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Abstract. Quadrature formulae for the numerical approximation of
Aumann’s integral are investigated, which are set-valued analogues of
ordinary quadrature formulae with nonnegative weights, like certain
Newton-Cotes formulae or Romberg integration.

Essentially, the approach consists in the numerical approximation of
the support functional of Aumann’s integral by ordinary quadrature
formulae. For set-valued integrands which are smooth in an appropri-
ate sense, this approach yields higher order methods, for set-valued
integrands which are not smooth enough, it yields further insight into
well-known order reduction phenomena.

The results are used to define higher order methods for the approxi-
mation of reachable sets of certain classes of linear control problems.
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1 Introduction

The main objective of this paper is to investigate higher order methods for
the numerical approximation of Aumann’s integral and the reachable set of
linear differential inclusions. We choose an approach based essentially on
the numerical approximation of the support functional of Aumann’s integral
by ordinary quadrature formulae, cp. in this connection [3]. But contrary to
[3], we restrict our outline of basic error estimates from the very beginning
to quadrature formulae with nonnegative weights, moreover, we use the
weak regularity assumptions in the spirit of [17] to get higher order of
convergence. Thus, we follow a direct approach to higher order quadrature
formulae for set-valued mappings, avoiding the use of embedding theorems
for spaces of convex sets. In this respect, our presentation differs from the
indirect approach indicated in [10], which is based on [16], [12], and [4].
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The underlying ideas are outlined in Section 2 resulting in the fundamen-
tal error estimate of Theorem 2.6. Moreover, the set-valued analogues
of closed Newton-Cotes formulae with nonnegative weights resp. Romberg
method are given in Proposition 2.7 resp. 2.8 together with all regularity
and smoothness assumptions required for higher order convergence. Ap-
plying these results to smooth set-valued integrands, as in Example 4.1,
in principle arbitrarily high order of convergence can be achieved, e.g. by
the set-valued analogue of Romberg’s method. In addition, for set-valued
integrands which are not smooth enough, as in Example 4.2, we get further
insight into the order barrier noticed in [19].

In Section 3 we will apply our results to the approximation of reachable
sets for linear control systems and get higher order methods at least for
certain problem classes. In fact, smoothness in the sense of Section 2 of
the fundamental solution multiplied by the set-valued inhomogeneity is the
crucial property, lack of it results in order reduction phenomena. Thus, we
get at least a partial answer to some open questions discussed in [9]. These
effects are illustrated by Example 4.3, which is not smooth enough in the
above sense, hence giving additional insight into the order barrier described
in [20], and by Example 4.4, which is arbitrarily smooth, thus admitting
numerical approximations of the reachable set of arbitrarily high order.

Note that there is a theoretical approach described in [8] which results in
order of convergence greater than two, if the control region is a compact
convex polyhedron. But, converting these conceptual ideas into a numerical
algorithm is until now only possible for order of convergence equal to three.

All test examples are treated by the above methods by means of a dual ap-
proach, explained more precisely in Section 4. The development of efficient
algorithms for higher dimensional problems, following this dual approach
or computing directly sums of sets according to the presented set-valued
quadrature formulae, is an interesting and challenging field of research.

In the following, we describe briefly the connection between Aumann’s in-
tegral and linear differential inclusions.

Problem 1.1 (Linear Initial Value Problem) Let the n X n-matriz
function A(-) be integrable on I = [a,b] and
G: I=R"'

be a set-valued mapping.
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Find an absolutely continuous function y(-) : I — R™ with

(1.1) y'(t) € A(t)y(t) + G(t)
for almost all t € I and
(1.2) y(a) =yo.

Such problems arise from a wide range of applications, e.g. from optimal
control problems or from perturbed dynamical systems with unknown, but
bounded perturbations.

The only property really needed is that all solutions of (1.1),(1.2) can be
equivalently represented in the form

t
() = s(t.al(@ + [ ote,riglr)ar
for all ¢ € I with a fundamental solution ¢(¢, 7) of the homogeneous system

d
E(Zﬁ(t: T) = A(t)¢(t7 T)
for almost all ¢ € I, satisfying the initial condition
o(r,7) = E,

for a fixed 7 € I, and with an integrable selection g(-) of G(-) on I.
Hence, the reachable set at time ¢t € T

R(t,a,y0) = {z € R" : there exists a solution y(-) on [a,?] of
(1.1),(1.2) with z = y(t) }

can be represented by means of Aumann’s integral as

t
Rit,a,30) = olt,a)n + [ o(t,7)G(r)dr
for all ¢t € I, where the integral is defined according to

Definition 1.2 (cp. [2]) Let
F:]=R"
be a set-valued mapping. Define
[ F(r)dr = {2z € R" : there exists an integrable selection
T

J0) of F() on T with == [ f(7)dr }

as Aumann’s integral of F(-) over I.
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Consequently, our first step towards higher order difference methods for
linear differential inclusions should consist in the investigation of higher
order numerical methods for the computation of Aumann’s integral. This
is the central subject of Section 2.

2 Quadrature Formulae for Set-Valued
Mappings

Definition 2.1 A set-valued mapping F : [ — R™ with nonempty and
closed images is integrably bounded, if there exists a function k() €
Ly (I) with

sup |If(#)[l; < k(2)
FHEF(®)

for almost all t € I.

In fact, we intend to use the well-known method of scalarization of a set-
valued situation, just exploiting the following fundamental fact.

Theorem 2.2 Let F': [ = R” be a measurable set-valued mapping with
nonempty and closed images. Then

/F(T)dT

1

s convezx.
If, moreover, F(-) is integrably bounded, then

/F(T)dT - /CO(F(T))dT

I I

is nonempty, compact, and convex. Here, co(:) denotes the convex hull
operation.

For the proof of convexity and compactness see [1, Theorem 8.6.3, pp. 329

330], the existence of a measurable selection f(-) of F(-) is proven in [,

Theorem 8.1.3, pp. 308]. It follows from the integrably boundedness of

F(-) that this selection is also integrable and hence [ f(7)dr is an element
T

of [ F(r)dr. Compare [13, 8.2, Theorem 1, pp. 334] for the equality of both
T

integrals.
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Definition 2.3 Let C C R" be a nonempty set and define

0*(1,C) =sup <l,c>€ RU{ox}
ceC

for alll € R™, where <-,-> denotes the usual inner product in R™.
Then 6*(-,C) is called support function of the set C.

We list the following property of the support function, cp. [1, Table 2.1,
pp. 66] which we will use below.

Lemma 2.4 Letl € R" and C' C R" be a nonempty set.
Then the following equality holds:
0*(1,C) = §*(l, cl(co(C))),

where cl(co(C)) denotes the closure of the convex hull of the set C.
Obviously (see e.g. [1, Proposition 8.6.2, pp. 327]), under the assumptions
of both parts of Theorem 2.2 we have

[F(r)dr ={z€R" : <l,z2><6(, [F(r)dr) = [6*(l,F(r))dr

! for all | € R® }I. !
This is the basis of the scalarization, which consists in approximating

/6*(l,F(T))dT

I

by a quadrature formula J(I, F')

/6*(l,F(7-))d7- = J(I,F) + R(I, F),
I

with remainder term R(l, F') depending on I € R” and F(-).
E.g. for (composite) Newton-Cotes formulae of open or closed type, Gaufl
quadrature or Romberg integration, J(I, F') has the representation

N
(2.1) J(,F) =" c;i6"(1, F(t;))

with N € N, ¢; € R, and a grid
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This representation and Lemma 2.4 suggest the interpretation of the quad-
rature formula as a support function

N

J(,F) =6"(1,>_ eicl(co(F(t;)))

i=0
of the set

N
(2.3) Z cicl(co(F(t:)))

which is possible if all weights ¢; (i = 0,..., N) are nonnegative.

The following lemma, relating the Hausdorff distance haus(A4, B) between
two sets A, B to the support functions, can be found in [15, Satz 14.1,
pp. 148].

Lemma 2.5 Let A and B be nonempty, compact, and convez sets in R,
then

haus(A, B) = sup |6*(1, A) — 8*(l, B)|.
ll7]l,=1

Applying it to the scalarized quadrature formula with remainder term yields
the following error estimate.

Theorem 2.6 Let F: I = R" be a measurable and integrably bounded
set-valued mapping with nonempty and compact images, and let the quadra-
ture formula J(-,-) have nonnegative weights c;, nodes t; € [a,b] (i =
0,...,N) and remainder term R(-,-).

Then the following error estimate holds

N
haus(/ F(dt, " esco(F(t:)) < sup |R(, F)].
i=0

=1
T ll2llo

To be more concrete, we use the composite closed Newton-Cotes formula,
of degree k € N over the interval [a,b] which is exact for polynomials of
degree at most k. Choose the number of subintervals N € N of the grid

(2.4) tir=a+ih(i=0,...,N), h= ,
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such that % is an integer, and apply the closed Newton-Cotes formula of
degree k on each subinterval [tit,#(;41)], then we arrive at

b N tit1)k
/5*(1,F(t))dt - Z / F(t))dt =
a =0 tik
-1 g
= kh 30 S w1, Fltis ) + R (57 (1, F()

Using the results of [17, Theorem 3.5, pp. 52] (or the earlier results men-
tioned in [7]) in a slightly modified way, we could estimate the error by

|[RA (51, F (- 1+ Z |wi;])-
Wipt -1 (0°(1L F ()i 255gh), . if ks odd,
| Wige - misa(8* (L F () 2585R), . if ks even,

where 7,(f;0) := 7,(f; )1 is the averaged moduli of smoothness of order
v defined in [17, Definition 1.5, pp. 7] and W, denotes the v-th Whitney
constant.

Proposition 2.7 Let F': I —> R" be a measurable and integrably bounded
set-valued mapping with nonempty, compact, and conver images. Let the
closed Newton-Cotes formula of degree k have coefficients wy; > 0, j =
k. Assume that the support function 6*(I, F(-)) has an absolutely
continuous (v — 1)-st derivative and that the v-th derivative is of bounded
variation with respect to t uniformly for all 1 € R™ with ||l||, = 1, where

c {0,1,...,k}, if k is odd,
v {0,1,....k+1} if k is even.

Integrating over the grid

t;:=a+ih (i=0,...,N), h= ,

and introducing the set-valued mapping corresponding to (2.3), the following
error estimates holds

N1 g

haus / t)dt, kh Z Zwk] (tik+j)) <
a

i=0 j=0

k
< Ok, v)(1+ ) wiy) - HSHUp \/Wé* (IL,F(-) - kT,
=1
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b

Here, \/(-) denotes the total variation and
a

Pl KT W, if k is odd,
(k+1=3)
C(k,v) = j=o
) ohte KT Wit if k is even.

v—1
IT (k+2-3)
j=0

Proof. Apply the error estimates in [17] mentioned before and use the
estimates [17][(3),(4), pp. 8 and (7), pp. 10] for a bounded, measurable
function f:

m(fih) < 28 'm(fikh)  (KEN),
kY k
(f;h) < ———— R iy (), k—h) (if f*) exists and is
. —v
[T(k—=14)
j=0
bounded and measurable, v € {0,...,k -1}, k € N),
b
ni(f;h) < h\/f  (if f is of bounded variation)
Q.E.D.
These results only apply if the coefficients wy; (j =0,...,k) are nonnega-
tive which is the case for trapezoidal rule (k = 1), Simpson’s rule (k = 2),
and for k = 3,...,7,9, so that the maximal order of convergence is 10 for

the closed set-valued Newton-Cotes formulae (cp. [11, Table 6.2.1, pp. 268]).
Similar results can be achieved, if we consider composite Newton-Cotes for-
mulae of open type with degree k, where e.g. the coefficients are nonnegative
for the midpoint-rule (k = 0) and for k = 1,3 (cp. the table in [14]).

Let us briefly mention Romberg’s method of extrapolation which is de-
scribed in more details in [5], [11], [18]. Compute the integral

b
/6*(l,F(t))dt

by the composite trapezoidal rule for a sequenze of stepsizes, say

1 1
h(]:b—a, hlzghg, ey hr_—ho,

= o
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corresponding to the sequence of grids
a=ti70<ti,1<...<ti72i=b, tij =a+ jh; (jZO,...,Qi),

and start with the first Romberg column

2i 1
hi . N .
Tio(l) = EZ > (6* (1L F(ti) + 6" (1, F(tij1)) (i=0,...,7).
j=0
Using the recursive formula for j =1,...,4, 7 <s

Tij-1() = Ti1-1(1)

Tij() = Tij () + 1

(i=1,...,7),
we are able to define the sets
(2.5) T;;(F)={yeR"| <l,y><T;;(l) for all I € R* with [|I||, =1}

for j=0,...,4, j <s, i=0,...,r. It is known that each T;;(l) could be
written in the form (2.1) with nonnegative weights (cp. [11, Theorem 8.3.1,
pp. 381]) and N = 2¢, hence we can apply all obtained results and get

Proposition 2.8 Let F': I —> R" be a measurable and integrably bounded
set-valued mapping with nonempty, compact, and convex images. Assume
that the support function 6*(l, F(+)) has an absolutely continuous (2s)-th
derivative and that the (2s + 1)-st derivative is of bounded variation with
respect to t uniformly for all 1 € R™ with ||I||, = 1.
Then the estimate holds for the set-valued mapping introduced in (2.5)

b J 1+( )211 J 5
haus(/ F(t)dt, T;;(F)) < H W T Qg H hi_,
p=1-+ - v=0

a

M

(I

forallj=0,...,1, j<s, ¢ =0,...,7, where a;; can be chosen indepen-
dently of all stepsizes hi—j, ..., h;.

Proof. Everything follows from a generalized Euler-Maclaurin summa-
tion formula which gives (under the stated weaker assumptions) the same
asymptotic expansion of the composite trapezoidal rule for the integral

b

/6*(l,F(t))dt

a

as described in [5], [18]. Q.E.D.

Hence, each of the s+ 1 columns of Romberg’s tableau defines successively
integration methods of order 2,4,6,...,2s + 2 for the approximation of
Aumann’s integral, if the support function §*(I, F(+)) is sufficiently smooth.
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3 Approximation of Reachable Sets for
Linear Control Systems

We return to the Linear Initial Value Problem 1.1, assuming that it is given
by a linear control problem of the following standard type.

Problem 3.1 Let the n x n-matriz function A(-) and the n X m-matriz
function B(-) be integrable on I, and the control region

UcCR™

be nonempty, compact, and conver.
Find an absolutely continuous function y(-) : I — R™ with

y'(t) € A@t)y(t) + B(t)U  for almost all t € I,
y(a) = yo.

With the notations from the introduction, the reachable set at time b is

b
R(b,a,y0) = $(b, a)yo + / 6(b, 1) B(r)Udr.

Now apply a quadrature formula on an equidistant grid (2.4) of the type
(2.3) with error estimate

b N
haus( [ 600, 7)B()Udr, 3 cxo(b 1) Bt)U) <

< sup |R(l,¢(b,-)B<->U>|SCO““%) ’

=1

i.e. a quadrature formula of order p with respect to the discretization pa-
rameter N € N. Such formulae exist, if e.g.

6* (1, ¢(b, ) B(-)U)

has an absolutely continuous (p — 2)-nd derivative and if the (p — 1)-st
derivative is of bounded variation uniformly with respect to all I € R” with
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Il]l, = 1 (cp. Propositions 2.7 and 2.8).

Choose in addition a difference method for the computation of the funda-
mental system ¢(b, -) on the same grid (2.4) which computes approximations
<;~S(b, t;) (i =0,...,N) also of order p

sup [|6(b,t:) — d(b,t5)||., < const(%)p_

0<i<N

This is possible e.g. for the Adams-Bashforth method of degree p — 1 (cp.
[17, Theorem 6.3, pp. 126]), if A(-) has an absolutely continuous (p — 2)-
nd derivative and if the (p — 1)-st derivative has bounded variation. Under
slightly different assumptions one has similar results for Runge-Kutta meth-
ods as well (cp. [6], [7])-

Using the same notation |[M||_ for the lub-norm of a matrix M with re-
spect to the supremum norm || - ||, in R" and for the norm of a set S C R”

1]l = sup|ls]l
seS

the following inequality holds

N N
haus(z cip(b, 1) B(t:)U, Z cip(b, t:i) B(t;)U) <
i=0 i=0

N
< Y cihaus(g(b, ) B(t:)U, ¢(b, t:) B(t:)U) <
i=0

N

> cillé®, ti) = $(b, )l - I1BENU .

i=0

IN

N
if the weights ¢; are all nonnegative. Moreover, > ¢;||B(t;)U]| ., is bounded

uniformly for all N € N, if e.g. B(-) is bounded on I. Hence, we arrive at
the following result.

Theorem 3.2 Consider the Linear Control Problem 3.1, and assume that
A(+) and 6*(1, ¢(b, ) B(-)U) have an absolutely continuous (p—2)-nd deriva-
tive and that the (p—1)-st derivative is of bounded variation uniformly with
respect to all | € R with ||l||, = 1.

N

Assume moreover, that ) ¢;||B(t;)U||, is uniformly bounded for N € N,
i=0

Then, combining a quadrature formula with nonnegative weights of order

p with a difference method of order p in the sense described above yields a

method of order p for the approzimation of the reachable set at time b.
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4 Test Examples

In the following, we present a series of model problems, illustrating the
results of Section 2 and 3. All numerical tests were made on an HP Apollo
workstation, Series 400. For every supporting hyperplane, the explicit
knowledge of at least one boundary point of the set-valued integrand be-
longing to that hyperplane is exploited for the computation of the plots.
In all tables, we use Lemma 2.5 together with uniformly distributed points
l; (i =1,...,u) on the boundary of the unit ball to approximate the Haus-
dorff distance of two nonempty, compact, and convex sets C, D C R" in
the following way:

max |0*(1;,C) — §*(l;, D)| =~ haus(C, D).
i=1,...,u

In the above sense, we use a dual approach for the calculation of the pre-
sented set-valued quadrature formulae and for the verification of the corre-
sponding error estimates.

Example 4.1 Compute Aumann’s integral

2

jA(t)Bl(O)dt: / (%t t2(—]+—1 ) By (0)dt,

0

where B1(0) denotes the closed unit ball in R?.

Then the support function
67 (1, A(t) B1(0)) = 6" (A(1)*1, B1(0)) = [|A(®)*1[l,

is arbitrarily often continuously differentiable with respect to ¢ with boun-
ded derivatives uniformly for all I € R™ with ||{||, = 1.

In Figure 4.1 we show the boundary of the set created by the composite
trapezoidal rule with stepsizes h = 2.0 (the biggest set), h = 1.0,0.5 (the
two smaller sets), and the reference set (the smallest set) computed by
Romberg’s method with 10 rows and columns. Figure 4.1 illustrates order
2 of the composite trapezoidal rule which is confirmed by Table 4.1 where
we show the approximated Hausdorff distance between the sets calculated
by different numerical integration methods and the reference set.
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-4 -

-8 ! ! ! ! ! ! ! ! !
-10 -8 -6 —4 -2 (o] 2 4 6 8 10

Fig. 4.1: Composite trapezoidal rule with h = 2.0,1.0,0.5
compared with the reference set

In Table 4.1, one can clearly observe convergence order 2 for the composite
trapezoidal rule and order 4 for composite Simpson’s rule.

Example 4.2 This ezample was presented in [19] as a negative result for
the approzimation of Aumann’s integral

7/1(75)[—1, 1dt = 7( ig;((?) ) —1,1]dt.

In this example, the support function

6*(l7 A(t)[_L 1])

6" (AL [-1,1]) =
= |A®)*]| = |l sin(t) + I cos(t)]

is only absolutely continuous, and its derivative has bounded variation uni-
formly for all I € R with |||, = 1.
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ENET] 3 2 -1 0 1 2 3 4 5 6 6 5 4 3 -2 -1 [ 1 2 3 4 5 6
™

Fig. 4.2: Composite Simpson’s rule with h =

T
2:4°8
compared with the reference set

Table 4.2 illustrates convergence order 2 for the composite trapezoidal rule
and also only convergence order 2 for the composite Simpson’s rule, be-
cause lacking smoothness of the support function prevents higher order of
convergence. We refer to Figure 4.2 where the results of composite Simp-
son’s rule are plotted for stepsizes h = 0.57,0.257,0.1257 together with
the result of composite trapezoidal rule with h = 0.027 (the reference set).
Simpson’s rule creates polytopes with increasing number of edges. This is
the geometric explanation given in [19] for the observed order reduction.
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Example 4.3 This ezample is also due to Veliov and was presented in [20].
Consider the linear control system

y(t) € (8 é)y(t)+ (?) =11 for almost all t € [0, 1],

v = (y):

Then the fundamental solution is

s =(5"77),

and the reachable set at time b =1 is

0/1 <IIT> [—1, 1]dr.

In this case, the support function

o (toln) () -1 = -

is only absolutely continuous, and its derivative is of bounded variation
uniformly for all I € R" with [|{[|, = 1.

Hence, order of convergence at most equal to 2 can be expected.

The numerical results in Table 4.3 were computed with the explicitly known
fundamental solution, so that no errors occur by the approximation of the
fundamental solution. Nevertheless, we observe the expected convergence
order for the first method and a breakdown of the convergence order of
composite Simpson’s rule, which is illustrated graphically in Figure 4.3.
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Composite Simpson’s rule with h = 0.5,0.25

compared with the reference set
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Example 4.4 Consider the linear control system

y'(t) € < _g _;’ ) y(t) + B1(0) for almost all t € [0, 2],

y(0) = <g>

with the closed unit ball By (0) C R2.

Then the fundamental solution is

Qef(tf‘r) _ 672(t77') ef(tfr) _ 672(7577')
¢(t=7) = _Qef(tfr) + 2672(t7T) _e*(t*‘l') + 2672“77')

and the reachable set at time b = 2 is
2
/¢(2, 7)B1(0)dr.
0

In this case, the support function

0" (1,6(2,7)B1(0) = ll¢(2, 7)1l

is arbitrarily often differentiable with bounded derivatives with respect to
7 uniformly on the set {l € R? : ||I||, = 1}.

1.0 —

0.5 4

-0.5 *

-1.0 —

-1.5 I I I I I
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Fig. 4.4: Composite Simpson’s rule combined with Runge-Kutta (4)
with h =1.0,0.5 compared with the reference set
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Fourth order of convergence of composite Simpson’s rule is clearly indi-
cated by Table 4.4 and illustrated by Figure 4.4, where a very rough step-
size h = 0.5 gives a remarkably good approximation (which nearly does
not differ from the reference set within plotting precision). Comparing the
results using the explicitly known fundamental solution with the combined
methods using a numerical approximation of the fundamental solution, we
observe the same order of convergence in Table 4.4, but higher starting er-
rors. Notice that we have chosen appropriate methods for the computation
of the fundamental solution which have the same order of convergence as

the integration method.

Table 4.1: Results for Example 4.1

approximated
numerical method | stepsize | Hausdorff distance
composite 2.0 1.9999999999999991
trapezoidal rule |1.0 0.5237537789937194
0.5 0.1325540105506304
0.25 0.0332417225019865
1.0 0.5237537789937194
0.1 0.0053233262580985
0.01 0.0000532420454213
0.001  {0.0000005324213319
0.0001 |0.0000000053242024
composite 1.0 0.0316717053249587
Simpson’s rule 0.5 0.0021577697845663
0.25 0.0001401261042604
1.0 0.0316717053249587
0.1 0.0000036242154220
0.01 0.0000000003630625

0.001

0.0000000000000480
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Table 4.2: Results for Example 4.2

approximated
numerical method | stepsize | Hausdorff distance
composite 1.07 3.9999999986840358
trapezoidal rule |0.57 0.8584073450942529
0.257 |0.2077622028099686
0.27 0.1324688024984382
0.027 |0.0013160325315322
0.0027 [0.0000131581652458
composite 0.57 1.9056048962908503
Simpson’s rule 0.257 [0.4246439169047305
0.1257 |0.0876439543002339
0.27 0.1324688024984382
0.027 [0.0026324128852804
0.0027 |0.0000263176810722

Table 4.3: Results for Example 4.3

approximated
numerical method | stepsize | Hausdorff distance
composite 1.0 0.2254227652525390
trapezoidal rule [0.5 0.0604922332712965
0.25 0.0155000388904730
0.125 |0.0038983702734540
0.1 0.0023997874829183
0.01 0.0000246670782419
0.001 |0.0000002481024457
0.0001 |0.0000000023598524
composite 0.5 0.0686732300277554
Simpson’s rule 0.25 0.0180416645285239
0.125 |0.0049492014035796
0.0625 |0.0012651981868981
0.1 0.0026219672162807
0.01 0.0000263963285972
0.001 |0.0000002264152427
0.0001 |0.0000000016145246
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Table 4.4: Results for Example 4.4

numerical method

stepsize

appoximated
Hausdorff distance

composite
trapezoidal rule

1.0
0.1
0.01
0.001
0.0001

0.9433330463362816
0.0024347876750569
0.0000243687539239
0.0000002436654987
0.0000000024125214

composite
trapezoidal rule
combined with
the method of
Euler-Cauchy

1.0
0.1
0.01
0.001
0.0001

2.5354954374884917
0.0054487041523342
0.0000496413103789
0.0000004919838970
0.0000000048984064

composite
Simpson’s rule

1.0
0.5
0.25
0.125

0.1335888228107664
0.0224859067427672
0.0016216053482911
0.0000845026154785

1.0
0.1
0.01

0.1335888228107664
0.0000332142695469
0.0000000030953542

composite
Simpson’s rule
combined with
Runge-Kutta (4)

1.0
0.5
0.25
0.125

0.5738839013456635
0.0130316902023255
0.0008327343054384
0.0000457276981323

1.0
0.1
0.01

0.5738839013456635
0.0000180766372746
0.0000000018105748
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