
 
 

 

 

Assessing spatio-temporal risks of vector-borne diseases: 

an interdisciplinary view integrating  

ecological and epidemiological models 

 

 

 

Dissertation 

zur Erlangung des akademischen Grades einer 

 

 

Doktorin der Naturwissenschaften (Dr. rer. nat.) 

an der Fakultät für Biologie, Chemie und Geowissenschaften 

der  

Universität Bayreuth 

 

 

 

 

vorgelegt von 

Yanchao Cheng 

geb. in Heilongjiang, China 

 

Bayreuth, 2020 



ii 
 

  



iii 
 

This doctoral thesis was prepared at the department of Biogeography at the 

University of Bayreuth from November 2015 until December 2020 and was 

supervised by Prof. Dr. Carl Beierkuhnlein. 

 

 

 

This is a full reprint of the dissertation submitted to obtain the academic degree of 

Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Faculty of Biology, 

Chemistry and Geosciences of the University of Bayreuth. 

 

 

 

Date of submission: December 2nd 2020 

 

Date of defence: March 22nd 2021 

 

 

Acting dean: Prof. Dr. Matthias Breuning 

 

Doctoral committee: 

Prof. Dr. Carl Beierkuhnlein (reviewer) 

Prof. Dr. Kurt Chudej  (reviewer) 

Prof. Dr. Cyrus Samimi  (chairman) 

Prof. Dr. Heike Feldhaar 

  



iv 
 

  



v 
 

Contents 

Summary  1 

Zusammenfassung 3 

Introduction 5 

1 Motivation 5 

2 Structure of this thesis 6 

3 General introduction 7 

3.1 Infectious diseases  7 

3.2 Vector-borne diseases  8 

3.3 Vector-borne diseases in face of global change 11 

3.4 Modelling the potential outbreak risks of vector-borne diseases  12 

4 Ecological niche models 13 

4.1 General workflow 13 

4.2 Occurrence/presence locations 13 

4.3 Explanatory variables  14 

4.4 How do ecological niche models use spatial information? 14 

4.5 More than a black box: How do ecological niche models work? 19 

4.6 Products from ecological niche models – spatial risk maps  22 

5 Epidemiological models 23 

5.1 General workflow 23 

5.2 Basic reproduction number: R0 23 

5.3 Survival function 24 



vi 
 

5.4 Next generation matrix 25 

5.5 Incidence-based methods 28 

5.6 Products from epidemiological models – spatio-temporal risk maps 28 

6 Comparison of ecological niche models and epidemiological models 30 

7 Synopsis of the following manuscripts 32 

8 Challenges for future studies 34 

8.1 Positional errors in ecological niche models 34 

8.2 The complexity of epidemiological models 35 

8.3 Assessment of epidemiological models’ performance 36 

8.4 The quality of vector and host parameters 37 

9 List of articles and declaration of own contribution 38 

10 References of introduction 40 

Manuscript 1 47 

Manuscript 2 76 

Manuscript 3 106 

Appendix 1 139 

List of abbreviations 148 

Other academic activities 149 

Acknowledgements 151 

(Eidesstattliche) Versicherungen und Erklärungen 152 

  

 

 



1 
 

Summary  

Vector-borne diseases are infectious diseases that are transmitted among vertebrate hosts by (typically 

arthropod) vectors. Among the whole world’s population, 80% is at risk of one or more vector-borne 

diseases, leading to an annual death toll of 700 000. These striking numbers are calling for urgent actions 

to prevent vector-borne diseases from emerging further. However, to apply preventions, we need to know 

where a risk exists; and if possible, when the prevention should take place. 

The key to those two primary questions are risk maps, which are typically generated with ecological niche 

models or epidemiological models. Ecological niche models require occurrence records of the 

transmissions and the respective environmental variables (mostly long-term-averaged) to build a 

correlative model. This correlative model can be projected to a different spatial extent, or into future 

climate scenarios, etc., showing the spatial outbreak risk. Epidemiological models, on the other hand, look 

into the transmission process and thus require a good understanding of the transmission cycle of the 

investigated vector-borne disease. Epidemiological models can work with time-series data, and produce 

spatio-temporal risk maps based on the basic reproduction number R0. In practice, both ecological niche 

models and epidemiological models have their respective strengths and drawbacks. In this thesis, I 

contribute to the improvement of both approaches by analyzing some of their drawbacks and making 

suggestions for new standards. 

For ecological niche models, the correlative models are highly dependent on the quality of occurrence 

records. In this thesis, I investigate how positional error, i.e. substituting the geographical centroid of the 

respective administrative spatial unit for unknown occurrence records, affects model performance in the 

context of varying grain size of environmental data. I quantify the decrease of model performance caused 

by the use of geographical centroids and varying grain size, respectively. As a consequence, I suggest that 

special cautions should be given when geographical centroids are applied as substitutes; when possible, 

central tendency values should be preferred. 

For epidemiological models, I review the common ways to generate risk maps and illustrate them with an 

example. I demonstrate that using different temporal aggregation methods affects the comparability and 

the quantity information of the resulting maps; and that via different visualization methods, two 

fundamentally different maps can appear very similar, and vice versa. Consequently, I highlight the 

importance of using appropriate temporal aggregations and visualizations and give suggestions for best 

practice. I recommend to show both intensity and duration of the risk, using small time-steps to show 

spatio-temporal dynamics when possible. 

Pushing towards new standards for best practice in vector-borne disease risk mapping, I directly compare 

ecological niche models and epidemiological models, using Usutu virus as an example. The results from 

the parallel-model approach shows that relying on a single model for assessing vector-borne disease risk 

may lead to incomplete conclusions. For future research, it is crucial to realize this and aim to apply 

different modelling approaches for risk-assessment of under-studied emerging pathogens like Usutu virus. 
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Zusammenfassung 

Durch Vektoren übertragene Krankheiten sind Infektionskrankheiten, die von Wirbeltierwirten durch 

Vektoren (typischerweise Arthropoden) übertragen werden. Bei 80% der gesamten Weltbevölkerung 

besteht das Risiko einer oder mehrerer durch Vektoren übertragener Krankheiten, was zu einer jährlichen 

Zahl von 700 000 Todesopfern führt. Diese bemerkenswerten Zahlen erfordern dringende Maßnahmen, 

um das weitere Auftreten von Vektor-übertragenen Krankheiten zu verhindern. Um 

Präventionsmaßnamen einleiten zu können, müssen wir jedoch wissen, wo ein Risiko besteht, und wenn 

möglich, wann die Prävention erforderlich ist. 

Der Schlüssel zu diesen beiden Hauptfragen sind Risikokarten, die typischerweise mit ökologischen 

Nischenmodellen oder epidemiologischen Modellen erstellt werden. Ökologische Nischenmodelle 

erfordern Vorkommensdaten der Übertragungen sowie relevante Umweltvariablen (meist langfristig 

gemittelt), um ein korrelatives Modell zu erstellen. Dieses korrelative Modell kann in einen anderen 

räumlichen oder zeitlichen (mittels Klimaszenarien) Kontext projiziert werden, um das räumliche 

Ausbruchsrisiko aufzuzeigen. Epidemiologische Modelle untersuchen dagegen den Übertragungsprozess 

und erfordern daher ein gutes Verständnis des Übertragungszyklus der untersuchten Vektor-übertragenen 

Krankheit. Epidemiologische Modelle können mit Zeitreihendaten arbeiten und räumlich-zeitliche 

Risikokarten basierend auf der Basisreproduktionszahl R0 erstellen. In der Praxis haben sowohl ökologische 

Nischenmodelle als auch epidemiologische Modelle ihre jeweiligen Vor- und Nachteile. In dieser Arbeit 

trage ich zur Verbesserung beider Ansätze bei, indem ich einige ihrer Schwächen analysiere und 

Vorschläge für neue Standards mache. 

Bei ökologischen Nischenmodellen hängen die korrelativen Modelle stark von der Qualität der 

Vorkommensdaten ab. In dieser Arbeit untersuche ich, wie räumliche Fehler durch das Ersetzen 

unbekannter Vorkommensdaten durch den geografischen Schwerpunkt der jeweiligen administrativen 

Raumeinheit die Modellleistung im Kontext mit variierender Korngröße von Umgebungsdaten 

beeinflussen. Ich quantifiziere die Abnahme der Modellleistung, die durch die Verwendung von 

geografischen Schwerpunkten bzw. durch unterschiedliche Korngrößen verursacht wird. Infolgedessen 

schlage ich vor, besondere Vorsichtsmaßnahmen zu treffen, wenn geografische Schwerpunkte als Ersatz 

verwendet werden. Wenn möglich, sollten Lageparameter (räumlicher Mittelwert, Median) bevorzugt 

werden. 

Für epidemiologische Modelle überprüfe ich die gängigen Methoden zur Erstellung von Risikokarten und 

illustriere sie anhand eines konkreten Beispiels. Ich zeige, dass die Verwendung verschiedener zeitlicher 

Aggregationsmethoden die Vergleichbarkeit und den quantitativen Informationsgehalt der resultierenden 

Karten beeinflusst. Ich zeige weiterhin, dass verschiedene Visualisierungsmethoden zwei grundlegend 

unterschiedliche Karten sehr ähnlich erscheinen lassen können und umgekehrt. Infolgedessen 

unterstreiche ich die Bedeutung der Verwendung geeigneter zeitlicher Aggregations- und 

Visualisierungsmethoden und identifiziere bewährte Verfahren. Ich empfehle, sowohl die Intensität als 
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auch die Dauer des Risikos zu zeigen und wenn möglich kleine Zeitschritte zu verwenden, um die räumlich-

zeitliche Dynamik zu zeigen. 

Auf dem Weg zu neuen Standards für bewährte Verfahren bei der Risikokartierung Vektor-übertragener 

Krankheiten vergleiche ich direkt ökologische Nischenmodelle und epidemiologische Modelle am Beispiel 

des Usutu-Virus. Die Ergebnisse des parallelen Modellierungsansatzes zeigen, dass die Verwendung eines 

einzigen Modells zur Bewertung des Risikos von Vektor-übertragener Krankheiten zu unvollständigen 

Schlussfolgerungen führen kann. Für die zukünftige Forschung ist es entscheidend, dies zu realisieren und 

verschiedene Modellierungsansätze für die Risikobewertung von kaum untersuchten neu auftretenden 

Krankheitserregern wie dem Usutu-Virus anzuwenden. 

 

 

 

 

 

 

 

 

 

 



5 
 

Introduction 

1 Motivation 

Vector-borne diseases are infectious diseases that are typically transmitted by arthropods via blood meals 

on different hosts (Jamison et al., 2015). Humans can be both, source and sink, but also other organisms 

can serve as sources. In face of global change, especially climate change and intercontinental 

transportation, vector-borne diseases have been emerging increasingly during the last few decades –  for 

example the recent Zika epidemic in Latin America (Wikan & Smith, 2016; Zhang et al., 2017) or the 

emergence of West Nile virus in Europe (Rizzoli et al., 2015; Ziegler et al., 2015). Preferably, preventive 

measures should be taken before an epidemic – or even pandemic – is forming, as seen during the 

currently ongoing COVID-19 pandemic. To enable this, maps showing potential outbreak risk of the 

investigated vector-borne disease are a crucial tool. 

Risk maps for vector-borne diseases are usually, if not always, based on modelling approaches. There are 

mainly two groups of modelling approaches commonly applied for generating risk maps, namely 

ecological/environmental niche models and process-based epidemiological models (Tjaden et al., 2018). 

Evidently, these two modelling approaches are established in different scientific communities (ecology vs. 

epidemiology) (Escobar, 2020; Escobar & Craft, 2016). Nevertheless, these approaches are not absolutely 

different in terms of the mechanisms that are either mimicked or assessed in their spatial results. In the 

past, theoretical ecologists like Alfred Lotka and Robert May greatly influenced the development of 

modern epidemiological models, proving the value of interdisciplinary thinking. Despite this, these two 

kinds of model are almost always applied separately and their outcome is rarely compared. This lack of 

interdisciplinarity is calling for attention. Generally, the generation and visualization of risk maps is 

dependent on algorithms, data, spatial scale and other factors. Different approaches will necessarily yield 

deviating products. One product may partially contradict another one, as it is unlikely that they will match. 

Intuitively, the difference between those two modelling approaches needs to be investigated and, if 

possible, quantified.  

In this thesis, I approach common methodological challenges in both ecological niche models and 

epidemiological models that have remained largely ignored until now. I aim to deliver the basis for the 

development of useful future standards. Finally, I actively contribute to improving interdisciplinarity by 

performing one of the very first direct comparisons between the kinds of models typically used for the 

creation of risk maps. 
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2 Structure of this thesis 

In chapter 3 of this thesis, I first introduce the main challenges regarding spatio-temporal risk assessment 

of epidemics or even pandemics of infectious diseases. To explain the challenges in a gradual manner, I 

briefly talk about a series of commonly used and important terms in epidemiology. This section gives an 

overall impression of how the different groups of infectious diseases are defined and classified, and sheds 

light on the basic elements included in and general patterns of vector-borne disease transmission cycle. 

After the introduction of epidemiological terms, I refer to factors that affect vector or host population, 

distribution, or transmission between vectors and hosts, etc., which further affect the potential outbreak 

risk of vector-borne diseases. 

In terms of increasing outbreak risk of investigated vector-borne diseases, some of the essential questions 

that need to be answered are 1) where a risk for an outbreak exists and 2) when the risk is high. This leads 

to the main topic of this thesis – how do we answer these where and when questions? 

In the following chapters, I introduce two modelling approaches that are often used to answer these 

questions: ecological niche modelling (chapter 4) and epidemiological modelling (chapter 5). I explain the 

theoretical basis as well as the applications of these two fundamentally different modelling approaches, 

using either a conceptual or a simplified model as an example. In these chapters, I aim to explain the two 

modelling approaches in a down-to-earth manner, with the intention of letting this thesis serve as an easy 

guide for new modelers as well. 

Thereafter, I compare ecological niche models and epidemiological models, and illustrate the necessity 

and importance of practicing integrated modelling approach (chapter 6). This comparison of those two 

modelling approaches is the first step towards an interdisciplinary view. In chapter 7, I link the current 

understanding of those two modelling approaches and future challenges with my three manuscripts.  

Challenges for future studies aiming to improve model performance of both modelling disciplines and 

achieving an interdisciplinary view, are included in Chapter 8. 
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3 General introduction 

Throughout human history, several epidemics and even pandemics of infectious diseases took place 

related with large numbers of deaths (Johnson & Mueller, 2002; Taubenberger & Morens, 2006; WHO, 

last accessed 26, Nov, 2020c). Even in the current era, infectious diseases are causing millions of deaths 

on a yearly basis (WHO, last accessed 26, Nov, 2020e). In 2020, the COVID-19 pandemic resulted in more 

than one million fatalities globally until the end of September (ECDC, 2020). The harsh fact is that at the 

time of writing this thesis, this number is still growing, since the COVID-19 pandemic has not been globally 

contained yet (last accessed on 30th of September) (CSSE, 2020; ECDC, 2020).  

To prevent disease outbreaks from emerging, a series of prevention measures can be undertaken, such as 

improving general precautions (e.g. suggest people not to visit epidemic zones), vaccinations, vector 

control (for vector-borne diseases such as dengue, malaria, etc.), etc. (CDC, last accessed 26, Nov, 2020d; 

WHO, last accessed 26, Nov, 2020f).  The next step is to control and retain an epidemic, which is way more 

challenging and in most cases also less efficient, as seen during the COVID-19 pandemics, e.g. (Onder et 

al., 2020; Remuzzi & Remuzzi, 2020; Wu et al., 2020). It is not difficult to see that, whenever possible, 

preventions should be first in place before mitigation. However, all prevention measures are dependent 

on the availability of information: When and where caution needs to be taken? In order to answer these 

questions, modelling approaches are often applied. However, prior to the modelling approaches, it is 

essential to know the basic background knowledge necessary to understand the underlying mechanisms 

of disease transmission and the models used to answer these questions. Consequently, Chapter 3 

introduces this information as following.  

 

3.1 Infectious diseases  

The term “infectious disease” is defined as a disease due to a pathogenic agent (Porta, 2014), which can 

be transmitted directly or indirectly from one individual to another (Krickeberg et al., 2012; WHO, last 

accessed 26, Nov, 2020b). The group of pathogenic agents includes viruses, bacteria, fungi, parasites, and 

prions (Porta, 2014). For instance, tuberculosis is an infectious disease caused by Mycobacterium 

tuberculosis bacteria (WHO, last accessed 26, Nov, 2020d); flu (influenza) is caused by viruses (CDC, last 

accessed 26, Nov, 2020e); Malaria is caused by parasites from the genus of Plasmodium (CDC, last accessed 

26, Nov, 2020b); the ringworm disease is caused by a fungus (CDC, last accessed 26, Nov, 2020c); the mad 

cow (bovine spongiform encephalopathy) disease is caused by a prion (CDC, last accessed 26, Nov, 2020a). 

The direct transmission of pathogens is possible for some diseases where contacts between an infected 

individual to an uninfected one are resulting in transmission. This includes physical touching, kissing, biting, 

sexual intercourse, etc. (Ahrens & Pigeot, 2007). The direct projection of droplet spray onto the mucous 

membranes (of the eyes, nose, or mouth) also belongs to the category of direct transmission (Ahrens & 

Pigeot, 2007; Porta, 2014).  
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Indirect transmission does not include any forms of direct physical contact or close interaction; it is the 

transmission via a “third party”. The third party can be stationary: e.g. contaminated inanimate material 

or objects (e.g. toys, surgical instruments); water, food, milk; biological products such as blood, serum, 

tissues, etc.; while it can also be non-stationary: e.g. microbial aerosols (airborne), or vectors (vector-

borne) (Ahrens & Pigeot, 2007).   

A noticeable confusion in terms of infectious disease is about cancers. For instance, in a rare case, four 

patients got cancer after they received organ transplants from the same donor, who had early stage cancer 

(Matser et al., 2018). In this case, it is not so difficult to understand that this cancer does not constitute an 

infectious disease, since there was no pathogen involved. However, there are also some kinds of cancer 

that are clearly associated with certain pathogens. For instance, cervical, anal, and penile cancers are 

associated with human papillomavirus (HPV) infection, liver cancer is associated with Hepatitis B virus or 

Hepatitis C virus infections (Mayo Clinic, last accessed 26, Nov, 2020). These viruses can be transmitted 

from one individual to another. There are even vaccines against HPV infection, with a clear aim of reducing 

the risk of cervical cancer (WHO, last accessed 26, Nov, 2020a). Nevertheless, cancers are not classified as 

infectious diseases. Another controversial example is Alzheimer’s disease (Itzhaki et al., 2020). There were 

four Alzheimer cases reported to be associated with the injection of a growth hormone that was 

contaminated with a prion through preparations (in the past the growth hormone was derived from 

human cadavers) (Abbott, 2016). However, Alzheimer is typically not considered as an infectious disease, 

either. 

In the field of epidemiology, there are some terms that are closely related to infectious disease, such as 

communicable disease or contagious disease. It should be noticed that an infectious disease is 

communicable, but not necessarily contagious (Ahrens & Pigeot, 2007), e.g. vector-borne diseases belong 

to the class of infectious disease, but they are not contagious. The definition of infectious disease from 

(WHO, last accessed 26, Nov, 2020b) is in accordance to communicable disease (Ahrens & Pigeot, 2007): 

a disease whose causal agent can be transmitted from successive hosts to healthy subjects, from one 

individual to another (WHO, last accessed 26, Nov, 2020b). In this thesis, I apply the definition of infectious 

disease from the WHO:  

“Infectious diseases can be transmitted from one to another, directly or indirectly.”  

 

3.2 Vector-borne diseases  

Vector-Borne Diseases (VBDs) account for more than 17% of all known infectious diseases (WHO, last 

accessed 26, Nov, 2020e). Every year, VBDs cause more than 700 000 human deaths globally, especially in 

tropical and sub-tropical regions (WHO, last accessed 26, Nov, 2020e). As its name suggests, VBDs are 

diseases of which the causative agents are transmitted between vertebrate hosts by vectors (Braks et al., 

2011).   
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The vectors are living organisms that typically feed on blood. These vectors take blood meals from 

mammals including humans (Porta, 2014). The vectors include not only insects such as mosquitoes, 

sandflies, triatomine bugs, tsetse flies and black flies, but also other types of small animals such as ticks 

and water snails (WHO, last accessed 26, Nov, 2020e).  While taking blood meals from infected individuals, 

the vectors can ingest the respective pathogen. The pathogen will be replicated within the vectors for a 

while (this time period is called extrinsic incubation period, EIP). Once this infected vector bites another 

individual, the pathogen will be further transmitted.  

The individuals being fed on by the vectors are referred to as the hosts. The hosts can be humans, horses, 

bats, birds, etc. Some VBDs only affect a certain host species, while other VBDs affect a huge range of host 

species. When an infectious disease affects both humans and other vertebrate hosts, it is also called a 

zoonosis; as for a VBD, it enters the category of vector-borne and zoonotic disease (Porta, 2014) (Figure 

3.1). There are some VBDs that only infected other vertebrate hosts in the past, while unexpectedly started 

infecting humans as well (e.g. Usutu virus and West Nile virus (Ashraf et al., 2015; Mackenzie et al., 2004; 

Weissenböck et al., 2002; Williams et al., 1964)). There are also VBDs that only caused asymptomatic 

infections among humans in the past, but evolved into life threating diseases, e.g. Zika (Ferguson et al., 

2016). This means that the categorization of a given VBD can change over time. As the pathogen evolve, 

the host range can increase, the symptoms may differ, and the direction of pathogen evolution is 

unpredictable.  
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a) A conceptual vein figure on some commonly used terms on infectious disease. 

 

 

b) A flowchart showing the classification of infectious disease. 

Figure 3.1 Commonly used terms in epidemiology and the classifications 
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3.3 Vector-borne diseases in face of global change 

Global change affects emergence and re-emergence of infectious diseases including VBDs’, directly or 

indirectly (Mackey et al., 2014; Rizzoli et al., 2019). Considering the recent range expansions of some avian 

pathogens, climate change, global transportation such as human movements and commerce may have 

played an important role (Fuller et al., 2012; Smith & Guégan, 2010). As with rapid human societal 

development and globalization, increasing changes in demographics, populations, and the environment 

also add to the challenges for VBDs control (Mackey et al., 2014). For instance, climate change affects 

environmental suitability for vectors such as mosquitoes (Fischer et al., 2013), it also affects migrating 

routes of migratory birds (Fuller et al., 2012; Knudsen et al., 2011). 

With the fast growth of global transportation, insect vectors and pathogens are spread to places they could 

not reach in the past (Cabral et al., 2019; Pettersson et al., 2016). With the aid of global air travel and 

seaborne trade, they can overcome geographic barriers and travel great distances in short periods of time 

(Tatem et al., 2006). For instance, Asian tiger mosquito (Aedes albopictus) is emerging in Europe as an 

invasive species after being introduced to the continent through the trade of used tires (Medlock et al., 

2012; Thomas et al., 2014). The pathogens carried by the respective vectors can easily cross natural 

barriers such as oceans and high mountains.  

Invasive species also have the potential of facilitating the emerging of VBDs (Crowl et al., 2008). Invasive 

species are “species of animals, plants, fungi, or microorganisms translocated into environments outside 

their natural range”, where they compete and interact with native species (Chinchio et al., 2020). When 

pathogens are introduced into new geographic locations or host species, this is also called “pathogen 

pollution” (Daszak, 2000). Due to global change, especially increasing global transportation, the frequency 

and magnitude of the invasions by invasive species and infectious diseases has increased (Strickland et al., 

2015). Invasive species affect ecological dynamics at multiple spatial scales via interactions with native 

species (Crowl et al., 2008; Gonzalez-Moreno et al., 2015; Mollot et al., 2017). This is not limited to the 

well-known examples of highly invasive mosquito vectors (e.g., Ae. albopictus, Ae. japonicus). For VBDs, 

invasive species also affect host-parasite interactions (Westby et al., 2019).  

Migratory birds pose another threat on introduction of novel pathogens. Seasonal bird migration affects 

interactions between hosts and pathogens. Migratory birds work as airplanes for pathogens, especially 

when they stop en route along rivers or at ponds and mix with local birds e.g. (Wu & Perrings, 2017). 

Migratory birds can transport vectors and pathogens across vast distances (Cohen et al., 2015), and 

possibly transmit pathogens to local bird species or mosquitoes. In some cases, birds play a critical role in 

the dispersal of certain vector-borne viruses (Brown et al., 2007), e.g. the transmission of West Nile virus 

in the US (Moon et al., 2019). Ticks can establish in any migratory bird stopover and breeding sites 

(Heffernan et al., 2014). Some virus transmission is directly associated with the magnitude and direction 

of daily bird movement in a local area (Brown et al., 2007).  

The potential importance of climate change during the non-breeding season lies in constraining the 

response of migratory species to temperature changes at both the trailing and leading edges of their 
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breeding distributions (Rushing et al., 2020). Climate change may affect VBDs from several aspects. For 

instance, heat waves and sea level change can affect VBDs directly (Watson et al., 2005). Climate change 

may affect the incidence of VBDs through its effect on the geographic distribution and population density 

of vectors and hosts, as well as the prevalence of infection by pathogens and the pathogen load in 

individual hosts and vectors (Mills et al., 2010). Many bird species have extended their geographic range 

northward and adjusted their migratory routes due to climate change (Patterson & Guerin, 2013). 

Especially for VBDs, climate change may significantly impact the distribution of the arthropods vectors 

such as mosquitoes (Watson et al., 2005). Furthermore, climate change will likely affect vector, pathogen, 

and reservoir ecology, which could contribute to changes in the range limits and the intensity of disease 

transmission (Patterson & Guerin, 2013), and redistribute some VBDs to areas not previously affected 

(Watson et al., 2005). 

 

3.4 Modelling the potential outbreak risks of vector-borne diseases  

In history, there have been many catastrophic outbreaks of infectious diseases such as the Spanish flu, 

Malaria, etc. (Johnson & Mueller, 2002; Taubenberger & Morens, 2006; WHO, last accessed 26, Nov, 

2020c). Many of these diseases were vector-borne, and millions of people died from them over the 

centuries. However, this kind of disaster was not understood, nor predictable. Through the development 

of epidemiological theories, computer science, and new technologies such as remote sensing during the 

last few decades, it has become possible to simulate the spatial and temporal outbreak risk of some 

infectious diseases. Similar to a weather forecast, this risk mapping can provide information on when and 

where the outbreak risk is high, e.g. (Zinszer et al., 2012). Note that the term risk here means the potential 

of an outbreak in space or time, not necessarily a probability or likelihood; it can be quantified in certain 

cases, but not always.  

To answer the question of when and where the outbreak risks of infectious diseases calls for proactive 

management and precaution, modelling approaches are needed to assess upcoming developments. The 

complexity of the transmission processes of VBDs requires the application of modelling approaches at 

different spatial and temporal scales (Tjaden et al., 2018), such as ecological niche models and process-

based epidemiological models. 
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4 Ecological niche models 

Ecological/environmental niche modelling (ENMs) approaches are widely used in the field of conservation 

ecology, disturbance ecology, biogeography, etc. (Evans et al., 2010; Mainali et al., 2015; Peterson, 2014; 

Regos et al., 2018; Villero et al., 2017). They are also often applied to project potential spatial distribution 

of investigated species and diseases, especially when the spatial aspect of risk is emphasized (Tjaden et 

al., 2018). ENMs are correlative models built with occurrence locations of investigated species (disease 

transmission can be treated as a species) and respective explanatory ecological/environmental variables. 

Those correlative models can be projected to future scenarios or to hind-cast past distributions of the 

investigated species. Not surprisingly, ENMs are also often refereed as spatial distribution models, though 

these two terms are not quite synonymous to each other (Peterson & Soberón, 2012). Peterson and 

Soberón (2012) argued that any use beyond the actual distribution of investigated species would reach 

the realm of niche modelling, e.g. projecting future distribution of a species, or potential distribution under 

climate change. Consequently, in this thesis, I use the term “ecological niche modelling”.  

 

4.1 General workflow 

ENMs typically require geographical occurrence locations of the investigated species. These locations are 

then related to several explanatory variables (spatial raster data describing the environmental and/or 

socio-economic conditions in the study area), forming a correlative model of the species’ ecological niche. 

This model can be projected onto regions where the environmental suitability of the species is unknown, 

resulting in a map showing probability of presence or environmental suitability.  

 

4.2 Occurrence/presence locations 

Occurrence locations of the investigated species are spatial (geographical) locations where this species 

were recorded. They are also referred as presence locations, especially when mentioned together with the 

counterpart state: absence. According to how these occurrence locations are collected, they can be 

grouped into three categories: presence-only, presence-absence, and occupancy detection (Gelfand & 

Shirota, 2019; Wang & Stone, 2019). For presence-only sampling, the occurrence locations are arbitrarily 

recorded, e.g. citizen science based occurrence locations are from presence-only sampling method. When 

the sampling was done through a systematic manner, e.g. dividing the study area into several sampling 

units, and noting down where the target species was found and where not, then it is presence-absence 

sampling (Gelfand & Shirota, 2019). Of course, the recorded “presence” are generally more trustworthy 

than the recorded “absence”, as the latter consist of “true absence” and “false absence”. There are also 

“false presence”, but this is not as common. False presence can happen when the species is misidentified 

(Miller et al., 2011), e.g. misidentify dog foot prints as fox’s during snow-track surveys, or misidentify 

badgers as raccoons, etc. The difference between presence-only sampling and presence-absence sampling 

can sometimes be ambiguous, while the most distinct difference is that by presence-absence sampling, 
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the locations are often planned before the sampling takes place (Gelfand & Shirota, 2019). For instance, a 

dataset with presence-only records can be yielded by discarding the absence records from a presence-

absence dataset. By discarding the absence records, the type of data has changed, but the sampling 

method not.  

If the sampling procedure is not only following a spatially systematic design, but also including several 

rounds of revisiting, this sampling method is generally called occupancy detection (MacKenzie et al., 2017; 

Rota et al., 2009; Wang & Stone, 2019). This kind of sampling is rather rare, as it is more time-consuming 

and needs much more effort compared to the former two sampling methods, especially revisiting the 

sampling plots. Occupancy detections are often applied to estimate relative species abundancy, 

population dynamics, individual animal territory, etc. (Hines et al., 2010; MacKenzie et al., 2003; Royle et 

al., 2005). 

Among these three sampling methods, occupancy detection sampling requires the most effort, followed 

by presence-absence sampling, and presence-only sampling requires the least effort. It is not difficult to 

see that the occupancy detection method achieves the richest information content, and presence-only 

sampling the poorest. Due to the huge effort required by occupancy detection and presence-absence 

sampling, most of cases, only occurrence records collected by presence-only sampling are available. 

However, a typical problem with presence-only sampling is that the occurrence records are clustered 

(Kramer-Schadt et al., 2013; Varela et al., 2014). The sampling effort can be dramatically different across 

the investigated area (Fourcade et al., 2014; Stolar & Nielsen, 2015), and very often this sampling effort 

information is not available (Collins et al., 2017; Jones et al., 2010; Park & Davis, 2017).  

 

4.3 Explanatory variables  

Explanatory variables are the variables which are associated with and supposed to contribute to the 

captured distributional pattern of the target species. These variables form a multi-dimensional 

environmental space, and the ENMs construct the niche of the target species by the respective occurrence 

locations (Peterson & Soberón, 2012). consequently, for explanatory variables, it needs to be explained or 

at least explainable that why they are chosen. These variables are supposed to define the 

niche/distribution of the target species. For instance, while modeling the potential distribution of 

mosquitoes, temperature relevant variables would be considered, as temperature affects mosquito 

survival.  

While selecting the explanatory variables, however, it needs to be borne in mind that correlation does not 

imply causation, i.e. a factor being correlated with the observed pattern does not mean this factor really 

causes this pattern. If a certain variable improves the ENM performance, but this variable does not have 

an explainable effect on the investigated species, following Occam's razor, this variable should not be 

included. To select the variable candidates, some primary questions should be asked: (1) Can this variable 

define the niche of the investigated species (binary question, either yes or no)? (2) How does it contribute 

to defining the niche (should be explainable)? 
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Another potentially critical point is the use of proxy variable in ENMs. For instance, some species only 

occur above or below a certain elevation, suggesting the inclusion of a digital elevation model as an 

explanatory variable in an ENM for such species. However, rather than elevation itself, the true limiting 

factor is often temperature, UV exposure, or water availability, etc. (Reyes et al., 2020; Watermann et al., 

2020). As elevation is highly correlated with these factors, it can serve as a proxy for them. For a relative 

small study area, using a proxy instead of the direct factor may not change the ENM output, as the 

correlation between these two factors is likely to be consistent across a small area. However, when the 

correlation is inconsistent across the study area, using the proxy will lead to wrong conclusions.  

 

4.4 How do ecological niche models use spatial information? 

When we look at the input and output of ENMs, we may have the impression that ENMs work with spatial 

information directly. This is not the case. The occurrence locations are recorded as geographic coordinates. 

These coordinates are then related to the explanatory variables, and ENMs work with those explanatory 

variables values. The coordinates are only used to extract the respective variable values, navigating the 

ENMs where to perform the value extractions.  

In the following, I show the primary idea of a correlative ENM with a series of simplified conceptual figures. 

There are many different types of ENMs. To understand what tasks ENMs handle, and how they process 

data, I apply this simple example to show the generalizations among ENMs.  
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Figure 4.1. An example of presence-only occurrence records (presence locations) in a rectangular study area. 

The crosses stand for presence locations, and the yellow color for locations where presence-absence state is 

unknown. 

For a given study area (which can be of any shape and any size), there are some known presence-

only occurrence locations of species A, while there are still places for which the presence-absence 

state is unknown (Figure 4.1). Assume that species A’s niche is defined by three known 

environmental variables. Now the task is to predict where inside the study area the environment is 

suitable for species A, and where it is not.  

To handle the question of where the environment is suitable and where it is not, we need a spatial 

reference system. A simple solution is to divide this whole area into equal sections and number 

them. These grid cells can be large, as in Figure 4.2 (a), sometimes with more than one occurrence 

records in a single unit; they can also be small, as in Figure 4.2 (b). 

In terms of numbering them, for Figure 4.2 (a), we can easily do that from left to right using simple 

numbers, as there are only 100 pieces in total. However, we still need to connect the occurrence 

locations and the grid cells. To achieve this, it makes sense to locate the occurrence records using 

the same coordinate system. The commonly used longitude-latitude geographic information 

system serves this purpose very well. The occurrence records collected from the field can be noted 

down using longitude-latitude coordinates, or any other kind of geographic information system 

coordinates (for instance, Universal Transverse Mercator coordinate system), as long as these 

locations can be located in the respective system.  
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 (a) Divide the study area into 100 pieces (b) Divide the study area into 400 pieces 

Figure 4.2. Examples on different grid cells. (a) big grid cell and (b) small grid cell. The crosses stand for presence 

locations, and the yellow color for locations where presence-absence state is unknown. 

Then next question is: Where to store the explanatory variable values? Ideally, these values should 

be related to the occurrence records easily. To achieve this, these explanatory values are normally 

stored in rasterized grid cells (Figure 4.3). By using the same geographical coordinate system, these 

grid cells and the occurrence records are easily matched. Consequently, the occurrence records and 

the explanatory variable values from the grid cells are matched as well. 
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(a) Explanatory variable 1 (b) Explanatory variable 2 

 

 

 

 

 

 

(c) Explanatory variable 3  

 

Figure 4.3. A simplified conceptual figure of typical input date for ecological niche modelling, with presence-only 

occurrence records and three explanatory variables. From the spatial pattern of occurrence records and respective 

explanatory variables values, we can already guess intuitively where the environment is generally suitable and 

where it is not. When using ENMs, we can form a formula describing the relationship of occurrence and respective 

explanatory variables’ values, and project this formula onto places where the presence-absence status is 

unknown. 
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4.5 More than a black box: How do ecological niche models work? 

To take a closer look at how ENMs work and why sampling bias may affect ENM output, we can 

start with the probability distribution of getting a presence record. Assume that 1) when we visit a 

big, far away forest, we have 0.6 chance seeing at least one roe deer, qualifying as a presence 

record; 2) when we visit a small, nearby forest, we have 0.2 chance getting a presence record of 

roe deer. The probability of getting a presence record for either scenario follows a binominal 

distribution. If we visit each forest 100 times, the expected presence records are 60 and 20, 

respectively. However, if we visit the big far away forest 10 times, the small near-by forest 100 

times, the expected presence records are 6 and 20, respectively.  

To generalize the possible scenarios: Assume that we divide the big forest into 𝑛 sections, in a unit 

of time, the probability of seeing a roe deer in each section is 𝑝, and in 𝑥 sections we have observed 

the roe deer. The expectation of seeing roe deer in a unit of time is 𝜆. The observations (the total 

number is 𝑌) of roe deer follow a binominal distribution and can be described with a simple 

equation: 

𝑃(𝑌=𝑥) = 𝐶𝑛
𝑥𝑝𝑥(1 − 𝑝)(𝑛−𝑥)  , x=1,2, … n. eqn. 2-1 ) 

 

𝜆 =  𝑛𝑝 

 

eqn. 2-2 ) 

 

Replace 𝑝 with 
𝜆

𝑛
 , eqn. 2-1 ) can be written as: 

𝐶𝑛
𝑥𝑝𝑥(1 − 𝑝)(𝑛−𝑥) = 

(𝑛 − 𝑥)!

𝑥!
∗  (

𝜆

𝑛
)
𝑥

∗ (1 − 
𝜆

𝑛
)

(𝑛−𝑥)

 

= 
𝜆𝑥

𝑥!
∗  
(𝑛 − 𝑥)!

𝑛𝑥
∗ (1 − 

𝜆

𝑛
)

(𝑛−𝑥)

 

 

eqn. 2-3 ) 

 

With increasing 𝑛, 𝑝 is decreasing; when 𝑛 is very large, parts of eqn. 2-3 ) can be simplified: 

lim
𝑛→∞

(𝑛 − 𝑥)!

𝑛𝑥
= 1 

eqn. 2-4 ) 

 

lim
𝑛→∞

(1 − 
𝜆

𝑛
)

(𝑛−𝑥)

= lim
𝑛→∞

{
 

 
(1 +

1

−
𝑛
𝜆

)

−
𝑛
𝜆

}
 

 
−𝜆

= 𝑒−𝜆 

 

eqn. 2-5 ) 
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Then we get the Poisson distribution: 

lim
𝑛→∞

𝐶𝑛
𝑥𝑝𝑥(1 − 𝑝)(𝑛−𝑥) =

𝜆𝑥

𝑥!
𝑒−𝜆 

eqn. 2-6 ) 

 

Now the only parameters needed are 𝜆 and 𝑥.  

For a random number of occurrence locations/small sections (𝑛 denotes all sections within the 

study area, 𝑥 denotes total number of observations) in the study area (𝑆), intensity (averaged 

expectation) 𝜆 ̅ = 𝑛𝑝𝑛 . Note that the intensity itself is also a probability, it has two dimensions. In 

this example, we ignore the temporal dimension by only looking at one unit of time. For a more 

detailed two-dimensional version see (Hefley & Hooten, 2016). Then we get: 

[𝑥|𝜆(𝑛)] =  
𝜆 ̅𝑥

𝑥!
𝑒−𝜆 ̅ 

eqn. 2-7 ) 

 

𝜆 ̅ = ∫𝜆(𝑛)𝑑𝑛

 

𝑆

 
eqn. 2-8 ) 

 

For observed occurrence records locations 𝑌, each location is denoted with 𝑦𝑖, 𝑖 = 1,…𝑥. 

[𝑌|𝜆(𝑛),𝑥] =  ∏
𝜆(𝑦𝑖)

𝜆 ̅

𝑥

𝑖=1

= ∏
𝜆(𝑦𝑖)

∫ 𝜆(𝑛)𝑑𝑛
 

𝑆

𝑥

𝑖=1

 
 

eqn. 2-9 ) 

 

Combine the total number of occurrence locations (𝑥) and the observed occurrence locations (𝑦𝑖): 

[𝑌|𝜆(𝑛)] =
𝜆 ̅𝑥

𝑥!
𝑒−𝜆 ̅ ∗ ∏

𝜆(𝑦𝑖)

∫ 𝜆(𝑛)𝑑𝑛
 

𝑆

𝑥

𝑖=1

 
 

eqn. 2-10 ) 

 

Simplify the calculation (to replace the ∏  with ∑  ) via log transformation: 

𝑙(𝜆; 𝑌) =  ∑𝑙𝑜𝑔𝜆(𝑦𝑖)

𝑥

𝑖=1

− ∫𝜆(𝑛)𝑑𝑛

 

𝑆

− log (𝑥!) 
 

eqn. 2-11 ) 
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If a linear combination of covariates is applied, the intensity function can be written as (Dorazio, 

2014; Hefley et al., 2017; Renner et al., 2015): 

 

log(𝜆(𝑦𝑖)) =  𝛽0 + 𝒗(𝑦𝑖)
′𝜷 eqn. 2-12 ) 

 

Or as suggested by Warton et al. (Warton & Shepherd, 2010): 

 

log(𝜆(𝑦𝑖)) =  𝛽0 + ∑𝑣𝑖𝑗𝛽𝑗

𝑘

𝑗=1

 

 

 

 

 

eqn. 2-13 ) 

Here, 𝛽0 is the intercept, 𝒗(𝑦𝑖)
  is a 𝑘 × 1 vector (a total number of 𝑘 explanatory variables) that 

contains covariates at any location 𝑦𝑖; and 𝜷 (also a 𝑘 × 1 vector) is the respective regression 

coefficients (𝜷 = 𝛽1, … , 𝛽𝑘) (Hefley et al., 2017; Warton & Shepherd, 2010). 𝑣𝑖𝑗  denote variables 

values, 𝑌 is a subset of n, consists of a total number of 𝑥 occurrence records. Thereafter, pseudo-

absence locations can be introduced, and a variety of methods can be applied to estimate those 

regression coefficients 𝜷 (Pearce & Boyce, 2006). A correlative model can be achieved and 

projected onto regions where the environmental suitability is unknown (Figure 4.4). If 𝒗(𝑦𝑖)
 is with 

errors, the estimation of 𝜷 will be consequently affected. It can be thus predicted, using occurrence 

locations with positional errors may lead to a decrease in model performance of ENMs (Manuscript 

1). 

 

 

 

 

 

 

 

 

Figure 4.4. Environmental suitability of species A as the output from Ecological niche models.  
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4.6 Products from ecological niche models – spatial risk maps  

For VBDs, ENMs can be adopted to model the spatial distribution of the respective vectors or hosts, 

especially across large spatial extent, e.g. (Brownstein et al., 2003; Johnson et al., 2019). It has been 

increasingly recommended to apply ENMs in epidemiology, since ENMs are helpful in 

understanding the distribution and biogeography of diseases (Escobar, 2020; Johnson et al., 2019), 

and the risk maps generated from ENMs can achieve fine spatial resolution without the loss of 

information (Peterson, 2006). More importantly, future projections of the effects of climate change 

on the investigated VBD’s distribution can be achieved via ENMs as well (Carvalho et al., 2017; 

Fischer et al., 2013; Tjaden et al., 2018).  
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5 Epidemiological models 

Process-based epidemiological models are also referred to as mathematical models, process-based 

models, mechanistic models and compartment models (Delamater et al., 2019; Heffernan et al., 

2005). Depending on which aspect is emphasized, they are referred to accordingly. For instance, 

while being compared with ENMs, the term of “epidemiological models” will be preferred. For 

simplicity, in this thesis I stick to the term of “epidemiological models” (from here on EMs). EMs 

typically look into processes of infectious disease transmission. For VBDs, different health states 

and health state changes of both vectors and hosts are described with a series of parameters and 

variables, such as EIP, transmission rate, etc. Those EMs are typically applied with fine temporal 

resolution meteorological data, e.g. daily mean temperatures (Manuscript 2). Consequently, those 

models are good at capturing small temporal scale extreme weather event.  

 

5.1 General workflow 

As mentioned in earlier sections, factors such as climate change and globalization also bring in more 

challenges in disease control. Consequently, EMs are increasingly developed and widely applied 

nowadays. EMs include all the models that look into transmission mechanics of infectious diseases, 

while sometimes ENMs are also counted. In general, however, EMs refer to the models that are 

built with mathematical equations, which describe different health states of vectors and hosts. 

Depending on which property of EMs is emphasized, they are also referred to as compartmental 

models, mathematical models, compartmental epidemic models, mechanic models, process-based 

models or mechanistic models.  

 

5.2 Basic reproduction number: R0 

The basic reproduction number R0 is an important threshold quantity parameter, which has even 

been called the “most important quantity in disease epidemiology” (Diekmann et al., 2010). 

Originally, R0 was defined as the average number of secondary cases caused by an infected 

individual during its lifetime in a completely susceptible population (often referred as a naïve 

population) (Diekmann et al., 1990; Heffernan et al., 2005; Rubel et al., 2008). When R0 > 1, an 

outbreak of the investigated VBD can take place, otherwise, the transmission will die out on its own 

(Delamater et al., 2019; Diekmann et al., 1990; Hethcote, 2000; Liu et al., 2018).  

R0 has been treated as the spreading speed of certain disease (Ridenhour et al., 2014), and been 

consequently referred as “basic reproduction rate” (Dietz, 1993), as in this case R0 denotes the 

expected number of cases per generation. For an infectious disease, R0 determines the herd 

immunity threshold that is required to prevent it from further spreading (Dietz, 1993; Guerra et al., 

2017), as seen earlier in 2020 for dealing with the COVID-19 pandemic, though the general message 
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was then misinterpreted by media (Anderson et al., 2020; Medley, 2020). The concept of the “basic 

reproduction” can be dated back to demography, where the “net reproduction rate” plays an 

important role (Dietz, 1993). However, depending on the method applied while constructing the 

EM, the interpretation of R0 also differs.  

R0 can be measured through disease surveillance systems (Marques et al., 1994) or estimated via 

EMs (Delamater et al., 2019; Ridenhour et al., 2018; Siettos & Russo, 2013). For VBDs, the originally 

defined R0 classic is difficult to assess directly from surveillance systems due to the significant 

workload required to conduct both monitoring and surveillance and to determine the complexity 

of transmission patterns of VBDs (Delamater et al., 2019). Instead, estimates of R0 are often based 

on EMs that calculate measures which share the threshold property (if R0 > 1, the disease can 

spread). These measures are generally also called R0, although they may differ considerably from 

the original definition in several aspects (see below) (Dietz, 1993; Heffernan et al., 2005; Yang, 

2014). To construct EMs, there are mainly three methods available. They are all based on some kind 

of mathematical equations. Depending on which method is applied to calculate R0, the 

interpretations differ accordingly, as explained in the following sections. 

 

5.3 Survival function 

The survival function method describes, through mathematical functions, whether or not a new 

infection can survive. A survival function calculates the probability of secondary infections by 

considering relevant parameters such as infectivity and survival probability (Heffernan et al., 2005). 

This method sticks to the original definition of R0, i.e. R0 estimated with this method denotes the 

average number of secondary infections resulting from a single introduction in the infected 

individual’s lifetime. And of course, a transmission can be sustained if R0 > 1, otherwise not, which 

is in line with the original definition as well.  

For a VBD, the average number of contacts between the vectors and the hosts is 𝐶, the average 

infection rate through each contact is 𝐼, the infectious time period of the infected individual is 𝑡, 

then 

𝑅0 = ∫ 𝐶 × 𝐼
𝑡

0

 𝑑𝑡 eqn. 3-1 ) 

 

In eqn. 3-1), both 𝐶 and 𝐼  can be constant values or variables; when 𝐶 and 𝐼 are constant  values, 

this equation can be written as: 

 

𝑅0 =  𝐶𝐼𝑡  eqn. 3-2 ) 
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The components can be temperature or time-dependent, e.g. the infection rate can vary through 

time, the contact rate between vectors and hosts can be associated with temperature, etc. As we 

can see, the R0 estimated here is indeed the “expected secondary cases”. For a simple case like this, 

this method is very straightforward.  However, the complexity of this equation can increase very 

quickly, especially when the transmission cycle is complicated, e.g. (Holy et al., 2011; Johansson et 

al., 2012; Mordecai et al., 2017; Ng et al., 2017; Parham & Michael, 2010; Perkin et al., 2019). For 

example, the R0 equation from (Ng et al., 2017) is no longer as simple: 

 

𝑅0 = 𝑅0
𝐻𝑀𝑅0

𝑀𝐻 =  𝜑𝛼2𝛽𝐻𝑀𝛽𝑀𝐻𝐿𝑉𝛾 

 
eqn. 3-3 ) 

𝜑: Mosquito density per human 

𝛼 : Daily biting rate 

𝛽 : Transmissibility, HM from human to mosquitoes and MH vice versa 

𝐿: Average adult mosquito lifespan in days  

𝑉: Duration of the human infectious period 

𝛾 : Proportion of mosquitoes surviving the Extrinsic incubation period 

H: human 

M: mosquito 

 

Especially when these parameters vary through time or are dependent on temperature, the R0 

equation can be very complex. In this equation, only cross-transmission (from human to mosquito 

or the other way around) is considered. However, for many diseases, the transmission cycle also 

includes vertical transmission (from mother to offspring), adding another layer of complexity. It is 

not impossible but difficult to build an EM, based upon the survival function method, that includes 

both vertical and cross-transmissions. Consequently, other methods for constructing EMs have 

been developed that are easier to handle in practice.  

 

5.4 Next generation matrix 

The next generation matrix (NGM) method is anything but a straightforward approach. NGM-based 

EMs use a series of ordinary differential equations (ODEs) to describe different health states of 

vectors/hosts, or any kind of sub-populations (e.g. age group). In the NGM, only “states-at-

infection” are contributing to the calculation of R0. The basic reproduction number R0 is defined as 

the dominant eigenvalue of this NGM (Diekmann et al., 1990). 
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The R0 NGM calculated with the NGM method, not surprisingly, has a different interpretation from 

the ones calculated with the survival function method. This R0 is introduced as “the typical number 

of secondary cases”, i.e. each “generation” is R0 times as big as the preceding one (Diekmann et al., 

1990). Note that here the “generation” is not a natural generation of vectors or hosts, but for the 

“infections;” the new infections are classified as a “species” in this case. This R0 NGM is a geometric 

mean through “generations.” Since introduced, R0 NGM has soon become common practice 

concerning VBDs (Ridenhour et al., 2014).  

For a VBD, v denotes vectors and h hosts, n the transmission between them, e.g. 𝑛𝑣ℎ denotes the 

transmission from vectors to hosts. 

The next generation matrix can be written as: 

 

|
𝑛ℎℎ 𝑛ℎ𝑣
𝑛𝑣ℎ 𝑛𝑣𝑣

| 

 

Matrix 1) 

This 2×2 matrix has two eigenvalues: 

𝑅01 = 
1

2
 [(𝑛ℎℎ + 𝑛𝑣𝑣) − √(𝑛ℎℎ + 𝑛𝑣𝑣)

2 − 4(𝑛ℎℎ𝑛𝑣𝑣 − 𝑛ℎ𝑣𝑛𝑣ℎ)] 

 

eqn. 3-4 ) 

𝑅02 = 
1

2
 [(𝑛ℎℎ + 𝑛𝑣𝑣)  + √(𝑛ℎℎ + 𝑛𝑣𝑣)

2 − 4(𝑛ℎℎ𝑛𝑣𝑣 − 𝑛ℎ𝑣𝑛𝑣ℎ)] 

 

eqn. 3-5 ) 

R0 is defined as the largest eigenvalue, thus 𝑅0 = 𝑅02. 

 

𝑅0 = 
1

2
 [(𝑛ℎℎ + 𝑛𝑣𝑣)  + √(𝑛ℎℎ + 𝑛𝑣𝑣)

2 − 4(𝑛ℎℎ𝑛𝑣𝑣 − 𝑛ℎ𝑣𝑛𝑣ℎ)] eqn. 3-6 ) 

 

From this equation, it is not difficult to see that, in the absence of vertical transmission (i.e.  𝑛ℎℎ =

0 and 𝑛𝑣𝑣 = 0), the matrix is: 

|
0 𝑛ℎ𝑣
𝑛𝑣ℎ 0

| Matrix 2) 
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The equation of R0 then is even simpler: 

 

𝑅0 = √𝑛ℎ𝑣𝑛𝑣ℎ eqn. 3-7 ) 

 

The equation 3-7) is the geometric mean of expected secondary cases from vector to host and vice 

versa. When an NGM-based model is as simple as this, it is not so different from the survival-

function-based model. In this example, the elements such as  𝑛ℎ𝑣 or 𝑛𝑣ℎ on their own are expressed 

with survival functions. Indeed, the eqn. 3-7) is the square root of the eqn. 3). However, this kind 

of connection between EMs built with different methods is not ensured for all situations. Here is 

just an example, and it is only true when the transmission cycle is simple and clear like this case.  

This R0 NGM shares the property of threshold quantity with the R0 classic (as mentioned above, when R0 

> 1, the disease can spread, otherwise dies out), which can be proved by its relationship with the 

Malthusian parameter (or “natural rate of increase”, often denotes as r, see (Dietz, 1993)). If we 

treat the new infections of a VBD as a species, the rate of “epidemiological birth” is the natural 

increase rate (r) of the infections, from the perspective of “population”. The r can well depict the 

growth of new infections, but is very often not possible to achieve (more details see (Diekmann et 

al., 2010)), whereas the R0 NGM can be calculated through the NGM. The R0 NGM is applied indicating 

the “population dynamic” of the new infections, as the inexplicit relationship between R0 NGM value 

and the r stands (Diekmann et al., 2010): 

r > 0, if and only if R0 > 1; 

r = 0, if and only if R0= 1; 

r < 0, if and only if R0 <1.  

R0 NGM only indicates if the introduction of a new VBD can survive (the sign of r, positive or negative), 

and a high R0 NGM value does not automatically equal fast exponential increase of incidence 

(Diekmann et al., 2010). In addition, it has been suggested that the transmission is still possible for 

some EMs even if R0 NGM <1 (near this threshold) (Ma & Li, 2009; van den Driessche & Watmough, 

2002). In consequence, this must be considered when interpreting EM outputs or transforming the 

results into spatial maps.  

Breaking down the transmission between vectors and hosts into finer processes will result in 

relatively complex EMs. The calculation of eigenvalue is no longer as simple, nor straight forward. 

Those complex NGM are often solved by a Jacobian transformation (Diekmann et al., 1998; 

Diekmann et al., 2010; van den Driessche & Watmough, 2002). 

To build the Jacobian matrix, health states (e.g. susceptible, exposed, infected-infectious, 

recovered) of vectors and hosts, described with ODEs, are grouped into two parts: transmission and 
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transition (Diekmann et al., 2010). The transmission part includes new infections from all directions; 

and transition part includes health state changes. A detailed explanation on this can be found in 

(Diekmann et al., 2010). There, recipes for constructing NGM-based models are also provided. The 

Jacobian transformation method efficiently simplifies the calculation of the eigenvalues (see the 

small-domain NGM in Diekmann 2010), especially when multiple health states, age groups, or 

multiple vectors or hosts are included.  

For instance, following the recipe suggested by (Diekmann et al., 2010), I constructed a model on 

West Nile virus transmission, including both local birds and migratory birds (See Appendix 1 and 

Chapter 8). The method suggested by Diekmann, Heesterbeek et al. 2010 is relatively easy to handle 

compared to the classical method suggested by van den Driessche (van den Driessche & Watmough, 

2002), and it also provides reasonable biological interpretations.  

 

5.5 Incidence-based methods 

In addition to those two commonly used ways explained above, it is also possible to approach R0 

from incidence-based methods, e.g. by estimating time varying effective reproduction number 

from past incidence (Peña García & Christofferson, 2019; Perkin et al., 2019). However, this method 

does not look into the processes of disease transmission. Instead, it estimates the number of cases 

in the previous generation by recorded incidence rate, within a certain area or administration 

region (Jentes et al., 2016). This method assumes a certain distribution of the time interval, i.e. the 

time between an induced secondary case and a primary case (Jentes et al., 2016; Peña García & 

Christofferson, 2019; Perkin et al., 2019). Based on this assumed time interval, R0 can be estimated 

for previous generations. As it highly relies on incidence rate data and does not look into 

transmission processes of VBDs, this method has not been applied as often as those two common 

methods explained above.  

 

5.6 Products from epidemiological models – spatio-temporal risk maps 

To date, it is common to see single values or time-series curves of R0 for a certain place being 

reported from the output of EMs (Manuscript 2). This kind of product from EMs shows temporal 

risk dynamics for one or several places, providing information on when potential outbreak of the 

investigated disease is high, e.g. (Mordecai et al., 2017; Ng et al., 2017; Rubel et al., 2008). However, 

to monitor the potential outbreak risk of a VBD, this information on its own is not enough. It is 

essential to also know where the risk is higher; more ideally, when and where (Manuscript 2).  

Spatial risk maps can also be produced by EMs, resulting in spatial-temporal risk maps (Manuscript 

2). There are some methods available for achieving this: (1) Calculating the R0 for some scattered 

places (e.g. the location of weather stations in several cities) and then mapping this value into a 

https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20den%20Driessche%20P%5BAuthor%5D&cauthor=true&cauthor_uid=29928743
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certain political region (Hartemink, Purse et al. 2009). (2) Calculating the correlation between R0 

and a highly correlated variable, then applying this correlation onto the variable layer (gridded 

raster file), e.g. (Wu, Duvvuri et al. 2013). (3) Calculating the R0 for each gridded cell of a raster file, 

which is often a temperature observation layer, resulting in spatial risk maps directly, e.g. (Holy, 

Schmidt et al. 2011, Cadar, Luehken et al. 2017).  
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6 Comparison of ecological niche models and epidemiological models 

Generating risk maps for potential outbreak risk of VBDs is crucial for public health (Escobar & Craft, 

2016). Those risk maps for VBDs can be achieved by using both ENMs and EMs (Escobar & Craft, 

2016; Johnson et al., 2019; Tjaden et al., 2018). Of course, those two modelling approaches each 

have their own pros and cons (Tjaden et al., 2018). Relying on a single model for assessing potential 

outbreak risk of VBDs may lead to incomplete conclusions (Manuscript 3). As (Escobar & Craft, 

2016) point out, ecology and epidemiology are highly related disciplines, and both modelling 

approaches can contribute to improvements regarding disease risk mapping (Escobar & Craft, 2016; 

Tjaden et al., 2018). Consequently, it should be considered to draw an interdisciplinary view and 

make use of both models’ advantages.   

As explained earlier (in chapter 4), ENMs use occurrence data and environmental data to make a 

correlative model of the potential suitable environmental conditions (Warren & Seifert, 2011). They 

have many potential applications regarding the geography (for vectors, hosts, pathogens, etc.) and 

ecology of disease transmission (Peterson, 2006, 2014), and are increasingly used to gain 

understanding of biogeography of diseases (Escobar & Craft, 2016). Compared with EMs, ENMs 

have the advantage that they can easily include a wild variety of explanatory variables, such as land 

use types and precipitation variables. In particular, they can include not only the factors that has a 

positive effect on the investigated species’ potential distribution, but also the ones with negative 

effect (Although theoretically, it is also possible to include factors with negative effect in EMs, it has 

not been commonly done yet). In addition, ENMs do not require an in-depth understanding of each 

variable included in the modelling process. ENMs are typically run with mid- or long-term climate 

data. In general, ENMs can well reflect spatial distribution of the investigated species, especially 

that they can achieve risk maps at fine spatial resolutions (Peterson, 2006, 2014). The drawback of 

using climatic data is that extreme weather events such as drought or heat waves cannot be 

captured. However, those factors are very important for VBDs.   

EMs, on the other hand, are process-based. They include different health stages of and the 

interaction between vectors and hosts (Diekmann et al., 2010; Heffernan et al., 2005; van den 

Driessche & Watmough, 2002; van den Driessche & Yakubu, 2018). EMs typically use 

meteorological data with fine temporal resolutions, such as daily or monthly mean temperature 

data (Manuscript 2). Consequently, they have the advantage of capturing short term extreme 

weather events or temperature fluctuations. However, it should still be kept in mind that EMs 

usually use daily mean temperature as input data, i.e. diurnal variations are not captured. 

Nevertheless, compared with ENMs, EMs are better at depicting temporal aspect of potential 

outbreak risk of VBDs (Tjaden et al., 2018).  The drawback of EMs is that the spatial transferability 

of those models is very limited (Manuscript 2). In addition, EMs are highly dependent on the 

understanding the disease transmission cycle, and respective parameters for both vectors and 

hosts (Manuscript 2 & 3). Especially for some new emerging VBDs, those parameters are seldom 

available, e.g. Usutu virus (Manuscript 3).  
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Clearly, an integrated/interdisciplinary model could benefit from both models’ advantages. 

However, due to the magnitude of the workload required for running both models, an integrated 

model has not been done yet. A possible way to do this is to apply a hierarchical approach, where 

the spatial distribution of the potential transmission or the respective vectors could first be 

estimated by an ENM, then zoomed into a finer scale at the high risk areas via EMs. However, this 

approach requires both occurrence locations of the respective VBDs, and also a good understanding 

of disease transmission cycles, i.e. parameters and variables, etc. For well-studied VBDs, this 

approach can work as a live early warning forecast with spatio-temporal information of the 

potential outbreak risk. The results from ENMs, such as the spatial distribution of vectors or hosts, 

can also work as input data for epidemiological modelling approaches as well. The integrated EMs 

can offer more fine-grained insights on the progression of outbreaks, with the potential for short-

term forecasts based on weather models. In addition, ENMs can estimate not only where climate 

is suitable, but also where it is unsuitable. The unsuitable regions can be thus excluded, or classified 

as low-risk regions. In this case, the results from ENMs can be applied to classify the study area into 

different risk levels. However, these possibilities have not been tested yet. Consequently, 

Manuscript 3 compares those two modelling approaches as a first step towards constructing an 

interdisciplinary early warning system.  
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7 Synopsis of the following manuscripts 

In the following, I will give a short overview of the manuscripts included in this thesis.  

Manuscript 1 deals with a long existing but often ignored problem in ecological niche modelling 

(ENM) –  the usage of geographical centroid locations. ENMs typically use occurrence locations to 

extract the respective values of explanatory variables, and thus construct a correlative model of the 

investigated species’ potential environmental suitability. When precise occurrence locations are 

not available, the geographical centroid locations of respective Administrational Spatial Units 

(ASUs) are commonly applied as a substitute. However, the values of explanatory variables at those 

substitutes may differ considerably from that at occurrence locations.  

Manuscript 1 investigates how the use of ASU centroids in ENMs affects model performance, and 

which role the size of ASUs plays in the context of varying grain size of explanatory variables. In 

order to answer those questions, a two-factorial study design was applied with artificial ASUs of 

three different sizes and environmental data of four commonly used grain sizes, repeated over 3 

study regions. To best control other factors that may affect ENM performance, a virtual species was 

generated. In this case, the exact explanatory variables are known, the occurrence locations are 

precise and drawn from even sampling. More importantly, the model performance can be assessed 

with non-threshold measures such as Spearman’s rank correlation, since the “true suitability map” 

of the virtual species is available. The value frequency mismatch was applied as a novel indicator of 

potential projected niche mismatch. This method calculates, for each explanatory variable, the 

value frequency mismatch between ASU centroids and occurrence locations. Compared with 

conventional statistical tests (such as ANOVA or Kruskal-Wallis-test) that show whether a statistical 

difference between centroid-based and true location- based environmental data exists or not, this 

method focuses on quantifying the differences between the two.  

Manuscript 1 shows that the usage of ASU centroids leads to value frequency mismatch of 

explanatory variables between the true locations and the centroids. This mismatch increases with 

increasing ASU size; as large ASUs tend to have large spatial heterogeneity. Compared with the ASU 

size, grain size matters not as much. In general, ENMs built with ASU centroids over-estimated the 

species’ distributional range. Manuscript 1 highlights that in order to gain optimal model 

performance, substitutes such as central tendency values should be considered when possible. 

Special cautions should be given when ASU centroids are applied as substitutes. 

Manuscript 2 gives an insight into the preparation of spatio-temporal risk maps from EMs. EMs 

typically use the basic reproduction number (R0), a threshold quantity, to indicate potential 

outbreak risk of the investigated infectious disease. The output from EMs often is a series of risk 

maps of fine (e.g. daily or monthly) temporal resolutions. To provide an overall view of the risk, 

these EM outputs are often compiled into a single, summarizing map. However, depending on the 

specific temporal aggregation and visualization applied, the yielded spatial risk map may differ 

considerably.  
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The commonly used temporal aggregation methods are either averaging R0 over a certain time 

period (intensity) or counting the cumulative number of days with R0 > 1 (duration). Despite the 

fact that risk maps have been increasingly derived from EMs in last two decades, until now there 

were no standardized methods or guidelines available for this. Consequently, Manuscript 2 points 

out the importance of using appropriate temporal aggregations and visualizations, analyzes the 

advantages and disadvantages of each approach, and gives suggestions for best practice. Similarly, 

the importance of choosing an appropriate method for visualizing the data in a map, in practice, is 

often neglected. Via different visualizations, two fundamentally different maps can appear very 

similar, and vice versa. Though continuous representations of spatial risk (e.g. average R0, 

cumulative number of days with R0 > 1) are most commonly used in maps, this is not always the 

best interpretation of EMs.  

To improve the interdisciplinary communication regarding spatio-temporal risk maps generation 

from EMs, Manuscript 2 put forward general remarks as following: 1) different temporal 

aggregation methods lead to different interpretations; 2) similar-looking spatial patterns do not 

necessarily bear the same meaning; 3) visualization methods considerably affect how results are 

perceived, and thus should be applied with caution. Manuscript 2 suggests that both intensity and 

duration of the VBD outbreak risk should be included when possible, and preferably with small 

time-step intensity maps to show spatio-temporal dynamics. Categorized maps can be an option 

when comparisons cross EMs or different diseases are needed. 

In Manuscript 3, two fundamentally different models are applied to map the potential outbreak 

risk of Usutu Virus (USUV) in Europe. Manuscript 3 aims at two goals: to estimate the potential risk 

for USUV transmission in Europe, and to compare ENM and EM approaches using USUV as a case 

study. This manuscript investigates how much, to our best knowledge, the outputs from those two 

disciplines differ. To do so, the EM on USUV was run with time-series of daily mean temperature 

data across Europe. The ENM was run with long-term bio-climatic variables, derived from the same 

source. Risk maps for USUV circulation were generated from both modelling approaches.  

Manuscript 3 highlights the necessity of integrating different approaches to map the potential 

outbreak risks of VBDs. This is especially true for newly emerging pathogens like USUV, where the 

knowledge about important processes is still limited. A hierarchical or an integrated modelling 

approach could benefit from both models’ advantages. For instance, the potential spatial 

distribution of the outbreak risk could first be estimated by an ENM as a general overview. 

Thereafter, for high risk areas, the temporal risk patterns can be modeled with EMs. ENMs can also 

be nested in an EM, e.g. to estimate the abundance of vectors and hosts, or even to exclude 

environmental unsuitable regions. 
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8 Challenges for future studies 

As seen in chapter 4 and 5, both modelling approaches are rooted in mathematics. However, those 

mathematical processes and algorithms are only one part of the whole modelling processes. It is 

not difficult to see that the performance of either (or any) model is not decided by the respective 

algorithms alone. Instead, it depends on a series of factors, such as the quality of input data, the 

match of the input data type and the model algorithm, the calibration of the models, etc. To 

improve model performance, effort should be invested in those aspects.  

 

8.1 Positional errors in ecological niche models 

When precise occurrence locations are not available, geographical centroids of administrational 

spatial units with known occurrences are often applied as substitutes in ENMs solution (Collins et 

al., 2017; Jones et al., 2010; Park & Davis, 2017). This centroid method minimizes the largest 

possible spatial distance between the substitute location and the unknown true location. However, 

it does not necessarily minimize the mismatch of explanatory variables’ values at the centroid 

locations and the true occurrence locations. This kind of positional errors brought in by the usage 

of centroids leads to a decrease in model performance, and has the potential for introducing 

extreme values of the respective explanatory variables (manuscript 1). In contrary to this centroid 

method, it has been suggested that using central tendency values (e.g., mean or median) across the 

respective administrative spatial unit, is a better solution (Collins et al., 2017; Jones et al., 2010; 

Park & Davis, 2017). Obviously, this central tendency method minimizes the largest potential 

difference between the substitute explanatory values and the values at the true locations 

(manuscript 1). 

Tackling this positional error problem from another angle, Hefley et al. have suggested a change-

of-support (COS) method (Hefley et al., 2017). Different from those two methods which attempt to 

find the “least-worst” substitutes, this COS method aims to find the “likely-best”. As suggested by 

some researchers, the ecological niche modelling approaches are unified as the methods to 

estimate parameters of an inhomogeneous Poisson point process distribution (Hefley et al., 2017; 

Renner et al., 2015; Warton & Shepherd, 2010). In general, those inhomogeneous Poisson point 

process distribution are using continuous support; while Hefley et al. have applied a discrete 

distribution by using areal spatial support instead (the COS method). Basically, this COS method 

does not look at each spatial location (a single pair of coordinates), instead, it counts the number 

of occurrence records in each spatial unit.  

In (Hefley et al., 2017), they have put forward this COS method more as a theoretical approach than 

a real tool to correct positional errors (only two variables and with linear effects). More effort 

should be put into investigating the performance of this COS method, and integrate it in future 

ecological niche modelling approaches. In Manuscript 1, I have investigated the effect of using 
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centroid data as substitutes of occurrence locations on the performance ENMs. As a follow-up 

study, this COS method can be tested with a virtual species, in a similar manner as Manuscript 1. 

Those three alternative methods can be thus compared in a controlled setting: 1) using centroid 

locations, 2) using central tendency values, and 3) using COS method instead. In the case of using 

the COS method is the best among those three methods, more effort should be given to integrate 

this method into ENMs. 

 

8.2 The complexity of epidemiological models 

Modelling with VBDs, there is an increasing number of EMs, with different levels of complexity. For 

West Nile viral disease, several EMs have been constructed, with different levels of complexity 

(Bergsman et al., 2016; Bhowmick et al., 2020; Laperriere et al., 2011). For instance, the model 

constructed by (Laperriere et al., 2011) has eight compartments, including one host species and on 

vector species; while the model by (Bhowmick et al., 2020) has fifteen compartments, including 

two host species, one of which was even classified into two types. Bergsman’s model also included 

both migratory birds and local birds as hosts, but it did not include the health state of “exposed” 

(Bergsman et al., 2016). Consequently, Bergsman’s model only has nine compartments. Before 

even more complicated EMs being constructed, a critical question needs to be answered: does the 

model performance increase with model complexity? If the increase of model complexity does not 

increase the performance of the respective models, according to Occam’s razor, we should avoid 

increasing the model complexity.  

In order to answer this question for EMs for West Nile viral disease, the following approach is 

planned for the future: The three models mentioned above and the model attached as appendix 

(the example of complex model in chapter 5) will be updated with same variable and parameter 

settings where possible, so that the effect of increasing complexity can be isolated. There are three 

pairs of comparisons (Figure 8-1), and for each pair, the direction of complexity increase is clear. 

The complexity always only increases at one level – either through an increase of health states (i.e. 

from Figure 8-1 a) to b)), or through the introduction of a new host type (i.e. from Figure 8-1 b) to 

c) and d) to b)). 
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Figure 8-1. Four epidemiological models of West Nile virus transmission. The orange arrow indicates the 

direction of increasing complexity. Compartment abbreviations are: L = larvae state (of mosquitoes), S = 

susceptible, E = exposed, I = infectious, R = recovered. Compared with model a), model b) and c) includes 

the additional health stage of “Exposed” for both local and migratory birds, and adds the stage of “Larvae” 

to mosquitos; while model c) additionally differentiates local birds into “clinical” and “subclinical” groups. 

Model b) differs from model d) by including migratory birds. The original model from Bhowmick in c) does 

not include the state “Larvae” for vectors. However, to make the complexity only increase from b) → c), 

the state “Larvae” needs to be included.  

 

To assess how much the models’ output differ, i.e. how much they overlap, a possible solution is to 

use the quantile method suggested in Manuscript 2. If the overlap is very high (e.g. more than 90%), 

apparently, there is no need to increase the model complexity; if the overlap is very low (i.e. less 

than 50%), there must be something going wrong. Once we can assess model performance, it is 

also possible to discuss about the trade-off between model performance and complexity of models. 

 

8.3 Assessment of epidemiological models’ performance 

To investigate how the increase of model complexity affects model performance, the first challenge 

is to quantify the model performance. Although EMs are increasingly applied to estimate potential 

at-risk areas of VBDs (Escobar & Craft, 2016; Johnson et al., 2019; Peterson, 2014; Tjaden et al., 

2018), the performance of those models are seldom assessed, if ever.    
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For VBDs with good quality of occurrence records, it is possible to make use of those occurrence 

records, e.g. to draw a certain amount of true occurrence locations of the respective VBDs (with 

locations and date info), and locations of potential-absence (where active surveillance is taking 

place). Once the true presence and highly likely absence (it is still possible to be false negative) are 

available, the model performance can be assessed.  

 

8.4 The quality of vector and host parameters 

For process-based EMs, the model performance is highly depended on the quality of input data, i.e. 

the vector and host parameters. Parameters such as EIP, biting rate of vectors and vector-to-host 

ratio are very important for EMs. However, for diseases caused by under-studied pathogens such 

as Usutu virus, Dengue and Chikungunya, those parameters are either not available or only 

available at a small spatial extent within the whole spatial distribution area. For instance, the 

parameters for the vectors of West Nile virus are usually mostly taken from (Reisen et al., 2006), 

more than a decade old. For some VBDs, such as Usutu virus, the vector and host ranges are still 

increasing, requiring additional laboratory work.    
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Abstract  

Aim Ecological Niche Models (ENM) typically require point locations of species’ occurrence as input 

data. Where exact locations are not available, geographical centroids of respective Administrational 

Spatial Units (ASU) are often used as a substitute. We investigated how the use of ASU centroids in 

ENMs affects model performance, which role the size of ASUs plays, and which effects different 

grain sizes of explanatory variables have. 

Location  

Europe. 

Major taxa studied 

Virtual species. 

Methods  

We set up a two-factorial study design with artificial ASUs of three different sizes and 

environmental data of four commonly used grain sizes, repeated over 3 study regions. To control 

other factors that may affect ENM performance, we created a virtual species with a known 

response to environmental variables, precise and even sampling and a known spatial distribution. 

We ran a series of Maxent models for the virtual species based on centroids and precise occurrence 

locations under varying ASU- and grain sizes. 

Results  

The use of ASU centroids introduces a value frequency mismatch of the explanatory variables 

between centroids and true occurrence locations, and it has a negative effect on ENM performance. 

Value frequency mismatch, negative effect on ENM-performance and over-prediction of the 

species’ range all increase with ASU size. The effect of grain size of environmental data, on the other 

hand, was small in comparison. 

Main conclusions  

ENMs built upon ASU centroids can suffer considerably from the introduced error. For ASUs that 

are sufficiently small or show low spatial heterogeneity of explanatory variables, ASU centroids can 

still be a viable and convenient surrogate for precise occurrence locations. When possible, however, 

central tendency values (median, mean) that represent the whole ASU rather than just a single 

point location need to be considered.  
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1 Introduction 

Ecological niche models (ENMs), based on niche theory, are widely used in many fields such as 

invasion and conservation ecology, biogeography, as well as epidemiology (Elith & Leathwick, 2009; 

Escobar & Craft, 2016; Liu et al., 2018; Peterson, 2014). They are often employed to estimate the 

spatial distribution of certain species (Elith et al., 2006; Elith & Leathwick, 2009; Elith et al., 2011) 

or diseases (Tjaden et al., 2018), and thus also known as “species distribution models”. ENMs 

typically use geographical occurrence locations of the target species as input data. These locations 

are then related to a series of explanatory variables (spatial raster data describing the 

environmental and/or socio-economic conditions in the study area), forming a correlative model of 

the species’ environmental niche. This model can be projected onto regions where the presence-

absence state of the species is unknown, resulting in a map showing probability of presence or 

environmental suitability. 

By default, ENMs assume that the whole study area was sampled consistently with precisely 

recorded geographic locations of occurrence, and that the selected explanatory variables can 

represent the species well (Yackulic et al., 2013). In practice, however, sampling bias is inevitable, 

especially when the input data has to be assembled from different sources that are based on 

different sampling methods (Liu et al., 2018; Lobo & Tognelli, 2011; Qiao et al., 2017; Stolar & 

Nielsen, 2015). While the sampling bias caused by uneven sampling can be reduced by rarifying or 

filtering the occurrence records (Castellanos et al., 2019; Gábor et al., 2020; Kramer-Schadt et al., 

2013), imprecisely recorded occurrence locations are very difficult (although not entirely 

impossible) to correct (Hefley et al., 2017). In certain cases, e.g. when using citizen-science 

databases or local monitoring systems, the occurrence locations of the species may be of a coarse 

precision or only available at municipal or county level (i.e. related to geographical surfaces of 

differing sizes). For epidemiological data, such missing spatial precision ensures information 

privacy.   

Internet databases like the Global Biodiversity Information Facility (GBIF; www.gbif.org), gather and 

compile species occurrence data from different sources (scientific, governmental, citizen-science) 

across a tremendous geographical extent and across national boundaries. However, the precision 

of the occurrence locations in this kind of databases is not always satisfying (Liu et al., 2018), and 

the record precision differs considerably depending on how the occurrence records were collected 

and processed (in certain cases, the precision might even be unknown) (Collins et al., 2017). In other 

databases, only very coarse administrational level information is available, i.e. instead of 

geographical locations, the occurrence records are assigned to counties or postal regions. For 

instance, the European Centre for Disease Prevention and Control (ECDC) and the European Food 

Safety Authority (EFSA) maintain a joint collection of occurrence records of epidemiologically 

relevant mosquito, tick and sand fly species in their VectorNet database. This highly relevant 

database covers the entire European Union and adjoining countries, but only maps showing local 

administrational units are publically available (https://www.ecdc.europa.eu/en/disease-
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vectors/surveillance-and-disease-data). Similarly, occurrences of species are often reported as 

inventories of protected areas that can differ considerably in size. For the sake of simplicity, 

hereafter we will refer to all kinds of administrational areas as “administrative spatial unit” (ASU). 

When occurrence records are available at the level of entire ASUs only, the geographical centroids 

of the ASU are often used in ENMs as a substitute for precise point locations (Collins et al., 2017; 

Park & Davis, 2017). As mentioned above, the ENMs allocate explanatory variables’ values at the 

respective geographical occurrence locations and form a correlative model of the species’ 

environmental niche. The use of centroid locations introduces geographical distance between the 

true (but unknown) occurrence locations and the geographical centroids representing them. This 

induces a mismatch in the values of explanatory variables (Figure 1 (a)): it is very unlikely (although 

not impossible) for the true geographical location of the observed record to exactly match the 

environmental conditions at the centroid location (Figure 1 (b)). This means that between each pair 

of true location and geographical centroid, there is likely a mismatch in values of explanatory 

variables. It can consequently be expected that substituting geographical centroids for true 

occurrence locations also leads to a change in the over-all frequency of values of explanatory 

variables. The correlative model, built with the shifted values, will further lead to a biased 

prediction for the species’ distribution, and would probably lead to overprediction.  

While finding a substitute for a geographically unknown occurrence location, drawing the 

geographical centroid of the ASU minimizes the largest possible spatial distance between the 

substitute location and the unknown true location (Figure 1 (b1)). However, this does not 

necessarily minimize the difference in environmental conditions (i.e., values of explanatory 

variables) at the two locations. In fact, it is entirely possible that among all possible locations within 

an ASU, the environmental conditions at the ASU centroid are the worst possible substitute for the 

conditions at the true location – especially in areas where spatial heterogeneity is high. 

Approaching the substitute from another angle (Figure 1 (b2)), using a central tendency value 

(median, mean) of each explanatory variable across the entire ASU has been presented as a better 

option (Park & Davis, 2017). Instead of minimizing the largest possible spatial distance, central 

tendency values minimize the largest value mismatch directly. The boxplot in Figure 1 (b2) 

illustrates this on the basis of the median: When using the median as the substitute, very likely (97% 

in this example) the largest potential value mismatch is half of the range between the two bars. 

Possibly (50%) the value of the occurrence location falls in the box. In this case, the largest potential 

value mismatch is even smaller. It is obvious that using central tendency values reduces the 

possibility of introducing extreme values. Not surprisingly, it has been shown that the central 

tendency values outperform the variable values at the centroids (Collins et al., 2017; Park & Davis, 

2017). Despite this, however, ASU centroids are still widely being used (e.g., (Evans et al., 2010; Fois 

et al., 2018; Gao & Cao, 2019; Johnson et al., 2017; Quiner & Nakazawa, 2017). It is thus worth to 

further investigate if and under what circumstances the much simpler approach of using ASU 

centroids can lead to satisfying results. 
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Figure 1. (a) Value frequency mismatch of an explanatory variable resulting from the use of ASU 

(administrational spatial unit) centroids. (a1) is a group of ASU (here: counties) with true occurrence 

locations and respective centroid locations. Note that for each ASU only one centroid location will be kept, 

as there exists only one. (a2) is the value frequency curve mismatch between these two groups of locations, 

concerning an explanatory variable. (a1) and (a2) illustrate our hypotheses on how geographical distance 

between occurrence locations and ASU centroids leads to value frequency mismatch. (b) Zooming in to 

each ASU, for a single pair of occurrence location and centroid location. (b1) shows that using ASU 

centroids minimizes the largest potential spatial distance (thick black line) between the centroid location 

(black dot) and any possible unknown occurrence location in the given ASU. However, this does not mean 

that the difference in values between those two points is minimized.  (b2) shows the variation of values of 

an explanatory variable across all the grid cells within the ASU. More than 97% of values fall into the range 

between the whiskers, and 50% of the values fall into the rectangular box. 

 

Here, we investigate how the application of geographical centroids affects the ENM results, a factor 

that has not received much attention so far. Of course, ENMs are also affected by a series of other 

factors. This includes the selection of explanatory variables, the specific modelling algorithm, model 
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settings and the spatial resolution or pixel size of explanatory variables, from here on referred to 

as “grain size” (Connor et al., 2018; Fourcade et al., 2018; García-Callejas & Araújo, 2016; Moudrý 

& Simova, 2012; Nezer et al., 2017; Record et al., 2018; Warren & Seifert, 2011; Yates et al., 2018). 

To best control these factors, we generated a virtual species with true, known occurrence locations 

and a known response to a fixed set of variables. Similar to the use of ASU centroids, the choice of 

grain size of explanatory variables may also cause a mismatch of explanatory variable value. For a 

given location, the explanatory variable value may differ at different grain sizes, though the 

difference is in general small due to spatial autocorrelation. Hence, we included a series of 

commonly used grain sizes of explanatory variables. Focusing on the bias resulting from the use of 

ASU centroids, we hypothesize that: 1) Using ASU centroids as substitutes for true occurrence 

locations leads to a value frequency mismatch of explanatory variables between the true locations 

and the centroids. An increased spatial heterogeneity within the ASU elevates that mismatch, 

assuming that larger ASUs tend to have higher spatial heterogeneity. 2) When using ASU centroids, 

the ENM’s performance decreases with increasing ASU size. 3) The size of the ASUs affects the 

model performance more than the grain size of explanatory variables. 4) The use of ASU centroids 

leads to an over-estimation of the modelled species’ distributional range.  

 

2 Material and methods 

To investigate how much ASU size and grain size affect ENM performance, a two factorial design 

with three replicates was applied (Figure 2). For this, a virtual species was generated based on three 

explanatory variables across Europe (see below for details). According to the presence-absence 

map of this virtual species, three squared regions (sized 5° × 5°) were selected within which the 

virtual species occupancy was about 50%. For each squared region, pseudo-ASUs of three different 

sizes were constructed by dividing it evenly into 25 (large), 100 (medium), and 400 (small) squares 

(Figure 2). The size range of these pseudo-ASUs corresponds to those of low-level administrational 

units across Europe. There, the Nomenclature of Territorial Units for Statistics (NUTS, 

https://ec.europa.eu/eurostat/web/nuts/background) consist of three levels (NUTS 1–3). NUTS 3 

is for small regions with a population size threshold of 150 000 – 800 000. The average area of the 

NUTS 3 units is about 7000 km2. The large pseudo-ASU size applied in this study is about 8000 km2, 

which can be treated as an equivalent of the average NUTS3 administrative units across Europe. 

The medium pseudo-ASU size is about 2000 km2, and the small pseudo-ASU size is about 500 km2.  
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Figure 2. The two-factorial study design with three replicates. Three rectangular regions (with varying grain 

size and pseudo-ASU size) were used to assess the general trend of bias resulting from the use of ASU 

centroids together with varying grain size. For each region, 200 random locations were drawn to keep the 

sampling effort even, and only presence locations among these locations were kept (black cross). The 

whole setup was repeated with the three bioclimatic variables, which the virtual species was generated 

with (see methods).   

 

The hypotheses were first tested with these artificial pseudo-ASUs from the three rectangular 

regions (with three pseudo-ASU sizes) (Figure 2). Afterwards, data from real countries (Germany 

and France) with irregular ASU size and shape was used to confirm the previous results in a real-life 

environment (Appendix S1, Fig. S1.1). The varying pseudo-ASU sizes for the regions were applied to 

detect the general trend of centroid-arisen bias. France and Germany were chosen as test cases as 

they are of very different NUTS 3 ASU sizes. For France, the average area of NUTS 3 ASUs is about 

6000 km2. For Germany, it is 1200 km2. As the NUTS 3 ASU size of Germany is much smaller than 

that of France, we expected the ENM models based on Germany’s NUTS 3 centroids to outperform 

the ones based on French NUTS 3 centroids. 



54 
 

For the rectangular regions as well as France and Germany, a series of commonly used grain sizes 

was taken into consideration (four grain sizes 0.5, 2.5, 5, 10 arc-min, roughly equivalent to 0.5, 10, 

40 and 200 km² respectively), because the grain size (raster resolution) of explanatory variables in 

ENMs also affects model performance (Connor et al., 2018; Guisan et al., 2007; Lauzeral et al., 2013; 

Manzoor et al., 2018). As both factors affect models on similar spatial scales, it is necessary to view 

the effects of ASU size and grain size in context with each other.  

2.1 Virtual species 

A virtual species was generated using the “virtualspecies” package version 1.4.2 (Leroy et al., 2016) 

in R 3.4.2 (R Core Team, 2015), with a spatial resolution of 0.5 arc-min (details on explanatory 

variables see section “Explanatory variables”). Virtual species generation can be understood as 

defining a niche of a virtual species by limiting the determining environmental variables, setting the 

response to the variables, and setting prevalence or tolerance levels. By applying a virtual species, 

1) the exact explanatory variables are known, 2) the occurrence locations are precise, 3) the whole 

study area is evenly sampled without sampling bias, 4) the true spatial distribution probability and 

presence-absence maps are available. These advantages make virtual species an ideal tool for 

testing our hypotheses. 

To generate a virtual species, a certain amount of explanatory variables is needed, as well as 

parameters such as the response of the virtual species to each variable. Depending on the 

parameters and the presence-absence conversion method applied, different species distribution 

patterns can be achieved. The spatial distribution of the virtual species, both logistic distribution 

map and presence-absence map, can be exported as raster files for further use. A dataset of 

presence-absence or presence-only locations can be generated in order to simulate real-world 

sampling of occurrence records in the field. In this study, 200 random locations were drawn for 

each rectangular region to simulate sampling locations of an unbiased field campaign. By allocating 

the same amount of sampling locations, the simulated sampling effort for each region is the same, 

thus the model performance is comparable across the regions. Locations where the species was 

recorded as “absent” were discarded and the remaining presence locations (ca. 60 per region) were 

used to build the ENMs. For more details about the virtual species in this study see Appendix S2. 

2.2 Explanatory variables 

To keep the virtual species simple, only bioclimatic variables were taken into account. For this, the 

standard set of 19 bioclimatic variables was acquired from www.worldclim.org (Fick & Hijmans, 

2017), with grain sizes of 0.5, 2.5, 5 and 10 arc-min. Three bioclimatic variables were selected 

according to the following criteria: 1) the set must include both hydrological and thermal factors, 

which are essential to most life forms; 2) the variables should not be closely related to each other 

(De Marco & Nóbrega, 2018) (i.e. |Pearson’s r| > 0.7 (see Appendix S3, Table S3.1), calculated with 

the European extent (Appendix S2, Fig. S2.2) of the virtual species,). As a consequence, three 
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bioclimatic variables, namely Annual Mean Temperature (Bio1), Annual Precipitation (Bio12), and 

Precipitation Seasonality (Bio15), were chosen (details see Appendix S2, Fig. S2.3 and S2.4). 

2.3 Value frequency mismatch in explanatory variables due to the use of ASU centroids 

To visualize the value frequency mismatch, the three explanatory variables’ values were extracted 

at the centroid locations of the 3 different pseudo-ASU sizes separately per region. This was 

repeated for the 4 different grain sizes (Figure 2). The value frequencies of the explanatory variables 

were then described through a kernel density curve (which can be understood as response curve 

of the virtual species to the variable) using the R package “caTools” version 1.17.1.2 (Jarek 

Tuszynski, 2014). Relative overlap of the curve for the centroid locations with the corresponding 

curve for the original occurrence records was calculated using “caTools”. Mismatch between those 

curves was then calculated as 1 - overlap, so that a mismatch of 0 means identical curves and 1 

means no overlap at all.  

The spatial heterogeneity of each explanatory variable was assessed by calculating its standard 

deviation within the respective pseudo-ASU and for the respective grain size, using the “raster” 

package version 2.6.7 (Hijmans, 2019) in R. The spatial heterogeneity was expected to increase with 

the size of pseudo-ASUs. For each explanatory variable, a linear regression was applied to describe 

the correlation between frequency curve mismatch and spatial heterogeneity.  

2.4 Ecological niche model 

Maxent, an ENM algorithm widely used and known for its good performance with small occurrence 

location datasets (Baldwin, 2009; Elith et al., 2006; Hernandez et al., 2006), was chosen in this study. 

To make the models comparable, the settings were kept the same for all runs, for the three 

rectangular patches, Germany and France. Default model settings were applied (with 10000 

background locations), with 10 replicates. Instead of commonly used methods such as the true skill 

statistic (TSS) or the area under the curve of receiver operating characteristics (AUC), model 

performance was assessed using Spearman’s rank correlation coefficient (Spearman’s rho). 

Spearman’s rho is obviously a better choice than AUC, and compared to TSS, Spearman’s rho has 

the advantage of being threshold-independent. As the true spatial distribution probability map for 

the virtual species is available, Spearman’s rho between the environmental suitability predicted by 

the model and the true probability of presence can easily be achieved (via R package "pspearman" 

(Savicky, 2014)). In this case, Spearman’s rho can range from 0 (no correlation) to 1 (perfect linear 

positive correlation, the compared models are identical).  

To calculate Spearman’s rho, the larger grain-sized (2.5, 5 and 10 arc-min) outputs from Maxent 

models were resampled to 0.5 arc-min resolution using the “nearest neighbor” method (R package 

“raster” (Hijmans, 2019)). Essentially, this means cutting the large raster cells into smaller ones, 

while keeping the original values without interpolation or loss of information. The model results 

were then compared with the true (distribution) probability map of the virtual species (the virtual 

species was generated with 0.5 arc-min resolution, more details see above and Appendix S2). 
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2.5 Calculation of over-prediction ratio 

The model results were transformed into binary presence-absence maps according to the 

thresholds: Maximum training sensitivity plus specificity logistic threshold (MaxSSS) (Liu et al., 

2005; Liu et al., 2016), Equal training sensitivity and specificity logistic threshold (eqSS) (Liu et al., 

2005; Nenzen & Araujo, 2011) and 10 percentile training presence logistic threshold (10 percentile) 

(Pearson et al., 2004). Over-prediction was then calculated as the ratio of raster cells classified as 

“presence” in the model output vs. the original virtual species (i.e.: (Presencemodeled - Presenceoriginal) 

/ Presenceoriginal).  Here, a value of 0 suggests that the distributional range predicted by the model 

has the same size as the one defined in the virtual species. Values larger or smaller than 0 mean 

that the predicted range is larger (over-prediction) or smaller (under-prediction) than that of the 

original species, respectively. 

3 Results 

3.1 The larger the pseudo-ASU size, the larger the value frequency mismatch of the explanatory 

variables 

Using ASU centroids resulted in a mismatch of value frequency curves of the explanatory variables. 

This mismatch increases with the spatial heterogeneity within the respective ASU. A statistically 

significant positive relationship between variable mismatch and spatial heterogeneity was revealed 

through linear regression analysis for all three bioclimatic variables (Figure 3, top; Bio1: p < 0.01, R² 

= 0.16; Bio12: p < 0.05, R² = 0.11; Bio15: p << 0.001, R² = 0.56). The over-all spatial heterogeneity of 

an ASU increases with its size (Figure 3, bottom). 
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Figure 3. Top: The spatial heterogeneity of each explanatory variable (Bio 1, Bio 12, Bio 15) increases with 

increasing centroid region size. Bottom: Value frequency curve mismatch for explanatory variables (Bio 1 

Annual Mean Temperature, Bio 12 Annual Precipitation, Bio 15 Precipitation Seasonality) at occurrence 

locations versus centroid locations increases with elevated spatial heterogeneity. Each black dot 

represents one pair of comparison on the recorded variable values between centroid locations and real 

locations. For each variable, the spatial heterogeneity is measured by the standard deviation of that 

variable within the individual centroid regions.  

 

3.2 For ENM-performance, ASU size matters more than the grain size 

Ecological niche models built with the original occurrence locations showed strong correlations of 

predicted environmental suitability with the true distribution of the virtual species, suggesting good 

model performance (Figure 4 (a)). For these ENMs, the model performance decreased with 

increasing grain size (see Appendix S4, Fig. S4.5). For those ENMs built with centroids, a Kruskal-

Wallis Rank Sum Test with multiple comparison post-hoc test revealed statistically significant (p < 

0.05) effects of ASU size on model performance. There is a clear trend of model performance 

decreasing with increasing ASU size (Figure 4 (a)). No clear model performance pattern was 

observed for the different grain sizes (Figure 4 (b)). A direct comparison using two-way ANOVA (see 

Appendix S4, Table S4.2; only include the ENMs built with centroids, i.e. the three gray boxes in 

Figure 4 (a)) reveals that while ASU size can explain more than half (52%) of the variability in model 

performance (f(2)= 16.414 , p << 0.001); grain size appears to have almost no effect (f(3)= 0.876 , 
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p= 0.467 ); the interaction between grain size and ASU size shows no significance (f(6)= 0.561, p= 

0.757), either.  

 

 

Figure 4. ASU size affects model performance more than grain size. (a): Grey: performance of the ENM in 

dependence of ASU size. White, for reference: ENM performance when using true occurrence locations. 

Lower case letters above the boxes indicate differences between groups as indicated by a Kruskal-Wallis 

Rank Sum Test with multiple comparison post-hoc test. (b): Performance of the ENM in dependence of 

grain size (i.e. spatial resolution of environmental data). Grey boxes in (a) and (b) refer to the same set of 

models. Model performance was assessed through the correlation coefficient (Spearman’s rho) between 

the environmental suitability predicted by the ecological niche model and the true species distribution 

defined for the virtual species. Model performance ranges from 0 to 1. The larger the value, the better the 

model performance. Lower case letters above the boxes indicate that an ANOVA followed by a Tukey 

Honest Significant Differences post-hoc test revealed no statistically significant differences between any 

of the groups. 

 

3.3 Over-prediction of species spatial distribution due to the use of centroid data 

Almost all ENM runs in this study, including those performed with true occurrence locations, over-

predicted the virtual species’ occurrence. Based on the MaxSSS threshold, over-prediction tends to 

be stronger with increasing ASU size (Figure 5). However, this increase is statistically significant only 

for the large ASUs (p < 0.01 based on ANOVA followed by a Tukey Honest Significant Differences 

post-hoc test). This is consistent with the results obtained from the eqSS and 10 percentile 

thresholds (Appendix S4, Fig. S4.6). 
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Figure 5. Relative over-prediction ratio (ENM model results vs. “true” virtual species occurrence) for 

models built on point locations as well as centroids of differently sized regions. Lower case letters above 

the boxes indicate differences between groups as indicated by an ANOVA followed by a Tukey Honest 

Significant Differences post-hoc test. 

 

3.4 Real-world application example using French and German ASU centroids 

The ENM built with centroids of NUTS 3 administrative units in Germany outperforms the model 

for France, with Spearman’s rho value of 0.818 and 0.790, respectively. For the ENM built with true 

occurrence locations, Spearman’s rho for Germany and France is 0.894 and 0.924, respectively 

(Table 1). When occurrence locations are available, the model performance decreases with 

increasing grain size. However, when only centroid locations are available, fine grain size was not 

always the best. For France, the ENM with 2.5 arc-min had the best model performance (Table 1). 

This is in accordance with the pattern shown in Figure 4: ASU size matters more than grain size. 
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Table 1. Model performance of the real-world examples using French and German ASUs. Performance of the 

models was assessed by calculating Spearman’s rho for the correlation of the predicted probability of 

presence with the known true probability of presence of the virtual species. Bold: best-performing models 

for centroid- and true location-based models for France and Germany, respectively. 

country Grain size Model performance 
(centroids) 

Model performance 
(true occurrence 
locations) 

France 10 arc-min 0.725 0.852 

France 5 arc-min 0.798 0.927 

France 2.5 arc-min 0.858 0.942 

France 30 arc-sec 0.779 0.974 

Germany 10 arc-min 0.807 0.837 

Germany 5 arc-min 0.812 0.897 

Germany 2.5 arc-min 0.826 0.914 

Germany 30 arc-sec 0.828 0.927 

 

4 Discussion  

In this study, we looked into the mechanism of how the use of centroids affects ENM performance. 

Though there have been studies focusing solely on centroid size (Collins et al., 2017; Park & Davis, 

2017) or grain size (Connor et al., 2018; Lauzeral et al., 2013; Manzoor et al., 2018) respectively, we 

investigated and compared how much ASU size affects ENM performance not only on its own but 

also in context with grain size. Our results confirm that, in general, larger ASUs have higher spatial 

heterogeneity, and higher spatial heterogeneity is associated with higher value frequency 

mismatch of explanatory variables between the true locations and centroids. When using ASU 

centroids, larger ASUs also lead to larger decrease of ENM’s performance. Compared with ASU size, 

grain size does not affect ENM’s performance as much. The use of ASU centroids leads to 

overprediction of modelled species’ distribution range, and the overprediction ratio shows the 

tendency of increasing with ASU size. 

Using centroids of ASUs as a substitute for true occurrence records in ENMs introduces errors. 

Spatial distance between the centroids and the true, unknown occurrence locations leads to a 

mismatch of explanatory variables’ values at these locations. These mismatched values at the 

centroid locations lead to a mismatch of explanatory variables’ value frequency curves, which 

further results in a mismatch between the projected niche and the true niche. Our results show 

that the absolute size of ASUs affects the value frequency mismatch between true locations and 

centroids. How strong this effect is, ultimately depends on the explanatory variables’ spatial 

heterogeneity (here: standard deviation) within the ASUs. Park & Davis (2017) found that spatial 

heterogeneity in climatic variables was mainly governed by the heterogeneity in topography in the 

US. Their findings that ASU (county) size only had minimal effects on spatial heterogeneity does not 

contradict our results, due to their different, non-nested study design. The absolute ASU size or 

grain size alone cannot determine how much the explanatory variables’ values mismatch with the 
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values at the true occurrence locations, but in general, larger ASU size leads to larger value 

mismatch (Figure 3).  

Similarly, coarser grain size leads to a deterioration in model performance (Appendix S4, Fig. S4.5). 

This is in line with previous findings (Connor et al., 2018; Guisan et al., 2007; Manzoor et al., 2018). 

However, although the grain size does affect model performance, its effect was found to be small 

compared that of the ASU size (Figure 4 and Appendix S4, Table S4.2). When centroids are drawn 

from ASUs with large extent, the ENM’s performance can hardly be improved by using a fine grain 

size (Figure 4). However, when using centroids drawn from a small extent or using the true 

occurrence locations, a fine grain size is preferable (Table 1). Note that the “small” pseudo-ASU size 

used in this study is 0.25° × 0.25° (ca. 400 km²). This is not much larger than the coarsest grain size 

(ca. 170 km²) in this study, which corresponds to the resolution of some commonly used 

environmental data sets (e.g., E-OBS (Cornes et al., 2018)). For ASUs of this size, the value mismatch 

between the centroids and true locations is very small, and the effect of ASU size on the value 

mismatch cannot be distinguished from that introduced by a large grain size. 

The use of a virtual species in this study means that the environmental suitability and the presence-

absence status of the species across the study region are known, and the species’ occurrence 

records are precise. This makes the comparison between models based on true locations and 

models based on ASU centroids feasible and reliable. The difference between models based on 

observed point locations from field data versus centroid-based locations has previously been 

quantified (Collins et al., 2017). However, using observed locations, additional effects resulting from 

sampling bias or uncertainty cannot be excluded. Generating a virtual species and drawing precise 

geographical locations ensures that the observed differences between model results are due to the 

use of centroid locations itself and that they can be quantified. As the true environmental suitability 

of the virtual species is known, it can be used as a benchmark for the performance of the models 

by directly calculating Spearman’s rho. This obviates the use of threshold-based performance 

measures such as TSS or the commonly used but controversial AUC (Allouche et al., 2006; Tjaden 

et al., 2018).  

The value frequency mismatch was for the first time applied as an indicator of potential projected 

niche mismatch. This method calculates, for each explanatory variable, the value frequency 

mismatch between ASU centroids and occurrence locations. Compared with conventional statistical 

tests (such as ANOVA or Kruskal-Wallis-test) that show whether a statistical difference between 

centroid-based and true location-based environmental data exists or not, this method focuses on 

quantifying the differences between the two. As ENMs typically process variables’ values in a 

continuous way, (for a given variable value at a single location, the ENMs calculate a probability of 

presence rather than a binary presence-absence value), the true/false information alone is clearly 

not sufficient to assess the effect of using ASU centroids. While test statistics fail to measure how 

much two groups of data differ, the continuous method makes it possible to capture the general 

trend of the value mismatch and compare it across groups. For instance, our results suggest that a 

larger ASU size leads to larger value frequency mismatch. If a binary-result-only method was applied 
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in this study, this general trend could not be captured, nor evaluated. It should be noted that the 

value frequency mismatch ranges from 0 to 100 %, i.e. though the value frequency mismatch 

increases with spatial heterogeneity within the ASU, this increase is not always linear. Here a linear 

model was applied to show the general trend, but it should not be interpreted as an indication for 

how much the mismatch will be when larger spatial heterogeneity occurs.  

As the virtual species was generated with the grain size of 0.5 arc-min, it is to be expected that the 

output from the combination of this grain size and original locations has the best performance. 

While generating the virtual species, we assumed that the grain size employed is the smallest unit 

that the virtual species can survive, as an individual (similar to e.g. a deer, a bird) or a population 

(e.g. ants, bees). However, modelling with real species, it should be questioned which grain size 

should be utilized. It has been suggested to use a grain size smaller than 1 km when possible, 

especially for habitat specialists (Manzoor et al., 2018). Nevertheless, the question of choosing 

optimal grain size needs to be further investigated.  

It is not surprising that centroids of ASUs are chosen as a substitute when no precise occurrence 

locations are available. After all, the changes in the modelling workflow required by this approach 

are minimal compared with the calculation of central tendency measures across ASUs. Using the 

geographical centroid of an ASU minimizes the largest possible spatial distance between the 

centroid and any (unknown) occurrence location within the ASU (Figure 1 (b1)). Considering spatial 

autocorrelation, the value mismatch between the unknown true location and the chosen substitute 

(centroid) has a chance of being limited as well. However, central tendency values (e.g. mean or 

median) of the variable value within the ASU are a better alternative for minimizing the value 

mismatch, as they limit the potential value distance directly rather than indirectly through spatial 

distance (Figure 1 (b2)). Although the value mismatch cannot be eliminated completely, using 

central tendency values lowers the probability of introducing extreme values or outliers. In 

accordance with previous studies (Park & Davis, 2017), we thus suggest to use central tendency 

values as substitutes wherever possible. However, when the ASU size is very small (e.g. 

0.25° × 0.25°) or the environment within the ASU is very homogenous, geographical centroids can 

work as good substitutes. In this case, it is worth comparing the variables’ values from the centroid 

locations with those from available occurrence locations. If the centroids lead to value outliers, 

central tendency values should be used instead or the outliers discarded. Of course, this assumes 

that only a fraction of the available records consists of un-precisely recorded location data. 

When using a limited number of ASU centroids in addition to precise locations, there are two critical 

aspects that need to be considered. Firstly, these coarse centroids are typically assigned the same 

weight as the precise location by the ENMs, which may result in a distorted model of the spatial 

distribution of the species. This could be ameliorated by down-weighting centroid locations, 

provided that the chosen modelling algorithm allows for that. Secondly, for each ASU, only one 

centroid record will be kept by the ENMs. As a consequence, regions with only one record are 

treated the same as regions with several records, and the abundance information (if available at 

all) is neglected. It has been shown that a mixture of precise and centroid-based data would be 
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more robust against the issues demonstrated in this work (Collins et al., 2017), but to what degree 

and how the ratio of the two data types affect the robustness needs to be clarified in future studies. 

It should be noted that the insights gained here only apply to models built with continuous 

variables. Categorical predictors like land use classes typically show sharp edges on the map, so that 

even small differences in the spatial location of occurrence records can lead to dramatically 

different values being assigned to them. Thus, it seems reasonable to assume that models built with 

categorical variables would be affected more strongly by ASU size, but further investigations are 

needed to confirm this. Similarly, all our analyses were conducted at an intermediate (sub-

continental) spatial scale, as this is the scale where ASU centroids are most likely to be used. Further 

research is needed to verify whether the conclusions drawn from this can be transferred to coarser 

or finer scales. 

5 Conclusions 

Whether ASU centroids can be a viable surrogate for precise occurrence locations depends on the 

ASUs’ sizes and how heterogeneous they are in terms of environmental explanatory variables. For 

instance, in the northern German flatlands, where ASUs are small and the environment comparably 

homogenous, the use of centroid locations is much less of a problem than in the alpine regions of 

France, where ASUs are large and environmental gradients steep. If possible, central tendency 

values should be considered as a more robust alternative. As our results suggest that effects of 

using ASU centroids outweigh effects of grain size, it is important for modellers to recognize this 

source of error. In order to enable researchers to assess whether the use of centroid locations is 

appropriate for a specific project, new methods and guidelines need to be developed.  
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Appendix S1. Administrative Spatial Unit of Germany and France 

 
Figure S1.1. The NUTS 3 administrational units of Germany and France, that served as test extent. The 
same virtual species as in the main part of the manuscript was applied for these areas. For both Germany 
and France, 400 presence-absence locations were drawn, and only presence locations were selected. For 
France, the average area of NUTS 3 counties is about 6000 km2. For Germany, it is 1200 km2. 
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Appendix S2: Generation of the Virtual Species 

For the generation of the virtual species, we used the R package: ’virtualspecies’ version 1.4-2 for 

R version 3.4.2, following the tutorial available at  http://borisleroy.com/files/virtualspecies-

tutorial.html. 

Step 1. We acquired 19 bioclimatic variables from https://worldclim.org/data/worldclim21.html, of 

the 30 s grain size (see the website “bio 30s”, Fick & Hijmans, 2017 ). The names and explanations 

of these 19 variables can be found in Appendix 3 or at https://worldclim.org/data/bioclim.html. 

We downloaded these 19 bioclimatic variables, and cropped them to the European extent. For that, 

we applied a rectangular mask with the extent of -11 to 35°E, 35 to 65°N, excluding the African 

continent. The cropped data was converted from GeoTiff to *.asc raster files.  

 
Figure S2.2. The extent that the virtual species was generated with. The value shows environmental 
suitability for the virtual species. Low suitability means values close to 0, and high suitability to 1. 

 

Step 2. Calculate spatial correlation among these 19 bioclimatic variables, see Appendix 3 for the 

Pearson’s correlation coefficient table. Based on that (|Pearson’s r|<0.7), we selected three 

bioclimatic variables as the basis of the virtual species: Bio1 (Annual Mean Temperature), Bio12 

(Annual Precipitation), Bio15 (Precipitation Seasonality).  

Of course, for most of species distribution models, more explanatory variables are required. For 

this virtual species we only chose three variables to keep data process simple.  

http://borisleroy.com/files/virtualspecies-tutorial.html
http://borisleroy.com/files/virtualspecies-tutorial.html
https://worldclim.org/data/worldclim21.html
https://worldclim.org/data/bioclim.html
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Now we plot these three variables (1) to see the value range and general pattern of the value 

distribution, and (2) to make sure the unit of the bioclimatic variables layers are the same as the 

virtual species generation process (the equations). Note that for Annual precipitation (Figure S2.2 

B), the very high value (in green) in the north probably occurs in winter, different from that of the 

southern part. 

 
Figure S2.3 Overview of the three explanatory variables used to construct the virtual species. 
a) Bio1 = annual mean temperature, b) Bio12 = annual precipitation, c) Bio15 = precipitation seasonality. 

 

Step 3. Set the response curve for each variable using the formatFunctions() command and 

generate the virtual species using generateSpFromFun(): 

my.parameters <- formatFunctions(bio1 = c(fun = 'dnorm', mean = 8, sd = 3), 

                                 bio12 = c(fun = 'dnorm', mean = 800, sd = 150), 

                                 bio15 = c(fun = 'dnorm', mean = 40, sd = 30)) 

species1 <- generateSpFromFun(raster.stack = my.variables, 

                                  parameters = my.parameters, 

                                  formula = "bio1 * bio12 * bio15") 

Here I just multiply these three explanatory variables together as the formula. Actually, it is not so 

different from adding them together. 

Our aim of generating a virtual species is to test our hypotheses, to run ENMs with a known species. 

For running ENMs, we do not want a virtual species which occupies every corner across our study 

area, nor a species only with very sparse distribution. Those response curves were thus defined and 

adjusted. 
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Figure S2.4. Response (curves) to the three bio-climate variables defined for the virual species. For Annual 
Mean Temperature, the X-axis was multiplied by 10. It does not affect the virtual species, only for 
presentation here. 

 

Step 4. Set alpha and beta values needed for converting the continuous environmental suitability 

map into a binary presence-absence map. Following the recommendations in the tutorial to achieve 

a reasonable distribution map, we set them to: beta = 0.5, alpha = -0.09 

beta controls the inflexion point, beta and alpha together define the shape of the transformation 

curve. As shown by Figure S2.2, the environmental suitability is actually with logistic values, ranging 

from 0 to 1. To get a binary presence-absence map, some kind of transformation method is needed. 

The parameters alpha and beta here are for this purpose: defining a transformation curve instead 

of a single value as threshold. Theoretically, beta can be of any value between 0 and 1, in our case 

we set it at 0.5, so the inflexion point is in the center of the logistic value range. 

See also the explanation from the tutorial of Virtual species: “a lower beta will increase the 

probability of finding suitable conditions for the species (wider distribution range). A higher beta 

will decrease the probability of finding suitable conditions (smaller distribution range)”. 

alpha drives the ‘slope’ of the curve: e.g. alpha = -1, it is a linear transformation curve; alpha=-

0.00001, the transformation curve is almost like a threshold curve. We set alpha = -0.09, it is also 

somehow a medium level of slope. 
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For more information: http://borisleroy.com/files/virtualspecies-tutorial.html#introduction-why-

should-we-avoid-a-threshold-conversion, see also (Meynard & Kaplan, 2013). 

Step 5. Draw occurrence locations. This was done by a simple function available from Virtual 

Species package, using the command sampleOccurrences, type="presence-absence". For each 

rectangular region, about 60 presence locations were achieved. 

Three rectangular regions at size of 5°×5° were chosen. Up to date, there are not really golden rules 

available regarding the ideal size of study area. To conduct the two factorial design, we need at 

least three replicates. In our case, to get three rectangular regions fitting our criterion across 

Europe, there were not many choices. We set the size of the rectangular regions at 5°×5°, as seen 

in Figure 2.  It can also be 6°×6° or larger, but the main problem here is can they all fit in across the 

extent of Europe.  

In addition, by setting the size at 5°×5°, the number of ASUs we got was 25 (large), 100 (medium), 

400 (small). If we use 6°×6°, it would be 36 (large), 144 (medium) and 576 (small). Apparently, the 

former one is more intuitive and easier to grasp. 

Step 6. Export the continuous suitability map (Figure S2.2), the presence-absence map, and true 

occurrence records to be used as the basis for the analyses. 

 

References 

Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315. 

Meynard, C. N., & Kaplan, D. M. (2013). Using virtual species to study species distributions and model 
performance. Journal of Biogeography, 40, 1-8. 

 

  

http://borisleroy.com/files/virtualspecies-tutorial.html#introduction-why-should-we-avoid-a-threshold-conversion
http://borisleroy.com/files/virtualspecies-tutorial.html#introduction-why-should-we-avoid-a-threshold-conversion
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086


72 
 

 

Appendix S3. Pearson's Correlation Coefficient 
 
Table 3.1. Pearson's correlation coefficient (calculated for the rectangular region defined in Appendix 2) 
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Bio 1 1.00                   

Bio 2 0.60 1.00                  

Bio 3 0.74 0.58 1.00                 

Bio 4 -0.45 0.04 -0.77 1.00                

Bio 5 0.86 0.79 0.46 0.04 1.00               

Bio 6 0.87 0.28 0.83 -0.81 0.51 1.00              

Bio 7 -0.22 0.37 -0.52 0.94 0.30 -0.67 1.00             

Bio 8 -0.01 0.01 -0.42 0.55 0.22 -0.29 0.51 1.00            

Bio 9 0.82 0.55 0.80 -0.57 0.65 0.82 -0.35 -0.44 1.00           

Bio 10 0.90 0.70 0.46 -0.01 0.99 0.58 0.21 0.23 0.66 1.00          

Bio 11 0.94 0.45 0.87 -0.73 0.65 0.98 -0.53 -0.24 0.86 0.70 1.00         

Bio 12 -0.16 -0.39 0.15 -0.49 -0.46 0.18 -0.59 -0.47 0.03 -0.42 0.07 1.00        

Bio 13 -0.08 -0.29 0.15 -0.40 -0.32 0.18 -0.47 -0.41 0.09 -0.29 0.09 0.93 1.00       

Bio 14 -0.33 -0.50 -0.01 -0.37 -0.60 0.00 -0.52 -0.29 -0.24 -0.56 -0.12 0.81 0.60 1.00      

Bio 15 0.30 0.35 0.15 0.09 0.42 0.14 0.20 -0.02 0.34 0.39 0.21 -0.16 0.17 -0.63 1.00     

Bio 16 -0.09 -0.31 0.15 -0.43 -0.35 0.19 -0.51 -0.42 0.09 -0.32 0.09 0.95 0.99 0.63 0.13 1.00    

Bio 17 -0.29 -0.48 0.03 -0.41 -0.58 0.05 -0.55 -0.34 -0.18 -0.54 -0.07 0.85 0.64 0.99 -0.61 0.67 1.00   

Bio 18 -0.66 -0.61 -0.45 0.08 -0.73 -0.45 -0.14 0.11 -0.68 -0.72 -0.55 0.60 0.49 0.76 -0.42 0.51 0.73 1.00  
Bio 19 0.17 -0.15 0.42 -0.63 -0.15 0.46 -0.63 -0.63 0.42 -0.11 0.38 0.86 0.88 0.53 0.12 0.89 0.58 0.15 1.00 

Numbers in yellow: Pearson' correlation coefficient 
higher than 0.70.       
Variables in orange: Chosen variables for generating 
the virtual species.       
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Full names of the bioclimate variables 

Bio 1 = Annual Mean Temperature 
Bio 2 = Mean Diurnal Range (Mean of monthly (max temp - min 
temp)) 

Bio 3 = Isothermality (Bio 2/Bio 7) (×100) 

Bio 4 = Temperature Seasonality (standard deviation ×100) 

Bio 5 = Max Temperature of Warmest Month 

Bio 6 = Min Temperature of Coldest Month 

Bio 7 = Temperature Annual Range (Bio 5-Bio 6) 

Bio 8 = Mean Temperature of Wettest Quarter 

Bio 9 = Mean Temperature of Driest Quarter 

Bio 10 = Mean Temperature of Warmest Quarter 

Bio 11 = Mean Temperature of Coldest Quarter 

Bio 12 = Annual Precipitation 

Bio 13 = Precipitation of Wettest Month 

Bio 14 = Precipitation of Driest Month 

Bio 15 = Precipitation Seasonality (Coefficient of Variation) 

Bio 16 = Precipitation of Wettest Quarter 

Bio 17 = Precipitation of Driest Quarter 

Bio 18 = Precipitation of Warmest Quarter 

Bio 19 = Precipitation of Coldest Quarter 
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Appendix S4 Calculations  
 
Model performance at different grain sizes 

 
Figure S4.5. Model performance at different grain sizes, with true occurrence locations. Region 1, 2 and 3 
are the rectangular regions as shown in Figure 2. Resolution does affect model performance. However, 
this effect is very small compared to the effects resulting from varying pseudo-ASU sizes. The virtual 
species was generated at 0.5 arc-min. With true occurrence locations and this 0.5 arc-min grain size, the 
model performance is the best.  
 

 

 

Two-way ANOVA 
 

Table 4.2 Two-way ANOVA results 
                  Df  Sum Sq Mean Sq F value   Pr(>F)     

Grain size         3 0.00778 0.00259   0.876    0.467     

ASU                2 0.09716 0.04858  16.414 3.22e-05 *** 

Grain size:ASU     6 0.00997 0.00166   0.561    0.757     

Residuals         24 0.07103 0.00296                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Shapiro-Wilk normality test 

 

data:  aov_residuals 

W = 0.96511, p-value = 0.3074 
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Overprediction ratio, calculated with different thresholds. 
 

 
Figure S4.6. Relative over-prediction ratio (ENM model results vs.true virtual species occurrence) for 
models built on point locations as well as centroids of differently sized regions, calculated according to 
thresholds of a) Equal training sensitivity and specificity logistic threshold (eqSS), b) Maximum training 
sensitivity plus specificity logistic threshold (MaxSSS) and c) 10 percentile training presence logistic 
threshold (10 percentile). 
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Abstract 

Epidemiological models (EMs) are widely used to predict the temporal outbreak risk of vector-

borne diseases. EMs typically use the basic reproduction number (R0), a threshold quantity, to 

indicate risk. To provide an overall view of the risk, these model outputs can be transformed into 

spatial risk maps, using various aggregation methods (e.g. average R0 over time, cumulative number 

of days with R0 > 1). However, there is no standardized methodology available for this. Depending 

on the specific aggregation methods used, the yielded spatial risk map may have considerably 

different interpretations. Additionally, the method used to visualize the aggregated data also 

affects the perceived spatial patterns. In this review, we compare commonly used aggregation and 

visualization methods and discuss the respective interpretation of risk maps.  

Research publications using epidemiological modelling methods were drawn from Web of Science. 

Only publications containing maps of R0 transformed from EMs were considered for the analysis. 

An example EM was applied to illustrate how aggregation and visualization methods affect the final 

presentations of risk maps. 

Risk maps can be generated to show duration, intensity and spatio-temporal dynamics of potential 

outbreak risk of VBDs. We show that 1) different temporal aggregation methods lead to different 

interpretations; 2) similar spatial patterns do not necessarily bear the same meaning; 3) 

visualization methods considerably affect how results are perceived, and thus should be applied 

with caution. We recommend mapping both intensity and duration of the VBD outbreak risk, using 

small time-steps to show spatio-temporal dynamics when possible. 
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Introduction 

Vector-borne diseases and risk mapping approaches 

Vector-borne diseases (VBDs), causing more than 700,000 deaths each year (WHO, 2017), have 

become a huge concern for public health. The vectors include different groups of arthropods such 

as mosquitoes, ticks, or sandflies, while the hosts are typically vertebrate animals including humans. 

Many vector-borne pathogens have been limited to specific areas, e.g. malaria epidemics in Africa 

(Taffese et al., 2018). With global change, however, vector-borne pathogens can increasingly invade 

naïve populations of vectors and hosts in formerly disease-free areas, causing disease outbreaks 

and leading to new challenges in disease surveillance and control (Caminade et al., 2019; Gage et 

al., 2008; Myers et al., 2000; Tatem et al., 2006). International air travel is a major contributor to 

the global spread of pathogens. International cargo transportation facilitates the transport of 

vectors to regions that were previously not reachable due to dispersal limitations (Thomas et al., 

2014), which now poses threats through the introduction of related pathogens. Climate change 

impacts the transmission of pathogens, e.g. affecting the length of the transmission season, or 

enabling diseases to emerge in areas where they could not survive before (ECDC, 2019; WHO, 

2017). Consequently, the chances of VBDs emerging in novel places are increasing. To better 

monitor and control VBDs, it is essential to know where and when a VBD can potentially occur; and 

if possible, how severe the situation is.  

Regarding these questions, a variety of modelling approaches have been introduced and applied. 

Generally, current modelling studies can be categorized by their use of either correlative or process-

based models, either of which has pros and cons (Tjaden et al., 2018). The spatial aspects of risk are 

typically modelled using correlative ecological niche models (also known as species distribution 

models) based on species (vectors, virus, infected vectors or hosts) occurrence records and 

respective explanatory variables describing their environment (Escobar & Craft, 2016; Peterson, 

2014). The explanatory variables can include a broad range of factors such as bioclimatic variables, 

land use, and any other variables that may affect spatial distribution patterns. The outputs of the 

ecological niche models are maps of the potential spatial distribution of the target species. As the 

explanatory variables are typically based on long-term (e.g. yearly or decadal) average data, 

ecological niche models are mainly applied for gaining estimates of long-term (decadal) trends in 

risk for large (continental) areas. Ecological niche models are well-accepted for their good 

performance on spatial distribution mapping. However, correlative models typically do not resolve 

the short-term dynamics of real-world outbreaks. This is where the process-based epidemiological 

models discussed in this paper promise an advantage. 

Epidemiological models (EMs, also referred to as mechanistic or mathematical models, 

compartmental epidemic models or compartmental models (Siettos & Russo, 2013)) aim to identify 

risks at fine temporal resolution at a specific location. EMs can assess the course of an outbreak by 

simulating the processes that drive the transmission cycle of the disease. EMs do not require 

occurrence records of the investigated disease or pathogen when constructing the model. Instead, 
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they are dependent on detailed knowledge of the respective processes upon which they are based. 

One major environmental variable that often drives these processes is ambient temperature 

(Tjaden et al., 2018). 

The temporal resolution of an EM depends on the available data for temperature or other key 

driving forces (Calistri et al., 2016). It can be annual (Wu et al., 2013), monthly (Hartemink et al., 

2009), biweekly (Hartley et al., 2012), or even finer. Spatially, these models are often limited to a 

specific place or region where processes are well understood (Du et al., 2017; Ferguson et al., 2016). 

Nevertheless, EMs are increasingly used to estimate spatial aspects of risk as well (Tjaden et al., 

2018). In this study, we review how values of R0 obtained from EMs can be transformed into 

meaningful maps. We demonstrate that the interpretation of such maps differs depending on the 

underlying model algorithm and the chosen method of aggregation. The visualization methods 

need to be chosen carefully as well. 

The basic reproduction number (R0): a threshold parameter 

The basic reproduction number (R0) is a characteristic value for epidemiological assessments 

(Hethcote, 2000; Ma & Li, 2009; Smith et al., 2014). It was originally defined as the expected number 

of secondary cases caused by a single infected individual (host) during its lifetime within a 

susceptible population (Diekmann et al., 1990; Dietz, 1993; Liu et al., 2018). The investigated 

disease can spread when R0 > 1. Otherwise, it cannot (Diekmann et al., 1990; Hethcote, 2000; Liu et 

al., 2018; Smith et al., 2014). For an infectious disease, R0 can be used to determine the herd 

immunity threshold that is required to prevent it from further spreading (Dietz, 1993; Guerra et al., 

2017; Massad et al., 2001). R0 has also been used as an indicator for the spreading speed of diseases 

(Ridenhour et al., 2014). 

R0 can be measured directly through disease surveillance systems (Marques et al., 1994) or 

estimated via EMs (Delamater et al., 2019; Ridenhour et al., 2018; Siettos & Russo, 2013). For VBDs, 

however, R0 is difficult to assess directly from surveillance systems due to the significant workload 

required to conduct both monitoring and surveillance and to determine the complexity of 

transmission patterns of VBDs (Delamater et al., 2019). Instead, estimates of R0 are often based on 

EMs. These estimates are generally also called R0, although it must be noted that they may differ 

considerably from the original definition in several aspects (Delamater et al., 2019; Li et al., 2011). 

While they all share the threshold at R0=1, absolute values of R0 are not comparable between 

different types of EM (Dietz, 1993; Heffernan et al., 2005; Li et al., 2011; Yang, 2014). For instance, 

values of R0 calculated for a VBD with the popular next generation matrix (NGM) approach 

represent the mean number of infections in both vectors and hosts per generation (Martcheva, 

2015). This is different from the original definition of R0 that refers to the number of individuals 

(hosts) that get infected by a single infected host throughout its life time. Only the survival function 

approach reliably calculates values of R0 that are consistent with this definition (Li et al., 2011). 
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Generating spatial risk maps from epidemiological models: temporal aggregation and 

visualization 

For the calculation of R0 for VBDs, EMs typically use time series of temperature data for specific 

locations, which are acquired at daily resolution from weather stations (Cadar et al., 2017; Cheng 

et al., 2018; Hartemink et al., 2009; Holy et al., 2011; Mordecai et al., 2017; Racloz et al., 2008). This 

enables capturing of weather extremes and assessment of temporal risk fluctuations. To assess the 

spatial aspects of risk, time series of point-wise weather station data can be replaced with time 

series of spatial temperature data representing the weather conditions across the whole study area 

(typically stored as geographical raster data). The series of spatial R0 maps derived from this 

provides spatio-temporal predictions of transmission risk. Since this can result in an unpractically 

large number of figures (e.g. 365 maps for one year of daily-resolution data), some form of temporal 

post-modelling aggregation of the series of R0 maps is required. Careful attention must be given 

during this process, as the method for temporal aggregation of raw EM outputs into a single map 

affects the interpretation and usefulness of the final figure. 

In addition to temporal data aggregation methods, visualization methods affect the final 

presentation of risk maps as well. After all, as every map necessarily is a distorted model of the real 

world (Monmonier, 1991), decisions on how to distort reality for the benefit of the viewer should 

be made consciously and coherently. The first thing to consider here is whether the raw (temporally 

aggregated) data should be displayed as an unclassed map, where each data value corresponds to 

a unique point on a continuous color gradient. The alternative is a classed map, where the range of 

raw data values is broken up into a limited number of groups or classes, each of them represented 

by a unique color. How many classes to use and how to define them are necessary follow-up 

questions in this case (Slocum et al., 2009 ). Finally, an appropriate color scheme needs to be found 

(Brewer, 1994). 

In this study, we investigate how the outputs of R0-based EMs have been transformed into spatial 

risk maps in the literature. Commonly used methods are identified and illustrated using an 

established NGM-based EM as an example. We evaluate the strengths and weaknesses of the 

different methods and make recommendations for both useful methods for temporal aggregation 

and informative visualization schemes. With these analyses, we raise awareness and contribute to 

the development of a more standardized methodology for future usage. 
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Methods 

A systematic literature search was performed via Web of Science (Clarivate Analytics, 2019) topic 

searching, using core collections only (last accessed on January 17th, 2020). Two sets of intentionally 

broad key word combinations were applied: 1) “vector AND borne AND basic AND reproduct*” and 

2) “basic AND reproduct* AND climate AND change AND (risk OR map OR spatial OR distribut* OR 

transmit*)”, resulting in 457 publications (Figure 1). 

 

Figure 1. Flowchart of the article selection process concerning spatio-temporal risk maps produced with 

epidemiological models. First, only articles published in peer-reviewed scientific journals were considered. 

Articles that were not written in English and those where screening of abstract and/or title indicated that 

they were outside the scope of this review were removed. The remaining articles were screened visually 

for the existence of R0-based maps in the full-text downloads, resulting in 17 articles fitting the inclusion 

criteria. The same procedure was then applied to the literature referencing/referenced in these articles, 

revealing another nine relevant literature records. 

The publications were filtered via following criteria: they should be 1) research articles (as reviews 

and book chapters may cause double counting), 2) written in English and 3) include spatial risk maps 

(showing R0) that were generated from process-based EMs (Figure 1).  

Among these 457 publications yielded from the primary search, 416 were of article type and written 

in English. Another 46 articles were identified as off-topic based on title or abstract. The remaining 

370 articles were downloaded for manual full-text screening for the presence of maps representing 

R0. Manual screening was chosen as our primary selection method for the simple reason that maps 
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are difficult to find through search strings but easily recognizable for the human eye. This procedure 

yielded seventeen articles.  

To broaden the search even more, the literature referenced by these 17 research articles as well as 

the literature citing them were screened and tracked manually, resulting in nine more articles that 

fit the inclusion criteria. In consequence, a total number of 27 research articles was analyzed in this 

review. 

The publications were analyzed according to the following details: 1) the temporal aggregation 

method applied to summarize raw R0 values over time; 2) the visualization method used to display 

the aggregated model output data; 3) the method used for estimating R0 (i.e. NGM or probabilistic); 

4) the data source (e.g. time series of daily temperature data or satellite images) that was used by 

the EM; and 5) the specific VBD investigated and the respective study area. 

To illustrate the differences among the recorded transformation methods, these methods were 

demonstrated with an NGM-based EM developed by Rubel et al. (Rubel et al., 2008) for Usutu virus 

and previously used for a cross-discipline model comparison (Cheng et al., 2018). The model was 

run using rastered 0.25 degree resolution daily temperature data for 2018 from the E-OBS data set 

(Haylock et al., 2008). With the same original EM output, a series of spatial risk maps were 

generated using different spatial transformation methods. More details about the NGM-based EM 

applied are provided in Supplement S1. 

Results 

Summary of recorded methods for temporal aggregation and visualization 

Overall, the NGM method was applied in 19 studies, whereas the remaining 8 studies followed a 

probabilistic approach (see Supplement S2). From the 27 research papers analyzed in this review, 

two types of temporal aggregation methods for the creation of maps from R0 values were recorded 

(Figure 2 a): the averaged intensity (mean values of R0 over time) on the one hand and the duration 

of the at-risk state (number of days with R0 > 1) on the other hand. In all but three studies, some 

kind of temporal aggregation was applied. Three publications used both averaged intensity and the 

duration of the potential risk in parallel (Brugger & Rubel, 2013; Cheng et al., 2018; Ng et al., 2017). 

The most frequently used method was the averaged intensity (Figure 2 a).  Some form of averaging 

was performed in 22 studies, using annual, seasonal (transmission season), monthly, biweekly, or 

roughly weekly (8 days) averages of R0 (Figure 2 b). All of the aggregated NGM-based EMs applied 

this method. In some cases, average values of R0 were calculated indirectly, e.g. by first calculating 

the relationship between R0 and temperature, then calculating the annual average R0 based on 

long-term average temperature data (Cordovez et al., 2014; Kakmeni et al., 2018; Wu et al., 2013). 

Only five studies included maps that show the duration of the at-risk state (R0 > 1), three of which 

also show average R0 in parallel. Among these, two studies displayed the total number of days with 

R0 > 1 throughout the study period (Brugger & Rubel, 2013; Cheng et al., 2018), while the remaining 

three (Holy et al., 2011; Mordecai et al., 2017; Ng et al., 2017) mapped the number of (consecutive) 
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months with R0 > 1. One study (Racloz et al., 2008) calculated R0 based on monthly mean 

temperatures with no further aggregation. Two further studies only calculated R0 for a single point 

in time, so that no aggregation was necessary for the final map (Hartemink et al., 2011; Moraga et 

al., 2015). 

 

 

Figure 2. Overview of the studies using epidemiological models to produce spatial risk maps for vector-

borne diseases. a) Studies grouped by the temporal aggregation methods applied. Out of 27 total, 19 

studies displayed temporal averages of R0, 2 displayed the duration of the at-risk state (R0 > 1) and 3 more 

showed both. 3 studies did not apply any temporal aggregation method. b) Relationship between temporal 

resolution in input data and final maps. Thickness of the connecting lines is equivalent to the number of 

studies aggregating in this way. c) Temporal resolution of the final maps. 

Among the recorded studies, 13 were based on daily resolution weather data, 10 on monthly data, 

3 on annual mean temperature and 1 on an 8-day resolution satellite data (Figure 2 b). The resulting 

maps typically showed annual (n=14) or monthly (n=9) representations of R0 (Figure 2 c). Seasonal 

(n=4) and sub-monthly (n=2) maps were rarer, and in two cases the time frame represented by the 

maps remained unclear. EMs based on daily resolution data were transformed into final maps of 

bi-weekly, monthly, seasonal or annual resolution. EMs based on monthly resolution data were 

transformed into maps of either monthly or annual resolution. In two cases, coarse resolution 

temperature data was first interpolated to gain daily estimates of R0, which were then aggregated 

again so that the maps met the coarse temporal resolution of the temperature data (Calistri et al., 

2016; Zhang et al., 2017). 

Regarding visualization methods, 9 studies presented unclassed maps with continuous color ramps. 

The remaining 18 studies presented classed maps, 7 of which used a relatively large amount (≥ 10) 

of classes. Averaged intensity maps are typically visualized using diverging color ramps with cold 

colors for R0 < 1 and warm colors for R0 > 1. 
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Exemplary demonstration of common aggregation and visualization methods 

The aggregation methods affect the resulting values and respective interpretations (e.g. intensity 

or duration) across the risk map; the visualization methods, on the other hand, affect the perceived 

map patterns. To illustrate how these two factors affect the final presentation of risk maps, a series 

of figures was derived from the same EM for Usutu virus (Figure 3 and 4). 

 

Figure 3. Temporal aggregation methods: Different spatial risk maps derived from the same NGM-based 

epidemiological model for Usutu virus in Europe, based on gridded daily temperature observations for 

2018. Demonstrating the two common aggregation methods, a total number of 365 daily raw R0 maps 

were transformed into: a) annual average R0, b) average R0 over the transmission season, June – 

September, c) monthly average R0 during the transmission season, d) duration of the at-risk-state (R0 > 1) 

in weeks.  
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Temporal aggregation 

The averaged R0 maps (Figure 3 a, b, c) show the intensity of potential risk averaged over a certain 

time period. The annual average R0 map (Figure 3 a)) portrays the spatial risk pattern, without any 

temporal information on the potential start of the transmission season or when during the year the 

risk is particularly high. The seasonal average R0 map (Figure 3 b)) mainly shows the spatial risk 

pattern as well, although with a larger R0 value range compared with the annual map. As for 

temporal risk information, the seasonal average R0 map has a defined transmission season. The 

series of monthly average R0 maps (Figure 3 c1) - c4)) captures the spatio-temporal risk dynamic, 

and shows a sudden decline of risk at the end of the transmission season. The duration map (Figure 

3 d)) shows the duration of the at-risk state by means of the total number of days with R0 > 1. In 

this example, most parts of Europe show more than 10 weeks of R0 > 1.  

 

Visualization 

We varied visualization settings of Figure 3 a), b) and d), as shown in Figure 4. With certain 

visualization setting, some maps can show very similar spatial patterns, e.g. Figure 4 b1) and c1). 

However, just by changing the value interval, the spatial patterns can certainly differ, e.g. Figure 4 

b2) and c2). On the other hand, maps with different spatial patterns under certain visualization 

settings, e.g. Figure 4 a2), b2) and c2), can also show similar spatial patterns, as seen in Figure 4 a3), 

b3) and c3). 

In addition to the monthly average R0 maps over the transmission season (Figure 3 c)), more 

detailed spatio-temporal risk maps were carried out by using biweekly time-steps (Figure 5). Using 

finer temporal resolution, these maps capture not only the spatial risk patterns, but also identify 

the peak of risk. The overall risk across Europe gradually increases from the beginning of June until 

the first half of August, which is when it begins to drop. Until the second half of September (Figure 

5 h)) the average R0 across Europe is below 1.
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Figure 4. Effects of different visualization methods on the final presentation of the map. All maps were 

derived from the same NGM-based epidemiological model for Usutu virus in Europe, based on gridded 

daily temperature observations for 2018. Three rows show a) annual average R0, b) average R0 over the 

transmission season, June-Sept., and c) duration of conditions with R0 > 1. Three columns show 

classification methods: 1) equal intervals method with fine value intervals and a large number of classes, 

2) equal intervals method with coarse value intervals and a low number of classes and 3) percentile-based 

classification. 
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Figure 5. Biweekly average R0 over the transmission season, June – September. All maps were derived from 

the same NGM-based epidemiological model for Usutu virus in Europe, based on gridded daily 

temperature observations for 2018. 

 

Discussion 

The ultimate purpose of generating risk maps is to show where and when the potential risk of a 

VBD outbreak is high. To achieve this, it is essential to apply appropriate and practical temporal 

aggregation methods when producing these maps with EMs. In this review, we provide a detailed 

comparison of the commonly used aggregation methods, and demonstrate their use with an EM 

for Usutu virus. In addition, we highlight the importance of reasonable visualizations. 

Methods for temporal aggregation of R0 

When transforming the raw EM outputs into spatial risk maps, the purpose of these risk maps needs 

to be considered. In order to monitor the general spatial risk patterns of a VBD, the relative risk 
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might be more important than the absolute value of R0. In this case, long-term (annual or even 

longer) or mid-term (transmission season) average R0 risk maps and the total number of days with 

R0 > 1 can work well. However, to take preventative measures to stop VBD emergence, it is essential 

to know both the spatial and temporal patterns of transmission risk. For this purpose, a series of 

short-term average R0 maps is preferable. For all these applications, is should be borne in mind that 

R0 is calculated under the assumption of a completely susceptible population, i.e. for the early 

stages of a disease event. Furthermore, in the EMs discussed here, R0 is calculated for each cell of 

the spatial raster individually; i.e. there is no simulated spread from one cell to another. 

Consequently, these maps can only be interpreted as a potential for an outbreak to occur. In order 

to predict the actual course and magnitude of an outbreak, much more sophisticated models would 

be needed. 

In the majority of the articles reviewed here, the authors aggregate R0 in time by calculating average 

values over various periods. When applying this method, the primary task is to find a reasonable 

time period to investigate. It is important to note here that while R0 itself is a threshold quantity, 

average R0 is not. While high average R0 (qualify R0 > 1) indicates high risk, low average R0 does not 

necessarily mean that transmission cannot occur. Even if the mean R0 over a certain period is below 

1, there could be several consecutive days or weeks with R0 > 1 which may lead to an outbreak. This 

is especially problematic for long-term or mid-term average R0 maps. Hence, maps based on longer-

term average values of R0 are not useful for determining the presence or absence of risk (let alone 

absolute risk) for ongoing transmission at a given place in the study area. They can, however, be 

useful to estimate the relative spatial differences in risk across the study area (e.g. Figure 3a) and 

b)). The short-term (monthly) average R0 maps provide temporal information together with the 

spatial risk maps, capturing the spatio-temporal risk dynamics (e.g. Figure 3 b), c)). With even 

smaller time steps, averaged R0 values may still be able to reflect the absolute values of R0 

reasonably well. We use a two-week time step as an approximation of the extrinsic incubation 

period (EIP) of Usutu virus in Figure 5. This kind of map can be useful to show the beginning and 

end of a high risk season. In any case, it needs to be kept in mind that absolute values of R0 

calculated by different methods are not comparable (Li et al., 2011), which also applies to average 

values derived from them. For R0 NGM calculated by EMs using the popular NGM method, there is 

the additional complication that the daily R0 NGM is already the geometric mean per generation 

(Dietz, 1993). When averaging the daily R0 NGM using the arithmetic mean, it has the potential to 

show a distorted picture of the real-world situation. Additionally, R0 NGM indicates whether or not 

the intrinsic growth rate r of the investigated VBD is positive, but the relationship between R0 and 

r is not explicit and differs depending on the respective NGM (Diekmann et al., 2010; Dietz, 1993). 

Therefore, the average R0 NGM maps should be interpreted with special caution, and those from 

different NGMs are not comparable. 

The less frequently applied accumulation-based methods do not treat the threshold quantity R0 as 

a continuous value. Instead, they show the spatial risk pattern as the duration of at-risk states (such 

as number of days with R0 > 1). This method leads to results that are comparable across different 
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model types (including EMs built with different NGM) as long as they share the threshold at R0 = 1. 

The drawback of this method is that it does not take into account the intensity of risk: a day with 

R0 = 1.1 and a day with R0 = 111 would both be equally counted as one day of R0 > 1, though higher 

R0 values generally indicate higher theoretical risk (Diekmann et al., 2010). In certain cases, a period 

with R0 being continuously above 1 could last for months across the whole study area, e.g. Figure 3 

d). However, for disease control measures, it is also important to know where the potentially most-

severely affected areas will be. Since this method ignores the quantity of R0, valuable information 

is lost. Consequently, solely relying on this method would not be sufficient in many scenarios. 

The average R0 maps and the maps showing the total number of days with R0 > 1 are not comparable 

in terms of risk, as one shows risk intensity while the other shows duration. In our test case, these 

two types of maps show similar patterns (Figure 3 b) and d)), but this will not always be the case 

(see Figure 4 b2) and c2)). These two types of maps should not be interpreted the same way. For 

instance, the high correlation between the transmission season average R0 map and the total 

number of days with R0 > 1 map indicates that where average R0 is higher, the duration of risk is 

also longer, or vice versa. This does not necessarily mean one can replace or resemble the other. 

As the EMs are typically driven by temperature variables, it is not surprising that the average R0 is 

correlated to risk duration, i.e. a long duration of high temperature would probably result in both 

a high average R0 and a longer transmission season. Allowing for other parameters (such as 

human/vector population density) to vary in space as well may break this perceived pattern. 

Visualization methods 

In the vast majority of the reviewed studies, the authors opted for a classed map rather than one 

showing continuous values. This is in line with common practice in geography, where classed maps 

are often preferred based on the argument that the reader would not be able to precisely locate a 

pixel’s color value on a continuous color bar in the legend anyway (Slocum et al., 2009 ). A classed 

map thus provides a simplification that helps the reader to estimate which numerical values an area 

of a certain color represents. Given that several of the articles reviewed here have classed maps 

with 10 or more classes, it seems worth pointing out that this effect is lost if the value intervals are 

too small. This leads to a large number of classes that cannot be distinguished visually any more 

(Figure 4 a1), b1), c1)), making these maps are visually equivalent to an unclassed map. However, 

they do not share their main advantage of each color value in the map representing only one unique 

data value. If a classed map is being produced, the number of classes and the color scheme of the 

legend should be chosen in a way that enables the reader to easily distinguish the different classes. 

Modern map making software supports a variety of methods that can be used to classify different 

types of data for display in a map (Slocum et al., 2009 ). The most straight-forward option for 

aggregated R0 data is the classic “equal intervals” approach, where the range of values is broken up 

into value intervals of equal size. It is easy to calculate and the legend can be understood intuitively. 

However, the chosen size of the intervals (or: number of classes) strongly affects how the presented 

data is being perceived by the reader. For instance, Figure 4 b1) and c1) show two different 
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temporal aggregates of the same model (transmission season average and duration of the 

conditions with R0 > 1, respectively). They are being presented using equal intervals with a large 

number of classes and are perceived as showing very similar spatial patterns. Figure 4 b2) and c2) 

show the same data again, using the same equal intervals methods but with less classes. Due to 

how the values are distributed in the two data sets, the perceived patterns are now dramatically 

different. In contrast to this Figure 4 a1) and b1) show an average of R0 over the whole year and the 

transmission season respectively. Using the exact same value intervals for moth maps, the different 

patterns are clearly visible. The same is true for the equivalent maps using a lower number of 

classes (Figure 4 a2) and b2)). Another challenge is to define reasonable limits for the area to be 

investigated with this method, as the geographical extent affects the value range and value 

distribution of the pixels within the extent, which will in turn affect the classification of the pixels. 

The equal intervals approach can thus be useful to compare average R0 for different time periods 

within the same model (e.g. annual vs. transmission season or July vs. August). Its use for 

comparisons across temporal transformation methods or between models from different studies is 

severely limited, though. 

In order to enable comparisons across different models, quantile-based classification should be 

considered as a useful alternative to the equal intervals method. Here, the data values are first 

ranked and then grouped so that an equal number of data points falls into each class (Slocum et al., 

2009 ). In our example, the annual and transmission season average of R0 as well as the duration of 

the conditions with R0 > 1 were classified into five quantiles, expressed as percentiles in the legend 

(Figure 4 a3), b3) and c3)). Each of them shows an estimate of relative risk across the study region. 

Through that, comparisons across different studies using different methods are being made 

possible. Similarly, this method could enable a cross-disease overview, i.e. though the absolute 

values of R0 for different VBD are not comparable, it is still helpful to know which VBD is more likely 

to occur in a certain area. In our test case, the two classed risk maps (Figure 4 a3) and b3)) show 

virtually identical patterns, which can be explained by the general correlation between the annual 

mean temperature and the mean temperature over the warmest quarter (transmission season). 

Even the duration based map (Figure 4 a3), b3) and c3)) looks very similar. However, this does not 

mean that one map can replace the other. Those two maps still cover different time-periods and 

have different interpretations. For average R0 over transmission season, a transmission season is 

defined. It should also be noted that high relative risk does not necessarily mean high definite risk. 

For instance, were the map of average R0 over the second half of September (Figure 5 h) 

transformed into a quantile-based risk map, all values within the highest quantile would indeed still 

be below 1. For the sake of clarity, the data values corresponding to the class limits should thus be 

noted in the legend, along with or even replacing the percentile labels.  

When the quantiles method or any other method that does not lead to regular value intervals (such 

as “natural breaks” or “optimal”, (Slocum et al., 2009 ) is used, it is important to report how the 

classification was achieved. Not only would the reproducibility of the study be limited – under 

certain circumstances, the wary reader may even suspect a map to be manipulated (Monmonier, 
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1991). Only when their thresholds are reasonable, the risk maps are interpretable. Unfortunately, 

several of the studies reviewed here are incomplete in this regard. 

Temporal dynamics 

The temporal resolution of risk maps is typically not a free choice. Instead, it is very often dictated 

by the input data. For instance, with daily resolution temperature data as an input, it is easy to 

produce maps that show the duration of conditions with R0 > 1 as well as and risk maps with small 

time steps. There are plenty of options to aggregate fine temporal resolution to coarse ones. 

However, this does not work in the opposite direction. When the input data is annual average 

temperature, it is not possible to produce duration maps, nor a seasonal averaged intensity of risk. 

Interpolating monthly data into daily values may work if the goal is a map of long-term average R0 

(Calistri et al., 2016; Zhang et al., 2017), but it is certainly not a useful method for estimating the 

number of days with R0 > 1.  

Summary and suggestions 

In order to prepare risk maps for potential outbreaks from the raw output of EMs, two main steps 

are required. First, one or more appropriate methods for temporal aggregation of R0 values need 

to be chosen. For a summarizing spatial overview, both maps of duration and average long-term 

intensity of risk can be useful. Strictly speaking, however, only the duration-based approach leads 

to results that are comparable across different types of EMs. This method also has a rather straight-

forward interpretation, making it the best choice for predicting areas of potential disease 

emergence in non-endemic regions so that preventive measure can be taken. A series of maps 

based on short-term average R0, on the other hand, can be useful to determine the time and place 

of peak transmission potential within endemic areas.  

The second important, but often neglected aspect is how the maps are visualized. Unclassed maps 

avoid any loss in information, but are often difficult to interpret due to the lack of abstraction. By 

using different classification methods with the same data, the resulting maps can show very 

different patterns. Among the methods available, the equal intervals approach is the obvious 

straight-forward solution. However, quantile-based classification approach results in more 

meaningful maps and better comparability across different studies. When classification methods 

other than equal intervals are used, this needs to be documented properly, if only to avoid the 

suspicion of purposeful manipulation. 

Ultimately, there is always a trade-off to be made between minimizing information loss, facilitating 

understanding and minimizing the amount of maps. If in doubt, we recommend to combine 1) an 

overview map of the duration of conditions with R0 > 1, visualized using quantile-based 

classification with a 2) series of maps showing the change of short-term (monthly, bi-weekly) 

average R0 throughout the transmission season, visualized using the same set of equal intervals for 

the entire set. Preferably, this would be accompanied by a digital supplement containing the 

(aggregated) data stored in a commonly used geodata format such as GeoTIFF or NetCDF. 
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Supplement S1 

Introduction 

In this study, a Next Generation Matrix (NGM) based Epidemiological Model (EM) was applied to 

test the transformation method recorded. The model was originally built by (Rubel et al., 2008) and 

adapted by (Cheng et al., 2018) for an interdisciplinary model comparison approach.  

This model concerns a vector-borne disease caused by a flavivirus, Usutu virus. The main vectors 

are Culex mosquitoes. The common hosts include birds, dogs, horses, bats, humans, but mostly 

black birds (Turdus merula). Consequently, in the model, only mosquitoes and black birds are taken 

into account.  

Model description 

Each health state of mosquitoes / black birds can be described by Ordinary differential equations 

(ODEs).  

Population growth of black birds: 

𝑑𝑁𝐵
𝑑𝑡

= 𝑟𝐵𝑁𝐵 = 𝑏𝐵𝑁𝐵 −𝑚𝐵𝑁𝐵  

𝑁𝐵 is the total number of black birds, 𝑟𝐵 is the population growth rate, 𝑏𝐵is the birth rate and 𝑚𝐵 

is the mortality rate (B stands for black birds). 

Follow logistic population growth (density dependent model): 

𝑑𝑁𝐵
𝑑𝑡

= 𝑟𝐵 (1 −
𝑁𝐵
𝐾𝐵
)𝑁𝐵 

As                                                                         𝑟𝐵 = 𝑏𝐵 −𝑚𝐵 

it can be written as:                    

𝑑𝑁𝐵
𝑑𝑡

= (𝑏𝐵 − (𝑏𝐵 −𝑚𝐵)
𝑁𝐵
𝐾𝐵
)𝑁𝐵 −𝑚𝐵𝑁𝐵 

𝐾𝐵 stands for environmental capacity. It can be understood as the maximum number of individuals 

that can be supported by the environment under ideal conditions. 

The population of “larval” mosquitoes (includes all aquatic stages of Culex mosquitoes, only females 

taken into account) also follows logistic population growth: 

𝑑𝐿𝑀
𝑑𝑡

= (𝑏𝐿𝑁𝑀 −𝑚𝐿𝐿𝑀) (1 −
𝐿𝑀
𝐾𝑀
) − 𝑏𝑀𝐿𝑀 

𝐿𝑀 is the total number of larvae,  𝑏𝐿 is the birth rate of larvae, 𝑚𝐿 is the mortality rate of larvae, 

𝑏𝑀 is the “birth rate” of mosquitoes (transformation from larvae to adult mosquitoes). Note here: 

although also following logistic population growth, mosquito growth is divided to aquatic and 

terrestrial stages, thus the equation looks different from black birds’. 

Total density of terrestrial stages of Culex mosquitoes (𝑁𝑀): 
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𝑑𝑁𝑀
𝑑𝑡

= 𝑏𝑀𝐿𝑀 −𝑚𝑀𝑁𝑀 

𝑚𝑀 is the mortality rate of Culex mosquitoes. 

Cross-infection between mosquitoes and black birds: 

𝜆𝐵 = 𝛽𝐵
𝐼𝐵
𝐾𝐵

= 𝜅𝑃𝐵
𝐼𝐵
𝐾𝐵

 

𝜆𝑀 = 𝛽𝑀
𝐼𝑀
𝐾𝐵

= 𝜅𝑃𝑀
𝐼𝑀
𝐾𝐵

 

𝜆𝐵 denote the possible fraction of cross-transmission from birds to mosquitoes, and 𝜆𝑀 vice versa. 

𝛽𝐵 is the product of biting rate (𝜅) and transmission possibility from birds to mosquitoes(𝑃𝐵), and 

𝛽𝑀 vice versa. Transmission possibility from mosquitoes to birds is 𝑃𝑀.  

 

Then the different health states of birds can be described by following ODEs: 

1. The susceptible black bird population (𝑆𝐵) 

 
𝑑𝑆𝐵
𝑑𝑡

= (𝑏𝐵 − (𝑏𝐵 −𝑚𝐵)
𝑁𝐵
𝐾𝐵
)𝑁𝐵 −𝑚𝐵𝑁𝐵 − 𝛿𝑀𝜆𝑀𝑆𝐵 

2. The exposed black bird population (𝐸𝐵) 

 
𝑑𝐸𝐵
𝑑𝑡

= 𝛿𝑀𝜆𝑀𝑆𝐵 −𝑚𝐵𝐸𝐵 − 𝛾𝐵𝐸𝐵 

𝛿𝑀 : Percentage of non-hibernating mosquitoes 

𝛾𝐵 : The exposed – infected/infectious rate of birds, and 1/𝛾𝐵 is the intrinsic-incubation 

period 

 

3. The infected black bird population (𝐼𝐵) 

 
𝑑𝐼𝐵
𝑑𝑡

= 𝛾𝐵𝐸𝐵 −𝑚𝐵𝐼𝐵 − 𝛼𝐵𝐼𝐵 

𝛼𝐵: The removal rate, removed from the previous health state, either get recovered 

(immunized) or dead 

4. The black bird deaths (𝐷𝐵) due to USUV infection 

 
𝑑𝐷𝐵
𝑑𝑡

= 𝜈𝐵𝛼𝐵𝐼𝐵 

𝜈𝐵: the percentage of bird deaths due to USUV infection 

5. The recovered black bird population (𝑅𝐵) 

 
𝑑𝑅𝐵
𝑑𝑡

= (1 − 𝜈𝐵)𝛼𝐵𝐼𝐵 −𝑚𝐵𝑅𝐵 

And                                            

                                                            𝑁𝐵 = 𝑆𝐵 + 𝐸𝐵 + 𝐼𝐵 + 𝑅𝐵 
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Note: In this model both horizontal and vertical virus transmission in birds are not taken 

into account, so the transmission is limited to through mosquitoes’ blood meal. 

 

Similarly, the different health states of mosquitoes are described as following: 

6. The larval population of Culex mosquitoes: 
𝑑𝐿𝑀
𝑑𝑡

= (𝑏𝐿𝑁𝑀 −𝑚𝐿𝐿𝑀) (1 −
𝐿𝑀
𝐾𝑀
) − 𝑏𝑀𝐿𝑀 

7. The susceptible mosquito population: 

 
𝑑𝑆𝑀
𝑑𝑡

= 𝑏𝑀𝐿𝑀 −𝑚𝑀𝑆𝑀 − 𝛿𝑀𝜆𝐵𝑆𝑀 

8. The exposed mosquito population: 

 
𝑑𝐸𝑀
𝑑𝑡

= 𝛿𝑀𝜆𝐵𝑆𝑀 −𝑚𝑀𝐸𝑀 − 𝛾𝑀𝐸𝑀 

𝛾𝑀: The exposed – infected/infectious rate of mosquitoes, and 1/ 𝛾𝑀 is the extrinsic-

incubation period 

 

9. The infected mosquito population: 

 
𝑑𝐼𝑀
𝑑𝑡

= 𝛾𝑀𝐸𝑀 −𝑚𝑀𝐼𝑀 

And    

𝑁𝑀 = 𝑆𝑀 + 𝐸𝑀 + 𝐼𝑀 

Note: Infectious mosquitoes remain in the infectious state and will not get recovered. 

 

Following the next generation matrix method, the final R0 equation: 

 

𝑅0  =  √[
𝛿𝑀𝛾𝑀𝛽𝑀

(𝛾𝑀 +𝑚𝑀)𝑚𝑀

𝑆𝐵
𝐾𝐵
] [

𝛿𝑀𝛾𝐵𝛽𝐵
(𝛾𝐵 +𝑚𝐵)(𝛼𝐵 +𝑚𝐵)

𝑆𝑀
𝐾𝐵
] 

This R0 equation is indeed the largest eigenvalue of the respective next generation matrix. 

Parameters 

See (Rubel et al., 2008). 
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Supplement S2: Overview of the articles reviewed. 

Map characteristics, 
Visualization 

M
o

d
e

l T
yp

e
 Data source (temperature), 

description  
VBD, 
Country/ 
Region 

References 

Intensity -- Average R0 over time 

Spatial reference: raster, 4 km × 4 km cells 
Temporal reference:  annual (multi-year 
average) 
Color scheme: 5 classes (interval: 1), 
diverging color gradient from green (R0 < 1) to 
red (R0 > 1) 

N
G

M
 

Monthly mean temperature 
from 30 meteorological 
stations for 1971–2000. R0 
values per station derived 
from mean annual number 
of degree-days > 0°C and 
interpolated spatially. 

Lyme 
disease, 
Canada 

Wu et al., 2013 

Spatial reference: raster, unknown resolution 
Temporal reference: annual (multi-year 
average) 
Color scheme: continuous color ramp, 
diverging color gradient from white (R0 = 1) – 
yellow – red – black (R0 = 7) 

N
G

M
 

Annual mean temperature 
for current and future 
climatic conditions from 
https://worldclim.org. 

Chagas 
disease, 
Colombia 

Cordovez et al., 
2014 

Spatial reference: raster, 2.5′ × 2.5′ cells 
Temporal reference: annual (multi-year 
average) 
Color scheme: continuous color ramp, 
diverging color gradient from green (R0 = 0) 
to red (R0 = 9) 

N
G

M
 

Monthly average, minimum 
and maximum temperatures 
for current and future 
climatic conditions from 
https://worldclim.org and 
http://ccafs-climate.org. 

Malaria, 
Africa 

Kakmeni et al., 
2018 

Spatial reference: raster, unknown resolution 
Temporal reference: annual (multi-year 
average) 
Color scheme: 8 classes (interval: 0.2) from 
yellow to dark red 
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ro

b
ab
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st

ic
 

Current rainfall and 
temperature profiles for 
Tanzania and the 
predictions of HadCM3 for 
2080 under A2a and B2a 
emission scenarios (data 
from WorldClim 2009). 

Malaria, 
Tanzania 

Parham & 
Michael, 2010 

Spatial reference: raster, 4 km × 4 km cells 
Temporal reference: annual (multi-year 
average) 
Color scheme: 14 classes (for R0 > 1 only, 
value interval: 1), diverging color gradient 
from dark blue to red 

N
G

M
 

Daily temperature from 
ANUSPLIN observations 
1971–2000 and projected 
climate from the CRCM4.2.3 
regional climate model 
for 2011–2040 and 2041–
2070. 

Lyme 
disease, 
North 
America 

Ogden et al., 
2014 
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Spatial reference: raster, 0.25° × 0.25° cells 
Temporal reference:  annual (multi-year 
average) 
Color scheme: 12 classes, multi-color 
gradient blue-green-yellow-red 
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Temperature and rainfall 
data from E-OBS (1961–
2008, http://www.ecad.eu) 
and two ensembles of 
climate model simulations 
from ENSEMBLES 
RT3 (future, 
http://ensemblesrt3.dmi.dk
/). 

Bluetongue 
disease, 
Europe 

Guis et al., 2012 

Spatial resolution: raster, 10′ 
Temporal reference:  annual (multi-year 
average) 
Color scheme: 
R0 < 1 in white, R0 ≥ 1 continuous diverging 
multi-color gradient from dark green to 
yellow 
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Daily estimates of 
temperature 
and water vapour for 1961-
1990 from the New LocClim 
software  
converted 
to 10-day average values. 

Crimean–
Congo 
haemorr-
hagic fever, 
western 
Palearctic 

Estrada-Pena et 
al., 2013 

Spatial resolution: raster, 1°×1° 
Temporal reference: annual (multi-year 
average) 
Color scheme: R0 < 1 NA, R0 ≥ 1 green to dark 
red, continuous color scheme 
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Monthly temperature and 
rainfall. Observed (1950–
2015): CRU v3.4 (0.5° × 0.5° 
resolution). Future: 
North American Multi-
Model Ensemble Project 
(NMME, 1°×1° resolution). 

Zika, 
Latin 
America and 
the 
Caribbean 

Munoz et al., 
2017 

Spatial reference: raster, 1° × 1° cells 
Temporal reference: seasonal average 
(spring, summer, autumn, winter) 
Color scheme: continuous color ramp, 
diverging color gradient from purple (R0 = 0) 
to red (R0 = 0.9) 
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Daily rainfall, minimum and 
maximum temperature 
(2002 – 2004) from the 
South African Weather 
Service (SAWS).  

Malaria, 
South Africa 

Abiodun et al., 
2018 

Spatial reference: raster, 0.25° × 0.25° cells 
Temporal reference: seasonal average (June – 
September) 
Color scheme: 11 classes (interval: 0.25), 
diverging color gradient from white (R0 = 0) – 
green – red (R0 = 2.75) 
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Daily mean temperature 
from the E-OBS dataset 
(https://www.ecad.eu, 
interpolated from weather 
stations).  

Usutu 
disease, 
Western 
Europe 

Cadar et al., 
2017 
 

Spatial reference: a) 107 locations of 
sampling points on a 20 km × 20 km grid, b) 
polygons of postal code areas, c) 21 locations 
of sampling points 
Temporal reference: a) 1 month, b) multi-
year average, c) monthly averages 
Color scheme: light (R0 < 1) and dark (R0 > 1) 
color for point locations; 5 classes (increasing 
interval sizes) with sequential single-hue 
color gradient for polygons 
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Monthly temperature data 
from 10 Dutch 
meteorological stations for 
point locations. For areal 
maps, time series of MODIS 
Land Surface Temperatures 
and vegetation indices were 
used for spatial estimates of 
vector species’ abundance. 

Bluetongue 
disease, 
Netherlands 

Hartemink et al., 
2009 
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Spatial resolution: raster, 2.5′ 
Temporal reference:  monthly (multi-year 
averages) 
Color scheme: continuous diverging multi-
color gradient blue-yellow-red 
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Monthly and daily mean 
temperatures from PRISM 
Climate Group as 30-year 
(1981–2010) climatic 
normals. 

Bluetongue 
disease, 
California, 
USA 

Mayo et al., 
2016 

Spatial reference: raster, unknown resolution 
Temporal reference:  January and July (multi-
year average) 
Color scheme: continuous double gradient: 
R0 < 1 in shades of gray, R0 ≥ 1 yellow to 
orange P
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Daily climate data for all 
cities from long-term 
climate models created by 
the Climate Research Unit of 
East Anglia University, 
United Kingdom. 

Yellow 
fever, 
global 

Johansson et al., 
2012 

Spatial resolution: point locations of 
mosquito traps (710 locations for the year 
2012 and 183 for 2013) with kernel density 
estimates 
Temporal reference: monthly mean 
(averaged from April to November) 
Color scheme: binary, R0 < 1 in black, R0 ≥ 1 in 
red, kernel density in continuous shades of 
orange 
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30-day interval average 
temperature data spatially 
interpolated from 10 
meteorological 
stations of the National 
Observatory of Athens 
(NOA). 

Malaria, 
Greece 

Pergantas et al., 
2017 

Spatial resolution: raster, 0.25 × 0.25° cells 
Temporal reference:  monthly mean (multi-
year average, June-September) 
Color scheme: 5 classes, diverging multi-color 
gradient from yellow (R0 < 0.5) to dark red  
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Daily temperature from E-
OBS 12.0 
(http://www.ecad.eu), 2006 
- 2015. 

Zika, 
Europe 

Rocklöv et al., 
2016 

Spatial resolution: raster, 0.25° × 0.25° 
Temporal reference: monthly (March, June, 
September, December) 
Color scheme: continuous double gradient 
from blue (starts from the lowest value 0) to 
red (the highest value) 
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Monthly mean air 
temperature data at a 
spatial resolution of 0.5° × 
0.5°, interpolated into daily 
values 

Zika, 
The 
Americas 

Zhang et al., 
2017 

Spatial resolution: raster, 5 km × 5 km 
Temporal reference: monthly mean (from 
January to November) 
Color scheme: 5 classes, diverging multi-color 
gradient blue-red, R0 < 1 in blue, R0 ≥ 1 in 
orange-red. 
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Daily maximum and 
minimum temperatures 
from the NASA Terrestrial 
Observation and Prediction 
System 
 

Rift Valley 
fever, 
California, 
USA 

Barker et al., 
2013 
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Spatial reference: raster, 1 km × 1 km cells 
Temporal reference: bi-weekly 
Color scheme: 9 classes (interval: 0.25), 
sequential single-hue color gradient from (R0 

= 0-0.25) to (R0 = 1.5-1.75) 
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Daily mean air temperatures 
from the NASA Terrestrial 
Observation and Prediction 
System.  

West Nile 
disease, 
USA 
(California) 

Hartley et al., 
2012 

Spatial reference: raster, 1 km × 1 km cells 
Temporal reference: 8 day periods (May – 
September) 
Color scheme: 16 classes, diverging color 
gradient in grey-scale 
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Daily MODIS land  surface 
temperature interpolated 
from 8-day values (2009-
2011). 

West Nile 
disease, 
Italy 

Calistri et al., 
2016 

Duration of conditions where R0 > 1 

Spatial reference: raster, 1 km × 1 km cells 
Temporal reference: No. of months of R0 ≥ 1 
per year, 30-year average 
Color scheme: 6 classes, diverging multi-color 
gradient 
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Mean monthly air 
temperature for 1961–1990 
and 1991–2007 from 
meteorological stations, 
transformed to surface 
maps using regression 
kriging. Future projections 
of temperature derived 
from models (REMO, 
WettReg). 

Malaria, 
Germany 

Holy et al., 2011 

Spatial reference: raster, unknown resolution 
Temporal reference: No. of consecutive 
months of R0 ≥ 1 per year  
Color scheme: 13 classes, sequential single-
hue color gradient 
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Daily temperature data from 
meteorological stations 
averaged at the country 
level by epidemic week. 
Maps produced using 
monthly mean temperature 
from https://worldclim.org  

Zika, 
dengue, and 
chikunguny
a, 
The 
Americas 

Mordecai et al., 
2017 

Both average R0 over time and duration of R0 > 1 

Spatial reference: raster, 1 km × 1 km cells 
Temporal reference: a) mean monthly R0 for 
June – September; 
b) No. of days R0 > 1 for 2010 & 2011 
Color scheme: a) 12 classes (log scale), 
diverging color gradient from green (R0 = 0.1) 
to red (R0 = 10); b) 6 classes (interval: 20), 
diverging color gradient from green (0 days) 
to red (120 days) 

N
G
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Daily gridded temperature 
and precipitation data from 
the ALADIN weather 
prediction model, 2010–
2011. 

Bluetongue 
disease,  
Austria  

Brugger & Rubel, 
2013 
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Spatial reference: raster, 0.25° × 0.25° cells 
Temporal reference: a) yearly mean no. of 
days R0 > 1 for 2003–2016; b) seasonal mean 
R0 for June – September for individual years 
Color scheme: a) 9 classes (interval: 30), 
diverging color gradient from blue (0–30 
days) to red (241-270 days); b) 6 classes 
(interval: 0.5), diverging color gradient from 
blue (R0 = 0–0.5) to red (R0 = 2.51–3) 

N
G
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Daily mean temperature 
data from the E-OBS dataset 
(http://www.ecad.eu, 
interpolated from weather 
stations).  

Usutu 
disease, 
Europe 

Cheng et al., 
2018 

Spatial reference: raster, 5′ × 5′ cells 
Temporal reference: based on monthly multi-
year average temperatures a) R0 of the 
warmest month; b) number of months with 
R0 > 1 
Color scheme: a) 5 classes, sequential single-
hue color gradient from yellow to red; b) 4 
classes, sequential single-hue color gradient 
from white to red 
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Daily temperature spatially 
interpolated from weather 
stations. 

Chikunguny
a, 
Canada 

Ng et al., 2017 

No temporal aggregation/other 

Spatial reference: raster, unknown resolution 
Temporal reference: Monthly estimates of R0 
scheme: 4 classes from “low” to “high”, 4 
colors, no legend 
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R0 calculated for monthly 
mean temperature data 
from 50 meteorological 
stations, then smoothed 
through kriging. 

Bluetongue 
disease, 
Switzerland 

Racloz et al., 
2008 

Spatial reference: raster, 1 km × 1 km cells 
Temporal reference: NA, July assumed 
Color scheme: 11 classes (interval: mostly 
0.25), diverging color gradient from blue (R0 = 
0-0.1) – yellow – red (R0 = 5-10) 
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Average July temperature 
from https://worldclim.org, 
daytime and nighttime land 
surface temperature from 
MODIS Terra satellite data. 

Canine 
leishmania-
sis, 
France 

Hartemink et al., 
2011 
 

Spatial reference: raster, 1 km × 1 km cells 
Temporal reference: NA 
Color scheme: 7 classes (irregular intervals), 
diverging color gradient from blue (R0 = 2-2.7) 
– green – red (R0 = 14.7-30) N

G
M

 

Estimates of mean, 
minimum and maximum 
temperature and 
precipitation derived from 
meteorological stations; 
averaged long-term 
estimates of land surface 
temperature. 

Lymphatic 
filariasis, 
sub-Saharan 
Africa 

Moraga et al., 
2015 
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Abstract 

Background Usutu virus (USUV) is a mosquito-borne flavivirus, reported in many countries of Africa 

and Europe, with an increasing spatial distribution and host range. Recent outbreaks leading to 

regional declines of European common blackbird (Turdus merula) populations and a rising number 

of human cases emphasize the need for increased awareness and spatial risk assessment. 

Methods Modelling approaches in ecology and epidemiology differ substantially in their 

algorithms, potentially resulting in diverging model outputs. Therefore, we implemented a parallel 

approach incorporating two commonly applied modelling techniques: 1) Maxent, a correlation-

based environmental niche model and 2) a mechanistic epidemiological susceptible-exposed-

infected-removed (SEIR) model. 

Across Europe, surveillance data of USUV-positive birds from 2003 - 2016 was acquired to train the 

environmental niche model and to serve as test cases for the SEIR model. The SEIR model is mainly 

driven by daily mean temperature and calculates the basic reproduction number R0. The 

environmental niche model was run with long-term bio-climatic variables derived from the same 

source in order to estimate climatic suitability. 

Results Large areas across Europe are currently suitable for USUV transmission. Both models show 

patterns of high risk for USUV in parts of France, in the Pannonian Basin as well as northern Italy. 

The environmental niche model depicts the current situation better, but with USUV still being in an 

invasive stage there is a chance for under-estimation of risk. Areas where transmission occurred 

are mostly predicted correctly by the SEIR model, but it mostly fails to resolve the temporal 

dynamics of USUV event s. High R0 values predicted by the SEIR model in areas without evidence 

for real-life transmission suggest that it may tend towards over-estimation of risk. 

Conclusions The results from our parallel-model approach highlight that relying on a single model 

for assessing vector-borne disease risk may lead to incomplete conclusions. Utilizing different 

modelling approaches is thus crucial for risk-assessment of under-studied emerging pathogens like 

USUV.  
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Background 

Vector-borne diseases (VBDs) are of growing importance. Due to global transport, long-distance 

travels, population growth, environmental and climatic changes, VBDs are emerging all over the 

world (Gage et al., 2008; Mangili & Gendreau, 2005; Tatem et al., 2006; Wu et al., 2017). In addition 

to human-mediated spread, mobile species such as migratory birds are promoting long-distance 

transport of pathogens (Engel et al., 2016). If the local conditions at the introduction sites (e.g. 

hosts, vectors, and climate) are suitable, the pathogen can establish and evolve quickly, resulting 

in rapid local spread (Kilpatrick & Randolph, 2012). Usutu virus (USUV) is an example where both 

processes resulted in the recent arrival and spread of a zoonotic mosquito-borne virus in Europe 

(Engel et al., 2016).  

USUV is a flavivirus (Williams et al., 1964) belonging to the Japanese encephalitis virus serocomplex 

(Poidinger et al., 1996). As a member of the family Flaviviridae, USUV is a single-stranded RNA virus 

closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus 

(WNV) (Poidinger et al., 1996). It was first isolated in 1959 from Culex neavei mosquitoes in 

Swaziland and named after the Usutu river (Williams et al., 1964). Its most important vectors are 

mosquito species of the genus Culex (Nikolay, 2015).  Since the first record, USUV has been reported 

for several African countries (e.g. Senegal, Central African Republic, Nigeria, Uganda) and detected 

in mosquitoes, birds, and humans (Nikolay et al., 2011). In Europe USUV has been detected in 15 

countries, with increasing spatial distribution and host range (Ashraf et al., 2015; Barbic et al., 2013; 

Escribano-Romero et al., 2015; Nikolay, 2015; Rijks et al., 2016; Vittecoq et al., 2013) (Figure 1). The 

earliest evidence of USUV in Europe came from a dead common blackbird (Turdus merula) found 

in Italy in 1996, although this case was not identified as such until 2013 (Weissenböck et al., 2013). 

The first USUV epidemic in Europe was a series of dead common blackbirds reported from Austria 

in 2001 (Weissenböck et al., 2002). In the subsequent years, USUV was reported in further 

European countries. USUV or corresponding antibodies were detected in horses, bats, dogs (Barbic 

et al., 2013; Cadar et al., 2014; Durand et al., 2016), and at least 58 bird species, with common 

blackbirds as dominant avian host (Ashraf et al., 2015).  

In 2009, the first human case of USUV infection in Europe was reported in Italy (Pecorari et al., 

2009), followed by further human cases in Germany (Allering et al., 2012; Cadar, Maier, et al., 2017), 

Croatia (Vilibic-Cavlek et al., 2014), Austria (Bakonyi et al., 2017), and France (Simonin et al., 2018). 

Human cases are commonly characterized by mild symptoms including fever, rash, jaundice, 

headache, nuchal rigidity, hand tremor and hyperreflexia (Cavrini et al., 2009; Pecorari et al., 2009; 

Santini et al., 2015; Vilibic-Cavlek et al., 2014). However, at least in immunosuppressed patients 

USUV can cause a neuro-invasive infection (Pecorari et al., 2009), and it has recently been suspected 

to have caused idiopathic facial paralysis (Simonin et al., 2018). In addition to that, USUV infections 

were also detected from blood donors and healthy forestry workers in Germany and Italy (Allering 

et al., 2012; Cadar, Maier, et al., 2017; Percivalle et al., 2017), suggesting that asymptomatic 

infections can occur among humans. Recent data from Italy indicate that human USUV infections 

may not be a sporadic event and can even be more frequent than WNV infections in areas where 
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both viruses co-circulate (Calzolari et al., 2012; Grottola et al., 2017; Nikolay, 2015). Furthermore, 

due to cross reactions in antibody tests, the number of human USUV cases may be underestimated 

through confusion with other flaviviruses (Santini et al., 2015). As a consequence, the actual 

distribution of USUV and associated number of cases is likely to be larger than currently known 

(Lühken et al., 2017).  

 

Figure 1. USUV in Europe. Orange areas: European countries where cases of USUV have been reported, 

regardless of species and method of confirmation. Triangles: Spatially explicit records of USUV occurrence 

2003—2016 before spatial rarefication. These are locations where individual USUV-positive dead birds 

have been found, confirmed by reverse transcription polymerase chain reaction (RT- PCR). 

 

The transmission cycle with birds as enzootic hosts creates a complex setting related to the risk for 

human health. First, migratory birds may transport the pathogen over large distances and can cause 

repeated re-introduction of the virus into a specific region that is not appropriate to maintain an 

outlasting population of the pathogen (Engel et al., 2016). Second, common blackbirds are the 

predominant host (Ashraf et al., 2015; Nikolay, 2015). This species is very common across Europe 

and has grown accustomed to urban habitats, exhibiting high population densities in human 

settlements (Møller et al., 2014). This means that vectors only need to cover short spatial distances 



110 
 

between infected birds and humans – and the widespread mosquito species Cx. pipiens is a known 

bridge vector between mammals, birds and humans (Börstler et al., 2016; Muñoz et al., 2011). In 

consequence, USUV is becoming an increasing threat for Europe as a mosquito-borne and zoonotic 

disease. Measures should be undertaken to improve or even create awareness towards zoonotic 

VBDs. For this purpose, spatial representations of risk are needed.  

Models for vector borne viral diseases can be generated at various spatial and temporal scales (Nils 

Benjamin Tjaden et al., 2018). Maps of vector occurrence or disease transmission risk derived from 

them can be used to direct vector surveillance and control programs as well as to inform public 

health officials, medicine practitioners and the general public about potential risks. Current 

approaches can be divided into two basic groups: correlative models (e.g. environmental niche 

models) and process-based models (e.g. epidemiological models). Both types of models have their 

own strengths and weaknesses (Nils Benjamin Tjaden et al., 2018). Correlative environmental niche 

models, on the one hand, typically utilize species occurrence records and environmental predictor 

variables to estimate the current and future potential spatial distribution of a target species (Elith 

et al., 2006) or disease (Bhatt et al., 2013; Nsoesie et al., 2016; Peterson, 2014; Samy et al., 2016; 

Samy et al., 2014; Nils B. Tjaden et al., 2017). They do not require a-priori knowledge about the 

specific effects single variables have, and are typically used on coarser spatio-temporal scales (Nils 

Benjamin Tjaden et al., 2018). Process-based epidemiological models, on the other hand, aim to 

simulate the entire transmission process. Using knowledge gained from laboratory experiments or 

field observations, they require a deeper understanding of disease dynamics. As all models for VBD 

have their individual strengths and weaknesses, it is best practice not to rely on a single approach, 

but draw a conclusion from a consensus of multiple different models (Nils Benjamin Tjaden et al., 

2018). Although both model categories are widely used when modeling VBDs (Nils Benjamin Tjaden 

et al., 2018), comparisons of different models’ outputs are typically made within those categories 

(e.g. (Cianci et al., 2015)), and a comparison across categories is still missing. 

To date only a limited number of USUV models for spatially confined areas exist. Based on an 

epidemiological model for WNV, Rubel et al. (Rubel et al., 2008) developed a mechanistic 

susceptible-exposed-infected-removed (SEIR) model for USUV in Vienna (Austria) (Brugger & Rubel, 

2009; Reiczigel et al., 2010; Rubel et al., 2008), which was later successfully applied to Germany and 

neighboring countries (Cadar, Lühken, et al., 2017). This model is mainly driven by daily mean 

temperature, and to enable the comparison of modeled bird deaths and observed bird deaths, it 

was originally carried out with interpolated monthly mean temperature values so as to achieve the 

same temporal resolution as the available bird death data (Rubel et al., 2008). A different, 

environmental niche model-based approach was followed by Lühken et al. (Lühken et al., 2017), 

who adopted boosted regression trees to assess the spatio-temporal risk for USUV in Germany by 

estimating the risk in each grid cell. 

Here we present, for the first time, USUV risk maps covering the entirety of the European mainland. 

Using two models in parallel, we utilize the mechanistic SEIR model by Rubel et al. (Rubel et al., 

2008) as well as a newly developed environmental niche model based on the machine-learning 
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technique Maxent. Instead of using interpolated monthly mean temperature values for a single 

location, rasterized daily mean temperature was used to run the SEIR model. In order to increase 

comparability between the models, the same data source was also applied for the use of Maxent. 

Spatial risk maps were generated by both models. By using models from these two different groups, 

we are aiming at 1) estimating the potential risk for USUV transmission under current climate 

conditions in Europe and 2) investigating the differences between the outputs of two widely-used 

modelling approaches, which could be a first step towards interdisciplinary model comparison.  

 

Methods 

Study area and USUV occurrence records 

In this study, we focus on current European occurrence records of USUV in the years of 2003 - 2016, 

from the earliest to the latest USUV cases available. The investigation area is limited by the natural 

coastlines, as well as through the reported USUV locations in Eastern Europe (Figure 1).  

To achieve a good data quality, only locations of USUV-positive birds confirmed by reverse 

transcription polymerase chain reaction (RT- PCR) were taken into account. This was done because 

1) data from USUV-positive mammals or mosquitoes are collected quite unsystematic, i.e. data on 

USUV-positive birds are most consistent and comparable between the different European 

countries, and 2) other methods such as antibody analysis may not be able to distinguish USUV 

from other closely related flaviviruses such as WNV (Jöst et al., 2011). According to this rule, a total 

number of 376 USUV records was collected. USUV-positive data in Germany were collected by the 

German Mosquito Control Association (KABS), the Nature and Biodiversity Conservation Union 

(NABU), the local veterinary authorities and/or by the local state veterinary laboratories (Becker et 

al., 2012; Cadar, Lühken, et al., 2017; Ziegler et al., 2016; Ziegler et al., 2015). Records for other 

European countries were derived from the literature (Additional File 1): Geographical coordinates 

published in the literature were directly entered into the database. Precise site descriptions were 

digitized using Google Earth Pro, and high-quality occurrence maps were geo-referenced using ESRI 

ArcGIS 10.2.2. 

Climate Data  

Time series of daily mean temperature data, required by the SEIR model, were acquired from the 

E-OBS dataset version 15.0 (Haylock et al., 2008) on a regular latitude-longitude grid with a spatial 

resolution of 0.25° (about 20 km). E-OBS provides gridded daily temperature and precipitation data 

for Europe based on data from weather stations. To compare the results from the SEIR model and 

the environmental niche model properly, bio-climatic variables, which are required by the 

environmental niche model, were generated from the E-OBS dataset as well. Therefore, time series 

of daily minimum, maximum temperature and daily precipitation sums were acquired in addition 

to daily mean temperature. 
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Since the occurrence records for USUV cover the years of 2003 - 2016, these time series were 

trimmed accordingly. Considering that the spatial coverage of the E-OBS time series varies over 

time, grid cells with more than 10% missing data were excluded from our analyses. Monthly mean 

values were derived using the “raster” package (Hijmans) for R 3.2.1 (R Core Team) and 19 bio-

climatic variables were calculated in SAGA-GIS version 2.1.4 (Conrad et al., 2015) for use with the 

environmental niche model.  

Environmental Niche Model: Maxent 

For the environmental niche model, we used Maxent 3.3.3k (Phillips et al., 2006). Maxent is a 

powerful machine-learning technique that is widely used (Nils Benjamin Tjaden et al., 2018) to 

model the potential distribution of species, especially when the occurrence data are sparse 

(Baldwin, 2009). Using occurrence records and environmental predictor variables as input data, 

Maxent generates maps of environmental suitability for transmission of USUV. Ranging between 0 

for the lowest and 1 for the highest suitability, these maps can optionally be converted into 

presence/absence maps by applying a threshold value. 

Maxent models are fitted assuming that all locations in the landscape are equally likely to be 

sampled. However, when the occurrence records are collected with different methods, sampling 

bias is inevitable. Compared to other methods, systematic sampling, also called spatial filtering of 

biased records (Kramer-Schadt et al., 2013), has a good performance regardless of species and bias 

type (Fourcade et al., 2014; Kramer-Schadt et al., 2013). It was applied by using the SDM tool box 

(Brown, 2014), an addon for ESRI ArcGIS that provides advanced tools and convenience functions 

for the Maxent workflow. To determine an appropriate spatial filtering resolution (the minimum 

distance between any two locations), the following rules were taken into consideration: 1) The 

spatial filtering process should decrease the bias distribution, but the remaining records should still 

represent the observed spatial patterns well. 2) There should be enough records left to run Maxent 

after spatial filtering. Consequently, the spatial filtering resolution was set to 20 km (about 0.25°), 

and 92 USUV records left after filtering in order to achieve optimum results and to avoid artefacts 

(Figure 1). 

Selection of the environmental predictors for the model followed a two-step approach (Table 1). 

First, 8 out of the 19 bio-climatic variables that were deemed unsuitable for the task were excluded 

due to the following ecological reasons: BIO2 and 3 (“mean diurnal range” and “isothermality”) 

were excluded because while daily fluctuations in temperature are important for the mosquito life 

cycle and transmission dynamics, the monthly averages available here were considered unsuitable 

for capturing such short-term fluctuations. BIO12 (“annual precipitation”) was excluded because 

summer and winter precipitation play very different roles in this context and should be considered 

separately. All variables referring to the wettest/driest quarter or month of the year (BIO8, 9, 13, 

14, 16, and 17) were excluded because seasonal precipitation patterns vary largely across Europe. 

As such, the wettest time of the year can be summer in some regions and winter in others, making 

this kind of variable unsuitable for larger scale analyses. The remaining eleven variables were 
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further reduced through the built-in Jackknife feature in Maxent with a ten-fold cross-validation 

run, following the recommendations of Elith et al. (Elith et al., 2011). In the end, a combination of 

five variables was chosen, consisting of annual mean temperature, minimum temperature of 

coldest month, mean temperature of coldest quarter, precipitation seasonality, and precipitation 

of warmest quarter. We used default settings for Maxent (10000 background locations, 500 

iterations), but disabled the use of “threshold” and “hinge” features, that would have led to over-

fitting due to an inappropriate amount of model complexity. 

Table 1. Excluded and selected environmental predictor variables for the environmental niche model. 

Abbreviation Variables 

Excluded - Monthly minima and maxima are not suitable to estimate daily fluctuations: 

BIO2  Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3  Isothermality (BIO2/BIO7) × 100 

Excluded - Summer and winter precipitation are important to distinguish for 
mosquitoes and disease transmission dynamics: 

BIO12  Annual Precipitation 

Excluded - Wettest/driest time of the year can be in different seasons across Europe: 

BIO8  Mean Temperature of Wettest Quarter 

BIO9  Mean Temperature of Driest Quarter 

BIO13  Precipitation of Wettest Month 

BIO14  Precipitation of Driest Month 

BIO16  Precipitation of Wettest Quarter 

BIO17  Precipitation of Driest Quarter 

Excluded by jackknife: 

BIO4  Temperature Seasonality (standard deviation × 100) 

BIO5  Max Temperature of Warmest Month 

BIO7  Temperature Annual Range (BIO5-BIO6) 

BIO10  Mean Temperature of Warmest Quarter 

BIO19  Precipitation of Coldest Quarter 

Model input: 

BIO1  Annual Mean Temperature 

BIO6  Min Temperature of Coldest Month 

BIO11  Mean Temperature of Coldest Quarter 

BIO15  Precipitation Seasonality (Coefficient of Variation) 

BIO18 Precipitation of Warmest Quarter 

 

Maxent, like many other environmental niche model approaches, generates pseudo-absence 

(“background”) locations to make up for the lack of field records of true absence of the target 

species. Careful selection of the area from which these background locations are allowed to be 

drawn from is an important part of model creation, as it can affect model performance and results. 

According to Barve et al. (Barve et al., 2011), this should be done by requiring the background 

locations to be within the area the species could realistically disperse to. We followed a buffer-
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based method (VanDerWal et al., 2009) by setting a series of buffer radii from 0.5° to 24° (see 

Additional File 2), given the grid cell size of 0.25°. It is suggested to take the radius when the model 

performance stops increasing (VanDerWal et al., 2009). In addition to the built-in AUC (area under 

the receiver operator characteristic curve), true skill statistic (TSS) was also calculated as an 

indicator of model performance (Additional File 2). A radius of 12° was chosen as suggested, with 

the final model reaching an AUC of 0.92 and a TSS score of 0.78, both suggesting good model 

performance. In this model, the minimum temperature of the coldest month had the strongest 

contribution to the model (58%), followed by precipitation of the warmest quarter (21%) and 

annual mean temperature (13%). The threshold for distinguishing predicted presence and absence 

was based on the receiver operator characteristic (ROC), choosing the point along the ROC curve 

that maximized the sum of sensitivity and specificity. We chose this criterion also known as 

“maxSSS” because it is objective (Liu et al., 2005), widely used, performs consistently well with 

presence-only data (Liu et al., 2015; Liu et al., 2013) and delivers threshold values that are relatively 

low (Liu et al., 2015), facilitating the high sensitivity desired in risk assessment studies. 

 

Epidemiological model: SEIR 

The SEIR model used in this study was developed by Rubel et al. (Rubel et al., 2008) for Vienna 

(Austria) and surrounding areas based on data from different parts of the world. The model 

simulates the seasonal life cycles and inter-species USUV infections of the main vector and host 

species, Cx. pipiens and T. merula respectively. Health states of birds and mosquitoes are classified 

into nine compartments (larvae state of mosquitoes, health states susceptible/latent 

infected/infectious of mosquitoes and birds as well as recovered and dead birds, see (Rubel et al., 

2008)), and described by ordinary differential equations (see Additional File 3). The basic 

reproduction number R0 is then calculated as the dominant eigenvalue of the next-generation 

matrix as described in (Diekmann et al., 1990), resulting in (see Table 2 for model parameters and 

Additional File 3 for details): 

𝑅0  =  √[
𝛿𝑀𝛾𝑀𝛽𝑀

(𝛾𝑀 +𝑚𝑀)𝑚𝑀

𝑆𝐵
𝐾𝐵
] [

𝛿𝑀𝛾𝐵𝛽𝐵
(𝛾𝐵 +𝑚𝐵)(𝛼𝐵 +𝑚𝐵)

𝑆𝑀
𝐾𝐵
] 

 The SEIR model is mainly driven by variables responding to temperature. Further drivers are 

latitude, calendar day, and parameters with constant values (Rubel et al., 2008).  

The original SEIR R-code of the model was upgraded to work on a spatial grid rather than a single 

point location, and daytime length was calculated for each grid cell based on the geographical 

latitude of its center. Instead of interpolating daily data from monthly mean temperature, the 

model was run with true daily temperature data from the E-OBS dataset (Haylock et al., 2008). As 

an extensive literature review did not yield any new information, all other variables and parameters 

originally used by Rubel et al. were maintained in this study.
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Table 2. Variables and parameters in the R0 equation, following (Rubel et al., 2008). 

Parameter Value 

Mosquitoes 

mortality rate 𝑚𝑀 𝑚𝑀(𝑇) = 0.00025𝑇
2 − 0.0094𝑇 + 0.10257 

𝑇: Daily Mean Temperature 

biting rate 𝜅 
𝜅(𝑇) =

0.344

1 + 1.231exp (−0.184(𝑇 − 20))
 

 

product of biting rate (𝜅) and 
transmission possibility from 
mosquitoes to birds (𝑃𝑀) 

𝛽𝑀 𝛽𝑀(𝑇) = 𝑃𝑀𝜅(𝑇) 
 

𝑃𝑀=1 

Percentage of non-
hibernating mosquitoes 
 

𝛿𝑀 
𝛿𝑀 = 1 −

1

1 + 1775.7𝑒𝑥𝑝[1.559(𝐷 − 18.177)]
 

 

𝐷 = 7.639𝑎𝑟𝑐𝑠𝑖𝑛 [𝑡𝑎𝑛(𝜖)𝑡𝑎𝑛(𝜑) +
0.0146

𝑐𝑜𝑠(𝜖)𝑐𝑜𝑠(𝜑)
] + 12 

 

𝜖 = 0.409𝑠𝑖𝑛 (
2𝜋(𝑑 − 80)

365
) 

 

𝐷: Daytime length, 𝜖: Declination, 𝜑: Geographic latitude 

exposed – 
infected/infectious rate 
 

𝛾𝑀 𝛾𝑀(𝑇) = 0.0093𝑇 − 0.1352, 𝑇 ≥ 15° 

𝛾𝑀(𝑇) = 0,  𝑇 < 15° 

susceptible mosquito 
population 

𝑆𝑀 Dynamic value, see Additional File 3 

Birds 

mortality rate 𝑚𝐵 0.0012 

removal rate: fraction of 
infected birds either 
recovering or dying  

𝛼𝐵 0.182 

exposed – 
infected/infectious rate 

𝛾𝐵 0.667 

product of biting rate (𝜅) and 
transmission possibility from 
birds to mosquitoes (𝑃𝐵) 

𝛽𝐵 𝛽𝐵(𝑇) = 𝑃𝐵𝜅(𝑇) 
 

𝑃𝐵=0.125 

susceptible black bird 
population 

𝑆𝐵 Dynamic value, see Additional File 3 

environmental capacity 𝐾𝐵 see Additional File 3 
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As the SEIR model for USUV was created for and calibrated within a temperate climate, water 

availability or precipitation were not considered a limiting factor by the developers. However, this 

assumption is not applicable for the entire study area, as the dry summers of Mediterranean 

climates can lead to a different, two peaked activity pattern of Cx. pipiens mosquitoes (Roiz et al., 

2014). Consequently, the model was applied only to regions with a climate that is classified as cold 

or temperate with warm to hot summers but no dry season (Cfa, Cfb, Dfa and Dfb in the Köppen-

Geiger system (Kottek et al., 2006; Peel et al., 2007)) (Figure 2b). 

The basic reproduction number R0 (the number of secondary cases arising from a single infection in 

an otherwise uninfected population) of USUV calculated by the SEIR model is a threshold value: if 

R0>1, an outbreak is possible after a single introduction of the pathogen; whereas if R0<1, the 

introduced virus population will die out (Diekmann et al., 1990). The daily R0 value of each cell 

within the spatial raster was calculated within the time span of 2003-01-01 to 2016-12-31. From 

this, the average yearly number of days with R0>1 was calculated for each raster cell and the maxSSS 

threshold was calculated for direct comparison with the environmental niche model based on the 

same presence and background locations that were used in the Maxent model. In addition to that, 

the average daily R0 value of the main transmission season (June to September) was calculated for 

each year and raster cell.  

 

Results 

The potential geographic distribution of USUV predicted by both models on the continental 

European scale are shown in continuous form in Figure 2, and as a direct comparison based on the 

maxSSS thresholds (environmental niche model: 0.35 in Maxent’s logistic output format, 

epidemiological model: 40 days of R0>1) in Figure 3. While there are differences between the two 

models in parts of the study area, 15% of the study area are projected to be suitable by both 

approaches. The northern Italian outbreak region in and around the Po Valley is identified as a 

highly suitable area for USUV by both models. The same is true for eastern Austria, the Pannonian 

Basin and adjoining areas, as well as a narrow strip along the Rhône river in France. Large parts of 

north-eastern France, the Benelux states and western and northern Germany are predicted to be 

at least somewhat suitable by both models. On the other hand, environmental niche model and 

SEIR agree on low risk being present in northern and mountainous regions (such as Sweden, Norway 

and the British Isles), where relatively low average and minimum temperatures keep the probability 

of transmission low. 
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Figure 2. Potential geographic distribution of USUV in Europe. a) Climatic suitability estimated by the 

environmental niche model, and b) the yearly mean absolute number of days of R0>1 simulated by the 

epidemiological SEIR model. Gray areas in b) denote regions with a dry season that were not included in 

the SEIR model. Both models use the same E-OBS climate data for 2003 - 2016. Locations of recorded cases 

for the environmental niche model were rarified (in comparison to Figure 1) to avoid spatial 

autocorrelation (see Methods). 

 

In general, the environmental niche model accurately determines the occurrences of birds found 

positive with USUV. Compared to the SEIR, it suggests elevated climatic suitability for USUV to the 

north and west of the Jura Mountains as well as northwards along the Rhine and the North Sea 

coast until southern Denmark (Figure 2a).  Following the maxSSS threshold, the environmental 

niche model predicts at total of 17% of the study area to be suitable for transmission (sensitivity: 

0.946, specificity: 0.852). 2% of the entire area are considered suitably only by the environmental 

niche model and not by the SEIR, including most parts of Denmark and adjoining parts of northern 

Germany, northern Netherlands, southern Belgium and a few areas in northern Britain (Figure 3). 

In contrast, the average yearly number of days with R0 >1 derived from the SEIR suggests a high risk 

for USUV in southwestern France and southeastern Italy, but shows relatively low risk in the 

northern Germany-Netherlands-Belgium region (Figure 2b). North of the Pyrenees, the former 

French regions of Aquitaine and Midi-Pyrénées show a high transmission potential as well. Medium 

values mainly occur in Poland and northeastern Germany, along the Upper Rhine Valley and in 

central France. For the outbreak area in the Netherlands and northern Germany, the SEIR in this 

form suggests relatively low risk of transmission. However, following the maxSSS threshold, most 

of this region can still be classified as suitable for USUV transmission (Figure 3). A total of 67% of 

the whole study area lies above the threshold for this model, resulting in a sensitivity that is slightly 

higher (0.989) than that of the environmental niche model but a very low specificity (0.274). 



118 
 

 

Figure 3. Areas of agreement and disagreement of both models. Dark purple areas denote regions where 

both models predict suitable conditions for USUV-transmission based on the maxSSS threshold. In the blue 

and red areas, only the environmental niche model and SEIR predict suitable conditions, respectively. In 

white areas none of the models predicts suitable environmental conditions, while gray areas were 

excluded from further analyses because they are outside the climatic zones the SEIR model was developed 

for.  

Zooming in towards the main areas of observed USUV transmission allows a closer inspection of 

the models. In the Austrian-Hungarian outbreak area, Maxent predicts climatic suitability values 

sufficient for USUV all observed occurrences (Figure 4 a1). The SEIR model predicts the highest R0 

values for the largest USUV event in 2003 (Figure 4 a2) and considerably lower values for the 

following two years with less observed cases (Figure 4 a).  Relatively high R0 values are observed 

again for the last USUV event in 2016. Interestingly, though, values for the USUV-free years of 2006 

– 2015 are higher than those of 2004/5 (Figure 4a2). 

In Italy, Maxent is able to predict the general outbreak area (Figure 4 b1). The SEIR model predicts 

elevated R0 values for the year of 2009 where USUV occurred, but similarly high values for the 

USUV-free years before and after (Figure 4 b2). 
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Figure 4. Temporal patterns of the average R0 values for three selected regions of Europe. a) Austria and 

the Pannonian Basin, b) northern Italy, and c) Germany and the Netherlands. 1) Spatial representation of 

both models for years with USUV events. Color coding in the maps shows the average daily R0 values 

throughout June to September for the given years. Gray areas denote climate types with dry seasons, thus 

the SEIR model was not applied there. Cross-hatching indicates areas where the environmental niche 

model suggests absence of USUV, based on climate data for the whole time period from 2003-2016. 2) 

Time series curves illustrate the daily R0 value, averaged over all occurrence records of the respective 

region for each given year.  
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In the largest outbreak area in western Germany and the Benelux states, Maxent closely resembles 

the observed pattern of USUV occurrence (Figure 4 c1). Compared to the other two regions, the 

SEIR model in these areas shows much lower average and absolute R0 values as well as higher 

temporal variability throughout the transmission season (Figure 4 c2). Average R0 values for the 

transmission season rise above 1 and match the occurrence records well in the Rhine Valley but 

stay below 1 in the northern parts of the area, i.e. the Netherlands and northwestern Germany. 

 

Discussion 

In face of emerging VBDs and rapid spread into new regions with suitable climatic conditions, 

models that show the current geographic regions at risk are required to allow local health 

authorities to be prepared. However, modelling approaches can differ substantially in philosophy, 

structure, and algorithms. Pros and cons of different approaches are evident and, obviously, there 

is not one single approach to be preferred for every pathogen, area or timespan.  

In this study, two fundamentally different models were applied to describe the current emergence 

of USUV in Europe. This disease exhibits a series of complex interactions between the virus, vectors 

and host species (Nikolay, 2015). Process-based models offer direct links between model outcome 

and underlying mechanisms, which makes interpretation of the observed spatial patterns relatively 

straightforward. However, exact knowledge on the parameters of USUV transmission is still scarce. 

With large numbers of USUV-positive birds reported from distinct geographical hot spots, the 

application of biogeographical distribution models may be a viable alternative. In order to identify 

coinciding and deviating model output, we ran the analyses based on the same climate data and 

following standard processes to detect regions at risk for the transmission of USUV.  

The large-scale spatial patterns predicted by the two models (Figure 2 & 3) are quite similar close 

to the observed USUV events – with the notable exception of northern Germany and the 

Netherlands. Here, the environmental niche model favors higher latitudes as far north as Denmark, 

while the epidemiological model suggests good conditions for transmission in southwestern France 

and northeastern Spain (Figure 2b) and at least suitable conditions for most parts of Eastern Europe 

(Figure 3). Given the observed recent increase in temperatures across Europe and the projected 

further increase during the upcoming century [IPCC] (Cramer et al., 2001), it can be expected that 

both models under-estimate future potential for USUV transmission to some degree. If 

precipitation patterns change dramatically so as to affect mosquito populations, the SEIR model 

may not be a reliable option any more in some regions. Similarly, both models are not suitable to 

predict today’s potential for USUV transmission in areas that are climatically very different from 

the study region. 
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Environmental Niche Model 

As the environmental niche model is strongly driven by existing spatial records, it is not surprising 

that it reflects the current distribution of USUV records better. However, it has to be kept in mind 

that there is no consistent monitoring of USUV across Europe, leading to biases in the occurrence 

records. For instance, many USUV events were reported in Italy, Austria, Hungary, and Croatia 

(though no RT-PCR positive birds), but to date no USUV case was reported in their neighbor 

countries – Slovenia and Slovakia. Due to the same reason, only bird cases were included in our 

approach, as it is the least biased dataset in Europe, compared to USUV cases from wild mammals 

(e.g. bats and wild boars) or humans. Furthermore, we restricted our USUV dataset to USUV cases 

confirmed by RT-PCR counts, as other methods bear the possibility of false positives that would 

lead to overestimation of risk. Given the high activity of West Nile Virus in the area that could easily 

be mistaken for USUV in antibody tests, the gain from avoiding false positives should outweigh the 

loss from potentially excluding some true positives. Even though Maxent is relatively insensitive to 

sampling bias compared to other environmental niche models (Baldwin, 2009) and records were 

spatially rarified in this study, the modelling output would still be inevitably affected, e.g. in Italy, 

where occurrence records are comparably sparse.  

In addition, USUV is still spreading in Europe and likely does not occupy its entire environmental 

niche yet, which may lead to under-estimation of risk through the environmental niche model in 

areas that may be climatically suitable, but have not been reached yet (compare e. g. (Elith et al., 

2010)). The quality and accessibility of observed records of occurrence of vectors, hosts and 

especially pathogens is a major practical obstacle for the development of models of the 

environmental niche model family. Only a consistent and advanced monitoring system covering a 

selection of representative areas across Europe could give more accurate and reliable occurrence 

records to produce risk maps. Consequently, the environmental niche model performance can be 

improved as more occurrence data with high quality are available and the sampling bias is 

minimized. Ideally, such a monitoring system is centralized, open access and would not only focus 

on birds or mosquitoes but also include mammalian hosts such as rodents or bats to cover different 

types of potentially circulating pathogens. Especially the latter have been suspected to be under-

estimated but important hosts for other viral zoonotic diseases (Calisher et al., 2006). As USUV 

outbreaks typically cease with the arrival of winter, hibernating bats could enable overwintering of 

the virus. However, coordinated efforts are also needed for centralized and open access to the 

occurrence records resulting from these improved measures [35].  

Epidemiological Model 

As an absence of records does not necessarily indicate an absence of risk, it makes sense to use a 

mechanistic model to point out regions such as southwestern France, where transmission appears 

to be possible. The SEIR model captured the USUV event s in the Pannonian Basin and Po Valley 

regions well, though the events in Germany and the Netherlands area were not represented 

correctly. Hence, it must be questioned whether the current knowledge on processes, mechanisms 
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and underlying parameters is sufficient to explain USUV transmission patterns and outbreaks. 

Although an extensive literature review was conducted with the aim of improving and updating the 

parameters for the SEIR model, no information supporting the integration of additional processes, 

drivers or variables was found. Therefore, all the parameters and variables used already in the 2008 

study of Rubel et al. (Rubel et al., 2008) were kept unchanged, even though some of them are 

probably not suitable for the whole study area. For instance, population density as well as birth and 

mortality rates of common blackbirds are unlikely to be constant across the whole study area. An 

advanced, open-access monitoring system as discussed above could also be of great use for this. 

Furthermore, although precipitation is known to affect mosquito life cycles and disease 

transmission dynamics (Kang et al., 2017; Morin et al., 2013), the applied SEIR model does not take 

this into account. The SEIR model for USUV was originally developed and calibrated for temperate 

climates. It is thus possible that certain ecological factors (e.g. precipitation), which are not limiting 

in the calibration area but could be limiting elsewhere, are not included in the model. In our study 

we restrained the extent for the SEIR model by excluding climate types with dry seasons in order 

to avoid making predictions for regions the model is not suitable for. Future models should aim to 

improve the population model components for vectors and hosts, leading to a more universally 

useful model. In addition, explicit parameters for USUV are not available yet and had to be 

substituted by data for the related WNV. For instance, no information about the extrinsic 

incubation period and its relation to ambient temperature is currently available. Data from a single 

experiment on a single strain of another virus (i.e. West-Nile virus) (Reisen et al., 2006) is far from 

optimal, as it has been shown that these experiments are subject to large uncertainty for various 

reasons (N. B. Tjaden et al., 2013). This is a common problem, though, since updated and realistic 

experiments are sorely needed for many VBDs (Nils Benjamin Tjaden et al., 2018). Future models 

could account for some of this uncertainty by incorporating stochastic variations instead of relying 

on fixed values, as it has already been done e.g. for Chikungunya (Ng et al., 2017). 

Another point worth considering is that so far there is no standardized way of converting the daily 

values of R0 calculated by the SEIR model for each grid cell into interpretable maps. Obviously, some 

amount of temporal aggregation needs to be applied in order to gain low dimensional, printable 

maps. In practice, this ranges from R0 being displayed as averages for single months (e.g. (Rocklöv 

et al., 2016)) up to R0 values being averaged over 30-year periods (e.g. (Ogden et al., 2014)). Here, 

we chose to display average R0 values for single transmission seasons, which apparently failed to 

predict the 2016 USUV event in Northwest Europe (Figure 4 c)). However, R0 is a threshold value. 

Thus, while a value of R0>1 indicates high risk of disease spread, an average R0<1 for the same 

period does not necessarily mean no or even low risk, depending on how the length of that period 

was chosen and how often the threshold was exceeded. This is a serious drawback of SEIR model 

results to visualize the spatial-explicit risk of pathogen transmission. Hence, an alternative way of 

illustrating these models is concentrating on the duration of time where R0>1. Here, we chose to 

count the (average) number of days per year where R0>1, but this can also be done on other 

temporal scales (e.g. months (Mordecai et al., 2017)). In our case, this value apparently fails to 
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capture the outbreak area in Germany and the Netherlands (Figure 2 b). However, a closer look 

reveals that this again is a lack of knowledge about the details of the disease that prevents a 

meaningful interpretation of these maps, i.e., how many days of R0>1 are actually needed for an 

USUV event to occur. When this threshold would be known, the average yearly number of days of 

R0>1 map can be converted to a categorized risk map showing whether there is a risk and how 

severe it is. Furthermore, it has to be questioned, if higher absolute R0 values during the 

transmission season would reduce the number of days of R0>1 days required for an USUV outbreak. 

Only when these primary questions are addressed, a more reasonable risk map can be generated. 

Outlook 

Further efforts should strive towards the unification of the two streams of modeling. As shown in 

this study, the ecological niche model reflects spatial distribution better, while the epidemiological 

model has the advantage of capturing short term variabilities, as it uses daily temperature data. 

Ecological niche models are run with climate data which typically covers decades, and as a 

consequence, extreme weather events such as heat waves would not be captured. An integrated 

model could benefit from both models’ advantages. For example, in a hierarchical approach, spatial 

distribution of risk could first be estimated by an environmental niche model, followed by a zoom 

in to a finer scale for the investigation of temporal risk patterns in high risk areas through an 

epidemiological model with well-updated parameters and variables. In this case, the finer temporal 

scale epidemiological model, using daily weather data or even weather forecast data, can work as 

a live early warning forecast. Instead of projecting where climate is suitable, ecological niche 

models can also be applied to exclude unsuitable regions. In addition, in an integrated approach, 

environmental niche models that estimate the abundance of vectors and hosts could be nested in 

an epidemiological model as well, in order to gain more precise information on the required vector-

to-host ratio.  

 

Conclusion 

In conclusion, this study highlights the necessity to consider different approaches to detect the 

current and future areas under risk of VBDs. environmental niche models and epidemiological 

models examine rather complementary aspects, especially in terms of short-term weather 

conditions versus long-term climatic conditions. Environmental niche models are typically built 

upon long-term climate data and thus can be used to gain a general overview of the areas at risk 

and estimate potential effects of climate change. Given enough spatially explicit occurrence records 

are available, these models are particularly useful for a rapid risk assessment of emerging VBDs, 

while more detailed data about the transmission mechanisms is gathered. Once this data is 

available, elaborate mechanistic models can offer more fine-grained insights on the progression of 

outbreaks, with the potential for short-term forecasts based on weather models. At this point, 

environmental niche models for host or vector populations can provide valuable input data for 
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advanced epidemiological models. Thus, using both approaches complementing each other is key 

for a comprehensive and effective risk evaluation.  

Wide parts of Europe are currently at risk of USUV circulation, and its status of a mostly neglected 

emerging disease makes estimation of its potential future range difficult. Evidence suggests that 

USUV event s may be more likely to occur in climatically favored regions within Europe such as the 

Po Valley in northern Italy (Pautasso et al., 2016) and the Rhine Valley (Jöst et al., 2011; Ziegler et 

al., 2015). At the same time, these areas have a high human population density and exhibit large 

urban areas and cities. Remnant wetland habitats along rivers serve as habitats for migratory bird 

stops resulting in a combined setting with humans being exposed to high risk. The detected spatial 

patterns can be used to indicate regions where surveillance activities should be focused and 

intensified. 
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Additional File 1. Records of USUV-infected bird locations confirmed by PCR collected from the 

literature. 

Countries Outbreak years Data type Reference 

Austria 2003–2005 Map [1] 

Hungary 2005–2006 Map [2] 

Italy 2009 Map [3] 

Italy 2009 Map  [4] 

Italy 2010 Map [5] 

Austria and Hungary 2010–2016 Coordinates [6] 

Italy 2011 Map [7] 

Germany 2011, 2015 Site description [8] 

Czech Republic 2011–2012 Coordinates [9] 

Germany 2011–2013 Map [10] 

Belgium 2012 Coordinates [11] 

Italy 2012 Site description [12] 

Germany 2013 Coordinates [13] 

Italy 2013 Map [14] 

France 2015 Site description [15] 

Netherlands 2016 Map [16] 
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Appendix 2. Buffer radii vs. model performance 
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Appendix 3. Detailed description of the SEIR model. 

A simplified diagram chart of Usutu virus (USUV) epidemiological model: 

 

 

Each health state of mosquitoes / black birds can be described by Ordinary differential equations 

(ODEs).  

Population growth of black birds: 

𝑑𝑁𝐵
𝑑𝑡

= 𝑟𝐵𝑁𝐵 = 𝑏𝐵𝑁𝐵 −𝑚𝐵𝑁𝐵  

𝑁𝐵 is the total number of black birds, 𝑟𝐵 is the population growth rate, 𝑏𝐵is the birth rate and 𝑚𝐵 

is the mortality rate (B stands for black birds). 

Follow logistic population growth (density dependent model): 

𝑑𝑁𝐵
𝑑𝑡

= 𝑟𝐵 (1 −
𝑁𝐵
𝐾𝐵
)𝑁𝐵 
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As                                                                         𝑟𝐵 = 𝑏𝐵 −𝑚𝐵 

it can be written as:                    

𝑑𝑁𝐵
𝑑𝑡

= (𝑏𝐵 − (𝑏𝐵 −𝑚𝐵)
𝑁𝐵
𝐾𝐵
)𝑁𝐵 −𝑚𝐵𝑁𝐵 

𝐾𝐵 stands for environmental capacity. It can be understood as the maximum number of individuals 

that can be supported by the environment under ideal conditions. 

The population of “larval” mosquitoes (includes all aquatic stages of Culex mosquitoes, only females 

taken into account) also follows logistic population growth: 

𝑑𝐿𝑀
𝑑𝑡

= (𝑏𝐿𝑁𝑀 −𝑚𝐿𝐿𝑀) (1 −
𝐿𝑀
𝐾𝑀
) − 𝑏𝑀𝐿𝑀 

𝐿𝑀 is the total number of larvae,  𝑏𝐿 is the birth rate of larvae, 𝑚𝐿 is the mortality rate of larvae, 

𝑏𝑀 is the “birth rate” of mosquitoes (transformation from larvae to adult mosquitoes). Note here: 

although also following logistic population growth, mosquito growth is divided to aquatic and 

terrestrial stages, thus the equation looks different from black birds’. 

Total density of terrestrial stages of Culex mosquitoes (𝑁𝑀): 

𝑑𝑁𝑀
𝑑𝑡

= 𝑏𝑀𝐿𝑀 −𝑚𝑀𝑁𝑀 

Cross-infection between mosquitoes and black birds: 

𝜆𝐵 = 𝛽𝐵
𝐼𝐵
𝐾𝐵

= 𝜅𝑃𝐵
𝐼𝐵
𝐾𝐵

 

𝜆𝑀 = 𝛽𝑀
𝐼𝑀
𝐾𝐵

= 𝜅𝑃𝑀
𝐼𝑀
𝐾𝐵

 

𝜆𝐵 denote the possible fraction of cross-transmission from birds to mosquitoes, and 𝜆𝑀 vice versa. 

𝛽𝐵 is the product of biting rate (𝜅) and transmission possibility from birds to mosquitoes(𝑃𝐵), and 

𝛽𝑀 vice versa. Transmission possibility from mosquitoes to birds is 𝑃𝑀.  

 

Then the different health states of birds can be described by following ODEs: 

1. The susceptible black bird population (𝑆𝐵) 

 
𝑑𝑆𝐵
𝑑𝑡

= (𝑏𝐵 − (𝑏𝐵 −𝑚𝐵)
𝑁𝐵
𝐾𝐵
)𝑁𝐵 −𝑚𝐵𝑁𝐵 − 𝛿𝑀𝜆𝑀𝑆𝐵 

It can be understood as: 

(current total number of susceptible black birds) = (current total number birds) – (natural 

death of birds) – (birds moving to the next health state) 

Here “natural death of birds” means deaths not due to Usutu virus (USUV) infection. 

2. The exposed black bird population (𝐸𝐵) 
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𝑑𝐸𝐵
𝑑𝑡

= 𝛿𝑀𝜆𝑀𝑆𝐵 −𝑚𝐵𝐸𝐵 − 𝛾𝐵𝐸𝐵 

 

𝛿𝑀 : Percentage of non-hibernating mosquitoes 

𝛾𝐵 : The exposed – infected/infectious rate of birds 

 

From this equation:  

(current total number of exposed black birds) = (birds coming into this health state from 

the previous stage) − (natural death of birds) − (birds moving to the next health state) 

3. The infected black bird population (𝐼𝐵) 

 
𝑑𝐼𝐵
𝑑𝑡

= 𝛾𝐵𝐸𝐵 −𝑚𝐵𝐼𝐵 − 𝛼𝐵𝐼𝐵 

 

𝛼𝐵: The removal rate, removed from the previous health state, either get recovered 

(immunized) or dead 

Similar as 2. 

4. The black bird deaths (𝐷𝐵) due to USUV infection 

 
𝑑𝐷𝐵
𝑑𝑡

= 𝜈𝐵𝛼𝐵𝐼𝐵 

 

𝜈𝐵: the percentage of bird deaths due to USUV infection 

5. The recovered black bird population (𝑅𝐵) 

 
𝑑𝑅𝐵
𝑑𝑡

= (1 − 𝜈𝐵)𝛼𝐵𝐼𝐵 −𝑚𝐵𝑅𝐵 

 

And                                            

                                                            𝑁𝐵 = 𝑆𝐵 + 𝐸𝐵 + 𝐼𝐵 + 𝑅𝐵 

 

Note: In this model both horizontal and vertical virus transmission in birds are not taken 

into account, so the transmission is limited to through mosquitoes’ blood meal. 

 

Similarly, the different health states of mosquitoes are described as following: 

6. The larval population of Culex mosquitoes: 
𝑑𝐿𝑀
𝑑𝑡

= (𝑏𝐿𝑁𝑀 −𝑚𝐿𝐿𝑀) (1 −
𝐿𝑀
𝐾𝑀
) − 𝑏𝑀𝐿𝑀 

 

7. The susceptible mosquito population: 

 
𝑑𝑆𝑀
𝑑𝑡

= 𝑏𝑀𝐿𝑀 −𝑚𝑀𝑆𝑀 − 𝛿𝑀𝜆𝐵𝑆𝑀 

 

From this equation, similar to bird equations: 
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(current total number of susceptible mosquitoes) = (mosquitoes entering this health state 

from the previous stage) – (natural death of mosquitoes) – (mosquitoes moving to the next 

health state). 

 

8. The exposed mosquito population: 

 
𝑑𝐸𝑀
𝑑𝑡

= 𝛿𝑀𝜆𝐵𝑆𝑀 −𝑚𝑀𝐸𝑀 − 𝛾𝑀𝐸𝑀 

𝛾𝑀: The exposed – infected/infectious rate of mosquitoes 

 

9. The infected mosquito population: 

 
𝑑𝐼𝑀
𝑑𝑡

= 𝛾𝑀𝐸𝑀 −𝑚𝑀𝐼𝑀 

 

And    

𝑁𝑀 = 𝑆𝑀 + 𝐸𝑀 + 𝐼𝑀 

Note: Infectious mosquitoes remain in the infectious state and will not get recovered. 

 

In addition, 𝛿𝑀 is determined by the latitude and the calendar day of the year. 

 

𝛿𝑀 = 1 −
1

1 + 1775.7exp[1.559(𝐷 − 18.177)]
 

Of which D denotes “Daytime length”, and  

𝐷 = 7.639𝑎𝑟𝑐𝑠𝑖𝑛 [𝑡𝑎𝑛(𝜖)𝑡𝑎𝑛(𝜑) +
0.0146

𝑐𝑜𝑠(𝜖)𝑐𝑜𝑠(𝜑)
] + 12 

 

𝜖 = 0.409𝑠𝑖𝑛 (
2𝜋(𝑑 − 80)

365
) 

𝜑: Geographic latitude 

 

𝑑: The calendar day 

The final R0 equation: 

 

𝑅0  =  √[
𝛿𝑀𝛾𝑀𝛽𝑀

(𝛾𝑀 +𝑚𝑀)𝑚𝑀

𝑆𝐵
𝐾𝐵
] [

𝛿𝑀𝛾𝐵𝛽𝐵
(𝛾𝐵 +𝑚𝐵)(𝛼𝐵 +𝑚𝐵)

𝑆𝑀
𝐾𝐵
] 
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Additional Table 1: Parameters for R0 equation 

 parameter value 

the population 
growth rate  

𝑟𝐵  𝑟𝐵 = 𝑏𝐵 −𝑚𝐵 

birth rate 𝑏𝐵  
𝑏𝐵(𝑑) = 0.125

(𝑥/𝛽)𝛼−1exp (−𝑥/𝛽)

𝛽𝛤(𝛼)
 

 

𝑥 = 0.1(𝑑 − 105), 𝑑 is transformed Julian calendar day 

𝛼=1.52, 𝛽=1.93, 𝛤(𝛼)=0.887 
 

mortality rate 𝑚𝐵 0.0012 

the birth rate of 
larvae 

𝑏𝐿 𝑏𝐿(𝑇) = 2.325𝜅(𝑇) 

𝑇: Daily Mean Temperature 

mortality rate of 
larvae 

𝑚𝐿 𝑚𝐿(𝑇) = 0.0025𝑇2 − 0.094𝑇 + 1.0257 

“birth rate” of 
mosquitoes 
(transformation from 
larvae to adult 
mosquitoes). 

𝑏𝑀 𝑏𝑀(𝑇) = 0.1𝑏𝐿 

mortality rate of 
mosquitoes 

𝑚𝑀 𝑚𝑀(𝑇) = 0.1𝑚𝐿 

possible fraction of 
cross-transmission 
from birds to 
mosquitoes 

𝜆𝐵  
𝜆𝐵(𝑇) = 𝛽𝐵(𝑇)

𝐼𝐵
𝐾𝐵

= 𝜅(𝑇)𝑃𝐵
𝐼𝐵
𝐾𝐵

 

 

product of biting rate 
(𝜅) and transmission 
possibility from birds 
to mosquitoes(𝑃𝐵) 

𝛽𝐵  𝛽𝐵(𝑇) = 𝜅(𝑇)𝑃𝐵  
 

𝑃𝐵=0.125 

biting rate 𝜅 
𝜅(𝑇) =

0.344

1 + 1.231exp (−0.184(𝑇 − 20))
 

 

possible fraction of 
cross-transmission 
from mosquitoes to 
birds 

𝜆𝑀 
𝜆𝑀(𝑇) = 𝛽𝑀(𝑇)

𝐼𝑀
𝐾𝐵

= 𝜅(𝑇)𝑃𝑀
𝐼𝑀
𝐾𝐵

 

 

product of biting rate 
(𝜅) and transmission 
possibility from 
mosquitoes to birds 
(𝑃𝑀) 

𝛽𝑀 𝛽𝑀(𝑇) = 𝑃𝑀𝜅(𝑇) 
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 parameter value 

Percentage of non-
hibernating 
mosquitoes 
 

𝛿𝑀 
𝛿𝑀 = 1 −

1

1 + 1775.7exp[1.559(𝐷 − 18.177)]
 

 

𝐷 = 7.639𝑎𝑟𝑐𝑠𝑖𝑛 [𝑡𝑎𝑛(𝜖)𝑡𝑎𝑛(𝜑) +
0.0146

𝑐𝑜𝑠(𝜖)𝑐𝑜𝑠(𝜑)
] + 12 

 

𝜖 = 0.409𝑠𝑖𝑛 (
2𝜋(𝑑 − 80)

365
) 

 

exposed – 
infected/infectious 
rate of birds 

𝛾𝐵  0.667 

removal rate, 
removed from the 
previous health 
state, either get 
recovered 
(immunized) or dead 

𝛼𝐵  0.182 

the percentage of 
bird deaths due to 
USUV infection 

𝜈𝐵  0.3 

The exposed – 
infected/infectious 
rate of mosquitoes 
 

𝛾𝑀 𝛾𝑀(𝑇) = 0.0093𝑇 − 0.1352, 𝑇 ≥ 15° 

𝛾𝑀(𝑇) = 0,  𝑇 < 15° 

* Note that highlighted parameters are also documented in Table 2. 
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Appendix 1: An epidemiological model on West Nile virus 

Literature checking & what kind of model we need 

In terms of modeling the temporal outbreak risk of West Nile virus (WNV), there are several 

epidemiological models available (21 in total, see Figure S1). Among these models, however, only 

few of them take into account of temperature related parameters of mosquitoes, e.g. 

(Kioutsioukis & Stilianakis, 2019; Laperriere et al., 2011; McMillan et al., 2020; Rubel et al., 2008). 

As WNV is transmitted by mosquitoes, temperature plays an important role in WNV transmission 

and circulation. Here comes the first requirement of the WNV model: (1) it should include 

temperature-dependent variables, especially for mosquitoes. (I will apply the temperature related 

parameters collected from these papers.) Another critical aspect that needs to be considered is 

that (2) not only local birds are contributing to the WNV circulation, but also migratory birds, 

especially for temporal risk dynamics of WNV transmission. To tackle this, Bergsman’s model 

(Bergsman et al., 2016) included both local birds and migratory birds. However, this model is an 

SIR model instead of an SEIR model --The exposed state of bird hosts is discarded. Recently, there 

is a paper included both local birds and migratory birds (McMillan et al., 2020), and this model is 

an SEIR model. However, in this paper, the authors introduced clinical and sub-clinical states of 

the hosts. After all, it is not recommended to introduce new parameters if there is no obvious 

benefit: (3) a WNV model that is sophisticated and still neat is preferred in this case.  

Up to date, there has been no published models that fit all our requirements. Consequently, 

herewith we construct one from the scratch. This model is an SEIR model, i.e. it includes health 

states such as susceptible, exposed, infected/infectious, and removed/recovered of both vectors 

and hosts. The framework of this model is similar to that of (Kioutsioukis & Stilianakis, 2019; 

Laperriere et al., 2011; Rubel et al., 2008).

 

Figure S1. Literature review via Web of Science. 
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Model construction 

Each health state of mosquitoes / birds can be described by Ordinary differential equations 

(ODEs).  

Population growth of local birds: 

𝑑𝑁𝐵1
𝑑𝑡

= 𝑟𝐵1𝑁𝐵1 = 𝑏𝐵1𝑁𝐵1 −𝑚𝐵1𝑁𝐵1  

𝑁𝐵1  is the total number of local birds, 𝑟𝐵1  is the population growth rate, 𝑏𝐵1 is the birth rate and 

𝑚𝐵1  is the mortality rate (𝐵1 stands for local birds). 

Follow logistic population growth (density dependent model): 

𝑑𝑁𝐵1
𝑑𝑡

= 𝑟𝐵1 (1 −
𝑁𝐵1
𝐾𝐵1

)𝑁𝐵1  

As                                                                         𝑟𝐵1 = 𝑏𝐵1 −𝑚𝐵1  

it can be written as:                    

𝑑𝑁𝐵1
𝑑𝑡

= (𝑏𝐵1 − (𝑏𝐵1 −𝑚𝐵1)
𝑁𝐵1
𝐾𝐵1

)𝑁𝐵1 −𝑚𝐵1𝑁𝐵1  

𝐾𝐵1  stands for environmental capacity. It can be understood as the maximum number of 

individuals that can be supported by the environment under ideal conditions. 

The population of “larval” mosquitoes (includes all aquatic stages of mosquitoes, only females 

taken into account) also follows logistic population growth: 

𝑑𝐿𝑀
𝑑𝑡

= (𝑏𝐿𝑁𝑀 −𝑚𝐿𝐿𝑀) (1 −
𝐿𝑀
𝐾𝑀
) − 𝑏𝑀𝐿𝑀 

𝐿𝑀 is the total number of larvae,  𝑏𝐿 is the birth rate of larvae, 𝑚𝐿 is the mortality rate of larvae, 

𝑏𝑀 is the “birth rate” of mosquitoes (transformation from larvae to adult mosquitoes).  

Note here: although also following logistic population growth, mosquito growth is divided to 

aquatic and terrestrial stages, thus the equation looks different from local birds’. 

Total density of terrestrial stages of mosquitoes (𝑁𝑀): 

𝑑𝑁𝑀
𝑑𝑡

= 𝑏𝑀𝐿𝑀 −𝑚𝑀𝑁𝑀 

Cross-infection between mosquitoes and local birds: 

𝜆𝐵1𝑀𝑆𝑀 = 𝐶1
𝐼𝐵1

𝐾𝐵1 + 𝐾𝐵2
𝑆𝑀 

𝜆𝑀𝐵1𝑆𝐵1 = 𝛽1
𝐼𝑀

𝐾𝐵1 + 𝐾𝐵2
𝑆𝐵1  
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𝜆𝐵1𝑀 denote the possible fraction of cross-transmission from local birds to mosquitoes, and 𝜆𝑀𝐵1  

vice versa. 𝛽1 is the product of biting rate and transmission possibility from birds to mosquitoes, 

and 𝐶1 vice versa. 

Cross-infection between mosquitoes and migratory birds: 

𝜆𝐵2𝑀𝑆𝑀 = 𝐶1
𝐼𝐵2

𝐾𝐵1 + 𝐾𝐵2
𝑆𝑀 

𝜆𝑀𝐵2𝑆𝐵2 = 𝛽1
𝐼𝑀

𝐾𝐵1 + 𝐾𝐵2
𝑆𝐵2  

 

 

Then the different health states of birds can be described by following ODEs (for local birds we 

use script 𝐵1, and for migratory birds use 𝐵2): 

1. The susceptible local bird population (𝑆𝐵) 

 

𝑑𝑆𝐵1
𝑑𝑡

= (𝑏𝐵1 − (𝑏𝐵1 −𝑚𝐵1)
𝑁𝐵1
𝐾𝐵1

)𝑁𝐵1 −𝑚𝐵1𝑁𝐵1 −
𝛽1 𝐼𝑀

𝐾𝐵1 + 𝐾𝐵2
𝑆𝐵1  

It can be understood as: 

(current total number of susceptible local birds) = (current total number birds) – (natural 

death of birds) – (birds moving to the next health state) 

Here “natural death of birds” means deaths not due to West Nile virus (WNV) infection. 

2. The exposed local bird population (𝐸𝐵), here is for local birds  

 
𝑑𝐸𝐵1
𝑑𝑡

=
𝛽1 𝐼𝑀

𝐾𝐵1 + 𝐾𝐵2
𝑆𝐵1 −𝑚𝐵1𝐸𝐵1 − 𝛾𝐵1𝐸𝐵1  

 

𝛿𝑀 : Percentage of non-hibernating mosquitoes 

𝛾𝐵 : The exposed – infected/infectious rate of birds 

 

From this equation:  

(current total number of exposed local birds) = (birds coming into this health state from 

the previous stage) − (natural death of birds) − (birds moving to the next health state) 

3. The infected local bird population (𝐼𝐵) 

 
𝑑𝐼𝐵1
𝑑𝑡

= 𝛾𝐵1𝐸𝐵1 −𝑚𝐵1𝐼𝐵1 − 𝛼𝐵1𝐼𝐵1 

 

𝛼𝐵: The removal rate, removed from the previous health state, either get recovered 

(immunized) or dead 

Similar as 2. 

4. The local bird deaths (𝐷𝐵) due to WNV infection 
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𝑑𝐷𝐵1
𝑑𝑡

= 𝜈𝐵1𝛼𝐵1𝐼𝐵1 

 

𝜈𝐵: the percentage of bird deaths due to WNV infection 

5. The recovered local bird population (𝑅𝐵) 

 
𝑑𝑅𝐵1
𝑑𝑡

= (1 − 𝜈𝐵1)𝛼𝐵1𝐼𝐵1 −𝑚𝐵1𝑅𝐵1 

 

And                                            

                                                            𝑁𝐵 = 𝑆𝐵 + 𝐸𝐵 + 𝐼𝐵 + 𝑅𝐵 

 

Note: In this model both horizontal and vertical virus transmission in birds are not taken 

into account, so the transmission is limited to through mosquitoes’ blood meal. 

 

Similarly, the different health states of mosquitoes are described as following: 

6. The larval population of mosquitoes: 
𝑑𝐿𝑀
𝑑𝑡

= (𝑏𝐿𝑁𝑀 −𝑚𝐿𝐿𝑀) (1 −
𝐿𝑀
𝐾𝑀
) − 𝑏𝑀𝐿𝑀 

 

7. The susceptible mosquito population: 

 
𝑑𝑆𝑀
𝑑𝑡

= 𝑏𝑀𝐿𝑀 −𝑚𝑀𝑆𝑀 −
𝐶1𝐼𝐵1 + 𝐶2𝐼𝐵2
𝐾𝐵1 +𝐾𝐵2

𝑆𝑀 

 

From this equation, similar to bird equations: 

(current total number of susceptible mosquitoes) = (mosquitoes entering this health state 

from the previous stage) – (natural death of mosquitoes) – (mosquitoes moving to the 

next health state). 

 

8. The exposed mosquito population: 

 
𝑑𝐸𝑀
𝑑𝑡

=
𝐶1𝐼𝐵1 + 𝐶2𝐼𝐵2
𝐾𝐵1 + 𝐾𝐵2

𝑆𝑀 −𝑚𝑀𝐸𝑀 − 𝛾𝑀𝐸𝑀 

𝛾𝑀: The exposed – infected/infectious rate of mosquitoes 

 

9. The infected mosquito population: 

 
𝑑𝐼𝑀
𝑑𝑡

= 𝛾𝑀𝐸𝑀 −𝑚𝑀𝐼𝑀 

 

And    

𝑁𝑀 = 𝑆𝑀 + 𝐸𝑀 + 𝐼𝑀 

Note: Infectious mosquitoes remain in the infectious state and will not get recovered. 
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The ODE matrix of WNV transmission 

Including mosquitoes, local birds and migratory birds 

d

(

 
 
 
 

𝐸𝐵1
𝐼𝐵1
𝐸𝐵2
𝐼𝐵2
𝐸𝑀
𝐼𝑀 )

 
 
 
 

 = 

(

 
 
 
 
 

𝛽1 𝐼𝑀

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1

0
𝛽2 𝐼𝑀

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2

0
𝐶1𝐼𝐵1+ 𝐶2𝐼𝐵2
𝐾𝐵1+𝐾𝐵2

𝑆𝑀

0 )

 
 
 
 
 

  −  

(

 
 
 
 

𝛾𝐵1𝐸𝐵1 +𝑚𝐵1𝐸𝐵1
−𝛾𝐵1𝐸𝐵1 + 𝛼𝐵1𝐼𝐵1 +𝑚𝐵1𝐼𝐵1

𝛾𝐵2𝐸𝐵2 +𝑚𝐵2𝐸𝐵2
−𝛾𝐵2𝐸𝐵2 + 𝛼𝐵2𝐼𝐵2 +𝑚𝐵2𝐼𝐵2

𝛾𝑀𝐸𝑀 +𝑚𝑀𝐸𝑀
−𝛾𝑀𝐸𝑀 +𝑚𝑀𝐸𝑀 )

 
 
 
 

 

then the Jacobian matrix: 

𝑇=

(

 
 
 
 
 

0 0 0 0 0
𝛽1

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1

0 0 0 0 0 0

0 0 0 0 0
𝛽2

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2

0 0 0 0 0 0

0
𝐶1

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 0

𝐶2

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 0 0

0 0 0 0 0 0 )

 
 
 
 
 

 

 

𝛴 =

(

 
 
 
 

𝛾𝐵1 +𝑚𝐵1 0 0 0 0 0

−𝛾𝐵1 𝛼𝐵1 +𝑚𝐵1 0 0 0 0

0 0 𝛾𝐵2 +𝑚𝐵2 0 0 0

0 0 −𝛾𝐵2 𝛼𝐵2 +𝑚𝐵2 0 0

0 0 0 0 𝛾𝑀 +𝑚𝑀 0
0 0 0 0 −𝛾𝑀 𝑚𝑀)

 
 
 
 

 

 

Find the inverse matrix of 𝛴, (𝛴−1) 

To keep the deduction process simple, here we use the elements symbol instead of full ODE 

expressions 
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𝛴|𝐸1 =

(

 
 
 
 
 
 

𝑎11 0 0 0 0 0

𝑎21 𝑎22 0 0 0 0

0 0 𝑎33 0 0 0

0 0 𝑎43 𝑎44 0 0

0 0 0 0 𝑎55 0

0 0 0 0 𝑎65 𝑎66

|

|

|

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1)

 
 
 
 
 
 

 

 

𝐸1|Σ
−1 =

(

 
 
 
 
 
 
 
 
 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1|

|

|

|

1
𝑎11

0 0 0 0 0

−(
𝑎21
𝑎11

.
 1
𝑎22

)
1
𝑎22

0 0 0 0

0 0
1
𝑎33

0 0 0

0 0 −(
𝑎43
𝑎33

.
 1
𝑎44

)
1
𝑎44

0 0

0 0 0 0
1
𝑎55

0

0 0 0 0 −(
𝑎65
𝑎55

.
 1
𝑎66

)
1
𝑎66)

 
 
 
 
 
 
 
 
 

 

 

Σ−1 =

(

 
 
 
 
 
 
 
 
 
 
 

1

𝑎11
0 0 0 0 0

−(
𝑎21
𝑎11

.
 1

𝑎22
)

1

𝑎22
0 0 0 0

0 0
1

𝑎33
0 0 0

0 0 −(
𝑎43
𝑎33

.
 1

𝑎44
)

1

𝑎44
0 0

0 0 0 0
1

𝑎55
0

0 0 0 0 −(
𝑎65
𝑎55

.
 1

𝑎66
)

1

𝑎66)

 
 
 
 
 
 
 
 
 
 
 

 

Now replace the element symbols with original ODE expressions 
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Σ−1 = 

(

 
 
 
 
 
 
 
 
 

1

𝛾𝐵1+𝑚𝐵1

0 0 0 0 0

−(
−𝛾𝐵1

𝛾𝐵1+𝑚𝐵1

.
 1

𝛼𝐵1+𝑚𝐵1

)
1

𝛼𝐵1+𝑚𝐵1

0 0 0 0

0 0
1

𝛾𝐵2+𝑚𝐵2

0 0 0

0 0 −(
−𝛾𝐵2

𝛾𝐵2+𝑚𝐵2

.
 1

𝛼𝐵2+𝑚𝐵2

)
1

𝛼𝐵2+𝑚𝐵2

0 0

0 0 0 0
1

𝛾𝑀+𝑚𝑀
0

0 0 0 0 −(
−𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

1

𝑚𝑀)

 
 
 
 
 
 
 
 
 

 

 

𝐾𝐿 = −𝑇 × Σ−1; while in the 𝑇 matrix, there are only 3 non-zeros rows, follow (Diekmann et al., 

2010) 

𝐾 = −𝐸2
′𝑇Σ−1𝐸2 

 𝐸2 = 
|

|

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

|

|
 ;  𝐸2

′=|
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

| 

 

𝐸2
′𝑇=

(

  
 

0 0 0 0 0
𝛽1

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1

0 0 0 0 0
𝛽2

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2

0
𝐶1

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 0

𝐶2

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 0 0

)

  
 

 

 

Σ−1𝐸2=

(

 
 
 
 
 
 
 
 
 

1

𝛾𝐵1+𝑚𝐵1

0 0

−(
−𝛾𝐵1

𝛾𝐵1+𝑚𝐵1

.
 1

𝛼𝐵1+𝑚𝐵1

) 0 0

0
1

𝛾𝐵2+𝑚𝐵2

0

0 −(
−𝛾𝐵2

𝛾𝐵2+𝑚𝐵2

.
 1

𝛼𝐵2+𝑚𝐵2

) 0

0 0
1

𝛾𝑀+𝑚𝑀

0 0 −(
−𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
))
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𝐾 = −𝐸2
′𝑇Σ−1𝐸2 

=

 −

(

 
 
 

0 0
𝛽1

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

0 0
𝛽2

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

𝐶1

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵1
𝛾𝐵1+𝑚𝐵1

.
 1

𝛼𝐵1+𝑚𝐵1

)
𝐶2

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵2
𝛾𝐵2+𝑚𝐵2

.
 1

𝛼𝐵2+𝑚𝐵2

) 0
)

 
 
 

 

 

𝐸3 = |
1 0 0
0 1 0
0 0 1

| 

 

𝜆𝐸3 −

𝐾=

(

 
 
 

𝜆 0
𝛽1

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

0 𝜆
𝛽2

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

𝐶1

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵1
𝛾𝐵1+𝑚𝐵1

.
 1

𝛼𝐵1+𝑚𝐵1

)
𝐶2

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵2
𝛾𝐵2+𝑚𝐵2

.
 1

𝛼𝐵2+𝑚𝐵2

) 𝜆
)

 
 
 

 

 

=𝜆3 − 
𝛽1

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)(𝜆) 

𝐶1

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵1
𝛾𝐵1+𝑚𝐵1

.
 1

𝛼𝐵1+𝑚𝐵1

) − 

(𝜆) 
𝛽2

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

𝐶2

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵2
𝛾𝐵2+𝑚𝐵2

.
 1

𝛼𝐵2+𝑚𝐵2

) 

= 𝜆( 𝜆2 −
𝛽1

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
) 

𝐶1

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵1
𝛾𝐵1+𝑚𝐵1

.
 1

𝛼𝐵1+𝑚𝐵1

) −

𝛽2

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

𝐶2

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵2
𝛾𝐵2+𝑚𝐵2

.
 1

𝛼𝐵2+𝑚𝐵2

)  ) 

 

The eigenvalue of this matrix:  

𝜆1 = 0 

𝜆2 = 

√
𝛽1

𝐾𝐵1+𝐾𝐵2
𝑆𝐵1 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
) 

𝐶1

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵1

𝛾𝐵1+𝑚𝐵1

.
 1

𝛼𝐵1+𝑚𝐵1

) +
𝛽2

𝐾𝐵1+𝐾𝐵2
𝑆𝐵2 (

𝛾𝑀

𝛾𝑀+𝑚𝑀
.
 1

𝑚𝑀
)

𝐶2

𝐾𝐵1+𝐾𝐵2
𝑆𝑀 (

𝛾𝐵2

𝛾𝐵2+𝑚𝐵2

.
 1

𝛼𝐵2+𝑚𝐵2

)   

= 
1

𝐾𝐵1+𝐾𝐵2
√

𝛾𝑀𝑆𝑀

𝑚𝑀(𝛾𝑀+𝑚𝑀)
 (

𝛾𝐵1𝛽1𝐶1𝑆𝐵1

(𝛾𝐵1+𝑚𝐵1)(𝛼𝐵1+𝑚𝐵1)
+ 

𝛾𝐵2𝛽2𝐶2𝑆𝐵2

(𝛾𝐵2+𝑚𝐵2)(𝛼𝐵2+𝑚𝐵2)
)  
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𝜆3 = -𝜆2 

So the largest eigenvalue of this NGM is 𝜆2. 

𝑅0 = 𝜆2 

 

From this equation, the migratory bird compartments can be easily removed as well; then the 

equation would be the same as that of a simpler model with only local bird as host. 
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List of abbreviations 

ASU: Administrational Spatial Unit 

CDC: Centers for Disease Control and Prevention (US) 

COS: Change-of-Support 

COVID-19: Coronavirus disease 2019 

ECDC: European Center for Disease Prevention and Control 

EIP: Extrinsic incubation period 

EM: Epidemiological model 

ENM: Ecological/Environmental niche model 

HPV: human papillomavirus 

NGM: Next generation matrix 

ODE: Ordinary differential equations 

STD: Sexually transmitted disease 

USUV: Usutu virus 

VBD: Vector-borne disease 

WHO: World Health Organization 

WNV: West Nile virus 
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Other academic activities 

Conferences and training 

2018 

Bayreuth, Oct. 11th 

 

 

Canary Islands, Spain 

Mar. 6- 20th 

Bayreuth Center of Ecology and Environmental Research Workshop 

Talk: Evaluating the Risk for Usutu virus circulation in Europe: Comparison of 

Environmental Niche Models and Epidemiological Models 

 

La Palma Science School 

Application of Remote Sensing for Protected Areas and Biodiversity 

2017 

Berlin, Oct. 12-13th  

 

 

Bayreuth, July 10 -15th  

National Symposium on Zoonoses Research 2017 

Poster: Modelling spatial risk of Usutu disease in Europe: a comparison 

between a species distribution model and an epidemic model 

 
Bayreuth International Summer School - Public Health & Environment  

Impact of Environmental Changes and Diseases  

2016 

Berlin, Oct. 13–14th 

 

 

Berlin, Oct. 10–12th  

National Symposium on Zoonoses Research 2016 

Poster: Human Vector-Borne and Zoonotic Diseases: State of the Art and 

Research Challenges in Face of Climate Change and Globalization. 

 

Workshop: Introduction to Interdisciplinary Communication, Presentation 

and Collaboration  

2014 

Sacramento, USA, 

Aug. 10–15th 

99th Annual Meeting of the Ecology Society of America 

Talk: Abundance and occupancy of leopard and their prey in Wangqing Leopard 

Reserve, China 

 

Manuscript in preparation 

Tjaden, NB; Cheng, Y; Beierkuhnlein, C; Tomas, SM: Chikungunya beyond the tropics: Where and when 

do we expect disease transmission in Europe? 
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Teaching 

Winters 2019/20 

In English 

 

 

 

Summer 2018 

In English 

Global Change Ecology/Progress in Global Change Research 

co-taught with Dr. Anja Jaeschke 

 

Academic Working Methods and Skills 

co-taught with Dr. Anja Jaeschke and Dr. Stephanie Thomas 

 

Public Health and Global Change  

Part 2 – Vector-borne diseases and Global Change. Bayreuth International 

Summer School 2018 

Teaching: A brief introduction of epidemiological models & A case study based 

on Usutu disease 

Reviewer activities 

Biosafety and Health 

International Journal of Health Geographics 

Plos One 
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