Convergence Rates of Perturbed Attracting Sets with
Vanishing Perturbation

Lars Grune
Fachbereich Mathematik
J.W. Goethe-Universitat

Postfach 111932
60054 Frankfurt a.M., Germany

gruene@math.uni-frankfurt.de

November 9, 1999

Abstract: We investigate the rate of convergence and the rate of attraction of perturbed attracting
sets as the perturbation tends to zero. The perturbation model under consideration i1s a control
system which contains the unperturbed system as zero dynamics. Necessary and sufficient con-
ditions for certain rates of convergence are derived. Several applications especially to numerical

approximations are given and a number of examples illustrates the results.
AMS Classification: 34E10, 34D45, 93C95, 34A50

Keywords: Attracting Sets, Perturbations, Rate of Convergence, Numerical Approxima-
tion

1 Introduction

In the analysis of complex dynamic behaviour attracting sets form a fundamental concept.
In many cases, all complicated dynamical behaviour appears inside attracting sets, like e.g.
under suitable conditions all instable manifolds are contained inside the global attractor
being just one special attracting set, cf. [7].

Therefore, the behaviour of attracting sets (or—more specifically—attractors) under per-
turbation has attracted notable attention during the last years, e.g. in the context of
numerical approximation [10, 11, 2], control theory [6, 1], random dynamical systems [§],
and differential inclusions [9]. Essentially, in all these works (semi-)continuity properties
of (more or less specific) attracting sets are derived. For exponentially attracting sets, also
the rate of convergence for vanishing perturbation is investigated in [11, 2].

In the present paper we are going to begin an analysis of the rate of convergence for attract-
ing sets with arbitrary rate of attraction. The setup used here is a family of deterministic
time varying perturbations of the given vectorfield which can be interpreted as a control
system for which the original system is just the uncontrolled equation. This setup allows
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the definition of strongly attracting sets which—if existing—always contain an attracting
set of the unperturbed system. As we will see, this setup ensures convergence of these
sets without additional conditions on the attracting set. Furthermore it allows a number
of implications to more specifically perturbed systems, like e.g. several types of numerical
approximations.

The question under consideration is the following: Assume that the perturbation, measured
e.g. by some real parameter «, tends to 0. Then, how fast do the corresponding strongly
attracting sets converge to an attracting set of the unperturbed system? Already simple
examples show that this question cannot be answered in general, but that the answer
strongly depends on properties of the unperturbed attracting set.

Here we introduce two conditions on the rate of attraction of attracting sets. The first is a
condition on the contractivity of a suitable family of neighbourhoods of the attracting set,
and will turn out to be equivalent to a related rate of convergence of the perturbed attract-
ing sets as the perturbation vanishes. The second condition is on the rate of attraction
of the attracted set. This condition is equivalent to a related rate of convergence of the
perturbed attracted sets plus the persistence of the rate of attraction under perturbation,
i.e. the perturbed attracting sets attract with the same rate as the unperturbed.

These conditions which can be seen as a generalization of the well known exponential at-
traction property can be regarded as one of the main contributions of the present paper.
The fact that they are equivalent to certain convergence and attraction rates of the per-
turbed attracting sets indicates that these are exactly the right conditions for the given
setup.

The results allow numerous applications, some of them will be discussed in this paper. For
instance they allows estimates for the (semicontinuous) discretization error for one-step
discretization of arbitrary attracting sets; in fact some results from [11] are improved even
in the exponential case.

This paper is organized as follows: After defining the general setup in Section 2, we briefly
discuss the behaviour of absorbing sets under perturbation in Section 3. In Section 4 and
5 we introduce the mentioned conditions and prove the equivalence results. Section 6 gives
slightly simplified conditions, and Section 7 discusses the special case of exponentially
attracting sets. In Section 8 we present a number of applications, and in Section 9 we
provide a number of illustrative examples.

2 Setup and Definitions

We consider the ordinary differential equation

#(t) = f(z(1)) (2.1)

in R”, and assume that f is globally Lipschitz with constant L. (Since we are only interested
in the behaviour on compact subsets this is no real restriction.) We denote the solution by
@o(t, x), and for subsets B C R™ we set ®y(t, B) := U,ep{Polt, z)}.

In order to measure distances between sets we make use of the following functions.
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Definition 2.1 Let ', D C R™ be compact sets. We define the nonsymmetric Hausdorff

distance by

dist(C, D) := ind(z,y),
ist(C', D) := max min d(z, y)

the Hausdorff metric by
dp(C, D) = max{dist(C, D), dist(D, C)},
and, if C' C D, we define the minimal distance d;, by

dmin(C', D) := inf min d(z, y).
(€, D) = inf min d(z, y)

Remark 2.2 Observe that for dist the following triangle inequality
dist(C, D) < dist(C, F) + dist(F, D) (2.2)

holds for all compact sets C, D, F C R".

Now we define the meaning of an attracting set. Recall that a set B C R" is called forward
invariant if ®q(¢, B) C B for all £ > 0.

Definition 2.3 Consider two compact forward invariant sets A, B C R™ with A C intB.
We call A attracting with attracted neighbourhood B, if

dist (®o(t, B), A) — 0

as t — 00.

We call A absorbing with absorbed neighbourhood B, if there exists T > 0 with

®o(T, B) C A

Remark 2.4 Note that these are local definitions, in the sense that we require the attract-
ing and absorbing property only in a neighbourhood of A.

Under our assumptions this definition of an attracting set is equivalent to the uniform
asymptotic stability property as defined in [11, Definition 2.7.3]. It is slightly weaker than
the notion of an attractor since no backward invariance of A is assumed here, see [11,
Theorem 2.7.4] for the precise relation.

Associated to (2.1) we consider the family of perturbed systems
i) = Fla(t)) + aw() (2.3)

for some real parameter o > 0 with w(-) € W := {w : R — [-1,1]", measurable}. The
systems (2.3%) can be interpreted as a family of control system with the original system as
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uncontrolled dynamics. We denote the solutions by ¢, (t, z, w), for x € R™ we abbreviate
O, (t,2) = Upewipa(t,z, w)}, and for B C R" we write @, (¢, B) := U,ep Palt, z).

Note that the implication
BCC = &, B) Cd,(t,C) (2.4)

is immediate for all ¢ > 0.

Definition 2.5 Fix some o > 0. For the perturbed system (2.3%) we call a set A, C R”
a-strongly forward invariant if ®,(t, A,) C A, for all t > 0.

Observe that by definition of ®,, any a-strongly forward invariant set also is an o/-strongly
forward invariant set for each o’ € [0, @).

Definition 2.6 Consider two compact a-strongly forward invariant sets A, B C R™ with
A CintB.

We call A a-strongly attracting with «-strongly attracted neighbourhood B, if
dist(®,(t,B), A) = 0

as t — 00.

We call A «-strongly absorbing with «a-strongly absorbed neighbourhood B, if there exists
T > 0 with
. (T,B) C A

Remark 2.7 If A attracts a compact neighbourhood B which is not a-strongly forward
invariant, then it also attracts its compact neighbourhood B := Usso @a(t, B) which is a-
strongly forward invariant. Thus forward invariance of B can be assumed without loss of
generality.

Observe that these Definitions for o« = 0 coincide with the corresponding Definitions for
the unperturbed system. Keeping this in mind we will now introduce further concepts for
both the unperturbed and the perturbed system by defining them for v > 0.

Definition 2.8 Let a > 0. Consider two compact a-strongly forward invariant sets
A, B C R™ with A C intB, where A is a-strongly attracting with attracted neighbour-
hood B

A family of compact, a-strongly forward invariant sets By, ¥ € R, which depend continu-
ously (w.r. to the Hausdorff metric dy) on ¥ and satisfy By = B is called an a-contracting
family of neighbourhoods if there exist T > 0 with

() A=Nyent Bo
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(i) By C By for all 9,9 € RF, 9 > 9

(iii) @, (T, By) C Bgyr for all 9 € RY.

Remark 2.9 (i) Any a-strongly attracting set A with attracted neighbourhood B admits
an a-contracting family of neighbourhoods for arbitrary T > 0 given by By = ¢, (9, B)UA,
¥ € BY. Conversely, if A admits an a-contracting family of neighbourhoods it is easily
seen that it is attracting.

(ii) Using a suitable parametrization an a-contracting family of neighbourhoods can also be
constructed from the sublevel sets of some Lyapunov function for the attracting set A.

3 Absorbing Sets under Perturbations

We start our analysis of the perturbation effects by considering the absorbing sets. Here
the situation is rather simple, however, for sake of completeness we like to include it.

Theorem 3.1 Consider system (2.1) and the perturbed family of systems (2.3%). Let A
be a compact forward invariant set for system (2.1). Then A is an absorbing set for system
(2.1) if and only if there exists an ag > 0 such that A is an a-strongly absorbing set for
system (2.3%) for each a € [0, ag).

Proof: “«&” follows immediately from the assumption. In order to see “=" let A be
an absorbing set for system (2.1), and let B be its absorbed neighbourhood. Then there
exists 7' > 0 such that ®&q(7T,B) C A. Since both A and ®¢(7, B) are compact this
implies dpin(®o(T, B), A) =: ¢ > 0. Hence for each & < ¢/(e!TT) Lemma 10.1 implies
¢, (T,B) C A, ie. Ais a-strongly absorbing. [l

4 Attracting Sets under Perturbations

For general attracting sets A of system (2.1) the situation is less simple. Here we cannot
expect that A also is an a-strongly attracting set for small o > 0. Instead, we can only
ensure the existence of a-strongly attracting sets A, which are close to A. In order to
estimate how close they are we introduce a measure for the contractivity of an a-contracting
family. Here we use a function v : Ry — RY satisfying the following conditions.

7 is strictly increasing and continuous with v(0) =0 (4.1)
for all sg, r > 0 there exist 7, 7 > 0 with 7y(s) < y(rs) < ry(s) for all s € [0,s0] (4.2)
Typical examples of v are v(s) = s/ or y(s) = s'/*1In(1/s), where k € N. Using this
function v we can now define the rate of attraction.
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Definition 4.1 Let v : R} — RY satisfy (4.1)-(4.2), and let @ > 0. A a-contracting
family By for some a-strongly attracting set A is called contracting with contraction rate
v, if for some constant C' > 0 with Cy(s) > s for all s € R{ it satisfies

dp (B, A) < CY(dmin(®o (T, By), By)) for all 9 € B{.

This definition requires that the rate of contraction of the sets By can be estimated from
above by the distance from the attracting set. Note that, although Remark 2.9(i) gives a
constructive existence result for a-contracting families of neighbourhoods, the neighbour-
hoods obtained there via ®, might not be suitable for our purpose, cp. Example 9.1, below.
Obviously, only the values of + for small s are important in this definition.

A short computation reveals that Definition 4.1 implies (but is in general stronger than)
diSt(q)oz(Tv Bﬁ)v A) < :V(dH(BQ% A))

with 9(s) = s — v7!(s)/C. Note that if A is not absorbing this immediately implies
¥(s) > 0 for all s € [0, di(Bo, A)], hence y(s) > s/C', i.e. the assumption in Definition 4.1
is automatically satisfied.

Now we can state our first theorem on the perturbation of attracting sets.

Theorem 4.2 Consider system (2.1) and the perturbed family of systems (2.3%). For
system (2.1) consider compact and forward invariant sets A, B C R™ with A C intB. Let
v :RE — R satisfy (4.1)—(4.2). Then the following properties are equivalent.

(i) A admits a 0-contracting family of neighbourhoods By with By = B and contraction
rate .

(ii) For suitable constants K, a* > 0 and all a € (0, a”] there exist a-strongly attracting
sets A, of (2.3%) with attracted neighbourhood B and A C A, which satisfy

dir(Aos A) < Ky(a).

Proof: (i) = (ii): Let By be the 0-contracting family of neighbourhoods which satisfies
C (dnin(®o(T, By), By)) > di(Bg, A) for all i € N. We define a new contracting family
of neighbourhoods By by setting

BQ? = U q)oz(ﬁ)(t7B19)7
te0,T]

where a(9) is chosen such that Cy(e*TTa(d)) = dy(By, A). Observe that «(9) is mono-
tone decreasing and continuous. The assumption on the By and the choice of a(?) together
with Lemma 10.1 ensure @a(ﬁ)(T7 Bg) C By, implying that each By is a-strongly forward
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invariant for all a < 7_1(dH(B19~, A)/2C) /e*T'T. Furthermore, the 0-forward invariance of
By and Lemma 10.1 imply dg(Bg, A) < elTTa(d) + dg(Bg, A) < 2dp(By, A). Since
o (21, By) = ®o(T, ®o(T', By)) C ®o(T', By) C Bosr C Bogr
N— ——
CBy
these sets form a contracting family of neighbourhoods for A with contraction rate v,
T =2T and C' = 2C.

Now choose o > 0 with C”y(eQLTQTa*) < dp(B,A), and fix some a € (0,a"]. Since
dp(Bg, A) depends continuously on ¢ and converges to 0 by the intermediate value theorem
we find 9, > 0 with Cy(e"?72Ta) = dg(By,,, A) and Cvy(e272Ta) < dy(By,, A) for all
9 € [0,9,].

We claim that )
Ay = By,

satisfies assertion (ii): From the choice of ¥, and (4.2) we know that

d(By,, A) = Cy(e*2Ta) < Kv(a)
for some suitable constant K > 0. Furthermore, by the construction of the By and the
choice of 9, each set By, ¥ € [0,4,] is a-strongly forward invariant.
It remains to show that A, is a-strongly attracting with attracted neighbourhood B. By
the choice of 9, and the rate of contraction we know that

dinin(®0 (2T, By), Bgv) > "2T2Ta for all 9 € [0, o0) (4.3)

where 9* = min{¥ + T, 9,}. Thus from Lemma 10.1 we obtain

@, (2T, By) C Bygs for all 9 € [0,00).
By induction this implies ¢, (29,, B) C Bga = A,, thus A, is an a-strongly absorbing set,
hence also an a-strongly attracting set.

(i) = (i): We may assume Az C A, for all 0 < & < a < o, otherwise we may use the
sets A, = ﬂﬁe[a,a*] Ag, which are easily verified as a-strongly attracting sets.

We inductively construct a positive sequence «;, a nonnegative sequence ¥;, and a family
of sets By by setting ag = o*, By = B, ¥y = 0, and, for ¢ € Ny

ﬁi-l-l = mln{ﬁ € [1927 OO) | dH((I)OZz(ﬁ - ﬁiv Bﬁi)v Aozi) < 7(042)}
By = (I)al. (19 — 192', Bﬁi) U Aai, 9 (192', 192'+1]
Q;
Qi1 = ?

Since by attractivity dist(®,, (¢, By,), As,) — 0 as t — oo the time 9,4 exists for all ¢ and
thus we obtain «; — 0 as ¢ = co. This construction implies

di(Bg, Aza;) < 7(20) (4.4)
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for each ¥ € [¥;, 00) with ¢ > 1.

We claim that the By form a 0-contracting neighbourhood for A and system (2.1) as defined
in Definition 2.8: In order to prove this fix some ¢ € Ng and some ¥ € (¥;, ¥;41]. Obviously
the family By is continuous w.r. to the Hausdorff metric. Then Property (i) follows from
the inclusion A C A,, C By, from di(A,,, A) — 0 as ¢ — 0o, and from (4.4). Property (ii)
follows since by construction By is a;-strongly forward invariant, hence also «;/2-strongly
forward invariant, and Property (iii) follows directly from the construction.

It remains to show the rate of contraction, which we will in fact show for arbitrary T" > 0.
By construction, each By, ¢ € (9;,9;41] is a;-strongly forward invariant, thus by Corollary
10.3 we know that there exists Ky > 0 such that

dmin(q)O(T7 qu), qu) > Koy for all 9 € (192', 192'4_1]. (4.5)
On the other hand, by (4.4) and by assumption on the A, we know that
dr(By, A) < dp(By, Aza,) +du(Aza,, A) < 7(20;) + Kv(20) for all 9 € (9;,di41] (4.6)

and all 7 > 1 (i.e. oy # o). If ¢ = 0 by compactness of By there exist constants C1,Cy > 0,
independent of @ € [0, ¥] with

d]’{(Bﬁ7 A) S Cl S 027(2040). (47)
Thus by (4.6), (4.7), and (4.2) there exists K3 > 0 such that

di(Bg, A) < Kay(a;) for all @ € Ng and all 9 € (94, ¥;44]. (4.8)

Putting (4.5) and (4.8) together and once more using (4.2) we obtain

. . K
Y (dmin(®o(T, By), By)) > v(Kia;) > Kiy(e;) > F}dH(Bq97A)
2
i.e. the assertion. {1

Remark 4.3 (i) Note that in fact we have proven the existence of absorbing sets A, for
system (2.3%).

(ii) If in the second part of the proof we fix some & € (0, a*) we can set a1 = (o + @) /2
instead of ajry = «; /2, and obtain an a-contracting family of neighbourhoods for As. Then
a straightforward modification of the arguments shows that this family is contracting with
rate v and constant C' independent of é.

5 Attraction Rates and Perturbations

The contractivity condition from Definition 4.1 for each sufficiently small o > 0 ensures
both the existence of an attracting set for the perturbed system and the existence of an
attracting neighbourhood with the same contraction rate, cf. Remark 4.3(ii).
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However, often one is also interested in the rate of attraction of the attracting set, i.e. given
an attracted neighbourhood B one would like to know how fast &, (¢, B) converges to A,.
The contractivity condition from Definition 4.1 in general does not give any information
about this rate. The following definition gives a stronger condition which can be used for
this purpose.

Definition 5.1 Let v : Ry — RBF satisfy (4.1)-(4.2), and let o« > 0. An a-strongly
attracting set A is said to have attraction rate v, if for some T > 0 it admits an «-

contracting family of neighbourhoods By which for some constant C' > 0 satisfies Definition
4.1, and

dH(B§7 A) < C’y(dmin(BQH_T, Bﬁ)) for all ¥ € RS_ with Byyr 75 A.

This condition includes the contraction rate of Definition 4.1, but is slightly stronger since
it also gives information about the distance between the By, i.e. we obtain

A (Bosrr, A) < 7¥(By, A), (5.1)

where 7(s) = s — y7!(s)/C, and ¥* denotes the k-fold concatenation of 4. In particular
this yields an explicit rate for the convergence Byr — A as k — oo.

Similar to Theorem 4.2 we can now state a relation between the perturbed and the unper-
turbed systems.

Theorem 5.2 Consider system (2.1) and the perturbed family of systems (2.3%). For
system (2.1) consider compact and forward invariant sets A, B C R"™ with A C intB. Let
v :RE — R satisfy (4.1)—(4.2). Then the following properties are equivalent.

(i) A is attracting with attracted neighbourhood B and attraction rate .

(i) For suitable constants K, a* > 0 and all a € (0, a*] there exist a-strongly attracting
sets A, of (2.3%) with attracted neighbourhood B and A C A, which satisfy

di(Aa, A) < Kvy(a)

and are attracting with rate ~.

The corresponding a-contracting families By realizing this rate can be chosen in such
a way that for each ¥y > 0 there exists @(dy) > 0 with

BS = B for all ¥ € [0,9] and all o € (0, &(9p)], (5.2)

and that the time 7 in Definition 2.8 and the constant C' > 0 in Definition 5.1 are
independent of «.
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Proof: (i) = (ii): Consider the 0-contracting family of neighbourhoods By satisfying
Definition 5.1.

Fixing some a € (0, @*] we proceed as in the first part of the proof of Theorem 4.2, define
the value ¥, and the set A, = qua. Since Definition 5.1 includes Definition 4.1 we can
again conclude that A, is an a-strongly attracting set which has the desired distance from
A. In addition, the third inequality in Lemma 10.1 implies that passing from the By to
the By preserves the rate of attraction from Definition 5.1 by suitably enlarging C' > 0.

It remains to show the rate of attraction for A,. We will accomplish this by constructing
a suitable a-contracting family of neighbourhoods for T = 2T. Consider the family of
neighbourhoods given by Bg = qu/z for ¥ < 29,, and By = By, = A, for 9 > 20,. From

the properties of the By this family satisfies the inequality
dp(Bj, As) < du(By, A) < Cv(dmin(Bj 1, B))

for all ¥ € BE with B§+T #+ A,, and some suitable constant C' > 0. Furthermore,
translating inequality (4.3) to the BY yields

dmin(®o(T', By), BS, 1) > e"TTa for all 9 € [0, 00).
Thus by Lemma 10.1 we obtain the inclusion
@, (T, B§) C By for all 9 €[0,00).
Obviously, these families Bj satisfy (5.2), hence the assertion follows.

(i) = (i): For each « € (0, @*] denote the a-contracting family of neighbourhoods by Bj.
We set

By == B
for &(¥) from (5.2). Note that for each ¥y > 0 this implies
By = By for all 9 € [0,9] and all « € (0, &(dp)]- (5.3)

Thus continuity of By in ¢ follows, and the properties A = (\;z+ By and By C By
0
for 9 < 9 are immediate from A, = Nyt By, By C By for each a € (0,7, and
0
di(Ay, A) = 0 as a — 0.

Furthermore, for any ¥ > 0 (5.3) implies

Do(T, By) = Bo(T, B3) C Bl BS) C Biyr = Bosr
for o € (0,&(0 4 T1)].
In order to obtain the rate of attraction observe that Byy7r # A implies Byy1 # ByyT+1,
for some sufficiently large ty > 0. Thus By, # B§, 1y, forall a € (0,&(9+T +1y)], and
consequently By, ; # A,. Henceforall ¢ € R with Bypr # A and all a € (0, (94T +ty)]
we have

Cy(dmin(Bg, Bo+r)) =

|
Q
-
.
el
/:ﬂ
o3
518
o3
o
+
=D

(AVARAV

Il
2.
T
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Thus, letting o« — 0 the desired inequality follows. a

Remark 5.3 (i) Again we explicitely constructed absorbing sets for the perturbed system.
This implies that for each fixed o we could indeed obtain arbitrary fast rates of convergence
by choosing the constant C' > 0 or the time T > 0 sufficiently large. Thus the important
property in (ii) is the uniformity of C > 0 and T' > 0 with respect to «.

(ii) A particular (and rather natural) choice of A, would be the smallest a-strongly attract-
ing set containing A (in a differential inclusion setting a similar object is considered in [9]
under the name “inflated attractor”). However, Example 9.3, below, shows that for this
smallest set the assertion of Theorem 5.2 might not be true.

6 A simplified criterion

An a-contracting family of neighbourhoods meeting the conditions in the Definitions 4.1
and 5.1 might be difficult to construct. One reason for this is the continuity requirement
for the family By in @. This requirement, however, is not really necessary. In this section
we indicate how such a continuous family can be constructed if we only have a discrete
family of neighbourhoods.

Assume we are given a “discrete” a-contracting family of neighbourhoods, i.e. a countable
sequence of sets B;, ¢ € Ny, satisfying By = B, and

(i) A= ﬂiENo BZ
(ii) Bi—l—l C B, for all i € Ny

(ili) (T, B;) C By for all i € Ny,

If this family satisfies

di(B;, A) < Cy(dmin(®u (T, B;), By)) for all i € Ny (6.1)
or ~ ~ ~
dH(BZ'7 A) < C'Y(dmin(Bi-l—ly BZ)) for all 7 € Ng, (6.2)

respectively, then there also exists a a-contracting family of neighbourhoods satisfying
Definition 4.1 or 5.1, respectively.

This holds, since the family B; can always be extended to a continuous family By depending
on ¥ € RY. For this purpose we set

Bipn = | @alt,{e € Bi| (1 n)d(x,0B,) > nd(x, Bipa)})
te0,T]

for each 1 € [0,1) and each ¢ € Ny which gives a continuous family of a-strongly forward
invariant sets with B; = B; for ¢ € Ny. If (6.2) holds we can inductively restrict these sets
via

By, = {2 € By, | Cy(d(®u(t,x),0Bi_14,)) > dig(Bi_14,, A) for all t €[0,T]} (6.3)
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forn € [0,1]and ¢ =1, 2, .... Here (6.2) and the forward invariance imply that the sets B;,
1 € By remain unchanged, thus this family is well defined and continuity in # is ensured.

In both cases we set By := BWQT; if (6.2) holds the restriction (6.3) immediately implies
Definition 5.1.

Furthermore ) ) ) )
@, (2T, Bryy) C ©4(2T, Br) C Bryo C Bryiqy

holds for all k € Ng and all i € [0, 1], hence
&, (2T, By) = © (2T, By jar) C Byjary1 = Bogar

Thus by using 27" instead of 7' we obtain property (iii) of Definition 2.8 and—if (6.1)
holds—the condition of Definition 4.1.

7 Exponentially Attracting Sets

In general the contraction or attraction properties in the Definitions 4.1 and 5.1 (even in
the simplified version from Section 6) might be difficult to check. There exists, however, a
special case allowing particularly nice estimates.

Definition 7.1 Let A be an a-strongly attracting set. We call A exponentially attracting,
if there exist an attracted neighbourhood B and constants 5 > 1, A > 0 such that for each
x € B and each w € W the estimate

dist(¢a(t, 2, w), A) < e d(z, A)

holds.

Remark 7.2 Ezponential attraction of an attracting set for the unperturbed system (2.1)
is guaranteed e.qg. if it is a compact hyperbolic set. See e.g. [2, Section 4] for a discussion of
this fact in a discrete time setting (which applies here since we consider the time T-map).

Exponential attraction has been investigated and used by a huge number of authors, see
e.g. [2, Section 4], [11, Chapter 7], [3], [5], to mention just a few references. In the language
of Definition 5.1 it translates into the following rate of attraction.

Lemma 7.3 Let A be an a-strongly exponentially attracting set with attracted neigh-
bourhood B. Then for each C' € (3, 00) there exists T' > 0 such that A is attracting with
attraction rate v(s) = s and constant C. Conversely, if A is a-strongly attracting with
attraction rate v(s) = s and some constant C' > 0 then it is exponentially attracting.

Proof: Consider the balls B(4, A) := {x € R¢|d(z, A) < 4§}, and fix some & such that

8(50714) C B. Set
c-p

|
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and By := ;> @a(t, B(6(9), A)).
Then the fami_ly By satisfies
Cdmin(Bg, Bsyr) > C(8(0) = (9 +T)) = p6(9) > dp(Bg, A)
and from the exponential estimate we can conclude
dp(®o(T, By), A) < (9 +T),

hence the desired inclusion
®, (T7 Bﬁ) C B19+T-

For the converse implication observe that the assumption immediately yields
dist(®, (kT, Bg), A) < (1 — 1/C)*dp(Bg, A)
which by Lemma 10.4 implies
dist(®,(t, By), A) < fe~dy(Bg, A)
for suitable constants § > 1, A > 0 and all £ > 0. Since furthermore the estimate
di(Bg, A) < Cdumin(Bg, Bs+1) < Cdmin(Bg, A)

holds by Definition 5.1 this implies the exponential estimate for each x € B with 8 =
Cp. N

The following corollary is now an easy consequence of Lemma 7.3 and Theorem 5.2.

Corollary 7.4 Consider system (2.1) and the perturbed family of systems (2.3%).

For system (2.1) consider compact and forward invariant sets A, B C R" with A C intB.
Then the following properties are equivalent.

(i) A is exponentially attracting with attracted neighbourhood B.

(ii) For suitable constants K,a* > 0 and all a € (0,a*] there exist a-strongly expo-
nentially attracting sets A, of (2.3%) with attracted neighbourhood B and A C A,
which satisfy

dp(Aa, A) < Ko

The corresponding a-contracting families By realizing this exponential rate can be
chosen in such a way that for each ¥y > 0 there exists @(dy) > 0 with

BY = BY for all 9 € [0,9] and all & € (0, &(9)],

and that the time T in Definition 2.8 is independent of «, furthermore also the
constants § and C from Definition 7.1 are independent of a.
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8 Applications

In this section we will give a few straightforward applications of the Theorems 4.2 and 5.2.
The purpose is to illustrate possible applications rather than elaborating these as far as
possible. Stronger results might be possible but are beyond the scope of this paper.

8.1 Numerical Approximations by One-Step Schemes

The question of the behaviour of attracting sets under numerical discretization has first
been investigated in [10], and then further elaborated by various authors, see [11] for a
comprehensive description.

Agsume we are given a numerical one step scheme described by a family of continuous
maps 9, : R” — R"™, h € (0, H], satisfying the convergence property

I[SK(t, z0) — wolt,zo)|| < C(¢)AY for all t =hi, i €N (8.1)

where C'(t) is a constant independent of 2y and h. (In general such an estimate will only
be valid as long as Sy(t, zo) and ¢o(t, zo) stay inside some compact subset of the state
space; here we assume it without loss of generality on the whole R™ since one could always
use a suitable cutoff technique for the vector field leaving the dynamics unchanged in a
neighbourhood of the compact attracting set A.)

The precise relation between numerical one-step schemes and nonautonomous perturba-
tions of system (2.1) is investigated e.g. in [4, 12]. For our purpose it is sufficient that
from Corollary 10.3 and (8.1) for each 7" > 0 we can conclude the existence of a constant
M = M(T) > 0 such that for each h € (0, H] and each o > MAP the inclusion

Sk(t,B) C ®,(t,B) for all B C R"

follows for all t = ih, i € N with t € [0,7]. Thus any a-strongly attracting set for system
(2.3%) with @ > MAP is an attracting set for the discrete time semidynamical system
induced by S}. This observation immediately implies the following Corollary of Theorem
4.2 and Corollary 7.4.

Corollary 8.1 Let S;, h € [0, H] be a family of numerical one-step approximations for sys-
tem (2.1) satisfying (8.1). Let A be an attracting set for (2.1) which admits a 0-contracting
family of neighbourhoods By with By = B and contraction rate . Then there exists a
constant K > 0 such that for all A > 0 sufficiently small there exist attracting sets Ay for
the discrete time semidynamical systems induced by S} with attracted neighbourhood B,
A C Ay, and

dH(Ah, A) < I(’y(hp).

If, in particular, A is exponentially attracting then the estimate
dH(Ah7 A) < Kh?

holds.
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Remark 8.2 In the case of exponential convergence this Corollary improves [11, Theorem
7.6.4]. In the general case, estimates for the rate of convergence—to the best of the authors
knowledge—are not available at all in the literature.

8.2 Iteration of perturbed time-r maps

One way to approximate attractors A (i.e. attracting sets which are invariant) of system
(2.1) is by iterating the time-7 map ®o(7, ), beginning with the attracted neighbourhood
B. Assuming Definition 5.1 it immediately follows from (5.1) that for 7 = k7', k € N, the
resulting sequence By = B, B;y1 = ®o(7, B;) satisfies

dH(Biv A) < :Vki(dH(BOv A))v

where 7(s) = s — y71(s)/C, and 7* denotes the k-fold concatenation of 7.

Any algorithmic implementation of this iteration, however, must use some discretization
of the state space in order to represent the sets B; in a suitable data structure (see e.g. [2]
for a discussion and implementation of a similar iteration). Denoting this representation
by B; this results in the iteration Bit1 = ®(T, BZ)

If we assume B; C B; and dp (B, BZ) < @, then we can “embed” this sequence into the
following iteration

BO = B, Bi-l—l = q)oz,‘(Tv Bz)
Corollary 10.3 ensures the existence of a constant M > 0 such that for oy = Mp; the
inclusion B; C B; holds for all 7 € N.

The following proposition gives an estimate for dy(B;, A), and by the preceding discussion
it can also be used for estimating dH(BZ'7 A). For simplicity of exposition here we assume
that 4 is monotone increasing (this is not in general guaranteed by the properties of 4 but
a reasonable assumption, cp. the exponential case above).

Corollary 8.3 Consider the system (2.1) and let A C R™ be a compact, forward invariant
set which is attracting with attracted neighbourhood B and attraction rate 7. Let «;,
i € N be a positive sequence with a; — 0 as i — oc. Consider the sequence of sets B;,
t € N defined inductively by

BO = B, Bi—l—l = q)oz,‘(Tv B2)7
where 7 = kT for k € N and the time T from Theorem 5.2(ii). Assume oy < o* from
Theorem 5.2(ii).

Then there exists a constant K > 0 independent of the sequence «;, ¢ > 1, such that the
estimate '
dist(B;, A) < max 30D (Ky(a)) (8.2)
1€{0,....5}
holds for all i € Ng and ag = v~ (dp (B, A)/K).

In particular if Kv(e;) < 7%(K7y(a;_y)) for all i € N the estimate

dist(B;, A) < 7% (dg(Bo, A))
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holds, and if Kv(a;) > *(K~(a;_1)) for all i € IV the estimate
dist(B;, A) < Kv()

is implied.

Proof:  Consider the contracting family of neighbourhoods By of A, and recall the
construction of the families B§ and the attracting sets A, in Theorem (5.2)(ii). Let K >0
be the constant from this Theorem.

By the construction for each i € Ny there exists ¥; > 0 such that B; C By,, where, for
¢ > 1, either By, = A,, or By, = By,_,4xr. Thus Theorem 5.2 together with (5.1) yields
the assertion.

The two special cases immediately follow from the monotonicity of 7. [l

Remark 8.4 (i) If we assume the set A to be an attractor (i.e. an invariant attracting
set) we get the same estimates with the Hausdorff metric dy instead of the nonsymmetric
distance dist.

(ii) The embedding of the B; into the B; will in general not produce the best possible
constants for this iteration. For a sharper evaluation of the constant K in estimate (8.2),
the proof of Theorem 5.2 could be performed using the map &)a(-, ) = B(B;, Po(+, -)) instead
of ®,(+,-). The asymptotic rate of convergence, however, cannot be improved.

(iii) The similar estimate can be obtained if we consider an arbitrary Lipschitz map F(-)
instead of the time-r map ®o(7,-), and construct ®, as in (ii).

8.3 Control Sets

In mathematical control theory one basic property is controllability, i.e. the property that
for each two points z, y in the state space there exists a controlled trajectory from z to
y. In general, this will only be possible in certain subsets of the state space, the so called
control sets, see [1] for a comprehensive exposition.

One situation in which the existence of control sets can be shown is when the uncontrolled
system exhibits an attractor on which it is chain recurrent. Under some conditions then
there exists a control set around this attractor, cp. [1, Corollary 4.7.2]. This property may
be used e.g. in order to approximate this attractor numerically, see [6] or [1, Chapter 13

and Appendix C].

Using Theorem 4.2 we can give an estimate about the distance between the attractor and
the control set.

Corollary 8.5 Let f(ac, u), u € U? be a control system on R" satisfying

I f(z,u) — f(z)]| < Cp for all z € R™, u e U’
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for some C' > 0 and all p € (0, p*] for some p* > 0. Let A be a connected attracting
set for system (2.1) on which the system is chain recurrent and let f satisfy the condi-
tions of [1, Corollary 4.7.2]. Assume furthermore that A admits a 0-contracting family of
neighbourhoods with contraction rate ~.

Then there exists a constant K > 0 such that for all p > 0 sufficiently small there exists

an (invariant) control set D? containing A and satisfying

dir(D?, 4) < K (p).

Proof: The existence of the control set D follows from [1, Corollary 4.7.2].

Under our assumption each Ca-strongly attracting set for system (2.3%) is a strongly
attracting set for the control system given by f. Since in particular no controlled trajectory
can leave a strongly attracting set, the control set D? around A must be contained in this
set. Thus Theorem 4.2 implies the assertion. a

9 Examples

In this section we provide a number of examples illustrating the previous results.

We start with a rather simple example which, however, shows that a suitable 0-contracting
family of neighbourhoods has to be chosen with care.

Example 9.1 Consider the differential equation in R? given by
il = —2$1
ig = —23.

The solution of this equation is given by

e_ztxl
wo(t,v) = ( e~try .
Obviously, the set A = {0} is an exponentially attracting set; in particular the family of
neighbourhoods By = B(e?,{0}) satisfies Definition 5.1 with 7" > 0 arbitrary, v(s) = s
and C' =1/(1- e_T). Consequently, by Theorem 5.2 we expect the existence of a family
of a-stongly attracting sets A, converging linearly to A = {0}. It is easily verified that the

sets A, = {42% + 22 < o?} form such a family, in fact this is the smallest possible choice

of A,.
Following Remark 2.9(i), a family By can also be obtained by setting

By = @(9,B(1,{0})) = {o € B[ eVl 4 c27a} < 1),
This family, however, meets neither Definition 4.1 nor Definition 5.1 with ~(s) = s, since

di(Bg, A) = e, and  dmin(Byg, Byyr) = e 20T,



18 LARS GRUNE

thus d7(Bg, A) = ¢"t2Tdpin(Bg, Boyr), and 9127 — 00 as 9 — oo.

Observe that this corresponds to the fact that the (minimal) a-strongly attracting sets A,
in this example have minimal distance a/2 from A = {0}. If the By met Definition 4.1 the
construction in the proof of Theorem 4.2 would yield sets A, with dmin(A4a, A) < Ka? for
some constant K > 0 which is not possible.

Summarizing, this example shows that the use of the flow ®q itself to generate the family
By will in general not yield the desired properties—even in very simple exponentially
attracting systems.

With the second example we illustrate the results for slower than exponential attraction.

Example 9.2 Consider the differential equation in R? given by

. k
L1 = Ta — H H(H H_1)1+
. k
T2 = —I1 - W(H ol =)t
for some k € .
Denoting r(t) = ||z(t)]| — 1 a straightforward computation yields that any solution satisfies

r(0)
rtr(0)k £ 1

r(t) =

i.e. in particular the set A = B(1,{0}) is an attracting set. A O-contracting family for A
with 7' =1 is given by By = B(6(¥) + 1,{0}) with

1
5(0) = o=

Since §(94+1) = 6(9)/+/ké(9)* + 1, and since by Taylor expansion one gets {/kd(3)* + 1 =
L4 6(9)% + O(8(9)**1) we obtain
D) SRSV, +1—06(0
5(9) =80 +1) = \/7 (D)1 +O(6(9)+2),
o/ kS()F + 1

and consequently for some suitable constant C' > 0 depending on k& but not on ¢

Cdmin(Bg, Bgy1) /) = C(5(9 4 1) = s(0)V/*+D > 5(t) = di(By, A).

On the other hand, it is immediately seen that the boundary of the (smallest) a-strongly
attracting set A, containing A is given by

z € R? with (||z]] — D)'HF = q,
hence A, = B(1 4 o/+1) {0}). Again we obtain the result expected from Theorem 5.2

Observe that by minimality of the A, this also yields that the rate of attraction 1/(1 + k)
is optimal, and that in this example the rate of attraction is immediately seen from the
vectorfield.
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In the following example we illustrate the fact, that the assertion of Theorem 5.2 might be
wrong if the A, are chosen as the smallest a-strongly attracting set.

Example 9.3 Consider the differential equation in R' given by

. —oFtL (g — 2R)221k g e 2k 9RF1) kez
= f(z), flz)= { okt1 4 Eﬂf B 2k;221—k v e %_Qk-l—l ]_Qk] ke

A short computation reveals & < —5z/3 for x > 0 and & > —5x /3 for < 0, hence A = {0}
is an exponentially attracting set. Setting By = [-277,277] for ¥ € BT we obtain a 0-
contracting family of neighbourhoods for 7'= 1 with dy(Bg, A) = 270 — dmin(Bg, Bst1)-

For any o > 0 we obtain the set A, = {—a, a} as a-strongly attracting set, which has the
same rate of attraction as A for the unperturbed system. For v = 277, i € N the smallest -
strongly attracting set is A, = [—«a/2, a/2]. Here, however, we obtain the (local) estimates
fl@)+a>—(v—a/2)?22'7% for x > @, 2 close to a, and f(z) — a < (z — a/2)?2' 7% for
z < —a, x close to a.

Thus for any set B = [—f1, 2], b1, B2 > a/2, 81, B2 close to a/2, we obtain

dmin(q)oz(B)7 B) S min T(ﬁz - 04/2)2 S TdH(B7 Aoz)27

i
1=1,2

and consequently, here a rate of attraction v with v(s) = s is impossible.

10 Appendix: Relation between ®&; and &,

In this appendix we provide some technical but straightforward lemmas which allow us to
estimate the difference between ®q(¢, B) and ¢, (¢, B) from above and below. Furthermore,
we state immediate consequences from Gronwall’s Lemma on the continuity of ®,.

Lemma 10.1 For each two compact sets B C €' C R™ and all ¢, o > 0 the inequalities
di(®o(t, B), ®a(t, B)) < e"'ta,

di (9, (L, B), ®,(t,C)) < dy(B,C)

and
dmin(q)oz(tv B)7 q)oz(t7 C)) 2 e_Ltdmin(B7 C)
hold.
Proof: Immediately from Gronwall’s Lemma. a

Lemma 10.2 For each zg € R", each 7" > 0 and each z € R” with ||z — o(T, z0)|| <
a/(L+1/T) there exists w € W with ¢o (T, 20, w) = 2.
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Proof: Fix T, zg and z as in the assumption and define a function F: R x R™ — R” by

F(t,y) = flpolts zo)) = f(y)-

Obviously ||F'(t,y)|| < L||ly — o(t, zo)||, furthermore F' is Lipschitz in y uniformly in ¢ and
continuous in t. Hence the time varying perturbed differential equation

§(t) = fly) + F(t,y) + u(t) (10.1)

has unique solutions on [0,7] for any bounded and measurable function u : R — R™
For initial time ¢y = 0 and initial value yo we denote these by (¢, yo,u). Now denote
Az =2 — ¢o(T, zo) and consider u = Az/T. Then the solution of (10.1) satisfies

Ot o) = aco—l—/otf(lb(t,xo,u))—|—F(t,¢(t,x0,u))—|—Ax/Tdt

= ot [ ' F(golt, zo)) + Ax/Tdt

for each ¢t € [0,7]. On the other hand, consider the function ¢(t) := @o(t, z0) + tAz/T.
This function satisfies

g(t) = 20+ /Otf(@o(two)) + Az /Tdt

thus we can conclude (¢, z0,u) = g(t), hence in particular (7T, 29, u) = z. Setting
w(t) == (F(t,¥(t,z0,u)) + Az/T) /o we obtain ¢, (t,z,w) = ¥(t, zo, u), i.e. the desired

solution, and
[w@ < (LltAz/T|| + [[Ax/T|| < (L + 1/T)||Az]]) /e < 1

implying w € W. [l

Corollary 10.3 For each compact B C R™ and each T > 0 the inequality
dmin(q)O(Tv B)7 (I)Oé(Tv B)) > Oé/(l/T + L)

holds.
Proof: Immediately from Lemma 10.2. i

Lemma 10.4 Consider a compact A C R™ which is forward invariant for system (2.1) and
a compact set B D A. Then for each T > 0 the estimate

dist( |J ®o(t,B), A) < e"Tdp(B, A)
te0,T]

holds.

Proof: Immediately from Gronwall’s Lemma. a
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