Maximal solutions for a class of singular Hamilton-Jacobi equations
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Abstract

In this paper we present results about the solutions of a
class of singular Hamilton-Jacobi equations. Since these
equations in general do not have a unique solution we
define the notion of maximal solutions for which a stabil-
ity result can be proved. Furthermore we present a dis-
cretization scheme for their numerical computation and
give an estimate for the discretization error.

1 Introduction

We present some results recently obtained in [1], [2] con-
cerning the the study of Hamilton-Jacobi equations of the
following type

x € Q,

(1)
coupled with a pointwise Dirichlet boundary condition
u(z) = g(x) (2)

where Q is a bounded open subset of RY, H : OxRY — R
1s continuous 1n both variables and verifies

H(x, Du) = f(x)

x € 08,

H(z,0)=0, H(z,p)>0 if |p|#0, (3)
| llim H(z,p) = +oo uniformly for z € Q  (4)
p|—4o0

t — H(z,tp) is strictly increasing in [0, 1]
for any (z,p) € Q x RY.

()

and the function f is nonnegative and continuous in Q.
A significant example of equations of the previous type
is given by the Eikonal equation

|Du| = f(x) (6)

(this equation arises in the study of the Shape-from-
Shading problem in image analysis, in control theory, in
geometric optics, etc.).

x €€,

* After February 1999: Fachbereich Mathematik, AG 1.1, Johann
Wolfgang Goethe-Universitat, Postfach 11 19 32, 60054 Frankfurt
am Main, Germany, gruene@math.uni-frankfurt.de

Lars Grine*
Dipartimento di Matematica
Universita di Roma “La Sapienza”

P.le A. Moro 5, 00185 Roma, Italy

grune@mat.uniromal.it

It is well known (see [4], [5]) that if K = {z € Q :
flz) = 0} C Q is not empty then the uniqueness of
the viscosity solution for problem (1)—(2) fails to hold.
Roughly speaking, this is due to the fact that the con-
trolled dynamical system of which equation (1) represents
the dynamic programming equation in a neighborhood
of K can move with almost infinite speed paying a ne-
glectible cost.

Among the infinitely many viscosity solutions of the
problem, the maximal one turns out to be the value func-
tion of the exit-time control problem associated to (1)—(2)
and therefore it is interesting to find a way to character-
ize this solution. Without any assumption on K, it was
shown in [2] that the maximal solution of (1)-(2) can be
characterized as the unique viscosity subsolution of prob-
lem (1)-(2) which is also a supersolution, in an appropri-
ate sense, of an associated singular equation. Moreover,
the notion of singular solution is stable for perturbation
of the equation. Finally, in [1] it is proved that an ap-
proximation scheme defined via discretization of a “reg-
ular” equation obtained by adding a positive constant to
f converges to the maximal solution of (1)-(2).

2 Maximal solutions and exit time con-
trol problems

In general, in order to associate a control problem to
equation (1), the hamiltonian H is assumed to be convex
in p. As pointed out in [2], the previous assumption can
be replaced in the present case by the weaker assumption

Z(x)={pe RN : H(z,p) < f(=)}

is convex for any » € .

(7)

We introduce the gauge function p and the support func-
tion & of the set Z(x), namely

P

p(x’p) = mf{A >0: X c Z($)}
= {/\>0:H(x,§—))=f(l‘)}
6(x,p) = max{pg: p€ Z(x)},

for (z,p) € Q x RN (both these functions are convex
and homogeneous in the variable p) and we consider the



equation

p(z, Du) =1 r e (8)

Observe that this equation is singular on the set K, since,
if v € K, then Z(z) = {0} and therefore p(x,0) = 0
and p(z,p) = +oo if [p| # 0. We define the following

nonsymimetric semidistance on { x €2

T>0,¢&(t) €
wtee([0,71], Q)
s.t. £(0) = o,
§T) =y

Lo =int § [ a(en), €

It can be shown that L induces a topology 77 on € This
topology, in some sense, retains the information on the
structure of the set K.

The notion of singular supersolutions which allows us
to characterize the maximal subsolution of (1)—(2) is
based on two points. The first point is to adapt the test
functions used in the definition of viscosity solution to
the topology 7r. The second point is to use the singular
equation (8) to give a notion of strict subsolution of (1)
(note that because of the presence of the zero set K there
is no canonical notion of strict subsolution of (1)).

Definition 1 Given a Ls.c. function v:Q — R, a Lips-
chitz continuous function ¢ s called L-subtangent to v at
xg € Q if xg is ¢ minmimizer of v — ¢ wn a neighborhood A
of Br(xg) (or, equivalently, in a p-neighborhood of xg).

We remark that the convexity assumption (7) allows us
to use Lipschitz continuous test functions instead of C!
test functions as in the standard definition of viscosity
solution.

Definition 2 Given an open subset A of Q, a function v
is said to be a strict subsolution of (1) in A if v satisfies

plz, Dv) <0 forxz e A,

in the viscosity sense, for some 6 € (0,1).

We can now introduce the definition of singular viscosity
supersolution.

Definition 3 A ls.c. function v : Q@ — R is said to be
a singular supersolution of equation (1) in Q if, for any
xg € Q, it does not admit an L-subtangent at xo which
is a strict subsolution of (1) in a neighborhood of Br(xg)
(i.e. in a Tp-neighborhood of xy).

In the following theorem, we compare viscosity subsolu-
tions (in the standard sense of Crandall-Lions) and sin-
gular supersolutions of equation (1).

Theorem 1 Let u € USC(Q), v € LSC(Q) be a viscos-
ity subsolution and a singular supersolution of equation
(1), respectively. Then

mﬁin{v —u} = rg}zn{v — u}.

We now turn to the characterization of the optimal con-
trol problem associated to the singular viscosity superso-
lution of (1).
Let V' be the value function of the control problem with
the dynamics
{ §(t)=q(t) te[0,00)
g(o) =,

where # € € and ¢ is any bounded measurable function
on [0,400) such that T := inf{t > 0: £(1) € Q} < 40,

and with the cost functional

T
Hasa) = [ 860~ + g(e().
0
Then the following relation holds true.

Theorem 2 The function V is a viscosity subsolution
and a singular supersolution of equation (1) and satisfies
limy . yea V(y) < g(2) for any x € 0Q. Hence V is the
mazimal subsolution of problem (1)-(2).

We conclude this section stating a particular case, used
in the next section, of a general stability theorem proved

in [2].

Corollary 1 Let v. be a locally uniformly bounded se-
quence of viscosity solutions of

H(z, Due) = fe(x)

ue =0

z €N
z € 002 (9)
where fo(x) = max{f(x),e}. Then

li_r% ve(x) = V(x)

locally uniformly in Q, where V' is the mazimal solutions

of (1)-(2) with ¢ = 0.

3 Approximation of the maximal solu-
tion

In this section we construct a numerical scheme for the
approximation of the maximal solution which is based on
a regularization technique. For the proofs of the results
stated in this section we refer to [1].

Throughout this section we assume for simplicity that
g(x) = 0, i.e. we impose homogeneous Dirichlet boundary
conditions.

For any € > 0 we define

fe(2) := max{f(x), ¢}

and define the function é.(z, p) analogous to é from Sec-
tion 2 now with f. instead of f. Note that also é. 1s
convex and homogeneous in p.



Then by standard techniques we obtain that the
(unique) solution u, of (9) is the optimal value function
of the optimal control problem with dynamics

{ Et)y=q(t) tel01]
£0) ==,

where # €  and ¢ is any measurable function on [0, +o0)
with [|¢(?)|| = 1 and with cost functional

@, q) = / 5.(£(1), q(1))dt

where £(T) € 9Q. Note that for ||p|| = 1 the function &,
is bounded from below by some positive constant, hence
the boundedness of the solution immediately implies that
the optimal trajctories hit 9€2 in finite time.

We are going to apply a two stage discretization of this
optimal control problem first in time and then in space; a
similar scheme has been used in [3] for discounted optimal
control problems.

For the time discretization we fix a time step h > 0
and look for the solution of the equation

uep(z) = ”illllf1 {h6c(z,q) + e p(z + hq)}
q =

(10)

for € Q with the boundary condition u. (x) = 0 for
z € OfL.

This equation indeed has a unique bounded solution
U, which satisfies the following convergence property.
Here

ws () = sup{[oc(z,p) = by, )| : |lpll =1, [le—yll <}
Theorem 3 Assume that ws (h)/e — 0 as ¢ — 0. Then
Uep — V

locally uniformly in Q where V is the mazimal solution

of (1)-(2) with ¢ = 0.

In fact, what makes this convergence work is just the
stability of the maximal solution of (1)-(2) combined with
the consistency of the scheme.

We will now introduce the space discretization in order
to transform (10) into a finite dimensional problem. For
this purpose we chose a grid T' covering Q consisting of
simplices S; with nodes x; and look for the solution of
(10) in the space

W.={we C’(Q,RHVwE const on S; }

of piecewise linear functions on I'. By the parameter k
we denote the maximal diameter of the simplices 5;.
Thus we end up with the fully discrete scheme

ug p(i) = | (11)
for all nodes x; € Q with the boundary condition
ufyh(a:) = 0 for the nodes z; € 9.

We can give the following estimate for the discretiza-
tion error.

i|I|1f1 {h6c(zi, q) + ue n(x; + hq)}
q =

Theorem 4 Let ufyh € W be the unique solution of (11).
Then the estimate
Jue(2) — g (2)] <
kws_ (k) k N h
ha(e) Ble)h  ale)
holds for all sufficiently small k > 0 with

ale) =  inf b (=,
© Te|lqll=1 (=.4)

C

max{u(z), ufyh(x)} +Ch

and s ( )

. el&, p
€) = inf

Ale) veall=llpll=1 é¢(z, )

and with some constant C' independent from e, h and k.

Note that this estimate is stonger than the usual Lo,
estimate since essentially the error scales linearly with
the value of the value functions which is 0 at 9€2. The
reason for this behaviour origins in the fact that the error
is estimated along the optimal trajectories whose length
depends on the optimal value.

A particular nice formulation of this estimate can be
obtained if we consider the Eikonal equation (6) and as-
sume that f is uniformly Lipschitz. In this case the esti-
mate becomes

Jue(x) = uf (x)] <

k2 k h & b
C [E + 7 + z] max{uc(z), u¢ p(x)} + C
for some constant C' independent from ¢,i and k. In
particular this implies convergence of the scheme if ¢ — 0,
hfe — 0 and k/h — 0.

In the rest of this paper we discuss the error that we
obtain when equation (1) is replaced by equation (9), i.e.
the error introduced by the regularization of the problem.

Corollary 1 implies that u, converges to V', where V is
the maximal subsolution of (1). Unfortunately, in general
this convergence can be arbitrary slow. We can, however,
give a general criterion allowing us to derive an estimate
for this regularization error.

Definition 4 Let K C R? be a compact set. For each
connected component K; of K we define the inner diam-
eter d(K;) by

d(K;):= sup dg,(z,y)
z,yeK;

where

3e(t) e Whee([0,T],9Q)
s.t. £(0) =z, {(T) =
€@ =1 a.e.

and for K we define the inner diameter by

d(K) = d(K;)

dg,(z,y):=inf ST >0

where the sum is taken over all connected components of
K.



Using this definition we can state the following esti-
mate for the regularization error.

Theorem 5 LetV be the mazimal subsolution of (1) and
let u, be the unique viscosity solution of (9).
Then the estimate

|V = tte||oo < ed(K)
holds where K. := {x € Q| f(x) < €}.

Observe that if f is piecewise polynomial then K. is
bounded for all € > 0 and hence linear convergence fol-
lows. Piecewise polynomial maps are in particular inter-
esting since they include the case where f is obtained
from experimental data by some polynomial interpola-
tion (e.g. using piecewise linear interpolations, multidi-
mensional splines...).

We have therefore obtained estimates for the discretiza-
tion error and the regularization error allowing us to give
a priori estimates for the whole numerical approximation.
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