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2 LARS GR�UNEin [18, Theorem 2.11]. Arisawa [3], [4] treats a similar problem (under the name ergodicproblem) but from a somewhat di�erent point of view: Maximal subsets of convergenceof the discounted functional are characterized by introducing a controllability concept inconnection with attractivity properties, where again invariance plays a crucial role. Thisproblem goes back to Lions [24], who studied the convergence properties of solutions ofHamilton-Jacobi equations. The name ergodic problem is motivated by the fact that foran uncontrolled system (i.e. an ordinary di�erential equation) the convergence property isequivalent to the ergodicity of that system, see [3, Appendix 1].The main purpose of this paper is to develop results without assuming invariance andwithout making assumptions on optimal trajectories but by assuming certain qualitativeproperties of the system. We obtain a global convergence result by merging estimatesfrom three basic concepts | Viability (Section 5) allowing us to state results on extremalvalues of the value functions, Chain controllability (Section 6) enabling us to give estimatesfor all possible trajectories of the system and Controllability (Section 7), which is usedin order to characterize the behaviour of certain optimal trajectories | into one globalpicture in Section 8. This kind of approach was inspired by the analysis of the Lyapunovspectrum of bilinear control systems as carried out in [13]. By this procedure we arealso able to characterize the subsets of uniform convergence. Furthermore we present apenalizing strategy for the restriction to certain regions of the state space in Section 9. Theassumptions we impose can be interpreted as robustness conditions, cp. Remark 8.5, andare generically satis�ed for families of systems under an inner pair condition, cp. Remark8.6.At the very heart of our analysis two tools are used: In Section 3 we thoroughly investigatethe relation between discounted and average functionals using a similar technique as in [18]and [20]. This can be interpreted as a stronger version of the Abelian theorem, allowingalso results on uniform convergence. In Section 4 we investigate the control ow associatedto our control system (cf. [11]). Here the concept of attractivity (which is also used in [3])�ts into the general framework of dynamical systems from which we adopt the concept ofMorse decompositions.Apart from the main theorem which is presented in Section 8 we have also formulated thepartial results in the Sections 5{7 in a self contained way since they provide useful estimatesin themselves. Throughout this paper we assume that the state space is a compact manifoldM ; in Section 9, however, we give some hints about how to overcome this restriction.The applications of our results are immediate, since discounted optimal control problemsenjoy a number of features that averaged ones do not have in general: The correspond-ing optimal value functions are Hoelder continuous and can be characterized as viscositysolution of Hamilton-Jacobi-Bellman equations (cf. [23]), the problems admit a numericalsolution (cf. [6], [19]) and the construction of optimal controls in open loop and feedbackform (cf. e.g. [5], [7] and [17]).Nevertheless it is often desirable to solve average optimal control problems, because theycan be formulated in order to determine asymptotic properties of a given control system.One example is the exponential behaviour of bi- and semilinear systems measured byLyapunov exponents (cf. [10], [12]). The approximation by a discounted optimal controlproblem enables us to obtain stabilizing optimal controls of feedback type (see [17] and[20]) and to compute the whole Lyapunov spectrum numerically (cf. [18]). In particular for



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 3the analysis of the complete asymptotic behaviour of a system a global convergence resultis needed; the result of the present paper in fact closes the gap in the convergence analysisin [18].2 Problem statementWe consider nonlinear control systems of the type_x(t) = f0(x(t)) + mXi=1 ui(t)fi(x(t)) (2.1)on some compact smooth manifold M where the vector �elds fi, i = 0; : : :m are assumedto be Lipschitz and the control function u(�) satis�esu(�) 2 U := fu : R! U j u(�) measurablegwhere U � Rm is compact and convex. For a given initial value x0 2M at time t = 0 anda given control function u(�) 2 U we denote the trajectories of (2.1) by'(t; x0; u(�))In order to de�ne the optimal control problems we assume that a cost functiong :M �Rm! R; g(x; u) := g0(x) + mXi=1 uigi(x) (2.2)which is Lipschitz continuous and bounded, i.e. jg(x; u)j � Mg for some constant Mg, isgiven.Using this cost function we de�ne the averaged functionals along a trajectory byJ0(x0; u(�)) := lim supt!1 1t Z t0 g('(s; x0; u(�)); u(s))ds (2.3)and J0(x0; u(�)) := lim inft!1 1t Z t0 g('(s; x0; u(�)); u(s))ds (2.4)and for a positive discount rate � > 0 we de�ne the discounted functionalJ�(x0; u(�)) := � Z 10 e��sg('(s; x0; u(�)); u(s))ds (2.5)(The scaling of the integral by the discount rate � is introduced in order to obtain a moreconsistent notation in what follows.)The optimization problem now is to minimize these functionals for any initial value withrespect to the control function u(�) 2 U . More precisely we consider the optimal valuefunctions v0(x0) := infu(�)2U J0(x0; u(�)) and v0(x0) := infu(�)2U J0(x0; u(�)) (2.6)



4 LARS GR�UNEand v�(x0) := infu(�)2U J�(x0; u(�)) (2.7)Note that the corresponding maximization problem is obtained by simply replacing g by�g.Both criteria are de�ned over an in�nite time horizon. Here the averaged functionals indeedonly measure asymptotic properties, i.e. everything that happens up to some bounded timet0 does not contribute to the integral. In contrast to this for the discounted functional theboundedness of g implies that essentially only the behaviour on a �nite horizon is measured:For any � > 0 and any " > 0 there exists t > 0 such thatjJ�(x0; u(�))� � Z t0 e��sg('(s; x0; u(�)); u(s))dsj � "for all x0 2 M and all u(�) 2 U . However, for decreasing � ! 0 and �xed " > 0 this timeincreases. Hence the question, whether v� approximates v0 and v0 for small � > 0 arisesnaturally. It is this question that we want to investigate in this article.3 Discounted and averaged functionalsIn this section we will investigate the relation between discounted and averaged integrals,functionals (along trajectories) and value functions. We start with a lemma giving anestimate for these integrals which can be interpreted as a stronger version of the classicalAbelian theorem that can be found e.g. in [25, Theorem 10.2].Lemma 3.1 Let q : R! R be a measurable function satisfying jq(s)j < Mq for almost alls 2 R. Assume there exists a time T > 0 such that1t Z t0 q(�)d� < � for all t � TThen for any " > 0 and all 0 < � < "(Mq+j�+"j)T the following inequality holds:� Z 10 e���q(�)d� � � + "A proof of this lemma can be found in [20, Appendix], which uses essentially the sametechniques as the proof of [18, Theorems 2.1 and 2.2] combined with a careful evaluationof the constants.Note that the converse inequalities are easily obtained by replacing g by �g.In order to carry over these results to our functionals and value functions we introducesome further de�nitions.



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 5De�nition 3.2 For the control system (2.1) and the cost function (2.2) we de�neJ t0(x; u(�)) := 1t Z t0 g('(s; x; u(�)); u(s))dsJ t0(x; u(�)) := sup��t J�0 (x; u(�))J t0(x; u(�)) := inf��tJ�0 (x; u(�))vt0(x) := infu(�)2U J t0(x; u(�))vt0(x) := infu(�)2U J t0(x; u(�))The following lemma shows the relation to the averaged functionals and value functionsfrom Section 2.Lemma 3.3 limt!1 J t0(x; u(�)) = J0(x; u(�)); limt!1 J t0(x; u(�)) = J0(x; u(�))and limt!1 vt0(x) = v0(x); limt!1 vt0(x) =: v10 (x) � v0(x)Proof: The �rst two equalities are immediately clear from the de�nitions. We prove thethird assertion, the fourth follows by similar arguments.Recalling the de�nition of vt0(x) and v0(x) using the notation of De�nition 3.2 this equalitystates limt!1 infu(�)2U sup��t J�0 (x; u(�)) = infu(�)2U lim supt!1 J t0(x; u(�))We prove the equality by proving both inequalities.\�" Fix " > 0 and u"(�) 2 U such thatlim supt!1 J t0(x; u"(�)) < infu(�)2U lim supt!1 J t0(x; u(�)) + "Then there exists t" � 0 such thatJ�0 (x; u"(�)) < infu(�)2U lim supt!1 J t0(x; u(�))+ 2"for all � � t". Since " > 0 was arbitrary this implies \�".\�" Fix " > 0 and t" > 0 such thatlimt!1 infu(�)2U sup��t J�0 (x; u(�))+ " > infu(�)2U sup��t" J�0 (x; u(�))Then there exists a control function u"(�) 2 U such thatlimt!1 infu(�)2U sup��t J�0 (x; u(�)) + 2" > infu(�)2U sup��t" J�0 (x; u(�)) + " > sup��t" J�0 (x; u"(�))



6 LARS GR�UNEThis implies limt!1 infu(�)2U sup��t J�0 (x; u(�))+ 2" > lim supt!1 J t0(x; u"(�))and since " > 0 was arbitrary \�" follows.These \�nite time" averaged functionals and value functions can now be used to giveuniform bounds for J� and v� for small discount rate � > 0.Lemma 3.4 For all t > 0, all " > 0 and �0 = "2Mgt the estimateJ�(x; u(�)) 2 [J t0(x; u(�))� "; J t0(x; u(�)) + "]holds for all � � �0. In particular if the limit limt!1 J t0(x; u(�)) exists the equalitylim�!0J�(x; u(�)) = J t0(x; u(�)) = J t0(x; u(�))is impliedProof: Follows immediately from Lemma 3.1 by observing that it is su�cient to considerj� + "j �Mg.Corollary 3.5 For all t > 0, all " > 0 and �0 = "2Mgt the estimatev�(x) 2 [vt0(x)� "; vt0(x) + "]holds for all � � �0. In particular if v0(x) and v10 (x) agree the equalitylim�!0 v�(x) = v0(x) = v0(x) = v10 (x)is implied.Proof: Follows immediately from the preceding lemma.Hence the goal of this paper will be to give estimates for vt0(x) and vt0(x) and characterizethe situations in which the limits coincide. In particular we are interested in uniformestimates in t on certain subsets of M which then imply uniform estimates for v� for small� > 0. A special case for these subsets will be those where v0(x) = v0(x) = v10 (x) � const.Keeping Corollary 3.5 in mind we will not | except for the main Theorem 8.4 | explicitlyformulate the implications of the estimates in the following sections on v�.Sometimes it will be useful to restrict the state space to some subset B � M . We willdenote the corresponding value functions as follows.De�nition 3.6 For a subset B �M we de�nev0(x;B) := inffJ0(x; u(�)) ju(�) 2 U ; '(t; x; u(�))2 B for all t � 0gfor those points x 2 B for which at least one trajectory exists that stays inside B.In the same way we de�ne v0(x;B), v10 (x;B), vt0(x;B), vt0(x;B) and v�(x;B).



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 7We end this section with two lemmas showing some useful properties of averaged functionalswhich will be used in the next sections.Lemma 3.7 Let q : R! Rbe a measurable function, t > 0 and t1 2 (0; t). Let t2 = t� t1.Then(i) the following equality holds1t tZ0 q(�)d� = t1t 1t1 t1Z0 q(�)d� + t2t 1t2 t2Z0 q(� + t1)d�(ii) if jqj is bounded by some constant Mq the following estimates holdj1t tZ0 q(�)d� � 1t1 t1Z0 q(�)d� j � 2Mq t2t and j1t tZ0 q(�)d� � 1t2 t2Z0 q(� + t1)d� j � 2Mq t1tProof: (i) follows by a simple calculation, (ii) from (i) using the propertyj1s sZ0 q(�)d� j �Mqwhich holds for all s > 0.Lemma 3.8 Let q : R! R be a measurable function bounded by some constant Mq. Lett > 0 be arbitrary and � := 1t Z t0 q(�)d�Then for any " > 0 there exists a time t� � (2Mq�")t2Mq such that1s Z s0 q(t� + �)d� � � + "for all s 2 (0; t� t�]. Here t � t� � "t2Mq !1 as t!1.Proof: Let � := sups2(0;t] 1s Z s0 q(�)d�and �x " > 0. If � � � + " the assertion follows with t� = 0.Otherwise let t� := sup�s 2 (0; t] ���� 1s Z s0 q(�)d� � � + "�By the continuity in s of this averaged integral the equality1t� Z t�0 q(�)d� = � + "



8 LARS GR�UNEis implied. By Lemma 3.7(ii) it follows from 1t R t0 q(�)d� = � that t � t� = t2 � "t2Mq andhence t� � (2Mq�")t2Mq . We claim that t� satis�es the desired property:De�ning ~q(s) := q(s)� � � " it follows from the de�nition of t� that1t� Z t�0 ~q(�)d� = 0 and 1s Z s0 ~q(�)d� < 0for all s 2 (t�; t]. Hence alsoZ t�0 ~q(�)d� = 0 and Z s0 ~q(�)d� < 0holds implying Z st� ~q(�)d� < 0for all s 2 (t�; t] which yields the assertion.4 The control ow, ("; T )-chains and their valuesAs already pointed out in the introduction, the concept of attractivity forms one of the basictools for the analysis of our problem, since this enables us to formulate results for all possibletrajectories with initial values in some speci�ed set. Instead of using the control system(2.1) itself we will develop these results in terms of the corresponding control ow. Althoughthis requires some de�nitions it will turn out that this procedure admits an elegant andstraightforward approach to the desired results, since techniques from dynamical systemstheory can be applied directly. We will start by de�ning the control ow �, see [11] fordetails.By endowing the space U of measurable control functions with the weak�-topology weobtain a compact metric space. On this space for t 2 Rwe de�ne the right shift by� : R� U ! U ; �(t; u(�)) = u(�+ t)This generates a continuous ow on U . Using this shift we de�ne the control ow� : R� U �M ! U �M; �(t; u(�); x) = (�(t; u(�)); '(t; x; u(�))) (4.1)In fact, this generates a continuous ow on the product space U �M . For convenienceof notation we abbreviate p = (u(�); x) for the elements of this product space. For a setB � U �M we denote by�MB := fx 2M j there exists u(�) 2 U with (u(�); x) 2 Bgthe natural projection onto M .Note that the functionals J� and J t0 depend continuously on p due to the fact that f andg are a�ne in u.One of the main tools in our analysis is the concept of attractors for ows on metric spaces.In order to de�ne these objects we have to de�ne omega limit sets and invariance. We referto [1] for more information about ows and dynamical systems.



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 9De�nition 4.1 For a subset B � X the !-limit set is de�ned by!(B) := fp 2 X j there exist points pk 2 B and times tk !1 with limk!1�(tk; pk) = pgThe !�-limit set is de�ned analogously for the time reversed system.A subset B � X is called forward invariant if �(t; p) 2 B for all p 2 B and all t � 0. Itis called backward invariant if �(t; p) 2 B for all p 2 B and all t � 0 and invariant if it isforward and backward invariant.Now we can introduce the concept of attractors.De�nition 4.2 Let � be a continuous ow on a compact metric space X . A compactinvariant set A � X is called an attractor if it admits a neighborhood N such that !(N ) =A.For an attractor A the set A� := fp 2 X j!(p) 6� Ag is called the complementary repeller.The domain of attraction of an attractor A is the set A(A) := X nA�.Note that a repeller is an attractor for the time reversed ow.The following Lemma on uniform attraction will be used in this section.Lemma 4.3 Let A be an attractor and K � X n A� be a compact set. Let N be someopen neighborhood of A. Then there exists a time T such that�(t; p) 2 N for all t � T and all p 2 KProof: By the de�nition of an attractor !( ~N ) = A holds for some open neighborhood ~Nof A. Hence there exists T1 > 0 such that �(t; p) 2 N for all p 2 ~N and all t � T1.From the assumptions on K it follows that for any point p 2 K there exists a time tp >0 such that �(tp; p) 2 ~N . The continuity implies that �(tp; ~p) 2 ~N for all ~p in someneighborhood of p. Since K is compact we obtain that these times tp are bounded by someT2, hence the assertion follows with T = T1 + T2.We will now somewhat generalize the �nite time average functionals by introducing ("; T )-chains and their averaged values. The basic idea is to allow small jumps between �nitetime trajectory pieces and de�ne in�mal chain values by letting these jumps tend to 0 andthe time length of the trajectory pieces tend to in�nity.De�nition 4.4 For p; q 2 X and "; T > 0 an ("; T )-chain � is given by a number n 2 Ntogether with points in X p0 = p; p1; : : : ; pn = qand times t0; : : : ; tn�1 � Tsuch that d(�(ti; pi); pi+1) < " for i = 0; : : : ; n � 1. The total time of a chain is given byT (�) :=Pn�1i=0 ti.



10 LARS GR�UNEWe say that � lies in B � X if �(t; pi) 2 B for all t 2 [0; ti] and all i = 0; : : : ; n� 1.The averaged value of a chain is given byJ0(�) := 1T (�) n�1Xi=0 tiJ ti0 (pi)with J t0(p) := J t0(x; u(�)) from De�nition 3.2 for p = (u(�); x).For a subset B � X we de�ne the in�mal chain value over B for "! 0 and T !1 by��(B) := inf (� 2 R ����� there exist "k ! 0; Tk !1 and ("k; Tk)-chains�k in B such that limk!1 J0(�k)! � )Note that this setup and hence all results in this section can be generalized to arbitraryows on compact metric spaces and arbitrary average functionals, provided they can bewritten in a suitable integral form.The following equality is an immediate consequence of the previous de�nitions.Proposition 4.5 For the in�mal chain value over some forward invariant subset B � Xthe following equality holds��(B) = inf (� 2 R ����� there exist tk !1 and points pk 2 Ksuch that limk!1 J tk0 (pk)! � )i.e. the jumps in the chains do not change the minimal value over K.Proof: \�": This follows from the fact that each trajectory is a (trivial) chain.\�": Let � be an arbitrary ("; T )-chain in B. Then by the de�nition of J0(�) there existsa time ti � T and a point pi 2 B in the chain such that J ti0 (pi) � J0(�). Hence by thede�nition of ��(B) there exist sequences of times tk ! 1 as k ! 1 and points pk 2 Bsuch that lim supk!1 J tk0 (pk) � ��(B) which implies the assertion.For certain points we can even establish a stronger relation between ��, J t0, J0 and J0.Proposition 4.6 For the in�mal chain value over some compact forward invariant subsetK � X there exists a point p 2 K such thatJ t0(p) � ��(K) for all t � 0 and limt!1 J t0(p) = ��(K)In particular for this point the limit exists and J0(p) = J0(p) = ��(K).Proof: By Proposition 4.5 we �nd a sequence of points pk 2 K and times tk ! 1 ask !1 such that J tk0 (pk) < ��(K) + "k where "k ! 0 for k ! 1. De�ning ~"k := 1ptk ! 0for k ! 1 we apply Lemma 3.8 to q(s) := g(�(pk; s)) for each k 2 N and obtain times t�ksuch that Js0(�(t�k; pk)) � ��(K) + "k + ~"k



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 11for all s 2 (0; tk � t�k ] where tk � t�k � ptk2Mg . De�ning points ~pk := �(t�k; pk) and times~tk := tk � t�k !1 as k !1 we obtainJs0(~pk) � ��(K) + "k + ~"kfor all s 2 (0; ~tk].Since B is compact we may assume that the points ~pk converge to some p 2 B. Now �xarbitrary t > 0 and " > 0 and consider J t0(p). Since J t0 is continuous we �nd k0 2 N suchthat jJ t0(p)� J t0(pk)j < " for all k � k0. HenceJ t0(p) < ��(K) + "k + ~"k + "follows for all k � k0. Since " > 0 was arbitrary and "k + ~"k ! 0 for k ! 1 we canconclude J t0(p) � ��(K)which implies the �rst assertion since t > 0 was arbitrary.This immediately implies lim supt!1 J t0(p) � ��(K). Now assume lim inf t!1 J t0(p) <��(K). This implies the existence of a sequence tk such that limk!1 J tk0 (p) < ��(K) whichcontradicts Proposition 4.5.The Propositions 4.5 and 4.6 show in particular that when considering in�ma over compactsubsets of X the chain values, the �nite time average values and the averaged values areequivalent. Note, however, that for a single point these equalities will in general not hold.The main advantage of the concept of chains and their values is that we can formulate thefollowing result on continuous dependence for arbitrary times t > 0.Proposition 4.7 Let K � X be a compact forward invariant set for the control ow �.Then for any � > 0 there exists a neighborhood N (K) and a time T > 0 such thatJ t0(p) > ��(K)� �for all t � T and all p 2 N (K) with �(s; p) 2 N (K) for all s � t.Proof: Fix � > 0. Assume that for arbitrary neighborhoods N (K) and arbitrary timesT > 0 there exist points pT;N 2 N (K) such that J t0(p) < ��(K)� � for some t � T and�(s; p) 2 N (K) for all s � tNow choose an arbitrary " > 0 and a � 2 (0; ") such that for all times 0 � s � 2T and allpoints p; q 2 X with d(p; q)< � the inequalitiesjJs0(p)� Js0(q)j < " and d(�(s; p);�(s; q))< " (4.2)hold. The trajectories �(s; pT;N ) can now be partitioned into pieces with times �n 2[T; 2T ]. By choosing N (K) su�ciently small by the choice of � for every point pm :=�(Pmn=0 �n; pT;N) there exists a point qm in K such that (4.2) is satis�ed. Hence this yieldsan ("; 2T )-chain � in K satisfying J0(�) � ��(K)� � + ". Since " and T were arbitrary acontradiction to the de�nition of ��(K) follows.The following corollary shows how this result can be extended to attractors and theirdomain of attraction.



12 LARS GR�UNECorollary 4.8 Let A � X be an attractor for �. Let K be a compact subset of the domainof attraction of A. Then for any � > 0 there exists a time T > 0 such thatJ t0(p) > ��(A)� �for all p 2 K and all t � T .Proof: For any � > 0 we �nd a neighborhood N (A) of A and a time T0 such that theassertion of Proposition 4.7 holds with �=2. By Lemma 4.3 there exists a time T1 suchthat �(s; p) 2 N (A) for all s � T1 and all p 2 K. Now the assertion follows by Lemma 3.7by choosing T su�ciently large compared to T1.In the next step we will investigate the �nite time average value on nested attractors. Westart with two attractors.Lemma 4.9 Let A0 � A1 be attractors of � and A�0 � A�1 be the complementary repellers.Then for any � > 0 there exists a T > 0 such thatJ t0(p) � minf��(A0); ��(A1 \A�0)g � �for all p 2 A1 and all t � T .Proof: Fix � > 0. Then we �nd an open neighborhood N (A1 \ A�0) and a a time T1 > 0such that the assertion of Proposition 4.7 holds for �=2. For K := A1 n N (A1 \ A�0) thereexists a time T2 > 0 such that also the assertion of Corollary 4.8 also holds for �=2.We claim that T := maxfT1 + T2; 2�MgmaxfT1; T2gg;where Mg is the bound on g, satis�es the assertion: Pick an arbitrary point p 2 A1. Forp 2 K the assertion follows from Corollary 4.8. For p 2 A1 \A�0 the assertion follows fromProposition 4.7. For all other p de�ne t0 := minft � 0 j�(t; p) 2 Kg. In order to estimateJ t0(p) for t � T we distinguish three cases:(i) t0 < T1: Lemma 3.7(ii) impliesJ t0(p) � J t�t00 (�(t0; p)| {z }2K )� 2Mq t0t � ��(A0)� �(ii) t0 � T1; t � t0 + T2: Here Lemma 3.7(ii) impliesJ t0(p) � J t00 (p)� 2Mq t � t0t � ��(A1 \A�0)� �(iii) t0 � T1; t � t0 + T2: In this case Lemma 3.7(i) impliesJ t0(p) � t0t J t00 (p) + t� t0t J t�t00 (�(t0; p)| {z }2K ) � t0t ��(A1 \A�0) + t � t0t ��(A0)� �2Hence in all three cases the assertion follows.The main goal of this section is to give uniform estimates for J t0 and J t0 on a Morsedecomposition of X corresponding to the ow �. In order to obtain such a result we needthe following de�nitions.



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 13De�nition 4.10 Let � be a continuous ow on a compact metric space X . Let ; = A0 �A1 � : : : � Ad = X be a sequence of attractors and let X = A�0 � A�1 � : : : � A�d = ; bethe complementary repellers. Then for any i = 1; : : : ; d the setMi = Ad�i+1 \A�d�iis called a Morse set and the collection Mi, i = 1; : : : ; d is called a Morse decomposition.For any Morse set Mi we de�ne the corresponding domain of attraction byA(Mi) := fp 2 X j!(p) �MigLemma 4.11 For any sequence of Morse sets Mj1 ; : : : ;Mj2 , 1 � j1 � j2 � d we have[i=j1;:::;j2A(Mi) = A�d�j2 nA�d�j1+1Proof: \�" Let p 2 A(Mi) for some i 2 fj1; : : : ; j2g. This implies !(p) � Ad�i+1, hencep 62 A�d�i+1 � A�d�j1+1.On the other hand !(p) 2 Mi implies !(p) � A�d�i. Since p 62 A�d�i implies !(p) � Ad�iand Ad�i \ A�d�i = ; it follows that p 2 A�d�i � A�d�j2 .\�" Let p 2 A�d�j2 n A�d�j1+1. Then by the inclusion of the repellers there exists i 2fj1; : : : ; j2g such that p 2 A�d�i nA�d�i+1 By the invariance p 2 A�d�i implies !(p) � A�d�i.By the de�nition of the repeller p 62 A�d�i+1 implies !(p) � Ad�i+1, hence !(p) �Mi.We will now discuss the order of the Morse sets. Note that the attractor sequence inducesa total order of the Morse sets. However, it is possible that di�erent attractor sequencesgenerate the same Morse sets but with a di�erent order. Hence we de�ne a stronger orderrelation for the Morse sets.De�nition 4.12 Consider a Morse decomposition M1; : : : ;Md for the ow �. Then fortwo Morse sets Mi 6= Mj we de�ne Mi < Mj if there exist points p1; : : : ; pk and Morsesets Mi0 = Mi;Mi1; : : : ;Mid = Mj such that !�(pl) 2 Mli�1 and !(pl) 2 Mli for alll = 1; : : : ; d.Remark 4.13 Note that Mi <Mj implies i < j.However, even a stronger relation to the attractor sequence can be established.Proposition 4.14 Let M1; : : :Md be a Morse decomposition of the ow � generated byan attractor sequence A0 � A1 � : : : � Ad. Then for any Morse set Mi there exists anattractor sequence ~A0 � ~A1 � : : : � ~Ad generating a Morse decomposition ~M1; : : : ~Mdsatisfying ~Ml(j) =Mjfor all j 2 f1; : : : ; dg and a bijective function l : f1; : : : ; dg ! f1; : : : ; dg and~Ml(i) < ~Mjfor all j > l(i).



14 LARS GR�UNEProof: Step 1: We �rst show the following property: For any Morse set Mi withMi 6< Mi+1 there exists an attractor sequence ~A0 � ~A1 � : : : � ~Ad generating a Morsedecomposition ~M1; : : : ~Md with ~Mj =Mj for all j 2 f1; : : : ; dg with j 6= i, j 6= i+ 1, and~Mi =Mi+1, ~Mi+1 =Mi.W.l.o.g. we may assume i + 1 = d, otherwise we may restrict � to A�d�i�1. Hence weconsider Md = A1 and Md�1 = A2 \ A�1. From the assumption Md�1 6< Md we canconclude that a p 2 X with !(p) � Md and !�(p) � Md�1 can not exist. Hence for anyp 2 A2 nA1 (which implies !�(p) �Md�1) it follows that p 2 A�1.This implies that A�1 � A2 nA1, hence A2 = A1 [ (A2 \ A�1) = Md [Md�1 which meansthat A2 consists of two non connected compact sets. Hence each of these sets itself is anattractor.De�ne ~A1 =Md�1 and ~Aj = Aj for all j 2 f2; : : : ; dg. Obviously ~A�1 := A(A1) [A�2 is therepeller corresponding to ~A1. Hence~A2 \ ~A�1 = A2 \ (A(A1) [ A�2) = A2 \A(A1)Now let p 2 A2. Then either p 2 A1 or p 2Md�1 implying p 62 A(A1). Hence A2\A(A1) =A1 =Md. Since ~A1 � ~A2 � : : : � ~Ad is obvious the assertion follows.Step 2: Now consider the Morse set Mi from the assumption. Let k be the number ofMorse sets with i < j and Mi 6< Mj . If k = 0 we are done. Otherwise let j > i beminimal with Mi 6< Mj . Then the transitivity of the order relation implies Ml 6< Mjfor all l 2 fi; : : : ; j � 1g. Applying Step 1 iteratively to j � 1; : : : ; i we obtain an attractorsequence generating a Morse decomposition with l(i) > l(j), and the number k as de�nedabove has decreased by 1.Applying Step 2 iteratively now yields the assertion.Our main theorem now gives the complete picture on a Morse decomposition of X .Theorem 4.15 Let � be a continuous ow on a compact metric space X . Let ; = A0 �A1 � : : : � Ad = X be a sequence of attractors and consider the corresponding Morse setsMi = Ad�i+1 \A�d�i.Then for any i 2 f1; : : : ; dg, any compact set K � SMj�Mi A(Mj) and any � > 0 thereexists a T > 0 such that J t0(p) � minMj�Mi ��(Mj)� �for all p 2 K and all t � T .Proof: Fix i 2 f1; : : : ; dg. By Proposition 4.14 we may assume fMj jMj � Mig =fMj j j � ig.Now from the assumption on K and Lemma 4.11 it follows that K lies in the domain ofattraction of Ad�i+1. Hence Corollary 4.8 implies thatJ t0(p) � ��(Ad�i+1)� �for all su�ciently large t.



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 15Therefore we have to give an estimate for ��(Ad�i+1). We proceed by induction overd� i+ 1 =: k and claim that ��(Ak) = minj=d�k+1;:::;d��(Mj)For k = 1 the assertion follows directly since A1 =Md.Now assume the assertion is true for k > 1. For the induction step note that the value of achain cannot be smaller than the minimum over the values of the trajectory pieces in thechain. Hence by Lemma 4.9 we obtain for Ak+1��(Ak+1) = minf��(Ak); ��(Ak+1 \ A�k| {z }=Md�k )gand the induction assumption yields the assertion.We end this section by stating a fact about Morse decompositions, for which we need someadditional de�nitions.De�nition 4.16 A point p 2 U � M is called chain recurrent, if for all "; T > 0 thereexists an ("; T )-chain from p to p.The chain recurrent set CR of the ow � is the set of all chain recurrent points.A subset M� U �M is called chain transitive if for all points p; q 2 M and all "; T > 0there exists an ("; T )-chain from p to q.Remark 4.17 Note that the maximal invariant chain transitive sets are just the connectedcomponents of the chain recurrent set CR. The relation of CR to the Morse sets followsfrom a result due to Conley [15] which will be useful for the interpretation of Theorem 4.15in Section 6: If the chain recurrent set CR of (4.1) consists of �nitely many connected com-ponents, then it is always possible to �nd an attractor sequence such that these connectedcomponents are just the corresponding Morse sets. Conversely, if we have a sequence ofattractors yielding a �nest Morse decomposition (i.e. no further re�nement by introduc-ing more attractors is possible), then the corresponding Morse sets are just the connectedcomponents of CR. See e.g. [14] for a discussion and proof of this result in the context ofcontrol ows.5 Viable setsWe will now return to the control system (2.1) and \translate" the results from the preced-ing section. We start by investigating the behaviour of the value functions on viable setsfor the control system 2.1, which correspond to the forward invariant sets for the controlow �.De�nition 5.1 A subset B �M is called viable (or controlled invariant), if for any x 2 Bthere exist a control function ux(�) 2 U such that'(t; x; ux(�)) 2 B for all t � 0



16 LARS GR�UNEWe will use this de�nition in order to characterize properties of the extremal values of thevalue functions. as carried out in the next two propositions. Here we use the restrictedvalue functions from De�nition 3.6. Note that on viable sets B they are well de�ned foreach point in B.Proposition 5.2 Consider the system (2.1) and a viable set B �M . Thensupx2B vt0(x;B) � infx2B v0(x;B)and supx2B vt0(x;B) � infx2B v0(x;B)for all t � 0.Proof: Assume there exists a time t > 0 such that supx2B vt0(x;B) < infx2B v0(x;B).Then there exists " > 0 such that for any y 2 B there exists a control function uy(�)satisfying J t0(y; uy(�)) < infx2B v0(x;B) � " and '(s; y; uy(�)) 2 B for all s � 0. Start-ing in some arbitrary point y0 2 B we may thus iteratively construct a control function�u(�) by �u(�)j[0;t] := uy0(�)j[0;t] and �u(�)j(it;(i+1)t] := u'(it;y0;�u(�))(�)j(0;t] for i 2 N. Clearly'(s; y; �uy(�)) 2 B for all s � 0. By Lemma 3.7(i) this construction yieldsJ it0 (y0; �u(�)) < infx2B v0(x;B)� "for all i 2 N and by Lemma 3.7(ii) there exists S > 0 such that for all s > S we obtainJs0(y0; �u) < infx2B v0(x;B)� "=2which contradicts the de�nition of v0. This proves the �rst assertion.For the second assertion assume there exists a time t > 0 such that supx2B vt0(x;B) <infx2B v0(x;B). Then there exists " > 0 such that for any y 2 B there exists a control func-tion uy(�) and a time ty � t satisfying J ty0 (y; uy(�)) < infx2B v0(x;B)�" and '(s; y; uy(�)) 2B for all s � 0. Starting in some arbitrary point y0 2 B we may again iteratively con-struct a control function �u(�) by �u(�)j[0;ty0] := uy0(�)j[0;ty0] and �u(�)j(ti;ti+t'(ti;y0 ;�u(�))] :=u'(ti;y0;�u(�))(�)j(0;t], where t1 = ty0 and ti = ti�1 + t'(ti;y0;�u(�)) for i � 2. Obviously'(s; y; �uy(�)) 2 B for all s � 0. By Lemma 3.7(i) this construction yieldsJ ti0 (y0; �u(�)) < infx2B v0(x;B)� "for all i 2 N which contradicts the de�nition of v0. This proves the second assertion.Proposition 5.3 Consider the system (2.1) and a compact viable set K � M . Then thefollowing properties hold:(i) For K := f(u(�); x) 2 U �K j'(t; x; u(�))2 K for all t � 0g the equalityinfx2K v0(x;K) = infx2K v0(x;K) = infx2K v10 (x;K) = ��(K)is satis�ed.



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 17(ii) For any " > 0 there exists t > 0 withvt0(x;K) � vt0(x;K) � infx2K v0(x;K)� "for all x 2 K(iii) There exists a point x 2 K and a control function u(�) 2 U with '(t; x; u(�))2 K forall t � 0 satisfying J t0(x; u(�))� infx2K v10 (x;K) for all t � 0:Proof: Observe that K is a compact forward invariant set for the control ow �. By thede�nition of v10 (x;K) and ��(K) one obtains��(K) = infx2K v10 (x;K) (5.1)Now (iii) follows from Proposition 4.6, (i) from (iii) and (5.1), and (ii) follows from Propo-sition 4.7 and (i).6 Chain control setsIn this section we will interpret Theorem 4.15 in terms of the control system (2.1).For this purpose we have to adapt the concept of chains to the control system, cp. De�nition4.4.De�nition 6.1 For x; y 2 M and "; T > 0 a (controlled) ("; T )-chain � is given by anumber n 2 N together with points in Mx0 = x; x1; : : : ; xn = y; control functions u0(�); : : : ; un�1(�) 2 Uand times t0; : : : ; tn�1 � Tsuch that d('(ti; xi; ui(�)); xi+1) < " for i = 0; : : : ; n� 1. The total time of a chain is givenby T (�) :=Pn�1i=0 ti.We say that � lies in B �M if '(t; pi; ui(�)) 2 B for all t 2 [0; ti] and all i = 0; : : : ; n� 1.The averaged value of a controlled chain is given byJ0(�) := 1T (�) n�1Xi=0 Z ti0 g('(�; xi; ui(�)); u(�))d�For a subset B �M we de�ne the in�mal chain value over B for "! 0 and T ! 1 by��(B) := inf (� 2 R ����� there exist "k ! 0; Tk !1 and controlled("; T )-chains �k in B such that limk!1 J0(�k)! � )



18 LARS GR�UNEUsing the concept of chains we can de�ne the chain control set as follows.De�nition 6.2 For then control system (2.1) a set E is called a chain control set, if(i) For all x; y 2 E and all "; T > 0 there exists a controlled ("; T )-chain from x to y(ii) For all x 2 E there exists u(�) 2 U such that '(t; x; u) 2 E for all t 2 R(iii) E is maximal with the properties (i) and (ii)We de�ne the liftM(E) � U �M of E byM(E) := f(u(�); x) 2 U � E j'(t; x; u(�))2 E for all t 2 RgThe relation to the control ow is described by the following theorem.Theorem 6.3 Consider the control system (2.1) and the corresponding control ow (4.1).Then the following properties hold(i) Let E � M be a chain control set for (2.1). Then its lift M =M(E) � U �M is amaximal invariant chain transitive set for the ow (4.1)(ii) Let M � U �M be a maximal invariant chain transitive set for (4.1). Then E :=�MM is a chain control set for (2.1)(iii) In these cases the equality ��(M) = ��(E) holds for the values from the De�nitions4.4 and 6.1.Proof: Assertions (i) and (ii) follow from [11, Theorem 4.8], assertion (iii) is immediatelyclear by the de�nition of the chain values.In particular if there are only �nitely many chain control sets, then the chain recurrent setof (4.1) has only �nitely many components, hence (cp. Remark 4.17) they are Morse setscorresponding to a sequence of attractors. Hence we can translate Theorem 4.15 to (2.1)using this relation. Here we de�ne the domain of attraction of a chain control set E byA(E) := �MA(M(E))and de�ne the order of the chain control sets to be the induced order of the Morse sets,i.e. for Ei 6= Ej we haveEi < Ej () 8><>: there exist points x1; : : :xk 2M , control functions u1(�); : : : ;uk(�) 2 U and chain control sets Ei0 = Ei; Ei1 ; : : : ; Eik = Ejsuch that �M!�(ul(�); xl) � Eil�1 and �M!(ul(�); xl) � Eil (6.1)and for arbitrary Ei and Ej we de�ne Ei � Ej :() Ei = Ej or Ei < Ej.



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 19Theorem 6.4 Consider the control system (2.1). Assume that there exist �nitely manychain control sets E1; : : : ; Ed onM . Let A0 � A1 � : : : � Ad be a sequence of attractors forthe ow (4.1) with �MA0 = ; and �MAd = M such that the Morse setsMd�i := Ai+1\A�isatisfy Mj =M(Ej). Then the following properties hold for all j = 1; : : :d(i) For any " > 0 there exists t > 0 such thatvt0(x;Ej) � ��(Ej)� "for all x 2 Ej(ii) There exists x 2 Ej such thatvt0(x) � vt0(x;Ej) � ��(Ej)for all t � 0.(iii) For any compact set K � M satisfying K \ SEl 6�Ej A(El) = ; and any " > 0 thereexists a time t > 0 such that vt0(x) � minEi�Ej ��(Ei)� "for all x 2 K.Proof: First observe that any chain control set is a compact viable set.(i) follows immediately from Proposition 5.3(i) and (ii) and Theorem 6.3(iii).(ii) Taking the in�mum over u(�) in Proposition 5.3(iii) and combining Proposition 5.3(i)with Theorem 6.3(iii) we obtain this inequality.(iii) By Proposition 4.14 we may choose the attractor sequence in such a way that fEi jEi �Ejg = fEi j i � jg which implies fEl jEl 6� Ejg = fEl j l < jg.Thus SEl 6�Ej A(El) = Sl=1;:::;j�1A(El) and we can use Lemma 4.11 in order to concludeSl=1;:::;j�1A(El) = �M Sl=1;:::;j�1A(Ml) = A�d�j+1. (note that A�d = ;).Now from the de�nition of K it follows that K := U�K\A�d�j+1 = ; and hence K satis�esthe assumption of Theorem 4.15. This implies the assertion.7 Control setsIn Theorem 6.4(iii) we have obtained a uniform lower bound of vt0 for initial values in certainsubsets of M . The main purpose of this section is to establish uniform upper bounds for vt0on certain subsets of M .In addition we will give a criterion for the equality of vt0 and vt0 for t!1 for trajectoriesstaying in these subsets.Our way to obtain these estimates is the exploitation of the controllability properties of(2.1). The basic concept in order to do this is given by the reachable and control sets.



20 LARS GR�UNEDe�nition 7.1 For any point x 2 M we de�ne the positive reachable set up to the timeT > 0 byO+�T (x) := fy 2M j there exists y 2 D; u(�) 2 U and t 2 [0; T ] such that '(t; x; u(�)) = ygand the positive reachable set by O+(x) := [T>0O+�T (x)The negative reachable sets are de�ned the same way for the time reversed system.A subset D �M is called a control set if(i) D � clO+(x) for all x 2 D(ii) For all x 2 D there exists a control function u(�) 2 U such that '(t; x; u(�)) 2 D forall t > 0(iii) D �M is maximal with respect to (i) and (ii)The domain of attraction (or negative reachable set) A(D) of a control set D �M is givenby A(D) := [x2DO�(x)If we have a collection of control sets D1; : : : ; Dk we can de�ne a partial order byDi � Dj :() Di � A(Dj) (7.1)The maximality of the control sets guarantees that this order is well de�ned. In whatfollows we assume that the numbering of the control sets always corresponds to this partialorder.Note that the de�nition of control sets requires only approximate controllability. A conve-nient way to avoid technical assumptions on the speed of this controllability is to assumelocal accessibility of (2.1), i.e. we assume that the positive and negative orbit up to anytime T > 0 have nonvoid interior for all x 2 M . A su�cient analytic condition for thisproperty is the following Lie algebraic assumption, cp. [22]: Let L denote the Lie-Algebragenerated by the vector �elds f(x; u), u 2 U . Let �L be the distribution generated by Lin TM . Then the conditiondim�L(x) = dimM for all x 2M (H)ensures local accessibility of (2.1).Under this condition we can cite the following lemma from [18].Lemma 7.2 Consider the control system (2.1) satisfying (H).Let D � M be a control set and consider compact sets K1 � A(D), K2 � intD. Thenthere exists a time T > 0 such that for every x 2 K1, y 2 K2 there exists a control functionu(�) 2 U with '(t0; x; u(�)) = y for some t0 � T .



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 21Proof: See [18, Proposition 2.5].The values of v0 on the control sets can now be characterized in the following manner.Proposition 7.3 Consider the system (2.1) satisfying (H). Consider k 2 N control setsD1; : : : ; Dk � M with nonvoid interior with Di � Dj for all 1 � i � j � k, i.e. thecontrol sets are completely ordered by (7.1). Then for all i; j 2 f1; : : : ; kg with i � j theinequalitiesv0(x) � v0(y); v0(x) � v0(y) and v10 (x) � v10 (y) for all x 2 intDi; y 2 intDjhold. In particular v0jintDi � const, v0jintDi � const and v10 jintDi � const for all i 2f1; : : : ; kg.Proof: Consider i; j and x; y as in the assumption. Then by Lemma 7.2 with K1 = fyg,K2 = fxg there exists a control function u(�) 2 U with '(t; x; u(�)) = y for some t > 0.Now �x " > 0 and pick a control uy(�) 2 U such that J0(y; uy(�)) � v0(y) + ". By de�ningux(s) := u(s) for all s � t and ux(s) = uy(s� t) for all s > t we obtain by Lemma 3.7J0(x; ux(�)) = J0(y; uy(�)) � v0(y) + "Since " > 0 was arbitrary this proves the �rst assertion.The second and third assertion follow by the same arguments.Again by using Lemma 7.2 we are now able to formulate the following result on the valuesof vt0 on control sets with nonvoid interior.Theorem 7.4 Consider the system (2.1) satisfying (H). Consider a control set D � Mwith nonvoid interior. Then for any compact subset K1 � intA(D) and any " > 0 thereexists a time t > 0 such that vt0(x) � v0jintD + "and vt0(x) � v10 jintD + "for all x 2 K1.Furthermore for any compact subset K2 � intD and any " > 0 there exists a time t > 0such that jvt0(x)� vt0(y)j � " and jvt0(x)� vt0(y)j � "for all x; y 2 K2.Proof: Fix " > 0. Pick an arbitrary point x 2 intD. Since v0jintD is constant, there existsu(�) 2 U with J0(x; u(�)) < v0jintD + "=4, thus J t0(x; u(�)) < v0jintD + "=4 for all t � T0 forsome T0 > 0. Now by Lemma 7.2 there exists a time T > 0 such that for any point y 2 K1there exists a control function uy(�) 2 U such that '(t0; y; uy(�)) = x for some t � T .De�ning �uy(s) := uy(s) for s 2 [0; t0] and �uy(s) := u(s � t0) for s � t yields by Lemma3.7(ii) J t0(y; �uy) < v0jintD + " for all t > T1 for some su�ciently large T1 > 0 depending onT and T0. This yields the �rst assertion.



22 LARS GR�UNEFor x; y 2 K2 the same construction yields vt0(y) < vt0(x) + " and also vt0(x) < vt0(y) + "which implies the third assertion.The second and fourth assertion follow by the same arguments.For trajectories staying inside some control set D we are now able to give a criterion forthe equality of v0jintD and v0jintD and the uniform convergence of vt0.Corollary 7.5 Consider the system (2.1) satisfying (H). Consider a control set D � Mwith nonvoid interior. Assume that infx2intD v0(x;D) = infx2clD v0(x; clD). Thenvt0(�; clD)! v0(�; D)jintD = v10 (�; D)jintDuniformly on compact subsets of intD for t!1.Proof: This follows from Theorem 7.4 (which also applies if we require the trajectories tostay inside D) and Proposition 5.3 since clD is a compact viable set.We end this section by considering the special case of an invariant control set. Note thatunder the assumption (H) any invariant control set has nonvoid interior, cf. [14]. Here theconditions from Corollary 7.5 are not necessary. Basically this result is a reformulation of[18, Theorem 2.11].Corollary 7.6 Consider the system (2.1) satisfying (H). Consider an invariant control setC � M , i.e. a control set C satisfying '(t; x; u(�)) 2 C for all x 2 C, all u(�) 2 U and allt � 0. Then supx2intC vt0(x) � v0jintC and supx2intC vt0(x) � v10 jintCfor all t � 0 and vt0 ! v0jintC = v10 jintCuniformly on compact subsets of the interior of C for t!1.Proof: The invariance of C implies that also intC is invariant. Hence v0(x; intC) = v0(x)and vt0(x; intC) = vt0(x) for all x 2 intC and all t � 0. Hence the �rst assertion followsfrom Proposition 5.2, and the second by the same arguments.The convergence vt0 ! v0jintC then is an easy consequence from the �rst assertion andTheorem 7.4.It remains to show the equality v0jintC = v10 jintC . From [9, Corollary 4.3] it followsthat there exist periodic trajectories corresponding to periodic control functions that areapproximately optimal with respect to v10 jintC . Clearly, for periodic trajectories J0 and J0coincide, hence the assertion follows.8 The complete pictureWhat we have obtained so far are



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 23(i) A uniform lower bound for vt0 related to chain control sets by Theorem 6.4(ii) A uniform upper bound for vt0 related to control sets by Theorem 7.4(iii) A convergence result for trajectories staying inside control sets by the Corollaries 7.5and 7.6Here the estimate for the in�mum and the supremum on viable sets from Proposition 5.3and Proposition 5.2 have been used as ingredients for these results.The aim of this section is now to combine the results (i){(iii) in order to obtain uniformconvergence results on a partition of the state space M .For this purpose we establish a relation between the control sets and the chain control setsof the system (2.1). Clearly, for every control set D there exists a unique chain control setE such that clD � E and clA(D) � clA(E).If clD = E holds, Theorem 6.4 immediately impliesinfx2clD v0(x; clD) = ��(E)The following lemma shows how the desired partition can be constructed.Lemma 8.1 Consider the control system (2.1). Assume that there exist �nitely manychain control sets E1; : : : ; Ed. Then the setsBi := A(Ei) n0@ [Ej 6�EiA(Ej)1A for all i 2 f1; : : : ; dg (8.1)form a partition of M , i.e. they are pairwise disjoint and Si=1;:::;dBi = M .Proof: Since j < i implies Ej 6� Ei it follows that Bj \Bi = ; for all j < i. This impliesthat the Bi are disjoint.It remains to show that any x 2 M lies in some Bi. Let Mi denote the lift of Ei. ByLemma 4.11 it follows that Si=1;:::;kA(Mi) = U �M . Hence any x lies inside some A(Ei)for at least one i 2 f1; : : : ; kg and thus in some Bi.We have de�ned the order of the chain control sets (6.1) using the order of the correspondingMorse sets and the order of the control sets (7.1) via their domains of attraction, hencethese orders will not coincide in general. The following lemma shows how an equivalenceof these orders can be established.Lemma 8.2 Consider the control system (2.1) satisfying (H). Assume that there existexactly �nitely many chain control setsE1; : : : ; Ed and control setsD1; : : : ; Dd with nonvoidinterior satisfying clDi = Ei and clA(Di) = clSEl�Ei A(El) for all i 2 f1; : : : ; dg. ThenEi < Ej () Di < Dji.e. the orders of the chain control sets and the control sets coincide.



24 LARS GR�UNEProof: ClearlyDi < Dj implies Ei < Ej without any assumptions. Hence assumeEi < Ej .Clearly this implies Ei � SEl�Ei A(El). Hence intDi = intEi � intSEl�Ei A(El) =intA(Dj) which yields Di < Dj .Remark 8.3 Note that A(Di) � SDl�Di A(Dl) follows from (7.1). Hence by looking at(6.1) the assumption of Lemma 8.2 demands that arbitrary small jumps at the boundariesof the chain control sets can be closed by trajectories. Note that this is much weaker thanassuming that every chain can be closed, i.e. approximated by a trajectory.We are now able to give the complete picture for the averaged functionals using the partitionde�ned by the sets Bi.Theorem 8.4 Consider the control system (2.1) satisfying (H). Assume that there existexactly �nitely many chain control sets E1; : : : ; Ed and control setsD1; : : : ; Dd with nonvoidinterior satisfying clDi = Ei and clA(Di) = clSEl�Ei A(El) for all i 2 f1; : : : ; dg. Assumefurthermore that infx2intDi v0(x;Di) = ��(Ei) =: ��i for all i 2 f1; : : : ; dgand let �i = minf��l j l = i; : : :d; Dl � Digfor i = 1; : : : ; d using the ordering (7.1) of the control sets.Then the following properties hold for the sets Bi from (8.1) and all i 2 f1; : : : ; dg.v0jBi � v0jBi � �i on intBiand vt0 ! �i and vt0 ! �iuniformly on compact subsets of intBi for t!1.Proof: By Proposition 7.3 and the assumptions on v0(x;Di) it follows that v0(x) � �i forall x 2 intDi. Now let K � intBi be a compact set. Then by Theorem 7.4 for any � > 0there exists t > 0 such that vt0(x) � �i + �for all x 2 K. Conversely Theorem 6.4 implies for all su�ciently large t > 0vt0(x) � �i � �for all x 2 K, since the orders of the chain control sets and the control sets agree by Lemma8.2. These two inequalities imply the assertions.Remark 8.5 The assumptions of Theorem 8.4 can be interpreted as robustness conditionson the values of v0 and v0(�; D) on the interior of the control sets D:The �rst assumption is a condition on the control system itself; it is equivalent to the con-tinuous dependence of the control sets and their domains of attraction under all arbitrarily



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 25small perturbations. If this is violated there will be at least one control set D for whichthe positive orbit O+(D) will change discontinuously (w.r.t. the Haussdor� metric) undersuitable arbitrary small perturbations, and thus for appropriately chosen cost functions galso the value of v0 on intD will change discontinuously. So conversely if the values of v0on the interior of all control sets D and for all cost functions g change continuously for allarbitrary small perturbations acting on the system the �rst assumption is implied.The second assumption is a condition on the value function and thus on the control systemand the given cost function g. If it does not hold there exist arbitrary small perturbations ofthe system, such that the value v0(�; D) on the interior of D becomes equal or less that thevalue on the boundary of D and thus changes discontinuously. So this second assumptionis implied by the continuous dependence of v0(�; D) for the given g for all arbitrarily smallperturbations.Note that these su�cient robustness conditions are are in general not necessary, i.e. theassumptions of the theorem are weaker.Remark 8.6 If we assume that the set of admissible control values U is convex and 0 2intU , we can consider U� := f�u j u 2 Ugfor all real values � > 0, and denote the corresponding sets of control functions by U�.This de�nes a family of control systems (2.1)�. Then the assumptions of Theorem 8.4are satis�ed generically for (2.1)� (i.e. for all except at most countably many � > 0),provided (2.1)� satis�es a �� �0 inner pair condition as de�ned in [14] or [18]. This followsfrom the fact that under this condition the chain control sets, control sets and valuesv0jintDi depend monotonically on �, and hence can only exhibit at most countably manydiscontinuity points. A rigorous proof of this property can be obtained with exactly thesame arguments as the proof for the relation between the Floquet, Lyapunov and Morsespectra in [13, Corollary 5.6] or [14].We will briey state the consequences of this central theorem for the discounted optimalvalue functions.Corollary 8.7 Under the assumptions of Theorem 8.4 it holds thatv� ! �iuniformly on compact subsets of intBi for � ! 0.Proof: Follows immediately from Theorem 8.4 and Corollary 3.5.Remark 8.8 Note that v� is uniformly continuous for each � > 0. Hence uniform conver-gence can only be expected away from the boundaries of the Bi since the limit functionv0 is discontinuous at these boundaries. From the point of view of uniform convergenceCorollary 8.7 therefore gives the strongest possible result.



26 LARS GR�UNE9 Restriction of the state spaceIn this section we will discuss a technique for the restriction of the state space. Moreprecisely we are interested in the following problem: Assume that a control system (2.1)and a cost function g are given satisfying the assumption of Theorem 8.4 at least for somecontrol sets.For these control sets we consider the restriction to the intersection B of their positive andnegative reachable sets. Then we are interested in vt0(�; B), vt0(�; B), v0(�; B) and v10 (�; B)and in the relation of these functions, consequently also in v�(�; B) for small � > 0.However, for two reasons we do not want to introduce an explicit restriction of the statespace. One the one hand we may not know B exactly but will only have a characterizationof B in terms of control sets. On the other hand explicit restriction of the state spacecauses certain technical di�culties in the theory (see e.g. [26]) and in particular in thenumerical calculation of optimal value functions (cp. [16]).Hence we propose a penalization technique based on a transformation of the cost functiong which is done as follows.De�nition 9.1 For a �nite sequence Dl1 ; : : :Dl2 of control sets we de�neB := cl0@ [i=l1 ;:::;l2O+(Di)1A \ cl0@ [i=l1;:::;l2A(Di)1AFor a compact set K1 with B � intK1 we denote by ~gK1 : M � U ! R a Lipschitzcontinuous function satisfying~gK1(x; u) = 8><>: g(x; u) x 2 Barbitrary in [�Mg;Mg] x 2 K1 nBMg x 62 K1where Mg := supx2B;u2U jg(x; u)j.Again we de�ne a partition of B similar to (8.1).De�nition 9.2 Let El1 ; : : :El2 � B be chain control sets with clDi = Ei for all i =l1; : : : ; l2. Then we de�ne AB(Ei) :=A(Ei) \B for all i = 1; : : : ; d andBi :=AB(Ei) n0@ [Ej 6�Ei AB(Ej)1A for all i 2 f1; : : : ; dgNote that the structure of B implies that no trajectory can leave B and enter again, henceAB(Ei) can be regarded as the domain of attraction of Ei relative to B.Now we can formulate the result for the optimal control problem using ~g.



DISCOUNTED AND AVERAGE OPTIMAL VALUE FUNCTIONS 27Theorem 9.3 Consider the system (2.1) satisfying (H) with cost function g on a com-pact manifold M . Assume that the system has �nitely many chain control sets. LetDl1 ; : : :Dl2 be control sets with nonvoid interior and consider B from De�nition 9.1. As-sume thatDl1 ; : : :Dl2 are all control sets in B and that there are exactly d chain control setsEl1 ; : : : ; El2 with Ei � B for all i 2 fl1; : : : ; l2g satisfying the assumptions from Theorem8.4 with in�mal chain values ��i . Let�i = minf��l j l = i; : : : l2; Dl � Digfor i = l1; : : : ; l2 using the ordering (7.1) of the control sets.Then there exists a compact set K1 �M with B � intK1, such that for the value functions~v for the cost function ~gK1 from De�nition 9.1 the following properties hold for the sets Bifrom De�nition 9.2 and all i 2 fl1; : : : ; l2g.~v0jBi � ~v10 jBi � �i on intBiand ~vt0 ! �i and ~vt0 ! �iuniformly on compact subsets of intBi for t ! 1. In particular this implies ~v0jBi =v0(�; B)jBi and ~v10 jBi = v10 (�; B)jBi, hence the approximation of the restricted problem.Proof: Fix a compact subset K � intBi. We prove the theorem by showing that for any� > 0 there exists t > 0 such that the inequalities~vt0(x) � �i + �and ~vt0(x) � �i � �hold for any x 2 K.\�" follows with the same arguments as in the proof of Theorem 8.4 for arbitrary compactsets K1 with B � intK1 (note that B is viable).\�" Consider the lifts Ej of the chain control sets Ej. Then there exists a unique smallestattractor Aj1 such that Ej � Aj1 for all j = 1; : : : ; d and a unique smallest repeller A�j2with Ej � A�j2 for all j = 1; : : : ; d.Lemma 4.11 applied to the original and the time reversed system and the assumptions onthe reachable sets imply B = Aj1 \ A�j2 for the lift B of B.Hence we may choose K1 such that clB � K1, K1 \�MA�j1 = ; and K1\�MAj2 = ;. Thisimplies that ~v0(�; E)�Mg on all chain control sets E with E \B = ;.Hence the inequality follows from Theorem 6.4.Remark 9.4 It is obvious that a change of the norm of f (i.e. a change of the speed ofthe trajectories) outside K1 does not a�ect this result. In particular by choosing somecompact set K2 with K1 � intK2 and some Lipschitz continuous function � :M ! Rwith�(x) = 8><>: 1 x 2 K1arbitrary in [0; 1] x 2 K2 nK10 x 62 K2



28 LARS GR�UNEwe can replace f(x; u) by �(x)f(x; u) and the convergence result remains valid. Here K2becomes a compact invariant set.Remark 9.5 For systems on a non-compact state space M this enables us to focus on acompact subset K2 �M , provided there exists a repeller for the corresponding control owplaying the role of A�j2 from the proof above. (The results of Hurley [21] for discrete timeows suggest that in general such a repeller exists.) Under this condition all results remainvalid for systems with non compact state space. However, in that case the considered chaincontrol sets must be compact and their number must be �nite. A corresponding theory fornon-compact or in�nitely many chain control sets has not yet been developed.References[1] E. Akin, The General Topology of Dynamical Systems, AMS Graduate Studies inMathematics 1, 1993.[2] A. Arapostathis, V. Borkar, E. Fernandez-Gaucherand, M. Ghosh, andS. Marcus, Discrete-time controlled markov processes with average cost criterion: Asurvey, SIAM J. Control Optim., 31 (1993), pp. 282{344.[3] M. Arisawa, Le probl�eme ergodique pour les �equations de Hamilton-Jacobi-Bellman.Dissertation, Universit�e Paris IX Dauphine, 1996.[4] , Some ergodic problems for Hamilton-Jacobi equations in Hilbert space, Di�er.Integral Equ., 9 (1996), pp. 59{70.[5] P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectoriesin control theory, SIAM J. Control Optim., 29 (1991), pp. 1322{1347.[6] I. Capuzzo Dolcetta and M. Falcone, Discrete dynamic programming andviscosity solutions of the Bellman equation, Ann. Inst. Henri Poincar�e, Anal. NonLin�eaire, 6 (supplement) (1989), pp. 161{184.[7] I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equationof deterministic control theory, Appl. Math. Optim., 11 (1984), pp. 161{181.[8] F. Colonius, Asymptotic behaviour of optimal control systems with low discountrates, Math. Oper. Res., 14 (1989), pp. 309{316.[9] F. Colonius and W. Kliemann, In�nite time optimal control and periodicity, Appl.Math. Optim., 20 (1989), pp. 113{130.[10] , Maximal and minimal Lyapunov exponents of bilinear control systems, J. Di�er.Equations, 101 (1993), pp. 232{275.[11] , Some aspects of control systems as dynamical systems, J. Dyn. Di�er. Equ., 5(1993).
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