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Abstract

For continuous time nonlinear control systems with con-
strained control values stabilizing discrete feedback con-
trols are discussed. It is shown that under an accessibility
condition exponential discrete feedback stabilizability is
equivalent to open loop uniform exponential asymptotic
controllability. A numerical algorithm for the computa-
tion of discrete feedback controls is presented and a nu-
merical example is discussed.

1 Introduction

In this paper we consider nonlinear control systems of the
form

y(t) = f(y(t), u(t)), »(0) =yo € RY\ {0}

u(-) €U :={u:R = U, measurable} (1)
U CR™ compact

where f:R%x R™ 5 R%is C? in y and Lipschitz in u.

We assume that x* is a singular point of f, i.e. that
f(z*,u) = 0 for all w € U. Our goal is now to obtain
a feedback control strategy such that z* becomes an as-
ymptotically stable equilibrium point for the closed loop
system.

The problem of stabilization of nonlinear control sys-
tems has been considered for a long time by various au-
thors (see e.g. Bacciotti [1] for an overview).

In this paper we will restrict ourselves to the case, where
the system is exponentially asymptotically controllable to
#* by an open loop control for each initial value x5 € R
The question that arises then is whether under this con-
dition there exists a feedback control such that the cor-
responding closed loop system is exponentially stable. In
general this is not possible by using a continuous feedback

law, cp. [2]. Hence we will use a more general feedback
concept which we will call discrete feedback controls.

In mathematical control theory discrete feedback con-
trols have been investigated by various authors. In one
of the most recent works on this subject Clarke, Ledyaev,
Sontag and Subbotin [3] show by a Lyapunov function
approach that asymptotic controllability implies stabiliz-
ability of nonlinear control systems by sampled feedbacks
when the discretization step (or sampling rate) tends to
0.

The construction made in this paper is based on another
concept introduced by Lyapunov, namely the Lyapunov
exponents. It has its origin in the numerical considerations
discussed in [5]. Like in many numerical algorithms a dis-
cretization of (1) is needed in order to apply the algorithm
from [5]. This leads to the discrete time system obtained
from (1) by discretization in time. The discrete feedback
discussed here can in this context be interpreted as a feed-
back for this discrete time system applied to the contin-
uous time system. In contrast to the result by Clarke et
al. here we obtain stabilizability using discrete feedback
controls with fired discretization step size. Moreover we
will indicate how one can obtain a numerical algorithm to
calculate the stabilizing discrete feedback control.

2 Preliminary Results

The linearization of f with respect to # in the singular
point z* (we may assume z* = 0) gives us a semilinear
control system of the form

#(t) = Au(t))z(?),

In order to characterize the (open-loop) exponential be-
haviour of (2) we define the Lyapunov exponent A(zg, u(-))
by

2(0) =xzo € RU\ {0} (2)

) 1

Alzo, u(+)) := limsup = In ||z (¢, zg, u("))|[, (3)
t—o0 [

and the infimal Lyapunov exponent with respect to the

control by

A*(zg) = 1n£ Alzo, u(+)). (4)

u(-)eu



The following assertion is an easy consequence from the
definition of the Lyapunov exponent:

For all 2y € R?, xy # 0 there exists a control function
Uz, (1) € U such that (¢, zg, ugz,(-)) converges to the origin
exponentially fast if and only if A* (o) < 0 for all zg € R%\
{0}. In this section we will briefly recall the stabilization
results for (2) from [4].

We will first give the definition of the discrete feedback
control.

Definition 2.1 (Discrete feedback control) A dis-
crete feedback control for the system (2) is a function
F :R?4 - U in connection with a time step A > 0 that is
applied to (2) via

t
where [r] denotes the largest integer less or equal r € R.

Remark 2.2 The following interpretation gives the mo-
tivation for the name “discrete feedback”. For a given
time step A > 0 and constant control values u € U denote
by G : R4 x U — R the solution of (2) at the time h,
ie. G(xg,u) := x(h,xo,u). This defines a discrete time
control system via

(ui)ien € U™ (5)
The discrete feedback as defined in Definition 2.1 can now
be interpreted as a feedback for the discrete time system

(5)-

By defining s := #/||z|| we obtain the projection of (2)
onto the unit sphere S%=1 by

s(t) = h(s(t), u(t))
where h(s,u) = [A(u) — s' A(u)sd]s.

The following assumption assures local accessibility of
(6), i.e. that the reachable set for any point up to any
time ¢ > 0 has nonvoid interior (cp. [9]).

Let L denote the Lie-algebra generated by the vector
fields h(-,u), u € U. Let Ap denote the distribution gen-
erated by L in TS~ the tangent bundle of S9~1. Assume
that

i1 = G, u5),

(6)

dimAy(s) = dimS*'=d—1 for all s € §%! (H)

Under this condition we can formulate the main theo-
rem from [4].

Theorem 2.3 Consider a semilinear control system (2)
with the projection (6) satisfying (H). Then there exists
an h > 0 and a discrete feedback that steers (2) to the
origin exponentially fast for all initial values zo € R4\ {0}
if and only if \*(z) < 0 for all o € R4\ {0}.

Numerically this stabilizing discrete feedback can be
calculated in the following way:

Using the projected system (6) the Lyapunov exponent
A* can be expressed as the optimal value funktion of a av-
erage time optimal control problem on the sphere S41.
This value function can be approximated by the value
function of a discounted optimal control problem, cp. [5],
which can be solved numerically as described in [5] and
[7]. Using the numerical approximation of the optimal
value function we can then derive approximately optimal
discrete feedback controls I satisfying

Ly F ap
Flleteen P ([£] 0 )<-a @)
for all zp € R? some bounded time 7> 0 and a constant
a > 0.
Then by induction 1t is easily seen that

1 ~ t

limsup =In||z(t,zo, F(x | [=| 2 )| < —e
T—oo T h

and hence the trajectory is exponentially stable. (For the

details of the algorithm see [4].)

3 Stabilization of Nonlinear Sys-
tems

We will now extend this result to nonlinear systems and
will again assume z* = 0.

To apply the cited result to (1) we consider the lin-
earization A(u) := D, f(0,u) and the corresponding con-
trol system of the form (2). System (1) can now be written
as

#(t) = A(u(t))z(t) + g(x(t), u(t)) (8)
where ||g(z, u)|| < Cy||z||* for all z € B, (0), ueU.

The following lemma shows some Properties of the tra-
jectories of these systems for initial values close to z* = 0:

Lemma 3.1 Let y(t), z(¢) be the solutions of the systems
(1) und (2) for a fixed control function u(-) € & and some
initial value xg. Let a time 7" > 0 be fixed. Then there is a
constant & > 0 and a n(7") € R, such that for all ¢ € [0, 7]
the following inequalities hold

L w0l € == lzoll, e lfaoll] for all 2o € Byer (0)
2. ()]l € [~ lrcll, > laol] for all 2, € B2

3. |ly(t) — z ()] < tCePt||zg||? for all zg € By r)(0)

Proof: By using the Gronwall Lemma applied to (8),
a detailed proof is given in [6]. 0
The following robustness result of the discrete feedback
is crucial for the application to nonlinear systems. Note
that the discrete feedback will in general be discontinu-
ous, hence this result can only be obtained by a thorough
analysis of the corresponding discounted optimal control
problems. A proof of this lemma can be found in [6].



Lemma 3.2 Let F be the stabilizing discrete feedback
with time step h > 0 for the system (2) satisfying (7) for
some time 7" > 0.

Then for any € > 0 there exists a constant und ein
n > 0, such that for all initial values yo € B,()(0) the
inequality

Ltnluttn Po ([ ] 1) 001 < o+

1s satisfied.

Again by induction we obtain the following stabilization
result.

Proposition 3.3 Consider the system (1). Assume that
the projection (6) of the linearized system (2) satisfies (H).
Assume that (8) is exponentially asymptotically control-
lable to 0 for all initial values zy € R®. Then there exists
an h > 0, such that the discrete feedback F' stabilizing (2)
also stabilizes the nonlinear system (1) in a neighbourhood

of 0.

To obtain an equivalence result similar to Theorem 2.3 we
have to introduce the following definition of stability, cp.
[8, Def. 26.2].

Definition 3.4 The system (1) is called uniformly expo-
nentially controllable to 0, if there exists a neighbourhood
B(0) and constants C', & > 0, such that for any initial
value yp € B(0) there exists a control function u,,(-) € Y
with

1yt 9o, wy, (DI < Ce™lyol|
for all ¢ > 0.

Theorem 3.5 Consider the system (1). Assume that the
projection (6) of the linearization (2) satisfies (H). Then
the following properties are equivalent:

(i) System (1) is uniformly exponentially controllable to

0

(i1) There is an h > 0 and a discrete feedback that uni-
formly exponentially stabilizes (1) in a neighbour-
hood of the origin

(iii) All infimal Lyapunov exponents of the linearized sys-
tem satisfy A*(zg) < 0

Proof: “(iii)=(ii)” follows from Theorem 3.3, “(ii)=(i)”
is immediately clear. It remains to show “(i)=-(iii)”.
Using a converse version of Lemma 3.2 we obtain local
exponential controllability to 0 for (2). By the linearity
this immediately implies the global assertion.
The detailed proof can be found in [6].

Remark 3.6 The results can be extended to systems of
the form

if we assume that f and Z are affine linear in u and the
subsystem in z is completely controllable on a compact
state space. Linearization with respect to y then leads to
a system of the form

e(t) = A(z(1), u(t))=(t)
ity = Z(z(t), u(®))
For these systems the stabilization theory is developed in

[6].

4 A numerical example

The following system from [10, Section 1.2] models a pen-
dulum forced by a periodic up- and down movement of
the suspension. We assume that the period of this motion
can be controlled, which can be modelled by the equation
z = Q4 u. With 3 denoting the angle and y» denoting
the angular speed of the pendulum we obtain the following
nonlinear control system

)
Y2 = —Bys— (14 Acosys)siny
z = Q4u

Here B describes the damping of the pendulum, A the am-
plitude and Q the frequency of the up- and down motion.
Taking into account the periodicity in z we have R /277
as the compact state space of the z component and this
subsystem is completely controllable.

We are interested in the stabilization of the unstable
equilibrium (7, 0) of the pendulum. The linearization in
this point is given by

) .
T

where # = (x1,22)". Using the parameters A = 1.42,
B =03, Q = 156 and U = [—1.1,1.1] the linearized
system becomes stabilizable for all initial values z, € R
Using the techniques from [5] and [7] we calculated the
stabilizing discrete feedback for this system.

Applying this feedback to the nonlinear system we ob-
tain the trajectories shown in Figure 1 where z(0) = 0.
As one would expect from the theory the trajectories are
locally stable.

For the given set of parameters the system has some
additional feature: For v = 0 the pendulum is rotating
for all initial values yo # (0, 0); this implies that since the
angular speed is bounded after some time ¢ any trajectory
will enter a neighbourhood of (7, 0). Identifying the points
((2n 4+ 1)m,0) for all n € Z the discrete feedback now
turns out stabilize the system for all initial values in this
neighbourhood. Figure 2 shows a trajectory where the
pendulum rotates once (from y; = 7 to y; = 37), and
then is stabilized at the point (3, 0).

In this case the stabilization of the nonlinear system in
the numerical experiment turns out to be global except
for the equilibrium (0, 0).

) 0 1
v= ( —(14+ Acosz)cosm —B
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Figure 2: Stabilized trajectory where the stabilizing effect
starts after one rotation of the pendulum
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