studied NP in this research area: One reason for the interest 

in nanogold is the catalytic activity of nanoparticles and zero activity of bulk 

metal gold.[5,6] Because of the quantum-size effect at this length scale.[5,44-47] 

One issue of the Journal of Applied Catalysis A: General[48], for example, is 

dedicated to heterogeneous catalysis with AuNP. Graham et al. showed that 

AuNP immobilized on carbon material activated molecular oxygen. After that it 

is possible to oxidize alkenes to epoxides under mild conditions at atmospheric 

pressure and temperatures between 60° C and 80° C.[49] Yoon et al. reported 
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about the gold octamer species Au8. It is possible to realize the conversion of CO 

to CO2 on magnesium oxide at room temperature.[50] Tsunoyama et al. showed 

that a size specific catalytic activity of polymer stabilized gold nanoclusters for 

aerob conditions alcohol oxidation in water exists. The oxidation of benzyl 

alcohol derivatives to the respective benz aldehyde derivatives and benzoic acid 

derivatives was also reported.[46] 

For kinetic studies with nanoparticles the model reduction 4-nitrophenol to 4-

aminophenol was introduced by Pal et al. in 2004.[51] The application for Pt- and 

Pd- composite systems was carried out by Mei et al..[52,53] It was examined that 

binary gold-platinum nanoalloys show a better catalytic activity in comparison to 

both monometallic nanoparticles.[2,54-57] Enache et al. reported about the 

excellent catalytic properties of binary Au-Pd nanocrystals for oxidation 

reactions from primary alcohols.[11] There are also reports of the application of 

Au-Pt nanoparticles in electro catalysis.[12,13] 

 

 

1.7 Transmission Electron Microscopy 

For a better understanding of SPB composite systems imaging methods are 

essential. In this context transmission electron microscopy (TEM) is a predicative 

examination method for polyelectrolyte/MeNP composite systems and also for 

the generated metal nanoparticles.[28,58] It is possible to image both carrier 

particles and MeNP by this method, because both particles (systems) are in the 

resolution limits of this apparatus (of the microscope). In particular the method 

of cryogenic transmission electron microscopy (cryo-TEM) in combination with 

special methods of preparation[59] offers new possibilities. The fundamentals of 

this method and their application to problems in the area of colloid chemistry 

was established by Talmon.[60] Figure 1.8 shows the preparation of a polymer 

dispersion sample by this method in a schematic fashion.[59] A drop of the liquid 

sample is applied onto a perforated carbon film supported on a TEM copper grid 

(A). The solvent is blotted by an absorbing filter paper (B). In the next step the 

sample is rapidly plunged into a cyrogen reservoir. During this process a 

vitrificated film (C) is developed, which can be of different thickness (D and 

E).[59] It is possible to make the structures in solution visible by cryo-TEM. The 
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application of this method to spherical polyelectrolyte systems was established 

by Wittemann et al.[58] (Fig. 1.8 (b)). The micrographs show anionic SPB (C). The 

contrast of the polyelectrolyte chains is enhanced compared to the original 

particles (C) by replacing the Na+ counter ions of the polyelectrolyte chains by 

Cs+-ions (A) and additionally by bio molecules (B). For the explanation of 

nanoparticular structures different methods of high resolution transmission 

electron microscopy (HR-TEM) are well suited.[61-63] 

 

 

 

(a)            (b) 

Figure 1.8 a and b: Preparation of a cryo-TEM sample by Talmon (a).[59] Cryo-TEM images of 
vitrified 1 wt-% SPB suspensions (b). The contrast is enhanced compared to the original particles 
(C) by replacing the Na+ counter ions of the polyelectrolyte chains by Cs+-ions (A) and, 
additionally, by BSA molecules (537 mg per g SPB) which are adsorbed in close correlation to the 
polyelectrolyte chains (B).[58] 

 

 

1.8 Objectives of this Thesis 

Starting from Sharma’s work first of all the process of generation of AuNP@SPB 

should be understand in detail, as well as the structure of the nanoparticles. 

(Chapter 2.3 and 3.3). For this purpose different methods, like dynamic light 

scattering (DLS), transmission electron microscopy methods (TEM) and wide 

angle X-Ray scattering (WAXS) should be used. In the following part the synthesis 

of the carrier particles should be modified, so that synthesis of high volumina 

with high solid content in a reproducible way is possible (Chapter 2.1 and 3.1). 

First of all a PS core with low polydispersity with a polymerized shell of the 

photo initiator Methacrylic-acid-2-[4-(2-hydroxy-2-methyl-propionyl)-phenoxy]-

ethylester (HMEM) should be synthesized in an emulsion polymerization. [32] On 
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the surface of this system polyelectrolyte chains of 2-amino ethyl methacrylate-

hydrochloride (AEMH) should be grafted after initiation by UV light. The 

synthesized dispersions should be characterized by different methods, like 

dynamic light scattering (DLS), disc centrifuge (DCP) and transmission electron 

microscopy (TEM) and cryogenic TEM (cryo-TEM) (Chapter 2.2 and 3.2). 

These carrier particles are used for the stabilization of binary gold nanoalloys, 

which are directly generated inside the brushes attached to the surface of the 

PS core (Chapter 2.4, 3.4 and 3.6). The obtained nanoalloys should be also 

characterized in detail by different methods, like high resolution TEM (HR-TEM) 

and WAXS. The structure should be studied in detail. After the examinations 

relations between structure and properties should be established. Followed by 

this analysis in the next step a comparison between nanoalloys and bulk alloys 

has to be performed. Finally facetted nanoparticle geometries should be 

generated and characterized (Chapter 2.5 and 3.5). 

Moreover, in a second part of this thesis the generated gold nanoparticles and 

binary gold nanoalloys are tested on their catalytic activity for the oxidation of 

alcohols (Chapter 3.4) and for epoxidation reactions (Chapter 3.6). All products 

are of interest for industry. In this connection relations between particle 

composition and morphology, and also size should be examined (Chapter 2.6). 
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2 Overview of this Thesis ― Results 

This thesis contains six publications, introduced in Chapter 3.1 up to 3.6. 

First of all, the up scaled synthesis of anionic and cationic spherical 

polyelectrolyte brushes (SPB) were introduced and the method characterized in 

detail to synthesize reproducible SPB. The resulting systems were characterized 

concerning their physico chemical properties. After that the anionic and cationic 

SPB were compared with each other (Chapter 3.1). Now the synthesized anionic 

SPB are used for the examination of the interaction between polyelectrolyte 

chains and a cationic surfactant. The resulting systems and effects were studied 

in detail by cryo-TEM (Chapter 3.2). 

In a following work the cationic SPB was used for the generation of gold 

nanoparticles. The resulting systems were characterized in detail by different 

TEM methods. The catalytic activities of the composite systems were checked as 

well (Chapter 3.3). 

Given the results from Chapter 3.3 more sophisticated Au-Pt nanoalloys@SPB 

were generated. These composite systems were characterized by different HR-

TEM methods. Finally the catalytic activity for alcohol oxidation reactions were 

determined (Chapter 3.4). 

The binary gold nanoalloys serve as a template for the generation of facetted 

platinum nanocrystals. The special geometric morphology was characterized in 

detail and also checked by the model reaction known from Chapter 3.3 (Chapter 

3.5). 

Finally this knowledge was used to synthesize more nanoalloys, which were 

characterized in detail. The catalytic activities of these nanoalloys were 

examined for epoxidation reactions (Chapter 3.6). 

In the following Chapters 2.1 up to 2.5 the main results of the publications 

(Chapter 3.1 up to 3.6) are summarized. The experimental details can be found 

in each publication. 
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2.1 Synthesis and Characterization of SPB 

SPB are colloidal particles in the range of 300 nm. Figure 2.1 shows the structure 

of two different types of these polymer particles. 

 

 

 

 

Figure 2.1 a and b: The SPB consist of solid PS particles of approximately 100 nm diameter 
bearing a dense layer of tethered anionic (a) or cationic polyelectrolytes (b). If chains of weak 
polyelectrolytes such as PAA and PAEMH are attached, the degree of charges of the SPB depends 
strongly on the pH, and as a consequence the electrostatic stabilization of the particles is 
influenced by the external pH. However, if chains of the strong polyelectrolytes PSS and PEDMB 
are bound, the amount of charges onto the SPB does not depend on the pH. 

 
 

Starting from a solid polystyrene core (PS core) (diameter around 100 nm) 

polyelectrolyte chains with a shell thickness L around 70 nm are tethered. The 

polyelectrolyte chains are anionic (Fig. 2.1 (a)) or cationic (Fig. 2.1 (b)). 

Typically anionic monomers are acrylic acid (AA) and styrene sulfonate (SS). In 

case of cationic polyelectrolytes often 2-amino ethyl methacrylate (AEMH) is 

used. Depending on the ionic strength the shell thickness L changes. 

The synthesis of the polymer particles is shown in a schematic fashion in Figure 

2.2. Starting from a PS core (RH = 50 nm), with low polydispersity, synthesized in 

emulsion polymerization. In the second step the photo initiator 2-[p-(2-hydroxy-

a) 

PAA 
PAEMH 
 PSS PEDMB 

PDMAEMA 

b) 



2 Overview of this Thesis ― Results 

-19- 

2-methyl-propiophenone)]-ethylene glycol-methacrylate (HMEM) is added to the 

reaction to form a thin shell which is used in the third step as initiator. In the 

last step radicals are generated under UV for the polymerization process of the 

polyelectrolyte chains. All particle stages are visible by cryo-TEM. 

 

 

Figure 2.2: Preparation of latex particles stabilized with long polyelectrolyte chains: at first 
polystyrene spheres were prepared by emulsion polymerization. The PS particles were coated 
with a thin layer of a polymerizable photo initiator at a given conversion of styrene. The seed 
particles were extensively purified by ultrafiltration against water. Water-soluble monomers 
such as acrylic acid or styrene sulphuric acid were added. UV irradiation of the suspension led to 
surface-bound radicals and free radicals in solution. Both types of radicals initiated the 
polymerization of the water-soluble monomer. Hence, both polyelectrolyte chains anchored 
onto the PS seed particles and free chains in solution were obtained. The free chains in solution 
were removed by ultrafiltration. Cryo-TEM micrographs demonstrate that well-defined core–
shell particles can be made by this technique. 

 
 

Figure 2.3 shows the comparison of both photo reactors used for the synthesis of 

SPB. Thus we were looking for a technique which facilitates the process of photo 

emulsion polymerization. We assigned the reaction described in Ref.[1] to a 

commercial UV reactor system (aqua concept Laboclean LC Forschungsreaktor, 

Karlsruhe, Germany), which has been designed for water and liquid waste 

treatment, i.e., applications that involve large throughputs or poor transmission 

(Fig. 2 (b)). After adaption to the present purpose, this novel reactor largely 
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improves the efficiency of the photo emulsion polymerization by reduced 

reaction times (Fig. 2 (a): 6h; Fig. 2 (b): 25 min), larger scales and reproducible 

reaction conditions. A detailed study on the formation of polyelectrolyte brushes 

onto model latexes using the novel UV reactor is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 a and b: Photoreactor systems used to conduct photo emulsion polymerization: the 
schematic representation on the left (a) shows the reactor used by Guo et al..[1] A medium 
pressure mercury lamp (TQ 150 Z3, Heraeus Noblelight, Hanau, Germany; range of wave lengths 
200–600 nm, power consumption 150W) surrounded by a cooling quartz tube was directly placed 
in a 650 ml reactor glass vessel. The right-hand illustration (b) gives a schematic rendition of 
the UV reactor (aqua concept Laboclean LC Forschungsreaktor, Karlsruhe, Germany) used in the 
present study. The suspension circulates continuously from a reservoir (here: 3000 ml) into a UV 
radiation chamber (power consumption reduced to 500 W) and via a condenser back into the 
reservoir. This setup allows for variable batch sizes that only depend on the size of the 
reservoir. Continuous circulation of the suspension allows for a highly turbulent flow and 
prevents the formation of deposits. Moreover, the electronic performance of the UV module 
enables reliable accuracy of the UV irradiation. 

 

 

A detailed description of all experiments and results can be found in Chapter 

3.1. 

 

 

2.2 Structure Studies of SPB 

For a better understanding of the interaction between anionic SPB and cationic 

surfactants[2] the formation of a complex between an anionic spherical 

polyelectrolyte brush and the cationic surfactant cetyl trimethyl ammonium 

bromide (CTAB) is investigated. The SPB consists of long chains of the strong 

polyelectrolyte poly(styrene sulfonate) (PSS), which are bound chemically to a 

a) b) 
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solid poly(styrene) core 56 nm radius. The SPB are dispersed in water, and the 

ionic strength is adjusted by addition of NaBr. The resulting complexes are 

investigated in dilute solution by dynamic light scattering (DLS) and by cryo-TEM. 

The different models of the complexation are depicted in Figure 2.4. It is clearly 

visible, that, depending on the amount of CTAB and NaBr different complexes 

are built. (A) shows the SPB before the addition of salt and surfactant. (B) and 

(C) show the changed structures after addition of salt and surfactant. The 

interaction of the polyelectrolytes with surfactant and high ionic strength is 

followed by a contraction (D). All stages are examined by cryo-TEM (Fig. 2.5). 

The formation of the complex between the SPB and the surfactant can be 

monitored by a strong shrinking of the surface layer when adding CTAB to dilute 

suspensions (0.01 wt-%) and by a decrease of the effective charge of the 

complexes. Complex formation starts at CTAB concentrations lower than the 

critical micelle concentration of this surfactant. If the ratio r of the charges on 

the SPB to the charge of the added surfactant exceeds one the particles start to 

flocculate. Cryo-TEM images of the complexes at r = 0.6 measured in salt-free 

solution show that the surface layer composed of the PSS chains and the 

adsorbed CTAB molecules has partially collapsed: A part of the chains form a 

dense surface layer while another part of the chains or aggregates thereof still 

stick out. This can be deduced from the cryo-TEM micrographs as well as from 

the hydrodynamic radius, which is still of appreciable magnitude. The 1:1 

complex (r = 1.0) exhibits a fully collapsed layer formed by the PSS chains and 

CTAB. If the complex is formed in the presence of 0.05 M NaBr, r = 0.6 leads to 

globular structures directly attached to the surface of the core particles. All 

structures seen in the cryo-TEM images can be explained by a collapse transition 

of the surface layer brought about by the hydrophobic attraction between the 

polyelectrolyte chains that became partially hydrophobic through adsorption of 

CTAB. 
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Figure 2.4: Schematic model of the spatial structure of the complexes from spherical 
polyelectrolyte brushes and the cationic surfactant CTAB. Model A corresponds to the spherical 
polyelectrolyte brush in salt-free solution, that is, with sodium counterions. Models B and C 
refer to the complex of the brush particles with CTAB at r = 0.6 (B) and 1.0 (C) at a low ionic 
strength. Model D refers to the structure formed by the brush particles and the surfactant at a 
higher ionic strength (50 mM NaBr). 

 

 

   

(a) (b) (c) 

Figure 2.5 (a) ― (c): Cryo-TEM images of different systems, described in Figure 2.5. (a) shows 
the SPB dispersion in salt- and surfactant free solution. (b) shows the system after addition of 
surfactant and NaBr. (c) shows the system after addition of a huge amount of surfactant. 

 

 

A detailed description of all experiments and results can be found in Chapter 

3.2. 
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2.3 Synthesis and Characterization of Gold Nanoparticles 

The SPB with the polyelectrolyte chains of poly(2-amino ethyl methacrylate) 

presented in Chapter 2.1 are used for the generation of AuNP, now. 

Figure 2.6 displays all results for the generation of AuNP in a schematic fashion. 

Starting with the SPB with Cl- counter-ions, these are exchanged against AuCl4
--

ions. The introduced anions are complexed by the polyelectrolyte chains. The 

following ultrafiltration removed not complexed AuCl4
--ions from the dispersion 

medium. The AuCl4
--ions are partially complexed by the polyelectrolyte chains. 

In this way the AuCl4
--ions create a densely cross linked mesh of polyelectrolyte 

chains. The local concentration of AuCl4
--ions is, therefore, enlarged 

considerably. In the next step the reducing agent NaBH4 is added. Introducing 

CN--ions and O2
[3] leads to dissolution of the AuNP. 

All stages of the formation of the nanoparticles within the brush layer can be 

followed easily by DLS, which determines the hydrodynamic radius RH of the 

particles. The present data, therefore, point to the preferred formation of small 

and amorphous particles if the reduction is slow. The Au-NP content of the 

composite particles could be varied from 7.5 ― 9.5 wt.-% by using an excess of 

NaBH4 during the reduction. Systematic cryo-TEM studies showed that the size of 

the AuNP could be varied between 1.0 and 3.0 nm by varying the amount of 

bound AuCl4
--ions. 

Studies of the generated Nanoparticles on SPB by HR-TEM and WAXS (Fig. 2.7) 

showed an amorphous structure. 

A detailed description of all experiments and results is presented in Chapter 3.3. 
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Figure 2.6: Scheme for the generation of AuNP and their dissolution with CN--ions/O2. In the 
first step Cl--ions are exchanged against AuCl4

--ions. The excess AuCl4
--ions are removed 

subsequently by ultrafiltration. Replacing Cl--ions by AuCl4
--ions leads to a decrease of the layer 

thickness L from 71 to 59 nm. In the next step AuNP are generated by reduction of the confined 
AuCl4

- counter-ions by NaBH4. Here, L decreased to only 21 nm. In the last step AuNP are 
dissolved by complexation with CN--ions/O2. The original thickness of the surface layer is 
recovered in this step. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Results of WAXS measurements of the AuNP on the spherical polyelectrolyte 
brushes. The uppermost scattering curve shows the WAXS diagram for crystalline AuNP of 
around 3 nm. In the middle, the scattering curve for amorphous AuNP on SPB is shown. The 
lowermost curve is the scattering curve of the carrier particle without AuNP. 
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2.4 Synthesis and Characterization of Binary Gold Nanoalloys  

The principles from Chapter 2.3 for gold nanoparticles are now adapted for the 

generation of binary nanoalloys. Figure 2.8 shows schematically the generation 

of binary gold nanoalloys. Here we use the example of Au-Pt nanoalloys. 

 

 

Figure 2.8: SPB used as carriers for bimetallic Au–Pt nanoparticles. Linear cationic 
polyelectrolytes of poly(2-amino ethyl methacrylate) are densely grafted onto a PS core (RH = 45 
nm). The thickness of the polyelectrolyte layer L is about 71nm. AuCl4

-- and PtCl6
2--ions are 

introduced as counter-ions and reduced within the brush layer to generate bimetallic Au–Pt 
nanoparticles. In a first step, a given number of the Cl- counter-ions are replaced by AuCl4

—ions. 
Ultrafiltration removes AuCl4

--ions that have not been complexed. Finally, PtCl6
2--ions are 

introduced and the system is purified again by ultrafiltration. Reduction is achieved by adding 
NaBH4. All steps can be followed by dynamic light scattering, which allows the thickness L of 
the surface layer to be measured. 
 

 

 

Starting from cationic polyelectrolyte brushes, first of all a part of Cl--ions are 

exchanged by AuCl4
--ions. AuCl4

--ions, that are not complexed are replaced by an 

ultrafiltration. In the next step Cl--ions are exchanged by PtCl6
2--ions, before 

reducing the mixture of metal ions and generating during this step the binary 

nanoalloys on the surface of the PS core. All single steps of every exchange step 

can be easily followed by DLS. The shell thickness L shrinks during the whole 

exchange process about 50 nm. 
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With the method described above it is possible to synthesize binary nanoalloys of 

Au-Pt, Au-Ir, Au-Rh, Au-Ru (Chapter 3.4 and 3.6). In the following part only Au-

Pt nanoalloys are discussed in detail. 

Figure 2.9 shows different particle geometries and –sizes of Au-Pt nanoalloys. It 

is obvious that the particle size and distribution on the PS core depends on the 

composition in the alloy. The higher the gold amount, the bigger the particle 

becomes and the particle distribution broadens. The detailed characterization 

by HR-TEM and electron diffraction (Fig. 2.10) shows a crystalline structure of 

the nanoparticles. Electron dispersive X-ray spectroscopy (EDX) proves the 

composition in one alloy particle. 

 

 

Figure 2.9: Au-Pt nanoalloys with different compositions of gold and platinum. The lower the 
gold amount (left to the right) in the solid solution of the alloy, the smaller the particle size 
and smaller the size distribution. 
 

 

A more detailed analysis of the crystal spacing as a function of the Au/Pt ratio 

can be done by WAXS. The WAXS diffractograms (Fig. 2.11 (a)) exhibit a marked 

broadening of the peaks owing to their small size. A similar finding was already 

reported for Au-Pt nanoparticles synthesized by Lou et al..[4] The lattice spacing 

depend linearly on the composition (Vegard’s law). The lattice spacing obtained 



2 Overview of this Thesis ― Results 

-27- 

here are shown in Figure 2.11 (b) together with the data of Lou et al. [4,5] This 

finding is contrary to bulk Au-Pt alloys because of the broad miscibility gap.[6]
 

 

 

Figure 2.10: TEM image of Au73Pt27 composite particles, with a HR-TEM image of three particles 
(lattice imaging) and the diffractogram in the insets. 

 
 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 2.11 a and b: Wide angle X-ray scattering intensities of the composite systems Au73Pt27, 
Au55Pt45, Au45Pt55, Au25Pt75 (from bottom to top) (a). Plot of the lattice parameter dependance 
on the composition of the alloy particle (b). (Red triangles: own measured values; green 
triangles: data from Zhong et al..[4]) 

 

 

 

A detailed description of all experiments and results for the binary Au-Pt 

nanoalloys can be found in Chapter 3.4, for binary Au-Ru, Au-Rh and Au-Ir 

nanoalloys it can be found in Chapter 3.6. 
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2.5 Synthesis and Characterization of Platinum Nanocrystals 

Metallic nanoparticles of controlled size and shape have recently attracted great 

interest for a number of possible applications in electronic or optical materials 

as well as in catalysis.[7-9] Starting with the binary Au-Pt nanoalloys from Chapter 

2.4 it is possible to generate Pt nanocrystals (Fig. 2.12). The gold atoms of the 

binary nanoalloy can be selectively complexed by CN--ions and O2
[3], resulting in 

facetted platinum nanocrystals. The method of complexation was already 

presented and used in Chapter 2.3. 

 

 

Figure 2.12: Scheme of synthesis of platinum nanocrystals by de-alloying of a Au-Pt-nanoalloy. 
The carrier particles are SPB that consist of PS core (RH = 50 nm) onto which cationic 
polyelectrolyte chains of 2-AEMH are chemically attached. In a first step the Cl- counter-ions 
are exchanged against AuCl4

–-ions; in a second step the remaining of Cl--ions are exchanged 
against PtCl4

2–-ions. Bimetallic Au45Pt55 nanoalloy particles are generated by reduction of the 
mixture of these ions by NaBH4. The composition of the resulting nanoalloy can be adjusted very 
well by the ratio of the metal ions in the brush layer. In the final step CN--ions and O2 are used 
to leach out the gold atoms from the nanoalloy under very mild conditions. This procedure leads 
to facetted platinum nanocrystals with a size of few nanometers only. The platinum 
nanocrystals are firmly embedded in the surface layer of polyelectrolyte chains and the entire 
composite particles exhibit an excellent colloidal stability. 
 

 

We find that the de-alloying of the Au-Pt-nanoalloy proceeds surprisingly 

smoothly. Fig. 2.13 shows micrographs of the composite particles before and 
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100 nm 

Au 
100 nm 

CN- / O2 

after the leaching process. These micrographs were obtained by cryo-TEM that 

allows us to analyze the particles in their native state. 

 

 

 

    (a)                                (b) 

Figure 2.13 (a) und (b): Cryo-TEM micrographs of the Au-Pt nanoalloy particles (composition: 
Au45Pt55) generated on the surface of the spherical polyelectrolyte brushes (a). Composite 
particles after complete removal of the gold atoms from the Au-Pt nanoalloy by a mixture of 
CN--ions and O2 (b). 

 

 

The formation of the cyanide complex of gold atoms is very selective. Hence, 

only gold atoms of bimetallic Au-Pt nanoalloy are leached out. Energy dispersive 

X-ray spectroscopy (EDX) demonstrates, indeed, that the metal nanoparticles 

resulting from de-alloying of nanoparticles consist only of platinum. There can’t 

be detected any traces of gold. The structure of the resulting platinum 

nanoparticles was analyzed by combining high angle annular dark field scanning 

transmission electron microscopy (HAADF-STEM) and HR-TEM. Fig. 2.14 (a) shows 

a low-magnification HAADF-STEM micrograph of the polystyrene spheres on the 

supporting holey carbon film. Fig. 2.14 (b) is a higher magnification of the same 

area which shows the uniform distribution of the PtNP on the PS spheres. In 

order to avoid any disturbance of this analysis by the core particles only 

nanoparticles sitting on the periphery of the carrier spheres were analyzed by 

HR-TEM (see Fig. 2.14 (c) ― 2.14 (f)). HR-TEM demonstrates that the platinum 

nanoparticles really are single crystals. All platinum particles observed were 
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crystalline and no grain boundaries were observed inside the particles. In several 

cases the facets can be indexed because the nanocrystals are aligned by change. 

For instance, in Figures 2.14 (e) and 2.14 (f), the electron diffraction shows 

directly the hexagonal symmetry of the cubic crystal. 

 

 

Figure 2.14 (a) ― (f): HAADF-STEM micrographs of the platinum nanoparticles (bright spots) 
embedded and uniformly dispersed on a surface layer of the spherical polyelectrolyte (a) and 
(b); HR-TEM micrograph of nanoparticles on the surface of two adjacent spherical 
polyelectrolyte (c); HR-TEM micrograph of several crystalline nanoparticles (d); HR-TEM 
micrographs of two different single crystalline platinum nanoparticles of sizes 4.6 nm and 2.8 
nm, respectively, showing well defined facets (e) ― (f). All micrographs were acquired at 300 
keV. 
 

 

A detailed description of all experiments and results for facetted Pt nanocrystals 

can be found in Chapter 3.5. 

 

(e)
) 

(f) 
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2.6 Application of Metal Nanoparticles in Catalysis 

Some works show the special catalytic properties of binary gold nanoalloys.[10] 

Au-Pd[11] and Au-Pt[12] have higher catalytic activities in comparison to respective 

monometals. 

Industrial interesting molecules especially aromatic aldehydes and ketones.[13] It 

is possible to synthesize those primary and secondary alcohols by using a 

catalyst. Important parameters are the conditions of the reaction and the 

stability of the catalyst. We were successful in the synthesis of the aldehydes 

and ketones at room temperature and air by using the described Au-Pt 

nanoalloys above (Fig. 2.15). The catalytic activity for the oxidation of alcohols 

to the respective aldehydes goes through a maximum as the function of the 

Au/Pt composition. The highest conversion was succeeded with the nanoalloy of 

compositon Au20Pt80. The catalysts could be used for different reaction cycles. It 

should be noted that no surface stabilization was needed to keep these particles 

from coagulation. The stabilization is solely achieved by the SPB on which the 

alloy nanoparticles are immobilized and the catalysis shows a very high 

selectivity towards aldehydes owing to the mild reaction conditions. The 

examination of the particle morphologies before and after catalysis is needed to 

do in situ. As seen in Figure 2.16 the cryo-TEM images show that there is no 

change in the morphology before and after the catalysis of the oxidation of 

benzyl alcohol. Another interesting reaction is the epoxidation of unsaturated 

molecules (Fig. 2.17). It was shown that there is a high conversion and activity 

for binary nanoalloys such as Au-Pt, Au-Ru, Au-Rh and Au-Ir. 
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Figure 2.15: Different industrial interesting aldehydes and ketones, synthesized by the 
conversion of the respective alcohol using Au-Pt nanoalloys from Chapter 2.4 as a catalyst. On 
the left hand side the dependency of conversion (normalized to the surface area) on the amount 
of gold in bimetallic nanoparticles is shown. The highest conversion is reached for a composition 
of 20 % gold and 80 % platinum. On the right hand side the results from the reusing experiments 
of the catalyst solution is shown. The catalyst didn’t loose his activity. 
 

 

 

 

Figure 2.16: Cryo-TEM image of Au-Pt@SPB catalyst solution before and after catalysed 
conversion of benzyl alcohol to benz aldehyde. The morphology of the particles didn’t change. 
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Figure 2.17: Heterogeneous epoxidation of alkenes using nanoalloys@SPB as efficient catalysts 
and O2 as oxidant, activated by TBHP. 

 

 

A detailed description of all experiments and results of the oxidation reactions 

of binary Au-Pt nanoalloys can be found in chapter 3.4. A detailed description of 

all experiments and results of the epoxidation reactions of binary Au-Pt, Au-Ru, 

Au-Rh and Au-Ir nanoalloys as catalysts can be found in Chapter 3.6.  
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2.7 Individual Contribution to Each Publication 

In the following part my own contribution to each publication is listed. The 

corresponding author is marked by *. 

 

• Chapter 3.1 

This publication is published in Chemical Engineering Journal 2008, 144, 138 ― 

145 under the title ‘A novel photoreactor for the production of 

electrosterically stabilised colloidal particles at larger scales’ by M. Schrinner, 

B. Haupt, A. Wittemann*. 

My contributions to this work were the synthesis and characterization of the 

cationic SPB. A. Wittemann was partially involved in the development of the 

anionic SPB including their characterization. B. Haupt was involved in discussions 

concerning synthesis of SPB systems. 

 

• Chapter 3.2 

This publication is published in Langmuir 2007, 23, 3615 ― 3619 under the title 

‘Binding of oppositely charged surfactants to spherical polyelectrolyte 

brushes: A study by cryogenic transmission electron microscopy’ by Larysa 

Samokhina, Marc Schrinner, Matthias Ballauff*, Markus Drechsler. 

My contributions to this work were the synthesis and electron microscopic 

characterization of the anionic SPB. The considerations and generation of the 

different mixtures were carried out by myself. M. Drechsler introduced me into 

the work at the TEM. 

 

• Chapter 3.3 

This publication is published in Macromolecular Chemistry and Physics 2007, 

208, 1542 ― 1547 under the title ‘Mechanism of the Formation of Amorphous 

Gold Nanoparticles within Spherical Polyelectrolyte Brushes’ by Marc 

Schrinner, Frank Polzer, Yu Mei, Yan Lu, Björn Haupt, Matthias Ballauff*, Astrid 

Göldel, Markus Drechsler, Johannes Preussner, Uwe Glatzel. 

My contributions to this work were the experiments for synthesis and 

characterization of all systems. A. Göldel, M. Drechsler and J. Preussner, U. 

Glatzel were involved in discussions during my work on the TEM. 
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• Chapter 3.4 

This publication is published in Advanced Materials 2008, 20, 1928 ― 1933 under 

the title ‘Stable bimetallic Gold-Platinum Nanoparticles Immobilized on 

Spherical Polyelectrolyte Brushes’ by Marc Schrinner, Sebastian Proch, Yu Mei, 

Rhett Kempe*, Nobuyoshi Miyajima, Matthias Ballauff*. 

My contributions to this work were the synthesis and characterization of the 

nanoalloys and of the gold nanoparticles. The platinum nanoparticles were 

synthesized by Y. Mei. The examinations about catalytic activity were done in 

co-operation with S. Proch. The electron microscopy work were carried out 

together with N. Miyajima. 

 

• Chapter 3.5 

This publication is published in Science 2009, 323, 617 ― 620 under the title 

‘Single Nanocrystals of Platinum Prepared by Partial Dissolution of Au-Pt-

Nanoalloys’ by Marc Schrinner, Matthias Ballauff*, Yesahahu Talmon, Yaron 

Kauffmann, Jürgen Thun, Michael Möller, Josef Breu . 

My contributions to this work were the synthesis and characterization of the 

nanoparticles. The electron microscopic work was carried out together with Y. 

Talmon and Y. Kauffmann during my stay at the TECHNION (Haifa). WAXS was 

conducted in co-operation with J. Thun and M. Möller. 

 

• Chapter 3.6 

This publication is to be submitted in 2008 under the title ‘Nanoalloys as 

efficient “green” catalysts for the epoxidation of alkenes by molecular 

oxygen’ by Marc Schrinner, Matthias Ballauff*, Salem Deeb, Sebastian Proch, 

Rhett Kempe*, Yaron Kauffmann, Jürgen Thun, Josef Breu. 

My contributions to this work were the synthesis and characterization of the 

nanoparticles. The catalytic application of the particles were carried out 

together with S. Proch. The electron microscopic work was carried out together 

with Y. Talmon and Y. Kauffmann during my stay at the TECHNION (Haifa). WAXS 

was conducted in co-operation with J. Thun and M. Möller. 
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4 Summary / Zusammenfassung 

 

• Summary: 

First of all the up scaled synthesis for cationic and anionic spherical 

polyelectrolyte brushes (SPB) was introduced and a reproducible method for the 

synthesis was established (Chapter 3.1). For a better understanding of anionic 

SPB the complexation of the anionic polyelectrolyte chains with the cationic 

surfactant cetyl trimethyl ammonium bromide was studied in detail. The models 

were proved by cryogenic transmission electron microscopy (cryo-TEM) and 

dynamic light scattering (DLS), if it’s in good agreement with the resulting 

systems (Chapter 3.2). 

It was possible to show, that cationic SPB could be used for the generation of 

gold nanoparticles (Chapter 3.3). The synthesized carrier systems were 

characterized in detail by transmission electron microscopy (TEM), cryo-TEM and 

disc centrifuge (DCP). The more detail examination of the Au/SPB system by 

DLS, TEM/cryo-TEM, showed that a reversible immobilization system for gold 

nanoparticles was synthesized. The immobilized gold nanoparticles@SPB could 

be complexed by cyanid ions and oxygen. After the complexation of the gold 

nanoparticles we get the previous carrier system back. Detailed studies by wide 

angle X-ray scattering (WAXS) and high resolution transmission electron 

microscopy (HR-TEM) show an amorphous morphology of the gold nanoparticles 

in the range of 1 nm. This kind of generation allow us to generate gold 

nanoparticles in the range of 1.0 and 2.5 nm on the surface of the carrier 

particle. 

In the following part of the thesis the concepts described above were used for 

the synthesis of binary gold nanoalloys (Chapter 3.4 and 3.6). The binary systems 

Au-Pt, Au-Ru, Au-Rh and Au-Ir were sucessfully generated. In the next step the 

nanoparticular structure of these binary systems were completely clarified by 

different HR-TEM methods and WAXS. It was shown, that there is a different 

behaviour between macroscopic and nanoscopic world. Bulk Au-Pt alloys show 

miscibility gaps, whereas Au-Pt nanoalloys have no such miscibility gap. This 

alloy obeys the Vegard’s law. For the generation of facetted Pt nanocrystals 

(Chapter 3.5), the complexation of gold atoms by cyanid ions and oxygen is used. 
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By this way it’s possible to synthesize well-ordered PtNP structures starting from 

the Au-Pt nanoalloy. 

In the second part of the thesis the immobilized gold nanoparticles and the 

binary gold nanoalloys applied as catalysts for industrial interesting oxidation 

reactions of alcohols and epoxidation reactions (Chapter 3.4 and 3.6) were 

studied. All reactions could be conducted at room temperature and in water as 

reaction media. The catalytic activities have a strong dependency on the 

composition in the nanoalloy. Cryo-TEM characterization showed us no change of 

the morphology of the catalyst before and after a catalyst cyclus. 

Concluding this thesis showed successfully a new route for the synthesis of 

monodispers and well defined gold nanoparticles, gold nanoalloys and facetted 

platinum nanocrystals. The particle sizes ranges between 1.0 and 7.0 nm. All 

systems can be used as green catalysts. This is an important point in the 

discussion of sustainability. All dispersions are not light and air sensitive, so they 

can be handled without any problems. 

 

• Zusammenfassung: 

Im Rahmen dieser Arbeit wurde in einem ersten Teil eine großtechnische 

Synthese für kationische und anionische sphärische Polyelektrolyt (SPB)-

Dispersionssysteme eingeführt (Kapitel 3.1). Zum tiefergehenden Verständnis der 

anionischen sphärischen Polyelektrolyte wurde die Komplexbildung zwischen 

Tensid CTAB und den Polyelektrolytketten eingehend untersucht. Die 

Modellvorstellungen wurden mittels kryogener Transmissionselektronen-

mikroskopie (cryo-TEM) und dynamischer Lichtstreuung (DLS) untermauert 

(Kapitel 3.2). 

Es konnte gezeigt werden, dass sich kationische SPB als Trägersysteme für 

Goldnanopartikel eignen (Kapitel 3.3). Das synthetisierte Trägersystem wurde 

mittels dynamischer Lichtstreuung (DLS), Transmissionselektronenmikroskopie 

(TEM) / Tieftemperaturtransmissionselektronenmikroskopie (cryo-TEM) und 

Scheibenzentrifuge (DCP) charakterisiert. Die eingehendere Untersuchung des 

Gold-Kern/Schale-Trägersystems mittels DLS und TEM/cryo-TEM zeigte, dass ein 

reversibles Immobilisierungssystem für AuNP gezielt synthetisiert worden und 

reproduzierbar herstellbar ist. Die auf der Oberfläche des PS-Kerns durch die 
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Wechselwirkung mit den funktionellen Gruppen der Polyelektrolytketten 

immobilisierten Au-Partikel ließen sich zerstörungsfrei durch 

Cyanidionen/Sauerstoff unter Komplexbildung herauslösen. Anschließend war 

das zu Beginn eingesetzte SPB Trägersystem zerstörungsfrei erhalten. Des 

Weiteren war es durch systematische Studien möglich, sehr einheitliche AuNP 

auf der PS-Kernoberfläche zu generieren, die je nach Bedarf im Bereich von 1 − 

2,5 nm gezielt hergestellt werden können. Die Untersuchung der 1 nm großen 

Nanopartikel zeigte eine amorphe Struktur. 

In einem weiteren Teil der Arbeit wurden die für Goldnanopartikel gewonnen 

Konzepte nun zur Generierung von Goldnanolegierungen (Kapitel 3.4 und 3.6) 

angewendet. So konnten die binären Systeme Au-Pt, Au-Ir, Au-Ru, Au-Rh mit 

Erfolg synthetisiert werden, sowie deren Struktur mit Hilfe verschiedener HR-

TEM Methoden und WAXS vollkommen aufgeklärt werden. Diese Untersuchungen 

zeigten die vollkommen unterschiedlichen Strukturen zwischen makroskopischen 

und nanoskopischen Legierungen. So weisen Au-Pt Nanolegierungen keine 

Mischungslücke auf und gehorchen dem Vegard’schen Gesetz, wohingegen bulk 

Au-Pt Legierungen dieser Regel nicht gehorchen. Für die Generierung 

facettierter Pt-Nanokristalle (Kapitel 3.5) konnte die bereits angesprochene 

Komplexierung der Goldatome herangezogen werden. Aus den binären Au-Pt 

Nanolegierungen konnten mittels Cyanidionen/Sauerstoff geometrisch 

hochgeordnete Platin Nanokristalle gewonnen werden. 

Der zweite Teil der Arbeit beschäftigt sich mit der Anwendung der 

immobilisierten Goldpartikel, sowie der binären Goldnanolegierungen als 

Katalysatoren in industriell bedeutsamen Alkoholoxidations- und 

Epoxidierungsreaktionen (Kapitel 3.4 und 3.6). Alle Reaktionen konnten bei 

Raumtemperatur mit den wässrigen Dispersionsmedien als Katalysatoren 

durchgeführt werden. Dabei zeigte sich für die katalytische Aktivität eine 

Abhängigkeit von der Legierungszusammensetzung. Cryo-TEM Untersuchungen 

zeigten, dass sich die Morphologie der Kompositpartikel nach dem Einsatz in der 

Katalyse nicht verändert. 

Abschließend ist festzuhalten, dass die vorliegende Arbeit einen neuen Weg zur 

Generierung wohldefinierter und einheitlicher Goldnanopartikel, binärer 

Goldnanolegierungen, sowie facettierter Platinnanokristalle aufzeigt. Die 
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Nanopartikelgrößen können gezielt zwischen 1 und 7 nm eingestellt werden, 

sowie nahezu monodispers generiert werden. Es handelt sich bei allen Systemen 

um wässrige Dispersionen, die eine mehrjährige Licht- und Luftstabilität 

aufweisen. Im Hinblick auf den Einsatz als umweltfreundliche Katalysatoren 

wurde ein wesentlicher Beitrag geleistet. 
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6.1 Presentations at International Meetings 

• Polyamphi, Chadova Plana, Czech, September 2005, poster presentation: 

‘Preparation of MeNP (Au, Ag, Pd, Pt) on polyelectrolyte brushes  

nanocomposites and their catalytic reduction of 4-nitrophenol’ 

 

• Bayreuther Polymer Symposium (BPS), Bayreuth, Germany, September 

2005, poster presentation: 

‘Preparation of polyelectrolyte brush-metal (Au, Ag, Pd, Pt) 

nanocomposites and their catalytic reduction of 4-nitrophenol’ 

 

• Trends in Nanoscience, Kloster Irsee, Allgäu, Germany, Februar 2007, 

poster presentation: 

‘Metal nanoparticles immobilized on spherical polyelectrolyte brushes and 

their catalytic application’ 

 

• Bayreuther Polymer Symposium (BPS), Bayreuth, Germany, September 

2007, poster presentation: 

‘Synthesis and Characterization of Metal Nanoparticles immobilized on 

Spherical Polyelectrolyte Brushes and their Application in Catalysis’ 

 

• React, Dresden, Germany, September 2007, poster presentation: 

‘Synthesis and characterization of gold- and bimetallic-nanoparticles on 

spherical polyelectrolyte brushes and their application as catalysts’ 

 

• Russel Berrie Nanotechnology (RBNI) Winter School, Dead Sea, Israel, 

February 2008, poster presentation: 

‘Synthesis and Characterization of Gold- and Bimetallic Gold-Platinum-

Nanoparticles on Spherical Polyelectrolyte Brushes and their Application 

as Catalysts’ 
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6.2 Abbrevations and Symbols 

[X] reference list 

1, 2 serial number of substances 

A-co-B block-co-polymer 

2-AEMH 2-amino ethyl methacrylate-hydrochloride 

AgNP silver nanoparticle 

AuNP gold nanoparticle 

Cryo-TEM cryogenic transmission electron microscopy 

CTAB cetyl trimethyl ammonium bromide 

DCP disc centrifuge 

DLS dynamic light scattering 

DMAEMA  N,N dimethyl amino ethyl methacrylate 

Fig. Figure 

HMEM 2-[p-(2-hydroxy-2-methylpropiophenone)]-

ethylene glycol-methacrylate 

h hour 

HR-TEM high resolution transmission electron microscopy 

HAADF-STEM high angle annular dark field scanning 

transmission electron microscopy 

Cat. catalysator 

conc. concentrated 

Lc contour length 

Solv. solvent 

m meter 

Me metal 

NP nanoparticle 

4-Nip 4-Nitrophenol 

p para- 

PAA poly(acrylic acid) 

PMMA poly(methyl methacrylate) 

PS poly styrene 

PSS poly(styrene sulfonate) 
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PtNP platinum nanoparticle 

RH hydrodynamic radius 

RT room temperature 

SPB spherical polyelectrolyte brush  

TEM transmission electron microscopy 

t time 

T temperature 

Tab. table 

THF tetrahydrofuran 

V-50 α, α’-Azo-di-isobutyramidine-di-hydrochloride 

WAXS Wide angle X-ray scattering 

[wt.-%] solid content [wt.-%] 
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