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; (2)where 
 is a bounded open subset ofRN,H : 
�RN ! Ris continuous in both variables and veri�esH(x; 0) = 0; H(x; p) > 0 if jpj 6= 0, (3)limjpj!+1H(x; p) = +1 uniformly for x 2 
 (4)t! H(x; tp) is strictly increasing in [0; 1]for any (x; p) 2 
�RN. (5)and the function f is nonnegative and continuous in 
.A signi�cant example of equations of the previous typeis given by the Eikonal equationjDuj = f(x) x 2 
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It is well known (see [4], [5]) that if K = fx 2 
 :f(x) = 0g � 
 is not empty then the uniqueness ofthe viscosity solution for problem (1){(2) fails to hold.Roughly speaking, this is due to the fact that the con-trolled dynamical system of which equation (1) representsthe dynamic programming equation in a neighborhoodof K can move with almost in�nite speed paying a ne-glectible cost.Among the in�nitely many viscosity solutions of theproblem, the maximal one turns out to be the value func-tion of the exit-time control problem associated to (1){(2)and therefore it is interesting to �nd a way to character-ize this solution. Without any assumption on K, it wasshown in [2] that the maximal solution of (1){(2) can becharacterized as the unique viscosity subsolution of prob-lem (1)-(2) which is also a supersolution, in an appropri-ate sense, of an associated singular equation. Moreover,the notion of singular solution is stable for perturbationof the equation. Finally, in [1] it is proved that an ap-proximation scheme de�ned via discretization of a \reg-ular" equation obtained by adding a positive constant tof converges to the maximal solution of (1)-(2).2 Maximal solutions and exit time con-trol problemsIn general, in order to associate a control problem toequation (1), the hamiltonianH is assumed to be convexin p. As pointed out in [2], the previous assumption canbe replaced in the present case by the weaker assumptionZ(x) = fp 2 RN : H(x; p) � f(x)gis convex for any x 2 
: (7)We introduce the gauge function � and the support func-tion � of the set Z(x), namely�(x; p) = inff� > 0 : p� 2 Z(x)g= f� > 0 : H �x; p�� = f(x)g�(x; p) = maxfpq : p 2 Z(x)g;for (x; p) 2 
 � RN (both these functions are convexand homogeneous in the variable p) and we consider the



equation �(x;Du) = 1 x 2 
: (8)Observe that this equation is singular on the set K, since,if x 2 K, then Z(x) = f0g and therefore �(x; 0) = 0and �(x; p) = +1 if jpj 6= 0. We de�ne the followingnonsymmetric semidistance on 
� 
L(x; y) = inf8>><>>:Z T0 �(�(t);� _�(t))dt �������� T > 0; �(t) 2W 1;1([0; T ];
)s.t. �(0) = x;�(T ) = y 9>>=>>;It can be shown that L induces a topology �L on 
 Thistopology, in some sense, retains the information on thestructure of the set K.The notion of singular supersolutions which allows usto characterize the maximal subsolution of (1){(2) isbased on two points. The �rst point is to adapt the testfunctions used in the de�nition of viscosity solution tothe topology �L. The second point is to use the singularequation (8) to give a notion of strict subsolution of (1)(note that because of the presence of the zero set K thereis no canonical notion of strict subsolution of (1)).De�nition 1 Given a l.s.c. function v : 
! R, a Lips-chitz continuous function � is called L-subtangent to v atx0 2 
 if x0 is a minimizer of v� � in a neighborhood Aof BL(x0) (or, equivalently, in a �L-neighborhood of x0).We remark that the convexity assumption (7) allows usto use Lipschitz continuous test functions instead of C1test functions as in the standard de�nition of viscositysolution.De�nition 2 Given an open subset A of 
, a function vis said to be a strict subsolution of (1) in A if v satis�es�(x;Dv) � � for x 2 A;in the viscosity sense, for some � 2 (0; 1).We can now introduce the de�nition of singular viscositysupersolution.De�nition 3 A l.s.c. function v : 
 ! R is said to bea singular supersolution of equation (1) in 
 if, for anyx0 2 
, it does not admit an L-subtangent at x0 whichis a strict subsolution of (1) in a neighborhood of BL(x0)(i.e. in a �L-neighborhood of x0).In the following theorem, we compare viscosity subsolu-tions (in the standard sense of Crandall-Lions) and sin-gular supersolutions of equation (1).Theorem 1 Let u 2 USC(
), v 2 LSC(
) be a viscos-ity subsolution and a singular supersolution of equation(1), respectively. Thenmin
 fv � ug = min@
 fv � ug:

We now turn to the characterization of the optimal con-trol problem associated to the singular viscosity superso-lution of (1).Let V be the value function of the control problemwiththe dynamics� _�(t) = q(t) t 2 [0;1)�(0) = x;where x 2 
 and q is any bounded measurable functionon [0;+1) such that T := infft > 0 : �(t) 62 
g < +1,and with the cost functionalJ(x; q) = Z T0 �(�(t);� _�(t))dt+ g(�(T )):Then the following relation holds true.Theorem 2 The function V is a viscosity subsolutionand a singular supersolution of equation (1) and satis�eslimy!x;y2
 V (y) � g(x) for any x 2 @
. Hence V is themaximal subsolution of problem (1){(2).We conclude this section stating a particular case, usedin the next section, of a general stability theorem provedin [2].Corollary 1 Let v� be a locally uniformly bounded se-quence of viscosity solutions ofH(x;Du�) = f�(x) x 2 
u� = 0 x 2 @
 (9)where f�(x) = maxff(x); �g. Thenlim�!0 v�(x) = V (x)locally uniformly in 
, where V is the maximal solutionsof (1)-(2) with g = 0.3 Approximation of the maximal solu-tionIn this section we construct a numerical scheme for theapproximation of the maximal solution which is based ona regularization technique. For the proofs of the resultsstated in this section we refer to [1].Throughout this section we assume for simplicity thatg(x) = 0, i.e. we impose homogeneous Dirichlet boundaryconditions.For any � > 0 we de�nef"(x) := maxff(x); �gand de�ne the function ��(x; p) analogous to � from Sec-tion 2 now with f� instead of f . Note that also �� isconvex and homogeneous in p.



Then by standard techniques we obtain that the(unique) solution u� of (9) is the optimal value functionof the optimal control problem with dynamics� _�(t) = q(t) t 2 [0; 1]�(0) = x;where x 2 
 and q is any measurable function on [0;+1)with kq(t)k = 1 and with cost functionalJ(x; q) = Z T0 ��(�(t); q(t))dtwhere �(T ) 2 @
. Note that for kpk = 1 the function �"is bounded from below by some positive constant, hencethe boundedness of the solution immediately implies thatthe optimal trajctories hit @
 in �nite time.We are going to apply a two stage discretization of thisoptimal control problem �rst in time and then in space; asimilar scheme has been used in [3] for discounted optimalcontrol problems.For the time discretization we �x a time step h > 0and look for the solution of the equationu�;h(x) = infkqk=1 fh��(x; q) + u�;h(x+ hq)g (10)for x 2 
 with the boundary condition u�;h(x) = 0 forx 2 @
.This equation indeed has a unique bounded solutionu�;h which satis�es the following convergence property.Here!��(�) := supfj��(x; p)���(y; p)j : kpk = 1; kx�yk < �gTheorem 3 Assume that !��(h)=�! 0 as �! 0. Thenu�;h ! Vlocally uniformly in �
 where V is the maximal solutionof (1)-(2) with g = 0.In fact, what makes this convergence work is just thestability of the maximal solution of (1)-(2) combined withthe consistency of the scheme.We will now introduce the space discretization in orderto transform (10) into a �nite dimensional problem. Forthis purpose we chose a grid � covering 
 consisting ofsimplices Sj with nodes xi and look for the solution of(10) in the spaceW := fw 2 C(
;R) jrw � const on Sjgof piecewise linear functions on �. By the parameter kwe denote the maximal diameter of the simplices Sj .Thus we end up with the fully discrete schemeuk�;h(xi) = infkqk=1 fh��(xi; q) + u�;h(xi + hq)g (11)for all nodes xi 2 
 with the boundary conditionuk�;h(x) = 0 for the nodes xi 2 @
.We can give the following estimate for the discretiza-tion error.

Theorem 4 Let uk�;h 2W be the unique solution of (11).Then the estimateju�(x)� uk�;h(x)j �C �k!��(k)h�(�) + k�(�)h + h�(�)�maxfu�(x); uk�;h(x)g+Chholds for all su�ciently small k > 0 with�(�) = infx2
;kqk=1 ��(x; q)and �(�) = infx2
;kqk=kpk=1 ��(x; p)��(x; q)and with some constant C independent from �; h and k.Note that this estimate is stonger than the usual L1estimate since essentially the error scales linearly withthe value of the value functions which is 0 at @
. Thereason for this behaviour origins in the fact that the erroris estimated along the optimal trajectories whose lengthdepends on the optimal value.A particular nice formulation of this estimate can beobtained if we consider the Eikonal equation (6) and as-sume that f is uniformly Lipschitz. In this case the esti-mate becomesju�(x) � uk�;h(x)j �C �k2h� + kh + h� �maxfu�(x); uk�;h(x)g+ Chfor some constant C independent from �; h and k. Inparticular this implies convergence of the scheme if "! 0,h="! 0 and k=h! 0.In the rest of this paper we discuss the error that weobtain when equation (1) is replaced by equation (9), i.e.the error introduced by the regularization of the problem.Corollary 1 implies that u" converges to V , where V isthe maximal subsolution of (1). Unfortunately, in generalthis convergence can be arbitrary slow. We can, however,give a general criterion allowing us to derive an estimatefor this regularization error.De�nition 4 Let K � Rd be a compact set. For eachconnected component Ki of K we de�ne the inner diam-eter d(Ki) by d(Ki) := supx;y2Ki dKi(x; y)wheredKi(x; y) := inf8<:T � 0 ������ 9�(t) 2W 1;1([0; T ];
)s.t. �(0) = x; �(T ) = y;k _�(t)k = 1 a.e. 9=;and for K we de�ne the inner diameter byd(K) :=XKi d(Ki)where the sum is taken over all connected components ofK.



Using this de�nition we can state the following esti-mate for the regularization error.Theorem 5 Let V be the maximal subsolution of (1) andlet u� be the unique viscosity solution of (9).Then the estimatekV � u�k1 � �d(K�)holds where K� := fx 2 
 j f(x) � �g.Observe that if f is piecewise polynomial then K" isbounded for all � > 0 and hence linear convergence fol-lows. Piecewise polynomial maps are in particular inter-esting since they include the case where f is obtainedfrom experimental data by some polynomial interpola-tion (e.g. using piecewise linear interpolations, multidi-mensional splines...).We have therefore obtained estimates for the discretiza-tion error and the regularization error allowing us to givea priori estimates for the whole numerical approximation.References[1] F. Camilli and L. Gr�une, Numerical approximationof the maximal solutions for a class of degenerateHamilton-Jacobi equiations, Preprint, Dip. di Matem-atica, Univ. di Roma \La Sapienza", to appear[2] F. Camilli and A. Siconol�, Maximal subsolutionsfor a class of degenerate Hamilton-Jacobi problems,Preprint 98/25, Dip. di Matematica, Univ. di Roma\La Sapienza", 1998.[3] M. Falcone, A numerical approach to the in�nite hori-zon problem of deterministic control theory, Appl.Math. Optim., 15 (1987), 1{13. Corrigenda, ibid. 23(1991), 213{214.[4] H. Ishii and M. Ramaswamy, Uniqueness results for aclass of Hamilton-Jacobi equations with singular coef-�cients, Comm. Par. Di�. Eq. 20 (1995), 2187{2213.[5] P.L. Lions, E. Rouy and A. Tourin, Shape-from-shading, viscosity solutions and edges, Numer. Math.64 (1993), 323-353.


