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Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) are often used for household applications,
utilizing hydrogen produced from natural gas from the gas grid. The hydrogen is thereby produced
by steam reforming of natural gas followed by a water gas shift (WGS) unit. The H2-rich gas
contains besides CO2 small amounts of CO, which deactivates the catalyst used in the PEMFCs.
Preferential oxidation has so far been a reliable process to reduce this concentration but valuable H2

is also partly converted. Selective CO methanation considered as an attractive alternative. However,
CO2 methanation consuming the valuable H2 has to be minimized. The modelling of selective CO
methanation in a household fuel cell system is presented. The simulation was conducted for single
and two-stage adiabatic fixed bed reactors (in the latter case with intermediate cooling), and the
best operating conditions to achieve the required residual CO content (100 ppm) were calculated.
This was done by varying the gas inlet temperature as well as the mass of the catalyst. The feed gas
represented a reformate gas downstream of a typical WGS reaction unit (0.5%–1% CO, 10%–25% CO2,
and 5%–20% H2O (rest H2)).
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1. Introduction

Proton-exchange membrane fuel cells (PEMFCs), also known as polymer electrolyte membrane
fuel cells, cogenerate electricity and heat (heated water) from hydrogen or H2-rich gases (and O2/air).
In order to generate the demanded amount of both heat and electricity, the PEMFCs are mostly
combined with a traditional furnace. A connection to the electrical grid is also available to cover the
heat and electricity not produced by the fuel cell.

In household applications, renewable energy sources like solar energy, biomass and environmental
(geothermal) heat are already often used in power and heat generation systems. PEMFCs are already
developed and commercially available for providing power and warm water to households but have
to get more efficient and cost-effective in order to be enforced. The H2-rich gas produced by the steam
reforming of natural gas followed by a water gas shift (WGS) unit still contains small amounts of CO
at the outlet due to limitation by thermodynamic constraints, typically in a concentration of approx.
0.5%–1% CO [1,2]. These low carbon monoxide contents are too high for permanent application as
even traces of this gas poison the PEMFC. Therefore, CO content must not exceed 10 ppm for Pt-anodes
and 100 ppm for PtRu-anodes [3,4]. Hence, the carbon monoxide concentration in the feed gas has to
be minimized.

CO preferential oxidation (CO-PROX) has been so far the most common process as a fine
purification step of the feed gas prior entering the PEMFC [1,5,6]. However, this process needs the
installation of a two-step system and an additional, closely controlled, low rate of O2 supply to prevent
the oxidation of H2 [1,7,8]. Furthermore, during the CO-PROX process, hydrogen oxidation to water
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takes place as an unwanted side reaction and heat evolves resulting in a lower efficiency and making
the overall reaction strongly exothermic [4,5,9,10]. Selective CO methanation is a promising technique
to guarantee the specification for operating gases. This process does not demand an additional reactant
and the consumption of additional H2 through CO2 methanation can be prevented by choosing the
appropriate catalyst.

In our previous paper [11], the activity and selectivity of a 2 wt% Ru supported on γ-Al2O3

egg-shell catalyst for CO methanation in CO2/H2 rich gases was described and discussed. A kinetic
model based on a Langmuir–Hinshelwood approach for both CO and CO2 methanation was developed.
The agreement of the model with measurements in a fixed bed reactor yielded very satisfactory
results. Taking these results into consideration, an adiabatic single- and two-stage adiabatic reactor
was simulated for household application. This was performed by varying inlet gas temperature as
well as catalyst mass. The inlet gas represented a reformate gas downstream of a typical WGS reaction
unit (0.5%–1% CO, 10%–25% CO2, and 5%–20% H2O (rest H2)) [2,4,12].

2. Calculations and Methods

The dimensioning of fuel-cell domestic appliances is usually designed to the load demand of
an ordinary household. The average electrical energy consumption of a four-person domestic home in
Germany is 5000 kWh per year [13]. This is equivalent to 0.6 kW power. A common fuel cell appliance
has an electric power of 0.75 kWel and a heat power of 1.1 kWth [14] with a typical efficiency of
80%. This corresponds to a flow rate of 655 L H2 h−1 (STP), which is equivalent to a total flow rate
of 977 L h−1 (STP) for a reformate (outlet of WGS of fuel cell system) consisting of approx. 67% H2.
In this work, this flow rate and gas composition were used as standard case for the modelling of a fixed
bed reactor for selective CO methanation. The initial CO content, which may vary at the outlet of the
WGS, has a strong influence on the CO conversion and on the temperature profile in fixed bed reactors.
Hence, for comparison, calculations were also done for a higher CO content (0.7% and 1%).

The kinetics of the CO and CO2 methanation over a 2 wt% Ru supported on γ-Al2O3 can be well
described using a Langmuir–Hinshelwood approach for gases in mol kgcat

−1 s−1 (for details on the
catalyst and the kinetics see [11,15]):

−
dCCO

dτ
= rm, CO =

kCO(T) cCO cH2(
1 + K1 cCO+K2 cH2O

)2 (1)

−
dCCO2

dτ
= rm, CO2 =

kCO2(T) cCO2cH2(
1 + K3(T) cCO2+K4(T) cCO+K5 cH2O

)2 (2)

Ki(T)= K0,i e
−∆Hi
R T (i = 3 and 4) (3)

where Ci (i = CO, H2, H2O) is the gas concentration in mol m−3, τ the modified residence time
(in kg s m−3), defined as the ratio of catalyst mass to volumetric gas flow at reaction conditions,
and kCO and kCO2 represent the rate constants according to the Arrhenius law. K1 to K5 are adsorption
constants for CO, CO2 and H2O, which depend in case of K3 and K4 on temperature. The constants
for H2O (K2 and K5) and for CO in case of CO methanation (K1) turned out to be independent
of temperature.

The adsorption of CO (K1 = 23 m3 mol−1, K4 (190 ◦C) = 14.6 m3 mol−1) is much stronger
compared to CO2 (K3 (190 ◦C) = 0.17 m3 mol−1) and H2O (K2 = with 0.3 m3 mol−1, K5 = 1.1 m3 mol−1),
and the active catalyst surface (Ru) is blocked by adsorbed carbon monoxide. Correspondingly,
the rate of CO2 methanation strongly increases with decreasing CO concentration and increasing CO
conversion, respectively. The values of all kinetic parameters and reaction conditions are listed in
Table 1. Their calculation and validation are presented in our previous paper [11].
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Table 1. Simulation parameters of adiabatic fixed bed methanation reactor(s).

Parameter Value

Catalyst bulk density, %b 500 kg m−3

Activation energy, EA,CO 90 kJ mol−1

Pre-exponential factor, k0,CO 3.61 × 107 m6 s−1 kg−1 mol−1

Langmuir (adsorption) constant, K1 23 m3 mol−1

Langmuir constant, K2 0.3 m3 mol−1

Activation energy, EA,CO2 81 kJ mol−1

Pre-exponential factor k0,CO2 2.8 × 104 m6 s−1 kg−1 mol−1

Factor K0,3 8.4 m3 mol−1

Adsorption enthalpy, ∆H3 15 kJ mol−1

Factor K0,4 1.15 × 10−13 m3 mol−1

Adsorption enthalpy, ∆H4
1

−125 kJ mol−1

Langmuir constant, K5 1.1 m3 mol−1

1 Note that formally the adsorption of CO2 turned out to be surprisingly endothermic in case of CO2 methanation.
Hence, the physical meaning of the constants Ki, denoted here as adsorption constants, is highly questionable,
but at least they formally describe the reaction rate(s) quite well.

For household fuel cell systems, the reactor design should be simple and robust. Therefore,
an adiabatic fixed bed reactor (or two in series with intermediate cooling) without the need of
a complicate cooling system (such as a multitubular reactor with external cooling) was (were) chosen
and simulated. The conversion both of CO and CO2 under steady state conditions was calculated using
the rate equations for CO and CO2 methanation (Equations (1) and (2)) and the following mass balance:

− us
dc j

dz
= rm, j ρb ( j = CO, CO2) (4)

where us is the superficial gas velocity, and ρb the bulk density of the catalyst. The reaction rates (rm,j in
molj s−1 kgcat

−1) depend on temperature, which changes in axial direction z. The local temperature
change (at steady state) and the axial temperature profiles, respectively, were calculated by the following
heat balance (j = CO, CO2; n = all components of the gas):

dT
dz

=

∑
rm, j

(
−∆RH j

)
ρb

us
∑

cncp,n
(5)

where cp,n is the heat capacity in J/(mol K).
The reaction rates of CO and CO2 are almost unaffected by pore diffusion for the given egg-shell

catalyst, at least for temperatures below about 230 ◦C (see [11,15]). Furthermore, the pressure drop
over the fixed bed was considered insignificant and a total pressure of 1 bar was assumed. The change
of concentration and temperature in radial direction was neglected (plug flow, adiabatic operation).

3. Results and Discussion

The simulation was conducted to calculate the optimum inlet temperature and the corresponding
mass of catalyst needed to achieve the demanded residual CO concentration (100 ppm) in the
outlet gas. The temperature limit was set at 230 ◦C in order to avoid the unwanted RWGS reaction
(CO2 + H2O→ CO + H2O), which was found taking place at temperatures above 240 ◦C (see [11,15]).

As mentioned above, the inlet gas represents a reformate gas downstream of a typical WGS unit
with a CO content of typically less than 1%. The methanation of CO leads to a certain temperature
rise and to an unavoidable, but small H2 consumption (e.g., only 2% for 0.5% CO in the feed gas,
see below). An additional rise in temperature and in H2 consumption is due to the highly undesired
CO2 methanation. Here, the excess H2 conversion is characterized by the factor EH2 = XH2/XH2,min,
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which is the ratio of the actual H2 conversion to the minimum conversion, if only CO methanation
takes place and the residual CO content of 100 ppm needed for PtRu-anodes is just reached.

3.1. Simulation of a Single Adiabatic Fixed Bed Reactor for Selective CO Methanation

For a feed gas with 0.5% CO (16.5% CO2, 16% H2O, and 67% H2), the target value of 100 ppm
CO in the product gas of the methanation reactor corresponds to 98% CO and 2.2% H2 conversion,
respectively. The excess of H2 conversion is then characterized by the factor EH2 = XH2/0.022.

Figures 1 and 2 and Table 2 show that an inlet temperature of 140 ◦C is appropriate to avoid
too high temperatures (> 230 ◦C), at least if the mass of the catalyst is limited to values needed
for almost complete conversion of CO. 2.9 kg of catalyst (58 g Ru) are required to reach the target
value of the residual CO content (100 ppm, i.e., XCO = 98%). The outlet temperature is then 210 ◦C,
which is a reasonable value to limit the RWGS and CO2 methanation. EH2 is 1.12, i.e., 12% more
hydrogen (H2 conversion of 2.5% compared to 2.2%) is consumed compared to the ideal case without
any CO2 conversion, which is here still rather small and only 0.4%. In other words, only 0.13 mol of
CO2 are converted per mol of converted carbon monoxide.
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Figure 1. Axial temperature profile of an adiabatic fixed-bed reactor for inlet temperatures of 130 ◦C,
140 ◦C and 150 ◦C (977 L h−1 (STP), feed gas: 0.5% CO, 16.5% CO2, 16% H2O, 67% H2). The adiabatic
rise in temperature is ∆T = 79 K (without CO2 conversion).

Table 2. Basic data of an adiabatic reactor for selective CO methanation at different initial temperatures
(977 L h−1 (STP), feed gas: 0.5% CO, 16.5% CO2, 16% H2O, 67% H2).

Tin
in ◦C

Tout
in ◦C

mcat
in kg

XCO
in %

XCO2
in %

XH2
in % EH2

CO Content at
Reactor Outlet

130
200 4.90 98.00 0.38 2.50 1.12 100 ppm
211 7.40 99.99 0.95 3.10 1.39 < 1 ppm

140
210 2.90 98.00 0.41 2.51 1.12 100 ppm
220 4.40 99.99 0.90 3.01 1.35 < 1 ppm

150
222 1.80 98.00 0.46 2.64 1.18 100 ppm
230 2.70 99.99 0.85 3.04 1.37 < 1 ppm
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Figure 2. CO and CO2 conversion of an adiabatic fixed-bed reactor for inlet temperatures of 130 ◦C,
140 ◦C and 150 ◦C (other conditions as in Figure 1).

If the inlet temperature is reduced from 140 ◦C to 130 ◦C, the mass of catalyst required for 98%
CO conversion undesirably increases from 2.9 kg to 4.9 kg, and the excess of H2 consumption is almost
the same (Table 2). If, vice versa, the inlet temperature is increased from 140 ◦C to 150 ◦C, the required
mass of catalyst decreases from 2.9 kg to 1.8 kg. Although this seems to be beneficial, EH2 rises from
1.12 to 1.18, which is of course a disadvantage, see also Table 2. Hence, a reasonable compromise has to
be made with regard to minimize both mcat and EH2, whereby the outlet temperature should be always
kept below 230 ◦C. Figure 1 also clearly shows that the size of the reactor and mass of the catalyst,
respectively, should not be too high to avoid an unwanted overheating of the catalyst (> 230 ◦C) as
well as an undesired CO2 methanation and H2 consumption, e.g., for Tin = 140 ◦C and 12 kg catalyst,
CO2 conversion would reach 3% and the corresponding value of EH2 would be 2.3 (H2 conversion: 5%).

However, to be on the safe side with regard to the maximum residual CO content of 100 ppm,
a certain surplus of the reactor size is advisable. Therefore, Table 2 also shows the reactor parameters,
if the reactor length and mass of catalyst are by a factor 1.5 larger compared to the parameters for
100 ppm residual CO content. As expected, the CO conversion is then almost 100%, but the CO2

conversion also increases, which leads to an additional and highly unwanted conversion of hydrogen
(higher value of EH2), e.g., for Tin = 140 ◦C, XH2 increases from 2.5% to 3%.

For a feed gas with 0.7% CO, an appropriate reactor set-up is only reached for a very low inlet
temperature of 110 ◦C. The required catalyst mass is then 25.5 kg and equals 1.5 times the minimum
mass needed to reach 100 ppm (safety margin). This amount is large compared to 4.4 kg for 0.5% CO
in the feed gas (Table 3). The reason is the low inlet temperature (110 ◦C) required to keep the reactor
outlet temperature (224 ◦C) below the limit of 230 ◦C. The volume would be 68 liters, e.g., a cylinder
with a length of 96 cm and 30 cm in diameter, which is quite large for a household fuel cell system.

For a feed gas with 1% CO, a single adiabatic reactor is even inapplicable for CO methanation:
The gas inlet temperature should then not exceed 70 ◦C in order to keep the outlet temperature below
230 ◦C. This would lead to an unrealistic large reactor with a catalyst mass of about 250 kg which is far
beyond the acceptable size for a household fuel cell system. However, this situation can be overcome
by using a multi-stage fixed bed reactor set-up as presented in the following section.
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Table 3. Simulation results for a single stage adiabatic reactor (0.5%–0.7% CO, 16.3%–16.5% CO2, 16%
H2O, rest H2). The mass of the catalyst was assumed to be by a factor of 1.5 larger (safety margin)
compared to the amount required to reach a residual CO content of 100 ppm.

Parameter
CO Content in Feed Gas

0.5 % 0.7 %

Operating conditions Inlet temperature 140 ◦C 110 ◦C
Pressure 1 bar 1 bar

Outlet temperature 220 ◦C 224 ◦C

Reactor dimensions Mass of catalyst 4.4 kg 25.5 kg
Volume 11.7 L 68.0 L

Tube diameter/length 20 cm/37 cm 30 cm/96 cm

Outlet gas composition CO < 1 ppm < 1 ppm
CO2 16.5% 16.4%
H2O 17.0% 17.5%
H2 65.8% 65.2%

CH4 0.7% 0.9%

Conversion CO 99.99% 99.99%
CO2 0.9% 1.3%
H2 3.0% 4.4%

EH2 1.35 1.40

3.2. Simulation of a Two-Stage Adiabatic Fixed Bed Reactor with Intermediate Cooling

A single adiabatic fixed bed reactor is inadequate for CO inlet concentrations above 0.7%.
An alternative is a two-stage reactor set-up with intermediate cooling by a heat exchanger. The feed gas
enters the first reactor with a temperature of Tin,1, leading to an outlet temperature of Tout,1 = 230 ◦C
(value of T-limit); the gas is then cooled down to the inlet temperature Tin,2 of the second adiabatic reactor.
The gas leaves the second reactor with the desired CO content of 100 ppm (or less), and the temperature
at the outlet is still Tout,2 ≤ 230 ◦C. This two-stage concept is applicable for CO concentrations of up to
1% CO, which can be considered as the maximum content relevant for a feed gas from a WGS unit.
The simulation results of a feed gas with 0.5% CO are summarized exemplarily in Table 4. The gas
enters both reactors with an inlet temperature of 180 ◦C.

Table 4. Basic data of a two-stage adiabatic reactor set-up for selective CO methanation of a gas with
0.5% CO, 16% H2O, 16.5% CO2 and 67% H2 having a volume flow of

.
V = 977 L h−1 (STP).

Parameter 1st Adiabatic Fixed Bed Reactor 2nd Adiabatic Fixed Bed Reactor

Tin in ◦C 180 180
Tout in ◦C 230 203
mcat in kg 0.27 0.30

V in L 0.54 0.6
dr, lr in cm 5, 28 5, 31
XCO in % 71.21 98.00
XCO2 in % 0.28 0.81
XH2 in % 1.87 3.90

EH2 - 1.74

Gas composition at reactor outlet

0.15% CO
16.6% CO2
16.6% H2O
66.3% H2
0.4% CH4

100 ppm CO
16.7% CO2
17.1% H2O
65.6% H2
0.6% CH4

The adiabatic temperature rise by the exothermic CO and CO2 methanation is depicted in Figure 3.
Note that the rise in the rear part of the second reactor is not anymore proportional to the decrease of
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the CO concentration. This is the result of the CO2 methanation, taking place mainly in the rear part,
where the CO concentration is low, which enhances the rate of CO2 methanation, see Equation (2).
Figure 4 shows the CO and CO2 conversion as function of catalyst mass. In the first stage (mcat = 0.27 kg)
a conversion of 71% CO is reached, and in the second stage (0.3 kg) 98%, respectively.Energies 2020, 13, x FOR PEER REVIEW 7 of 11 
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The mass of catalyst required for a certain CO-conversion can be calculated based on Equation (4) as
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0

dXCO
rm,CO

=

z∫
0

ρb

us cCO,in
dz

yields
→ mcat =

.
V(T, p) cCO,in

XCO∫
0

dXCO
rm,CO

(6)



Energies 2020, 13, 2844 8 of 11

The integral of Equation (6) (and thus mcat for a given volume rate and CO inlet concentration)
can be solved graphically by the plot of the reciprocal CO reaction rate versus the conversion of CO.
For a comparison of the single- and the two-stage adiabatic reactor simulation, Figure 5 shows this
plot for both cases. Hence, instead of a single reactor with a catalyst mass of 2.9 kg (see Section 3.1)
two considerably smaller reactors can be used for the same purpose. The first one has a catalyst mass
of 0.27 kg and the second one 0.3 kg, respectively, so in total only 0.57 kg catalyst. It should be noted,
that for a final comparison of the single- and two-stage process, e.g., with regard to investments costs,
the volume of the heat exchanger needed for the two-stage methanation has to be considered also,
but this was beyond the scope of this work.
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V = 977 L h−1 for two scenarios, a single adiabatic fixed bed

reactor and a two-stage adiabatic fixed bed reactor with intermediate cooling.

3.3. Flexible and Safe Operation of the Two-stage Adiabatic Fixed Bed Reactor

The two-stage adiabatic reactor was further modified to ensure temperatures below 230 ◦C and
CO concentrations at the outlet of the second reactor below 100 ppm. The modifications allowed
to regulate temperature changes, CO concentration variations in the feed gas from 0% to 1% and
a potential drop of catalytic activity. Here, the reactor outlet temperature was set at Tout = 220 ◦C
(compared to 230 ◦C as before in the “standard” simulation), i.e., 10 ◦C below the critical temperature
(onset of CO formation by RWGS).

Using this reactor design, the inlet temperature could be regulated (increased by about 10 K)
to a certain degree depending on the catalyst activity and inlet CO concentration. The basic data of
a two-stage adiabatic reactor set-up for selective CO methanation of a gas with 1% CO are listed
in Table 5; the inlet temperatures are 150 ◦C (reactor 1) and 145 ◦C (reactor 2) to limit the outlet
temperature of both reactors to 220 ◦C (Table 5). Figure 6 shows the influence of the catalyst mass
on the CO and CO2 conversion, both for an inlet CO content of 0.5% and 1%. The simulation with
the low CO inlet content (0.5%) already leads to a CO conversion of about 95% in the first reactor,
and a very low outlet CO content of less than 2 ppm is reached in the second one, even at very low
temperatures (Tin,2 = 145 ◦C, Tout,2 = 180 ◦C). In this case, the inlet temperature could be set even
higher, e.g., to about 200 ◦C, without the danger to exceed the temperature limit of 220 ◦C. For 1% CO
in the feed gas, the conversion in the first reactor is only about 50%, but almost full CO conversion is
achieved in the second one (final CO content of 8 ppm) (Table 5).
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Table 5. Basic data of a two-stage adiabatic reactor set-up for selective CO methanation of a gas with
1% CO, 16% H2O, 16% CO2, 67% H2 having a volume flow of

.
V = 977 L h−1 (STP).

Parameter 1st Adiabatic Fixed Bed Reactor 2nd Adiabatic Fixed Bed Reactor

Tin in ◦C 150 145
Tout in ◦C 220 220
mcat in kg 1.67 3.0

V in L 3.35 6.0
dr, lr in cm 10.43 20, 76
XCO in % 51 99.93
XCO2 in % 0.22 0.85
XH2 in % 2.45 5.30

EH2 - 1.15

Gas composition at reactor outlet

0.5% CO
16.1% CO2
16.8% H2O
66.1% H2
0.5% CH4

8 ppm CO
16.2% CO2
17.7% H2O
64.9% H2
1.2% CH4
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Thus, the two-stage fixed bed reactor set-up could be used for the selective methanation of CO
with gases containing CO concentrations up to 1%. Even in case of a drop of the catalyst’s activity,
the temperature can be increased by 10 K (even for a feed gas with 1% CO) in order to keep the outlet
concentration below 100 ppm and the maximum temperature below 230 ◦C. The catalyst mass (volume)
would then be in total 4.7 kg (9.4 L), which is still a reasonable value for a household fuel cell system.

4. Conclusions

A fixed reactor for application in a typical domestic home (four-person household) was simulated
based on the kinetics of CO and CO2 methanation. First, a single adiabatic fixed bed reactor was
simulated for CO concentrations of 0.5%, 0.7% and 1% CO, respectively. The outlet temperature limit
was set to 230 ◦C in order to exclude the RWGS reaction taking place at temperatures above 240 ◦C.
The optimum inlet gas temperature was calculated for a maximum CO concentration of 100 ppm.
The simulation showed that a single adiabatic reactor was suitable for up to a maximum inlet content
of CO of 0.7%. For 0.5% CO in the feed gas, an inlet temperature of 140 ◦C resulted in a final outlet
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temperature of 220 ◦C, which was sufficiently below the critical value of 240 ◦C. The mass of catalyst
needed in this case was about 4.4 kg for a rate of the feed gas of 977 L h−1 (STP), which can be regarded
as typical for a fuel cell system of a domestic home.

For a feed gas with 1% CO, a single adiabatic fixed bed reactor turned out to be inapplicable
for the selective CO methanation. The outlet temperature went too high (>240 ◦C) for realistic inlet
temperatures (>100 ◦C), i.e., at an outlet temperature of 230 ◦C, the mass and volume of the catalyst
bed were much too high if a residual CO content of 100 ppm should be reached. For this reason,
a two-stage adiabatic fixed bed reactor with intermediate cooling was simulated considering an outlet
temperature limitation of Tout = 230 ◦C. Using this device, even a feed gas with up to 1% CO could
be used. Here, the resulting total mass of the catalyst was only 3.6 kg to reach the goal of less than
100 ppm CO.

However, to account for a certain decline in the activity of the catalyst and to ensure still
concentrations below 100 ppm CO, the outlet temperature was lowered to Tout = 220 ◦C. This enables
a temperature increase of about 10 K in case of a drop of the activity with time on stream.
Again, a two-stage adiabatic reactor was simulated, which is applicable for varying CO concentrations
of up to 1% CO. The total mass of the catalyst is then 4.7 kg (compared to 3.6 kg for an outlet temperature
of 230 ◦C), which is still a reasonable value for a household fuel cell system.
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