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Abstract

In this paper we present a spectral condition for the
exponential stabilization of nonlinear control systems
with constrained control range at singular points. The
spectral approach in particular allows to formulate an
equivalence result between exponential null controlla-
bility and exponential stabilization by means of a dis-
crete feedback law. The key tool used is a discounted
optimal control problem for the corresponding pro-
jected semilinear system, which also admits a numerical
solution.
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1 Imtroduction

In this paper we will present a spectral condition for the
exponential stabilization of nonlinear control systems
with constrained control range at singular points, i.e.
systems of the form

D) = J(e), (), u(t)
i) = glylt)u(0) (L)

on R? x M where ¢ € R? and y € M, M some
Riemannian Manifold and f and g are vectorfields
which are C? in z, Lipschitz in y and continuous in
u. The control function u(-) may be chosen from the
set U .= {u: R = U |u(-) measurable} where U C R™
1s compact, 1.e. we have a constrained set of control
values.

For each pair (zg,y0) of initial values the tra-
jectories of (1.1) will be denoted by the pair
(z(t, o, yo,u()), y(t, yo, u(:))) and we assume them to
exist uniquely for all times.

Our interest lies on the stabilization of the -
component at a singular point x*, 1.e. a point where
flz*,y,u) = 0 for all (y,u) € M x U. For simplicity

we will frequently assume z* = 0. Such singular sit-
uations do typically occur if the control enters in the
parameters of an uncontrolled systems at a fixed point,
for instance when the restoring force of a nonlinear os-
cillator is controlled.

Note that our general setup covers several models: The
additional equation for y allows us to model systems
where time varying parametric excitations governed by
an additional (nonlinear) control or dynamical system
enter the system to be stabilized. The case in which
the control v does not enter explicitly in the function
f and the case in which f does not depend on y occur
as special situations in this setup, hence they are also
covered.

The main tool used for the stabilization is the lineariza-
tion of (1.1) at the singular point which is given by

) = Aly(t),u(t)=(1) (1.2)

Here A(y,u) := % (z*,y,u) € R and f(z,y,u) =
Ay, w)z + f(x, y, u) where the estimate ||f(x, y,u)|| <
C't||z||* for some constant C holds in a neighborhood

of z*.

As above we denote the trajectories of (1.2) by
(z(t, zo, yo, u(-)), y(t, yo, u(-))) for the pair of initial val-
ues (zg, Yo)-

The approach we follow is based on optimal control
techniques. More precisely, we consider the Lyapunov
exponents of the linearization and formulate a dis-
counted optimal control problem in order to minimize
these exponents, an idea that has first been presented
in [6]. Lyapunov exponents have recently turned out to
be a suitable tool for the stability analysis of semilinear
systems, see e.g. [3] and [4], and also for their stabiliza-
tion [5]. However, due to the fact that for discounted
optimal control problems optimal feedback laws are in
general not available, we modify the feedback concept
and introduce discrete feedback laws that are based on a
discrete time sampled approximation of the given con-
tinuous time system. Using this approach it could be



shown in [5] that for semilinear systems satisfying an
accessibility condition exponential null controllability
i1s equivalent to exponential stabilizability by discrete
feedbacks. Here we will present an extension of this
result to nonlinear systems of the type (1.1) without
assuming any accessibility.

We start by characterizing the null controllability and
stability of (1.2).

2 The semilinear system

In our definitions of null controllability we need the
notion of an invariant set for the subsystem on M.

Definition 2.1 A subset X C M is called invariant for
the subsystem of (1.2) on M if for all yo € K and all
control functions u(-) € U the corresponding trajectory
satisfies y(t, yo, u(-)) € K for all t > 0.

In order to measure the exponential null controllability
of (1.2) we define the Lyapunov exponent of a trajec-
tory of (1.2) by

. 1
Az0, 90, u(")) := limsup — In|=(2, 20, yo, u(")|

t—=00

Clearly A(zo, yo,u(-)) < 0 iff the corresponding trajec-
tory converges to the origin exponentially fast. For
each pair of initial values we define the infimal Lya-
punov exponent by

A" (20, 40) = u(i.I)lgu/\(ZO’ Yo, u(-))

and its supremum over R4\ {0} x K by

k= sup A* (20, ¥0)
(20,90) ERAN\{0} X K

Now we define the concept of a discrete feedback con-
trol for (1.2).

Definition 2.2 A discrete Feedback law for system
(1.2) is given by a mapping F' : R¢x K — U and a
time step A > 0 and is applied to (1.2) by

Aly(@), F(s([7] B, w([£] W) =(2)
o(t) = gw®), F([F]h),u([5]h)

™2
—

o~
~—

>

(2.1)

>

One of the main advantages of this concept lies the
fact that existence and uniqueness of the trajectories of
(2.1) are guaranteed even if F is discontinuous. Note

that an optimal control approach — which we will ap-
ply in the next section — typically results in discontin-
uous control laws.

Using this definition we can state the main result for
semilinear systems.

Theorem 2.3 Let K C M be a compact invariant set
for the subsystem of (1.2) on M. Then for the system
(1.2) are equivalent:

(i) £<0
(ii) System (1.2) is asymptotically null controllable
over K

(iii) System (1.2) is uniformly exponentially null con-
trollable over K i.e. there exist constants C',
a > 0, such that for any pair of initial values
(20,y0) € R% x K there exists a control function
U(zg,y0)(-) €U With

12t 20, Y0, Ugz,0) (I < Ce™ |20

(iv) There exists a time step h > 0 and a discrete
Feedback F' : RY x K — U such that (2.1) is
uniformly exponentially stable

Hence & is the characteristic value in the Lyapunov
spectrum for both null controllability and stabilizabil-
ity of semilinear systems. A proof of this theorem can

be found in [8].

3 Construction of the discrete feedback

The construction of the feedback is obtained by solving
an optimal control problem which will minimize the
Lyapunov exponent.

From the linearity of (1.2)
it follows that A(zo,yo,u()) = Alazo, yo, u(-)) for all
a € R\ {0}. Hence we can use the projection of the z
component to the unit sphere S~1. Denoting the pro-
jected trajectory by s(t, so, yo, u()) it follows from the
chain rule that for s; = ”j—g” the Lyapunov exponent
can be written as

A(s0,y0,u(")) = .
limsup,_,o, + fy ¢(s(7, 50, Yo, u(-)), (3.1)
y(T’ yo’u('))’u(T))dT

where q(s,y,u) := sT A(y,u)s. This integral is also
referred to as an averaged functional.

Minimizing (3.1) forms an average time optimal control
problem, for which the construction of optimal feed-
back controls is still an unsolved problem.



Hence we use an approximation of this integral by a
discounted optimal control problem with small discount

rate § > 0 defined by

Jé(s&, Yo, U()) =
fO 6_67(](8(73 50, Yo, U()), y(T’ Yo, U()), U(T))dT
(3.2)

The function
vs(s0,y0) == inf Js(s0,y0,u(-)) (3.3)
u(-)eU

is called the optimal value function of this discounted
optimal control problem.

For 6 — 0 the convergence

sup dvs(so,y0) = K
(50,y0) €SI~ IXK

holds. Furthermore if a control function u(-) € U sat-
isfies

(SJ(;(S(t,80,yo,U(')),y(t,yo,u(')),u(t+ )) S a
for all t > 0 and some o € R, § > 0 the estimate
/\(So’yo’u(')) <o

is implied (see [6] or [8] for these results). Hence by con-
structing an (approximately) optimal control strategy
for this discounted problem we do also (approximately)
minimize the Lyapunov exponent of (1.2).

In order to do this we approximate ¢ by
Uy, = {u R —>U | U|[ih,(z’+1)h) =uw; for all 7z € Z}

for some time step A > 0. This construction is often
referred to as the process of sampling, see [10, Section

2.10]. By defining

vl (50, y0) = inf Js(s0,0,u("))

u(-)
for which the approximation property
llvs = v§|leo < ChZ

holds for v = /L where L denotes the Lipschitz con-
stant of the projected system, see [1].

In fact, what we obtain by this approximation can be
interpreted as a discrete time system

sit1 = s(h, si,yi,wi),  vipr = ylhyi, i) (3.4)
which is also called a sampled system.

By the continuity of all functions involved and the
compactness of I/ we can now define a function F :

S4=1 x K — U by choosing Fs(so,y0) := u € U such
that

R
{/ 6_6Tq(5(7', SanOau)a y(Ta yoau)’u)dT
0
+ 6_6hvgb (S(h, S0, Yo, U), y(h’ Yo, U))}
becomes minimal.

The mapping F' does now form a feedback law for the
discrete time system (3.4) by

sit1 = s(h, s, yi, F(si, i), yier = y(h, yi, Fi(si, 21))

(3.5)
In fact this yields an optimal feedback law for (3.4)
with respect to the control functions from U},.

By defining F(z,y) := Fs(z/||z||,y) we obtain the de-
sired stabilizing feedback law. This follows from the
fact that the application of F' to (1.2) according to De-
finition 2.2 projected to S¢~! yields exactly the same
trajectories as (3.5). Hence their Lyapunov exponent
is negative, provided £ < 0 and § > 0 and h > 0 are
sufficiently small.

The fact that F' is indeed a feedback for the discrete
time system (3.4) motivates the name discrete feed-
back. In the literature also the notions modified Feed-
back (see e.g. [9]) or sampled Feedback (cp. [2]) are
used.

Note that this optimal discrete feedback can be approx-
imated numerically as described in [5] and [7].

4 The nonlinear system

We will now return to our original system (1.1). We
apply the discrete feedback as constructed in the last
section to (1.1) via

#(t) = f(et),y(), Fle([F] R
(1) = [

The robustness result [8, Lemma 6.3] states that in
a sufficiently small neighborhood of z* this optimal
discrete feedback still yields approximately optimal
trajectories on finite time intervals. More precisely
if we denote the trajectories of (4.1) by the pair
(zp(t, xo,y0), yr(t,yo)) then for any ¢ > 0 there ex-
ists a neighborhood U(z*) and a discrete feedback F'
such that the estimate

1
Tln ller(t, o, yo)|| < & +¢

holds for all zp € U(z*) and some bounded T €
[e(e), C(e)]. What is remarkable about this result is the



fact that ' may be discontinuous, hence one may not
argue using continuous dependency on the initial value.
Instead, the main ingredients for proving this inequal-
ity are the Hoelder continuity of vg and the relation
between the discounted and average time functionals.

Note that this inequality — obtained by estimating the
effect of the nonlinear perturbation on the discounted
functional — does only hold on finite time intervals.
Hence we have to use induction in order to conclude
that these trajectories do indeed converge to z* expo-
nentially fast, even uniformly, if & 4+ ¢ < 0. This yields
the following main theorem for the nonlinear case for
which the detailled proof is given in [8].

Note that for the nonlinear systems the different as-
ymptotic controllability concepts from Theorem 2.3 are
not equivalent. In particular it 1s not sufficient that
(1.1) is (locally) exponentially controllable to #*; in or-
der to formulate the desired result we need the notion
of uniform exponential controllability.

Theorem 4.1 Consider system (1.1). Let K C M be
a compact invariant set for the subsystem of (1.1) on
M. Then the following properties are equivalent:

(i) #<0

(i) (1.1) is (locally) uniformly exponentially control-
lable to z* over K

(iii) (1.2) is asymptotically null controllable over K

(iv) There is h > 0 and a discrete feedback F' such
that (4.1) is (locally) uniformly exponentially sta-
ble at x* over K

This theorem shows in particular that any attempt
to stabilize (1.1) at a singular point by using its lin-
earization must fail if uniform exponential controlla-
bility is not satisfied, because the linearized system
will not even be asymptotically null controllable. Con-
versely, exponential discrete feedback stabilization is
always possible under this condition. We have there-
fore obtained the strongest result possible within the
linearization approach.

Again k forms the characteristic value for this property,
hence uniform exponential stabilizability is determined
by this value of the Lyapunov spectrum.

It may be worth noting that a related result has been
developed in [2] using Lyapunov functions: There it is
shown that for nonlinear systems asymptotic control-
lability to a (not necessarily singular) point z implies
stabilizability by means of a discrete feedback, where
in order to reach x the step size h must tend to 0. The

result can therefore be interpreted as a kind of practi-
cal stabilization. In contrast to this practical stability
here we obtain exponential stability using a discrete
feedback with a fized step size.

5 Conclusions

In this paper we presented results on the relation be-
tween null controllability and exponential stabilization
by using a discrete feedback law for nonlinear systems
at singular points using the characteristic value & of
the Lyapunov spectrum.

The construction of the feedback 1s obtained by min-
imizing the Lyapunov exponent of the linearized sys-
tem, which forms a semilinear system. For semilinear
systems both asymptotic null controllability and expo-
nential stabilizability by a discrete feedback turned out
to be equivalent to the negativity of &.

For general nonlinear systems the equivalence between
uniform exponential controllability and uniform expo-
nential stabilizability has been shown. Again the spec-
tral condition k < 0 is necessary and sufficient for these
properties.
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