
Computing Aumann's IntegralRobert Baier and Frank LempioAbstra
t. Quadrature formulae for the numeri
al approximation ofAumann's integral are investigated, whi
h are set-valued analogues ofordinary quadrature formulae with nonnegative weights, like 
ertainNewton-Cotes formulae or Romberg integration.Essentially, the approa
h 
onsists in the numeri
al approximation ofthe support fun
tional of Aumann's integral by ordinary quadratureformulae. For set-valued integrands whi
h are smooth in an appropri-ate sense, this approa
h yields higher order methods, for set-valuedintegrands whi
h are not smooth enough, it yields further insight intowell-known order redu
tion phenomena.The results are used to de�ne higher order methods for the approxi-mation of rea
hable sets of 
ertain 
lasses of linear 
ontrol problems.Mathemati
s Subje
t Classi�
ation (1991): 34A60, 49M25,65D30, 65L05, 93B03Keywords: Aumann's integral, rea
hable set,�nite di�eren
e methods1 Introdu
tionThe main obje
tive of this paper is to investigate higher order methods forthe numeri
al approximation of Aumann's integral and the rea
hable set oflinear di�erential in
lusions. We 
hoose an approa
h based essentially onthe numeri
al approximation of the support fun
tional of Aumann's integralby ordinary quadrature formulae, 
p. in this 
onne
tion [3℄. But 
ontrary to[3℄, we restri
t our outline of basi
 error estimates from the very beginningto quadrature formulae with nonnegative weights, moreover, we use theweak regularity assumptions in the spirit of [17℄ to get higher order of
onvergen
e. Thus, we follow a dire
t approa
h to higher order quadratureformulae for set-valued mappings, avoiding the use of embedding theoremsfor spa
es of 
onvex sets. In this respe
t, our presentation di�ers from theindire
t approa
h indi
ated in [10℄, whi
h is based on [16℄, [12℄, and [4℄.



2 Robert Baier and Frank LempioThe underlying ideas are outlined in Se
tion 2 resulting in the fundamen-tal error estimate of Theorem 2.6. Moreover, the set-valued analoguesof 
losed Newton-Cotes formulae with nonnegative weights resp. Rombergmethod are given in Proposition 2.7 resp. 2.8 together with all regularityand smoothness assumptions required for higher order 
onvergen
e. Ap-plying these results to smooth set-valued integrands, as in Example 4.1,in prin
iple arbitrarily high order of 
onvergen
e 
an be a
hieved, e.g. bythe set-valued analogue of Romberg's method. In addition, for set-valuedintegrands whi
h are not smooth enough, as in Example 4.2, we get furtherinsight into the order barrier noti
ed in [19℄.In Se
tion 3 we will apply our results to the approximation of rea
hablesets for linear 
ontrol systems and get higher order methods at least for
ertain problem 
lasses. In fa
t, smoothness in the sense of Se
tion 2 ofthe fundamental solution multiplied by the set-valued inhomogeneity is the
ru
ial property, la
k of it results in order redu
tion phenomena. Thus, weget at least a partial answer to some open questions dis
ussed in [9℄. Thesee�e
ts are illustrated by Example 4.3, whi
h is not smooth enough in theabove sense, hen
e giving additional insight into the order barrier des
ribedin [20℄, and by Example 4.4, whi
h is arbitrarily smooth, thus admittingnumeri
al approximations of the rea
hable set of arbitrarily high order.Note that there is a theoreti
al approa
h des
ribed in [8℄ whi
h results inorder of 
onvergen
e greater than two, if the 
ontrol region is a 
ompa
t
onvex polyhedron. But, 
onverting these 
on
eptual ideas into a numeri
alalgorithm is until now only possible for order of 
onvergen
e equal to three.All test examples are treated by the above methods by means of a dual ap-proa
h, explained more pre
isely in Se
tion 4. The development of eÆ
ientalgorithms for higher dimensional problems, following this dual approa
hor 
omputing dire
tly sums of sets a

ording to the presented set-valuedquadrature formulae, is an interesting and 
hallenging �eld of resear
h.In the following, we des
ribe brie
y the 
onne
tion between Aumann's in-tegral and linear di�erential in
lusions.Problem 1.1 (Linear Initial Value Problem) Let the n � n-matrixfun
tion A(�) be integrable on I = [a; b℄ andG : I =) Rnbe a set-valued mapping.



Computing Aumann's Integral 3Find an absolutely 
ontinuous fun
tion y(�) : I ! Rn withy0(t) 2 A(t)y(t) +G(t)(1.1)for almost all t 2 I and y(a) = y0 :(1.2)Su
h problems arise from a wide range of appli
ations, e.g. from optimal
ontrol problems or from perturbed dynami
al systems with unknown, butbounded perturbations.The only property really needed is that all solutions of (1.1),(1.2) 
an beequivalently represented in the formy(t) = �(t; a)y(a) + tZa �(t; �)g(�)d�for all t 2 I with a fundamental solution �(t; �) of the homogeneous systemddt�(t; �) = A(t)�(t; �)for almost all t 2 I , satisfying the initial 
ondition�(�; �) = Enfor a �xed � 2 I , and with an integrable sele
tion g(�) of G(�) on I .Hen
e, the rea
hable set at time t 2 IR(t; a; y0) = �z 2 Rn : there exists a solution y(�) on [a; t℄ of(1.1),(1.2) with z = y(t)	
an be represented by means of Aumann's integral asR(t; a; y0) = �(t; a)y0 + tZa �(t; �)G(�)d�for all t 2 I , where the integral is de�ned a

ording toDe�nition 1.2 (
p. [2℄) Let F : I =) Rnbe a set-valued mapping. De�neRI F (�)d� = �z 2 Rn : there exists an integrable sele
tionf(�) of F (�) on I with z = RI f(�)d� 	as Aumann's integral of F (�) over I.



4 Robert Baier and Frank LempioConsequently, our �rst step towards higher order di�eren
e methods forlinear di�erential in
lusions should 
onsist in the investigation of higherorder numeri
al methods for the 
omputation of Aumann's integral. Thisis the 
entral subje
t of Se
tion 2.2 Quadrature Formulae for Set-ValuedMappingsDe�nition 2.1 A set-valued mapping F : I =) Rn with nonempty and
losed images is integrably bounded, if there exists a fun
tion k(�) 2L1(I) with supf(t)2F (t) kf(t)k2 � k(t)for almost all t 2 I.In fa
t, we intend to use the well-known method of s
alarization of a set-valued situation, just exploiting the following fundamental fa
t.Theorem 2.2 Let F : I =) Rn be a measurable set-valued mapping withnonempty and 
losed images. ThenZI F (�)d�is 
onvex.If, moreover, F (�) is integrably bounded, thenZI F (�)d� = ZI 
o(F (�))d�is nonempty, 
ompa
t, and 
onvex. Here, 
o(�) denotes the 
onvex hulloperation.For the proof of 
onvexity and 
ompa
tness see [1, Theorem 8.6.3, pp. 329{330℄, the existen
e of a measurable sele
tion f(�) of F (�) is proven in [1,Theorem 8.1.3, pp. 308℄. It follows from the integrably boundedness ofF (�) that this sele
tion is also integrable and hen
e RI f(�)d� is an elementof RI F (�)d� . Compare [13, 8.2, Theorem 1, pp. 334℄ for the equality of bothintegrals.



Computing Aumann's Integral 5De�nition 2.3 Let C � Rn be a nonempty set and de�neÆ�(l; C) = sup
2C <l; 
> 2 R [ f1gfor all l 2 Rn , where < �; �> denotes the usual inner produ
t in Rn .Then Æ�(�; C) is 
alled support fun
tion of the set C.We list the following property of the support fun
tion, 
p. [1, Table 2.1,pp. 66℄ whi
h we will use below.Lemma 2.4 Let l 2 Rn and C � Rn be a nonempty set.Then the following equality holds:Æ�(l; C) = Æ�(l; 
l(
o(C)));where 
l(
o(C)) denotes the 
losure of the 
onvex hull of the set C.Obviously (see e.g. [1, Proposition 8.6.2, pp. 327℄), under the assumptionsof both parts of Theorem 2.2 we haveRI F (�)d� = �z 2 Rn : <l; z>� Æ�(l; RI F (�)d�) = RI Æ�(l; F (�))d�for all l 2 Rn 	:This is the basis of the s
alarization, whi
h 
onsists in approximatingZI Æ�(l; F (�))d�by a quadrature formula J(l; F )ZI Æ�(l; F (�))d� = J(l; F ) +R(l; F );with remainder term R(l; F ) depending on l 2 Rn and F (�).E.g. for (
omposite) Newton-Cotes formulae of open or 
losed type, Gau�quadrature or Romberg integration, J(l; F ) has the representationJ(l; F ) = NXi=0 
iÆ�(l; F (ti))(2.1)with N 2 N, 
i 2 R, and a grida � t0 � t1 � : : : � tN � b:(2.2)



6 Robert Baier and Frank LempioThis representation and Lemma 2.4 suggest the interpretation of the quad-rature formula as a support fun
tionJ(l; F ) = Æ�(l; NXi=0 
i
l(
o(F (ti)))of the set NXi=0 
i
l(
o(F (ti)))(2.3)whi
h is possible if all weights 
i (i = 0; : : : ; N) are nonnegative.The following lemma, relating the Hausdor� distan
e haus(A;B) betweentwo sets A;B to the support fun
tions, 
an be found in [15, Satz 14.1,pp. 148℄.Lemma 2.5 Let A and B be nonempty, 
ompa
t, and 
onvex sets in Rn ,then haus(A;B) = supklk2=1 jÆ�(l; A)� Æ�(l; B)j:Applying it to the s
alarized quadrature formula with remainder term yieldsthe following error estimate.Theorem 2.6 Let F : I =) Rn be a measurable and integrably boundedset-valued mapping with nonempty and 
ompa
t images, and let the quadra-ture formula J(�; �) have nonnegative weights 
i, nodes ti 2 [a; b℄ (i =0; : : : ; N) and remainder term R(�; �).Then the following error estimate holdshaus(ZI F (t)dt; NXi=0 
i
o(F (ti))) � supklk2=1 jR(l; F )j:To be more 
on
rete, we use the 
omposite 
losed Newton-Cotes formulaof degree k 2 N over the interval [a; b℄ whi
h is exa
t for polynomials ofdegree at most k. Choose the number of subintervals N 2 N of the gridti := a+ ih (i = 0; : : : ; N); h = b� aN ;(2.4)



Computing Aumann's Integral 7su
h that Nk is an integer, and apply the 
losed Newton-Cotes formula ofdegree k on ea
h subinterval [tik ; t(i+1)k℄, then we arrive atbZa Æ�(l; F (t))dt = Nk �1Xi=0 t(i+1)kZtik Æ�(l; F (t))dt == kh Nk �1Xi=0 kXj=0wkjÆ�(l; F (tik+j)) +RkNk (Æ�(l; F (�)))Using the results of [17, Theorem 3.5, pp. 52℄ (or the earlier results men-tioned in [7℄) in a slightly modi�ed way, we 
ould estimate the error byjRkNk (Æ�(l; F (�)))j � (1 + kXj=0 jwkj j)��( Wk+1 � �k+1(Æ�(l; F (�)); 2 kk+1h)1 ; if k is odd;Wk+2 � �k+2(Æ�(l; F (�)); 2 kk+2h)1 ; if k is even;where ��(f ; Æ) := ��(f ; Æ)1 is the averaged moduli of smoothness of order� de�ned in [17, De�nition 1.5, pp. 7℄ and W� denotes the �-th Whitney
onstant.Proposition 2.7 Let F : I =) Rn be a measurable and integrably boundedset-valued mapping with nonempty, 
ompa
t, and 
onvex images. Let the
losed Newton-Cotes formula of degree k have 
oeÆ
ients wkj � 0; j =0; : : : ; k. Assume that the support fun
tion Æ�(l; F (�)) has an absolutely
ontinuous (� � 1)-st derivative and that the �-th derivative is of boundedvariation with respe
t to t uniformly for all l 2 Rn with klk2 = 1, where� 2 � f0; 1; : : : ; kg; if k is odd;f0; 1; : : : ; k + 1g; if k is even:Integrating over the gridti := a+ ih (i = 0; : : : ; N); h = b� aN ;and introdu
ing the set-valued mapping 
orresponding to (2.3), the followingerror estimates holdshaus( bZa F (t)dt; kh Nk �1Xi=0 kXj=0wkjF (tik+j )) �� C(k; �)(1 + kXj=0 wkj) � supklk2=1 b_a d�dt� Æ�(l; F (�)) � h�+1 :



8 Robert Baier and Frank LempioHere, bWa (�) denotes the total variation andC(k; �) = 8>>>>><>>>>>: 2k+1 k�+1��1Qj=0(k+1�j) �Wk+1 ; if k is odd;2k+2 k�+1��1Qj=0(k+2�j) �Wk+2 ; if k is even:
Proof. Apply the error estimates in [17℄ mentioned before and use theestimates [17℄[(3),(4), pp. 8 and (7), pp. 10℄ for a bounded, measurablefun
tion f :�k(f ;h) � 2k�1�1(f ; kh) (k 2 N);�k(f ;h) � k���1Qj=0(k � j) h��k��(f (�); kk � � h) (if f (�) exists and isbounded and measurable, � 2 f0; : : : ; k � 1g; k 2 N);�1(f ;h) � h b_a f (if f is of bounded variation) Q.E.D.These results only apply if the 
oeÆ
ients wkj (j = 0; : : : ; k) are nonnega-tive whi
h is the 
ase for trapezoidal rule (k = 1), Simpson's rule (k = 2),and for k = 3; : : : ; 7; 9, so that the maximal order of 
onvergen
e is 10 forthe 
losed set-valued Newton-Cotes formulae (
p. [11, Table 6.2.1, pp. 268℄).Similar results 
an be a
hieved, if we 
onsider 
omposite Newton-Cotes for-mulae of open type with degree k, where e.g. the 
oeÆ
ients are nonnegativefor the midpoint-rule (k = 0) and for k = 1; 3 (
p. the table in [14℄).Let us brie
y mention Romberg's method of extrapolation whi
h is de-s
ribed in more details in [5℄, [11℄, [18℄. Compute the integralbZa Æ�(l; F (t))dtby the 
omposite trapezoidal rule for a sequenze of stepsizes, sayh0 = b� a; h1 = 12h0; : : : ; hr = 12r h0;
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orresponding to the sequen
e of gridsa = ti;0 < ti;1 < : : : < ti;2i = b; ti;j := a+ jhi (j = 0; : : : ; 2i);and start with the �rst Romberg 
olumnTi0(l) = hi2 2i�1Xj=0 (Æ�(l; F (ti;j)) + Æ�(l; F (ti;j+1))) (i = 0; : : : ; r):Using the re
ursive formula for j = 1; : : : ; i; j � sTij(l) = Ti;j�1(l) + Ti;j�1(l)� Ti�1;j�1(l)4j � 1 (i = 1; : : : ; r);we are able to de�ne the setsTij(F ) = fy 2 Rn j <l; y>� Tij(l) for all l 2 Rn with klk2 = 1g(2.5)for j = 0; : : : ; i; j � s; i = 0; : : : ; r. It is known that ea
h Tij(l) 
ould bewritten in the form (2.1) with nonnegative weights (
p. [11, Theorem 8.3.1,pp. 381℄) and N = 2i, hen
e we 
an apply all obtained results and getProposition 2.8 Let F : I =) Rn be a measurable and integrably boundedset-valued mapping with nonempty, 
ompa
t, and 
onvex images. Assumethat the support fun
tion Æ�(l; F (�)) has an absolutely 
ontinuous (2s)-thderivative and that the (2s + 1)-st derivative is of bounded variation withrespe
t to t uniformly for all l 2 Rn with klk2 = 1.Then the estimate holds for the set-valued mapping introdu
ed in (2.5)haus( bZa F (t)dt; Tij(F )) � jY�=1 1 + ( 12 )2�1� ( 12 )2� � �ij � jY�=0h2i��for all j = 0; : : : ; i; j � s; i = 0; : : : ; r, where �ij 
an be 
hosen indepen-dently of all stepsizes hi�j ; : : : ; hi.Proof. Everything follows from a generalized Euler-Ma
laurin summa-tion formula whi
h gives (under the stated weaker assumptions) the sameasymptoti
 expansion of the 
omposite trapezoidal rule for the integralbZa Æ�(l; F (t))dtas des
ribed in [5℄, [18℄. Q.E.D.Hen
e, ea
h of the s+1 
olumns of Romberg's tableau de�nes su

essivelyintegration methods of order 2; 4; 6; : : : ; 2s + 2 for the approximation ofAumann's integral, if the support fun
tion Æ�(l; F (�)) is suÆ
iently smooth.



10 Robert Baier and Frank Lempio3 Approximation of Rea
hable Sets forLinear Control SystemsWe return to the Linear Initial Value Problem 1.1, assuming that it is givenby a linear 
ontrol problem of the following standard type.Problem 3.1 Let the n � n-matrix fun
tion A(�) and the n � m-matrixfun
tion B(�) be integrable on I, and the 
ontrol regionU � Rmbe nonempty, 
ompa
t, and 
onvex.Find an absolutely 
ontinuous fun
tion y(�) : I ! Rn withy0(t) 2 A(t)y(t) +B(t)U for almost all t 2 I;y(a) = y0:With the notations from the introdu
tion, the rea
hable set at time b isR(b; a; y0) = �(b; a)y0 + bZa �(b; �)B(�)Ud�:Now apply a quadrature formula on an equidistant grid (2.4) of the type(2.3) with error estimatehaus( bZa �(b; �)B(�)Ud�; NXi=0 
i�(b; ti)B(ti)U) �� supklk2=1 jR(l; �(b; �)B(�)U)j � 
onst� 1N �p ;i.e. a quadrature formula of order p with respe
t to the dis
retization pa-rameter N 2 N. Su
h formulae exist, if e.g.Æ�(l; �(b; �)B(�)U)has an absolutely 
ontinuous (p � 2)-nd derivative and if the (p � 1)-stderivative is of bounded variation uniformly with respe
t to all l 2 Rn with



Computing Aumann's Integral 11klk2 = 1 (
p. Propositions 2.7 and 2.8).Choose in addition a di�eren
e method for the 
omputation of the funda-mental system �(b; �) on the same grid (2.4) whi
h 
omputes approximations~�(b; ti) (i = 0; : : : ; N) also of order psup0�i�N k~�(b; ti)� �(b; ti)k1 � 
onst� 1N �p :This is possible e.g. for the Adams-Bashforth method of degree p � 1 (
p.[17, Theorem 6.3, pp. 126℄), if A(�) has an absolutely 
ontinuous (p � 2)-nd derivative and if the (p� 1)-st derivative has bounded variation. Underslightly di�erent assumptions one has similar results for Runge-Kutta meth-ods as well (
p. [6℄, [7℄).Using the same notation kMk1 for the lub-norm of a matrix M with re-spe
t to the supremum norm k � k1 in Rn and for the norm of a set S � RnkSk1 = sups2S ksk1 ;the following inequality holdshaus( NXi=0 
i�(b; ti)B(ti)U; NXi=0 
i ~�(b; ti)B(ti)U) �� NXi=0 
ihaus(�(b; ti)B(ti)U; ~�(b; ti)B(ti)U) �� NXi=0 
ik�(b; ti)� ~�(b; ti)k1 � kB(ti)Uk1 ;if the weights 
i are all nonnegative. Moreover, NPi=0 
ikB(ti)Uk1 is boundeduniformly for all N 2 N, if e.g. B(�) is bounded on I . Hen
e, we arrive atthe following result.Theorem 3.2 Consider the Linear Control Problem 3.1, and assume thatA(�) and Æ�(l; �(b; �)B(�)U) have an absolutely 
ontinuous (p�2)-nd deriva-tive and that the (p�1)-st derivative is of bounded variation uniformly withrespe
t to all l 2 Rn with klk2 = 1.Assume moreover, that NPi=0 
ikB(ti)Uk1 is uniformly bounded for N 2 N.Then, 
ombining a quadrature formula with nonnegative weights of orderp with a di�eren
e method of order p in the sense des
ribed above yields amethod of order p for the approximation of the rea
hable set at time b.



12 Robert Baier and Frank Lempio4 Test ExamplesIn the following, we present a series of model problems, illustrating theresults of Se
tion 2 and 3. All numeri
al tests were made on an HP Apolloworkstation, Series 400. For every supporting hyperplane, the expli
itknowledge of at least one boundary point of the set-valued integrand be-longing to that hyperplane is exploited for the 
omputation of the plots.In all tables, we use Lemma 2.5 together with uniformly distributed pointsli (i = 1; : : : ; �) on the boundary of the unit ball to approximate the Haus-dor� distan
e of two nonempty, 
ompa
t, and 
onvex sets C;D � Rn inthe following way:maxi=1;:::;� jÆ�(li; C)� Æ�(li; D)j � haus(C;D):In the above sense, we use a dual approa
h for the 
al
ulation of the pre-sented set-valued quadrature formulae and for the veri�
ation of the 
orre-sponding error estimates.Example 4.1 Compute Aumann's integral2Z0 A(t)B1(0)dt = 2Z0 � et 00 t2 + 1 �B1(0)dt;where B1(0) denotes the 
losed unit ball in R2 .Then the support fun
tionÆ�(l; A(t)B1(0)) = Æ�(A(t)�l; B1(0)) = kA(t)�lk2is arbitrarily often 
ontinuously di�erentiable with respe
t to t with boun-ded derivatives uniformly for all l 2 Rn with klk2 = 1.In Figure 4.1 we show the boundary of the set 
reated by the 
ompositetrapezoidal rule with stepsizes h = 2:0 (the biggest set), h = 1:0; 0:5 (thetwo smaller sets), and the referen
e set (the smallest set) 
omputed byRomberg's method with 10 rows and 
olumns. Figure 4.1 illustrates order2 of the 
omposite trapezoidal rule whi
h is 
on�rmed by Table 4.1 wherewe show the approximated Hausdor� distan
e between the sets 
al
ulatedby di�erent numeri
al integration methods and the referen
e set.
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Fig. 4.1: Composite trapezoidal rule with h = 2:0; 1:0; 0:5
ompared with the referen
e setIn Table 4.1, one 
an 
learly observe 
onvergen
e order 2 for the 
ompositetrapezoidal rule and order 4 for 
omposite Simpson's rule.Example 4.2 This example was presented in [19℄ as a negative result forthe approximation of Aumann's integral2�Z0 A(t)[�1; 1℄dt = 2�Z0 � sin(t)
os(t) � [�1; 1℄dt:
In this example, the support fun
tionÆ�(l; A(t)[�1; 1℄) = Æ�(A(t)�l; [�1; 1℄) == jA(t)�lj = jl1 sin(t) + l2 
os(t)jis only absolutely 
ontinuous, and its derivative has bounded variation uni-formly for all l 2 Rn with klk2 = 1.
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Fig. 4.2: Composite Simpson's rule with h = �2 ; �4 ; �8
ompared with the referen
e setTable 4.2 illustrates 
onvergen
e order 2 for the 
omposite trapezoidal ruleand also only 
onvergen
e order 2 for the 
omposite Simpson's rule, be-
ause la
king smoothness of the support fun
tion prevents higher order of
onvergen
e. We refer to Figure 4.2 where the results of 
omposite Simp-son's rule are plotted for stepsizes h = 0:5�; 0:25�; 0:125� together withthe result of 
omposite trapezoidal rule with h = 0:02� (the referen
e set).Simpson's rule 
reates polytopes with in
reasing number of edges. This isthe geometri
 explanation given in [19℄ for the observed order redu
tion.



Computing Aumann's Integral 15Example 4.3 This example is also due to Veliov and was presented in [20℄.Consider the linear 
ontrol systemy0(t) 2 � 0 10 0 � y(t) +�01�[�1; 1℄ for almost all t 2 [0; 1℄;y(0) = �00�:Then the fundamental solution is�(t; �) = � 1 t� �0 1 � ;and the rea
hable set at time b = 1 is1Z0 �1� �1 �[�1; 1℄d�:In this 
ase, the support fun
tionÆ�(l; �(1; �)�01�[�1; 1℄) = j(1� �; 1)ljis only absolutely 
ontinuous, and its derivative is of bounded variationuniformly for all l 2 Rn with klk2 = 1.Hen
e, order of 
onvergen
e at most equal to 2 
an be expe
ted.The numeri
al results in Table 4.3 were 
omputed with the expli
itly knownfundamental solution, so that no errors o

ur by the approximation of thefundamental solution. Nevertheless, we observe the expe
ted 
onvergen
eorder for the �rst method and a breakdown of the 
onvergen
e order of
omposite Simpson's rule, whi
h is illustrated graphi
ally in Figure 4.3.
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Fig. 4.3: Composite Simpson's rule with h = 0:5; 0:25
ompared with the referen
e set



Computing Aumann's Integral 17Example 4.4 Consider the linear 
ontrol systemy0(t) 2 � 0 1�2 �3 � y(t) +B1(0) for almost all t 2 [0; 2℄;y(0) = �00�with the 
losed unit ball B1(0) � R2 .Then the fundamental solution is�(t; �) = � 2e�(t��) � e�2(t��) e�(t��) � e�2(t��)�2e�(t��) + 2e�2(t��) �e�(t��) + 2e�2(t��) � ;and the rea
hable set at time b = 2 is2Z0 �(2; �)B1(0)d�:In this 
ase, the support fun
tionÆ�(l; �(2; �)B1(0)) = k�(2; �)�lk2is arbitrarily often di�erentiable with bounded derivatives with respe
t to� uniformly on the set fl 2 R2 : klk2 = 1g.
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Fig. 4.4: Composite Simpson's rule 
ombined with Runge-Kutta (4)with h = 1:0; 0:5 
ompared with the referen
e set



18 Robert Baier and Frank LempioFourth order of 
onvergen
e of 
omposite Simpson's rule is 
learly indi-
ated by Table 4.4 and illustrated by Figure 4.4, where a very rough step-size h = 0:5 gives a remarkably good approximation (whi
h nearly doesnot di�er from the referen
e set within plotting pre
ision). Comparing theresults using the expli
itly known fundamental solution with the 
ombinedmethods using a numeri
al approximation of the fundamental solution, weobserve the same order of 
onvergen
e in Table 4.4, but higher starting er-rors. Noti
e that we have 
hosen appropriate methods for the 
omputationof the fundamental solution whi
h have the same order of 
onvergen
e asthe integration method.Table 4.1: Results for Example 4.1approximatednumeri
al method stepsize Hausdor� distan
e
omposite 2:0 1:9999999999999991trapezoidal rule 1:0 0:52375377899371940:5 0:13255401055063040:25 0:03324172250198651:0 0:52375377899371940:1 0:00532332625809850:01 0:00005324204542130:001 0:00000053242133190:0001 0:0000000053242024
omposite 1:0 0:0316717053249587Simpson's rule 0:5 0:00215776978456630:25 0:00014012610426041:0 0:03167170532495870:1 0:00000362421542200:01 0:00000000036306250:001 0:0000000000000480



Computing Aumann's Integral 19Table 4.2: Results for Example 4.2approximatednumeri
al method stepsize Hausdor� distan
e
omposite 1:0� 3:9999999986840358trapezoidal rule 0:5� 0:85840734509425290:25� 0:20776220280996860:2� 0:13246880249843820:02� 0:00131603253153220:002� 0:0000131581652458
omposite 0:5� 1:9056048962908503Simpson's rule 0:25� 0:42464391690473050:125� 0:08764395430023390:2� 0:13246880249843820:02� 0:00263241288528040:002� 0:0000263176810722
Table 4.3: Results for Example 4.3approximatednumeri
al method stepsize Hausdor� distan
e
omposite 1:0 0:2254227652525390trapezoidal rule 0:5 0:06049223327129650:25 0:01550003889047300:125 0:00389837027345400:1 0:00239978748291830:01 0:00002466707824190:001 0:00000024810244570:0001 0:0000000023598524
omposite 0:5 0:0686732300277554Simpson's rule 0:25 0:01804166452852390:125 0:00494920140357960:0625 0:00126519818689810:1 0:00262196721628070:01 0:00002639632859720:001 0:00000022641524270:0001 0:0000000016145246
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Table 4.4: Results for Example 4.4appoximatednumeri
al method stepsize Hausdor� distan
e
omposite 1:0 0:9433330463362816trapezoidal rule 0:1 0:00243478767505690:01 0:00002436875392390:001 0:00000024366549870:0001 0:0000000024125214
omposite 1:0 2:5354954374884917trapezoidal rule 0:1 0:0054487041523342
ombined with 0:01 0:0000496413103789the method of 0:001 0:0000004919838970Euler-Cau
hy 0:0001 0:0000000048984064
omposite 1:0 0:1335888228107664Simpson's rule 0:5 0:02248590674276720:25 0:00162160534829110:125 0:00008450261547851:0 0:13358882281076640:1 0:00003321426954690:01 0:0000000030953542
omposite 1:0 0:5738839013456635Simpson's rule 0:5 0:0130316902023255
ombined with 0:25 0:0008327343054384Runge-Kutta (4) 0:125 0:00004572769813231:0 0:57388390134566350:1 0:00001807663727460:01 0:0000000018105748
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