
ON NUMERICAL ALGORITHM AND INTERACTIVEVISUALIZATION FOR OPTIMAL CONTROLPROBLEMS �Lars Gr�uneInstitut f�ur MathematikUniversit�at AugsburgUniversit�atsstr. 1486135 Augsburg, Germanylars.gruene@math.uni-augsburg.de Martin MetscherInstitut f�ur Angewandte MathematikUniversit�at BonnWegelerstr. 653115 Bonn, Germanymetscher@iam.uni-bonn.deMario OhlbergerInstitut f�ur Angewandte MathematikUniversit�at FreiburgHermann-Herder-Str. 1079104 Freiburg, Germanymario@mathematik.uni-freiburg.deAbstract: We present methods for the visualization of the numerical solution of optimal controlproblems. The solution is based on dynamic programming techniques where the correspondingoptimal value function is approximated on an adaptively re�ned grid. This approximation is thenused in order to compute approximately optimal solution trajectories. We discuss requirements forthe e�cient visualization of both the optimal value functions and the optimal trajectories and de-velop graphic routines that in particular support adaptive, hierarchical grid structures, interactivityand animation. Several implementational aspects using the Graphics Programming Environment'GRAPE' are discussed.Keywords: visualization, optimal control problems, dynamic programming, hierarchicalgrid structure, interactivityAMS Classi�cation: 68U05, 49L20, 65N501 IntroductionThe numerical solution of optimal control problems using dynamic programming tech-niques or Hamilton-Jacobi-Bellman PDEs has been an active �eld of research for the lastfew decades, cf. e.g. [3] for an overview. In contrast to trajectorywise approaches like�This paper has been written while the �rst author was a member of the Graduiertenkolleg \NonlinearProblems in Analysis, Geometry und Physics" (GRK 283) �nanced by the DFG and the State of Bavaria.Research partially supported by the DFG Schwerpunkt \Ergodentheorie, Analysis und e�ziente Simulaiondynamischer Systeme" 1

2 L. GR�UNE, M. METSCHER AND M. OHLBERGERPontryagin's maximum principle this method allows a global solution to optimal controlproblems by calculating their optimal value functions.Recently, many achievements of modern numerical analysis and scienti�c computing likeadaptive state space discretization [10], high-order schemes [6] and e�cient iterative schemes[9], [18] have been adapted to this problem and made it possible to follow this approach alsofor problems in more than two space dimensions. Furthermore, the concept of discrete orsampled feedback control has turned out to form a suitable class of control functions real-izing approximately optimal solution trajectories and being compatible with the numericaldiscretization, see [8].Until now, however, not much e�ort has been put into the development of e�cient visual-ization tools for the numerical solution of these problems in three or even higher dimen-sional state spaces. For one and two-dimensional problems existing standard visualizationprograms could be used, although even in these cases features like interactivity and ani-mation are in general missing. The situation gets worse if three-dimensional problems areto be handled for which e�cient numerical methods as cited above have been used for thesolution.First, adaptive grids for the discretization of the state space (and corresponding hierar-chical data structures) are rarely supported by standard software, hence projections ofthe solution data onto equidistant grids or conversion of the data structure are necessary,resulting in slow performance or poor output. Second, visualization routines for three-dimensional solution trajectories producing a 3d-output that is clear and easy to interpretare di�cult to �nd. If in addition one demands both interactivity (i.e. a direct couplingwith the numerical routine) and animation no standard solutions are available.It is the aim of the present paper to provide concepts and implementations to close this gap.The implementation is based on the GRAphics Programming Environment 'GRAPE' [25],which already provides basic visualization features in three-dimensional space. The recentdevelopment of visualization routines making e�cient use of adaptive grids on hierarchicaldata structures [13], [15] is connected with a procedural interface in order to couple theseroutines with the numerical data structures. For the visualization of optimally controlledas well as uncontrolled trajectories existing concepts for tracing on time dependent vector-�elds [16] have been extended and combined with the numerical optimal control routines.All in all this results in a comprehensive visualization package for this kind of numericalproblems.Furthermore, in Section 3 of this paper we give some new ideas for the generation ofanisotropic adaptive grids for the approximation of optimal value functions including thedescription of a suitable hierarchical data structure, thus extending the results from [10].This paper is organized as follows: In Section 2 we formulate the problem to be solved,describe the basic numerical schemes we have used and formulate functional and imple-mentational requirements for an e�cient visualization. In Section 3 we highlight severalimplementational details in order to specify the requirements for the visualization in greaterdetail. Here we focus in particular on the generation of the adaptive grids and the datastructure used. Section 4 is concerned with the visualization of optimal value functionson adaptive grids via a procedural interface and hierarchical algorithms. In Section 5 wepresent the concepts for the generation of trajectories along with their interactive handling

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 3and �nally, in Section 6, we illustrate our routines by two examples.2 Problem setup and numerical methodsThe problem we consider is an in�nite horizon discounted optimal control problem givenby a nonlinear control system on an n-dimensional Riemannian manifold M_x(t) = f(x(t); u(t)); x(0) = x0 2M (2.1)where u(�) 2 U := fu : R! U j u(�) measurablegand U � Rm is compact, together with a cost functiong : M � U ! RHere both f and g are supposed to by Lipschitz and bounded. The trajectories of (2.1)which we assume to exist for all times are denoted by '(t; x0; u(�)).The problem is now to minimize the functionalJ�(x0; u(�)) := Z 10 e��tg('(t; x0; u(�)); u(t))dtfor a �xed positive discount rate � > 0, i.e. to determine the optimal value functionv� :M ! R; v�(x) = infu(�)2U J�(x; u(�))and the optimal control functions and trajectories.Optimal control problems of this kind originate in economics (see e.g. [19]) and have recentlyturned out to be suitable for the approximation of average time optimal control problemsmeasuring asymptotic properties of the given control system (cf. [26], [9] and [12]) and thestabilization of nonlinear control systems (cf. [8] and [11]).We will now brie
y describe the discretization scheme and algorithms used in the numericalapproach. For a thorough analysis of the discretization errors we refer to [4], [6], [10] and[8], and also to the survey article [3] as well as to the corresponding chapter in [5]. Notethat the minimum time problem [1] and also pursuit-evasion games [2] can be treated in asimilar way.The main key to the numerical approach is Bellman's optimality principle (or | if oneprefers this point of view | its in�nitesimal version, the Hamilton-Jacobi-Bellman equa-tion, on which we will not focus here). The optimality principle for v� isv�(x) = infu(�)2U �Z �0 e��tg('(t; x; u(�)); u(t))dt+ e���v�('(�; x; u(�))� (2.2)which holds for every � > 0. Note that v� is uniquely characterized by this equation.Basically it states that end pieces of optimal trajectories are optimal trajectories itselves.

4 L. GR�UNE, M. METSCHER AND M. OHLBERGERIn order to discretize (2.2) we apply two discretization steps. For the �rst one we �x a timestep h > 0 and choose a numerical scheme ~' for the solution of (2.1) for constant controlvalues, i.e. ~'(h; x; u) � '(h; x; u) for all u 2 U(any standard ODE-solver will do, in the numerical examples in this paper we simply usedthe Euler method). Using this method we replace (2.2) byvh(x) = infu2U nhg(x; u) + e��hvh(~'(h; x; u))o (2.3)Equation (2.3) | which is referred to as the discrete Hamilton-Jacobi-Bellman equation| also has a unique solution vh which gives an approximation for v�. This discretizationimplicitely includes an approximation of U by piecewise constant control functions, cf. [8].Note that all quantities in (2.3) are now numerically computable, however we still have ain�nite dimensional problem. In order to reduce this to a �nite dimensional problem we�rst assume that the (discrete time) system can be transformed from M to some boundedset
 � Rn by a suitable parameterization. On
 we consider a cuboid grid � with cuboidsQj and nodes xi and the space of multilinear functionsW� := fw :
! Rjw(x+ �ek) is linear in � on each Qj for each kgwhere the ek, k = 1; : : : ; n denote the standard basis vectors of the Rn.A unique approximation of vh in W� is then characterized byv�h (xi) = minu2U nhg(xi; u) + e��hv�h (~'(h; xi; u))o (2.4)for all nodes xi of �. Several iterative schemes have been proposed for the solution of thisequation, see the references above and also [7] and [18]. Here usually U is approximatedby a �nite set in order to simplify the calculation of the minimum.For the generation of a suitable grid � we use reliable and e�cient a-posteriori errorestimates as discussed in [10]. These are based on the observation that v�h on some grid �satis�es (2.3) in the nodes of �. Using a collection of test points yl in each Qj we calculatethe residual �(yl) := ����v�h (yl)� infu2U nhg(yl; u) + e��hv�h (~'(h; yl; u))o���� (2.5)and re�ne those elements Qj for which this quantity is large. (For the details of the re�ningof an element Qj see Section 3.1.) In addition we use the interpolation error as a criterionfor the coarsening of previously re�ned elements, cf. [10]. Starting with a coarse grid �0we can iteratively construct adaptive grids by calculating solutions of (2.4) on �i andconstructing a new grid �i+1 using the error estimates (2.5). Thus we end up with a goodapproximation for vh and in turn | for h > 0 su�ciently small | also for v�.We will now show how optimal control functions and trajectories can be approximatednumerically. Again the exploitation of the optimality principle, here in its discrete version(2.3), leads to the solution.For any point x 2
 we choose a value u 2 U such thatnhg(x; u) + e��hv�h (~'(h; x; u))o (2.6)

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 5becomes minimal and de�ne a function F :
! U by F (x) := u. This function F can nowbe applied to (2.1) as a discrete feedback law via_x(t) = f(x(t); F (x(ih))); for t 2 [ih; (i+ 1)h) (2.7)Then the corresponding trajectories 'F (t; x0) are approximately optimal with respect tov�, cf. [8].In particular this kind of control law does not require a precalculation of an open loopcontrol u(�) for a long time interval but can be evaluated along the controlled trajectory.The approximately optimal open loop control u(�) can easily be constructed viau(t) = F ('F (ih; x0)); t 2 [ih; (i+ 1)h)and hence is piecewise constant which corresponds to the discretization in time from (2.2)to (2.3).What we have obtained by the numerical procedures are(i) a numerical scheme to calculate v�h , the approximation of the optimal value functionv�, on an adaptively generated grid.(ii) a numerical way to calculate discrete feedback laws F which generate approximatelyoptimal trajectories and control functions.Remark 2.1 A class of optimal control problems of particular interest are those formu-lated for stabilization of bilinear control systems, see e.g. [8] and [9]. Here the optimalcontrol problem (2.1) is given on M = Pd�1, the real projective space, whereas the systemto be stabilized has Rd as its state space. Clearly, in this case the visualization routines forthe trajectories should be capable of visualizing both the non projected and the projectedtrajectories.We will now formulate the properties an e�cient interactive visualization should satisfybased on the structure of the optimal control problem and on its numerical approximation.Remark 2.2 (Requirements for an e�cient visualization) The visualization rou-tines should provide the following features:(i) Visualization of the approximated value function v�� and the corresponding grid �(ii) Interactive generation and animated visualization of optimal as well as uncontrolledtrajectories(iii) Support of the data structure used in the numerical calculation in order to ensuree�cient and fast performance

6 L. GR�UNE, M. METSCHER AND M. OHLBERGERNote that (i) and (ii) can be regarded as requirements on the functionality of the visu-alization for which the motivation is immediate: From the numerical point of view thegrid generation and the quality of the approximation should become \visible". From theoptimal control point of view interactive exploration of optimal trajectories and of thestructure of the underlying optimal control problem are worthwhile. Since the trajectoriesevolve in time the advantages of an animated visualization are obvious. We will address(i) in Section 4 and (ii) in Section 5.In contrast to that requirement (iii) concerns implementational details of the numericalmethod which we will specify now.3 Numerical data structure and implementational detailsIn this section we will highlight three topics which are essential for the speci�cation ofRemark 2.2 (iii) in Section 2. These are� The construction of the adaptive grids� The data structure used for the grids� The calculation of the optimal trajectories3.1 Construction of the adaptive gridAs already pointed out in Section 2 we have criteria for the re�nement and the coarseningof elements Qj of �, which have been exposed in detail in [10]. However, in [10] theimplementation of simplicid grids has been discussed, whereas here we are going to usecuboid grids. This is motivated by two reasons:First, by looking at the equations (2.4) and (2.6) it can be easily seen that the values ofv�h (x) at points x which are not necessarily nodes of the grid should be easy to obtain.For this purpose in particular the fast determination of the element Qj containing x isnecessary. Using cuboid grids this can be done by a simple coordinatewise check. Second,for small discount rates � > 0 the adaptivity of the grid mainly re�nes steep regions of thevalue function which follow hyperplanes, as the examples in [9] and [10] show. Thereforeanisotropic re�nement is more suitable for that problem which is of course much easier toimplement using cuboids. Since the domain
 in our problems usually has a very simpleshape we do not encounter additional di�culties in the gridding procedure.We will hence brie
y explain the anisotropic re�nement and some structural requirementsfor cuboid grids.Figure 3.1 shows the possible anisotropic re�nements of a cuboid in 3d.Criteria for anisotropic re�nements have been developed for the �nite element discretizationfor di�erent kinds of PDEs, see e.g. [20] and [24]. Here we use a criterion for the directionof re�nement of a cuboid by the selection of an appropriate set of test points yl for theevaluation of (2.5). We choose this set in such a way that it contains the mid points ofeach edge, i.e. the points depicted in Figure 3.2 for cuboids in 2d.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 7
 ��Figure 3.1: Possible re�nements in x, y and z-direction in 3dFigure 3.2: Test points for anisotropic re�nement in 2dDepending on the error estimates in these test points we will perform a re�nement eitherin x direction, in y direction, or in both directions.In a re�ned grid the \hanging nodes", i.e. the nodes at the interfaces between �ner andcoarser cubes have to be treated separately in order to ensure continuity of the solutionv�h on �. Here we interpolate the values in these nodes and thus obtain a continuoussolution. In order to obtain a well de�ned value for this interpolation we require for eachtwo neighbouring cuboids Qj and Qk that if Qj is �ner than Qk in one direction it mustnot be coarser in any other direction (except the one not a�ecting the hyperplane on whichthe cuboids touch).Furthermore, by requiring that the di�erence in the re�nement between two neighbouringcubes is restricted to at most one level we guarantee that the number of hanging nodesdoes not become too large.3.2 Data structure for the gridOne of the main reasons for the usage of adaptive grids is to reduce the amount of memoryneeded for the storage of the numerical approximation v�h . However, the grid handling al-gorithms should also be fast in order to minimize the time necessary for re�ning, coarseningetc. These considerations along with the structure of the re�nement strategy as describedin Section 3.1 almost naturally lead to a hierarchical data structure for the grids as shownin Figure 3.3.Starting with an equidistant grid �0 any re�nement will be stored hierarchically using thistree structure. In order to illustrate the e�ciency of this data structure we brie
y indicatehow the element Qj containing a given point x 2
 can be found:Step 1: Find the cuboid in �0 containing x by modulo operations for each coordinateStep 2: If this cuboid is a leaf of the re�nement tree STOP

8 L. GR�UNE, M. METSCHER AND M. OHLBERGER
 ��

Figure 3.3: Re�nement treeStep 3: Go down the re�nement tree one step and determine the cuboid containing x bychecking the coordinate re�ned. CONTINUE WITH STEP 2In a similar manner neighbouring elements and hanging nodes can be determined by re-cursive procedures acting on the tree. By a consequent usage of recursive routines thecoordinates of an element can be reconstructed while passing through the tree structureand hence no explicit storage of the coordinates is necessary.Summarizing these arguments we obtain that the main advantage of the hierarchical datastructure is to combine memory reduction due to adaptivity with fast performance due tomatched recursive algorithms. For the visualization tool to be e�cient it is therefore nec-essary to support this data structure since otherwise this advantage would be immediatelylost.Therefore Remark 2.2 (iii) can now be speci�ed to the fact that hierarchical data structuresshould be supported in the visualization routines. In addition the ability to visualize thecomputed function v�h on a lower level of re�nement is useful in order to get a \quickglance" at the data without using the full information (for which the adaptive grid in a 3dproblem easily exceeds 200000 cuboids).Both features are implemented via the procedural interface as described in Section 4.3.3 Calculation of the trajectoriesThe calculation of (optimally controlled) trajectories requires the solution of (2.7). Since Fcan easily be obtained minimizing (2.6) (which again is done using a �nite approximationof U) this numerical procedure is rather fast and can therefore be implemented in thefollowing way:Given an initial value x0 and an end time T we compute the solutions to (2.7) by evaluatingF for each time step h and then solving (2.1) for this constant control value for the next

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 9time step. In order to obtain accurate solutions here we use an extrapolation scheme asdescribed in [22, Section 7.2.14] (note that this scheme does not coincide with the scheme~', since its purpose is to model the \real" trajectories, cf. [8])The routine then returns a point list consisting of [T=h] + 1 entries representing the con-trolled trajectory, which can then be visualized as described in 5. Here the initial value x0and the end time T are to be chosen interactively.Since we do also want to cover the case mentioned in Remark 2.1 the visualization routineshould be able to handle projections of Rd trajectories to projective space. In this casethe numerical routine will return the unprojected trajectory which also provides the fullinformation for the projection.4 Procedural interface and hierarchical visualization4.1 The concept of a procedural data accessAs we just mentioned in Remark 2.2 and Subsection 3.2 it is very important for the visu-alization to support the numerical data structure in order to pro�t from the implementedgrid handling. From the visualization point of view there are mainly two possibilities ofdata access. Most of the frequently used visualization software works on prescribed dataformats. A user has to convert his own data structures into such a format, whereas incase of a procedural data access the numerical data structures are addressed by functions.Then visualization tools directly work on the data structures the user is accustomed to fromhis numerical methods. He only has to provide some access procedures. In what followswe will describe such a procedural data access, which was implemented in the GRAphicsProgramming Environment GRAPE [25].In [17] a visualization interface for arbitrary meshes with general data functions on themhas been proposed. This interface tries to avoid restrictions on the element types. A meshis de�ned as a procedurally linked list of non intersecting elements. The access to datais done by user supplied procedures addressing the user data structures and returning therequired data temporarily in a prescribed element structure ELEMENT. This ELEMENTstructure especially contains a polygonal boundary representation, the coordinate vectorsfor the nodes and function data on them.Combining this information with local coordinates for the elements, a large class of elementtypes can be handled. Figure 4.1 shows some typical examples of elements that can beaddresed in this context. (Here we restrict ourselves to the basic concept. The true datastructures is slightly more general, especially concerning the interface for function data(cf. [17]).) As the rendering procedures only take into account these representations of anelement, the approach is not restricted to structured meshes and applies to a wide rangeof commonly used grids. In [15] and [14] various applications on di�erent mesh types intwo and three dimensions are shown.There are mainly six element access procedures in a hierarchical structure (cf. [13] and [15]for a detailed description). A call �rst macro() returns any �rst element and next macro()supports a successive traversal of all other macro elements in list order. Thereby only one

10 L. GR�UNE, M. METSCHER AND M. OHLBERGER
Figure 4.1: Basic element types in two and three dimensions with possible re�nements.ELEMENT structure is to be stored, as each call of next macro() overwrites the precedingelement data.

first_macro()

next_macro()

first_child()

next_child()

level 0

level 1

level 2
.
.

level nFigure 4.2: A schematic sketch of the procedural access to hierarchical grids by the fourroutines �rst macro(), next macro(), �rst child(), next child().A call of �rst child() generates and �lls an additional ELEMENT structure with some �rstchild data. Finally successive calls of next child() traverse the other child elements of thesame parent element and replaces previous child data (cf. Fig. 4.2). Thereby during arecursive traversal of the grid hierarchy a list of at most n temporarily �lled ELEMENTstructures are present in memory at the same time, where n is the depth of the hierarchy.Finally copy element() provides a copy of element data if information on more than oneelement is needed simultaneously. In order to address adjacent elements a call of neigh-bour() provides all necessary operations, again overwriting previous element data. Thisespecially implies that also in the user data structures the element information has not tobe stored completely on all grid levels but it may be generated when needed based on com-plete parent information and economically stored o�set data. Therefore this proceduralinterface between visualization and numerics has the necessary provision to support ourdata structure, as described in Section 3.The access procedures shown above supply a visualization method with all necessary in-formation to locally evaluate and graphically represent grid geometry and data. This issu�cient to run merely all visualization algorithm, e. g. isosurface rendering or slicingcombined with a color shading on the generated slices. Especially the visualization of the

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 11approximate value v�� and the corresponding grid � is supported (cf. Remark 2.2).4.2 The interface to the numerical data structureAccording to the general idea of a hierarchical and procedural visualization interface, whichwe described in the previous subsection we now want to explain some more details of theimplementation of this concept.
 * hmesh
 ** vertex
 * vindex
 * parent

 * element_description

ELEMENT

 parent
child[2]

 vertex[8]
 level

value[8]
search_neighbour()

NUM_ELEMENTINTER_ELEMENT

ELEMENT

NUM_ELEMENTFigure 4.3: Blow up of the ELEMENT to an INTER ELEMENT structureFor the implementation of the interface we introduce an INTER ELEMENT structure (cf.Figure 4.3) that consists of an ELEMENT on the one hand side and of a NUM ELEMENTstructure on the other hand. Here ELEMENT represents an element of the mesh which isused and exploited by the visualization routines and NUM ELEMENT consists of pointersto the numerical data structure and some access procedures, provided by the numeri-cal code. Based on this INTER ELEMENT structure a call of an access procedure like�rst macro(), next macro() or �rst child(), next child() �lls the ELEMENT structure us-ing the NUM ELEMENT. Thereby it is mainly necessary to set some pointers. No largedata arrays have to be copied. Taking into account that each call of an access procedure�rst macro(), next macro() or next child() overwrites the previous INTER ELEMENTwe have to store only one such element per level of the hierarchical tree at the sametime. Additionally to the recursive traversal of the hierarchical mesh by the calls of�rst macro(),next macro(), �rst child() and next child() the implemented adjacent searchalgorithm in the numerical code (cf. Section 3) can be used to �ll the procedure neigh-bour() for the visualization. Finally the access to the approximated function v�� is ensuredstraightforward by the implementation of a data access function f(). This function returnsthe requested value by exploiting the numerical data structure NUM ELEMENT.Based on this interface all visualization tools of the existing rendering code GRAPE [25]can be used to visualize the adaptive grid and the approximated function v�� on it.4.3 Complements to hierarchical visualizationVisualization methods especially on 3D data sets such as isosurface extraction and colorshading on slices can bene�t from the nested structure of the underlying hierarchical grid.In the following we will focus on the isosurface case. Similar considerations hold for othervisualization methods as well.

12 L. GR�UNE, M. METSCHER AND M. OHLBERGERThe cost to extract an isosurface from a given volume data set can be reduced enormouslytaking into account hierarchical information. Instead of traversing all elements, like astandard marching cube strategy does, we can recursively test for intersections on coarserlevel elements E to decide whether the children C (E) have to be visited or not. Forexample let us consider a uniform mesh with Nmacro elements on the coarsest grid, whereeach element is n times re�ned into Nchild child elements. Then a standart marching cubealgorithm is of complexity O(N), where N := Nmacro �Nchildn is the number of elementson the �nest grid level. In contrast to this the hierarchical algorithm has a complexity ofO(Nmacro+Nchild �n) = O(logN), if only one element has to be extracted. If the consideredfunction on the d-dimensional grid is smooth this leads to a cost reduction of one order ofmagnitude up to a logarithmic factor, as the isosurface is d� 1 dimensional.The intersection test on an element requires the calculation of robust data bounds. Simplytaking into account only the function values on the element vertices xl 2 N(E) will not besu�cient because we might overlook information apparent on �ner grid levels only, e. g.strongly curved segments of an isosurface (cf. Fig. 4.4). Let us suppose that we have at
guided
search

be careful !Figure 4.4: Isoline segments in 2D will be missed if just vertex information is taken intoaccount to test for intersections. The same holds in 3D for isosurfaces.hand an estimate for the function's second derivatives or something comparable on eachelement of the hierarchy. Then a straightforward calculation of bounds is possible by meansof Taylor expansion. For details we refer to [15].5 Interactive selection and rendering of trajectoriesAfter having solved the optimal control problem numerically it is of natural interest tointegrate the approximative optimal trajectories. They should be displayed either in theprojected phase space of the control problem or in the unprojected one. In addition itshould be useful to compare them with the uncontrolled ones. For that reason some inter-active methods have been implemented in GRAPE which allow selection and visualizationof these solution curves. (For their computation cf. section 3.3.)The interactive concept includes control of integration parameters like integartion intervaland optimization value. It enables the user to pick on clipping planes in the phase space andthereby to choose the start point of the trajectories. A method to project the calculatedsolutions into the projected phase space is o�ered. Once these curves are calculated display

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 13routines and animation features (see [16]) for general curves are o�ered. Examples ofvisualized trajectories are shown in 6.2.6 ExamplesIn this section we will illustrate the visualization routines by two examples. We emphasizethat two of the main features of our routines are interactivity and animation which canof course not be illustrated here. This section mainly aims to give an impression how theoutput of the visualization looks like.Both examples we present are discounted optimal control problems formulated for thestability analysis and stabilization of semilinear control systems. Here the cost function gis chosen in such a way that the optimal control problem is to minimize the exponentialgrowth rates of the corresponding trajectories for each initial value, as explained in [8], [9]and [11]. A comprehensive description of these kind of problems will appear in [5].6.1 A chemical reactorThe �rst problem is the model of a two dimensional nonlinear chemical reactor as intro-duced in [23] _y1 = �y1 + B�(1� y2)ey1 � u(y1 � xc)_y2 = �y2 + �(1� y2)ey1 ;together with its linearization along the trajectories_x = �1 + B�(1� y2)ey1 � u �B�ey1�(1� y2)ey1 �1� �ey1 ! x:Projecting the x-component via s = x=kxk onto the unit sphere S1 which can be parame-terized by its angular coordinate we obtain a three-dimensional system. The cost functiong to be optimized is given by g(y; s; u) = sTA(y; u)s where A denotes the matrix from thelinearization above.With this example we are going to illustrate the visualization of the value function andthe corresponding grid. Recall that the values of the value function in this example rep-resent minimal exponential growth rates for the linearized trajectories depending on the(projected) initial value.Optimizing on the domain
 = [2:64; 2:97]� [0:32; 0:58]� [0:34; 0:41] using � = 0:01 andh = 0:01 we calculated the value function v�ih on an number of adaptively re�ned grids�i. Figure 6.1 shows the value functions on three di�erent grids visualized by three levelsets v�ih = 0, v�ih = 25 and v�ih = 50 (from the inside to the outside) and cuts through thecorresponding grids. Here the outer level sets (v�ih = 50 and v�ih = 25) have been cut o� attheir upper and lowed edges in order to make the inner ones visible. For the coarsest grid�1 in the left picture the inequality v�1h > 50 holds, hence no level sets appear.

14 L. GR�UNE, M. METSCHER AND M. OHLBERGER
Figure 6.1: Level sets for v�ih on di�erent grids �1, �2, �3. For a colored version see Figure6.4.6.2 Two coupled oscillatorsThe second example to be visualized is given by two coupled oscillators as presented in [21]0BBB@ _x1_x2_x3_x4 1CCCA = 0BBB@ 0 1 0 0�1� u 0:2 �u 00 0 0 1�u=p2 0 �2� u=p2 0:2p2 1CCCA0BBB@ x1x2x3x4 1CCCA :The discounted optimal control problem | as discussed in [8] | is again given by theprojection of x to S3 via s = x=kxk. Here the parametrization of S3 with the stereographicprojection is used. The cost function reads g(s; u) = stA(u)s where A(u) is the systemmatrix from above.Here we are going to depict trajectories of the system. Note that this optimal control prob-lem is formulated in such a way that a minimization of the discounted functional for theprojected system yields exponential stability of the trajectory of the unprojected system,cf. [8]. Hence (cf. Remark 2.1) it is interesting to see both unprojected and projected tra-jectories. Using
 = [�1; 1]3 (covering the whole projective space in our parametrization)we calculated v�h with � = 0:01 and h = 0:01.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 15

Figure 6.2: Unprojected trajectories (Controlled and Uncontrolled)Figure 6.2 shows a controlled (light) as well as an uncontrolled (dark) trajectory of the un-projected system from various angles. As intended in the formulation of the optimal controlproblem, the controlled trajectory (slowly) converges to the origin whereas the uncontrolledtrajectory diverges. In the visualization the x4-components of the four-dimensional trajec-

16 L. GR�UNE, M. METSCHER AND M. OHLBERGERtories are not depicted.The left picture in Figure 6.4 shows the projection of the controlled trajectory to theprojective space P3 which is mapped to
 = [�1; 1]3. Due to the fact that the trajectorycircles around the corresponding sphere S3 the trajectory is divided into several pieces inthis parameterization.The right picture in addition shows the level sets of the corresponding value function forv�h = �1:5 , v�h = �1:75 and v�h = �2 (from the outside to the inside of the picture). Inparticular this picture shows that the (approximately) optimal trajectory most of the timestays inside a region where the corresponding (numerically approximated) value functionis small, which in fact gives a useful information for the analysis of discounted and averagetime functionals, see [9, Theorem 2.1].

Figure 6.3: Projected controlled trajectory and level setsReferences[1] M. Bardi and M. Falcone, An approximation scheme for the minimum time func-tion, SIAM J. Control Optim., 28 (1990), pp. 950{965.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 17

Figure 6.4: Enlarged colored level sets from Figure 6.1[2] M. Bardi, M. Falcone, and P. Soravia, Fully discrete schemes for the valuefunction of pursuit-evasion games, in Advances in Dynamic Games and Applications,T. Basar and A. Haurie, eds., 1994, pp. 89{105.[3] I. Capuzzo Dolcetta and M. Falcone, Discrete dynamic programming andviscosity solutions of the Bellman equation, Ann. Inst. Henri Poincar�e, Anal. NonLin�eaire, 6 (supplement) (1989), pp. 161{184.[4] I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equationof deterministic control theory, Appl. Math. Optim., 11 (1984), pp. 161{181.[5] F. Colonius and W. Kliemann, The Dynamics of Control, Birkh�auser, to appear.[6] M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solu-tions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67 (1994), pp. 315{344.[7] R. L. V. Gonz�ales and C. A. Sagastiz�abal, Un algorithme pour la r�esolutionrapide d'�equations discr�etes de Hamilton-Jacobi-Bellman, C. R. Acad. Sci., Paris, S�er.I, 311 (1990), pp. 45{50.[8] L. Gr�une, Discrete feedback stabilization of semilinear control systems, ESAIM: Con-trol, Optimisation and Calculus of Variations, 1 (1996), pp. 207{224.

18 L. GR�UNE, M. METSCHER AND M. OHLBERGER[9] , Numerical stabilization of bilinear control systems, SIAM J. Control Optim., 34(1996), pp. 2024{2050.[10] , An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,Numer. Math., 75 (1997), pp. 319{337.[11] , Asymptotic controllability and exponential stabilization of nonlinear control sys-tems at singular points, SIAM J. Control Optim., 36 (1998), pp. 1585{1603.[12] , On the relation of discounted and average optimal value functions, J. Di�er.Equ., 148 (1998), pp. 65{99.[13] R. Neubauer, M. Ohlberger, M. Rumpf, and R. Schw�orer, E�cient visual-ization of large-scale data on hierarchical meshes, preprint, IAM, Universit�at Freiburg,1997.[14] M. Ohlberger and M. Rumpf, Adaptive Projektion Methods in MultiresolutionalScienti�c Visualization, Report 20, SFB 256, Universit�at Bonn, 1997.[15] , Hierarchical and Adaptive Visualization on Nested Grids, Computing, 59 (1997),pp. 365{385.[16] M. Rumpf, M. Geiben, and T. Ge�ner, Moving and tracing in time-dependentvector �elds on adaptive meshes, preprint, SFB 256, Universit�at Bonn, 1997.[17] M. Rumpf, A. Schmidt, and K. Siebert, Functions de�ning meshes, a
exible in-terface between numerical data and visualization routines, Computer Graphics Forum,15 (1996), pp. 129{141.[18] A. Seeck, Iterative L�osungen der Hamilton-Jacobi-Bellman-Gleichung bei unendli-chem Zeithorizont. Diplomarbeit, Universit�at Kiel, 1997.[19] A. Seierstad and K. Syds�ter, Optimal Control Theory with Economic Applica-tions, North-Holland, Amsterdam, 1987.[20] K. Siebert, An a posteriori error estimator for anisotropic re�nement, Numer.Math., 73 (1996), pp. 373{398.[21] N. Sri Namachchivaya and H. Van Roessel, Maximal Lyapunov exponents androtation numbers for two coupled oscillators driven by real noise, J. Stat. Phys., 71(1993), pp. 549{567.[22] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer Verlag,New York, 1980.[23] A. Uppal, W. Ray, and A. Poore, On the dynamic behaviour of continuous stiredtank reactors, Chem. Eng. Science, 29 (1974), pp. 967{985.[24] R. Vilsmeier and D. Haenel, Adaptive methods on unstructured grids for Eulerand Navier-Stokes equations, Comput. Fluids, 4{5 (1993), pp. 485{499.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 19[25] M. Wierse and M. Rumpf, GRAPE, Eine interaktive Umgebung f�ur Visualisierungund Numerik, Informatik, Forschung und Entwicklung, Springer-Verlag, 7 (1992),pp. 145{151.[26] F. Wirth, Convergence of the value functions of discounted in�nite horizon optimalcontrol problems with low discount rates, Math. Oper. Res., 18 (1993), pp. 1006{1019.

