ON NUMERICAL ALGORITHM AND INTERACTIVE
VISUALIZATION FOR OPTIMAL CONTROL
PROBLEMS *

Lars Grine Martin Metscher
Institut fur Mathematik Institut fur Angewandte Mathematik
Universitat Augsburg Universitat Bonn
Universitatsstr. 14 Wegelerstr. 6
86135 Augsburg, Germany 53115 Bonn, Germany
lars.gruene@math.uni-augsburg.de metscher@iam.uni-bonn.de

Mario Ohlberger
Institut fur Angewandte Mathematik
Universitat Freiburg
Hermann-Herder-Str. 10
79104 Freiburg, Germany
mario@mathematik.uni-freiburg.de

Abstract: We present methods for the visualization of the numerical solution of optimal control
problems. The solution is based on dynamic programming techniques where the corresponding
optimal value function 1s approximated on an adaptively refined grid. This approximation is then
used in order to compute approximately optimal solution trajectories. We discuss requirements for
the efficient visualization of both the optimal value functions and the optimal trajectories and de-
velop graphic routines that in particular support adaptive, hierarchical grid structures, interactivity
and animation. Several implementational aspects using the Graphics Programming Environment

"GRAPE’ are discussed.

Keywords: visualization, optimal control problems, dynamic programming, hierarchical
grid structure, interactivity

AMS Classification: 63U05, 49120, 65N50

1 Introduction

The numerical solution of optimal control problems using dynamic programming tech-
niques or Hamilton-Jacobi-Bellman PDEs has been an active field of research for the last
few decades, cf. e.g. [3] for an overview. In contrast to trajectorywise approaches like

*This paper has been written while the first author was a member of the Graduiertenkolleg “Nonlinear
Problems in Analysis, Geometry und Physics” (GRK 283) financed by the DFG and the State of Bavaria.
Research partially supported by the DFG Schwerpunkt “Ergodentheorie, Analysis und effiziente Simulaion
dynamischer Systeme”

2 L. GRUNE, M. METSCHER AND M. OHLBERGER

Pontryagin’s maximum principle this method allows a global solution to optimal control
problems by calculating their optimal value functions.

Recently, many achievements of modern numerical analysis and scientific computing like
adaptive state space discretization [10], high-order schemes [6] and efficient iterative schemes
[9], [18] have been adapted to this problem and made it possible to follow this approach also
for problems in more than two space dimensions. Furthermore, the concept of discrete or
sampled feedback control has turned out to form a suitable class of control functions real-
izing approximately optimal solution trajectories and being compatible with the numerical
discretization, see [8].

Until now, however, not much effort has been put into the development of efficient visual-
ization tools for the numerical solution of these problems in three or even higher dimen-
sional state spaces. For one and two-dimensional problems existing standard visualization
programs could be used, although even in these cases features like interactivity and ani-
mation are in general missing. The situation gets worse if three-dimensional problems are
to be handled for which efficient numerical methods as cited above have been used for the
solution.

First, adaptive grids for the discretization of the state space (and corresponding hierar-
chical data structures) are rarely supported by standard software, hence projections of
the solution data onto equidistant grids or conversion of the data structure are necessary,
resulting in slow performance or poor output. Second, visualization routines for three-
dimensional solution trajectories producing a 3d-output that is clear and easy to interpret
are difficult to find. If in addition one demands both interactivity (i.e. a direct coupling
with the numerical routine) and animation no standard solutions are available.

It is the aim of the present paper to provide concepts and implementations to close this gap.
The implementation is based on the GRAphics Programming Environment "GRAPE’ [25],
which already provides basic visualization features in three-dimensional space. The recent
development of visualization routines making efficient use of adaptive grids on hierarchical
data structures [13], [15] is connected with a procedural interface in order to couple these
routines with the numerical data structures. For the visualization of optimally controlled
as well as uncontrolled trajectories existing concepts for tracing on time dependent vector-
fields [16] have been extended and combined with the numerical optimal control routines.
All in all this results in a comprehensive visualization package for this kind of numerical
problems.

Furthermore, in Section 3 of this paper we give some new ideas for the generation of
anisotropic adaptive grids for the approximation of optimal value functions including the
description of a suitable hierarchical data structure, thus extending the results from [10].

This paper is organized as follows: In Section 2 we formulate the problem to be solved,
describe the basic numerical schemes we have used and formulate functional and imple-
mentational requirements for an efficient visualization. In Section 3 we highlight several
implementational details in order to specify the requirements for the visualization in greater
detail. Here we focus in particular on the generation of the adaptive grids and the data
structure used. Section 4 is concerned with the visualization of optimal value functions
on adaptive grids via a procedural interface and hierarchical algorithms. In Section 5 we
present the concepts for the generation of trajectories along with their interactive handling

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 3

and finally, in Section 6, we illustrate our routines by two examples.

2 Problem setup and numerical methods

The problem we consider is an infinite horizon discounted optimal control problem given
by a nonlinear control system on an n-dimensional Riemannian manifold M

(t) = f(z(t),u(t)), z(0)=20€ M (2.1)
where
u(-) €U :=={u:R — U|u(-) measurable}

and U C R™ is compact, together with a cost function
g:MxU—=R

Here both f and g are supposed to by Lipschitz and bounded. The trajectories of (2.1)
which we assume to exist for all times are denoted by ¢(, zg, u(+)).

The problem is now to minimize the functional

Tstao,u()) i= [glpitimo, u(), uft))de
for a fixed positive discount rate § > 0, i.e. to determine the optimal value function

vs M — R, vs(z) = ing Js(x,u(-))

u(-)eU

and the optimal control functions and trajectories.

Optimal control problems of this kind originate in economics (see e.g. [19]) and have recently
turned out to be suitable for the approximation of average time optimal control problems
measuring asymptotic properties of the given control system (cf. [26], [9] and [12]) and the
stabilization of nonlinear control systems (cf. [8] and [11]).

We will now briefly describe the discretization scheme and algorithms used in the numerical
approach. For a thorough analysis of the discretization errors we refer to [4], [6], [10] and
[8], and also to the survey article [3] as well as to the corresponding chapter in [5]. Note
that the minimum time problem [1] and also pursuit-evasion games [2] can be treated in a
similar way.

The main key to the numerical approach is Bellman’s optimality principle (or — if one
prefers this point of view — its infinitesimal version, the Hamilton-Jacobi-Bellman equa-
tion, on which we will not focus here). The optimality principle for vs is

osta) = it { [T glett o ut) uat+ P slolnn)} @22)

u(-)eU

which holds for every 7 > 0. Note that wvs is uniquely characterized by this equation.
Basically it states that end pieces of optimal trajectories are optimal trajectories itselves.

4 L. GRUNE, M. METSCHER AND M. OHLBERGER

In order to discretize (2.2) we apply two discretization steps. For the first one we fix a time
step h > 0 and choose a numerical scheme ¢ for the solution of (2.1) for constant control
values, i.e.

P(h,yx,u) = @(h,z,u) for all we U

(any standard ODE-solver will do, in the numerical examples in this paper we simply used
the Euler method). Using this method we replace (2.2) by

vp(z) = 51615 hg(z, u) + e vy, (@(h, , u))} (2.3)

Equation (2.3) — which is referred to as the discrete Hamilton-Jacobi-Bellman equation
— also has a unique solution v, which gives an approximation for vs. This discretization
implicitely includes an approximation of ¢ by piecewise constant control functions, cf. [8].

Note that all quantities in (2.3) are now numerically computable, however we still have a
infinite dimensional problem. In order to reduce this to a finite dimensional problem we
first assume that the (discrete time) system can be transformed from M to some bounded
set 2 C R" by a suitable parameterization. On we consider a cuboid grid = with cuboids
(); and nodes z; and the space of multilinear functions

Wz i={w:Q — R|w(z+ wey) is linear in « on each Q; for each k}

where the ey, k = 1,...,n denote the standard basis vectors of the R".

A unique approximation of vy in Wz is then characterized by
Y — m . —8h, =~)
of (i) = min {hg (s, u) + e~ o (G(h, 2i,0)) } (2.4)

for all nodes z; of =. Several iterative schemes have been proposed for the solution of this
equation, see the references above and also [7] and [18]. Here usually U is approximated
by a finite set in order to simplify the calculation of the minimum.

For the generation of a suitable grid = we use reliable and efficient a-posteriori error
estimates as discussed in [10]. These are based on the observation that vi on some grid =
satisfies (2.3) in the nodes of =. Using a collection of test points y; in each @); we calculate
the residual

n(y) =

o) = inf {Ro(on)+ = oF ()} (25)

and refine those elements (); for which this quantity is large. (For the details of the refining
of an element @); see Section 3.1.) In addition we use the interpolation error as a criterion
for the coarsening of previously refined elements, cf. [10]. Starting with a coarse grid =g
we can iteratively construct adaptive grids by calculating solutions of (2.4) on Z=; and
constructing a new grid =;41 using the error estimates (2.5). Thus we end up with a good
approximation for vy and in turn — for A > 0 sufficiently small — also for vs.

We will now show how optimal control functions and trajectories can be approximated
numerically. Again the exploitation of the optimality principle, here in its discrete version
(2.3), leads to the solution.

For any point & € Q we choose a value u € U such that

{hate,u) + Mo (@(h 2, w) | (2:6)

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 5

becomes minimal and define a function £ : Q@ — U by F(2) := u. This function F' can now
be applied to (2.1) as a discrete feedback law via

i(t) = f(e(t), F(z(ih))), fort € [ih, (i+ 1)h) (2.7)

Then the corresponding trajectories g (t, zg) are approximately optimal with respect to

vs, cf. [8].

In particular this kind of control law does not require a precalculation of an open loop
control u(-) for a long time interval but can be evaluated along the controlled trajectory.
The approximately optimal open loop control u(-) can easily be constructed via

u(t) = Fgp(ih, xo)), t € [ih, (i + 1)h)

and hence is piecewise constant which corresponds to the discretization in time from (2.2)
to (2.3).

What we have obtained by the numerical procedures are

1) a numerical scheme to calculate UE the approximation of the optimal value function
h pp p
Vs, O an adaptively generated gI’ld

(i) a numerical way to calculate discrete feedback laws I' which generate approximately
optimal trajectories and control functions.

Remark 2.1 A class of optimal control problems of particular interest are those formu-
lated for stabilization of bilinear control systems, see e.g. [8] and [9]. Here the optimal
control problem (2.1) is given on M = P!, the real projective space, whereas the system
to be stabilized has R? as its state space. Clearly, in this case the visualization routines for
the trajectories should be capable of visualizing both the non projected and the projected
trajectories.

We will now formulate the properties an efficient interactive visualization should satisfy
based on the structure of the optimal control problem and on its numerical approximation.

Remark 2.2 (Requirements for an efficient visualization) The visualization rou-
tines should provide the following features:

(i) Visualization of the approximated value function v(;E and the corresponding grid =

(ii) Interactive generation and animated visualization of optimal as well as uncontrolled
trajectories

(iii) Support of the data structure used in the numerical calculation in order to ensure
efficient and fast performance

6 L. GRUNE, M. METSCHER AND M. OHLBERGER

Note that (i) and (ii) can be regarded as requirements on the functionality of the visu-
alization for which the motivation is immediate: From the numerical point of view the
grid generation and the quality of the approximation should become “visible”. From the
optimal control point of view interactive exploration of optimal trajectories and of the
structure of the underlying optimal control problem are worthwhile. Since the trajectories
evolve in time the advantages of an animated visualization are obvious. We will address
(i) in Section 4 and (ii) in Section 5.

In contrast to that requirement (iii) concerns implementational details of the numerical
method which we will specify now.

3 Numerical data structure and implementational details

In this section we will highlight three topics which are essential for the specification of
Remark 2.2 (iii) in Section 2. These are

e The construction of the adaptive grids
e The data structure used for the grids

e The calculation of the optimal trajectories

3.1 Construction of the adaptive grid

As already pointed out in Section 2 we have criteria for the refinement and the coarsening
of elements); of =, which have been exposed in detail in [10]. However, in [10] the
implementation of simplicid grids has been discussed, whereas here we are going to use
cuboid grids. This is motivated by two reasons:

First, by looking at the equations (2.4) and (2.6) it can be easily seen that the values of
v%(x) at points @ which are not necessarily nodes of the grid should be easy to obtain.
For this purpose in particular the fast determination of the element (); containing x is
necessary. Using cuboid grids this can be done by a simple coordinatewise check. Second,
for small discount rates § > 0 the adaptivity of the grid mainly refines steep regions of the
value function which follow hyperplanes, as the examples in [9] and [10] show. Therefore
anisotropic refinement is more suitable for that problem which is of course much easier to
implement using cuboids. Since the domain €2 in our problems usually has a very simple
shape we do not encounter additional difficulties in the gridding procedure.

We will hence briefly explain the anisotropic refinement and some structural requirements
for cuboid grids.

Figure 3.1 shows the possible anisotropic refinements of a cuboid in 3d.

Criteria for anisotropic refinements have been developed for the finite element discretization
for different kinds of PDEs, see e.g. [20] and [24]. Here we use a criterion for the direction
of refinement of a cuboid by the selection of an appropriate set of test points y; for the
evaluation of (2.5). We choose this set in such a way that it contains the mid points of
each edge, i.e. the points depicted in Figure 3.2 for cuboids in 2d.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 7

[

Figure 3.1: Possible refinements in z, y and z-direction in 3d

Figure 3.2: Test points for anisotropic refinement in 2d

Depending on the error estimates in these test points we will perform a refinement either
in z direction, in y direction, or in both directions.

In a refined grid the “hanging nodes”, i.e. the nodes at the interfaces between finer and
coarser cubes have to be treated separately in order to ensure continuity of the solution
v% on =. Here we interpolate the values in these nodes and thus obtain a continuous
solution. In order to obtain a well defined value for this interpolation we require for each
two neighbouring cuboids (); and Q) that if); is finer than) in one direction it must
not be coarser in any other direction (except the one not affecting the hyperplane on which
the cuboids touch).

Furthermore, by requiring that the difference in the refinement between two neighbouring
cubes is restricted to at most one level we guarantee that the number of hanging nodes
does not become too large.

3.2 Data structure for the grid

One of the main reasons for the usage of adaptive grids is to reduce the amount of memory
needed for the storage of the numerical approximation v%. However, the grid handling al-
gorithms should also be fast in order to minimize the time necessary for refining, coarsening
etc. These considerations along with the structure of the refinement strategy as described
in Section 3.1 almost naturally lead to a hierarchical data structure for the grids as shown
in Figure 3.3.

Starting with an equidistant grid =y any refinement will be stored hierarchically using this
tree structure. In order to illustrate the efficiency of this data structure we briefly indicate
how the element (); containing a given point x € €2 can be found:

Step 1: Find the cuboid in Zg containing z by modulo operations for each coordinate

Step 2: If this cuboid is a leaf of the refinement tree STOP

8 L. GRUNE, M. METSCHER AND M. OHLBERGER

141

Q11

101

{100

210 *

Figure 3.3: Refinement tree

Step 3: Go down the refinement tree one step and determine the cuboid containing z by

checking the coordinate refined. CONTINUE WITH STEP 2

In a similar manner neighbouring elements and hanging nodes can be determined by re-
cursive procedures acting on the tree. By a consequent usage of recursive routines the
coordinates of an element can be reconstructed while passing through the tree structure
and hence no explicit storage of the coordinates is necessary.

Summarizing these arguments we obtain that the main advantage of the hierarchical data
structure is to combine memory reduction due to adaptivity with fast performance due to
matched recursive algorithms. For the visualization tool to be efficient it is therefore nec-
essary to support this data structure since otherwise this advantage would be immediately
lost.

Therefore Remark 2.2 (iii) can now be specified to the fact that hierarchical data structures
should be supported in the visualization routines. In addition the ability to visualize the
computed function v% on a lower level of refinement is useful in order to get a “quick
glance” at the data without using the full information (for which the adaptive grid in a 3d
problem easily exceeds 200000 cuboids).

Both features are implemented via the procedural interface as described in Section 4.

3.3 Calculation of the trajectories

The calculation of (optimally controlled) trajectories requires the solution of (2.7). Since F
can easily be obtained minimizing (2.6) (which again is done using a finite approximation
of U) this numerical procedure is rather fast and can therefore be implemented in the
following way:

Given an initial value 2 and an end time 7" we compute the solutions to (2.7) by evaluating
F for each time step h and then solving (2.1) for this constant control value for the next

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 9

time step. In order to obtain accurate solutions here we use an extrapolation scheme as
described in [22, Section 7.2.14] (note that this scheme does not coincide with the scheme
@, since its purpose is to model the “real” trajectories, cf. [8])

The routine then returns a point list consisting of [T/h] + 1 entries representing the con-
trolled trajectory, which can then be visualized as described in 5. Here the initial value zg
and the end time T are to be chosen interactively.

Since we do also want to cover the case mentioned in Remark 2.1 the visualization routine
should be able to handle projections of R trajectories to projective space. In this case
the numerical routine will return the unprojected trajectory which also provides the full
information for the projection.

4 Procedural interface and hierarchical visualization

4.1 The concept of a procedural data access

As we just mentioned in Remark 2.2 and Subsection 3.2 it is very important for the visu-
alization to support the numerical data structure in order to profit from the implemented
grid handling. From the visualization point of view there are mainly two possibilities of
data access. Most of the frequently used visualization software works on prescribed data
formats. A user has to convert his own data structures into such a format, whereas in
case of a procedural data access the numerical data structures are addressed by functions.
Then visualization tools directly work on the data structures the user is accustomed to from
his numerical methods. He only has to provide some access procedures. In what follows
we will describe such a procedural data access, which was implemented in the GRAphics
Programming Environment GRAPE [25].

In [17] a visualization interface for arbitrary meshes with general data functions on them
has been proposed. This interface tries to avoid restrictions on the element types. A mesh
is defined as a procedurally linked list of non intersecting elements. The access to data
is done by user supplied procedures addressing the user data structures and returning the
required data temporarily in a prescribed element structure FLEMFENT. This ELEMENT
structure especially contains a polygonal boundary representation, the coordinate vectors
for the nodes and function data on them.

Combining this information with local coordinates for the elements, a large class of element
types can be handled. Figure 4.1 shows some typical examples of elements that can be
addresed in this context. (Here we restrict ourselves to the basic concept. The true data
structures is slightly more general, especially concerning the interface for function data
(cf. [17]).) As the rendering procedures only take into account these representations of an
element, the approach is not restricted to structured meshes and applies to a wide range
of commonly used grids. In [15] and [14] various applications on different mesh types in
two and three dimensions are shown.

There are mainly six element access procedures in a hierarchical structure (cf. [13] and [15]
for a detailed description). A call first_macro() returns any first element and next_macro()
supports a successive traversal of all other macro elements in list order. Thereby only one

10 L. GRUNE, M. METSCHER AND M. OHLBERGER

W\
R

=

Figure 4.1: Basic element types in two and three dimensions with possible refinements.

FLEMENT structure is to be stored, as each call of next_macro() overwrites the preceding
element data.

next_macro()

/()

first_macro()

first_child()

| l N)next_child()

Figure 4.2: A schematic sketch of the procedural access to hierarchical grids by the four
routines first_macro(), next_macro(), first_child(), next_child().

A call of first_child() generates and fills an additional ELEMFENT structure with some first
child data. Finally successive calls of next_child() traverse the other child elements of the
same parent element and replaces previous child data (cf. Fig. 4.2). Thereby during a
recursive traversal of the grid hierarchy a list of at most n temporarily filled ELEMENT
structures are present in memory at the same time, where n is the depth of the hierarchy.
Finally copy_element() provides a copy of element data if information on more than one
element is needed simultaneously. In order to address adjacent elements a call of neigh-
bour() provides all necessary operations, again overwriting previous element data. This
especially implies that also in the user data structures the element information has not to
be stored completely on all grid levels but it may be generated when needed based on com-
plete parent information and economically stored offset data. Therefore this procedural
interface between visualization and numerics has the necessary provision to support our
data structure, as described in Section 3.

The access procedures shown above supply a visualization method with all necessary in-
formation to locally evaluate and graphically represent grid geometry and data. This is
sufficient to run merely all visualization algorithm, e. g. isosurface rendering or slicing
combined with a color shading on the generated slices. Especially the visualization of the

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 11
approximate value v? and the corresponding grid = is supported (cf. Remark 2.2).

4.2 The interface to the numerical data structure

According to the general idea of a hierarchical and procedural visualization interface, which
we described in the previous subsection we now want to explain some more details of the
implementation of this concept.

INTER_ELEMENT ELEMENT NUM_ELEMENT

* hmesh parent
ELEMENT ** vertex child[2]

* vindex vertex[8]

* parent level
NUM_ELEMENT

* element_description value(s]

search_neighbour()

Figure 4.3: Blow up of the FLEMFENT to an INTER_-ELEMENT structure

For the implementation of the interface we introduce an INTER_ELEMENT structure (cf.
Figure 4.3) that consists of an ELEMENT on the one hand side and of a NUM_ELEMENT
structure on the other hand. Here ELEMFENT represents an element of the mesh which is
used and exploited by the visualization routines and NUM_FLEMEN'T consists of pointers
to the numerical data structure and some access procedures, provided by the numeri-
cal code. Based on this INTER_ EFLEMENT structure a call of an access procedure like
first_macro(), next_macro() or first_child(), next_child() fills the ELEMENT structure us-
ing the NUM_FLEMENT. Thereby it is mainly necessary to set some pointers. No large
data arrays have to be copied. Taking into account that each call of an access procedure
first_macro(), next_macro() or next_child() overwrites the previous INTER_ELEMENT
we have to store only one such element per level of the hierarchical tree at the same
time. Additionally to the recursive traversal of the hierarchical mesh by the calls of
first_macro(),next_macro(), first_child() and next_child() the implemented adjacent search
algorithm in the numerical code (cf. Section 3) can be used to fill the procedure neigh-
bour() for the visualization. Finally the access to the approximated function v(;E is ensured
straightforward by the implementation of a data access function f(). This function returns
the requested value by exploiting the numerical data structure NUM_FELEMENT.

Based on this interface all visualization tools of the existing rendering code GRAPE [25]
can be used to visualize the adaptive grid and the approximated function v(;E on it.

4.3 Complements to hierarchical visualization

Visualization methods especially on 3D data sets such as isosurface extraction and color
shading on slices can benefit from the nested structure of the underlying hierarchical grid.
In the following we will focus on the isosurface case. Similar considerations hold for other
visualization methods as well.

12 L. GRUNE, M. METSCHER AND M. OHLBERGER

The cost to extract an isosurface from a given volume data set can be reduced enormously
taking into account hierarchical information. Instead of traversing all elements, like a
standard marching cube strategy does, we can recursively test for intersections on coarser
level elements IV to decide whether the children C(F) have to be visited or not. For
example let us consider a uniform mesh with N,,,.-, elements on the coarsest grid, where
each element is n times refined into N.p;q child elements. Then a standart marching cube
algorithm is of complexity O(N), where N := Ny4er0 - Nenia” is the number of elements
on the finest grid level. In contrast to this the hierarchical algorithm has a complexity of
O(Npacro+ Nenita-n) = O(log N), if only one element has to be extracted. If the considered
function on the d-dimensional grid is smooth this leads to a cost reduction of one order of
magnitude up to a logarithmic factor, as the isosurface is d — 1 dimensional.

The intersection test on an element requires the calculation of robust data bounds. Simply
taking into account only the function values on the element vertices 2! € N(E) will not be
sufficient because we might overlook information apparent on finer grid levels only, e. g.
strongly curved segments of an isosurface (cf. Fig. 4.4). Let us suppose that we have at

Z g =

be careful !
guided
search C

Figure 4.4: Isoline segments in 2D will be missed if just vertex information is taken into
account to test for intersections. The same holds in 3D for isosurfaces.

hand an estimate for the function’s second derivatives or something comparable on each
element of the hierarchy. Then a straightforward calculation of bounds is possible by means
of Taylor expansion. For details we refer to [15].

5 Interactive selection and rendering of trajectories

After having solved the optimal control problem numerically it is of natural interest to
integrate the approximative optimal trajectories. They should be displayed either in the
projected phase space of the control problem or in the unprojected one. In addition it
should be useful to compare them with the uncontrolled ones. For that reason some inter-
active methods have been implemented in GRAPE which allow selection and visualization
of these solution curves. (For their computation cf. section 3.3.)

The interactive concept includes control of integration parameters like integartion interval
and optimization value. It enables the user to pick on clipping planes in the phase space and
thereby to choose the start point of the trajectories. A method to project the calculated
solutions into the projected phase space is offered. Once these curves are calculated display

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 13

routines and animation features (see [16]) for general curves are offered. Examples of
visualized trajectories are shown in 6.2.

6 Examples

In this section we will illustrate the visualization routines by two examples. We emphasize
that two of the main features of our routines are interactivity and animation which can
of course not be illustrated here. This section mainly aims to give an impression how the
output of the visualization looks like.

Both examples we present are discounted optimal control problems formulated for the
stability analysis and stabilization of semilinear control systems. Here the cost function ¢
is chosen in such a way that the optimal control problem is to minimize the exponential
growth rates of the corresponding trajectories for each initial value, as explained in [8], [9]
and [11]. A comprehensive description of these kind of problems will appear in [5].

6.1 A chemical reactor

The first problem is the model of a two dimensional nonlinear chemical reactor as intro-

duced in [23]

N = —yi+ Ba(l—y2)e? —u(yr — z.)
o = —y2+a(l—yz)e,

together with its linearization along the trajectories

P —14 Ba(l —y2)e" —u —Bae”!
N a(l —yg)e¥t —1— aen

Projecting the z-component via s = z/||z|| onto the unit sphere S! which can be parame-
terized by its angular coordinate we obtain a three-dimensional system. The cost function
g to be optimized is given by g(y, s, u) = sT A(y, u)s where A denotes the matrix from the
linearization above.

With this example we are going to illustrate the visualization of the value function and
the corresponding grid. Recall that the values of the value function in this example rep-
resent minimal exponential growth rates for the linearized trajectories depending on the
(projected) initial value.

Optimizing on the domain Q = [2.64,2.97] X [0 32,0.58] x [0.34,0.41] using § = 0.01 and
h = 0.01 we calculated the value function v, on an number of adaptively refined grids

Flgure 6.1 shows the Value functions on three different grids visualized by three level
sets vyt =0, v," =25 and v;* =50 (from the inside to the out51de) and cuts through the
corresponding grids. Here the outer level sets (vh = 50 and v;* = 25) have been cut off at
their upper and lowed edges in order to make the inner ones visible. For the coarsest grid
=1 in the left picture the inequality vfl > 50 holds, hence no level sets appear.

14 L. GRUNE, M. METSCHER AND M. OHLBERGER

=

Figure 6.1: Level sets for vy
6.4.

on different grids =;, =5, =3. For a colored version see Figure

6.2 Two coupled oscillators

The second example to be visualized is given by two coupled oscillators as presented in [21]

%1 0 1 0 0 x
T | —1—-—u 0.2 —u 0 9
3 | 0 0 0 1 r3
iy —u/V2 0 —2—u/V2 02V2 T4
The discounted optimal control problem — as discussed in [8] — is again given by the

projection of to S2 via s = a/||z||. Here the parametrization of S with the stereographic
projection is used. The cost function reads g(s,u) = s'A(u)s where A(u) is the system
matrix from above.

Here we are going to depict trajectories of the system. Note that this optimal control prob-
lem is formulated in such a way that a minimization of the discounted functional for the
projected system yields exponential stability of the trajectory of the unprojected system,
cf. [8]. Hence (cf. Remark 2.1) it is interesting to see both unprojected and projected tra-
jectories. Using Q = [~1,1]? (covering the whole projective space in our parametrization)
we calculated vi with § = 0.01 and h = 0.01.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 15

Figure 6.2: Unprojected trajectories (Controlled and Uncontrolled)

Figure 6.2 shows a controlled (light) as well as an uncontrolled (dark) trajectory of the un-
projected system from various angles. Asintended in the formulation of the optimal control
problem, the controlled trajectory (slowly) converges to the origin whereas the uncontrolled
trajectory diverges. In the visualization the z4-components of the four-dimensional trajec-

16 L. GRUNE, M. METSCHER AND M. OHLBERGER

tories are not depicted.

The left picture in Figure 6.4 shows the projection of the controlled trajectory to the
projective space P2 which is mapped to Q = [~1,1]%. Due to the fact that the trajectory
circles around the corresponding sphere S the trajectory is divided into several pieces in
this parameterization.

The right picture in addition shows the level sets of the corresponding value function for
vi = 1.5, vy = —1.75 and vZ = —2 (from the outside to the inside of the picture). In
particular this picture shows that the (approximately) optimal trajectory most of the time
stays inside a region where the corresponding (numerically approximated) value function
is small, which in fact gives a useful information for the analysis of discounted and average
time functionals, see [9, Theorem 2.1].

Figure 6.3: Projected controlled trajectory and level sets

References

[1] M. BARDI AND M. FALCONE, An approximation scheme for the minimum time func-
tion, SIAM J. Control Optim., 28 (1990), pp. 950-965.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 17

[2]

[3]

Figure 6.4: Enlarged colored level sets from Figure 6.1

M. Barbpi, M. FALCONE, AND P. SORAVIA, Fully discrete schemes for the wvalue

Sfunction of pursuit-evasion games, in Advances in Dynamic Games and Applications,
T. Basar and A. Haurie, eds., 1994, pp. 89-105.

I. Capruzzo DOLCETTA AND M. FALCONE, Discrete dynamic programming and
viscosity solutions of the Bellman equation, Ann. Inst. Henri Poincaré, Anal. Non
Linéaire, 6 (supplement) (1989), pp. 161-184.

I. Capuzzo DOLCETTA AND H. IsHIL, Approxzimate solutions of the Bellman equation
of deterministic control theory, Appl. Math. Optim., 11 (1984), pp. 161-181.

F. Coronius aND W. KLIEMANN, The Dynamics of Control, Birkhduser, to appear.

M. FALCONE AND R. FERRETTI, Discrete time high-order schemes for viscosity solu-
tions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67 (1994), pp. 315-344.

R. L. V. GoNzALES AND C. A. SAGASTIZABAL, Un algorithme pour la résolution
rapide d’€équations discrétes de Hamilton-Jacobi-Bellman, C. R. Acad. Sci., Paris, Sér.
I, 311 (1990), pp. 45-50.

L. GRUNE, Discrete feedback stabilization of semilinear control systems, ESAIM: Con-
trol, Optimisation and Calculus of Variations, 1 (1996), pp. 207-224.

18

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[22]

[23]

[24]

L. GRUNE, M. METSCHER AND M. OHLBERGER

——, Numerical stabilization of bilinear control systems, SIAM J. Control Optim., 34
(1996), pp. 2024-2050.

——, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,
Numer. Math., 75 (1997), pp. 319-337.

—, Asymptotic controllability and exponential stabilization of nonlinear control sys-
tems at singular points, SIAM J. Control Optim., 36 (1998), pp. 1585-1603.

——, On the relation of discounted and average optimal value functions, J. Differ.
Equ., 148 (1998), pp. 65-99.

R. NEUBAUER, M. OHLBERGER, M. RUMPF, AND R. SCHWORER, Efficient visual-

1zation of large-scale data on hierarchical meshes, preprint, IAM, Universitit Freiburg,
1997.

M. OHLBERGER AND M. RUMPF, Adaptive Projektion Methods in Multiresolutional
Scientific Visualization, Report 20, SFB 256, Universitit Bonn, 1997.

—, Hierarchical and Adaptive Visualization on Nested Grids, Computing, 59 (1997),
pp. 365-385.

M. Rumpr, M. GEIBEN, AND T. GESSNER, Moving and tracing in time-dependent
vector fields on adaptive meshes, preprint, SFB 256, Universitit Bonn, 1997.

M. RuMPF, A. SCHMIDT, AND K. SIEBERT, Functions defining meshes, a flexible in-
terface between numerical data and visualization routines, Computer Graphics Forum,

15 (1996), pp. 129-141.

A. SEECK, lterative Losungen der Hamilton-Jacobi-Bellman-Gleichung bei unendli-
chem Zeithorizont. Diplomarbeit, Universitit Kiel, 1997.

A. SEIERSTAD AND K. SYDSETER, Optimal Control Theory with Fconomic Applica-
tions, North-Holland, Amsterdam, 1987.

K. SIEBERT, An a posteriori error estimator for anisotropic refinement, Numer.
Math., 73 (1996), pp. 373-398.

N. SrR1 NAMACHCHIVAYA AND H. VAN RoOESSEL, Mazximal Lyapunov exponents and
rotation numbers for two coupled oscillators driven by real noise, J. Stat. Phys., 71

(1993), pp. 549-567.

J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, Springer Verlag,
New York, 1980.

A. UprpraL, W. RAY, AND A. POORE, On the dynamic behaviour of continuous stired
tank reactors, Chem. Eng. Science, 29 (1974), pp. 967-985.

R. VILSMEIER AND D. HAENEL, Adaptive methods on unstructured grids for Fuler
and Navier-Stokes equations, Comput. Fluids, 4-5 (1993), pp. 485-499.

VISUALIZATION OF OPTIMAL CONTROL PROBLEMS 19

[25] M. WIERSE AND M. RumPF, GRAPE, Fine interaktive Umgebunyg fiir Visualisierung

und Numerik, Informatik, Forschung und Entwicklung, Springer-Verlag, 7 (1992),
pp. 145-151.

[26] F. WIrTH, Convergence of the value functions of discounted infinite horizon optimal
control problems with low discount rates, Math. Oper. Res., 18 (1993), pp. 1006-1019.

