
A SPECTRAL CONDITION FOR ASYMPTOTICCONTROLLABILITY AND STABILIZATION ATSINGULAR POINTSLars Gr�uneInstitut f�ur Mathematik, Universit�at Augsburg, Universit�atsstr. 14,86135 Augsburg, Germany, E-Mail: Lars.Gruene@Math.Uni-Augsburg.deAbstractIn this paper we present a spectral condition for theexponential stabilization of nonlinear control systemswith constrained control range at singular points. Thespectral approach in particular allows to formulate anequivalence result between exponential null controlla-bility and exponential stabilization by means of a dis-crete feedback law. The key tool used is a discountedoptimal control problem for the corresponding pro-jected semilinear system, which also admits a numericalsolution.Keywords: nonlinear systems, singular points, stabi-lization, Lyapunov spectrumAMS Classi�cation: 93D15, 93D221 IntroductionIn this paper we will present a spectral condition for theexponential stabilization of nonlinear control systemswith constrained control range at singular points, i.e.systems of the form_x(t) = f(x(t); y(t); u(t))_y(t) = g(y(t); u(t)) (1.1)on Rd � M where x 2 Rd and y 2 M , M someRiemannian Manifold and f and g are vector�eldswhich are C2 in x, Lipschitz in y and continuous inu. The control function u(�) may be chosen from theset U := fu : R! U ju(�) measurableg where U � Rmis compact, i.e. we have a constrained set of controlvalues.For each pair (x0; y0) of initial values the tra-jectories of (1.1) will be denoted by the pair(x(t; x0; y0; u(�)); y(t; y0; u(�))) and we assume them toexist uniquely for all times.Our interest lies on the stabilization of the x-component at a singular point x�, i.e. a point wheref(x�; y; u) = 0 for all (y; u) 2 M � U . For simplicity

we will frequently assume x� = 0. Such singular sit-uations do typically occur if the control enters in theparameters of an uncontrolled systems at a �xed point,for instance when the restoring force of a nonlinear os-cillator is controlled.Note that our general setup covers several models: Theadditional equation for y allows us to model systemswhere time varying parametric excitations governed byan additional (nonlinear) control or dynamical systementer the system to be stabilized. The case in whichthe control u does not enter explicitly in the functionf and the case in which f does not depend on y occuras special situations in this setup, hence they are alsocovered.The main tool used for the stabilization is the lineariza-tion of (1.1) at the singular point which is given by_z(t) = A(y(t); u(t))z(t)_y(t) = g(y(t); u(t)) (1.2)Here A(y; u) := ddxf(x�; y; u) 2 Rd�d and f(x; y; u) =A(y; u)x + ~f (x; y; u) where the estimate k ~f(x; y; u)k �Cfkxk2 for some constant Cf holds in a neighborhoodof x�.As above we denote the trajectories of (1.2) by(z(t; z0; y0; u(�)); y(t; y0; u(�))) for the pair of initial val-ues (z0; y0).The approach we follow is based on optimal controltechniques. More precisely, we consider the Lyapunovexponents of the linearization and formulate a dis-counted optimal control problem in order to minimizethese exponents, an idea that has �rst been presentedin [6]. Lyapunov exponents have recently turned out tobe a suitable tool for the stability analysis of semilinearsystems, see e.g. [3] and [4], and also for their stabiliza-tion [5]. However, due to the fact that for discountedoptimal control problems optimal feedback laws are ingeneral not available, we modify the feedback conceptand introduce discrete feedback laws that are based on adiscrete time sampled approximation of the given con-tinuous time system. Using this approach it could be1



shown in [5] that for semilinear systems satisfying anaccessibility condition exponential null controllabilityis equivalent to exponential stabilizability by discretefeedbacks. Here we will present an extension of thisresult to nonlinear systems of the type (1.1) withoutassuming any accessibility.We start by characterizing the null controllability andstability of (1.2).2 The semilinear systemIn our de�nitions of null controllability we need thenotion of an invariant set for the subsystem on M .De�nition 2.1 A subset K � M is called invariant forthe subsystem of (1.2) on M if for all y0 2 K and allcontrol functions u(�) 2 U the corresponding trajectorysatis�es y(t; y0; u(�)) 2 K for all t > 0.In order to measure the exponential null controllabilityof (1.2) we de�ne the Lyapunov exponent of a trajec-tory of (1.2) by�(z0; y0; u(�)) := lim supt!1 1t lnkz(t; z0; y0; u(�)kClearly �(z0; y0; u(�)) < 0 i� the corresponding trajec-tory converges to the origin exponentially fast. Foreach pair of initial values we de�ne the in�mal Lya-punov exponent by��(z0; y0) := infu(�)2U �(z0; y0; u(�))and its supremum over Rd n f0g �K by~� := sup(z0;y0)2Rdnf0g�K ��(z0; y0)Now we de�ne the concept of a discrete feedback con-trol for (1.2).De�nition 2.2 A discrete Feedback law for system(1.2) is given by a mapping F : Rd � K ! U and atime step h > 0 and is applied to (1.2) by_z(t) = A(y(t); F (s(� th� h); y(� th �h)))z(t)_y(t) = g(y(t); F (z(� th�h); y(� th �h))) (2.1)One of the main advantages of this concept lies thefact that existence and uniqueness of the trajectories of(2.1) are guaranteed even if F is discontinuous. Note

that an optimal control approach | which we will ap-ply in the next section | typically results in discontin-uous control laws.Using this de�nition we can state the main result forsemilinear systems.Theorem 2.3 Let K � M be a compact invariant setfor the subsystem of (1.2) on M . Then for the system(1.2) are equivalent:(i) ~� < 0(ii) System (1.2) is asymptotically null controllableover K(iii) System (1.2) is uniformly exponentially null con-trollable over K i.e. there exist constants C,� > 0, such that for any pair of initial values(z0; y0) 2 Rd�K there exists a control functionu(z0;y0)(�) 2 U withkz(t; z0; y0; u(z0;y0)(�))k � Ce��tkz0k(iv) There exists a time step h > 0 and a discreteFeedback F : Rd � K ! U such that (2.1) isuniformly exponentially stableHence ~� is the characteristic value in the Lyapunovspectrum for both null controllability and stabilizabil-ity of semilinear systems. A proof of this theorem canbe found in [8].3 Construction of the discrete feedbackThe construction of the feedback is obtained by solvingan optimal control problem which will minimize theLyapunov exponent.From the linearity of (1.2)it follows that �(z0; y0; u(�)) = �(�z0; y0; u(�)) for all� 2 Rn f0g. Hence we can use the projection of the zcomponent to the unit sphere Sd�1. Denoting the pro-jected trajectory by s(t; s0; y0; u(�)) it follows from thechain rule that for s0 = z0kz0k the Lyapunov exponentcan be written as�(s0; y0; u(�)) =lim supt!1 1t R t0 q(s(�; s0; y0; u(�));y(�; y0; u(�)); u(� ))d� (3.1)where q(s; y; u) := sTA(y; u)s. This integral is alsoreferred to as an averaged functional.Minimizing (3.1) forms an average time optimal controlproblem, for which the construction of optimal feed-back controls is still an unsolved problem. p. 2



Hence we use an approximation of this integral by adiscounted optimal control problemwith small discountrate � > 0 de�ned byJ�(s0; y0; u(�)) :=R10 e��� q(s(�; s0; y0; u(�)); y(�; y0; u(�)); u(� ))d�(3.2)The functionv�(s0; y0) := infu(�)2U J�(s0; y0; u(�)) (3.3)is called the optimal value function of this discountedoptimal control problem.For � ! 0 the convergencesup(s0;y0)2Sd�1�K �v�(s0; y0)! ~�holds. Furthermore if a control function u(�) 2 U sat-is�es�J�(s(t; s0; y0; u(�)); y(t; y0; u(�)); u(t+ �)) � �for all t � 0 and some � 2 R, � > 0 the estimate�(s0; y0; u(�)) � �is implied (see [6] or [8] for these results). Hence by con-structing an (approximately) optimal control strategyfor this discounted problem we do also (approximately)minimize the Lyapunov exponent of (1.2).In order to do this we approximate U byUh := fu : R! U juj[ih;(i+1)h) � ui for all i 2Zgfor some time step h > 0. This construction is oftenreferred to as the process of sampling, see [10, Section2.10]. By de�ningvh� (s0; y0) := infu(�)2Uh J�(s0; y0; u(�))for which the approximation propertykv� � vh� k1 � Ch 
2holds for 
 = �=L where L denotes the Lipschitz con-stant of the projected system, see [1].In fact, what we obtain by this approximation can beinterpreted as a discrete time systemsi+1 = s(h; si; yi; ui); yi+1 = y(h; yi; ui) (3.4)which is also called a sampled system.By the continuity of all functions involved and thecompactness of U we can now de�ne a function F :

Sd�1 � K ! U by choosing FS(s0; y0) := u 2 U suchthat nZ h0 e��� q(s(�; s0; y0; u); y(�; y0; u); u)d�+ e��hvh� (s(h; s0; y0; u); y(h; y0; u))obecomes minimal.The mapping F does now form a feedback law for thediscrete time system (3.4) bysi+1 = s(h; si; yi; F (si; xi)); yi+1 = y(h; yi; F (si; xi))(3.5)In fact this yields an optimal feedback law for (3.4)with respect to the control functions from Uh.By de�ning F (z; y) := FS(z=kzk; y) we obtain the de-sired stabilizing feedback law. This follows from thefact that the application of F to (1.2) according to De-�nition 2.2 projected to Sd�1 yields exactly the sametrajectories as (3.5). Hence their Lyapunov exponentis negative, provided ~� < 0 and � > 0 and h > 0 aresu�ciently small.The fact that F is indeed a feedback for the discretetime system (3.4) motivates the name discrete feed-back. In the literature also the notions modi�ed Feed-back (see e.g. [9]) or sampled Feedback (cp. [2]) areused.Note that this optimal discrete feedback can be approx-imated numerically as described in [5] and [7].4 The nonlinear systemWe will now return to our original system (1.1). Weapply the discrete feedback as constructed in the lastsection to (1.1) via_x(t) = f(x(t); y(t); F (x(� th� h); y(� th �h)))_y(t) = g(y(t); F (x(� th �h); y(� th�h))) (4.1)The robustness result [8, Lemma 6.3] states that ina su�ciently small neighborhood of x� this optimaldiscrete feedback still yields approximately optimaltrajectories on �nite time intervals. More preciselyif we denote the trajectories of (4.1) by the pair(xF (t; x0; y0); yF (t; y0)) then for any " > 0 there ex-ists a neighborhood U (x�) and a discrete feedback Fsuch that the estimate1T ln kxF (t; x0; y0)k � � + "holds for all x0 2 U (x�) and some bounded T 2[c("); C(")]. What is remarkable about this result is thep. 3



fact that F may be discontinuous, hence one may notargue using continuous dependency on the initial value.Instead, the main ingredients for proving this inequal-ity are the Hoelder continuity of vh� and the relationbetween the discounted and average time functionals.Note that this inequality | obtained by estimating thee�ect of the nonlinear perturbation on the discountedfunctional | does only hold on �nite time intervals.Hence we have to use induction in order to concludethat these trajectories do indeed converge to x� expo-nentially fast, even uniformly, if �+ " < 0. This yieldsthe following main theorem for the nonlinear case forwhich the detailled proof is given in [8].Note that for the nonlinear systems the di�erent as-ymptotic controllability concepts from Theorem 2.3 arenot equivalent. In particular it is not su�cient that(1.1) is (locally) exponentially controllable to x�; in or-der to formulate the desired result we need the notionof uniform exponential controllability.Theorem 4.1 Consider system (1.1). Let K � M bea compact invariant set for the subsystem of (1.1) onM . Then the following properties are equivalent:(i) ~� < 0(ii) (1.1) is (locally) uniformly exponentially control-lable to x� over K(iii) (1.2) is asymptotically null controllable over K(iv) There is h > 0 and a discrete feedback F suchthat (4.1) is (locally) uniformly exponentially sta-ble at x� over KThis theorem shows in particular that any attemptto stabilize (1.1) at a singular point by using its lin-earization must fail if uniform exponential controlla-bility is not satis�ed, because the linearized systemwill not even be asymptotically null controllable. Con-versely, exponential discrete feedback stabilization isalways possible under this condition. We have there-fore obtained the strongest result possible within thelinearization approach.Again ~� forms the characteristic value for this property,hence uniform exponential stabilizability is determinedby this value of the Lyapunov spectrum.It may be worth noting that a related result has beendeveloped in [2] using Lyapunov functions: There it isshown that for nonlinear systems asymptotic control-lability to a (not necessarily singular) point x impliesstabilizability by means of a discrete feedback, wherein order to reach x the step size h must tend to 0. The
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